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Pulmonary diseases has long suffered from a lack of clinical biomarkers for disease diagnosis, 
prognostic prediction and treatment response. Pulmonary surfactant is critically important for 
optimal lung function. While altered surfactant function, concentration and composition have 
been reported in patients with various lung diseases, these changes have also yet to be translated 
into clinical practice. An alternative approach to measurement at a single time point is to quantify 
time course kinetics of substrate fluxes through metabolic pathways. Consequently, in this thesis, 
incorporation of the stable isotope-labelled substrate deuterated methyl choline chloride 
(methylD9choline) into the major surfactant phospholipid phosphatidylcholine (PC), combined 
with electrospray ionization tandem mass spectrometry (ESI MS/MS), was employed to monitor 
the metabolic flux of surfactant phospholipid synthesis in vivo.  Time series PC data acquired 
through ESI MS/MS coupled with stable isotope labelling techniques from three studies was 
analysed using the smoothing spline mixed effect method (SME). This is a pilot study applying 
time course label enrichment of multiple surfactant PC species as biomarkers to phenotype 
animal models and patients with various lung diseases. 

  There is no effective software for data processing mass spectrometry analysis of time series 
substrate incorporation into multiple molecular species products. Consequently, a bioinformatics 
platform LipidomeLabelling was developed to facilitate data analysis of dynamic labelling studies 
and was used for the following biomarker discovery analysis.  

  Time course methylD9 label enrichment of 16 PC species was modelled using SME method for all 
the subjects of group pairs in three different studies, which makes the foundation of the 
multivariate time course biomarker discovery analysis for lung diseases. In a study, a Ft statistic 
was calculated as the scaled difference between the time course label enrichment of two 
contrasting groups for a single PC species, and the Ft statistics for all the species were ranked and 
according to their significance in distinguishing the two groups, for potential biomarker 
identification. The surfactant PC kinetic biomarker analysis of a mouse model shows that time 
course label enrichment of multiple PC species significantly differentiated between wild type mice 
and granulocyte macrophage colony stimulating factor (GM-CSF) beta chain knock out mice. 
However, this methodology failed to provide useful biomarkers in the clinical conditions examined, 
preterm infants at risk of neonatal respiratory distress syndrome and adult patients with acute 
respiratory distress syndrome compared with healthy volunteers. While differences could be 
determined between grouped data, subject heterogeneity precluded provision of diagnostic 
individual for individual patients.  
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Chapter 1 Introduction 

1.1 Biomarker discovery in pulmonary diseases 

A biomarker is a biological characteristic that can be objectively measured and evaluated 

as an indicator of normal biological processes, pathogenic processes, or pharmacological 

responses to a therapeutic intervention (Atkinson et al., 2001). Biomarkers can be 

characteristic properties and molecules, and biomarkers that are of the most interests 

include genes, proteins, metabolites, and lipids. 

Pulmonary diseases have been suffering from a lack of sensitive and specific biomarkers 

in clinical practice. The diseases are usually diagnosed based on history of symptoms, 

physical examinations, pulmonary function tests, radiology, and histopathological tests 

(Chen et al., 2016; Kim et al., 2017). However, the clinical data is often not sufficient for 

practitioners to accurately and efficiently identify diseases excluding other diseases with 

similar characteristics, identify patient subgroups for tailored treatment, monitor and 

evaluate treatment responses, or predict the disease progression. This is largely due to 

the complexity and the poor understanding of most of the lung diseases. Therefore, new 

biomarkers are needed for disclosing the underlying mechanisms of the diseases as well 

as facilitating effective clinical management.   

The lethal acute respiratory distress syndrome in adults (ARDS) has a high mortality rate 

up to 50% (Máca et al., 2017). Although there are various triggering conditions, ARDS is 

diagnosed based on the fulfilment of certain clinical diagnostic criteria (Fan et al., 2018), 

which lack specificity and allow for inclusion of heterogeneous patients groups. The 

clinical management involves supportive ventilation strategies and treatment for some 

general conditions, such as infection. There has been no pharmacological treatment, due 
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to the lack of understanding of disease mechanisms and indicators for guiding customised 

treatment. Asthma is a highly prevalent pulmonary disease worldwide resulting in 

250,000 deaths annually (D'Amato et al., 2016). There has been little improvement in the 

clinical management of Asthma for decades, despite the tremendous effort. The diagnosis 

is mainly based on disease history, physical examination and allergy test, which are 

inadequate to stratify heterogeneous patient groups. Effective markers are not available 

for identifying patients who may be responsive to the limited treatments options 

(Miranda et al., 2004; Rosenberg et al., 2007; Shaw et al., 2007; Kim et al., 2017). The 

debilitating chronic obstructive pulmonary disease (COPD) is one of the leading causes of 

death worldwide with a rising death rate (Mathers and Loncar, 2006). The natural history 

of COPD is often marked by periodic exacerbation, in which symptoms of breathlessness 

and sputum production worsen acutely. Disease progression of COPD is variable, and 

periodic acute exacerbations only happen in some patients, leading to morbidity and 

mortality (Lomas et al., 2009). However, there are no reliable indicators that can help 

assess the state of COPD or predict its progression of each patient for guiding and 

monitoring treatment intervention (Il Yoon and Sin, 2011; Chen et al., 2016). For other 

lung diseases including idiopathic pulmonary fibrosis (Ohnishi et al., 2002), pneumonia 

(Baughman et al., 1993), sarcoidosis (Griese, 1999) and cystic fibrosis (Gray et al., 2017), 

challenges remain in the diagnosis, prognosis and assessment of disease activity and 

response to treatment. New biomarkers are urgently required for elucidating the 

underlying pathophysiological mechanisms of these diseases for improving the clinical 

outcomes and accelerating drug development.  

The ever-growing interests in biomarker discoveries in lung diseases have driven a large 

amount of investigations on hundreds of potential biomarkers of various forms, such as 
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proteins, genes, cells, lipids etc. The most intensively studied biological markers are 

protein indicators, which are involved in various disease mechanisms at different stages 

of the pathological processes.  

Proteins involved in inflammation pathways are of the highest interest in biomarker 

studies, as inflammation is a common characteristic in most pulmonary diseases. In BALF, 

plasma, sputum and serum samples, some members of the large family of inflammatory 

cytokines interleukins (ILs), which are mediators in the inflammatory processes, have 

been shown to be correlated with pathogenesis of various diseases, like ARDS (Park et al., 

2001), neonatal respiratory distress syndrome (NRDS) (Terpstra et al., 2014), asthma 

(Rosenberg et al., 2007) and cystic fibrosis (Gray et al., 2017). Apart from ILs, other 

inflammatory related proteins, such as matrix metalloproteinase family (Cederqvist et al., 

2001; Sweet et al., 2001)  and C-reactive protein (Bajwa et al., 2009) in BALF, tracheal 

aspirate and plasma samples are also of great interest in the biomarker studies of lung 

diseases. Potential protein indicators of epithelial and endothelial cell damages are also 

widely investigated for their suitability of being used as biomarkers. Epithelial cell damage 

markers including Krebs von den Lungen-6 and soluble receptor for advanced glycation 

end products in plasma and BALF are elevated with ARDS development (Sato et al., 2004); 

(Jabaudon et al., 2015), interstitial lung diseases (Ohnishi et al., 2002) and acute lung 

injury (Uchida et al., 2006). Endothelial related markers for lung injuries include 

Endothelin 1 (Boscoe et al., 2000) and angiopoietin-2 (Calfee et al., 2012), owing to their 

pulmonary vasoconstriction and vascular permeability mediating function. Surfactant 

proteins are important components of pulmonary surfactant system, which are essential 

for optimal lung function. Biomarker studies of the main surfactant proteins including 

surfactant protein A (SP-A), surfactant protein B (SP-B), surfactant protein C (SP-C) and 
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surfactant protein D (SP-D) have also been largely conducted for various lung conditions 

(Eisner et al., 2003); (Cheng et al., 2003; Lomas et al., 2009). Protein biomarkers involved 

in other disease mechanisms, such as coagulation, fibrinolysis, fibrosis, extracellular 

matrix remodelling, are investigated as well. 

Cell and genetic biomarkers are also widely analysed for their ability in indicating disease 

pathogenesis. For example, eosinophils and neutrophils play an important role in the 

body's response to allergic reactions. They are found to be linked with asthma (Bousquet 

et al., 1990; Miranda et al., 2004; Shaw et al., 2007) as well as other diseases such as 

COPD (Stanescu et al., 1996). The genetic biomarkers of interests usually have their 

products, such as proteins, that have shown significance in indicating abnormalities in 

certain diseases. Although biomarker studies have been focusing predominantly on 

targeted individual molecules, omics analysis including proteomics, genomics, 

transcriptomics, and metabolomics have also been carried out for biomarker analysis 

(Wheelock et al., 2013). The benefit of omics analysis is the possibility of revealing 

pathological mechanisms by probing wide range of markers at different functional 

biological levels at the same time.  

Despite the tremendous effort in the last few decades, there are hardly any new 

biomarkers established in clinical settings for pulmonary diseases with proven benefits, 

requiring more types of biomarkers to be investigated.  Lipid biomarkers have been 

intensively used in various diseases, such as cancer (Yan et al., 2018), cardiovascular 

diseases (Li et al., 2017), diabetes (Dorcely et al., 2017) and Alzheimer’s disease (Zarrouk 

et al., 2018) etc. Nevertheless, there are very few lipid biomarker studies for pulmonary 

diseases apart from some lung cancer studies (Ravipati et al., 2015; Yu et al., 2017). 

Nearly half decades ago, it was found that the ratio of fetal lung secreted lecithin 
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(phospholipids) to sphingomyelin presented in amniotic fluid was a significant indicator in 

determining the fetal lung maturity (Gluck and Kulovich, 1973). However, the studies of 

surfactant phospholipids (PL), the major component of pulmonary surfactant that keeps 

normal lung functioning, have not provided any efficient clinical biomarkers for other 

pulmonary conditions ever since, although their abnormality have been widely found in 

various lung diseases. 

1.2 Pulmonary surfactant  

Pulmonary surfactant is a surface-active lipid-protein complex secreted by alveolar type II 

epithelial cells (AT II) through a highly regulated metabolic process (Halliday, 2008). It 

reduces the high surface tension at the air-liquid interface of the alveoli, which prevents 

collapse of lung at the end of expiration, and reduces the effort that is needed to expand 

the lung during inhalation. Pulmonary surfactant is critical for optimal lung function. 

Deficiency or dysfunction of lung surfactant are associated with various lung diseases and 

can even lead to severe life-threatening lung failure (Glasser and Mallampalli, 2012; 

Akella and Deshpande, 2013).  

1.2.1 Pulmonary surfactant composition 

Surfactant lipid is the main component that accounts for around 90% of the lung 

surfactant (Veldhuizen and Haagsman, 2000), and comprises mainly phospholipids as well 

as some other lipids such as cholesterol. The identified protein components of surfactant 

consist of SP-A, SP-B, SP-C and SP-D. SP-B and SP-C are hydrophobic, and their function is 

to increase the absorption rate of phospholipids (Hawgood, 2004). SP-A and SP-D are 

hydrophilic, and they contribute to surfactant homeostasis and pulmonary immunity.  
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Phospholipids are amphiphilic lipids that consist of hydrophobic fatty acids and a 

phosphate based hydrophilic head, joined together mostly by a glycerol molecule 

(glycerophospholipids). They make up approximately 80-85% of the lipid component of 

lung surfactant (Agassandian and Mallampalli, 2013). Among the phospholipid classes, 

phosphatidylcholine (PC) is the principle constituent and the remainder include 

phosphotidylglycerol (PG), phosphatidylinositol (PI) and phosphatidylethanolamine (PE). 

The most abundant PC species present in human lung surfactant is the saturated 

dipalmitoylphosphatidylcholine (DPPC) (Figure 1)(Postle et al., 2001), which is the major 

surface-active molecule that reduces the surface tension at the air-liquid surface of 

alveoli.  

 

Figure 1: Molecular structure of dipalmitoylphosphatidylcholine (DPPC) 

1.2.2 Surfactant metabolism 

1.2.2.1 Synthesis  

Pulmonary surfactant components are synthesised in the endoplasmic reticulum (ER) of 

AT II cells, where surfactant lipids and proteins are synthesised at smooth ER and rough 

ER respectively (Olmeda et al., 2017a).  De novo biosynthesis of the most abundant and 

functionally important surfactant PC occurs via cytidine diphosphocholine (CDP-choline) 

pathway, which will be introduced in detail in section 1.3.2. However, CDP-choline 

pathway is not predominant for surfactant DPPC production. It is shown that in isolated 

rat lung AT II cells only ~45% of DPPC is de novo synthesised, while 55% - 75% comes from 

remodelling pathway (Batenburg, 1992); (Caesar et al., 1991). The remodelling pathway 
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of DPPC involves de-acylation of monounsaturated PC by phospholipase (Hook, 1991), 

which hydrolyses unsaturated fatty acids at the sn-2 position of PC and generates lyso-PC, 

followed by re-acylation with saturated palmitic acid (16:0) species by acyl 

CoA:lysophosphatidylcholine acyltransferase (LPCAT1) (Batenburg et al., 1979; Voelker 

and Snyder, 1979). It is also suggested that LPCAT1 is involved in cross-talk between de 

novo synthesis and remodelling pathways of phospholipid balance (Butler and 

Mallampalli, 2010). Overexpression of LPCAT1 increased degradation of choline 

phosphotransferase (CPT) to supresses the de novo synthesis. LPCAT1 is also involved in 

the remodelling pathway of dipalmitoylphosphatidylglycerol. 

The biosynthesis of surfactant PC can be affected by various factors. Activities and 

amount of enzymes catalysing the sequential reactions have direct impacts on the 

biosynthesis (Goss et al., 2013). Increasing enzyme activity and enzyme mass may result 

in increased synthesis, vice versa. Certain hormones, such as thyroid hormone, oestrogen 

and glucocorticoids can also regulate PC biosynthesis by changing the activity and  

amount of the enzymes (Khosla et al., 1980) or increasing the availability of precursors 

and substrates involved in the PC synthesis. 

1.2.2.2 Lamellar body formation, packaging and transportation 

After synthesis, surfactant lipids and hydrophobic proteins SP-B and SP-C are transported 

to the lamellar bodies (LB) for storage and processing. Phospholipids are likely to be 

transported to lamellar bodies directly, whereas SP-B and SP-C are initially packed into 

multivescular bodies and subsequently transported from Golgi apparatus to the lamellar 

bodies  (Weaver et al., 2002). SP-B plays a crucial role in the packaging of surfactant 

phospholipids and the proper formation of LB (Foster et al., 2003).  
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Upon arrival at lamellar bodies, surfactant lipids transverse the limiting membrane of LB 

facilitated by ATP-binding cassette (ABC) transporters. ABCA3 is found in the limiting LB 

membrane, which is essential for normal mechanism for surfactant synthesis and storage 

(Ban et al., 2007). It provides energy needed for the translocation of lipid into the lumen 

of LB by ATP hydrolysis. ABCA3 gene mutation was found to cause fatal surfactant 

deficiency in newborns (Shulenin et al., 2004).   

1.2.2.3 Surfactant secretion 

The lamellar bodies are secreted into the extracellular matrix through exocytosis. 

Mechanical stretching of alveoli during inhalation is the primary physical stimulus for 

secretion to take place. The distention may lead to elevation of cytoplasmic calcium 

concentration in alveolar cells (Wirtz and Dobbs, 1990), which triggers surfactant 

secretion. The elevated calcium leads to fusion of LB with the plasma membrane, fusion 

pores are then formed, followed by the release of surfactant. Agents that stimulate 

surfactant secretion includes terbutaline, forskolin, ATP, while SP-A is found to inhibit the 

secretion (Dobbs et al., 1987) . 

1.2.2.4 Surfactant in extracellular space 

After secretion, surfactant content is unpacked into the forms of lamellar body like 

particles, multi-layer packages and tubular myelin. SP-B and SP-C play a role in the LB 

unpacking process.  SP-A and SP-B are suggested to be essential for the formation of 

tubular myelin (Cabre et al., 2009). 

These organised forms of membranous assemblies provide lipid-protein complexes for 

the formation of the surface-active monolayer at the air-liquid interface of the alveolus. 

The insertion of surface-active material into the interface is facilitated by SP-B and SP-C  

(Hobi et al., 2016), and the adsorption rate depends on the concentration of two forms of 
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the surfactant components in the air space, large aggregates and small aggregates. Large 

aggregates are the surface active form of surfactant, which can be isolated from tubular 

myelin, secreted lamellar bodies and large lipid vesicles. Once being used, they are 

dissociated into small aggregates, the small unilamellar vesicles, which are not surface 

active. 

1.2.2.5 Surfactant degradation and recycling  

The surfactant component dissociated from the surfactant monolayer are either 

internalized by AT-II cells, or cleared by alveolar macrophages and respiratory airways. In 

the situation of lung injury or other lung conditions, surfactant may leak into the 

circulation. Internalised surfactant could be remodelled and incorporated into LB for the 

subsequent secretion or degraded by lysosomes. SP-A has been found to promote the 

internalisation process, mediated by SP-A receptor and phospholipids were found 

internalized together with SP-A in rat AT II cells (Wissel et al., 2001).The absence of SP-D 

are linked with accumulation of DPPC in the alveoli (Postle et al., 2011). SP-C is also 

speculated as a contributor to extracellular surfactant metabolism, either for degradation 

or recycling for compositional “re-programming” or both (Olmeda et al., 2017b). 

Macrophages are critical for surfactant catabolism and are responsible for about 20% of 

its clearance. Surfactant saturated PC were observed to have increased four to eight folds 

in the lungs of granulocyte-macrophage colony-stimulating factor (GM-CSF) deficient 

mice and GM common receptor β depleted mice, with normal synthesis and secretion 

(Ikegami, 2006). This is caused by the defect in surfactant catabolism due to impaired 

alveolar macrophages. 
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1.2.3 Surfactant alteration in pulmonary diseases 

Pulmonary surfactant is a complicated and tightly regulated system, and its components 

are closely coordinated and highly correlated. Dysfunction of any part of the system could 

result in surfactant alterations, and alterations at any level of metabolism could lead to or 

be associated with respiratory conditions (Bernhard et al., 1997; Glasser and Mallampalli, 

2012; Naroji et al., 2015). Surfactant alteration has been observed in most lung diseases, 

which is a good indicator of abnormality of surfactant metabolism as well as impaired 

lung function. 

The most aggressive lung condition of respiratory distress syndrome are associated with 

significant surfactant alteration. Surfactant deficiency is the cause of NRDS due to lung 

immaturity and the application of surfactant replacement treatment has greatly improved 

the mortality rate. The ARDS, another fatal secondary lung disease, is also characterised 

with abnormal surfactant. ARDS patients have decreased fractional concentration of PC, 

PG and increased concentration of PI, PE and PS, accompanied with alveolar surface 

tension increase (Gunther et al., 2001). Moreover, Schmidt et al. (2007) found that the 

concentration of major surface-active species DPPC was significantly reduced and the 

number of unsaturated PC species were increased. Surfactant alterations have also been 

found in other less aggressive lung conditions. Pulmonary alveolar proteinosis (PAP) is a 

rare disorder of surfactant catabolism characterised with an accumulation of surfactant 

and alteration in the constituent lipids. Whitsett et al. (2015) reviewed the genetic 

disorders of surfactant homeostasis including abnormalities in surfactant packaging, 

function and degradation caused by mutations in the genes encoding SP-B, SP-C and 

ABCA3. These mutations are associated with interstitial lung disease and chronic lung 

diseases. Bacterial and viral infection can also lead to surfactant PC alteration.  Wu et al. 
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(2007) have found reduced surfactant DPPC synthesis in mice infected with mucoid 

isolate of P.aeruginosa bacterial, as a result of reductions in mRNAs and immunoreactivity 

levels for CTP: phosphocholine cytidylyltransferase. Changes in fatty acyls on 

phospholipids were also observed in bacterial pneumonia (Baughman et al., 1984). 

Human adenovirus can alter surfactant phospholipid composition (Miakotina et al., 2007). 

Apart from the pathogenic germs, surfactant phospholipids also react to the non-

pathogen insult such as smoking. Decrease in phosphatidylcholine levels and the increase 

in phospholipids hydrolysing activity of phospholipase A2 were observed in mice after 

being exposed to cigarette smoke (Agarwal et al., 2014).  

As stated above, alterations of surfactant and especially surfactant PLs are highly 

associate with various lung conditions. However, the underlying mechanisms of the 

alterations are still not well understood.  Better knowledge of in vivo surfactant PL species 

activities can help gain better understanding of disease mechanisms as well as explore 

biomarkers that can be indicative of lung abnormalities. The in vivo kinetic studies of 

surfactant phospholipids have been carried out for decades since the last century, 

benefiting from the ever-developing isotope labelling techniques and label detection 

techniques, particularly the presently dominated stable isotope labelling coupled with 

mass spectrometry techniques.  

1.3 Dynamic surfactant phospholipid analysis with isotope labelling and 

mass spectrometry techniques 

1.3.1 Mass spectrometry techniques 

History of mass spectrometry (MS) began at the beginning of 19th century (Griffiths, 

2008), which has experienced huge development ever since and was applied into the 
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research of physical, chemical and biological sciences. Over the past few decades, MS has 

become the essential analytical tool in biological research (Finehout and Lee, 2004), 

which enables scientists to understand the biological systems at the molecular level. 

Having undergone tremendous technological improvements, with the high sensitivity and 

high-throughput manner, MS has become an irreplaceable tool in proteomics, 

metabolomics and the relative young lipidomics (Di Girolamo et al., 2013).  

1.3.1.1 Sample introduction approaches: shotgun and chromatography MS analysis 

Generally, two sample introduction approaches commonly used in MS based lipidomic 

analysis are direct infusion, also called “shotgun”, and chromatography (Page et al., 2009). 

Shotgun approach does not require any sample pre-separation procedures before 

injecting samples into the MS analyser. This allows MS to analyse all the lipid molecules in 

a sample simultaneously (Lin et al., 2010). Chromatography approach needs at least one 

extra step of sample separation before the sample goes into the mass spectrometer 

(Coskun, 2016). In this way, different molecules in the biological samples are separated in 

advance for better identification when analysed by the MS. However, separated detection 

of individual molecules can result in inconsistent ion suppression among the molecules in 

the same sample, which may lead to inaccurate measurement. 

1.3.1.2 Ionisation methods 

Ionisation is the process by which molecules acquire charges and turn into molecular ions 

before being analysed by MS analysers. A variety of ionisation sources have been used for 

ionising molecules. Before the 1980s, Electron ionization (EI) was the primary ionisation 

source for mass analysis, and now it is mainly used for gas chromatography (GC) MS 

analysis in lipidomic research (Gordin et al., 2008). The technique works by bombarding 

gas phase molecules by a beam of high energetic electrons to produce ions, and due to 
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the extensive fragmentation power, it is also called hard ionisation technique. However, 

its usage is limited to analysing smaller molecules with molecular weight under 600, 

which is deficient in measuring larger biological compounds. This led to the development 

of electrospray ionisation (ESI) and matrix assisted laser desorption ionisation techniques. 

ESI is also well known as “soft ionisation”, is the primary ionisation technique used in 

biological research nowadays, due to its advantage of keeping the entire macromolecules 

from being dissociated. With ESI, sample solution is sprayed from the tip of a metal nozzle 

with a potential to form charged droplets, which are subsequently evaporated using dry 

gas or heat to release ions (Ho et al., 2003).  Matrix assisted laser desorption ionisation is 

another type of ionisation technique that causes transfer of a sample from the condensed 

phase to the gas phase through laser excitation and ablation of the sample matrix (Karas 

and Kruger, 2003). It is widely used for imaging mass spectrometry analysis.  

1.3.1.3 MS analysers for lipidomic data acquisition 

The commonly used MS analysers for lipid data acquisition include quadruple, ion traps, 

time-of-flight, Orbitrap and ion cyclotron resonance (Wolff and Stephens, 1953; Marshall 

et al., 1998).These analysers have undergone numerous modifications over the last few 

decades to be able to interface with various ionisation sources as well as to achieve 

better performance in accuracy, specification, resolution, scan speed and mass range. 

Quadrupole analyser is currently the most commonly used mass analyser. It can be 

interfaced with EI, ESI ionization sources and is capable of analysing molecules with mass 

over charge (m/z) range between 100 and 4000, which is suitable for macro biomolecules 

including proteins and lipids that are typically under 3500. Quadrupole mass analysers 

can be put together to perform tandem mass spectrometry data aquisition (Johnson et al., 

1990). Triple quadruple analyser with three quadrupoles placed in series can carry out 
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collision-induced dissociation on molecules to offer extra component information of 

molecules for better identification, which is widely used in lipidomic analysis.  

Different types of MS analysers have their own advantages and limitations. Quadrupole 

analysers can be linked together to perform targeted breakdown scans, but it has limited 

resolution and the peaks may need to be tuned as a function of mass. Time of flight mass 

analyser scans fast and is able to analyse highest practical mass range, although it is not 

efficient in breaking down scans. Fourier transform ion cyclotron resonance and Orbitrap 

use resonance and Fourier transform to provide the highest mass resolution among all 

mass analysers but have limited dynamic range and sampling speed. With different 

characteristics of the MS analysers, there is no ideal mass analyser that is good for all 

applications. 

1.3.1.4 Tandem mass spectrometry 

The number of steps the mass spectrometry performs for an analysis is dependent upon 

research requirements. One-step MS is usually for a general detection of molecules in a 

sample based on their m/z values, sometimes combined with chromatography that offers 

time information for further recognition of the molecules detected. Tandem mass 

spectrometry (McLafferty, 1981) is advantageous in targeted MS analysis, which is able to 

monitor various molecules with certain structure by specifying a certain part of them. A 

widely used technique is the two-step tandem mass spectrometry (MS/MS) and the 

instruments can be assembled by combinations of mass analysers (deHoffmann, 1996). In 

triple quadrupole MS/MS (Hsu and Turk, 2001), the first quadrupole analyser is used to 

scan entire molecular ions before they are introduced into the second quadrupole, which 

is called a collision cell. Within the collision cell, ions are collided into fragments using 

argon or helium gas. In the third quadrupole the generated fragments are analysed. This 
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method offers structural information of the detected molecules, which has been used to 

sequence peptides (Shevchenko et al., 2002)and structurally characterise carbohydrates 

(Carr et al., 1993), small oligo-nucleotides (Ni et al., 1996) and lipids (Shaner et al., 2009) .  

1.3.1.5 Direct infusion ESI MS/MS for analysis of dynamic lipidomics with stable isotope 

labelling 

The combination of direct infusion with triple quadruple ESI MS/MS techniques facilitates 

the rapid lipidomic analysis with high sensitivity, specificity and stability. The ESI 

technique keeps intact molecules for high throughput lipidomic analysis. Direct infusion 

approach allows lipid molecules in a sample to be introduced into MS analyser 

simultaneously. This enables all analytes of interest including labelled and unlabelled lipid 

species to be analysed under identical ionisation conditions (Pulfer and Murphy, 2003), 

which is critical to the labelling studies in terms of the measurement accuracy. The 

tandem MS approach allows monitoring molecules with certain structure by specifying 

their fragment ions, which is especially useful in investigating certain classes of molecules 

both in their labelled and unlabelled forms. The instrument can switch quickly between 

different modes to scan different classes of lipid species almost in parallel. These 

characteristics of the direct infusion ESI MS/MS makes it a perfect tool for stable isotope 

labelling analysis of dynamic lipidomics (Shaner et al., 2009; Harkewicz and Dennis, 2011).  

1.3.2 PC synthesis pathways and methylD9-choline labelling assessment with ESI MS/MS 

1.3.2.1 PC synthesis pathways 

De novo biosynthesis of PC in human relies on two molecular pathways (Gibellini and 

Smith, 2010). The CDP-choline pathway is the primary PC synthesis pathway that operates 

in all nucleated mammalian cells (Kennedy and Weiss, 1956). It starts with choline 

phosphorylation to phosphocholine by choline kinase (CK). In the second reaction, 
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phosphocholine is converted to CDP-choline by CTP:phosphocholine cytidylyltransferase 

(CCT). The last step of synthesis is the formation of PC by choline phosphotransferase 

(CPT), which transfers phosphocholine from CDP-choline to PC. Among the three-step 

process, the second reaction is considered as being the rate-determining step. Surfactant 

DPPC is synthesised de novo through CDP-choline pathway in AT II lung cells.  

The second PC synthesis pathway is the phosphatidylethanolamine N-methyltransferase 

(PEMT) pathway by hepatocytes (Vance et al., 2007). PEMT enzyme is found in 

endoplasmic reticulum and mitochondria-associated membranes. It converts PE to PC via 

three sequential methylation reactions, with S-adenosylmethionine (SAM) as methyl 

donor in each step. The PEMT pathway contributes approximately 30% of PC biosynthesis 

in liver, while CDP-choline pathway generates around 70% (Vance, 2014). 

1.3.2.2 Deuterium labelled PC by methylD9-choline chloride  

The use of methylD9-choline chloride for PC stable isotope labelling, combined with ESI 

MS/MS determination technique is a novel way for dynamic PC metabolic analysis (Postle 

et al., 2001; Postle et al., 2004). Through label incorporation, deuterium atoms replace 

the hydrogen atoms on the methyl groups of the newly synthesised PC species. 

Consequently the labelled species have a higher mass than the endogenous species, both 

of which can be identified by MS. ESI MS/MS can perform precursor scans for deuterium 

labelled PC species detection, which measure the masses of both entire molecular ions 

and the specific fragments where the methyl groups are positioned. There are three 

methyl groups on a PC species, and each methyl group has three hydrogen atoms. 

Therefore, if a PC species are deuterium labelled on all three of its methyl groups, its 

mass will be nine units higher than the endogenous PC, which happens to the CDP-choline 

pathway synthesised PC species in the deuterium labelling studies, as well as PEMT 
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pathway synthesised PC if each of the three sequential methylations involves a methylD3 

labelled S-adenosylmethionine. Similarly, if a PC species is deuterium labelled on one or 

two of its methyl groups, its mass will be three or six units higher than its non-labelled 

form. This can occur to the PEMT pathway synthesised PC species, which has undergone 

one or two methylation reactions involving labelled S-adenosylmthionine. The deuterium 

labelling process on the methyl groups of newly synthesised PC through both CDP-choline 

pathway and PEMT pathway are shown in Figure 2. 

 

 

Figure 2: Deuterium labelling on PC methyl group through CDP-choline pathway and 
PEMT pathway (Dushianthan et al., 2018). 

 

The detection of deuterium labelled PC species is carried out by performing precursor 

scans using ESI MS/MS. In a typical precursor scan, as illustrated in Figure 3, a lipid sample 

in solvent is infused into ion source for ionization, and then the sample is sprayed out and 

desolvated to form gas-phase molecular ions. The first MS analyser MS1 sorts and selects 
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the molecular ions to be dissociated into fragments in the collision cell. In the second 

analyser MS2, fragment ions with specified m/z are selected for the subsequent detection 

and recording by a detector. The intensity of the fragment ions will be taken as the 

intensity of their precursor molecule ions.  

 

 

The common precursor scan, denoted as P184, for PC detection reports the intensities of 

all the precursor ions that have a fragment ion with m/z value of 184, which include a 

phosphate bonded with a choline group making the head group of PC. While for the 

deuterium labelled forms of PC species, the scan is set to monitor the ions with fragment 

of a phosphate bonded with choline with deuterium labelled methyl groups.  Precursor 

scan for fragment of m/z 187 (P187), monitors methylD3-PC species with one methyl 

group labelled with deuterium, which is three mass units higher than the non-labelled PC. 

P193 scan monitors methylD9-PC with three deuterium labelled methyl groups, nine mass 

units higher than the non-labelled PC. Figure 4 compares two spectra of ESI MS/MS 

analysis for PC species and the methylD9-PC species in the same bronchoalveolar lavage 

fluid (BALF) sample of a mouse model. 
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Figure 3: A schematic diagram of precursor scanning process of ESI MS/MS analysis.   
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Figure 4: Spectra of P184 and P193 scans for PC and methylD9-PC detection, respectively, 
in the same BALF sample of a mouse. (A) is the spectrum of P184 scan with detected lipid 
molecules that have a PC head group. (B) is the spectrum of P193 scan with detected 
molecules that have a methylD9 labelled PC head group. The two spectra have similar 
patterns, as species detected in P193 are the labelled version of those in P184. However, 
there is a 9 mass offset between the two spectra due to deuterium incorporation on the 
three methyl groups of the PC species, resulting in nine mass higher in the P193 scan. 
PC16:0/16:0 (m/z 734.51) in the spectrum of P184 corresponds to its deuterium labelled 
form D9PC16:0/16:0 (m/z 743.74) in the spectrum of P193, and PC16:0/18:1 (m/z 760.62) 
corresponds to D9PC16:0/18:1 (m/z 769.57). 

 

1.3.3 Dynamic surfactant phospholipids analysis with isotope labelling  

1.3.3.1 Surfactant phospholipids kinetics 

Current knowledge regarding surfactant metabolism has largely been acquired from in 

vitro studies, which may not accurately reflect the real in vivo biological process. In vivo 

surfactant metabolic research facilitated by labelling techniques is a better way to 

understand the underlying mechanism of surfactant system. Using various labelled 

(B) 

(A) 
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materials with corresponding detecting techniques to trace in vivo activity of molecules 

has provided valuable insights of surfactant kinetics in the literature.  

In labelling studies, the labelled molecules used for tracing endogenous molecules iare 

called tracer and the endogenous molecules being traced are called tracee. Early 

surfactant isotope labelling studies were dominated by using radioactive tracers due to 

the sufficient supply of radioactive labels, their low costs and the readily available 

scintillation counters for radioactivity determination. The application of this approach on 

animals has gained fundamental knowledge of animal pulmonary surfactant metabolism, 

in terms of surfactant synthesis, secretion, half-life and clearance. The mostly used 

radioactive isotope labels in surfactant PL kinetic studies include 14C, 3H and 32P (Foster 

and Bloom, 1963). Most of these in vivo surfactant investigations were focused on 

preterm or infant animals.  Chida and Adams (1967) found an increased incorporation 

rate of 14C labelled choline, palmitate and glucose into lung PLs, especially PCs, as the 

lamb fetus matured, which suggested the active synthesis of surfactant in the near term 

or new born and also implied the possibility of insufficient surfactant production in 

preterm animals. For the investigation of DPPC turnover, Young and Tierney (1972) used 

palmitate – 1 – 14C as a radioactive label in rats and postulated that not all DPPC is 

randomly secreted through a single pathway by the same type of cells without recycling 

into lung tissue. The first study that investigated multiple phospholipid classes (PC, PG, PI 

and PE) in samples of different lung fractions including alveolar wash, microsome and 

lamellar bodies was performed by Jobe et al. (1978). The authors concluded that PC and 

PG have shorter half-lives and higher turnover rates than other PL classes.  Using similar 

techniques, Jacobs et al. (1982) estimated the flux of surfactant PC from lamellar bodies 

in rabbits, and observed shorter turnover time and a higher flux rate in adults than baby 
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rabbits. These early surfactant PL kinetic studies have provided precious knowledge of the 

in vivo activities of lung surfactant from various aspect and laid a good foundation for the 

later understanding of surfactant metabolism in human. 

Despite the success of in vivo lipid kinetic analysis, there are limitations of the radioactive 

isotope labelling methods. Firstly, the health risk radioactive material poses to the 

experimental subjects makes it not suitable for human studies. Secondly, the method 

tracks the specificity of the radioactive labels along the entire metabolic process of the 

radioactive label, rather than certain targeted molecular species of interest. Thirdly, 

information obtained from animal studies is limited and cannot be directly used in clinical 

work.   

The improvement of mass spectrometry techniques has seen the increased use of the 

stable isotope labelling approach in dynamic lipid studies. The traditional GC–MS and gas 

chromatography-isotope ratio mass spectrometry (GC-IRMS) techniques (Torresin et al., 

2000; Cogo et al., 2005), have provided powerful tools for precisely measuring stable 

isotopes and have been largely used in the studies of in vivo surfactant PL metabolic 

kinetics in human.  Stable isotope labels are safe for human if used properly. Bunt et al. 

(1998) proved that the novel approach of stable isotope labelling they had used could 

safely address issues concerning surfactant metabolism. In their study, [U-13C] glucose 

was used for investigating the in vivo surfactant synthesis and turnover in preterm infants. 

They found the labelled PC palmitate reached maximum at 70 ± 18 h, and calculated the 

secretion time, fractional synthesis rate, absolute production rate and half-life of 

surfactant PC palmitate. Similar approaches have been used in the studies of NRDS 

(Torresin et al., 2000; Cavicchioli et al., 2001). Using GC-MS, Cogo et al. (2011) have 

calculated the half-life, pool size and endogenous synthesis of surfactant disaturated PC 
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isolated from serial tracheal aspirates of preterm infants with moderate to severe NRDS. 

The authors suggested preterm infants with shorter disaturated PC half-life require 

additional surfactant administration. 

The downside of GC-based techniques is that they generally require derivatisation of non-

volatile lipids through saponification to generate methyl fatty acid esters to be analysed. 

As a result, the derivatised species mixtures, e.g. the overall surfactant disaturated PC 

rather than individual molecular specie (Facco et al., 2014), are analysed collectively.  

Application of direct infusion ESI-MS/MS in combination with stable isotope labelling 

techniques allows simultaneous identification and quantification of multiple lipid 

molecules, labelled and unlabelled, which has offered deeper insights of surfactant 

metabolism at species level (Postle and Hunt, 2009). Bernhard et al. (2004) applied this 

technique and investigated the kinetic turnover of surfactant PC species in healthy people. 

They found an overall incorporation rate of methylD9 choline into sputum PC was linear 

between 12 and 30 hours. Moreover, the pattern of fractional enrichment of individual 

PC species over this initial period differed from that of surfactant PC composition. 

Applying the similar approach, Postle et al. (2011) investigated lung PC synthesis and 

secretion in SP-D null mice, and calculated the rate of accumulation in these mice with 

impaired surfactant catabolism. Dushianthan et al. (2014) analysed PC turnover in BALF 

samples of ARDS patients and healthy volunteers, both groups being given methylD9-

choline infusion. They observed the fraction of deuterated DPPC of total deuterated PC 

changes along the time. The study found different surfactant PC kinetics between 

patients and healthy controls. Moreover, it varied considerably between individual 

patients, suggesting heterogeneity of the patients characterized by different PC 

metabolism.  
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1.3.3.2 Limitations of traditional dynamic analysis of surfactant phospholipids 

The common practice in surfactant PC turnover analysis facilitated by isotope labelling 

techniques involves calculating the kinetic parameters to get insights of mechanisms of 

surfactant regulation. The parameters of interest include fractional synthesis rate, 

synthesis rate, half-life, decay rates, turnover time, pool size and secretion time, which 

provide insights of metabolic flux characteristics of PL molecules. However, there are five 

main areas of concern in the accurate calculation of these parameters. 

Firstly, the assumptions for these calculations are not always met. Most of the kinetic 

parameters formulae assume the surfactant system to be in steady state. However, in 

many cases we would like to extract the biological activities of compounds in patients 

with various conditions to understand disease processes. It is not appropriate to assume 

the metabolism being in steady state under these conditions, therefore the use of these 

formulae are questionable in such studies (Torresin et al., 2000; Cavicchioli et al., 2001; 

Cogo et al., 2009)  

Secondly, using different labelled precursors or MS instruments may generate different 

results. Estimated half-life values for a given phospholipid vary depending on the 

precursor used. For example, a study shows that if labelled palmitate is used, the half-life 

of PC reported from rabbits range from 17-20 hour. However if labelled choline is used as 

precursor, the range is 35-45 hours, and rat studies have reported similar trends (Wright 

and Clements, 1987). This led to the suspicion that labelled parts on PC from different 

precursors might metabolise differently. Bohlin et al. (2005) compared kinetic parameters 

obtained from several labelling studies on premature infants, which used different tracers, 

pools (PL or desaturated PL) and analytical methods (GC-MS/ GC-C-IRMS). It was observed 
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that fractional synthesis rate was specific to labelled precursor used and fractional 

catabolic rate was independent of tracers but dependent on the analysing methods. GC-

IRMS generated slower apparent fractional catabolic rate than GC-MS. 

Thirdly, time points chosen for kinetic parameters calculations are crucial. For example, 

fractional synthesis rate calculation only requires enrichment data at two time points 

near to the starting point (Foster et al., 1993), which are supposed to be on the linear 

part of the curve. However, the two data points available for calculation are subject to 

the experimental design, which may not necessarily fulfil the assumption of being on the 

linear part or close enough to the starting point. Consequently, the calculated fractional 

synthesis rate may not be an accurate approximation. 

Fourthly, it is not always possible to apply a standard label infusion method due to 

various reasons. For example, in the study of Dushianthan et al. (2014), a short period of 

intravenous label infusion was applied, rather than a standard bolus infusion or a 

continuous infusion, due to the need for a continuous labelling period and the unstable 

and fragile state of patients who may not tolerate longer period of infusion. The time 

course label enrichment obtained from this experiment may exhibit very different 

temporal patters from both bolus and continuous infusion, therefore the way of 

calculating kinetic parameters in normal methods may not directly applicable in this 

context. 

Lastly, different functions or representations of variables are used for kinetic parameter c 

calculations in different studies. For example, there is a dispute over which function 

should be used for label enrichment calculation. For synthesis rate calculation, some 

studies use tracer/tracee ratio as the label enrichment, whereas some use atom percent 
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excess (APE) (Ramakrishnan, 2007). Different approaches remain in use by different 

researchers, although it is rarely explicitly stated what assumptions have been made and 

how the approaches are chosen.   

Although kinetic parameter calculation is the main objective of traditional labelling 

studies, and the only way of getting insights of in vivo flux of molecules, the challenges 

stated above remain for obtaining accurate and consistent results. Therefore, using 

kinetic information of surfactant PL for biomarker discovery may be hard to achieve by 

using these kinetic parameters. In biomarker discovery studies, the essence is to extract 

variables that characterise conditions and are both measurable and comparable between 

groups for potential marker identification. In labelling studies, apart from kinetic 

parameters, the time course species label enrichment can also provide dynamic 

information and is comparable between groups, which is suitable for biomarker analysis. 

Nevertheless, using time course enrichment as variable adds an extra dimension to the 

data. Consequently, dynamic lipidomic biomarker discovery analysis will have to take into 

account multiple species, multiple subjects, different groups and time factors, which 

requires the aid of appropriate statistical methods. 

1.4 Statistical methods for multivariate time series data analysis  

There are very limited options of statistical methods for multivariate time series biological 

data analysis, more so when the experiments have limited and irregular time points, small 

quantities of biological replicates and numerous variables of interest. 

Early methods for the analysis of time series biological data simply treat the time course 

data as a bi-dimensional problem and do not explicitly include the time variable in the 

model, unable to detect time-related variations. From the last decade, algorithms that are 
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able extract more information from time series data have been used in genomics and 

metabolomics studies. Smilde et al. (2010) proposed ANOVA-simultaneous component 

analysis method, combining ANOVA method and principle component analysis for 

longitudinal metabolic data analysis. The aim of the study was to determine the variation 

caused by experimental design, such as time, doses or combinations thereof, typically 

used in nuclear magnetic resonance. The drawback of the method is that it assumes the 

time related effects to be linear in relation to time, which is rarely a valid assumption 

(Rantalainen et al., 2008). Breit et al. (2015) presented a computational modelling and 

statistical approach for identifying dynamic metabolic signatures by characterising and 

categorising kinetic patterns of circulating metabolites during physical exercises. The 

method utilises maximum fold changes and hypothesis tests to rank the metabolites 

according to their level of change over time. Putative biomarker candidates exhibiting 

different temporal patterns can then be selected and classified into several categories, 

such as early and late markers. This method aims to characterise putative markers time 

course patterns to be used as standard signatures of certain physical states, and is not for 

identifying biomarkers from subjects with different conditions. Huang et al. (2011) 

proposed a strategy for time series data biomarker discovery based on dynamic networks. 

The strategy detects biomarkers by investigating the changes of ratios of metabolites over 

time, stressing the association between metabolites during disease development. The 

authors applied the strategy to identify lipid ratio biomarkers of Hepatocellular 

Carcinoma by observing significant ratio changes at every two adjacent time points during 

disease progression. This is an attempt of seeking alternative variables by transforming or 

combining the observation data, which discloses more meaningful information than the 

observation data itself. Tai and Speed (2006) proposed multivariate empirical Bayes 

statistical approach for gene ranking in longitudinal replicated developmental microarray 
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experiments. The method uses Bayes statistics for ranking genes in one sample 

experiments as well as identifying genes whose temporal patterns differ across two 

biological conditions. The method has also been applied to proteomic data analysis. Berk 

et al. (2011) introduced a framework for the multivariate time series data analysis based 

on the method of smoothing splines mixed effects (SME) model. This is a framework 

designed for modelling high-dimensional time-varying metabolomics profiles and 

detecting significant differences between two biological groups, being capable of dealing 

with small sample size, irregular observation time, missing data and extreme outliers. The 

method was applied to real hydrazine data measured by nuclear magnetic resonance 

from the COMET longitudinal study, which proved to be able to efficiently identify known 

metabolites that are differentially regulated in hydrazine Toxicity.  According to the 

author, the framework can be applied to longitudinal data acquired from mass 

spectrometers. 

1.5 Bioinformatics tools for mass spectrometry acquired lipidomics data 

analysis and mass spectrometry data processing techniques 

1.5.1 Bioinformatics tools for mass spectrometry based lipidomic analysis 

Lipidomics is a comparatively new “omic” research field largely driven by the advances in 

MS techniques, and there are very few bioinformatics tools available for the MS 

facilitated lipidomic analysis. Around a dozen software applications are currently available 

offering basic tools for lipidomics studies. These software tools mainly focus on general 

lipid identification and quantification without comprehensive functionalities. Besides, all 

of them are designed for certain types of MS instruments and analysing protocols. Nearly 

half of the tools are developed for liquid chromatography (LC) MS lipid analysis, such as 
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LOBSTAHS (Collins et al., 2016), LDA (Hartler et al., 2011), MS-DIAL (Tsugawa et al., 2015), 

Lipid-Pro (Ahmed et al., 2015), LipidSearch (Houjou et al., 2005) and LipidMiner (Meng et 

al., 2014), leaving few tools for direct infusion MS lipid analysis.  

A few software platforms available for direct infusion lipid data analysis are specific for 

certain instruments and protocols. For example, some tools are specific to time of flight 

mass spectrometer, which identifies the molecules by combining the fragments spectrum 

obtained from product ion scans. Such platforms includes LipidView (Ejsing et al., 2006), 

which exploits multiple precursor scans approach, and LipidInspector, which is designed 

for the MS analysis in a data dependent acquisition mode. Alex (Husen et al., 2013) is 

designed only for high resolution Orbitrap MS instrument. LipidQA (Song et al., 2007) and 

LipidXplorer (Herzog et al., 2012) are able to process data from a wider range of 

instruments acquired in data dependent acquisition mode or by multiple fragment scans. 

All of these software tools detect lipid molecules by matching the fragments, which is 

obtained by simultaneous acquisition of multiple product or neutral loss scans, with the 

reference spectra from certain databases that are specific to the data acquisition 

methods. This approach is suitable for global scanning of lipid contents in the samples.  

For the more focused lipid detection using precursor scanning technique performed by 

ESI MS/MS, which detect lipid molecules by combining the information of precursor ions 

and specified fragment ions, there is LIMSA (Haimi et al., 2006) that supports the data 

processing and lipid identification, although the detected molecules are presented only in 

the cumulative composition format (e.g. PC 34:0) rather than the detailed form (e.g. PC 

16:0/18:0), due to the limited information obtained from the fragment scans. However, 

just like other software, LIMSA does not support lipid identification for batch samples or 

labelling studies. 
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Surfactant lipid kinetic studies investigate the dynamic activity of lipid molecules in the 

surfactant system. As discussed in the previous section, shotgun ESI MS/MS offers great 

tool for analysis on focused lipids, which is ideal for labelling lipidomics studies. Despite 

the useful MS tools, the nature of labelling study requires integrated analysis for labelled 

and non-labelled lipid species for comparison and calculation, which relies mainly on the 

dedicated software tools. However, none of the software mentioned above handles 

lipidomics labelling data or perform kinetic analysis.  

The mass spectrometry lipid biology team at Southampton University Hospital has 

developed a series of applications in Visual Basic for processing lipid data, and has 

incorporated some functionalities to handle labelling data. However, there are a number 

of shortcomings with the programme and the approach, which should be addressed 

further.  

• It is cumbersome and not robust. The software crashes very often and running 

errors occur at times.  

• The user interface is unintuitive and not easy to use. It lacks clarity and error 

preventing means. 

• For labelling studies, the programme only allows labelling analysis of one PL class 

and does not support non-labelling analysis of other PL classes at the same time.  

• It does not support labelling analysis of PL labelled with multiple labelling 

materials. 

There is a need for a robust, fast running, user-friendly and more comprehensive 

software for the PL kinetic labelling studies as well as for the potential usage in clinical 

work. 
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1.5.2 MS data processing  

The mass spectrometry acquired raw data is not directly useable, which requires multiple 

steps processing for further analysis. There are some common processing procedures 

needed for the data acquired by most MS methods, including background noise removal, 

peak identification and isotope correction.  

1.5.2.1 Background noise removal 

The experimentally measured MS spectrum data is always interfered by background noise. 

This is mainly electrical noise related to the instrument set-up (Bauer et al. 2011). 

Consequently, removing background noise becomes a standard procedure of mass 

spectrum data processing, which aims to separate the analyte signals of interest from the 

background noise. Different algorithms have been applied for background noise removing 

on MS data acquired from different instruments. Berndt et al. (1999) applied linear fit for 

sequential mass segments on the mass spectra from MALDI MS and used cubic spline 

interpolation method to approximate the background. Some researchers estimated the 

MALDI spectrum background noise using a weighted average of the minimum and 

maximum peak values within windows of small mass intervals (Samuelsson et al., 2004). 

Some others use polynomial fittings, such as locally weighted scatter plot smoothing. 

Wavelet transform theory also became popular for signal processing over the last two 

decades. Coombes et al. (2005) applied the translation-invariant undecimated discrete 

wavelet transform for noise filtering of SELDI spectra.  

1.5.2.2 Peak detection 

Peak detection is a key aspect of the MS data processing. A widely used algorithm for 

peak detection is based on the calculation of signal-to-noise ratio (Petkovic et al., 2001). 

The algorithm searches for the local maximum intensity among a certain number of 
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neighbouring data points with local signal-to-noise ratio over a certain threshold for peak 

detection. Some researchers (Strittmatter et al., 2003) applied mixture models to fit the 

spectrum data acquired by TOF mass spectrometer for peak identification.  Wehofsky and 

Hoffmann (2002) made use of isotopic patterns of species and fitted the theoretical 

patterns to the MALDI spectrum data to define peaks. Another set of peak detecting 

techniques based on the continuous wavelet transform theory (CWT) were developed 

and widely used in the last decade. Du et al. (2006) proposed an algorithm that applies 

the CWT over spectrum and utilises the information over the 2D CWT coefficients to 

determine the effective signal-to-noise ratio to identify peaks. The peak detecting 

techniques available today are often specific to mass spectrometer used, and all of them 

have their own advantages and drawbacks. Therefore, there is no standard method that 

out performs others in every aspect (Bauer et al., 2011). As a result, researchers always 

choose the appropriate methods for peak detection according to specific need of their 

studies. 

1.5.2.3 Isotope distribution calculation 

Isotope peak patterns in the mass spectra of compounds are the result of the natural 

occurrence of polyisotopic elements. In order to remove the isotope effect from the 

spectra, the isotopic distribution must be calculated first. 

The calculation of isotopic distribution has been extensively studied since 1960. The early 

methods were mainly based on probability theory, and later its combinations with 

polynomial expansion methods were explored and widely used by researchers (Yergey, 

1983). However, these methods require computer intensive calculation and have 

difficulties in dealing with large molecules, due to the large numbers of possible isotopic 

combinations that need to be calculated. Consequently, efforts were made to reduce the 
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amount of computation and increase the computing speed. A core concept of step-wise 

calculation was applied to tackle this problem by many researchers, using a variety of 

approaches. Snider (2007) proposed a method that kept track of all isotopes of a built up 

molecule every time an element is added onto it. This method is based on dynamic 

programming technique, and has become one of the most widely used algorithm for 

isotope distribution calculation.   

1.6 Research questions and structure of the thesis 

1.6.1 Thesis objectives 

Pulmonary surfactant is a critical substance for optimal lung function. The metabolism of 

the major surfactant component surfactant PLs, as well as the underlying mechanisms of 

their alteration in lung diseases are still not fully understood. The newly adopted ESI 

MS/MS coupled with stable isotope labelling technique makes it possible to investigate in 

vivo kinetics of surfactant PL species in human. However, the multi-step processing of raw 

MS data and the calculation of labelled species enrichment require a high level of expert 

knowledge, as well as the automatic computational tools for dealing with the high 

throughput lipidomics data from batches of samples. The first objective of this project is 

to develop a streamlined software platform for ESI MS/MS based pulmonary surfactant 

PL labelling studies, which should be fast, robust and user friendly, and could potentially 

be used for clinical diagnosis.  

Despite the endless effort in biomarker discovery in lung diseases, there is hardly any 

novel biomarkers that are verified and widely adopted in clinical work. There are some 

limitations with the current studies. Firstly, the predominantly studied molecular 

biomarkers in the studies of lung disease are proteins, genes and metabolites (Eisner et 
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al., 2003; Terpstra et al., 2014; Ravipati et al., 2015; Chen et al., 2016; Gray et al., 2017; 

Kim et al., 2017). Lipid biomarkers, especially surfactant PLs, which are found altered in 

various lung diseases, have not been fully explored as putative biomarkers. Secondly, 

most of the studies only concentrate on a single species from a certain compartment for 

biomarker assessment (Eisner et al., 2003; Il Yoon and Sin, 2011; Terpstra et al., 2014; Yu 

et al., 2017). However, the pulmonary diseases are usually associated with alterations 

involving multiple interactive mechanisms, resulting in systemic changes of numbers of 

molecules. Besides, the same molecules from different pathways, compartments and 

even organs are correlated with each other. It is hard for a single species from a single 

pool to work individually to indicate changes of the entire metabolic process, recognising 

a disease or stratifying patients. Furthermore, many lung diseases have similar 

manifestations, which makes it hard to distinguish them from changes of certain 

molecules. Collective biomarkers or omics biomarkers from different pathways and 

compartments could be more helpful in providing sufficient information for disclosing 

underlying mechanisms from various aspects. Thirdly, the current interests in the 

molecular biomarker studies are limited in measurable concentration of end product 

molecules. However, the end product concentration does not always give sufficient 

information for discriminating biological conditions. Moreover, the snapshot 

concentration level does not reflect in vivo kinetics of molecules while undergoing 

biological processes. Kinetics are critical for disclosing the underlying mechanism of 

biological systems, which may contribute to identifying different biological conditions, 

and become valuable biomarkers. There are a few longitudinal studies that monitor the 

change of concentration levels of potential markers over a time period. Longitudinal 

analysis takes time factor into consideration, which provides extra information and offers 

more complete picture of changing process of molecules. However, time series 
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concentration of a metabolic product only offers vague and limited information of its 

metabolism, which does not indicate flux and turnover of molecules that characterise 

their changing process and causes.  

Dynamic surfactant lipidomics is an untapped area for pulmonary disease biomarker 

discoveries, which can provide rich sources of kinetic knowledge in addition to the current 

understanding of the pulmonary diseases, paving the way for the discovery of novel 

individual biomarker or biomarker panels of collective markers. Analysis of lipids from 

compartments, pathways and organs other than lung surfactant may complement the 

understanding of surfactant metabolism and provide combined biomarkers for lung 

disease diagnostic purposes.  

Surfactant PLs, especially PC, are the major surface active material maintaining the 

normal functioning of the lung and PC alteration is found in most lung diseases. 

Facilitated by the high throughput ESI MS/MS coupled with stable isotope labelling 

technique, it is possible to calculate the label incorporation of numerous PC molecular 

species for human in vivo studies. Dynamic PC analysis often involves kinetic parameter 

calculation in the literature. However, there are various issues with the precision and 

comparability of theses parameters. The label enrichment of PLs over certain time period 

holds flux information, which reflects the metabolic process of molecules, offering extra 

layer of information than the end product concentration.  

SME method provides a great platform for multivariate time course modelling to 

characterize temporal features of variables from longitudinal studies, which makes the 

basis for further kinetic biomarker discovery analysis. The method also benefits from 



Chapter 1 

35 

being able to deal with small sample size and missing data, typical issues in longitudinal 

biological studies.  

The second objective of this project is to investigate the feasibility of using time course 

enrichment of deuterium labelled surfactant PC species as potential biomarkers for 

identifying pulmonary diseases, facilitated by SME multivariate time course statistical 

method. Label enrichment of hepatic PC species will also be evaluated, where data is 

available, to complement the analysis of surfactant PC. 

1.6.2 The arrangement of the chapters 

Chapter 2 introduces the SME statistical methods and other tools used for PC time course 

label enrichment biomarker analysis. Chapter 3 introduces the development of a 

dedicated software platform, LipidomeLabelling, for lipidomics kinetic analysis facilitated 

by ESI MS/MS coupled with stable isotope labelling techniques. In chapter 4, 5 and 6, time 

course labelled PC enrichment data from three previous projects is modelled using SME, 

exploring the possibility of using the time course enrichment as biomarker for lung 

diseases. In chapter 4, the surfactant PC kinetic biomarker analysis for mice models was 

performed, aiming to use an established mice model system with a large difference in 

effect to validate the methodology, which will be applied in the following less clear 

clinical scenarios.  In chapter 5, temporal patterns of surfactant PC label incorporation of 

NRDS patients were modelled and analysed for investigating their ability in distinguishing 

patient sub groups in the complex clinical environment. Plasma PC were also analysed in 

the same way providing information regarding liver function.  In chapter 6, time course 

plasma PC label enrichment of ARDS and healthy people was analysed to check if hepatic 
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PC are indicative for distinguishing the two groups, which have significant difference in 

surfactant turnover.
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Chapter 2 Methodologies 

2.1 ESI MS/MS data acquisition 

The PC data from different projects analysed in this thesis were all acquired through ESI 

MS/MS analysis (Waters, UK). Precursor scans carried out for these projects include P184, 

P187 and P193 for the detection of endogenous PC, labelled methylD3-PC and methylD9-

PC, respectively. The scanned m/z range is 400–900. The lipid sample solvent were 

infused directly into ion source at a certain rate (5µl/minute or 8µl/minute). Energy for 

the cone, which is used for extracting charge molecules after ionization and before 

entering the MS 1, was set to 50V. Collision energy was set to 30V in the collision cell for 

ion fragmentation. The resolution was set to be the same over the whole mass range with 

fixed peak width at half height of 0.703 mass unit for the two analysers.  

2.2 Statistical method 

In this thesis, SME statistical framework is used for modelling the time course enrichment 

of multiple deuterium labelled PC species, as well as group comparison for biomarker 

discovery. For each investigated species, its temporal label enrichment for every 

individual subject of the two comparing groups as well as the group mean temporal 

enrichment were modelled first for subsequent statistical comparisons. 

The main functional mixed-effects model of SME method includes a fixed unknown term, 

a random effect term, and an error term, as shown below  

                                                𝑦𝑦�𝑡𝑡𝑖𝑖𝑖𝑖� = 𝜇𝜇�𝑡𝑡𝑖𝑖𝑖𝑖� + 𝑣𝑣𝑖𝑖�𝑡𝑡𝑖𝑖𝑖𝑖� + 𝜖𝜖𝑖𝑖𝑖𝑖                                                   (1) 
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The observation value of individual 𝑖𝑖 at time 𝑡𝑡𝑖𝑖𝑖𝑖 is denoted by 𝑦𝑦�𝑡𝑡𝑖𝑖𝑖𝑖�, 𝜇𝜇�𝑡𝑡𝑖𝑖𝑖𝑖� is the mean 

value of the whole group at the time point, and 𝑣𝑣𝑖𝑖�𝑡𝑡𝑖𝑖𝑖𝑖� is the individual-specific deviation 

from the group mean. The additive error term 𝜖𝜖𝑖𝑖𝑖𝑖 is assumed to have some group and 

species-specific variance. Both 𝜇𝜇 (·) and 𝑣𝑣𝑖𝑖  (·) are treated as smooth functions of time. 

𝜇𝜇 (·) is the fixed, unknown population curve, and in the label enrichment analysis it 

represents the group mean temporal enrichment, whereas 𝑣𝑣𝑖𝑖  (·) is treated as a random 

realisation of an underlying Gaussian process with the mean of zero.  𝜇𝜇 (·) + 𝑣𝑣𝑖𝑖 (·)  is the 

smooth underlying PC enrichment function to be estimated. The smoothing parameters 

of time course models are estimated by optimizing the corrected Akaike Information 

Criterion (AICc) (Hurvich et al., 1998). 

In the biomarker discovery analysis, the mean time course enrichment of certain species 

for two biological groups are modelled, denoted as 𝜇𝜇𝐴𝐴 and 𝜇𝜇𝐵𝐵, and SME method offers a 

moderated functional t-type statistic Ft for quantifying the difference between them over 

the entire time course. The formula is shown as                               

                                              Ft= L / (se + sem)                                                               (2) 

 

, where the numerator L is the distance between the two mean curves 𝜇𝜇𝐶𝐶  (·) and 𝜇𝜇𝑇𝑇 (·).  

L is the square root of ∫ [𝜇𝜇𝐴𝐴(𝑡𝑡) − 𝜇𝜇𝐵𝐵(𝑡𝑡)]2𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚

𝑑𝑑𝑡𝑡, indicating the distance between the two 

mean curves over the period from 𝑡𝑡𝑚𝑚𝑖𝑖𝑚𝑚 to  𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚. The term se is the functional standard 

error, computed as the square root of  𝑠𝑠𝐴𝐴
2

𝑚𝑚𝐴𝐴
+ 𝑠𝑠𝐵𝐵

2

𝑚𝑚𝐵𝐵
 , is the sum of sample functional variances 

of the two groups, with 𝑠𝑠 and 𝑛𝑛  being the estimated variance and sample size of each 

group. Similar to the standard t-test, the role of se is to scale the L distance so that the 

statistic Ft reflects the relative difference between the two mean curves of the groups by 
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taking into account individual variance, and is comparable across different species 

observed on different time scales. sem is the term to moderate the Ft statistic aiming to 

correct the effect on the Ft statistic caused by inaccurately fitted variances due to small 

sample size, especially when having large number of variables. However, although the 

sample sizes are small in all projects analysed in this thesis, the number of variables, i.e. 

the PC species, is comparatively small, which does not hugely affect the result when 

comparing Ft statistics across all the species. Therefore, in this thesis sem is not adopted, 

with only the se term left as the denominator. 

The label enrichment in all PC labelling analysis in the thesis is presented as APE, which is 

calculated as the ratio of intensities of labelled species over the sum of intensities of 

labelled and unlabelled species: 

                                                     𝐸𝐸𝑖𝑖 = 𝐿𝐿𝑖𝑖𝑚𝑚𝑡𝑡𝑚𝑚
𝐿𝐿𝑖𝑖𝑚𝑚𝑡𝑡𝑚𝑚+ 𝑈𝑈𝑖𝑖𝑚𝑚𝑡𝑡𝑚𝑚

                                                                      (3) 

, where 𝑖𝑖 represents a PC species, 𝐸𝐸𝑖𝑖 is the deuterium label enrichment of species 𝑖𝑖, 𝐿𝐿𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖  

is the intensity of labelled species 𝑖𝑖, and 𝑈𝑈𝑖𝑖𝑛𝑛𝑡𝑡𝑖𝑖 denotes the intensity of unlabelled 

endogenous PC species 𝑖𝑖. 

The modelling of time course enrichment of labelled PC species in this thesis has excluded 

zero time point observations, which is the starting point of the label infusion. This value 

should always be zero, as there is no immediate label incorporation while label infusion 

just starts. Moreover, although it is not certain when the incorporation starts, the 

appearance of the labelled species in the pool is always after zero time point, either 

sooner or later after infusion. As the SME method is a piecewise smoothing method that 

fits curves to the available time points, including zero time point, it does not take into 
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account the time point of species appearance that is not available. Therefore, there is a 

risk that SME takes zero time points as the emerging time point and links it with the next 

available time point observation to simulate the species appearance curve, which is 

incorrect.  

The time course data modelling and biomarker discovery analysis in this thesis were 

carried out using the SME package written in R provided by Berk et al. (2011). A VBA 

programme was written to convert the enrichment data into required format for the SME 

package.  
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Chapter 3 A Software platform for kinetic surfactant 

phospholipid analysis facilitated by ESI MS/MS 

coupled with stable isotope labelling techniques 

3.1 Introduction 

The comparatively new approach of stable isotope labelling combined with ESI MS/MS for 

PL labelling study suffers from a lack of dedicated streamlined software platform that 

offers efficient and comprehensive functionalities for MS data processing and dynamic 

lipidomics calculation. Consequently, a platform LipidomeLabelling was developed for the 

purpose, which is written in Matlab and VBA. The workflow of all functionalities are 

illustrated in Figure 5.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Flow chart of functionalities of LipidomeLabelling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data 
conversion 

Peak detection 
& integration 

Background noise 
subtraction 

Species 
identification  

Adduct correction Isotope correction 
Cross scan 
correction CID correction 

•    Composition analysis 

•    Amount quanitfication 

•    Dynamic labelling analysis 

 

Surfactant 
phospholipid database Spectrum data 

processing  

Raw MS data 
files 

Lipids data processing 

Lipids data analysis 



Chapter 3 

42 

3.2 ESI MS/MS spectrum data processing 

3.2.1 Data conversion 

Spectrum data acquired by ESI MS/MS instrument (Xevo TQD, Waters) is initially analysed 

in MassLynx (Waters Coporation) and the raw data is stored in a manufacture specific 

format. As the data is in a format that is not readable or usable, Waters offers a library 

called Data Access Component that only allows Visual Basic or VC++ programmes to 

access the raw data. To convert the data into a manageable format, a new version of 

extracting programme is developed in VBA by modifying the previous in house 

programme developed by Dr Grielof Koster (Mass spectrometry lipidomics group, 

University Hospital Southampton). The new extractor programme reads the raw data by 

calling functions provided in the Data Access Component and exports into excel files. The 

old programme performs several steps of data processing, so the output is the processed 

result rather than the original raw spectrum data. In a typical ESI MS/MS analysis, 

multiple scans are performed on each sample to detect molecules within a certain m/z 

range. The extractor creates an excel file for every single scan performed for a sample. 

The acquisition result in each scan excel file is a list of figure pairs with m/z value and its 

corresponding ion intensity. In a typical scan, the MS instrument is set up to measure the 

intensities of sixteen evenly scattered m/z points within each mass unit. Table 1 shows a 

scan result at sixteen points within one mass unit of m/z 401. So if a range of 100 mass 

unit, say 400 – 499, is scanned, the intensities of 16 *100 mass points will be reported.  
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m/z Intensity 

401.0337 1622 
401.0968 1847 
401.1598 1701 
401.2228 1848 
401.2858 13627 
401.3489 11004 
401.4119 1758 
401.4749 2807 
401.5379 2279 
401.601 1887 
401.664 1785 

401.7271 23584 
401.7901 2686 
401.8531 2139 
401.9161 1399 
401.9792 2627 

 
Table 1: An example of raw MS data of m/z and intensity pairs measured at sixteen points 
within the mass unit of 401. 

  

3.2.2 Peak detection and integration 

Peak detection is the first step for MS data processing. It forms the basis for the following 

processing procedures, and accurate peak detection is critical for the data analysis. In a 

spectrum, the detected ions are presented as intensity peaks plotted over their m/z 

values. A peak is formed by joining up the intensities measured around the m/z value of 

the ion. A peak detection module is developed to search for the m/z position of the 

centre of each peak, which is considered as the m/z value of the detected ion, and to 

integrate the intensities measured at sixteen time points of the peak for this ion. The 

integrated intensity is taken as the abundance of a measured ion.  

Most of the published peak detection algorithms are specific for MALDI-Tof, SELDI-Tof, or 

LC/MS, GC/MS strategies (Yang et al., 2009), where there is a need to manage the 

inconsistent peak shape, peak  placement (floating mass Tof), curved baseline and peak 
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width (LC). The ESI MS/MS spectrum benefits from fixed peak width (usually set to be 

0.703 mass unit), quasi-normal distributed peak shape and comparatively stable baseline, 

so it does not suffer from the problems of other MS approaches mentioned above. 

Nevertheless, the peak centre can be hard to find due to various interference, such as 

chemical noises.   

 

 

Figure 6:  A peak of a molecule with an abnormal shape caused by chemical noise. The 
highest intensity is observed at 700.42 m/z point, although 700.54 should be the actual 
centre of the peak. 

 

A perfect peak should have a quasi-normal distribution shape, and the highest intensity 

within the peak should appear at the centre of the peak, where the m/z value of the 

molecule locates. However, due to the instrument instability and noise interference, the 

intensities obtained for a species do not always form a perfect peak, and the detected 

highest intensity is not necessarily located at the peak centre. In an example shown in 

Figure 6, the m/z value 700.54 should be the centre of the peak, which is the m/z value of 

the detected ion, with the highest intensity. However, the highest intensity is observed at 
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700.42, which is not the real peak centre, due to the noise affecting the accuracy of the 

measurement. 

To remove the noise effect and accurately recognise the peak centre, a weighted moving 

average algorithm is applied in the peak detection procedure. The programme checks the 

weighted sum of adjacent intensities of every five mass points through the entire mass 

unit. The five mass points group that has the largest total of weighted intensities is taken 

as the top and centre part of the peak, and the m/z of the middle point of the five is taken 

as the centre mass point of the whole peak. In the spectrum, five points covers about 

0.25 mass unit, and a third of a peak width (0.703 mass unit). The weights used for the 

five adjacent points are 1,2,3,2 and 1 respectively, which gives the middle point the 

biggest weight. The proposed peak detecting algorithm can be demonstrated by the 

following model: 

Maximize    𝑊𝑊𝑊𝑊𝑀𝑀(𝑗𝑗) = 𝐼𝐼𝑛𝑛𝑡𝑡(𝑗𝑗 − 2) + 2 ∗ 𝐼𝐼𝑛𝑛𝑡𝑡(𝑗𝑗 − 1) + 3 ∗ 𝐼𝐼𝑛𝑛𝑡𝑡(𝑗𝑗) 

                                                                 +2 ∗ 𝐼𝐼𝑛𝑛𝑡𝑡(𝑗𝑗 + 1) + 𝐼𝐼𝑛𝑛𝑡𝑡(𝑗𝑗 + 2)                                         

                       Subject to      𝑀𝑀 ≤ 𝑗𝑗 < 𝑀𝑀 + 1                                                                 (4) 

, where  𝑊𝑊𝑊𝑊𝑀𝑀(𝑗𝑗)  denotes the weighted sum of intensities of five adjacent points, the 

centre of which is mass point 𝑗𝑗, within the mass unit M.  𝐼𝐼𝑛𝑛𝑡𝑡(𝑗𝑗) represents the intensity at 

point 𝑗𝑗 and equation (4) is set up to find the point 𝑗𝑗 that maximize this value.  

To demonstrate the effectiveness of the algorithm, it was applied to the example 

discussed above. Table 2 lists the measured intensities of sixteen m/z points within the 

700 as well as the weighted sum of every five adjacent points. Even though the highest 

intensity (125000) is observed at 700.42 mass point in the original spectrum, the highest 

weighted sum of intensities (977500) is found at mass point 700.54, so the centre m/z 
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point of the peak detected by the algorithm is at 700.54.  A new spectrum peak defined 

by the intensities calculated using weighted sum method is shown in Figure 7, which has 

corrected the effect of chemical noise shown in Figure 6 to present a smooth peak with a 

quasi-normal shape and find the real peak centre, i.e. the m/z of detected molecule. 

 
Mass point Intensity Weighted Sum 

700.00 2500  
700.06 5000  
700.18 7500 110000 
700.24 18750 226250 
700.3 37500 432500 

700.36 75000 668750 
700.42 125000 875000 
700.48 100000 958750 
700.54 112500 977500 
700.6 108750 921250 

700.66 97500 810000 
700.72 75000 622500 
700.78 37500 405000 
700.84 18750 226250 
700.9 7500  

700.96 5000  
 
Table 2: Intensity and weighted sum calculated for every five adjacent points in the m/z 
700 of the peak in Figure 6. 
 

 

Figure 7: The peak defined by the weighted sum intensities in comparison with the 
original peak in Figure 6. The peak corrects the effect of chemical noise, and recognise the 
true peak centre in 700 mass unit, with the highest point at m/z 700.54. 
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To avoid the situation where a peak with a substantial noise is mistaken as two separate 

peaks as well as to take into account only one peak in one m/z unit, the following 

constraint is added to the peak detection procedures.  

                                    𝐼𝐼𝑛𝑛𝑡𝑡𝑀𝑀(𝑚𝑚)   >   𝐼𝐼𝑛𝑛𝑡𝑡𝑀𝑀+1(𝑛𝑛)            𝑖𝑖𝑖𝑖    𝑚𝑚 + 0.352 < 𝑛𝑛            (5)                

, where m and n are the mass points where the highest intensities are found in two 

adjacent mass unit M and M+1, respectively. This constraint states that if the distance 

between m and n detected in M and M+1 is smaller than half of the peak width 0.352, 

then the intensity of m in the mass unit M has to be higher than the intensity of mass 

point m in mass unit M+1. This is to make sure that the highest point in M is not on the 

slope of the peak in M+1. If the distance between m and n is no smaller than 0.352, there 

is no such concern. If the constraint is not satisfied, the peak found in mass M will be 

discarded.   

Once the peaks are detected, the intensity of the molecule is approximated by averaging 

the intensity of points measured around the peak centre. In the ESI MS/MS spectrum, 

most peaks suffer from unsmooth peak shape, due to noise or measuring errors, and 

even the rare unaffected peaks are not in perfect shapes, such as Gaussian and Lorentzian, 

therefore, it is not accurate to fit the peaks using any of the commonly used peak-fitting 

methods. Consequently, the programme adopts the simple solution of taking the mean 

values of each peak to be compared with other peaks. It calculates the average of signal 

intensities of the detected mass points within 0.352 mass distance on both sides of the 

peak centre, as shown in equation 6. By doing this, the original sixteen data points in each 

mass unit become one average intensity value, which is used to represent the signal of 

the molecule. 
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                                   𝐴𝐴𝐼𝐼𝑛𝑛𝑡𝑡(𝑀𝑀)  =   1
𝑁𝑁

 ×   ∑𝐼𝐼𝑛𝑛𝑡𝑡𝑖𝑖             𝑗𝑗 − 0.352 ≤ 𝑖𝑖 ≤ 𝑗𝑗 + 0.352               (6)     

𝐴𝐴𝐼𝐼𝑛𝑛𝑡𝑡(𝑀𝑀) is the average intensity of the molecule detected in the mass unit M,  𝑗𝑗 is the 

mass point of the peak centre, 𝑖𝑖  represents the detected mass points that fall within the 

range of 0.703 mass unit around the centre point, 𝐼𝐼𝑛𝑛𝑡𝑡𝑖𝑖  is the intensity measured at mass 

point 𝑖𝑖, and N is the number of points included.  

Due to the low resolution of the quadrupole mass spectrometer, overlapping peaks can 

occur. In the peak detection procedure, the peak weighted moving average method with 

the constraint to drop the peak with lower intensity than a peak closely behind it, 

attempts to reduce the complexity and only take into account overlapping peaks with 

reasonable distance of 0.35. The peak integration takes into account the detected points 

within 0.703 mass range, which is about 0.35 from the peak centre from both sides, to 

further avoid including intensities of overlapping peak. 

Figure 8 shows the integrated peak of the previous example shown in Figure 6 with an 

average intensity of 52109.38. Figure 9 present a real spectrum and its integrated version. 

Figure 10 is the flow chart of peak detection and integration procedures. 
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Figure 8: Integrated sample peak in Figure 6. The peak becomes a vertical line after peak 
integration by taking the average intensity of points around the centre mass point 700.54. 
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Figure 9: Comparison of spectrum before and after integration. (A) is a part 
of a real spectrum of P184 scan, and (B) is the result spectrum after peak 
detection and integration procedures. 
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3.2.3 Background noise removal 

Background noise exists in every spectrum and LipidomeLabelling provides an optional 

function for removing it. As MS data generated from ESI MS/MS usually has stable and 

low baseline noises, a uniform background approximation for the whole spectrum is 

estimated by taking the average of intensities of a user specified percent of the lowest 

peaks in the spectrum. The estimated background is then subtracted from all detected 

peaks over the whole spectrum. Figure 11 displays the plots of a spectrum before and 

after background is removed. 

 

 

 

                   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mass intensity 
data 

Find mass point 𝑚𝑚 that 
maximize 𝑊𝑊𝑊𝑊𝑚𝑚 (𝑀𝑀) 

Find mass point 𝑛𝑛 that 
maximize 𝑊𝑊𝑊𝑊𝑛𝑛(𝑀𝑀 + 1) 

𝐼𝐼𝑛𝑛𝑡𝑡𝑚𝑚 (𝑀𝑀)   >   𝐼𝐼𝑛𝑛𝑡𝑡𝑛𝑛(𝑀𝑀 + 1)         
Or     𝑚𝑚 + 0.352 < 𝑛𝑛 

j considered as peak centre 
mass and calculate 𝐴𝐴𝐼𝐼𝑛𝑛𝑡𝑡(𝑀𝑀) 

No peak found in 
mass unit M 

 Yes  No 

Figure 10: Flow chart of peak detection and integration procedure. 
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3.3 Knowledge-based phospholipid annotation 

3.3.1 Phospholipid database for stable isotope labelling studies 

Once the ion peaks are detected, the species annotation are performed to give biological 

meanings to the peak data, getting ready for the following molecule-specific processing 

steps and analysis.  

Species annotation for m/z value - intensity pair data acquired from ESI MS/MS relies 

on ·referencing the appropriate lipid databases which support ion mass searching 

approach. There are very few lipidomics databases currently available for lipid research, 

and LIPID MAPS (LIPID MAPS, 2018) and LipidBank (LipidBank, 2007) are the most popular 

ones. However, these databases are not suitable for MS/MS acquired lipid data 

identification. They are mainly for global search of lipids, and a confident identification of 

a species requires more information, such as mass, chemical formula, lipid category, lipid 

Figure 11: Comparison of spectrum before and after background removing 
procedure. (A) is the original spectrum and (B) is the result spectrum after an 
estimated background noise is removed. 

(A) 

(B) 
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class and molecular structure. As stated above, the ESI MS/MS acquired data only 

provides m/z values of ions and their fragments detected by break down scans, but these 

databases do not support lipid searching based on these pieces of information.  Moreover, 

none of the available databases support labelled species identification, which is critical for 

the stable isotope labelling dynamic lipidomic analysis.  

A dedicated database for identification of phospholipid and stable isotope labelled 

phospholipid based on spectrum data acquired through ESI MS/MS is created by Dr 

Grielof Koster. This database comprises of numerous species lists of certain classes of 

phospholipids detected by numerous MS scans. Each list is for a particular scan type (e.g. 

P184 for PC species) and a certain sample type, including BALF, lung tissue, cell 

suspension of BALF and plasma. The species lists are created based on the empirical 

knowledge of phospholipids that can be found in each sample type as well as theoretically 

possible lipid species ,which is for preliminary species identification, and more precise 

distributions of positions of acyl groups of the observed molecules can be verified by 

doing further break down scans. 

There are hundreds of empirical and theoretical phospholipid species in each species list 

in ascending order of their m/z values. The lists are made to be complete to cover as 

many masses as possible. Table 3 displays part of the species list of a normal P184 scan. 

The species are annotated in the commonly accepted shorthand form. The annotation 

describes the species chemical structure to the fatty acid level and number of double 

bonds. For example, “PC 18:0/18:2” is the notation of a PC species that has two fatty acyl 

chains of 18 carbons, with no double bonds on sn-1 position and two double bonds on 

sn-2 position.  



Chapter 3 

53 

 

m/z Species list for P184 scan 
580 PC12:0a/10:0 
582 LPC24:6a 
590 PC12:1/10:1 
592 PC12:0/10:1 
594 PC12:0/10:0 
596 LPC24:6 
603 SM10:1a 
604 PC10:1a/14:1 
605 SM10:0a 
606 PC14:1a/10:0 
607 H2SM10:0a 
608 PC10:0a/14:0 
610 ox2PC16:0/5:1 
616 LPC26:3a 
617 SM10:1 
618 PC14:1/10:1 
619 SM10:0 
620 PC14:1/10:0 
621 H2SM10:0 
622 PC10:0/14:0 

 
Table 3: Part of the species list of a normal P184 scan. It displays 20 species (out of 349 
species in the full list) arranged in the ascending order of their m/z value. 

 

The problem with the database is that the annotations are more of indicative rather than 

absolutely accurate, which assigns the detected molecules only to the most likely 

occurred species, because the precursor scan does not provide enough information for a 

confident identification in terms of the length of fatty acyl chains as well as the position of 

double bond. The database makes this compromises to generate a speedy assignment for 

the subsequent data processing. Further fragmentation scans will be needed for a more 

accurate identification.  

3.3.2 Species assignment  

LipidomeLabelling adopts the database created by Dr Grielof Koster for species 

identification and annotation. The PL species assignment is carried out by mutually 
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matching the m/z values of the detected peaks with the m/z values of species in the 

species list of the corresponding scan type. If there is a match, the m/z -intensity pair data 

will be assigned with the matching species, which is how the original spectrum data in the 

form of m/z intensity pair becomes real species with intensities. The detected peaks of 

which the m/z value could not find a match in the species list will be removed. Therefore, 

the species lists have to be as complete as possible to avoid removing of real species. 

Table 4 is an example of part of the result of an annotation. Unlike the old programme 

that does not allow amendment to the database, LipidomeLabelling allows users to access 

and edit the library for specific use.  

 

m/z Combined Detail Intensity 
580 PC22:0a PC12:0a/10:0 38355 
582 LPC24:6a LPC24:6a 1524 
590 PC22:2 PC12:1/10:1 113077 
592 PC22:1 PC12:0/10:1 25324 
594 PC22:0 PC12:0/10:0 25110 
596 LPC24:6 LPC24:6 10914 
603 SM10:1a SM10:1a 1216 
604 PC24:2a PC10:1a/14:1 6227 
605 SM10:0a SM10:0a 32691 
606 PC24:1a PC14:1a/10:0 74621 
607 H2SM10:0a H2SM10:0a 23715 
608 PC24:0a PC10:0a/14:0 59230 
610 ox2PC21:1 ox2PC16:0/5:1 9686 
616 LPC26:3a LPC26:3a 4096 
617 SM10:1 SM10:1 11967 
618 PC24:2 PC14:1/10:1 15054 
619 SM10:0 SM10:0 48147 
620 PC24:1 PC14:1/10:0 25519 
621 H2SM10:0 H2SM10:0 9830 
622 PC24:0 PC10:0/14:0 57862 

 
Table 4: Example of species annotation. This is part of a species annotation result of a 
P184 scan. The identified species of certain m/z values together with their intensities are 
assigned with the corresponding species name in detail form as well as in combined form. 
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3.3.3 Combination form annotation 

In order to tackle the issue that the database only assign the detected ions to the most 

likely species, which may not be the real molecules, LipidomeLabelling offers the 

combined form of a species alongside its detailed form from the database in the final 

result. For example, the annotation of PC16:0/16:0 from the database for the detected 

species will be accompanied by another annotation of PC32:0. This combined form is 

offered to cover all possibilities of isobars and isomers of detected ions with the same 

m/z values.  

3.4 Lipid data processing 

Once species are annotated, the subsequent procedures are specific to the identified 

molecular species. LipidomeLabelling offers functional tools for species intensity data 

processing and analysis, including adduct correction, isotope effect correction, CID 

correction, cross scan isotope correction, composition analysis, quantification and label 

enrichment calculation. 

3.4.1 Adduct effect correction  

Adduct formation takes place sometimes and adducts should be considered as another 

presentation of the original molecule, rather than a distinguished molecule. Therefore, 

the intensity of an adduct should be counted as the intensity of the original molecule. For 

example, a sodiated DPPC as a result of sodiation during experiment, is an adduct of DPPC, 

and the intensity of it should be added to that of DPPC.  

The platform offers an optional function for adduct correction. For each scan type, the 

user can define the m/z values for an ion and its adduct, then the programme will search 
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for the intensities of them. The adduct-ion ratio of the specified adduct over the ion will 

be calculated and used for calculating the adduct intensities of all other species within the 

scan. The intensity of an adduct will be removed from the intensity of the species that has 

the same m/z with the adducts. The function is as follows: 

                            𝐼𝐼(𝑚𝑚) = 𝐼𝐼𝑢𝑢(𝑚𝑚) − 𝐼𝐼 (𝑚𝑚−𝑀𝑀𝑚𝑚) ×  𝑆𝑆𝑚𝑚
𝑆𝑆𝑚𝑚

                    𝑚𝑚 ∈ 𝐷𝐷                                 (7) 

, where 𝐼𝐼(𝑚𝑚) is the adduct corrected intensity of a species with the m/z value of 𝑚𝑚. 

𝐼𝐼𝑢𝑢(𝑚𝑚) is the uncorrected intensity. 𝑀𝑀𝑚𝑚 denotes the user specified m/z difference 

between the adduct and its original ion, and 𝐼𝐼 (𝑚𝑚−𝑀𝑀𝑚𝑚) represents the corrected 

intensity of a species, the adduct of which has m/z of 𝑚𝑚.   𝑆𝑆𝑚𝑚
𝑆𝑆𝑚𝑚

  is the ratio of intensities of 

the specified adduct and its original ion, and  𝐼𝐼 (𝑚𝑚−𝑀𝑀𝑚𝑚) ×  𝑆𝑆𝑚𝑚
𝑆𝑆𝑚𝑚

  is the intensity of the 

adduct of the species with m/z  value of 𝑚𝑚 −𝑀𝑀𝑚𝑚, which is removed from the intensity of 

𝐼𝐼(𝑚𝑚). 𝐷𝐷 is the set of all detected m/z values. This procedure only removes adduct 

intensity from the species that have the same m/z with the adduct. It does not add it to 

the intensity of original species, although it can be done by dividing the ratio after the 

correction has been performed.  

3.4.2 Isotope effect correction 

Isotope correction is an essential procedure in MS data processing, due to the naturally 

occurring isotope effect of elements, which result in multiple isotopologues of the same 

species. Isotopologues of a species have different masses and are identified as different 

molecules by MS, which should be corrected and their intensities should be added up 

together as the intensity of one species. Besides, an isotopologue could be mistaken for 

another species having the same mass, so the correction can also correct the intensity 
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result for this distinct species. Isotope correction is critical important for stable isotope 

labelling studies, which require complete removal of naturally occurred isotope of a 

species in order to get the accurate abundance of artificially labelled molecules for kinetic 

analysis. 

3.4.2.1 Isotope distribution calculation  

To correct isotope effect of a detected molecule, the isotope distribution of the species 

has to be calculated first. The programme adopts a Markov chain stepwise addition 

dynamic programming algorithm (Snider, 2007) for the isotope distribution calculation. 

Instead of calculating the probability of each isotope variant, the problem is seen as a 

dynamic process. Every isotope variant is considered as a state within a Markov model 

and every atom added onto the molecule is considered as a state transition step. The 

programme calculates the probabilities of isotope variants every time an atom is added 

and replace the probabilities calculated in the previous step before the atom is added. By 

doing this, the probabilities of the isotope variants at each step are only related to the 

calculations in the previous step and the isotope probabilities of the newly added 

element.  

The starting point of the isotope distribution algorithm is no atom status (Atom 0) with a 

number of nodes of all possible isotope variants of a molecule. It then starts to add one 

single atom of an element of the molecule at a time and calculates the probabilities of all 

the isotope variants. Then the next atom is added and the probabilities of the variants are 

calculated again by computing the transition from the previous step. This procedure 

keeps on until all the atoms of the element are added, and then it starts to add the atoms 

of another element of the molecule until all the elements are calculated. Figure 12 is a 

simple example of this dynamic process of adding two atoms of the only element of a 
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molecule to calculate its isotope variants distribution. The element has three stable 

isotopes. 

 

 

 

A molecule that has one element with two atoms, each having three isotopes, can have 

five possible isotope states in total, including the no isotope effect or principle ion state 

“N” having monoisotopic mass, isotope state with one mass higher than the principle ion 

state “+1”, two mass higher state “+2”, three mass higher state “+3” and four mass higher 

state “+4”. At initial status “Atom 0”, no atom is added, the no isotope effect state “N” is 

given the probability of one. The next step is to add “Atom 1”, and as this element has 

three stable isotopes, it can only transit from the previous state “N” to “N”, “+1” or “+2” 

states with the transition probabilities equal to the natural abundance of the three stable 

+4 

+4 N +1 

N +1 +2 

N Atom 0  

+2 

+3 

Atom 1  

Atom 2  

+1 +2 +3 +4 

+3 

Figure 12: Schematic diagram of dynamic calculation of isotope distribution for a 
molecules with two atoms of the same element. The atom has three isotopes and 
therefore the molecule can have five isotope variants denoted as “N“, “+1”, “+2”, 
“+3”, “+4”, which represent the principle ion state with monoisotopic mass, and 
isotope states that are one, two, three and four mass higher. Three atom states 
include no adding atom (Atom 0), adding the first atom (Atom 1) and adding the 
second atom (Atom 2). The arrows represent the possible transitions from one 
isotope state to another after adding an atom. 
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isotopes of atom added. Now there are three isotope states at this stage “N”, “+1” and 

“+2” as the starting points for the following transitions when “Atom 2” is added, where 

the transitions are more complicated as each of the three starting states has three 

possible transitions. For starting point “N”, the result state after adding the second atom 

could be “N”, “+1” and “+2”. If starts from “+1”, the transit isotope states could be “+1”, 

“+2”, and “+3”.  From starting point “+2”, it can get to the isotope states of “+2”,”+3” and 

“+4”. The probability of an isotope variant can be obtained by summing up all the possible 

transitions to this state, each obtained by multiplying the probability of starting isotope 

state at “Atom 1” with the one step transition probabilities. For example, as shown in 

Figure 12, the “+1” isotope state at “Atom 2” can be from either “N” or “+1” at “Atom 1”, 

and its probability should be the sum of the two transition probabilities from these two 

starting points. The first part is the transition from “N” at “Atom 1” to the current state, 

which needs an atom with its isotope of one mass higher than the most abundant isotope 

to get “+1” state. The probability can be obtained by multiplying the probability of “N” at 

“Atom 1” with the transition probability, which is the natural abundance of the isotope 

with one mass higher than the most abundant isotope of the added atom.  The second 

part is obtained by multiplying the probability of “+1” at “Atom 1” with the natural 

abundance of the most abundant isotope of the added atom.  The algorithm is shown 

below:    

     𝐼𝐼𝑠𝑠𝐼𝐼𝑁𝑁(𝑖𝑖) = ∑ 𝐼𝐼𝑠𝑠𝐼𝐼𝑁𝑁−1(𝑗𝑗) ∗ 𝑃𝑃𝑖𝑖𝑖𝑖,𝑁𝑁 𝐾𝐾
𝑖𝑖=1          ∀ 𝑖𝑖, 𝑗𝑗 = 1, … ,𝐾𝐾 ;  𝑁𝑁 ≥ 1                          (8) 

, and the starting point is set as  

                           �
𝐼𝐼𝑠𝑠𝐼𝐼0(𝑖𝑖) = 1              𝑖𝑖 = 1         

                         
 𝐼𝐼𝑠𝑠𝐼𝐼0(𝑖𝑖)  = 0             1 ≤  𝑖𝑖 ≤ 𝐾𝐾 

                                                          (9) 
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, where 𝐼𝐼𝑠𝑠𝐼𝐼𝑁𝑁(𝑖𝑖) denotes the isotope state 𝑖𝑖 when adding the Nth atom to the molecule, 

and 𝐾𝐾 is the number of isotope variants. 𝑃𝑃𝑖𝑖𝑖𝑖,𝑁𝑁 is the probability of the one step transition 

from isotope state j to the isotope state 𝑖𝑖, which is related to the natural abundance of 

the isotope of the Nth atom being added, and it satisfies  𝑃𝑃𝑖𝑖𝑖𝑖,𝑁𝑁 ≥ 0 and ∑ 𝑃𝑃𝑖𝑖𝑖𝑖,𝑁𝑁 = 1𝑘𝑘
𝑖𝑖=1 . 

Formula (8) describes that the probability of a molecule at a certain isotope state 𝑖𝑖 after 

adding the Nth new atom on it, equals to the sum of the probabilities of all possible 

isotope state transitions from the previous status. Formula (9) gives the probabilities of 

the initial isotope states at “Atom 0”, and the probability of the no isotope effect is given 

the value of 1 and other isotope states 0. 

 

m/z  of Isotope variants   Probabilities 

734 0.672590888 

735 0.262635973 

736 0.055411745 

737 0.008296727 

738 0.000976817 

739 0.000095285 

740 0.000007945 

741 0.000000578 

742 0.000000037 

743 0.000000002 

 
Table 5: Probabilities of 10 isotope variants of PC16:0/16:0 ion. The ion has a probability 
of 0.672590888 to be in the monoisotopic form with the mass of 734, and a probability of 
0.262635973 to be in the state with one mass higher of 735. 

 

The isotope distribution function is set to calculate the probabilities of the first 10 isotopic 

variants of a species, including the molecules of monoisotopic mass with only the 

principle isotopes, as well as the ones with other isotopes up to 10 masses higher than 
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the monoisotopic mass. This is reasonable for a typical PL analysis, as for a molecule with 

a mass over 1700, the probability of it having more than 10 isotopologues could be well 

under 10-6, which is negligible. The PL molecules mass are usually under 1700 and the 

possibility of these specie having more than 10 isotopologues is even less. Table 5 is an 

example of the calculated isotope distribution of PC16:0/16:0 ion using the programme. 

3.4.2.2 Isotope effect correction 

To correct the isotope effect shown in the MS analysis, LipidomeLabelling utilizes a 

formula (Eibl et al., 2008) commonly used in isotope effect removal, shown as below 

𝐼𝐼(𝑚𝑚) = (𝐼𝐼𝑢𝑢(𝑚𝑚) −∑ 𝐼𝐼(𝑚𝑚− 𝑛𝑛) × 𝐼𝐼𝑠𝑠𝐼𝐼𝑚𝑚(𝑚𝑚 − 𝑛𝑛))/𝐼𝐼𝑠𝑠𝐼𝐼0(𝑚𝑚)9
𝑚𝑚=1      𝑚𝑚 ∈  𝐷𝐷    (10) 

, where 𝐼𝐼(𝑚𝑚) is the corrected intensity of a species with m/z value 𝑚𝑚, and  𝐼𝐼𝑢𝑢(𝑚𝑚) is the 

observed intensity of it. 𝐼𝐼(𝑚𝑚− 𝑛𝑛) is the corrected intensity of species with m/z value of 

𝑚𝑚 − 𝑛𝑛, and so 𝐼𝐼𝑠𝑠𝐼𝐼𝑚𝑚(𝑚𝑚− 𝑛𝑛) represents the natural abundance of “+n” isotopologues of 

this species. The product of these two items 𝐼𝐼(𝑚𝑚− 𝑛𝑛) × 𝐼𝐼𝑠𝑠𝐼𝐼𝑚𝑚(𝑚𝑚− 𝑛𝑛) gives the intensity 

of the “+n” isotoplogues of the species. The programme corrects the isotope effect on a 

species from 9 other species, with m/z values from m-1 to m-9, the isotoplogues of which 

may have the same mass with m. 𝐼𝐼𝑢𝑢(𝑚𝑚) − ∑ 𝐼𝐼(𝑚𝑚 − 𝑛𝑛) × 𝐼𝐼𝑠𝑠𝐼𝐼𝑚𝑚(𝑚𝑚− 𝑛𝑛)9
𝑚𝑚=1   is the 

remaining of the intensity after removing the isotope effect. 𝐼𝐼𝑠𝑠𝐼𝐼0(𝑚𝑚) denotes the 

percentage abundance of principle ion of species m. Dividing the remaining intensity by 

this term generates the real abundance of species m. Figure 13 shows spectrum of the 

previous sample shown in Figure 9 after the isotope effect correction. 
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3.4.2.3 Cross scan isotope effect correction 

The cross scan isotope effect correction step is a unique feature of the LipidomeLabelling 

and the in house programme, which aims to correct the isotope effect occurring on the 

fragment that is monitored in a precursor scan. In a precursor scan, the isotope effect of a 

detected species which occurs on the non-monitored part of the molecule can be 

corrected by calculating and removing the effect from other species detected in the same 

scan using the algorithm discussed in the previous section. However, the species may also 

suffer from the isotope effect from other different species that have the same m/z with 

the detected species, but isotope effect occurs on their fragment making it has the same 

mass with the fragment being monitored. For example, the monoisotopic mass of ion A is 

100 and its fragment of 50 is monitored. The monoisotopic mass of ion B is 99, but 

isotope effect occurs on its fragment with m/z of 49, making the fragment of 50 and the 

m/z of the isotopologue of B 100. This variant of ion B will be detected by the MS and 

taken as ion A, as it has the same m/z for the monitored fragment and the whole ion of A. 

However, this is a totally different species, which should be removed if possible. 

Correcting this requires the intensity of the source species, the isotope effect of which 

affects the result of the species of interest, but the intensity is not derivable from the 

Figure 13:  Spectrum of the previous example in Figure 9 after isotope correction.  
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scan itself. Nevertheless, multiple scans are often carried out for an ESI MS/MS facilitated 

PL labelling analysis, which makes it possible to partly correct this isotope effect on a 

species by working out the isotope effects from other species detected from other scans. 

This is particularly important in labelling studies that require removing the naturally 

occurred isotope effect in order to get an accurate abundance of artificially labelled 

species for enrichment calculation.   

For example, in a PC labelling study, DPPC (m/z 734) and methylD3 labelled DPPC (m/z 737) 

can be detected by P184 and P187 scans, respectively. However, the detected D3DPPC 

molecules by P187 is the combination of artificially labelled D3DPPC and the naturally 

occurred “+3” isotopologues of DPPC. With the information obtained from P184 scan, this 

problem can be solved by calculating the abundance of “+3” isotopologues of DPPC 

detected by P184 scan, and removing it from the D3DPPC measurement by P187. The 

correction formula is as follows 

𝐼𝐼𝑓𝑓(𝑚𝑚) = 𝐼𝐼𝑢𝑢𝑓𝑓(𝑚𝑚) − ∑ 𝐼𝐼𝑚𝑚�𝑚𝑚 − (𝑖𝑖 − 𝑛𝑛)�𝑓𝑓−7≤𝑚𝑚<𝑓𝑓 × 𝐼𝐼𝑠𝑠𝐼𝐼𝑓𝑓−𝑚𝑚(𝑛𝑛)          (11) 

, where 𝐼𝐼𝑓𝑓(𝑚𝑚) denotes the corrected intensity of species with m/z of 𝑚𝑚, the monitored 

fragment of which has a mass of 𝑖𝑖.  𝐼𝐼𝑢𝑢𝑓𝑓(𝑚𝑚) is the uncorrected intensity of the species. 𝑛𝑛 

is the mass of the fragment monitored by another scan, which satisfies  𝑖𝑖 − 7 ≤ 𝑛𝑛 < 𝑖𝑖, 

meaning the programme only corrects the effect of the species, the fragments of which 

are smaller than that of the species of interest by maximum of 7 mass units. 𝐼𝐼𝑚𝑚�𝑚𝑚 −

(𝑖𝑖 − 𝑛𝑛)� is the corrected intensity of a species in the scan of fragment 𝑛𝑛, and the mass 

difference between this species and species m is the same as that between the two 

scanned fragments  𝑖𝑖 − 𝑛𝑛.  Taking the example above, if we are correcting an isotope 

effect on species D3DPPC with m/z of 737 in P187 scan from a isotope variant of a species 
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detected in P184, making “m” being 737 and “f” being 187, we need to consider the “+3” 

(187-184) isotopologues of a species from P184 having a mass of 737 – (187-184), which 

is 734. The intensity of the species from scan n is used to calculate the isotopologues that 

affect the species m  in scan f, by multiplying their percentage abundance of the 

𝐼𝐼𝑠𝑠𝐼𝐼𝑓𝑓−𝑚𝑚(𝑛𝑛) . All the scans in the same mode will be treated in the same way as long as 

their mass differences between the scanning fragments are smaller than 7. 

3.4.3 CID correction 

A tandem mass spectrometer with a collision cell can perform collision - induced 

dissociation (CID), through which molecular ions are fragmented. However, the bigger a 

molecule is, the more vibration modes it has, so it is less likely that a given collision 

energy can induce fragmentation. Besides, the more energy put in for dissociating the big 

ion, the greater the speed of the fragments, and the more difficult it is for the 

containment field to keep them in, which leads to scatter loss. The effect of above is that 

the detection rates of bigger precursor molecules tend to be lower than smaller precursor 

molecules. LipidomeLabelling provides an optional CID correction function to correct the 

effect occurred due to the first issue mentioned above, with an empirical formula as 

follows 

𝐼𝐼(𝑚𝑚) = 𝐼𝐼𝑢𝑢(𝑚𝑚) ÷ (2 × 1013 × 𝑚𝑚−3.9873) × 100                         (12) 

, where 𝐼𝐼(𝑚𝑚) and 𝐼𝐼𝑢𝑢(𝑚𝑚) are the corrected and uncorrected intensities of species with m/z 

value of 𝑚𝑚. 
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3.5 Phospholipids data analysis 

3.5.1 Composition analysis 

LipidomeLabelling offers a functionality for PL composition analysis. It calculates the 

percentage of all the species detected in a scan. This calculation excludes the internal 

standards, which are exogenous molecules artificially added into samples for species 

quantification. The internal standards are specified by users in the setting up for analysis 

by LipidomeLabelling.  

 

Ion Mass Species Intensities Quantification 
(nmol) 

678 PC14:0/14:0 161446616.5 10 
780 PC16:0/20:5 882214.6 0.0546 
781 SM22:3 0 0 
782 PC16:0/20:4 302661855 18.7469 
783 SM22:2 5145607.8 0 
784 PC18:1/18:2 1769086.9 0.1096 
785 SM22:1 59115.9 0 
786 PC18:0/18:2 131416916 8.13997 
787 SM22:0 341345.5 0 
788 PC18:0/18:1 1004836.6 0.06224 
789 SM24:6a 0 0 
790 PC18:0/18:0 118075112 7.3134 
792 PC18:2a/20:4 0 0 
794 PC18:1a/20:4 56540 0.0035 
796 PC18:0a/20:4 759896 0.0471 
797 SM24:2a 60661 0 
798 PC18:0a/20:3 503165 0.03117 
799 SM24:1a 109304 0 
800 PC18:0a/20:2 139302 0.008628 

 
Table 6: Part of the result from a P184 scan of a sample. 10nmol of internal standard 
PC14:0/14:0 (first row) are used specifically for PC species quantification, so only the 
amounts of PC species are calculated. 
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3.5.2 Amount quantification  

Quantifying the amount of species in a sample is one of the main purposes of MS analysis. 

For lipid quantification, internal standards are added into samples before MS monitoring. 

Internal standards are some exogenous compounds that have similar properties with the 

endogenous species to be quantified when analysed by MS. It is possible to determine the 

quantity of endogenous lipid by multiplying the amount of internal standard with the 

intensity ratio of endogenous species over the internal standard. The LipidomeLabelling 

supports three internal standards for multiple lipid class quantification. Table 6 is part of 

the lipid quantification result of an ESI MS/MS analysis calculated by the programme.  

3.5.3 Dynamic stable isotope labelling analysis  

The isotopic enrichment of a stable isotope labelled material is calculated based on the 

intensities of the detected labelled and unlabelled molecules. In the literature of tracer 

kinetics study, there are two commonly used forms of enrichment, tracer/tracee ratio 

(Cobelli et al., 1987) and APE. APE is the ratio of tracer over the sum of tracer and tracee 

(Garlick et al., 1994). There are no clear explanations about which form should be used in 

what situation. In the surfactant phospholipid stable isotope labelling studies, APE has 

been widely used (Cogo et al., 1999; Torresin et al., 2000). The APE is described by the 

following formula 

              𝐴𝐴𝑃𝑃𝐸𝐸 =  𝑇𝑇𝑇𝑇𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇

                                  (13) 

 

LipidomeLabelling supports both forms of enrichment calculation to be chosen by users 

for lipid labelling analysis. The platform support studies with multiple labelling materials. 

It can also analyse labelling and non-labelling PL studies at the same time. Table 7 lists the 
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enrichment of some labelled PC species in a mouse sample measured by ESI MS/MS 

through P184, P187, P190 and P193 scans.  

 

Endogenous m/z Enri D3 labelled m/z Enri D6 labelled m/z Enri D9 labelled m/z Enri 
PC16:0/14:0 706 0.9973 D3PC16:0/14:0 709 0.001 D6PC16:0/14:0 712 0.0001 D9PC16:0/14:0 715 0.0016 

PC22:6a/10:0 708 0.9671 D3PC22:6a/10:0 711 0.0096 D6PC22:6a/10:0 714 0.0128 D9PC22:6a/10:0 717 0.0105 

PC22:5a/10:0 710 0.9581 D3PC22:5a/10:0 713 0.0198 D6PC22:5a/10:0 716 0.0098 D9PC22:5a/10:0 719 0.0123 

PC14:1a/18:3 712 0.9604 D3PC14:1a/18:3 715 0.0109 D6PC14:1a/18:3 718 0.0174 D9PC14:1a/18:3 721 0.0113 

PC14:1a/18:2 714 0.9536 D3PC14:1a/18:2 717 0.0064 D6PC14:1a/18:2 720 0.0354 D9PC14:1a/18:2 723 0.0046 

PC14:0a/18:2 716 0.9824 D3PC14:0a/18:2 719 0.0082 D6PC14:0a/18:2 722 0.0031 D9PC14:0a/18:2 725 0.0063 

PC18:0a/14:1 718 0.9935 D3PC18:0a/14:1 721 0.002 D6PC18:0a/14:1 724 0.0003 D9PC18:0a/14:1 727 0.0042 

PC16:0a/16:0 720 0.9966 D3PC16:0a/16:0 723 0.0014 D6PC16:0a/16:0 726 0.0001 D9PC16:0a/16:0 729 0.0019 

PC22:6/10:0 722 0.9816 D3PC22:6/10:0 725 0.0094 D6PC22:6/10:0 728 0.0032 D9PC22:6/10:0 731 0.0059 

PC22:5/10:0 724 0.9242 D3PC22:5/10:0 727 0.0558 D6PC22:5/10:0 730 0.0152 D9PC22:5/10:0 733 0.0048 

PC14:1/18:3 726 0.9762 D3PC14:1/18:3 729 0.0159 D6PC14:1/18:3 732 0.0069 D9PC14:1/18:3 735 0.001 

PC14:1/18:2 728 0.9732 D3PC14:1/18:2 731 0.0059 D6PC14:1/18:2 734 0.0018 D9PC14:1/18:2 737 0.0191 

PC14:0/18:2 730 0.9945 D3PC14:0/18:2 733 0.0019 D6PC14:0/18:2 736 0.0003 D9PC14:0/18:2 739 0.0034 

PC16:0/16:1 732 0.9961 D3PC16:0/16:1 735 0.0008 D6PC16:0/16:1 738 0.0000 D9PC16:0/16:1 741 0.0031 

PC16:0/16:0 734 0.9958 D3PC16:0/16:0 737 0.001 D6PC16:0/16:0 740 0.0000 D9PC16:0/16:0 743 0.0032 

Table 7:  Enrichment of PC species in a mouse sample analysed by P184, P187, P190 and 
P193 scans measuring the endogenous, methylD3 labelled, methylD6 labelled and 
methylD9 labelled PC species, respectively. The isotopologues of a species detected in the 
four scans are put in the same row. m/z values are listed behind species names. APE is 
applied for enrichment calculation, so that the enrichment of a species in either labelled 
or unlabelled form is the ratio of its intensity over the sum of the intensities of all 
isotopologues detected. Therefore, the enrichment shown on each row add up to 1.  

 

3.6 Graphical user interface 

LipidomeLabelling offers a graphical user interface (GUI) (Figure 14) for users of all levels 

with no programming skills requirement.  The GUI is stored in GUI.mat file. To run a 

labelling analysis, users need to make a few steps of setting up, including file selection, 

species list selection, baseline noise removal specification, internal standards 

specification, and criteria setting for species selection. The programme allows modifying 

the specification of internal standards and selection criteria after analysis has been done 

and only adjust the previous results, which does not require the recalculation of all the 

results. This feature makes it easier for users to correct input errors made by mistake 
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when setting up the programme, which saves the time of recalculation of the unaffected 

parts. 

 

 
Figure 14: Graphical user interface of LipidomeLabelling. 

 

3.7 Validation 

Validation of LipidomeLabelling is performed by comparing it with the old in house 

software on the results of the common functionalities they have. The comparison has 
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found small differences in the composition and enrichment, which mainly stems from the 

different background subtraction algorithms applied, resulting in the difference in the 

calculated molecule intensities. A comparison of molecule intensities of a mouse sample 

calculated by the two programmes are listed in Table 8.  

 

Species LPC10:1 LPC10:0 LPC12:1 PC16:0/16:1 PC16:0/18:2 PC16:0/18:1 PC18:1/20:4 PC18:0/20:4 
m/z 410 412 438 732 758 760 808 810 

Old analyser 41855 132945 76469 425395368 7467709331 13079711579 1383499560 3361057215 

Lipidomelabelling 44344 138086 81315 425399571 7467714456 13079715941 1383506189 3361064179 

 
Table 8: Comparisons of intensities of selected species processed by the old analyser and 
Lipidomelabelling. The intensities calculated for species from different mass ranges are 
generally higher in the Lipidomelabelling, which approximates a smaller background than 
the old analyser. The first three species within small mass range are affected more due to 
their relatively small intensities compared to the background noise subtracted from all 
species.  
 

 

The old programme is more aggressive on the background removal, which generates 

slightly higher background estimation. This mainly affects molecules with lower 

abundance, because the procedure removes a fixed background noise from all spectrum 

and so the smaller the intensity is, the more effect the removed background can make. 

Although the mostly affected species are usually not of interest, as these species are with 

an intensity level close to noises, it is still worth to evaluate further for a more 

appropriate background algorithm for a better approximation of the molecule intensities. 

It was also shown that LipidomeLabelling is much faster than the in house software. In a 

test of analysing a typical PC labelling analysis with 4 scan types, the new platform runs 6 

times faster than the old programme.  
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3.8 Conclusions 

LipidomeLabelling is a platform for ESI MS/MS lipidomics data processing and kinetic 

analysis. It consists of a data converting programme and streamlined analysing modules, 

offering functionalities for background noise removal, peak detection and integration, 

adduct correction, isotope effect correction, CID correction, as well as composition, 

quantification and kinetic analysis. It facilitates fast, comprehensive, automatic and user 

friendly analysis for stable isotope labelling as well as non-labelling PL studies.  

The algorithm used in LipidomeLabelling for peak integration takes the average of the 

intensities measured at several points around a detected peak centre, due to difficulty in 

modelling the peak based on the information available. Better algorithms should be 

explored for integrating the whole peak area for better abundance approximation. 

Besides, background subtraction algorithm of LipidomeLabelling could be tested and 

examined in different studies for better parameter setting and background estimation.
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Chapter 4 Surfactant phosphatidylcholine dynamic 

biomarker discovery analysis for animal models 

4.1 Introduction  

In this chapter, the pulmonary surfactant PC labelling data of mouse models from a 

previous surfactant turnover study is used for dynamic biomarker discovery analysis. The 

methodology for time course PC label enrichment modelling and biomarker analysis is 

established for the following application to human clinical data. The mouse model is ideal 

for investigating the possibility of using temporal PC label incorporation as a biomarker, 

because the transgenic mouse in the study is an artificially established model with single 

defined condition. It benefits from having a genetically homogeneous background and 

common nutrition, conditions that do not apply in clinical studies. The SME statistical 

method is used to characterise the time course enrichment of methylD9 -PC, an indication 

of PC turnover, to assess if it can potentially provide improved diagnostic insights over 

static measurements.  

4.1.1 Project description  

The mice data analysed in this chapter is from a previous study carried out in 

Southampton funded by Medimmune LLC. Medimmune has developed a therapeutic 

antibody against the GM-CSF receptor, which they are using a biological drug to inhibit 

macrophage-driven inflammation and so reduce painful symptoms in patients with 

rheumatoid arthritis. As reduced GM-CSF stimulation of alveolar macrophages 

development is a major cause of PAP disease, Medimmune was concerned that the 

antibody for treatment of rheumatoid arthritis might have a harmful side effect of 

accumulation of excess surfactant in the lungs of their patients. Therefore, Medimmune 
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carried out a two-step study aiming to evaluate how their drug would affect the turnover 

of the PC species in the respiratory system. The first part of the study sought to compare 

the PC turnover of mice with and without PAP. They use GM-CSF receptor beta chain 

depleted mice, also called KO mice in this chapter, as diseased mice to establish the effect 

of blocking alveolar catabolism of surfactant PL due to the absence of macrophages. Then 

they compared the turnover of PC species in BALF and lung tissue samples of these gene 

depleted mice models with that of normal mice. There are three age groups of normal 

mice including 169 days, 113 days and 84 days groups. The second part of the study 

deployed another two groups of normal mice treated with low dose and high dose of the 

developed antibody drug to see if excessive antibody caused any harm, where the low 

dose is equivalent to the amounts given to rheumatic arthritis patients. Low dose and 

high dose of drug were given to both 113 days and 169 days mice groups, to assess the 

dose effect across two different age groups. The whole study found that the total PC 

turnover of the KO mice was significantly lower than that of the normal mice at the 

designed time points. Besides, PC turnover of low dose drug treated group was not 

different from the normal mice. However, although the high dose treatment did not have 

an effect on physiological functioning of the mice, it did have an impact on the PC label 

incorporation pattern, which is more significant in 169 days high dose treated mice group.  

In order to set up and validate the methodologies for time course PC label incorporation 

modelling as well as biomarker discovery analysis, data of the mice groups that were 

found with significant differences in the study were chosen to be analysed in this chapter. 

Thus, the three age groups of normal mice, KO mice and 169 days high dose treated mice 

were analysed to investigate if there is any difference between groups that can be 
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recognized by temporal enrichment of labelled PC and which species are the most 

significant in marking the difference. 

4.1.2 Data description and method 

The mice surfactant PC label incorporation data analysed in this chapter was provided in 

the form of calculated methylD9-PC enrichment of sixteen PC species. The enrichment 

data of BALF and lung tissue samples of three age groups of normal mice, KO group mice 

and 169 days high dose treated mice, observed at four time points are included in the 

analysis. The normal mice are considered as control mice, therefore the control group has 

subsequent 169, 113 and 84 days age groups. 

All of the mice received intraperitoneal injections of 0.1mg methylD9-choline chloride for 

three hours. The mice were sacrificed 5, 10, 24 and 48 hours after label infusion, and 

BALF and lung tissue samples were collected immediately. Time series data for five mice 

are kept in each group, although the samples were actually from 20 mice. As mice could 

not be resampled, the samples collected at the 4 time points were actually from 4 

different mice, rather than a single mouse resampled four times.  

As the time series samples are not from the same mice, a random combination of 

observations from 20 mice at the four time points was carried out to be considered as 

repeatedly sampled time series data for five mice subjects. This is necessary as the nature 

of the longitudinal study is to feature the time course characteristics of PC species, and in 

biological experiments it is common that resampling is impossible. The made-up mice 

subjects are denoted as Mouse 1 to Mouse 5 in 169 days group, Mouse 5 to Mouse 10 in 

113 days group, and Mouse 11 to Mouse 15 in 84 days group for control group, and KO1 

to KO5 for KO group. Due to unknown error, the labelled material in some samples are at 
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an undetectable level, including Mouse 1 of 169 days group and KO5 of KO group at 5 

hour. PC enrichment data of these samples were excluded from the analysis. 

SME method was applied for model fitting for time course enrichment of sixteen 

methylD9-PC species. Ft statistic was used for comparisons between groups and the SME 

R package was used for the analysis.  

4.1.3 Chapter objects and structure 

This chapter aims to use SME method to model time course pattern of methylD9 labelled 

surfactant PC enrichment of mice samples and compare between groups for biomarker 

discovery analysis, as well as to validate the methodologies for the analysis of clinical data 

in the following chapters. The objects are as follows. 

- Compare the D9DPPC temporal enrichment between control age groups, to 

explore the appropriate application of SME framework to the data for best 

performance, as well as to assess if age factor has any effects on the PC turnover. 

The variation detected between the close assembled sub control groups can be 

used as a reference for comparisons between other more diverse groups. 

- Compare label incorporation patterns of sixteen PC species between control and 

KO mice to evaluate the difference between the theoretically contrast groups for 

biomarker analysis. The result could be used as reference of difference of contrast 

groups, to be compared with that of the control age group, both of which could be 

referred to when comparing other groups.  

- Compare time course PC label incorporation between control and high dose 

antibody treated groups, which should have mild difference comparing to that 
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between control and KO mice, to check how well the established methodology can 

identify and scale differences between groups. 

- Analyse PC label incorporation in both BALF and lung tissue samples, for a 

comprehensive longitudinal investigation of surfactant PC metabolism across 

different compartments of the respiratory system. 

4.2 Characterisation of time course methylD9 labelled DPPC enrichment 

in BALF and group comparisons 

In this section, the time course modelling and group comparison analysis were first 

applied to a single DPPC species in BALF samples in mice groups, which aims to establish 

the methodology as well as to demonstrate the use of it, before applying to multiple PC 

species for biomarker discovery. SME method was used to model time course enrichment 

of methylD9 labelled DPPC species (D9DPPC or D9PC16:0/16:0) for three age groups of 

control mice, combined control mice as well as KO group mice. The comparisons of the 

D9DPPC temporal enrichment were then carried out between three control age groups, 

between age groups and KO group, as well as between combined control group and KO 

group. Comparisons between control groups would indicate how much the comparatively 

resembled age groups of control mice are different from each other in DPPC turnover. 

The comparisons between control groups with KO group are to assess how much the mice 

in the two biological states are different from each other in DPPC turnover. Furthermore, 

the necessity of comparing combined control group with KO group instead of individual 

sub age groups for the following analysis was discussed. 
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4.2.1 Analysis of time course D9DPPC enrichment and group comparison 

4.2.1.1 Dynamic modelling for control mice 

DPPC is the most abundant PC species in pulmonary surfactant. The 169 days, 113 days 

and 84 days age groups of control mice are all normal mice with genetically homogeneous 

background. DPPC temporal label incorporation of the three age groups were firstly 

modelled individually as independent groups to examine the age effect on the species 

turnover, and then the DPPC label incorporation was modelled for the combined age 

groups as a whole control group.  

4.2.1.1.1 Modelling for 169 days control mice 

Based on the observations at different time points, the time course D9DPPC enrichment 

was modelled for each of the 5 individual mouse of the 169 days age group, as well as the 

mean enrichment of the whole group, which is taken as the underlying biological process 

of the whole group. Table 9 gives the estimated D9DPPC enrichment values at the 4 

observation time points for individuals and the whole group. It also lists out the variation 

of fitted individuals values from the fitted group mean, as well as the original 

observations. 

The fitted group mean model gives an estimated D9DPPC enrichment value of 0.555% at 

5 hour time point, which goes up to 1.158% at 10 hour. It then gets to a much higher 

value of 1.699% at 24 hour, and decreases to 1.097% at 48 hour. The temporal trends for 

all the individuals have the similar pattern. The variation of individual fitted values from 

group mean values are generally small, ranges from -0.020% to 0.039% at 5 hour, -0.057% 

to 0.109% at 10 hour, -0.046% to 0.084% at 24 hour, and -0.26% to 0.136% at 48 hour. 

The fitted values among the individuals are very close suggesting similar time course 

characteristics of the mice in 169 age group. 
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Subjects 5 hour 10 hour 24 hour 48 hour 
Fitted mean enrichment of the group 0.555 1.158 1.699 1.096 

Mouse 1 
Original enrichment   1.084 1.613 1.229 
Fitted enrichment 0.535 1.100 1.654 1.233 

Variation from group mean -0.020 -0.057 -0.046 0.136 

Mouse 2 
Original enrichment 0.538 1.258 1.747 1.060 
Fitted enrichment 0.564 1.186 1.722 1.033 

Variation from group mean 0.009 0.028 0.023 -0.063 

Mouse 3 
Original enrichment 0.493 1.222 1.726 1.089 
Fitted enrichment 0.557 1.1685 1.709 1.074 

Variation from group mean 0.002 0.011 0.010 -0.022 

Mouse 4 
Original enrichment 0.592 1.196 1.763 0.944 
Fitted enrichment 0.576 1.214 1.744 0.959 

Variation from group mean 0.021 0.057 0.044 -0.138 

Mouse 5 
Original enrichment 0.550 1.325 1.737 0.806 
Fitted enrichment 0.594 1.266 1.783 0.834 

Variation from group mean 0.039 0.109 0.084 -0.263 

 
Table 9: Fitted enrichment values (%) of D9DPPC in BALF samples of 169 days control 
mice at four observation time points. In this table, the fitted group mean enrichment 
values are listed in the first row. For each individual mouse, the original enrichment 
observation value, model fitted value as well as the variation of the fitted value from the 
group mean are all listed at each observation time point. Rows highlighted in blue are 
fitted values through modelling. 

 

A variation value as listed in the table is the difference between a fitted individual value 

and the fitted group mean value at a certain time point, rather than that between the 

fitted value and the original observation of an individual. For example, the variation of      

-0.02% of Mouse 3 at 5 hour is the difference between the group mean value of 0.555% 

and the fitted value 0.557%. But the difference between the original observational value 

of 0.493% and the fitted value is -0.56%, which is bigger than the variation term. The 

fitted values of individuals reflect the underlying biological feature of each individual 

subjects, whereas the originally measured values are real observations, so the difference 

between them reflects random variations of an individual model, while the variation of 

fitted individual values from group means could be considered as variations within group. 
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Figure 15: Time course enrichment model of D9DPPC in BALF sample of 169 day age 
group control mice. The empty circles are originally observed data points. The grey 
dashed curves are enrichment models of individual mice, and the red solid curve is that of 
the whole group. 

 

Figure 15 shows the fitted curves of temporal enrichment of D9DPPC for each individual 

mouse and the group mean of 169 days mice. The enrichment of D9DPPC increases with a 

big gradient at the beginning and gets to its highest level of 1.65% at 22 hour post 

labelling. After reaching the highest point, the enrichment goes down slowly. The 

maximum value as well as the time trend are approximated through modelling, which 

cannot be obtained directly from the observed values at separated time points or by 

simply lining them up to simulate the process.  

The curves reflect the underlying biological activities of PC species by characterising the 

change of their label incorporation over time. It indicates that D9DPPC species come into 

the surfactant system and accumulate, and in the meanwhile they leave the pool at a 

certain rate. In the steady state, when the amount of the entering D9DPPC is higher than 

that of the leaving DPPC, it accumulates in the pool, and the enrichment curve shows an 

increasing trend. If the two equal to each other, the curve reaches a plateau. However, 
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when the amount of incoming labelled species is less than that of the outgoing, the 

enrichment values get smaller, therefore the curve drops down. 

It can be seen from the plot that the group mean curve is not obtained by calculating the 

mean values at each time point and joining them up. In fact, all the fitted values are 

slightly deviated from the mean values calculated from observations at single time points. 

For example, the fitted enrichment value of 1.096% at 48 hour on the group mean curve 

is higher than the mean value 1.06% calculated directly from the individual mice at this 

time point. This is because the SME method assumes a smoothing biological process of 

the variables of interest, where the time effect is taken into account. As a result, critical 

points can be found at unobserved time points, such as maximal and minimal points. 

Simply taking means of observations at individual time points and lining them up would 

lose the time information and leave discontinuity of variables at time knots. Moreover, it 

is not able to estimate critical points other than observation time points. 

Surfactant PC are synthesised by AT II cells and are secreted into alveolar space, where 

BALF samples are taken from, through exocytosis. If control mice are assumed in a steady 

state, the swinging of the enrichment curves should be associated with the relationship 

between the enrichment of labelled PC species before entering the pool, and the current 

enrichment of labelled PC species in the pool. This is because in the steady state, the pool 

size is constant, and the amount of entering species matches the leaving, which means 

the rate and amount of new PC species coming into the pool should equal to those of PC 

species leaving the pool. When it comes to the labelled species, under the constant 

secretion, degradation and exchange rate, the rate of newly appeared labelled PC species 

is related to its enrichment before coming into the pool, whereas the rate of 

disappearance of the labelled species is related to their enrichment of the current pool. 
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Therefore, as the enrichment curve reflects the relationship between the entering and 

leaving labelled product PC species, it is actually down to the relation of the enrichment 

of labelled precursor species and the enrichment of labelled species in the current pool. 

Therefore, the increasing part in the curve means the label enrichment before entering 

the pool is higher than the current pool enrichment, and the decreasing part of curves 

indicates the label enrichment of species ready to get into the pool has already gone 

lower than the current pool enrichment.  As the label enrichment in the current pool is 

mainly determined by the enrichment in the precursor pool steady state, the swing of an 

enrichment curve is primarily due to the change of precursor pool label enrichment. 

4.2.1.1.2 Modelling for 113 days age group mice 

The fitted model of D9DPPC enrichment of 113 days group is very close to that of 169 

days group. The approximated group mean values are 0.505%, 1.212%, 1.707% and 1.08% 

at the four sample taking time points (Table 10). The enrichment curves increase from the 

beginning and go down after reaching the maximum point (Figure 16). The maximum 

enrichment is estimated to be 1.65% reached at about 21 hour after label infusion, which 

is similar to that of 169 days group. The fitted individual curves and the group mean curve 

are very close to each other, with a few observation points dispersed away from the fitted 

curves. This indicates the small differences between fitted individual values and the group 

means, but comparatively bigger differences between fitted individual values and their 

observation, which implies a high group consistency and some variation among the 

individual. The observed values deviating from modelled curves also show that the data 

has not been over fitted by the model, in which case the fitted curves would go through 

every single points on the plot. 
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Subjects 5 hour 10 hour 24 hour 48 hour 
Fitted mean enrichment of the group 0.506 1.212 1.707 1.080 

Mouse 6 
Original enrichment 0.416 1.1348 1.540 1.065 
Fitted enrichment 0.470 1.173 1.669 1.080 

Variation from group mean -0.036 -0.039 -0.038 -0.001 

Mouse 7 
Original enrichment 0.434 1.431 1.710 0.973 
Fitted enrichment 0.529 1.234 1.722 1.068 

Variation from group mean 0.023 0.022 0.0146 -0.0124 

Mouse 8 
Original enrichment 0.508 1.411 1.756 1.071 
Fitted enrichment 0.536 1.244 1.734 1.076 

Variation from group mean 0.031 0.032 0.0274 -0.004 

Mouse 9 
Original enrichment 0.392 1.213 1.829 1.183 
Fitted enrichment 0.497 1.208 1.715 1.098 

Variation from group mean -0.009 -0.004 0.008 0.018 

Mouse 10 
Original enrichment 0.542 1.192 1.636 1.1034 
Fitted enrichment 0.501 1.206 1.700 1.080 

Variation from group mean -0.005 -0.006 -0.007 -0.001 

 
Table 10: Fitted enrichment values (%) of D9DPPC in BALF sample of 113 day age group 
control mice at four observing time points.  
 

 

Figure 16: Time course enrichment model of D9DPPC in BALF sample of 113 day age 
group control mice. The empty circles are originally observed data points. The grey 
dashed curves are enrichment models of individual mice, and the red solid curve is that of 
the whole group. 
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4.2.1.1.3 Modelling for 84 days age group mice 

PC label enrichment data of 84 days control mice group is more spread out than 169 and 

113 days groups, so the value range at each time point is wider (Table 11, Figure 17). The 

enrichment of D9DPPC is between 0.986% and 1.902% at 24 hour, much wider than that 

for 113 days group which is between 1.636% and 1.829%. The fitted curves have similar 

temporal trend with those in 169 and 113 groups, which increase from the beginning to 

the highest point and then decay towards 48 hour. However, the approximated values of 

individuals and group mean are slightly different from 169 and 113 age groups, with 

values at 5, 10 and 48 hour higher and values at 24 hour lower. The estimated maximum 

value is about 16.7% reached at around 18 hour time point post labelling, which is earlier 

than those of 113 and 169 days groups. The reason of more variation between individuals 

in this group is unknown. But with such small sample size, the spread of these 

observations, especially with the extreme values in them, has heavily affected the curve 

shape. For example, it can been seen from the plot that the highest observation value at 

12 hour and the lowest at 24 hour make a huge influence on the fitted curves. The high 

value at 12 hour largely lifts up the mean value of all 5 observations at the time point and 

the one 24 hour drags down the mean a lot. It can be imagined that without these 

extreme values, the mean curve could shift to the right and reach the maximum at a later 

time point, which may overlap with the curves of 113 and 169 days groups. However, 

with data from only 5 mice, time course observation of each even from different mice, it 

is hard to treat the extreme values properly or investigate further by looking into other 

information. Besides, the plot also shows that although the observed data spreads out far 

from the group mean curve, the fitted individual curves gather closely suggesting small 

within group difference. However, this could potentially be an indication of slightly over-
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smoothing of the model. If this is the case, one possible reason for overfitting in this 

example can be the effect of the AICc fitting criteria, which can be further investigated 

when necessary. 

 
Subjects 5 hour 10 hour 24 hour 48 hour 

Fitted mean enrichment of the group 0.670 1.425 1.573 1.1557 

Mouse 11 
Original enrichment 0.617 1.974 1.783 1.372 

Fitted enrichment 0.690 1.445 1.592 1.170 
Variation from group mean 0.020 0.020 0.019 0.0144 

Mouse 12 
Original enrichment 0.615 1.184 1.838 0.963 

Fitted enrichment 0.666 1.421 1.569 1.152 
Variation from group mean -0.004 -0.004 -0.004 -0.004 

Mouse 13 
Original enrichment 0.781 1.129 1.306 1.233 

Fitted enrichment 0.660 1.415 1.565 1.151 
Variation from group mean -0.010 -0.010 -0.009 -0.005 

Mouse 14 
Original enrichment 0.607 1.521 1.902 0.853 

Fitted enrichment 0.675 1.430 1.576 1.154 
Variation from group mean 0.005 0.005 0.003 -0.002 

Mouse 15 
Original enrichment 0.607 1.488 0.986 1.360 

Fitted enrichment 0.659 1.414 1.564 1.151 
Variation from group mean -0.011 -0.011 -0.009 -0.004 

 
Table 11: Fitted enrichment values (%) of D9DPPC in BALF of 84 day age group control 
mice at four time points. 
 

 

Figure 17: Time course enrichment model of D9DPPC in BALF sample of 84 day age group 
control mice. The empty circles are originally observed data points. The grey dashed 
curves are enrichment models of individual mice, and the red solid curve is that of the 
whole group. 
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4.2.1.1.4 Analysis of combined control group 

4.2.1.1.4.1 Time course DPPC label enrichment of combined control group 

The analysis of the three age group mice show a small difference of methylD9 label 

incorporation of DPPC species, although 84 days group mice have more scattered 

observations. All of the three groups have a very small sample sizes, with just 5 mice in 

each group. In this section, the three age groups were combined to form a larger control 

group with observations of 15 mice to characterise the time course D9DPPC enrichment 

of control mice population. Figure 18 shows a time trend of the combined group similar 

with the three age groups modelled in previous sections. The maximum enrichment is 

approximated at around 19 hour after labelling.  

 

 

Figure 18: Time course enrichment model of D9DPPC in BALF of combined control group 
mice. 

 

Table 12 lists the fitted values of the combined group. Comparing the results with 

previous analysis, the fitted values for individual Mouse 1 to 5 of 169 days group analysed 
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Table 12: Fitted enrichment values (%) of D9DPPC in BALF of combined control group 
mice at four time points.  

Subjects 
 

5 hour 10 hour 24 hour 48 hour 
Group  Mean Fitted enrichment Value 0.564 1.298 1.663 1.087 

Mouse 1 
Original enrichment 0.000 1.084 1.613 1.229 
Fitted enrichment 0.558 1.293 1.659 1.088 

Variation from group mean -0.006 -0.006 -0.003 0.001 

Mouse 2 
Original enrichment 0.538 1.258 1.747 1.060 
Fitted enrichment 0.564 1.298 1.663 1.087 

Variation from group mean 0.000 0.000 0.000 0.000 

Mouse 3 
Original enrichment 0.493 1.222 1.726 1.089 
Fitted enrichment 0.562 1.296 1.661 1.087 

Variation from group mean -0.003 -0.002 -0.002 0.000 

Mouse 4 
Original enrichment 0.592 1.196 1.763 0.944 
Fitted enrichment 0.564 1.298 1.662 1.085 

Variation from group mean 0.000 0.000 -0.001 -0.002 

Mouse 5 
Original enrichment 0.550 1.325 1.737 0.806 
Fitted enrichment 0.565 1.299 1.662 1.083 

Variation from group mean 0.001 0.001 -0.001 -0.004 

Mouse 6 
Original enrichment 0.416 1.135 1.540 1.065 
Fitted enrichment 0.554 1.288 1.655 1.085 

Variation from group mean -0.010 -0.010 -0.007 -0.002 

Mouse 7 
Original enrichment 0.434 1.431 1.710 0.973 
Fitted enrichment 0.565 1.298 1.663 1.086 

Variation from group mean 0.000 0.000 0.000 -0.001 

Mouse 8 
Original enrichment 0.508 1.411 1.756 1.071 
Fitted enrichment 0.567 1.301 1.665 1.088 

Variation from group mean 0.003 0.003 0.002 0.001 

Mouse 9 
Original enrichment 0.392 1.213 1.829 1.183 
Fitted enrichment 0.561 1.295 1.662 1.089 

Variation from group mean -0.004 -0.003 -0.001 0.002 

Mouse 10 
Original enrichment 0.542 1.192 1.636 1.103 
Fitted enrichment 0.561 1.295 1.660 1.087 

Variation from group mean -0.004 -0.003 -0.003 0.000 

Mouse 11 
Original enrichment 0.617 1.974 1.783 1.372 
Fitted enrichment 0.586 1.318 1.680 1.095 

Variation from group mean 0.021 0.020 0.017 0.008 

Mouse 12 
Original enrichment 0.615 1.184 1.838 0.963 
Fitted enrichment 0.566 1.299 1.664 1.086 

Variation from group mean 0.001 0.001 0.001 -0.001 

Mouse 13 
Original enrichment 0.781 1.129 1.306 1.233 
Fitted enrichment 0.560 1.294 1.659 1.086 

Variation from group mean -0.004 -0.004 -0.003 -0.001 

Mouse 14 
Original enrichment 0.607 1.521 1.902 0.853 
Fitted enrichment 0.575 1.308 1.669 1.086 

Variation from group mean 0.010 0.010 0.006 -0.001 

Mouse 15 
Original enrichment 0.607 1.488 0.986 1.360 
Fitted enrichment 0.559 1.293 1.659 1.087 

Variation from group mean -0.005 -0.005 -0.004 0.000 
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in combined group are close to those analysed as an independent group, although at 10 

hour the values are higher. However, for Mouse 6 to 10 of 113 days group, the fitted 

values in combined group analysis are greater than individual group analysis at 5, 10 and 

48 hours, and smaller at 24 hour. On the contrary, for individual Mouse 11 to 15 of 84 

days group, the values in combined group analysis are lower at 5, 10, 48 hour, and higher 

at 24 hour. The analysis of 84 days group mice (Figure 17) suggests the outlier with a high 

value at 10 hour lifts up the fitted values at 5 and 10 hour, and the outlier with a small 

value at 24 hour pull down the fitted values at these time points. The combined group 

analysis has reduced the effect of these outliers, and the opposite way of handling 113 

and 84 days mice indicates the SME takes all the individual subjects as a whole group for 

modelling, which neutralises the variations among individual subjects.  

4.2.1.1.4.2 Investigation of recombined time course data of control group   

As stated before, the time series data for each mouse subject in this study is actually from 

different mice rather than repeated samples from a single mouse. In order to check if the 

combination of time points for each mouse subject affects the statistical analysis results, 

the time point data is recombined to form new time series data of mice in each age group, 

and the age groups are put together as a new control group for analysis. Two versions of 

recombination of mice data were constructed for comparisons with the original 

combination in the last section. The two plots are shown in Figure 19 and Figure 20. 
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Figure 19: Modelling of D9DPPC enrichment of the first recombination of control group. 

 

 

Figure 20: Modelling of D9DPPC enrichment of the second recombination of control 
group. 

 

Figure 19 shows that the modelling of the first recombination data of control mice is very 

close to the original previously analysed. However, Figure 20 shows the individual curves 

of the second recombination version are more scattered, although the group mean curve 

is still similar to the other versions. The fitted group means of the two recombination 

versions of time series data are both similar to the original combination. Table 13 lists the 

fitted group mean values at the four observation time points for the three versions of 

combinations, and the difference is subtle. This indicates that the way of combination of 
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time series data has slightly affected the variation among individual models but not the 

underlying group incorporation pattern.  

 
Version of combination  5 hour 10 hour 24 hour 48 hour 
Original combination 0.564378638 1.298180555 1.662924 1.087009 
First recombination  0.566041783 1.296100238 1.663433 1.087032 
Second recombination  0.565236142 1.297654328 1.663010 1.086973 

 
Table 13: The group mean values of D9DPPC enrichment in BALF fitted for three 
combination versions of time course data of 169 days control mice. 
 
 
 
4.2.1.2 Model fitting for KO mice group 

The KO mice group consists of longitudinal enrichment data of five mice. Table 14 lists the 

PC enrichment approximation results of KO mice at four observation time points. The 

enrichment levels of KO mice are very low, and the fitted mean values of the whole group 

are 0.018%, 0.067%, 0.130% and 0.186% at 5, 10, 24 and 48 hour, respectively. The 

variations of individual fitted values are also small from the group means, ranging from -

0.013% to 0.007% at 5 hour, -0.016% to 0.035% at 10 hour, -0.026% to 0.018% at 24 hour, 

and -0.044% to 0.025% at 48 hour. The differences between fitted values and 

observations are generally small as well. D9DPPC incorporation patterns are very close 

among the individual mouse in this group, and the consistency is an ideal group 

characteristic for biomarker discovery analysis. As mentioned before, KO5 mouse has an 

undetectable level of labelled PC species at 5 hour, which has been excluded from the 

analysis, but the SME method has made an estimation of the value of 0.005% without the 

observation, showing its ability in dealing with missing values. 
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Subjects 5 hour 10 hour 24 hour 48 hour 

Fitted mean enrichment of the group 0.018 0.067 0.130 0.186 

KO1 
Original enrichment 0.021 0.056 0.104 0.212 
Fitted enrichment 0.021 0.056 0.104 0.212 

Variation from group mean 0.003 -0.011 -0.026 0.026 

KO2 
Original enrichment 0.026 0.054 0.137 0.200 
Fitted enrichment 0.026 0.054 0.137 0.200 

Variation from group mean 0.008 -0.012 0.006 0.014 

KO3 
Original enrichment 0.019 0.051 0.129 0.187 
Fitted enrichment 0.019 0.051 0.129 0.187 

Variation from group mean 0.001 -0.016 -0.002 0.001 

KO4 
Original enrichment 0.018 0.075 0.133 0.185 
Fitted enrichment 0.018 0.075 0.133 0.185 

Variation from group mean 0.000 0.008 0.002 -0.001 

KO5 
Original enrichment 

 
0.102 0.149 0.142 

Fitted enrichment 0.005 0.102 0.149 0.142 

Variation from group mean -0.013 0.035 0.018 -0.044 

 
Table 14: Fitted enrichment values (%) of D9DPPC in BALF of KO mice at four time points. 

 

The model plot (Figure 21) shows that the enrichment of D9DPPC in KO mice group 

generally increases along the time course. In previous discussion for control mice, the 

assumption was made as the mice being in a steady state with stable surfactant turnover. 

However, for the KO mice, it is not appropriate to make such assumption, as these mice 

models were PAP positive, with impaired macrophage degradation. With PAP the amount 

of entering surfactant species outweighs that of the outgoing, which results in the 

accumulation of the PC species as well as their labelled forms in the pool.  

It is also noted that the curve for KO4 mouse, which has higher enrichment values at 10 

and 24 hour and slightly lower value at 48 hour, exhibits a different temporal trend 

comparing to others. However, it does not affect the overall increasing pattern of the 

whole group. Besides, as described before, the time course data for each mouse subject is 

actually from different mice, so it is possible that some of the observations are from the 
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mice that have general higher incorporations and some are from the mice with low 

incorporations, and the combination can make fluctuating time trends.  

 

Figure 21: Time course enrichment model of D9DPPC in BALF of KO mice group.  

 

4.2.1.3 Comparisons between control and KO groups  

The modelling of time course D9DPPC enrichment for control and KO groups has provided 

a wellspring of information regarding the species turnover. The curves do not only exhibit 

the activities of D9DPPC in DPPC pool during the time period, but also contain the 

information of activities of their precursors before turning up in the pool. The time of 

appearance, enrichment level and the rate of change reflect the metabolic kinetics of 

DPPC species indirectly, such as its synthesis, secretion, degradation and pool size. 

Moreover, the experimental information are also implied in the curve, e.g. the bolus 

infusion experiment has an enrichment curve with decreasing part after certain time 

point. All these pieces of information can be integrally manifested in the time course 

model, although they are not explicitly calculable as variables. Nevertheless, the temporal 

patterns are comparable between subjects for metabolic insights, especially when certain 
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conditions are identical to the subjects. In this study, general experimental procedures 

were applied to all of the mice and mice in the same group are with identical biological 

conditions, which allows the comparisons focus only on the different PC label 

incorporation between groups without being interfered by other factors. 

The following comparison analysis of time course enrichment of D9DPPC is performed 

between every two age groups of control mice, as well as control with KO group, to get a 

general idea about how much difference there is between control mice and between 

control and KO groups. Table 15 shows the Ft statistics calculated for comparing the time 

course D9DPPC enrichment between control groups as well as control group with KO 

group. 

 

          (A): Ft statistics for control age groups. 
Within Control groups G169  vs G113  G169 vs G84  G113  vs G84  

Ft 1.340691 5.808352 15.03815 

L 0.279276 1.174293 0.9763674 

se 0.2083076 0.2021732 0.06492603 

 
          (B): Ft statistics for control and KO groups. 

Control with KO  G169 vs KO G113 vs KO G84 vs KO All control vs KO 
Ft 41.87362 111.4986 142.3241 162.8645 

L 8.657869 8.702522 8.50837 8.621543 

se 0.2067619 0.07805052 0.05978164 0.05293691 

 
Table 15: Ft statistics calculated for comparing every two age groups of control mice (A) 
and control groups vs KO group (B). L denotes the distance between the two group mean 
curves over the time period, and se is the functional standard error. 

 

As shown in Table 15 (A), the calculated Fts are 1.34 for the D9DPPC temporal enrichment 

of 169 days vs 113 days group mice, 5.81 for 169 vs 84, and 15.04 for 113 vs 84, 

respectively. In the table, along with the Ft are the two statistics denoted as L and se. Ft is 

calculated as the ratio of L over se. The numerator L is the distance between the two 
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group means. It is worth to stress here that the difference is not calculated from 

independent time point enrichment, but from the curves over the entire period. The 

denominator se is the term of functional standard error. The ratio of L over se, namely Ft, 

represents the scaled distance, which not only considers the difference between group 

means over time, but also take into account how spread out the data is. So the bigger the 

distance L between two groups is, the bigger the Ft will be. But the more scattered the 

data is, meaning big se, the smaller the Ft will be. This is reasonable because when the 

individuals in a group scatter far away from the group mean, the fitted group mean is less 

effective in representing the group and explaining variations. Therefore, the individual 

variations are taken into account by using se statistics. This is well demonstrated from the 

Ft values computed between the control groups. The Ft for 169 vs 113 group is very small 

with the value of 1.34, due to the small L of 0.279, indicating small difference between 

the two groups. Although the 169 vs 84 has a similar se with 169 vs 113, it has a much 

bigger L, resulting in a higher Ft of 5.81. While for the comparison between 113 vs 84, 

although the L is similar with that of 169 vs 84, the se is much smaller with the value of 

0.0649, making the Ft much higher at 15.04, suggesting a greater scaled difference than 

other group pairs. 

The Ft values between control groups are generally small, whereas the Ft statistics 

calculated for control group vs KO group are considerably bigger. Table 15(B) shows that 

the Ls of control vs KO group pairs are all over 8, much higher than those of control 

groups which are around 1. The se values are comparatively low, leading to much higher 

Ft values. The much higher Ft values of control vs KO comparing to those of control vs 

control suggest that there is significant difference in D9DPPC turnover between control 

and KO mice.   
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The Ft of combined control vs KO is 162.86, which is highly significant comparing with 

those of the individual age control groups vs KO. This can be explained by checking the L 

and se. Although the calculated L between combined control and KO groups is 8.62, not 

much different from the Ls between individual age groups vs KO group, the se with the 

value 0.0529 is smaller than the others, which results in a bigger Ft ratio. This suggests 

the combination of all age groups not only keeps the similar distance with individual age 

groups to the KO group, but also reduces the variations of models of individual mice, 

which makes a good representation of control mice population and gives better results 

when comparing with KO mice model. 

 

Figure 22: Comparison between time model of D9DPPC in BALF between combined 
control group and KO group 

 

In Figure 22 the D9DPPC incorporation model of combined control group and KO group 

are plotted together for comparison. The control group curve has a trend of increasing at 

the beginning and decreasing after getting the highest level along the time axis. In 

contrast, the KO group has a trend of increasing slowly along the time with no sign of 

decreasing within the time window. The value ranges of the two groups are very different. 
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The lowest enrichment level of control group is shown around 5 hour with the fitted 

group mean value is 0.564%. While for the KO group, the highest enrichment values 

appears around 48 hour with the group mean of 0.18%. The enrichment level in control 

group, including group mean, individual mean and real observations, are all substantially 

higher than the highest point in KO group. The distinctive time trend and value ranges 

show the control and KO mice are significantly different.  

As discussed before, a temporal enrichment model does not explicitly deliver any specific 

parameters regarding the metabolic process of labelled or unlabelled species, but rather 

it manifests the information integrally. Therefore, even though it is not possible to 

quantify the factors that affect the timing of appearance in the pool, the enrichment level, 

or the curve shapes, temporal models themselves are informative, and the difference 

between them is meaningful and quantifiable for group comparison.  

It is worth to mention that, although Ft is a t-style statistic for assessing the difference 

between groups, there is no established distribution for the statistic under the null 

hypothesis of no difference between the two mean curves. Thus, it is not possible to 

make a standard statistical test to evaluate the significance of difference identified by the 

variables directly. However, by checking the Ft values and observing the graph based on 

the understanding of the mice model, it is possible to get a general idea about how far 

the two groups are from each other and how significant it is.  

4.2.1.4 Combining age groups as control group for the biomarker discovery analysis 

In the last section, both individual age groups and combined group of control mice have 

been compared with KO group to assess the capability of D9DPPC time course 

incorporation in distinguishing control and KO mice. However, there are some downsides 

of using individual age groups for the analysis, which suggests that it may be better to 
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group them together as a whole group to be compared with KO group. The sample size is 

very small in each group, with data for only 5 subjects, some of which are even excluded 

due to measuring errors. It is hard for an individual group with such few subjects to cover 

the underlying population. Besides, it is found that some extreme outliers exist in the 

already scarce dataset and heavily influence the modelling of the time series data, 

however, removing the outliers would result in even less observations. Figure 23 shows 

the fitted temporal enrichment models of species D9PC16:0a/16:1 for the three age 

groups. It is shown that under the effect of an extreme outlier at 5 hour, the mean value 

of 169 days group mice has been lifted to be around 1.3%, which could have been well 

under 1.0% and had a curve shape close to the other two groups. Note that there are only 

4 observations at this time point for 169 mice, due to the exclusion of one data point of 

measuring error, which results in the outlier asserting greater impact to the overall group 

mean value, and removing the outlier would worsen the data insufficiency.  

Another issue with the mice model data is that the time series are actually a random 

combination of different mice at different time points rather than repeated sampling 

from a single subject over a time period. The individual curve obtained by putting 

together the time point data for a made-up mouse can be different from a real mouse 

from the underlying population, which can affect the estimation of the mean curve of the 

whole population, especially when the sample size is small.  
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Figure 23:  Time course enrichment model of species D9PC16:0a/16:1 for the three age 
groups of control mice. The lines in red, blue, and green are the enrichment curves of 169, 
113 and 84 days mice groups. The extreme outlier of a mouse in 169 day age group at five 
hour time point, with the value of 3%, hugely affects the mean value of the whole group. 

 

In order to tackle these issues, it is appropriate and more sensible to combine all the 

three age groups as one control group for the comparison with KO group, given that the 

three groups resemble each other quite well (Figure 24). The benefit of combining has 

already been demonstrated in the last section when comparing with KO group, which has 

generated better results than using individual age groups. Besides, the rare extreme 

outlier should be removed, as they may significantly twist the shape of the underlying 

group mean curve. The impact can be even worse when inappropriately combining the 

time point observations from significantly different mice, which could result in great 

fluctuations in the fitted curves for made-up mice. Therefore, in the following group 

comparisons for biomarker discoveries, the combined control group will be used and 

extreme outliers will be removed. 
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Figure 24: Integrated graph of D9DPPC time course enrichment modelled for three 
individual age control groups and KO group. The curves for the three age groups of 169 
days, 113 days and 84 days, highlighted in red, blue and green respectively, have similar 
time trend and mean curve values. 84 days group has wider spread of values and outliers, 
which makes the whole curve shape lean forward slightly comparing to the other two 
groups. Generally, the time series models of the three control groups are very close to 
each other, and all of them are far above the KO group highlighted in purple, suggesting 
the substantial difference between control and KO groups. 

 

4.3 Characterisation of time course methylD9 -PC enrichment in BALF of 

control vs KO groups and biomarker analysis 

Based on the methodology established through analysing label incorporation of the single 

species DPPC, the time course enrichment of sixteen labelled PC species in BALF were 

modelled and analysed for both control and KO mice groups in this section. Comparisons 

were carried out between the two groups for multivariate time course biomarker analysis.  

4.3.1 Time course enrichment of labelled PC species  

The SME method has worked effectively in modelling the time course enrichment of 

D9DPPC for control and KO groups, as well as comparing groups to investigate if and how 

well the DPPC label incorporation can distinguish between different groups. In this 

section the temporal enrichment of sixteen methylD9 labelled PC species in BALF are 
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modelled and compared between combined control and KO groups, for understanding 

the species metabolism as well as looking for potential biomarkers.  

 

m/z Species  Group 
Enrichment (%) 

5 hour 10 hour 24 hour 48 hour 

715 D9PC16:0/14:0 
Control 0.466 1.104 1.512 1.020 

KO 0.018 0.051 0.152 0.213 

727 D9PC16:0a/16:1 
Control 0.505 1.227 1.409 1.102 

KO 0.036 0.057 0.116 0.216 

729 D9PC16:0a/16:0 
Control 0.563 1.188 1.521 1.016 

KO 0.025 0.044 0.143 0.167 

741 D9PC16:0/16:1 
Control 0.643 1.436 1.724 1.041 

KO 0.029 0.086 0.186 0.248 

743 D9PC16:0/16:0 
Control 0.564 1.298 1.663 1.087 

KO 0.018 0.067 0.130 0.186 

767 D9PC16:0/18:2 
Control 1.042 1.686 1.716 1.051 

KO 0.032 0.092 0.162 0.228 

769 D9PC16:0/18:1 
Control 1.016 1.813 1.898 1.107 

KO 0.056 0.113 0.184 0.233 

771 D9PC16:0/18:0 
Control 0.074 0.252 1.169 0.751 

KO 0.005 0.031 0.098 0.137 

791 D9PC16:0/20:4 
Control 0.911 1.560 1.773 0.981 

KO 0.043 0.136 0.230 0.297 

793 D9PC18:1/18:2 
Control 0.756 1.273 1.556 0.964 

KO 0.048 0.100 0.248 0.169 

795 D9PC18:0/18:2 
Control 0.409 0.599 1.129 0.841 

KO 0.058 0.073 0.110 0.145 

797 D9PC18:0/18:1 
Control 0.501 0.680 1.081 1.203 

KO 0.091 0.075 0.170 0.167 

815 D9PC16:0/22:6 
Control 1.003 1.435 1.857 0.998 

KO 0.047 0.112 0.199 0.231 

817 D9PC18:1/20:4 
Control 0.878 1.308 1.981 1.042 

KO 0.112 0.165 0.176 0.223 

819 D9PC18:0/20:4 
Control 0.439 0.582 0.942 0.894 

KO 0.044 0.050 0.078 0.172 

843 D9PC18:0/22:6 
Control 0.365 0.522 1.080 0.978 

KO 0.015 0.043 0.105 0.117 

 
Table 16: Fitted group mean values of time course enrichment of sixteen methylD9 
labelled PC species in BALF samples of control and KO mice groups at four sampling time 
points. The species are classified into three categories in terms of temporal enrichment 
levels of control group based on the result of hierarchical clustering analysis. The species 
with comparatively higher time course enrichment are in the high category highlighted in 
pink, and the species with comparatively lower time course enrichment values are in low 
category highlighted in blue, with the rest of species in the middle category. 



Chapter 4 

99 

The modelling results are listed in Table 16, which gives the fitted values of group means 

of sixteen labelled PC species at four sampling time points, for both control and KO 

groups. The species in control group are classified into three categories based on their 

time course enrichment level using hierarchical clustering analysis, and the three groups 

can be generally recognised as high, middle and low label incorporation groups. The 

clustering result is shown in Figure 25, and the species in the three categories are 

highlighted Table 16. 

 

 
 
Figure 25:  Dendrogram of hierarchical clustering analysis for time course enrichment of 
sixteen methylD9 labelled PC species in BALF samples of control mice. Species is denoted 
as “D9PC” with their m/z value in the dendrogram.  
 
 

The species that have similar level of time course enrichment with D9PC16:0/16:0 

(D9DPPC) are in the middle category, including the characteristic surfactant PC species 
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D9PC16:0/16:0, D9PC16:0/14:0, D9PC16:0a/16:1, D9PC16:0a/16:0, D9PC16:0/16:1, and 

D9PC18:1/18:2. In the high category, most of the species with higher enrichment are with 

a fatty acyl chain of 16:0 and another unsaturated longer chain, including D9PC 16:0/18:2, 

D9PC 16:0/18:1, D9PC 16:0/20:4 and D9PC 16:0/22:6, with one exemption of D9PC 

18:1/20:4 that does not have a 16:0 chain.  Species in the low category include 

D9PC16:0/18:0, D9PC18:0/18:1, D9PC18:0/18:2, D9PC18:0/20:4, and D9PC18:0/22:6, all 

of which are with a saturated 18:0 fatty acyl chain. Moreover, D9PC16:0/18:0 is the only 

species with a 16:0 acyl that falls in this category. As 16:0 is the component of major 

surfactant PC with high synthesis, the low level of its combination with 18:0 into 

D9PC16:0/18:0 is a strong evidence that the species with 18:0 have lower incorporation 

than other species. 

As discussed before, the control mice are assumed to be in a steady biological state. In 

steady state, the fractional rate of appearance of species is directly proportional with the 

initial change rate of labelled PC species enrichment upon arrival at the pool (at time 

zero), and inversely proportional with the initial enrichment of labelled species in the 

source pool. It is known that surfactant PC species in BALF is synthesised and remodelled 

in AT II cells (Chen et al., 2006), which are wrapped in lamella bodies and secreted into 

the BALF through exocytosis. In the steady state where secretion rate is constant, it is 

reasonable to assume all surfactant PC species at alveolar surface turn up in the pool at 

the same time and have the same fractional appearance/disappearance rate.  

                              𝐹𝐹𝐴𝐴𝐹𝐹 =  𝑍𝑍𝐵𝐵
′ (0)

𝑍𝑍𝐴𝐴(0)
                                                         (14) 

In equation (14) 𝐹𝐹𝐴𝐴𝐹𝐹 is the fractional appearance rate of a species secreted from pool A 

into pool B.  𝑍𝑍𝐵𝐵′ (0) is the initial change of enrichment of the labelled form of the species 
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appeared in pool B at time 0, and 𝑍𝑍𝐴𝐴(0) is the enrichment of the labelled species in pool 

A before secreted into pool B.   

Although we do not have the enrichment values of labelled PC species in the pools at 

time zero to calculate the parameters, based on the assumption of same turning up time 

in the surfactant pool of all PC species, a higher enrichment level of a species at very early 

time point indicates a higher initial change rate of incorporation, hence the greater 𝑍𝑍𝐵𝐵′ (0) 

the species has. Under the assumption of same fractional appearance rate, the bigger 

𝑍𝑍𝐵𝐵′ (0) is, the higher 𝑍𝑍𝐴𝐴(0) will be. Therefore, the species in BALF samples with high early 

time enrichment should be down to their initial high enrichment level in the source pools 

in the lung cells.  

The analysis above categorises the species in BALF into three categories. The species in 

the high category with higher start of enrichment level should also have higher 

enrichment level in their source pool in AT II cells than those in the middle category. 

While within the category the species having similar early time enrichment level may 

probably have similar source pool enrichment as well. In particular, the characteristic lung 

surfactant species PC16:0/16:0, PC16:0/14:1 and PC16:0/16:1 in the middle category have 

a similar time course enrichment level at early time as well as during the whole time 

period, therefore, they may have similar 𝑍𝑍𝐴𝐴(0) in the source pool before secretion. As to 

the lower category species with 18:0 acyl, the low early time point enrichment indicates 

low initial enrichment from the source pool.   

From the modelled time course enrichment of KO group, it was found that the PC species 

in KO group have the similarities in that, species in the higher/lower enrichment level 

category of control group can generally fall in the higher/lower category in KO group. This 
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may imply that despite the impaired degradation of surfactant PC, their secretion from 

lung cells into the surfactant pool may not be affected much. 

4.3.2 Temporal trend of labelled PC species 

The time course enrichment of each labelled PC species in control groups all follows an 

increasing - decreasing trend. The curve shapes of their models can be grouped into two 

categories. Figure 26 displays the enrichment curves of some species that represent the 

two main types of curve shapes among the sixteen analysed species. The curves of 

species without 18:0 have larger gradient at the increasing part and smaller slope at the 

decreasing part. The curves rise up to reach their maximum level at around 18 hours after 

labelling and then gradually drop down. The species with 18:0 acyl have a very different 

time trend from other species. They all start out at lower enrichment but keep increasing 

slowly to get the highest level at around 30 hour post labelling, much later than other 

species, and then go down. Another finding is that, the enrichment of all the species get 

close to 1% at 48 hour time point post labelling, no matter if they start high or low, 

increase or decrease. However, as the observations do not cover the full decreasing part, 

it is not possible to further examine the rate of disappearance of the species. The 

temporal enrichment of most of the labelled PC species of KO group has an increasing 

trend during the 48 hour time window, except D9DPPC16:0a/16:1, D9DPPC16:0a/16:0, 

D9DPPC18:1/18:2 and D9DPPC18:0/18:1, which decreases a bit at the end of the time 

period.  Overall, the curves of control and KO group are distanced far away from each 

other, making significant gaps for all the PC species.  
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It has been discussed in the previous sections that the swing of time course enrichment 

curves of species is directly related to the label enrichment in the source pool before 

secretion, and the enrichment level can imply species turnover characteristics. The curve 

shape can also provide valuable information. Benefiting from being able to analyse 

multiple species, it is possible to get extra information by comparing the curve shapes of 

these species. As shown in the plots in Figure 26, the PC species without 18:0 enrichment 

771 D9PC16:0/18:0 797 D9PC18:0/18:1 

741 D9PC16:0/16:1 791 D9PC16:0/20:4 

Figure 26: Time course enrichment models of four species in BALF of control and KO mice 
groups. There are two types of curve shapes for control mice (in blue). Species 
D9PC16:0/16:1 and D9PC16:0/20:4 have the typical curve shape of the species without 18:0 
acyl chain, which increases fast at the beginning, and decrease slowly after reaching the 
highest enrichment level at around 18 hour. Species D9PC16:0/18:0 and D9PC18:0/22:6 
represent the species with 18:0 acyl chain and have a curve shape of slower increase to the 
highest enrichment level at around 30 hour. The models of KO mice (in red) generally show 
an increasing trend with very small gradient. 
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have a similar temporal pattern, indicating the similar time patterns of their enrichment 

in the source pool, which means the flood of these labelled species change in the same 

way in the AT II cells before secretion into surfactant pool. Similarly, all species with an 

18:0 fatty acyl exhibit a similar pattern, suggesting similar flood change of labelled 

molecules in lung cells. However, the pattern of these species is very different from that 

of the species without 18:0, which may suggest a different metabolism of the two group 

of species. 

4.3.3 Group comparison and biomarker analysis 

The control and KO groups are distinguished in their PC label incorporation, in terms of 

enrichment values and model curve shapes of species. Yet for multivariate biomarker 

discovery analysis, it is needed to quantify and compare the group difference recognised 

by each species to identify the most significant species that can distinguish the two 

groups. This is done by calculating and comparing the Ft statistics. The Ft, L, and se for the 

sixteen species are listed in Table 17, and the species are sorted in descending order of Ft. 

The result shows that all the species with high L values above 9, which features larger 

distance between the two groups, have higher time course enrichment and falling in the 

high category in model fitting. These species include D9PC16:0/18:2, D9PC16:0/18:1, 

D9PC16:0/22:6 and D9PC18:1/20:4. Other species with high L values over 8 include 

D9PC16:0/16:0, D9PC16:0/16:1 and D9PC16:0/24:0. The species with 18:0 fatty acyl chain 

have the lowest L values about 5. This is due to the low incorporation of these species 

especially between the starting time point and the maximum time point, resulting in the 

bigger gaps between the enrichment of the control and KO comparing to those of the 

species without 18:0 acyl chain.  
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m/z Species L se Ft 
743 D9PC16:0/16:0 8.621543 0.0529369 162.864500 

727 D9PC16:0a/16:1 7.572277 0.0469461 161.297200 
715 D9PC16:0/14:0 7.572791 0.0474698 159.528600 
741 D9PC16:0/16:1 8.660240 0.0627928 137.917767 

769 D9PC16:0/18:1 9.936843 0.0723025 137.434293 
767 D9PC16:0/18:2 9.137802 0.0967007 94.495746 
771 D9PC16:0/18:0 5.746057 0.0647328 88.765731 

815 D9PC16:0/22:6 9.148791 0.1154591 79.238371 
729 D9PC16:0a/16:0 7.844602 0.1103914 71.061713 
791 D9PC16:0/20:4 8.693447 0.1558689 55.774096 

819 D9PC18:0/20:4 5.079186 0.1082473 46.922057 
795 D9PC18:0/18:2 5.685439 0.1466385 38.771790 
843 D9PC18:0/22:6 5.699652 0.1503399 37.911780 

817 D9PC18:1/20:4 9.630963 0.4165925 23.118426 
793 D9PC18:1/18:2 7.564625 0.3800108 19.906342 
797 D9PC18:0/18:1 5.814019 0.3003244 19.359130 

 
Table 17: Ft statistics for sixteen methylD9 labelled species in BALF of control and KO mice. 
The species are sorted in descending order of their Ft values. D9PC16:0/16:0 has the 
highest Ft value and is the most significant species in distinguishing control and KO groups. 

 

The D9PC16:0/16:0, D9PC16:0a/16:0, D9PC16:0/14:0 and D9PC16:0/16:1 are not the 

species with the highest L values, however, they have the highest Ft values due to small 

low se values. Species D9PC16:0/18:1 has the highest L, but its Ft is ranked behind the 

species mentioned above due to a moderate se value. Species D9PC18:1/20:4, the only 

one in the high category without 16:0 fatty acyl, is ranked very low due to a bigger se. 

Another interesting species D9PC16:0/18:0, with the lowest enrichment over the time 

period, has a small se and a comparatively high Ft. The results demonstrate that Ft 

statistic not only reflects the group distance L, but also takes into account the how 

scattered, represented by se, the individuals are from their group mean curve.  

The analysis in previous sections compared time course incorporation of D9DPPC of 

individual age groups of control mice separately, and it also compared the control with 
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KO mice. The comparisons between the three age groups get small Ft ranging from 5 to 

15, due to the small differences between the groups, whereas the comparison between 

control and KO mice obtained considerably big Ft value. The comparisons between KO 

mice with both 113 days group and 84 days group have generated high Ft values over 

100, and even the smallest Ft for 169 days group vs KO group is over 40, due to the larger 

variations of individual mice in 169 group. The range of Ft values obtained from these 

comparisons make a good reference for other group comparisons. By referring to these 

figures, the high Ft values for the sixteen BALF species listed in Table 16 suggest the 

significance of most labelled PC species in identifying the difference between control and 

KO groups. 

Sorting the species by descending order of Ft means sorting them according to their 

significance in distinguishing the two groups. Hence, the higher a species is ranked, the 

better it can identify the difference between the two groups. It can be seen from the list 

that the species with a 16:0 or 16:0a acyl are all ranked higher than those without them, 

which suggests higher significance of these species in differentiating control and KO 

groups. Therefore, in BALF sample, these species are more likely to be taken as biomarker 

candidates for discriminating the two conditions.  

The analysis shows that control mice are significantly different from KO mice, in terms of 

time pattern of enrichment as well as the value range of analysed labelled PC species in 

BALF. This result is consistent with the current knowledge about the pulmonary 

surfactant metabolism. The macrophages are known to play an important role in 

surfactant catabolism, which degrade around 20% surfactant from the alveoli. GM-CSF 

receptor beta chain knock out mice have impaired macrophages degradation of 

pulmonary surfactant, leading to its abnormal accumulation and the development of PAP. 
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The accumulation of both labelled and unlabelled PC leads to the largely increased value 

of the denominator term in the enrichment function. Despite the increased labelled 

species in the numerator, the sum of these labelled species and huge proportion of 

unlabelled species in the denominator terms makes the overall enrichment much smaller 

than that of control mice having a stable pool size with normal catabolism.  

It can be hard to elucidate what affects the temporal trend of each individual PC species 

of the mice in each group, which may involve various factors. These could be the physical 

status of the mice, age factor, strain of the mice, label infusion approach, sample 

processing procedures and many other. These factors can have an impact either directly 

or indirectly, identifiable or unidentifiable with current knowledge. Although details of 

these factors are yet to be found out, luckily, their influences manifest integrally in the 

species time course enrichment. The SME method has successfully characterized the 

temporal enrichment patterns and facilitated the biomarker discovery analysis by 

quantifying and comparing the group differences identified by the individual species, 

which gives reliable results that are consist with the current knowledge. Therefore, it is 

viable to use the surfactant methylD9-PC time course enrichment as potential biomarkers 

for identifying PAP mice from healthy mice. 

4.4 Characterisation of time course methylD9 -PC enrichment in lung 

tissue of control vs KO groups and biomarker analysis  

4.4.1 Time course enrichment of labelled PC species 

To further investigate surfactant PC species metabolism across different compartments in 

the respiratory system, the temporal enrichment of labelled PC species in lung tissue  
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m/z Species Group 
Enrichment (%) 

5 hour 10 hour 24 hour 48 hour 

715 D9PC 16:0/14:0 
Control 1.571 1.318 1.244 0.942 

KO 0.253 0.243 0.278 0.278 

727 D9PC16:0a/16:1 
Control 0.575 0.531 0.633 0.698 

KO 0.247 0.244 0.297 0.348 

729 D9PC16:0a/16:0 
Control 0.982 0.968 0.933 0.892 

KO 0.217 0.218 0.225 0.276 

741 D9PC16:0/16:1 
Control 2.355 1.869 1.493 0.968 

KO 0.362 0.357 0.344 0.330 

743 D9PC16:0/16:0 
Control 1.636 1.373 1.222 1.144 

KO 0.306 0.295 0.269 0.262 

767 D9PC16:0/18:2 
Control 2.261 1.749 1.332 0.894 

KO 0.775 0.703 0.531 0.373 

769 D9PC16:0/18:1 
Control 1.997 1.619 1.352 0.994 

KO 0.911 0.818 0.600 0.458 

771 D9PC16:0/18:0 
Control 0.721 0.765 0.919 0.815 

KO 0.252 0.257 0.271 0.297 

791 D9PC16:0/20:4 
Control 1.837 1.524 1.332 0.909 

KO 1.292 1.104 0.681 0.547 

793 D9PC18:1/18:2 
Control 1.957 1.477 1.304 0.880 

KO 1.440 1.333 1.037 0.557 

795 D9PC18:0/18:2 
Control 1.499 1.437 1.261 0.960 

KO 1.080 1.021 0.854 0.567 

797 D9PC18:0/18:1 
Control 1.187 1.147 1.334 1.100 

KO 1.127 1.089 0.980 0.788 

815 D9PC16:0/22:6 
Control 2.010 1.721 1.206 0.871 

KO 0.937 0.689 0.472 0.383 

817 D9PC18:1/20:4 
Control 2.075 1.616 1.276 0.871 

KO 1.478 1.105 0.754 0.400 

819 D9PC18:0/20:4 
Control 1.386 1.334 1.234 0.901 

KO 1.244 1.150 0.899 0.536 

843 D9PC18:0/22:6 
Control 1.202 1.160 1.041 0.833 

KO 0.705 0.666 0.558 0.372 

 
Table 18: Fitted group mean values of time course enrichment of sixteen methylD9 
labelled PC species in lung tissue samples of control and KO mice groups at four sampling 
time points. The species are classified into three categories in terms of temporal 
enrichment levels of control group based on the result of hierarchical clustering analysis. 
The species with comparatively higher time course enrichment are in the high category 
highlighted in pink, and the species with comparatively lower time course enrichment 
values are in low category highlighted in blue, with the rest of species in the middle 
category. 
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were analysed in addition to those in BALF samples. The same methodology was applied 

to lung tissue samples and the results are shown in Table 18. By applying the hierarchical 

clustering analysis to the control group (Figure 27), the species can be categorized into 

three groups based on their time course enrichment levels. The species in the high 

enrichment level group include D9PC16:0/16:1, D9PC16:0/18:2, D9PC16:0/18:1, 

D9PC16:0/20:4, D9PC18:1/18:2, D9PC16:0/22:6, and D9PC18:1/20:4. D9PC16:0/16:1 has 

the highest time course enrichment. The D9PC16:0a/16:1 and D9PC16:0/18:0 are in the 

low category with extremely low incorporation comparing to other species. The remained 

species are in the middle category. Generally, among all the sixteen species, the 

enrichment levels of those with 18:0 are lower than other species, except 

D9PC16:0a/16:1, which has the lowest enrichment of all. 

 

 
 
Figure 27: Dendrogram of hierarchical clustering analysis for time course enrichment of 
the sixteen deuterium labelled PC species in lung tissue samples of control mice. Species 
is denoted as “D9PC” with their m/z value. 
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Although species of KO group mice are not categorised into groups, the characteristic 

surfactant species and some species, including D9PC16:0/14:0, D9PC16:0a/16:1, 

D9PC16:0a/16:0, D9PC16:0/16:1, D9PC16:0/16:0 and D9PC16:0/18:0, have much lower 

enrichment levels than the other species. In particular, the time course enrichment of 

some unsaturated species with longer fatty acyl chains are very high, which are close to 

those of control group, such as D9PC18:0/20:4. Generally, the PC label enrichment of KO 

group is much higher in lung tissue samples than in BALF samples, and the gaps between 

control and KO group are smaller in lung tissue samples. 

The PC species detected in lung tissue samples can be from several pools, such as 

synthesised surfactant, cell membrane, and blood. Therefore, the label incorporation 

pattern of a PC species observed in the sample actually reflects the collective activities of 

it from multiple pools. This may partly explain the much lower enrichment of 

characteristic surfactant species in KO groups than other species. The surfactant 

accumulation of PAP mice mainly affects the surfactant species pool, and other pools like 

membrane or blood PC are not affected. Consequently, the characteristic surfactant 

species, which only come from the surfactant pool, suffer from the impact of 

accumulation more significantly, but the same effect on the non-characteristic surfactant 

species has been reduced by the normal activities of the same species from other pools, 

as the calculation of enrichment takes all of them into account. Similarly, the multiple 

pools in the lung tissue sample may also be the reason of smaller gap of label enrichment 

between control and KO groups in lung tissue than in BALF samples. This is because PC 

species in BALF are mainly surfactant PC, while in lung tissue samples, additional pools of 

the same PC species with higher enrichment and fractional appearance rate can raise up 

the overall enrichment level.  
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In the analysis of PC species in BALF, fractional appearance rate was discussed to 

characterise the surfactant secretion process, and same fractional appearance rate was 

assumed to investigate the label enrichment of PC before and after secretion. Providing 

the multiple pools of the same species in lung tissue, it is not appropriate to assume the 

same turnover as well as the fractional appearance rate of the integrated PC pools. 

However, if the whole labelling process, from label infusion to the detection of a labelled 

PC species, is to be seen as an entire synthesis process regardless the intermediate 

phases, then all product PC species can be assumed to have the same initial precursors, 

the methylD9 substrate, provided they are synthesised in the same mouse under the same 

conditions. The same label precursor means the label enrichment of precursor pool is the 

same for all. The method of evaluating the fractional appearance rate can also be applied 

to characterise the fractional synthesis rate. Therefore, according to equation (14), if the 

initial enrichment of precursor pool is the same to all species, the initial change of label 

enrichment in product pool should be directly proportional to the fractional appearance 

rate. Using early time point enrichment level to represent the initial change of product 

pool enrichment, then the higher the early time point label enrichment is, the higher the 

fractional appearance rate will be. Consequently, the PC species in the high category in 

control group would probably have higher collective fractional rates of 

appearance/synthesis and the low category would have the lower ones.  

Table 18 shows that the species with 18:0 or 16:0a chain have general lower rate of 

appearance in the pool than other species, indicated by the low enrichment level early 

time point. The low fractional appearance rate of species with 18:0 acyl is consistent with 

the result of the same species in BALF. As the surfactant PC from lung cells are 

subsequently secreted into the surfactant pool in the air space, which is collected as BALF 
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sample, the lower enrichment level in the lung cells may result in the lower enrichment in 

the product pool. Contrarily, the species with 16:0a alkyl, especially D9PC16:0a/16:1 has 

much lower rank of early time enrichment and fractional appearance rate in the lung 

tissue in contrast to its high rank in the BALF, which may indicate different pool sources or 

even different metabolism of the species from others.  

4.4.2 Temporal trend of labelled PC species 

In lung tissue samples, the time course enrichment of the species without 18:0 and 16:0a 

chains have a decreasing trend in both control and KO group, which indicates fast label 

incorporation of these species in the lung cells after label infusion, as there must be an 

increasing part starting from zero enrichment to reach certain enrichment level before 

going down, which may have happened before the first observation. The enrichment 

decreases as the labelled species leaving the lung tissues without enough newly 

synthesised labelled species coming in the pool. This enrichment pattern of labelled PC 

species in lung tissue is different from that in BALF, which slowly increases to the 

maximum and decreases gradually. Combining the two patterns may present a process   

that the newly labelled surfactant PC are firstly synthesised and remodelled in the lung 

cells, and then secreted into the alveolar space with time delay. The continuous supply of 

labelled species from lung cells results in the accumulation in surfactant monolayer where 

the species enrichment increases, and as the labelled species leaves the pool without new 

ones coming in, the enrichment goes down.   

A feature in the time course curves of labelled PC without 18:0 and 16:0a chain is that the 

enrichment decreases rapidly between 5 to around 15 hour (Figure 28). Then the 

decrease slows down and the enrichment level stabilizes for a period of time until around 
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24 hour, followed by another decreasing trend. The stable state period from 15 to 24 

hour should be paid more attention as it should not be the case in a bolus infusion 

experiment if the labelled species only leave the system without coming back. Therefore, 

there may probably be a new flood of labelled PC species coming into the pool during or 

even before this period. It is also possible to see from the figure that the label 

incorporation of characteristic lung surfactant species in KO group are more affected than 

other species, where the curves of characteristic surfactant species in KO group lie far 

away from the control group, but those of non-characteristic species are closer to control 

group. This may be due to the multiple pools combined in lung tissue samples as 

explained before. 

 

 

 

 

 

 

 

 

 

 

 

791  D9PC16:0/20:4 817  D9PC18:1/20:4 

Figure 28: Time course enrichment curves of four methylD9 -PC species in lung tissue 
samples of control (in blue) and KO (in red) mice models. The species have similar 
time trend over the 48 hour period. The label incorporation of characteristic 
surfactant species D9PC16:0/14:0 and D9PC16:0/16:1 in KO group are further away 
from the control group than that of the other two non-characteristic surfactant 
species. 

741  D9PC16:0/14:0 767 D9PC16:0/16:1 
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There are some species with different curve shapes to the others (Figure 29). Species 

PC16:0/18:0 has a low incorporation and the enrichment increases towards 30 hour time 

point, which is consist with that in BALF. Another species with the 18:0 acyl chain, 

PC18:0/18:1 exhibits a different time trend, but it also has a significant increasing part 

towards 30 hour. Within the same experiments, different shapes of time trend of species 

enrichment to other species in the same compartment could be due to that the species 

have different source pools in lung tissue, or that they metabolise differently. 

Interestingly, apart from these two species, others with 18:0 do not have a significant 

difference from the species without it, suggesting that species with 18:0 may not be from 

the same source or metabolise differently. In addition, species with 16:0a have low 

771 D9PC16:0/18:0 797 D9PC18:0/18:1 

727 D9PC16:0a/16:1 729 D9PC16:0a/16:0 

Figure 29: Time course model of D9PC16:0/18:0, D9PC18:0/18:1, D9PC16:0a/16:1 and 
D9PC16:0a/16:0, which have different enrichment patterns from the other species 
shown in Figure 28. 
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incorporation and different time trend from other species. They do not have a decreasing 

trend over the time period, and species PC16:0a/16:1 even has an increasing part from 10 

hour towards 40 hour, which may indicate different metabolism from other species. 

4.4.3 Group comparison and biomarker analysis 

Comparisons of time course enrichment of each labelled species between control and KO 

groups were carried out using SME method. The L, se and Ft values are listed in Table 19, 

and the species are sorted in descending order of their Ft values. The time course 

enrichment of D9PC16:0/16:1 marks the largest distance between the two group means, 

with an L value of 7.670, and is ranked at the second place with a high Ft value of 

71.2798. Some other surfactant characteristic species also have comparatively higher L 

and Ft values, including D9PC16:0/14:0, D9PC16:0a/16:0 and D9PC16:0/16:0.  

 

 

m/z Species L se Ft 
815 D9PC16:0/18:0 3.884709 0.04981282 77.98612 

741 D9PC16:0/16:1 7.670280 0.107608 71.27983 
727 D9PC16:0/14:0 6.182472 0.1151509 53.69019 
743 D9PC16:0a/16:0 4.576028 0.1065365 42.95267 

769 D9PC16:0/16:0 6.430485 0.2182161 29.46843 
795 D9PC18:0/18:1 2.152155 0.09407033 22.87814 
767 D9PC16:0/18:2 5.470157 0.2395183 22.83816 

843 D9PC16:0/22:6 4.999620 0.3224717 15.50406 
771 D9PC16:0/18:1 4.836043 0.3460205 13.97618 
715 D9PC16:0a/16:1 2.193747 0.1783389 12.30100 

797 D9PC18:0/22:6 3.149484 0.2615119 12.04337 
729 D9PC16:0/20:4 3.677153 0.4655047 7.899281 
817 D9PC18:1/20:4 3.372458 0.5335027 6.321352 

819 D9PC18:0/18:2 2.784551 0.4544229 6.127664 
793 D9PC18:0/20:4 2.102729 0.3528222 5.959741 
791 D9PC18:1/18:2 2.033169 0.5399264 3.765641 

 
Table 19: Ft statistics for lung tissue PC specie of control and KO groups.  
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Unexpectedly the species in the first place is D9PC16:0/18:0, which has very low label 

incorporation over the period. Although the difference between the two groups is small, 

with the L value of just 3.8847, the species has an extremely small se value of 0.0498, 

suggesting very small variations among individual mice in the two groups. This is 

illustrated in the plots of the species in Figure 29, where the fitted curves of individual 

mouse are more closely around the group mean especially in the KO group, comparing 

with other species.  

It is obvious that the Ft calculated between control and KO groups in lung tissue are not 

as high as those in BALF, and many of them are under 15, indicating the temporal 

enrichment of these species are less significant in lung tissue samples than in BALF. The 

previous comparison analysis of BALF D9DPPC between age groups of control mice 

generated comparatively small Ft values ranging between 5 and 15, and the Ft values 

calculated for control and KO groups have values from 40 to over 160. Using these ranges 

as standards, the fact that the Ft values calculated for many PC species in lung tissues 

being under 15, suggests the low viability of their temporal enrichment in differentiating 

KO mice from control. The small number of species ranking at the top of the list, with 

higher Ft values over 40, can be considered as potential markers for distinguishing the 

two groups in future studies. 

4.5 Characterisation of time course methylD9 - PC enrichment in BALF of 

control and high dose antibody treated mice groups and biomarker 

analysis 

The last two sections compared time course enrichment of labelled PC species in BALF 

and lung tissue between control and KO groups facilitated by SME method. To further 

assess and validate the methodology, in this section, the time course PC enrichment of a 
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group of 169 days mice, which were treated with high dose antibody drug, were modelled 

and compared with the control group. The study conducted in Southampton has shown 

changes in PC turnover of this group of mice. This analysis will further verify the result, 

and explore possible dynamic biomarkers. Moreover, as the antibody drug has a milder 

effect of accumulation of surfactant PC species than that of PAP disease, the difference 

between control and high dose groups should be theoretically smaller than that between 

control and KO groups analysed in the last section. Therefore, performing SME analysis on 

them is helpful to test if the statistical method is sensitive in identifying different degrees 

of group variation.  

The SME modelling shows that, in this high dose group, the time course enrichment of 

labelled PC in BALF has some similar features with the control group. The temporal trend 

is similar, and the ranking and categorization of the species are similar as well. Species 

with a 16:0 acyl chain and an unsaturated longer acyl chain, including D9PC16:0/18:1, 

D9PC16:0/18:2, D9PC16:0/22:6 and D9PC16:0/20:4 have the highest enrichment in the 

high dose group. Species with 18:0 acyl are still the ones with the lowest enrichment 

levels.  

The plots of time models (Figure 30) show that the label incorporation of most of the 

species follow an increasing – decreasing trend during the 48 hours after label infusion. 

High dose drug treated mice group have generally lower enrichment levels over the time 

comparing with control group. This is consistent with what is expected that the antibody 

treated mice may have impaired degradation of surfactant PC species, which increases 

the surfactant pool, and results in a different temporal enrichment trend comparing with 

the control mice. Nonetheless, the difference between the groups are much smaller than 
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that between control and KO groups, suggesting a smaller impact from the antibody drug 

than the PAP on the surfactant PC turnover of mice. 

 

 

743 D9PC16:0/16:0 767 D9PC16:0/18:2 

771 D9PC16:0/18:0 

715 D9PC16:0/14:0  

741 D9PC16:0/16:1 

769 D9PC16:0/18:1 

727 D9PC16:0a/16:1 

729 D9PC16:0a/16:0 

Figure 30: Time course enrichment curves of methylD9-PC species for both control group 
(in blue) and high dose treated mice group (in red) in BALF.  
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It appears that the highest enrichment levels of many species are reached at later time 

points in high dose than in control mice. Especially for D9PC16:0/14:0, D9PC16:0a/16:1, 

D9PC16:0a/16:0, D9PC16:0/16:1, D9PC16:0/16:2, D9PC16:0/18:2 and D9PC16:0/18:1, the 

group difference at the initial increasing part makes the major contribution to the total 

difference between the two groups over time. As stated above, the species with 18:0 acyl 

in the high dose treated mice have lower label incorporation than other species, which is 

the same with control mice. Species D9PC16:0/18:0 in high dose group has an enrichment 

trend that increases slowly in a linear way, which is contrast to that of control group. 

Moreover, the species has the lowest time course enrichment among all the species 

analysed.  

Ft values are calculated for evaluating the differences between control and high dose 

group recognised by the temporal enrichment of labelled PC. Table 20 lists the sorted 

species on descending order of their Ft values. Again, D9PC16:0/18:0 turns out 

unexpectedly to be the most significant species with the highest Ft, owing to its greater L 

and smaller se values. As mentioned above, D9PC16:0/18:0 has the lowest temporal 

enrichment both in control and high dose mice in BALF sample. The difference is mainly 

owing to the distinguished temporal trend of the two groups.   

The Ft for control vs high dose group are generally much smaller than those calculated for 

control vs KO group. This suggests that the differences of time course label incorporation 

of the methylD9-PC species between control and high dose antibody treated mice are 

much smaller than those between control and KO group, which is consistent with the 

current understanding that the antibody has milder impact on surfactant turnover than 

the PAP disease. This also demonstrates the SME method is effective in quantifying and 

scaling the difference between groups. Apart from D9PC16:0/18:0, the Ft values of the 
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other species are not very high. Nevertheless, it is still worth to choose the species ranked 

higher in the list for further investigation on potential markers. 

       
m/z Species L se Ft 
771 D9PC16:0/18:0 3.53755 0.06748898 52.4167 
729 D9PC16:0a/16:0 2.252287 0.1030562 21.85494 

795 D9PC18:0/18:2 0.8717616 0.0406007 21.47159 
791 D9PC16:0/20:4 2.366708 0.124248 19.04825 
743 D9PC16:0/16:0 3.141018 0.1653191 18.99973 

769 D9PC16:0/18:1 3.375497 0.2612953 12.91833 
843 D9PC18:0/22:6 1.990326 0.1691978 11.76331 
767 D9PC16:0/18:2 2.547251 0.230024 11.07385 

727 D9PC16:0a/16:1 2.175126 0.2106802 10.3243 
819 D9PC18:0/20:4 1.599397 0.1781391 8.978359 
741 D9PC16:0/16:1 2.824162 0.3271821 8.631773 

817 D9PC18:1/20:4 3.141313 0.4067864 7.722268 
815 D9PC16:0/22:6 2.422177 0.3809698 6.357925 
715 D9PC16:0/14:0 2.251787 0.4029425 5.588357 

793 D9PC18:1/18:2 3.594759 0.6737384 5.335541 
797 D9PC18:0/18:1 1.604938 0.5262081 3.050007 

       Table 20: Ft statistics for BALF PC of control and high dose drug treated mice groups.         

 

4.6 Characterisation of time course methylD9 - PC enrichment in lung 

tissue of control and high dose treatment mice groups and 

biomarker analysis 

PC label incorporation in lung tissue samples are analysed for the high dose group mice in 

addition to that in BALF for a deeper insight of surfactant PC turnover. The SME analysis 

suggests the labelled PC time course enrichment of high dose treated mice are very 

similar to the control mice, and the categories of the species are similar too. 

D9PC16:0/16:1, D9PC16:0/18:2 and D9PC16:0/22:6 are the top three species that have 

the highest time course label enrichment level. D9PDC16:0a/16:1, D9PC16:0/18:0, and 

D9PC16:0a/16:1 are the three species with the lowest enrichment in the lung samples 
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817  D9PC18:1/20:4 797 D9PC18:0/18:1 

741 D9PC16:0/16:1 

771 D9PC16:0/18:0 

Figure 31: Time course enrichment curves for methylD9-PC species in lung tissue of 
control (in blue) and high dose antibody drug treated mice (in red). 

727 D9PC16:0a/16:1 743 D9PC16:0/16:0 

767 D9PC16:0/18:2 

791 D9PC16:0/20:4 
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of high dose group. 

The enrichment curves of most species have the similar temporal enrichment patterns 

except a few species with 18:0 and 16:0a acyl. Besides, the species of the high dose group 

are very similar to the control group in terms of the curve shapes and enrichment levels, 

although there are still some exceptions shown in Figure 31. The fitted model of 

D9PC16:0/16:0 of the control mice group has a decreasing trend over the whole period, 

whereas that of the high dose group displays an increasing trend at the beginning and 

decreasing after reaching the maximum at around 27 hour. The curve of species 

D9PC16:0a/16:1 of control group decreases at the early time point and later lifts up to 

reach the highest point after 30 hour, whereas the curve of the high dose group increases 

all the way and reaches the maximum at around 30. This feature also happens to the time 

model of species D9PC18:0/18:1. The reason of these abnormal features are not clear and 

should be further investigated. 

Comparison of the time models between control and high dose group were performed by 

calculating the L, Se and Ft, listed in Table 21. The top three species with high L values 

greater than 1 include D9PC16:0/16:0, D9PC16:0/14:0 and D9PC16:0/16:1. However, they 

are only ranked at the 6th, 2nd, and 4th places due to the comparatively big se values. 

D9PC16:0/24:0 has a small L value, indicating small difference between the two groups, 

but due to the extremely small se, it gets the highest Ft and ranks in the first place. 

However, the plot (Figure 31) has shown that models for this species in both groups are 

very close to each other, therefore the result of highest Ft, which indicates high capability 

in differentiating the two groups does not look straightforward. This should be 
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investigated further as to if the modelling of the species is appropriate, such as if the 

model is over smoothed, which can results in extremely small variance term.  

Overall, the comparison between control and high dose groups has not identified as many 

viable species for discriminating groups as the comparisons between control and KO 

groups, with very small Ft values of most species. Nevertheless, the species with highest 

Ft values, including D9PC16:0/20:4, D9PC16:0/14:0 and D9PC16:0a/16:0 should be 

checked further as potential biomarker candidates. 

 

 
m/z Species L se Ft 
791 D9PC16:0/20:4 0.4347934 0.00645087 67.40078 
715 D9PC16:0/14:0 1.144752 0.02560512 44.70796 
729 D9PC16:0a/16:0 0.7866485 0.02102845 37.40878 

741 D9PC16:0/16:1 1.127695 0.06496118 17.35952 
793 D9PC18:1/18:2 0.5634926 0.03941952 14.29476 
743 D9PC16:0/16:0 1.830349 0.1917868 9.543662 

795 D9PC18:0/18:2 0.3605815 0.03900632 9.244183 
771 D9PC18:0/16:0 0.3388316 0.03861647 8.774277 
843 D9PC18:0/22:6 0.438177 0.05632649 7.779236 

815 D9PC16:0/22:6 0.8427376 0.1279054 6.588759 
819 D9PC18:0/20:4 0.2415565 0.04138286 5.837116 
727 D9PC16:0a/16:1 0.3704806 0.07703749 4.809095 

769 D9PC16:0/18:1 0.4831807 0.1686932 2.864258 
797 D9PC18:0/18:1 0.4918722 0.252976 1.944344 
767 D9PC16:0/18:2 0.4982655 0.2843049 1.752574 

817 D9PC18:1/20:4 0.2012468 0.1480195 1.359596 

Table 21: Ft statistics for lung tissue PC of control and high dose drug treated mice. 

 

4.7 Conclusions 

In this chapter, time course methylD9-PC label enrichment modelling and biomarker 

discovery analysis were carried out for control mice, GMCSF beta receptor knock out mice 
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and high dose antibody drug treated mice. The comparison was performed between 

individual age groups of control mice, between control and KO groups, as well as between 

control and high dose group. Sixteen methylD9 labelled PC species in both BALF and lung 

tissue samples were analysed, and the SME method is used for the time series data 

modelling, group comparison, as well as identification of species that are most significant 

in distinguishing the groups.  

Time course enrichment of D9DPPC in BALF of mice models was analysed in detail to set 

up the methodology for the following analysis. The temporal models of multiple species 

have revealed different incorporation patterns of species with 18:0 both in BALF and lung 

tissue pools. Many of the BALF PC species are significant in distinguishing the control and 

KO groups, and species with 16:0 acyl in BALF are generally more significant than other 

species. PC label incorporation in BALF sample is more capable than that in lung tissue in 

identifying two compared groups as BALF PC species have generally higher Ft values than 

those lung tissue. Temporal enrichment of the species are not as significant in 

distinguishing control and high dose drug treated mice in both BALF and lung tissue, and 

only a few species have the potential to be used as biomarkers. Besides, the difference 

between the PC label incorporation of control group and KO group is greater than that 

between control group and high dose group, suggesting the high dose antibody drug does 

induce some side effects on the healthy mice in terms of surfactant PC turnover, but the 

effect is smaller than that of PAP disease. All these results are consistent with the current 

understanding as well as assumptions of surfactant metabolism. The analysis 

demonstrates it is viable to use time course enrichment of methylD9 labelled surfactant 

PC species, which reflects the PC species metabolism, as potential biological markers for 

identifying mice with PAP diseases from healthy ones.  
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SME method works well in modelling time course multivariate data. It is good at dealing 

with data with small sample size and missing values, which are common problems in 

biological studies. The method is sensitive and effective in identifying group difference as 

well as quantifying and scaling the differences, which is critical for comparisons among 

large numbers of variables for biomarker discovery analysis. An issue with the method is 

that there are a couple of models that might be possibly over smoothed, which needs to 

be investigated further as to if the results are reliable. Another issue with the SME 

method is that, as there is no theoretical probability distribution for the Ft statistic under 

the null hypothesis of no difference, it is not possible to do a standard statistical test to 

evaluate its significance. However, in this chapter, the comparison of D9DPPC between 

three different age groups, as well as between control and KO groups provided a general 

standard of the Ft ranges which were referred by the following analysis. Therefore, 

despite the lack of theoretical distribution for a significance test, this chapter sets good 

reference ranges for Ft for the analysis in the following chapters. 
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Chapter 5 Surfactant and hepatic phosphatidylcholine 

dynamic biomarker discovery analysis for NRDS 

patients 

5.1 Introduction  

In the last chapter, time course enrichment modelling of surfactant PC and biomarker 

analysis were carried out for mice models, which has established the methodology for 

dynamic PC biomarker analysis. As ESI MS/MS coupled with stable isotope labelling 

technique is capable of facilitating investigation of in vivo kinetics of molecules in human, 

in this and the following chapters, methylD9 labelled PC species are analysed for human 

subjects, for characterising human surfactant and hepatic PC turnover as well as 

investigating the feasibility of using them as biomarkers in less clear clinical scenarios.  

NRDS is a primary lung disease caused by lung immaturity, where the AT II cells are 

underdeveloped and unable to synthesise pulmonary surfactant. All NRDS patients are 

given surfactant supplement at birth, which has largely improved the mortality rate. 

However, the survived babies have high probability of getting long term lung conditions in 

later life. It will be beneficial to be able to identify patient groups in terms of disease 

severity, tendency of developing lung diseases in the long term, and response to the 

treatment, for the application of early interventions to prevent bad outcomes as well as 

for developing new treatment. All of these require effective biomarkers, which will also 

be helpful in understanding the underlying mechanisms of different biological conditions.  

The NRDS infants in the study are categorised into two groups based on disease severity, 

indicated by on or off ventilation five days after label infusion. The grouping aims to check 

if PC in vivo activity can indicate any difference between the two groups of patients with 
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different disease severity, and predict outcomes as biomarkers. Time course enrichment 

of labelled surfactant PC species as well as hepatic PC species were modelled and 

analysed. Assessing hepatic PC species can provide additional view to the surfactant PC 

analysis regarding liver function, as both of them are integrated into the whole body PC 

metabolism and are interacted with each other.  
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Figure 32: Enrichment levels of liver synthesised methylD9-PC through CDP-choline 
pathway and methylD3-PC through PEMT pathway in plasma samples of healthy people 
and ARDS patients at six time points. In each graph, an enrichment line is obtained by 
connecting the mean values of observations of a group at six time points. The enrichment 
levels of the methylD9-PC species synthesised through CDP-choline pathway are slightly 
lower in control group than in ARDS patients group. Whereas methylD3-PC synthesised 
through PEMT pathway are significantly higher in control group (Dushianthan et al., 
2018). 
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In liver, PC species can be synthesised through both CDP-choline pathway and PEMT 

pathway. Dushianthan et al. (2018) has found that label incorporation of PC synthesised 

through CDP-choline pathway in liver are similar between healthy people and ARDS 

patient, but that of PC synthesised through PEMT pathway are significantly different 

between the two groups (Figure 32), suggesting that the label incorporation of hepatic PC 

via PEMT pathway are more indicative in ARDS disease than those via CDP-choline 

pathway. Therefore, in this chapter, the PEMT pathway PC were assessed along with 

those of pulmonary surfactant PC synthesised through CDP-choline pathway to examine if 

they can characterise different stages of NRDS disease and predict outcomes.   

5.1.1 Project description  

The data analysed in this chapter is obtained in the form of raw MS datasets from a 

previous study carried out in Southampton, named as “The Surfactant, Nutrition and 

Microorganism Interaction study in babies at risk of developing neonatal chronic lung 

disease (TsuNaMI)”. The study was designed to identify and correlate risk factors for 

development of neonatal chronic lung disease (nCLD) in preterm infants. The preterm 

babies are recruited from Princess Anne Hospital, Southampton. They all received 

infusion of methylD9 choline chloride in dextrose for three hours and had sequential 

blood and endotracheal aspirate (ETA) samples collected. Those infants still ventilated 

five days after label infusion received a second infusion of methylD9 choline chloride.  

The samples are processed following the TsuNaMI Sample Processing Protocol. As 

described in their report, blood samples were centrifuged and the upper plasma layer 

was aspirated. Lipid extraction was performed using Bligh and Dyer method (Bligh and 

Dyer, 1959). Plasma and ETA were added with methanol and chloroform, and then 
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centrifuged. The supernatant was carefully drawn off and added with distilled water and 

chloroform to be centrifuged again, after which the lower layer was carefully aspirated 

and dried for the subsequent ESI MS/MS analysis. Precursor scans P184, P187 and P193 

were performed to monitor endogenous surfactant PC molecules, methylD3 labelled PC 

molecules and methylD9 labelled PC molecules. 

5.1.2 Data description and methods 

In the clinical study, five days after first label infusion was used as a cut-off time point, 

and the infants were categorized into two groups based on their status at the time point, 

i.e. on or off ventilation. The labelled PC enrichment data of the two groups before the 

time points are analysed in the following analysis. 

For ETA samples, the time course enrichment of sixteen methylD9 labelled PC molecules 

were modelled for probing the lung surfactant PC kinetics. These species were selected 

based on the confidence of existence of the endogenous species and deuterium labelled 

species based on the MS analysis result. Restricted by the availability of samples, there 

are PC observations of twelve NRDS patients in off ventilation group and eleven patients 

in on ventilation group.  

The time course enrichment of methylD3 labelled form of the same sixteen PC molecules 

in plasma samples were also analysed for assessing the hepatic PC turnover through 

PEMT pathway in liver. There were observations of seventeen patients in off ventilation 

group and thirteen patients in on ventilation group.  Observations at seven time points 

were included for the time course PC kinetic study, including 6, 12, 24, 48, 72, 96 and 120 

hour after initial label infusion. 
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MS data processing and calculation in this chapter were all performed by the newly 

developed LipidomeLabelling platform. The procedures conducted include raw data 

extraction, background removal, peak identification, peak integration, species 

identification, isotope correction, between scan isotope correction, and enrichment 

calculation. The multivariate time course modelling and biomarker discovery analysis 

were performed using SME method facilitated by the SME R package.  

5.2 Characterisation of time course methylD9 - PC enrichment in ETA 

and comparison between off and on ventilation NRDS patients  

The model fitting for the methylD9 labelled PC time course enrichment in ETA samples 

was conducted using SME method and the fitted values at seven time points are listed in 

Table 22. The result shows that, the off ventilation group tend to have higher group 

means than the off ventilation group for most PC species at the early time of the whole 

period, whereas the situation changes after certain time point and the mean values of on 

ventilation group become higher towards the end of the period. The enrichment levels of 

the labelled PC species of the off ventilation group are not much different, although the 

ones with the highest masses, especially those with 20:4 and 20:6 acyl chains are 

comparatively higher. The D9PC16:0a/16:0 has an exceptional high enrichment at the end 

of the period, while other characteristic surfactant species are comparatively low. In the 

on ventilation group, D9PC18:0/22:6 has the highest enrichment level over time. 
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Table 22: Fitted group mean values of time course enrichment of methylD9-PC in ETA 
samples of the off and on ventilation NRDS patient groups.  
 

Mass Species Assignment Group 
Enrichment (%) 

  
  
  

6h 12h 24h 48h 72h 96h 120h 

715 D9PC 16:0/14:0 
Off Venti 0.006 0.015 0.058 0.157 0.209 0.236 0.239 
On Venti 0.000 0.022 0.069 0.207 0.373 0.393 0.392 

727 D9PC16:0a/16:1 
Off Venti 0.114 0.126 0.152 0.203 0.254 0.304 0.355 
On Venti 0.031 0.064 0.131 0.257 0.351 0.407 0.449 

729 D9PC16:0a/16:0 
Off Venti 0.011 0.043 0.108 0.235 0.358 0.477 0.592 
On Venti 0.007 0.024 0.060 0.179 0.336 0.356 0.367 

741 D9PC16:0/16:1 
Off Venti 0.012 0.039 0.093 0.188 0.249 0.286 0.304 
On Venti 0.003 0.043 0.104 0.276 0.525 0.466 0.474 

743 D9PC16:0/16:0 
Off Venti 0.005 0.022 0.055 0.118 0.169 0.209 0.242 
On Venti 0.000 0.021 0.049 0.190 0.389 0.430 0.414 

767 D9PC16:0/18:2 
Off Venti 0.012 0.042 0.101 0.191 0.238 0.278 0.316 
On Venti 0.008 0.037 0.098 0.265 0.453 0.464 0.444 

769 D9PC16:0/18:1 
Off Venti 0.022 0.051 0.107 0.203 0.258 0.281 0.287 
On Venti 0.019 0.050 0.114 0.305 0.525 0.510 0.496 

771 D9PC16:0/18:0 
Off Venti 0.010 0.026 0.060 0.128 0.177 0.207 0.228 
On Venti 0.002 0.029 0.066 0.181 0.319 0.401 0.397 

791 D9PC16:0/20:4 
Off Venti 0.019 0.046 0.098 0.192 0.254 0.287 0.301 
On Venti 0.010 0.049 0.128 0.347 0.588 0.560 0.537 

793 D9PC18:1/18:2 
Off Venti 0.015 0.044 0.102 0.207 0.269 0.283 0.269 
On Venti 0.017 0.051 0.124 0.342 0.560 0.546 0.525 

795 D9PC18:0/18:2 
Off Venti 0.031 0.071 0.148 0.261 0.308 0.317 0.308 
On Venti 0.013 0.072 0.134 0.326 0.597 0.523 0.532 

797 D9PC18:0/18:1 
Off Venti 0.025 0.056 0.116 0.216 0.264 0.277 0.275 
On Venti 0.006 0.058 0.095 0.231 0.490 0.425 0.427 

815 D9PC16:0/22:6 
Off Venti 0.037 0.061 0.153 0.271 0.300 0.352 0.396 
On Venti 0.025 0.079 0.192 0.471 0.696 0.600 0.578 

817 D9PC18:1/20:4 
Off Venti 0.043 0.097 0.201 0.342 0.413 0.435 0.417 
On Venti 0.007 0.066 0.188 0.444 0.634 0.648 0.592 

819 D9PC18:0/20:4 
Off Venti 0.026 0.054 0.110 0.204 0.260 0.290 0.306 
On Venti 0.014 0.054 0.134 0.291 0.469 0.490 0.494 

843 D9PC18:0/22:6 
Off Venti 0.071 0.103 0.162 0.246 0.291 0.329 0.367 
On Venti 0.046 0.098 0.182 0.482 0.838 0.568 0.724 

  
 

Figure 33 for the time course enrichment models of labelled PC shows that for most 

species, the on ventilation group in red lines has wider range of enrichment levels and 

more diverse individual curves than the off ventilation group. The substantially high 

enrichment levels of some ventilated patients account for the overall greater mean curve 

of this group than the off ventilation group. 
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The temporal curves of species of on ventilation group slowly increase from the starting 

point and reach the highest enrichment level at around 72 hour, and then gradually 

decrease towards the end of the period, except for some species picking up slightly at the 

727 D9PC16:0a/16:1 741 D9PC16:0/16:1 

791 D9PC16:0/20:4 843 D9PC18:0/22:6 

743 D9PC16:0/16:0 771 D9PC16:0/18:0 

Figure 33: Time course enrichment of some methylD9-PC in ETA samples of the off 
ventilation (in blue) and on ventilation (in red) NRDS patients. 
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end. The maximum enrichment of D9PC16:0/18:0 is estimated to be reached at around 

96 hour, which is different from most of other species. Another exception is 

D9DPPC16:0a/16:1, which has an increasing trend throughout the period. The most 

varied individual curve shapes are found in the model of the species D9PC16:0/16:1, 

D9PC16:0/16:0 and D9PC16:0/18:0, suggesting different turnover patterns among these 

ventilated babies. Moreover, in these species, the curves of many individuals have more 

than one peak within the time frame, which can imply either more waves of labelled 

species coming into the system, or the change of the pool size. 

The PC species of the off ventilation babies exhibit flat and lower temporal enrichment 

trend with small gradient and there are hardly any stationary point on the curves. It is 

important to note that the data points of the off ventilation group suffers from a lack of 

observations after 72 hour, with only three or four observations for each time point. As 

the babies recovered and went off ventilation, ETA samples were not collected, so there 

was no observation available after the time point. Consequently, it is possible that the 

insufficient data may only represent part of the population.  

The group comparison and biomarker analysis were conducted using SME method and 

the Ft, L and se values are listed in Table 23. The distance between the two groups is quite 

small, indicated by the L values. Among all the species, D9PC18:0/22:6 has the highest L 

value of 3.11, followed by D9PC16:0/22:6 of 2.42, and D9PC16:0/20:4 and 2.24, 

suggesting the differences between group means of these species are higher than others 

with L values range between 1 and 2. The se values are comparatively large with values 

between 0.4 and 0.9. The individual models show diverse incorporation trends among 

individuals within each group, particularly the on ventilation group with largely varied 

individual curves, which contributes to the variance term se. Due to the generally small L 
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values and large se values, the Ft values are generally small. The highest Ft with the value 

of 7.28 belongs to D9PC18:0/22:6, owing to its biggest L and smallest se value. 

 
          

m/z Species L se Ft 
843 D9PC18:0/22:6 3.112788 0.4276522 7.278784 

729 D9PC16:0a/16:0 1.696044 0.4765379 3.559095 

767 D9PC16:0/18:2 1.682209 0.5436523 3.094274 

815 D9PC16:0/22:6 2.419692 0.8090925 2.990625 

791 D9PC16:0/20:4 2.241368 0.7919274 2.83027 

727 D9PC16:0a/16:1 1.725831 0.6294649 2.741742 

793 D9PC18:1/18:2 1.650062 0.6069545 2.718592 

769 D9PC16:0/18:1 1.724096 0.6612318 2.6074 

743 D9PC16:0/16:0 1.836189 0.7086587 2.591076 

715 D9PC16:0/14:0 1.601133 0.6524921 2.453873 

741 D9PC16:0/16:1 1.867165 0.7873556 2.371437 

817 D9PC18:1/20:4 1.960294 0.8445815 2.321024 

797 D9PC18:0/18:1 1.339566 0.6187157 2.165075 

795 D9PC18:0/18:2 1.435755 0.7166049 2.003552 

819 D9PC18:0/20:4 1.2818 0.6556711 1.954944 

771 D9PC18:0/16:0 1.176324 0.6910945 1.702117 

Table 23: Ft statistics for ETA PC species of the off and on ventilation NRDS patients. 

 

The small Ft values of these species in the ETA samples suggest that the temporal 

enrichment of these labelled PC species are of little significance in distinguishing the two 

groups. Despite the different curve shapes for the two groups, close group mean and 

especially the large variances between individuals weaken the ability of PC turnover in 

discriminating the two groups. The large differences among individuals in ventilated 

group, leading to small Ft statistics, should also be considered as to if the grouping is 

appropriate. It is worth to investigate what causes the big differences in the time patterns 

and enrichment levels between individual patients, and if there are subgroups within this 

group. These facts indicate that the classification of groups directly affect the result of 

group comparison, and biomarker discovery requires reasonable grouping of subjects. 
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Besides, it should be noted that the observations of the off ventilation group is scarce, 

which could possibly fail to cover some part of the underlying population and should be 

taken into consideration when analysed further. 

5.3 Characterisation of time course PEMT pathway methylD3 - PC 

enrichment in plasma and comparison between off and on 

ventilation NRDS patients  

In order to analyse the turnover of liver synthesised PC through PEMT pathway, the time 

course enrichment of methylD3 labelled PC in plasma samples were modelled using SME 

method and the fitted values of the four designed time points are listed in Table 24.   

The figures in Table 24 show that the PEMT pathway PC enrichment values in plasma 

samples are much lower than those in ETA samples, suggesting their lower incorporation 

levels. It shows that the group mean values of most PC species are not significantly 

different between the on ventilation and off ventilation groups, but many of them are 

slightly higher in the off ventilation group, which is opposite to the results of ETA PC 

species analysis, where the mean values of on ventilation group are notably higher. The 

species with the highest enrichment are D3PC18:0/22:6, D3PC16:0/22:6, D3PC18:1/20:4 

and D3PC18:0/20:4 in the off ventilation group. In the on ventilation group, the 

enrichment values are also high in these species. Moreover, there are some species in this 

group that have slightly different trends, e.g., D3PC16:0a/16:1 and D3PC16:0a/16:0 that 

have the highest enrichment only at the end of the investigated time period, and 

D3PC16:0/18:0 has the highest enrichment value just at 72 hour.  
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Table 24: Fitted group mean values of time course enrichment methylD3-PC synthesised 
by liver through PEMT pathway in plasma samples of the off and on ventilation NRDS 
patient. 

m/z Species  Group 
Enrichment (%) 

  
  
  

6h 12h 24h 48h 72h 96h 120h 

709 D3PC 16:0/14:0 
Off Venti 0.070 0.074 0.087 0.116 0.119 0.087 0.079 
On Venti 0.066 0.068 0.070 0.077 0.085 0.094 0.103 

721 D3PC16:0a/16:1 
Off Venti 0.124 0.123 0.123 0.126 0.135 0.149 0.166 
On Venti 0.092 0.089 0.086 0.084 0.146 0.123 0.133 

723 D3PC16:0a/16:0 Off Venti 0.090 0.091 0.094 0.100 0.105 0.111 0.116 

On Venti 0.090 0.092 0.097 0.105 0.114 0.124 0.134 

735 D3PC16:0/16:1 
Off Venti 0.058 0.071 0.080 0.092 0.096 0.094 0.080 
On Venti 0.042 0.054 0.079 0.085 0.071 0.090 0.076 

737 D3PC16:0/16:0 
Off Venti 0.056 0.059 0.064 0.074 0.081 0.082 0.077 
On Venti 0.052 0.045 0.071 0.071 0.070 0.057 0.067 

761 D3PC16:0/18:2 Off Venti 0.056 0.066 0.082 0.100 0.099 0.094 0.081 

On Venti 0.048 0.056 0.069 0.079 0.081 0.078 0.074 

763 D3PC16:0/18:1 
Off Venti 0.056 0.063 0.074 0.087 0.090 0.084 0.075 
On Venti 0.049 0.053 0.065 0.073 0.075 0.066 0.074 

765 D3PC16:0/18:0 
Off Venti 0.062 0.065 0.070 0.082 0.094 0.107 0.119 
On Venti 0.080 0.044 0.099 0.028 0.168 0.135 0.047 

785 D3PC16:0/20:4 Off Venti 0.061 0.082 0.096 0.120 0.110 0.109 0.098 

On Venti 0.055 0.065 0.082 0.096 0.095 0.094 0.090 

787 D3PC18:1/18:2 
Off Venti 0.064 0.076 0.098 0.122 0.119 0.108 0.094 
On Venti 0.062 0.067 0.076 0.088 0.090 0.088 0.087 

789 D3PC18:0/18:2 
Off Venti 0.059 0.084 0.094 0.111 0.105 0.097 0.085 
On Venti 0.051 0.061 0.083 0.086 0.086 0.072 0.075 

791 D3PC18:0/18:1 Off Venti 0.052 0.067 0.071 0.084 0.080 0.074 0.071 

On Venti 0.049 0.053 0.060 0.065 0.064 0.063 0.068 

809 D3PC16:0/22:6 
Off Venti 0.111 0.128 0.156 0.174 0.159 0.140 0.120 
On Venti 0.067 0.104 0.145 0.126 0.109 0.094 0.095 

811 D3PC18:1/20:4 
Off Venti 0.083 0.129 0.155 0.150 0.143 0.129 0.117 
On Venti 0.078 0.091 0.114 0.127 0.121 0.111 0.101 

813 D3PC18:0/20:4 Off Venti 0.077 0.104 0.134 0.146 0.134 0.119 0.100 

On Venti 0.058 0.083 0.115 0.118 0.116 0.099 0.091 

837 D3PC18:0/22:6 
Off Venti 0.112 0.129 0.159 0.187 0.177 0.151 0.125 

On Venti 0.097 0.103 0.114 0.121 0.115 0.110 0.106 

 

It can be seen from the plots (Figure 34) that the plasma PC species of PEMT pathway 

have lower incorporation and smaller gradients along the temporal curves than the ETA 

samples. Moreover, the shapes of the mean curves are different among species. Many of 

the individual curves fluctuate with multiple local maximum and minimum points, which 

indicates multiple waves of flooding of remodelled or resynthesised species entering the 



Chapter 5 

138 

pool during the time period.  As shown in the figure, the enrichment curve shapes of most 

PC species are very different among individuals, due to the diverse incorporation patters, 

which indicates heterogeneous turnover patterns of different PC species through PEMT 

pathway. There are a few exceptions where the fitted individual curve shapes are 

consistent, such as D3PC16:0/18:2, D3PC18:1/18:2 and D3PC18:0/22:6. This may suggest 

more consistent label incorporation patterns among the individuals, but it is also possible 

that the SME takes heterogeneous individuals as being in the same category and imposes 

a consistent shape for them. For example, on the plot of D3PC18:0/22:6, the individual 

curves have a similar time pattern, although there are many points scatter randomly 

away from the curves. It should be noted that the SME method uses the same smoothing 

parameter to all individuals when fitting each curve of them to reduce the computational 

burden, which may have contributed to the consistent species pattern among individuals 

in a group, such as D3PC18:0/22:6. However, there is another important step of the curve 

fitting that determines the final curve shape, the model selection, for which AICc criteria 

is adopted in the SME method. The smoothing parameters are selected to achieve the 

best fit, and it may result in individual curves with disparate shapes within the same 

group, which is seen in most of the species in the figure. It can be helpful to further 

evaluated these factors that affect the model shapes as to if the AICc criteria is 

appropriate in all cases. 
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709 D3PC16:0/14:0 
 

785 D3PC16:0/20:4 787 D3PC18:1/18:2 

811 D3PC18:1/20:4 837 D3PC18:0/22:6 
   

765 D3PC16:0/18:0 
  

761 D3PC16:0/18:2 

737 D3PC16:0/16:0 

Figure 34: Time course enrichment of methylD3-PC species synthesised by liver 
through PEMT pathway for the off and on ventilation NRDS patients. 
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m/z Species L se Ft 
837 D3PC18:0/22:6 0.5428842 0.1010202 5.374019 
787 D3PC18:1/18:2 0.2681372 0.0567689 4.723312 
761 D3PC16:0/18:2 0.1725278 0.04394618 3.925889 
721 D3PC16:0a/16:1 0.3282075 0.08770852 3.742025 
809 D3PC16:0/22:6 0.4292514 0.1302551 3.295468 
789 D3PC18:0/18:2 0.2143859 0.0756707 2.833142 
791 D3PC18:0/18:1 0.1460655 0.05667729 2.577143 
763 D3PC16:0/18:1 0.1430773 0.05688063 2.515395 
709 D3PC 16:0/14:0 0.2802902 0.1163214 2.409618 
737 D3PC16:0/16:0 0.1534859 0.06562033 2.338999 
811 D3PC18:1/20:4 0.2767172 0.1372274 2.016486 
813 D3PC18:0/20:4 0.2202025 0.1113 1.97846 
785 D3PC16:0/20:4 0.1788182 0.0916905 1.950237 
765 D3PC16:0/18:0 0.4672063 0.3760173 1.242513 
723 D3PC16:0a/16:0 0.1027319 0.09802702 1.047995 
735 D3PC16:0/16:1 0.1381838 0.1640108 0.8425282 

Table 25: Ft statistics for plasma methylD3-PC for the off and on ventilation NRDS patients. 

 

Table 25 lists the L, se and Ft values calculated between the off ventilation and on 

ventilation groups. The L values range from 0.13 to 0.54, which are much smaller than 

those for ETA samples. The se values are also quite small, ranging from 0.004 to 0.16. Due 

to the extremely small L values, indicating small gaps between time models of the two 

groups, the Ft values are generally small with values between 0.84 and 5.37. 

D3PC18:0/22:6 is the species that has the biggest L and the highest Ft, just as it is in the 

ETA sample. D3PC16:0/22:6 has the second highest L value of 0.43 and its Ft value is 3.3, 

ranking at the fifth place. The overall small Ft values suggest that the time course 

enrichment of PEMT pathway PC species may be not significantly indicative in 

discriminating between the two groups. Similar to the result of ETA PC species analysis, 

the PEMT pathway species have heterogeneous enrichment patterns among individuals. 

This may suggest that the current grouping is not appropriate, which can lead to the 
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failure of using PC label enrichment as biomarkers for identifying group differences, and it 

underlines the critical importance of appropriate grouping in biomarker discovery 

analysis. 

5.4 Conclusions 

In this chapter, the time course enrichment of methylD9-PC species in ETA samples and 

methylD3-PC of PEMT pathway in plasma samples were modelled for both off ventilation 

and on ventilation NRDS patients. PC label incorporation level of the off ventilation group 

is lower than that of the on ventilation group over time, and also have wider range. The 

individual patients in this group have shown heterogeneous patterns. The time course 

enrichment of labelled PC in ETA samples are not significant in distinguishing the on and 

off ventilation NRDS patient groups. 

 PEMT pathway PC species have not shown significance as biomarkers in discriminating 

the two groups in the biomarker analysis, however, it provided extra knowledge for a 

more comprehensive understanding of PC turnover in pulmonary disease. The PEMT PC 

of neither the off ventilation nor the on ventilation NRDS patients have consistent 

incorporation patterns. Multiple peaks are shown on the fitted curves, indicating multiple 

waves of labelled species coming into the circulation. Different to surfactant PC in ETA 

samples, the enrichment levels of the off ventilation group are higher than those of on 

ventilation group. 

The individual NRDS patients show varied labelled PC incorporation patterns in both 

groups, which may suggest they may have heterogeneous nature, and the categorising of 

the two groups may not be appropriate to be distinguished by PC kinetics. This also 

demonstrates group categorisation is critical important in biomarker discovery. The 
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modelling has shown consistent incorporation patterns in a couple of species with large 

amount of unfitted points dispersed far away from the fitted curves, which may be an 

indication of over-smoothing and should be carefully examined. 
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Chapter 6 Hepatic phosphatidylcholine dynamic 

biomarker discovery for ARDS patients 

6.1 Introduction  

ARDS is a secondary lung disease triggered by various insults causing damage to the lung. 

Clinical management of ARDS includes ventilation strategies as well as therapies for the 

known underlying conditions, and there has been no newly developed treatment with 

proven benefit for improving the mortality rate. There is a need for a better 

understanding of the disease mechanism to guide treatment development. It would be 

useful to characterise the in vivo kinetics of critical materials for pulmonary function of 

ARDS patients and assess the implications from it for potential effective clinical 

management of the disease.  

The PC label enrichment data analysed in this chapter is from a study investigating 

surfactant PC kinetics in ARDS patients and healthy people. Longitudinal observations of 

label incorporation of PC in BALF and plasma samples were made for both healthy control 

and ARDS patients. The study found the altered PC composition and label incorporation in 

BALF as well as plasma in patients comparing to healthy control. The mean enrichment of 

a few methylD9-PC species at different time points were calculated for both patient and 

control groups. As the BALF samples were only collected at 24 and 48 after label infusion 

for control group, the comparison between the two groups were carried out only at the 

two time points, where higher mean enrichment values of total surfactant PC as well as 

D9PC16:0/16:0 were found in ARDS patients (Dushianthan et al., 2014). In plasma 

samples, increased flux of PC through the CDP-choline pathway and reduced flux through 

the PEMT pathway were found in ARDS patients comparing to healthy people. Based on 
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the findings of the study, it would be helpful to characterise PC kinetics for the two 

groups of individual subjects, offering better insights of time patterns of PC label 

incorporation than simply evaluating the mean values at each time points. Modelling the 

time course PC label incorporation also facilitates biomarker analysis through group 

comparison. However, BALF samples were only collected at 24 and 48 hour time points 

for healthy control group, which is not enough for time course modelling and biomarker 

analysis by SME method. As the study found that, in plasma samples hepatic PC 

synthesised through PEMT pathway is more indicative than those through CDP-choline 

pathway while comparing ARDS with control groups (Figure 32), therefore in this chapter 

the kinetics of PEMT pathway PC will be analysed for biomarkers identification for the 

control and ARDS patient groups. 

6.2 Data description and methods 

The data analysed in this chapter is obtained in the form of raw MS data sets from two 

previous studies carried out by  Dushianthan et al. (2018). The first study “Pulmonary 

surfactant in adult patients with acute respiratory distress syndrome” was conducted in 

the General Intensive Care Unit at University Hospital Southampton, where the ARDS 

patients were recruited. The second study “Comparison of bronchoalveolar lavage and 

induced sputum surfactant phospholipid kinetics in healthy adult volunteers” was 

conducted in the Wellcome Trust Clinical Research facility at University Hospital 

Southampton. Detailed experimental methods can be found in the study of Dushianthan 

et al. (2018). 

In the study, ARDS patients’ blood sample were collected at 6, 12, 24, 48, 72 and 96 hours 

after label infusion, and healthy volunteers blood samples were taken at 8, 12, 24, 48, 72 
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and 96 hours post labelling. There were 10 people in both patient and healthy groups, 

although not all the subjects had complete samples collected at each time points. In this 

chapter sixteen methylD3 PC, selected based on the confidence of existence, in these 

plasma samples from patient and healthy groups were analysed.  

MS data processing and kinetic calculations were carried out using LipidomeLabelling. The 

procedures conducted for MS data processing include raw data extraction, background 

subtraction, peak identification, peak integration, species identification, isotope 

correction, between scan isotope correction, and enrichment calculation. The 

multivariate time course modelling and biomarker discovery analysis were performed 

using SME method facilitated by the SME R package.  

6.3 Characterisation of time course PEMT pathway methylD3 - PC 

enrichment in plasma and comparison between control and ARDS 

patients  

In this analysis, time course enrichment of methyleD3-PC in plasma samples are modelled 

using SME method, for healthy control group for the time period from 8 to 92 hour post 

label infusion, and for ARDS patient group from 6 to 92 hour. The fitted mean values at 

the four sample collecting time points are listed in Table 26. As shown in the table, the 

healthy control group has generally higher enrichment level than ARDS patients over the 

time period, which is opposite with that of surfactant PC observed at 24 and 48 hour 

points described in the introduction section. The species with the highest temporal 

enrichment level in healthy control group is D3PC18:0/22:6. The other species with 

comparative high enrichment include D3PC16:0/22:6, D3PC18:0/20:4, D3PC18:1/20:4, 

and D3PC16:0a/16:1. D3PC16:0/16:0, D3PC16:0/18:0 and D3PC16:0a/16:0 are the three 

species with the lowest enrichment level over time. For ARDS patients, the species with 
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the highest time course enrichment are the same with those of the healthy volunteers, 

and the species with the lowest enrichment level is D3PC16:0/16:0, which is also low in 

healthy people. But species D3PC16:0/18:0, which is the lowest in healthy group, is not as 

low in patient plasma. It exhibits a fluctuating pattern and gets quite high at some time 

points, which can be seen from Figure 35.  

 

Table 26: Fitted group mean values for the time course enrichment of PEMT pathway 
methylD3-PC in plasma samples of healthy control and ARDS patients. 

m/z Species  Group 
Enrichment (%) 

  
  
  

6h 8h 12h 24h 48h 72h 96h 

709 D3PC 16:0/14:0 
Control   0.086 0.093 0.180 0.230 0.240 0.200 

Patient 0.081 
 

0.089 0.103 0.121 0.123 0.128 

721 D3PC16:0a/16:1 
Control   0.151 0.189 0.227 0.290 0.234 0.228 
Patient 0.258 

 
0.205 0.139 0.191 0.200 0.216 

723 D3PC16:0a/16:0 Control   0.081 0.091 0.121 0.135 0.168 0.169 
Patient 0.102 

 
0.103 0.106 0.112 0.119 0.126 

735 D3PC16:0/16:1 
Control   0.096 0.084 0.204 0.253 0.283 0.249 

Patient 0.060 
 

0.075 0.119 0.133 0.135 0.155 

737 D3PC16:0/16:0 
Control   0.057 0.063 0.101 0.166 0.191 0.195 
Patient 0.050 

 
0.061 0.081 0.093 0.112 0.115 

761 D3PC16:0/18:2 Control   0.083 0.070 0.227 0.303 0.314 0.298 
Patient 0.059 

 
0.078 0.122 0.160 0.157 0.160 

763 D3PC16:0/18:1 
Control   0.072 0.067 0.178 0.251 0.285 0.274 

Patient 0.060 
 

0.068 0.103 0.149 0.131 0.133 

765 D3PC16:0/18:0 
Control   0.054 0.062 0.085 0.131 0.177 0.223 
Patient 0.132 

 
0.162 0.073 0.225 0.139 0.069 

785 D3PC16:0/20:4 Control   0.102 0.077 0.266 0.323 0.332 0.308 
Patient 0.059 

 
0.081 0.120 0.148 0.156 0.176 

787 D3PC18:1/18:2 
Control   0.102 0.084 0.276 0.330 0.317 0.309 

Patient 0.062 
 

0.092 0.139 0.148 0.163 0.179 

789 D3PC18:0/18:2 
Control   0.116 0.091 0.352 0.395 0.363 0.326 
Patient 0.061 

 
0.095 0.157 0.200 0.191 0.178 

791 D3PC18:0/18:1 Control   0.095 0.079 0.229 0.290 0.292 0.289 
Patient 0.057 

 
0.070 0.107 0.152 0.164 0.140 

809 D3PC16:0/22:6 
Control   0.324 0.280 0.961 0.817 0.626 0.497 

Patient 0.090 
 

0.211 0.313 0.334 0.246 0.234 

811 D3PC18:1/20:4 
Control   0.210 0.095 0.528 0.501 0.436 0.373 
Patient 0.079 

 
0.145 0.228 0.219 0.199 0.186 

813 D3PC18:0/20:4 Control   0.216 0.119 0.566 0.524 0.451 0.388 
Patient 0.077 

 
0.157 0.217 0.221 0.206 0.206 

837 D3PC18:0/22:6 
Control   0.395 0.635 1.211 1.154 0.813 0.623 

Patient 0.090   0.214 0.406 0.440 0.292 0.284 
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Figure 35:  Time course enrichment of methylD3-PC for healthy control (in blue) and ARDS 
groups (in red).  (To be continued) 

723 D3PC16:0a/16:0 735 D3PC16:0/16:1 

737 D3PC16:0/16:0 765 D3PC16:0/18:0 

709 D3PC 16:0/14:0 721 D3PC16:0a/16:1 
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(Figure 35 continued) 

 

Figure 35 shows the plots of fitted enrichment curves of plasma methylD3-PC species for 

the two groups. The healthy group has apparent higher enrichment levels than ARDS 

patients over the time period. It can be found that the incorporation of most species 

809 D3PC16:0/22:6 811 D3PC18:1/20:4 

785 D3PC16:0/20:4 763 D3PC16:0/18:1 

813 D3PC18:0/20:4 837 D3PC18:0/22:6 
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exhibit tidal style temporal patterns. This is more obvious in the control group, where two 

peaks can be found in each curve along the time curves. 

In control group, the first peak of the labelled PC species appears at around 30 hour, and 

the second appears at around 72 hour, which can be either lower or higher than the 

previous peak in different species. Another feature of the control group is that, for most 

of the species, there is a short term of dropping between 6 and 12 hours, and after this 

the enrichment goes up dramatically, implying decreasing label incorporation at the early 

time period before picking up. As healthy control people are assumed to be in steady 

state with constant PC turnover, the multiple peaks on the curves indicates there are 

multiple waves of labelled PC species coming into circulation. The increasing part is the 

period that the amount of newly entered labelled species overweighs those leaving the 

pool, and the decreasing part means the opposite. Based on the signs of decreasing trend 

at early time period on the curves, it is appropriate to assume that the experiment may 

have missed the early waves of incoming labelled species after label infusion, but 

captures two later ones that peak at around 33 hour and 72 hour. The four species having 

the fastest increasing rates also have the highest temporal enrichment levels over time, 

including D3PC16:0/22:6, D3PC18:0/22:6, D3PC18:0/20:4 and D3PC18:1/20:4. The 

decreasing rates of them are also fast, which can be seen from the steep slopes at the 

beginning of the time period and after the first peak, suggesting higher fractional 

appearance and disappearance rate of these species than others in the blood of healthy 

people. This further implies higher fractional synthesis rate of these species through 

PEMT pathway by liver. 

A species that should be paid more attention is D3PC16:0/16:0, the labelled form of 

PC16:0/16:0, which is the most abundant species in pulmonary surfactant. However, this 
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species turns out to have low temporal enrichment level, suggesting its low fractional 

turnover in blood. Besides, the group mean curve does not show an obvious two-peak 

pattern, but keeps increasing over the time period. However, the individual curves on the 

plot show that many of them have more than one peak, although they do not change at 

the same pace, and even go in the opposite direction especially at the 48 hour, which 

cancels out the fluctuation and results in an increasing mean curve. The species that act 

most diversely among individuals, in terms of enrichment level as well as temporal 

pattern, in the healthy group, include D3PC16:0/14:0, D3PC16:0a/16:1, D3PC16:0a/16:0, 

D3PC16:0/16:1 and PC16:0/16:0. This shows that these species, the counterpart of which 

are characteristic species in pulmonary surfactant, are not dominant in the blood and the 

turnover vary a lot among individuals. 

The ARDS patient group has generally low enrichment level and small change over time 

for all species. Besides, although the multi-peak curve shape appears in some species in 

some individual patients, the multiple peaks are not obvious in the group mean curves. 

But D3PC16:0/18:0 is an exception, which increases at the beginning and reaches a local 

maximum value at around 10 hour, and then decreases to a minimum at around 24 hour 

followed by another increase to reach the local maximum at around 50 hour. Moreover, 

its enrichment level is not lower than the control group all the time, but their relationship 

changes with the fluctuation of the curves. However, a close examination of the individual 

patients shows that some extreme values of a few patients have largely affected the 

curve shape of the whole group. 

The incorporation curves of most individuals as well as the whole ARDS group are much 

lower and flatter comparing to the healthy group, but there are three patients with 

different shapes and much higher enrichment levels than the other patients. On the plot 
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of D3PC16:0/18:1, the three fitted individual curves with red dotted lines that are above 

the group mean curve are for patient No.4, 3 and 1, from high to low. Furthermore, these 

three patients are also found to have different curve shapes and higher enrichment levels 

than other patients in most of other species, especially the longer fatty chain species. 

Taking species D3PC18:1/20:4 as an example, the curves for the three patients are much 

higher than other individuals and largely lift up the group mean values, which results in 

the overall group difference between ARDS and control groups much smaller. Without 

these three patients, the gap between the two groups would have been much greater. 

However, there are only three patients in question, which is not enough to be analysed as 

a group by the SME for further examination. Nevertheless, other analysis could be done 

by looking into other clinical information of these patients to investigate the reason 

behind it. 

Group comparisons were carried out for identifying potential markers. The observation 

time points of the two groups are not completely the same, with the first time point of 

control group at 8 hour after label infusion, and 6 hour for ARDS group. In spite of this, 

the SME can model the enrichment over the whole time period for both groups and 

compare them over the overlapping period from 8 hour to 120 hour after label injection. 

The Ft values are generally very small for all the species (Table 27), suggesting their 

limited ability of distinguishing the two groups by the time course label enrichment. The 

species with the highest L values include D3PC18:0/22:6, D3PC16:0/22:6, D3PC18:0/20:4 

and D3PC18:1/20:4, exactly the ones with the highest time course enrichment in both 

groups, with the value of 5.928, 4.501, 2.745 and 2.534, respectively. Despite the 

comparative high L values, these specie do not get big Ft. This is due to the big se values 

owing to the large variances among individual patients. Species with longer acyl chains 
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are ranked higher, due to their dominancy and high turnover in blood. Characteristic lung 

surfactant species are not as active in plasma as in lung surfactant, and they are ranked 

lower in the list with the smallest L values. Species D3PC16:0/16:0, D3PC16:0/18:0, 

D3PC16:0a/16:0 and D3PC16:0a/16:0 have the smallest Ft values among all the species. 

This is reasonable as these species are not the major PC species synthesised through 

PEMT pathway.  

 

m/z Species L se Ft 
837 D3PC18:0/22:6 5.927751 0.8062072 7.35264 
785 D3PC16:0/20:4 1.514275 0.209139 7.240519 
811 D3PC18:1/20:4 2.53435 0.3737603 6.780682 
813 D3PC18:0/20:4 2.745033 0.4144251 6.623713 
809 D3PC16:0/22:6 4.501139 0.7016266 6.415292 
761 D3PC16:0/18:2 1.281495 0.2024036 6.331383 
787 D3PC18:1/18:2 1.453808 0.2353299 6.177744 
763 D3PC16:0/18:1 1.103629 0.1871716 5.896346 
789 D3PC18:0/18:2 1.709253 0.2922198 5.849202 
709 D3PC 16:0/14:0 0.9187931 0.1744889 5.265626 
735 D3PC16:0/16:1 1.091156 0.208337 5.237459 
791 D3PC18:0/18:1 1.218338 0.2473827 4.92491 
737 D3PC16:0/16:0 0.6014878 0.1383454 4.347724 
765 D3PC16:0/18:0 0.7256573 0.3026004 2.398071 
723 D3PC16:0a/16:0 0.3236736 0.1370244 2.36216 
721 D3PC16:0a/16:1 0.6685675 0.5415068 1.234643 

Table 27: Ft statistics for plasma PC species of control and ARDS patient groups. 

 

As mentioned before, the individual fitted curves of ARDS patient group indicate that the 

big variances are mainly from the three individual patients who have substantial higher 

incorporation than other patients. The temporal PC enrichment of these three patients 

hugely affect the patient group mean, and largely narrow the distance between ARDS and 

control groups. This effect brings down the L values, and enlarges the variance within the 

group, which increases the se values. Taking species D3PC16:0/20:4 as an example, it has 

the second largest Ft, although it is not one of the species with highest enrichment level 
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or L value, but it has a comparatively smaller variance. By checking the individual models 

of the group, it was found that only two of the three patients mentioned above, rather 

than all three, have higher enrichment levels of this species than the group mean. This 

generates much smaller variance and reduces the se value, resulting in a big Ft value for 

the species. Therefore, these patients should be further investigated as to 1) what causes 

the significant difference of these patients comparing with others, 2) if they are 

appropriate to be put in the same group with other patients.  

According to the analysis, due to the small Ft values of all the species, they are not 

significant as potential biomarkers. However, if the grouping of the heterogeneous 

individual patients is properly treated, the result will be hugely improved, and the label 

incorporation of PEMT pathway PC species can be promising biomarkers for ARDS. This 

analysis and the original study integrally suggest that, the PC turnover of the ARDS 

patients are altered comparing with healthy people, but the alteration is different 

between surfactant PC and PEMT pathway PC, where the label incorporation of 

surfactant PC of the patients are higher than healthy people, but that of PEMT PC are 

lower. 

6.4 Conclusions 

In this chapter, the time course enrichment of plasma methylD3-PC synthesised through 

PEMT pathway for both healthy people and ARDS patients were characterised, and the 

group comparisons were carried out for identifying potential biomarkers for distinguish 

the group difference.   

In plasma, the incorporation level of PEMT pathway PC species at 24 and 48 hour are 

higher in control healthy group than the ARDS patient group, which is different from that 
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of surfactant PC which is higher in ARDS group. The species with longer unsaturated fatty 

acyl chains are more active than the species that are highly active in lung surfactant. The 

group comparisons generated small Ft values, indicating poor capability of PEMT pathway 

PC species in distinguishing healthy people and ARDS patients. Nevertheless, the analysis 

has recognised comparatively large difference between group mean enrichment levels, 

denoted by L values, and found that the small Ft values are due to three ARDS patients 

with significantly high PC label incorporation. Further investigation was suggested to 

identify the cause of the heterogeneity and improve the grouping, which may achieve 

high significance of the PEMT PC time course incorporation as potential biomarkers.  

The SME method has successfully modelled the temporal PC label enrichment for both 

individual subjects and groups, estimated the group differences for all the species, as well 

as identified the unusual high PC label enrichment of three ARDS patients. The results are 

reliable for biomarker discovery analysis. 
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Chapter 7 General discussion  

The clinical management of various pulmonary diseases suffers from a lack of specific and 

sensitive biomarkers. Despite the endless effort put into the biomarker discovery studies, 

there have been hardly any established new biomarkers proven to be sensitive and 

effective enough to replace the traditional measures for diagnosing and predicting in 

clinical settings. Pulmonary surfactant is critical for normal lung function, and PC species 

are the major component and surface active material of lung surfactant. The PL 

alterations in surfactant are associated with malfunctions of lungs and pulmonary 

diseases, and in vivo PL turnover studies have provided valuable insights of surfactant PL 

metabolism in healthy and disease states. The traditional techniques for analysing species 

in vivo kinetics have their drawbacks. The radioactive labels do not trace target molecules 

and they are harmful to human health. Lipid detection by GC techniques are not 

informative regarding molecular species. The relatively new ESI MS/MS coupled with 

stable isotope labelling techniques offer good tools for analysing molecular species in vivo 

kinetic activities in human. This methodology not only identifies intact molecular species, 

but can also trace multiple targeted species at the same time, which has provided new 

insights of pulmonary surfactant system.  

Due to the comparatively new ESI MS/MS coupled with stable isotope labelling 

techniques applied in lilpidmoics analysis, there is a lack of efficient and comprehensive 

software for dealing the generated data for dynamic PC analysis. In this study a new 

comprehensive, robust, user friendly, and fast running platform, LipidomeLabelling was 

developed for the special needs. It allows PL species of multiple lipid categories and 
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classes as well as their labelled forms to be analysed together in the dynamic analysis. It 

also supports data analysis of labelling studies with more than one type of label used for 

different researching purposes. The software facilitates large-scale high-dimensional data 

processing and dynamic pulmonary surfactant lipidomic analysis. In spite of the 

comprehensive functionalities, the platform can be further improved to serve wider use 

in the future. Firstly, although the platform is able to manage various labelling techniques, 

the current library only offers reference lists of species labelled with deuterium and 13C. 

Therefore, a more comprehensive database will be needed to facilitate studies using 

different labelling materials. Secondly, as the platform offers batch analysis for omics data 

analysis that generates large datasets in parallel, which is not easy to be transferred into 

common statistical software for statistical analysis. Therefore, it would be useful to add 

some statistical functions into the platform or to add some features that can make the 

results compatible with other statistical packages. Thirdly, the platform can also be 

improved in user convenience. For instance, there is only one output format of the PL 

analysis, and more choices of output format can better satisfy the various needs of 

different users.  

This is the first study to characterise the time course enrichment of multiple methylD9 

labelled PC species, and to use them as variables for biomarker discovery analysis for 

pulmonary diseases. As the major lipid class in surfactant PL, the abnormal turnover of 

surfactant PC have been found in various lung diseases, so the surfactant PC kinetics has 

the potential to indicate lung disease. The traditional metabolic flux analysis tries to 

calculate metabolic kinetic parameters, such as synthesis rate, pool size, degradation rate, 

and half-life. However, it is not always possible to calculate these parameters accurately 

due to various limitations. Nevertheless, time course label incorporation of a species in a 
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certain pool contains the integrated information of the species metabolism, including that 

the kinetic parameters can offer, although inexplicitly. This study modelled and used time 

course label enrichment of PC species, from three studies facilitated by ESI MS/MS 

analysis, as variables to compare between different groups, and evaluated their 

significance in distinguishing the two groups for biomarkers discovery analysis.  

This study is the first to model the time course PC label incorporation in bolus label 

infusion experiment, facilitated by SME method. SME has its roots in functional data 

analysis that sees an observed time series as the realisation of the underlying stochastic 

process, i.e. a smooth curve (Berk et al., 2011). The fitted continuous curves can capture 

the time factor of the process and estimate turning points and inflection points that are 

not observed, such as maximum and maximum points. This is a big step forward for the 

current longitudinal PC labelling analysis, which normally characterise the time trend by 

joining up the observations at separate time points. It may lose the time effect, and is not 

possible to approximate any unobserved turning points or inflection points within the 

observation time period. This study has characterised temporal incorporation trend of 

sixteen PC species for group of subjects from different studies, for better understanding 

of PC metabolism in various subjects, whereas previous studies only concentrate on a few 

major species, such as PC16:0/16:0, and the total PC species.  

The modelling of the time course enrichment of multiples species in various sample types 

and different subject groups of the three studies has provided massive new insights of in 

vivo kinetics of surfactant PC species. By comparing the early time point enrichment level 

of multiple species, it is possible to compare relative fractional appearance, synthesis and 
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secretion rate among these species. In addition, by comparing the shapes of time curves 

of multiple species, it allows us to recognise species with different metabolisms. In the 

mice study, BALF and lung PC with 16:0 acyl chain present much higher fractional 

appearance rate than those with 18:0 indicated by the high enrichment level at early time 

points. The delayed increasing and low level of enrichment of the species with 18:0 

suggest a different metabolism comparing with the other species. In the ARDS study, the 

PC species synthesised through PEMT pathway in healthy people have shown multiple 

waves of incoming labelled PC species into the plasma pool within 96 hour time frame 

after label infusion. The ETA PC enrichment curves of NRDS patients illustrate low 

incorporation and late arrival of labelled species into the pool. The enrichment curves for 

ARDS and NRDS patients vary largely among individuals, indicating heterogeneous flux 

kinetics of PC species between them. The modelling of time course PC label incorporation 

takes into account the time factor and simulates the dynamic biological process, which 

lays the basis for the biomarker discovery analysis. 

The biomarker analysis for the GM-CSF beta chain depleted mice and normal mice were 

conducted first for validating the methodology for the following application to the more 

complicated clinical data. The mice models have clear and consistent incorporation 

patterns among individuals within each group. The most significant differences were 

found between control and KO mice groups with large Ft values, and small difference 

were between control age groups with very small Ft values. The characteristic lung 

surfactant PC species and those with 16:0 acyls are more significant than others in 

discriminating the control and KO groups. Most of the PC species in BALF are highly 

significant and are promising potential biomarkers, and in lung tissue there are also many 

significant species, although fewer than those in BALF. The comparisons between control 
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and high dose antibody treated mice showed lower enrichment at the increasing part of 

the curves of the high dose group than the control, indicating the difference in PC 

turnover, and a few species are significant in identifying the differences. However, the Ft 

values suggest that the difference between control and high dose group recognised by 

the species are much smaller than that between the control and KO groups. The Ft range 

obtained from the mice analysis is a good reference to be compared to the analysis of less 

clear clinical scenarios, in which the group difference are less significant, to evaluate to 

what extent patient groups are different from healthy groups. The analysis between the 

off ventilation and on ventilation NRDS patients suggests that the time course enrichment 

of surfactant PC is higher in the weaker ventilated infants, but there is no significant 

species in distinguishing the two groups, largely due to the small group difference and 

large variances among individual patients. Besides, ETA sample is not as effective as BALF 

in recovering pulmonary surfactant, which can be the reason that the surfactant PC 

dynamic biomarker analysis for the NRDS patient ETA samples are not as significant as 

that of the BALF in the mice study. 

The dynamic biomarker analysis of hepatic PC synthesised through PEMT pathway for 

NRDS patients groups as well as ARDS patients and healthy people have provided valuable 

insights of surfactant PC turnover. By integrating the result with the analysis of surfactant 

PC, it was found that the physically better group have lower label incorporation of 

surfactant PC than the physically worse group, whereas the situation is opposite for the 

PEMT pathway PC, where the incorporation of the physically better group is higher than 

the physically worse group. The off ventilation group of NRDS patients have lower PC 

incorporation in ETA samples but higher PEMT PC label incorporation in plasma than the 
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ventilated group. The healthy group has lower surfactant PC incorporation at certain time 

points (Dushianthan et al., 2014), but higher PEMT PC label incorporation than ARDS 

group. 

Although the analysis of PEMT PC species have not been recognised as significant in 

distinguishing groups in the two analysis, large gaps between group means of healthy and 

ARDS, i.e. L values, were recognised in many species. Due to three heterogeneous 

patients in the ARDS group, the distance between the two groups has been largely 

narrowed and the variance of ARDS group increased, resulting in low Ft values. An 

improved grouping and proper management of the heterogeneous patients may generate 

much better results and find promising biomarkers. 

SME method worked well in modelling the time course label incorporation, and was able 

to manage the issues of small sample sizes and missing values. It provides efficient tools 

for group comparison for biomarker discovery analysis.  It can tackle the issues of 

different sample collecting times between groups by modelling over the whole time 

period and comparing two groups over the overlapping time periods. The only issue with 

the method is that a couple of models might be slightly over smoothed in the study, and if 

that is the case, it could somehow affect the se values and hence the Ft statistics. This 

issue should be further investigated in terms of what cause this issue and if it is 

appropriate to use AICc criteria in all situations.  

The time course modelling and biomarker discovery analysis carried out in the three 

studies have demonstrated the importance of the following points. Firstly, the more 

experimental subjects there are, the better approximation of the underlying population 

we can get. The scarce enrichment data of ETA PC of the off ventilation NRDS patients has 
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shown weak representation of the underlying group. Although the SME method can deal 

with small sample size with its correcting features, it is always the best solution to have 

more subjects when possible.  

Secondly, the more time points within a time frame are observed, the more reliable the 

model fitting will be. The SME method models the time series data based on the values 

from the observed time points, and is able to approximate turning points and inflection 

points within the observation period. However, it is still possible that some important 

features may be lost due to missing observations at some critical time points, and even 

SME method would not be able to capture it, resulting in incorrect curve shapes. An 

example is shown in Figure 36, where the plot of D9PC16:0/16:0 in BALF of mice sample is 

compared with the plot of the same data but with an extra fake time point observation 

between the 24 and 48 hour. The time trend has been dramatically changed by adding 

the fake observation. This indicates that sample collecting time should be carefully 

designed in an experimental study to cover the critical part of changing as much as 

possible, ideally at least two observations for each curvature between two stationary 

points for the whole biological process, although this design will need expertise 

theoretical and empirical knowledge with appropriate assumptions. 
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Thirdly, grouping is critical important for biomarker discovery. The groups in the three 

studies are classified based on the current knowledge and assumptions, some of which 

may not be appropriate for PC label incorporation biomarker analysis. This can be due to 

the heterogeneous subjects within groups as well as wrong assumptions. The three 

patients in ARDS group with extremely high PEMT pathway PC incorporation largely lift 

the group mean and narrows the gap between the groups, which is an example of 

grouping issue due to heterogeneity within a group. The Ft analysis found no difference 

between the two groups of NRDS patients, and the great variances occurred in each 

groups, which is another example of heterogeneity individuals as well as the 

inappropriate grouping criteria. An ideal grouping should generate large group distance 

and small individual variation.  

This study concentrates on the feasibility of using time course PC incorporation as 

biomarkers for pulmonary diseases. There are still a lot to be done in future studies. 

Firstly, the modelling of the PC species has provided large amount of information on their 

metabolism, which has not been fully explored. More investigation could be done on the 

Figure 36: Time course enrichment of D9PC16:0/16:0 enrichment in BALF of 169 days 
control mice group (left) and the same data with an extra fake observation of with a 
small value of 0.5% at 36 hour (right). 
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turnover patterns of individual PC species in different compartments, hydrolysed species 

turnover patterns, investigation of surfactant secretion by comparing species between 

lung and BALF, and transporting information by comparing those between plasma and 

ETA samples. These would give wider views and deeper insights of PC species metabolism. 

Secondly, the time course enrichment modelling in this study does not report confidence 

interval in the results. This is because the main purpose is to investigate possible 

biomarkers by comparing between species, and confidence interval of each group mean 

curve is not much of a concern in this context. The confidence interval can be further 

investigated in future studies, especially when biomarkers are identified and the value 

range should be defined in both groups for diagnostic or prognostic purposes. Thirdly, in 

this study the time course PC enrichment of the entire observing time frame was 

modelled and used as a variable for biomarker analysis. In future studies, it can also be 

considered to use enrichment within certain time window, in which the two groups have 

the largest gap and smallest variation, or even as precise as enrichment at certain time 

points, as biomarker variables, which may be more significant, efficient and applicable.  

Fourthly, SME can cope with large numbers of variables for biomarker discovery. Berk et 

al. (2011) has evaluated around 2000 variables in a biomarker analysis. A typical 

biomarker analysis by SME method involves calculating moderated Ft values of each 

variables, simulating the Ft distribution and selecting the most significant species as 

potential biomarkers. However, the number of species assessed in this pilot study is 

limited due to the detectability of labelled species as well as their capability in indicating 

PC metabolism. Therefore, the Ft values were not moderated and the distributions were 

not determined. In future studies, it can be considered to add more relevant and 
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detectable species into the analysis, for distribution determination and biomarker 

selection. Lastly, in this study, only PC species were analysed for dynamic biomarker 

discovery for lung diseases. However, kinetics of other major surfactant phospholipids like 

PG, PI and PE may also be indicative, which is worth to be assessed, although the labelling 

techniques for these species might be different from those for PC species. 
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