Numerical and experimental study on the impact of chromatic dispersion on O-band direct-detection transmission
Numerical and experimental study on the impact of chromatic dispersion on O-band direct-detection transmission
The recent emergence of efficient O-band amplification technologies has enabled the consideration of O-band transmission beyond short-reach. Despite the O-band being a low chromatic dispersion (CD) window, the impact of CD will become increasingly significant when extending the reach of direct-detection (DD) systems. In this work, we first numerically investigate the 3-dB bandwidth of single-mode fibers (SMF) and the CD-restricted transmission reach in intensity-modulation DD systems, confirming the significant difference between low- and high-dispersion O-band wavelengths. We then carry out experimental transmission studies over SMF for distances of up to 70 km at two different wavelengths, the low-dispersion 1320 nm and the more dispersive 1360 nm, enabled by the use of an O-band bismuth-doped fiber amplifier as a pre-amplifier at the receiver. We compare three 50-Gb/s optical DD formats, namely Nyquist on-off keying (OOK), Nyquist 4-ary pulse amplitude modulation (PAM4) and Kramers-Kronig detection-assisted single-sideband quadrature phase shift keying (KK-QPSK) half-cycle subcarrier modulation. Our results show that at both wavelengths, OOK and QPSK exhibit better bit error rate performance than PAM4. When transmitting over 70-km of SMF at the less dispersive wavelength of 1320 nm, 50-Gb/s OOK modulation offers more than 1.5-dB optical power sensitivity improvement at the photodiode (PD) compared to 50-Gb/s QPSK. Conversely, at 1360 nm, the required optical power to the PD can be reduced by more than 3 dB by using QPSK instead of OOK.
4383-4390
Hong, Yang
73d5144c-02db-4977-b517-0d2f5a052807
Bottrill, Kyle
8c2e6c2d-9f14-424e-b779-43c23e2f49ac
Taengnoi, Natsupa
afc5fb3e-224b-43b3-a161-931ed77faec1
Thipparapu, Naresh Kumar
a36a2b4c-b75c-4976-a753-b5fab9e54150
Wang, Yu
629093a5-d7b6-408d-86bf-d2e754f739e6
Sahu, Jayanta
009f5fb3-6555-411a-9a0c-9a1b5a29ceb2
Richardson, David
ebfe1ff9-d0c2-4e52-b7ae-c1b13bccdef3
Petropoulos, Periklis
522b02cc-9f3f-468e-bca5-e9f58cc9cad7
20 May 2021
Hong, Yang
73d5144c-02db-4977-b517-0d2f5a052807
Bottrill, Kyle
8c2e6c2d-9f14-424e-b779-43c23e2f49ac
Taengnoi, Natsupa
afc5fb3e-224b-43b3-a161-931ed77faec1
Thipparapu, Naresh Kumar
a36a2b4c-b75c-4976-a753-b5fab9e54150
Wang, Yu
629093a5-d7b6-408d-86bf-d2e754f739e6
Sahu, Jayanta
009f5fb3-6555-411a-9a0c-9a1b5a29ceb2
Richardson, David
ebfe1ff9-d0c2-4e52-b7ae-c1b13bccdef3
Petropoulos, Periklis
522b02cc-9f3f-468e-bca5-e9f58cc9cad7
Hong, Yang, Bottrill, Kyle, Taengnoi, Natsupa, Thipparapu, Naresh Kumar, Wang, Yu, Sahu, Jayanta, Richardson, David and Petropoulos, Periklis
(2021)
Numerical and experimental study on the impact of chromatic dispersion on O-band direct-detection transmission.
Applied Optics, 60 (15), , [424962].
(doi:10.1364/AO.424962).
Abstract
The recent emergence of efficient O-band amplification technologies has enabled the consideration of O-band transmission beyond short-reach. Despite the O-band being a low chromatic dispersion (CD) window, the impact of CD will become increasingly significant when extending the reach of direct-detection (DD) systems. In this work, we first numerically investigate the 3-dB bandwidth of single-mode fibers (SMF) and the CD-restricted transmission reach in intensity-modulation DD systems, confirming the significant difference between low- and high-dispersion O-band wavelengths. We then carry out experimental transmission studies over SMF for distances of up to 70 km at two different wavelengths, the low-dispersion 1320 nm and the more dispersive 1360 nm, enabled by the use of an O-band bismuth-doped fiber amplifier as a pre-amplifier at the receiver. We compare three 50-Gb/s optical DD formats, namely Nyquist on-off keying (OOK), Nyquist 4-ary pulse amplitude modulation (PAM4) and Kramers-Kronig detection-assisted single-sideband quadrature phase shift keying (KK-QPSK) half-cycle subcarrier modulation. Our results show that at both wavelengths, OOK and QPSK exhibit better bit error rate performance than PAM4. When transmitting over 70-km of SMF at the less dispersive wavelength of 1320 nm, 50-Gb/s OOK modulation offers more than 1.5-dB optical power sensitivity improvement at the photodiode (PD) compared to 50-Gb/s QPSK. Conversely, at 1360 nm, the required optical power to the PD can be reduced by more than 3 dB by using QPSK instead of OOK.
Text
AO_O-band CD impact_accepted version
- Accepted Manuscript
More information
Accepted/In Press date: 26 April 2021
Published date: 20 May 2021
Additional Information:
Publisher Copyright:
© 2021 Optical Society of America
Identifiers
Local EPrints ID: 449018
URI: http://eprints.soton.ac.uk/id/eprint/449018
ISSN: 1559-128X
PURE UUID: dd9641da-27bc-4e01-9f7a-520d0df6c864
Catalogue record
Date deposited: 13 May 2021 16:39
Last modified: 17 Mar 2024 03:41
Export record
Altmetrics
Contributors
Author:
Yang Hong
Author:
Kyle Bottrill
Author:
Natsupa Taengnoi
Author:
Naresh Kumar Thipparapu
Author:
Yu Wang
Author:
Jayanta Sahu
Author:
Periklis Petropoulos
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics