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Pulmonary diseases has long suffered from a lack of clinical biomarkers for disease diagnosis,
prognostic prediction and treatment response. Pulmonary surfactant is critically important for
optimal lung function. While altered surfactant function, concentration and composition have
been reported in patients with various lung diseases, these changes have also yet to be translated
into clinical practice. An alternative approach to measurement at a single time point is to quantify
time course kinetics of substrate fluxes through metabolic pathways. Consequently, in this thesis,
incorporation of the stable isotope-labelled substrate deuterated methyl choline chloride
(methylDscholine) into the major surfactant phospholipid phosphatidylcholine (PC), combined
with electrospray ionization tandem mass spectrometry (ESI MS/MS), was employed to monitor
the metabolic flux of surfactant phospholipid synthesis in vivo. Time series PC data acquired
through ESI MS/MS coupled with stable isotope labelling techniques from three studies was
analysed using the smoothing spline mixed effect method (SME). This is a pilot study applying
time course label enrichment of multiple surfactant PC species as biomarkers to phenotype
animal models and patients with various lung diseases.

There is no effective software for data processing mass spectrometry analysis of time series
substrate incorporation into multiple molecular species products. Consequently, a bioinformatics
platform Lipidomelabelling was developed to facilitate data analysis of dynamic labelling studies
and was used for the following biomarker discovery analysis.

Time course methy/Dq label enrichment of 16 PC species was modelled using SME method for all
the subjects of group pairs in three different studies, which makes the foundation of the
multivariate time course biomarker discovery analysis for lung diseases. In a study, a Ft statistic
was calculated as the scaled difference between the time course label enrichment of two
contrasting groups for a single PC species, and the Ft statistics for all the species were ranked and
according to their significance in distinguishing the two groups, for potential biomarker
identification. The surfactant PC kinetic biomarker analysis of a mouse model shows that time
course label enrichment of multiple PC species significantly differentiated between wild type mice
and granulocyte macrophage colony stimulating factor (GM-CSF) beta chain knock out mice.
However, this methodology failed to provide useful biomarkers in the clinical conditions examined,
preterm infants at risk of neonatal respiratory distress syndrome and adult patients with acute
respiratory distress syndrome compared with healthy volunteers. While differences could be
determined between grouped data, subject heterogeneity precluded provision of diagnostic
individual for individual patients.
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Chapter 1

Chapter1  Introduction

1.1 Biomarker discovery in pulmonary diseases

A biomarker is a biological characteristic that can be objectively measured and evaluated
as an indicator of normal biological processes, pathogenic processes, or pharmacological
responses to a therapeutic intervention (Atkinson et al., 2001). Biomarkers can be
characteristic properties and molecules, and biomarkers that are of the most interests

include genes, proteins, metabolites, and lipids.

Pulmonary diseases have been suffering from a lack of sensitive and specific biomarkers
in clinical practice. The diseases are usually diagnosed based on history of symptomes,
physical examinations, pulmonary function tests, radiology, and histopathological tests
(Chen et al., 2016; Kim et al., 2017). However, the clinical data is often not sufficient for
practitioners to accurately and efficiently identify diseases excluding other diseases with
similar characteristics, identify patient subgroups for tailored treatment, monitor and
evaluate treatment responses, or predict the disease progression. This is largely due to
the complexity and the poor understanding of most of the lung diseases. Therefore, new
biomarkers are needed for disclosing the underlying mechanisms of the diseases as well

as facilitating effective clinical management.

The lethal acute respiratory distress syndrome in adults (ARDS) has a high mortality rate
up to 50% (Mdca et al., 2017). Although there are various triggering conditions, ARDS is
diagnosed based on the fulfilment of certain clinical diagnostic criteria (Fan et al., 2018),
which lack specificity and allow for inclusion of heterogeneous patients groups. The
clinical management involves supportive ventilation strategies and treatment for some

general conditions, such as infection. There has been no pharmacological treatment, due
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to the lack of understanding of disease mechanisms and indicators for guiding customised
treatment. Asthma is a highly prevalent pulmonary disease worldwide resulting in
250,000 deaths annually (D'Amato et al., 2016). There has been little improvement in the
clinical management of Asthma for decades, despite the tremendous effort. The diagnosis
is mainly based on disease history, physical examination and allergy test, which are
inadequate to stratify heterogeneous patient groups. Effective markers are not available
for identifying patients who may be responsive to the limited treatments options
(Miranda et al., 2004; Rosenberg et al., 2007; Shaw et al., 2007; Kim et al., 2017). The
debilitating chronic obstructive pulmonary disease (COPD) is one of the leading causes of
death worldwide with a rising death rate (Mathers and Loncar, 2006). The natural history
of COPD is often marked by periodic exacerbation, in which symptoms of breathlessness
and sputum production worsen acutely. Disease progression of COPD is variable, and
periodic acute exacerbations only happen in some patients, leading to morbidity and
mortality (Lomas et al., 2009). However, there are no reliable indicators that can help
assess the state of COPD or predict its progression of each patient for guiding and
monitoring treatment intervention (Il Yoon and Sin, 2011; Chen et al., 2016). For other
lung diseases including idiopathic pulmonary fibrosis (Ohnishi et al., 2002), pneumonia
(Baughman et al., 1993), sarcoidosis (Griese, 1999) and cystic fibrosis (Gray et al., 2017),
challenges remain in the diagnosis, prognosis and assessment of disease activity and
response to treatment. New biomarkers are urgently required for elucidating the
underlying pathophysiological mechanisms of these diseases for improving the clinical

outcomes and accelerating drug development.

The ever-growing interests in biomarker discoveries in lung diseases have driven a large

amount of investigations on hundreds of potential biomarkers of various forms, such as
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proteins, genes, cells, lipids etc. The most intensively studied biological markers are
protein indicators, which are involved in various disease mechanisms at different stages

of the pathological processes.

Proteins involved in inflammation pathways are of the highest interest in biomarker
studies, as inflammation is a common characteristic in most pulmonary diseases. In BALF,
plasma, sputum and serum samples, some members of the large family of inflammatory
cytokines interleukins (ILs), which are mediators in the inflammatory processes, have
been shown to be correlated with pathogenesis of various diseases, like ARDS (Park et al.,
2001), neonatal respiratory distress syndrome (NRDS) (Terpstra et al., 2014), asthma
(Rosenberg et al., 2007) and cystic fibrosis (Gray et al., 2017). Apart from ILs, other
inflammatory related proteins, such as matrix metalloproteinase family (Cederqvist et al.,
2001; Sweet et al., 2001) and C-reactive protein (Bajwa et al., 2009) in BALF, tracheal
aspirate and plasma samples are also of great interest in the biomarker studies of lung
diseases. Potential protein indicators of epithelial and endothelial cell damages are also
widely investigated for their suitability of being used as biomarkers. Epithelial cell damage
markers including Krebs von den Lungen-6 and soluble receptor for advanced glycation
end products in plasma and BALF are elevated with ARDS development (Sato et al., 2004);
(Jabaudon et al., 2015), interstitial lung diseases (Ohnishi et al., 2002) and acute lung
injury (Uchida et al., 2006). Endothelial related markers for lung injuries include
Endothelin 1 (Boscoe et al., 2000) and angiopoietin-2 (Calfee et al., 2012), owing to their
pulmonary vasoconstriction and vascular permeability mediating function. Surfactant
proteins are important components of pulmonary surfactant system, which are essential
for optimal lung function. Biomarker studies of the main surfactant proteins including

surfactant protein A (SP-A), surfactant protein B (SP-B), surfactant protein C (SP-C) and
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surfactant protein D (SP-D) have also been largely conducted for various lung conditions
(Eisner et al., 2003); (Cheng et al., 2003; Lomas et al., 2009). Protein biomarkers involved
in other disease mechanisms, such as coagulation, fibrinolysis, fibrosis, extracellular

matrix remodelling, are investigated as well.

Cell and genetic biomarkers are also widely analysed for their ability in indicating disease
pathogenesis. For example, eosinophils and neutrophils play an important role in the
body's response to allergic reactions. They are found to be linked with asthma (Bousquet
et al., 1990; Miranda et al., 2004; Shaw et al., 2007) as well as other diseases such as
COPD (Stanescu et al., 1996). The genetic biomarkers of interests usually have their
products, such as proteins, that have shown significance in indicating abnormalities in
certain diseases. Although biomarker studies have been focusing predominantly on
targeted individual molecules, omics analysis including proteomics, genomics,
transcriptomics, and metabolomics have also been carried out for biomarker analysis
(Wheelock et al., 2013). The benefit of omics analysis is the possibility of revealing
pathological mechanisms by probing wide range of markers at different functional

biological levels at the same time.

Despite the tremendous effort in the last few decades, there are hardly any new
biomarkers established in clinical settings for pulmonary diseases with proven benefits,
requiring more types of biomarkers to be investigated. Lipid biomarkers have been
intensively used in various diseases, such as cancer (Yan et al., 2018), cardiovascular
diseases (Li et al., 2017), diabetes (Dorcely et al., 2017) and Alzheimer’s disease (Zarrouk
et al., 2018) etc. Nevertheless, there are very few lipid biomarker studies for pulmonary
diseases apart from some lung cancer studies (Ravipati et al., 2015; Yu et al., 2017).

Nearly half decades ago, it was found that the ratio of fetal lung secreted lecithin



Chapter 1

(phospholipids) to sphingomyelin presented in amniotic fluid was a significant indicator in
determining the fetal lung maturity (Gluck and Kulovich, 1973). However, the studies of
surfactant phospholipids (PL), the major component of pulmonary surfactant that keeps
normal lung functioning, have not provided any efficient clinical biomarkers for other
pulmonary conditions ever since, although their abnormality have been widely found in

various lung diseases.

1.2 Pulmonary surfactant

Pulmonary surfactant is a surface-active lipid-protein complex secreted by alveolar type Il
epithelial cells (AT Il) through a highly regulated metabolic process (Halliday, 2008). It
reduces the high surface tension at the air-liquid interface of the alveoli, which prevents
collapse of lung at the end of expiration, and reduces the effort that is needed to expand
the lung during inhalation. Pulmonary surfactant is critical for optimal lung function.
Deficiency or dysfunction of lung surfactant are associated with various lung diseases and
can even lead to severe life-threatening lung failure (Glasser and Mallampalli, 2012;

Akella and Deshpande, 2013).

1.2.1 Pulmonary surfactant composition

Surfactant lipid is the main component that accounts for around 90% of the lung
surfactant (Veldhuizen and Haagsman, 2000), and comprises mainly phospholipids as well
as some other lipids such as cholesterol. The identified protein components of surfactant
consist of SP-A, SP-B, SP-C and SP-D. SP-B and SP-C are hydrophobic, and their function is
to increase the absorption rate of phospholipids (Hawgood, 2004). SP-A and SP-D are

hydrophilic, and they contribute to surfactant homeostasis and pulmonary immunity.
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Phospholipids are amphiphilic lipids that consist of hydrophobic fatty acids and a
phosphate based hydrophilic head, joined together mostly by a glycerol molecule
(glycerophospholipids). They make up approximately 80-85% of the lipid component of
lung surfactant (Agassandian and Mallampalli, 2013). Among the phospholipid classes,
phosphatidylcholine (PC) is the principle constituent and the remainder include
phosphotidylglycerol (PG), phosphatidylinositol (PI) and phosphatidylethanolamine (PE).
The most abundant PC species present in human lung surfactant is the saturated
dipalmitoylphosphatidylcholine (DPPC) (Figure 1)(Postle et al., 2001), which is the major

surface-active molecule that reduces the surface tension at the air-liquid surface of

alveoli.
o o}
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Figure 1: Molecular structure of dipalmitoylphosphatidylcholine (DPPC)
1.2.2 Surfactant metabolism

1.2.21 Synthesis

Pulmonary surfactant components are synthesised in the endoplasmic reticulum (ER) of
AT Il cells, where surfactant lipids and proteins are synthesised at smooth ER and rough
ER respectively (Olmeda et al., 2017a). De novo biosynthesis of the most abundant and
functionally important surfactant PC occurs via cytidine diphosphocholine (CDP-choline)
pathway, which will be introduced in detail in section 1.3.2. However, CDP-choline
pathway is not predominant for surfactant DPPC production. It is shown that in isolated
rat lung AT Il cells only ~45% of DPPC is de novo synthesised, while 55% - 75% comes from

remodelling pathway (Batenburg, 1992); (Caesar et al., 1991). The remodelling pathway
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of DPPC involves de-acylation of monounsaturated PC by phospholipase (Hook, 1991),
which hydrolyses unsaturated fatty acids at the sn-2 position of PC and generates lyso-PC,
followed by re-acylation with saturated palmitic acid (16:0) species by acyl
CoA:lysophosphatidylcholine acyltransferase (LPCAT1) (Batenburg et al., 1979; Voelker
and Snyder, 1979). It is also suggested that LPCAT1 is involved in cross-talk between de
novo synthesis and remodelling pathways of phospholipid balance (Butler and
Mallampalli, 2010). Overexpression of LPCAT1 increased degradation of choline
phosphotransferase (CPT) to supresses the de novo synthesis. LPCAT1 is also involved in

the remodelling pathway of dipalmitoylphosphatidylglycerol.

The biosynthesis of surfactant PC can be affected by various factors. Activities and
amount of enzymes catalysing the sequential reactions have direct impacts on the
biosynthesis (Goss et al., 2013). Increasing enzyme activity and enzyme mass may result
in increased synthesis, vice versa. Certain hormones, such as thyroid hormone, oestrogen
and glucocorticoids can also regulate PC biosynthesis by changing the activity and
amount of the enzymes (Khosla et al., 1980) or increasing the availability of precursors
and substrates involved in the PC synthesis.

1.2.2.2 Lamellar body formation, packaging and transportation

After synthesis, surfactant lipids and hydrophobic proteins SP-B and SP-C are transported
to the lamellar bodies (LB) for storage and processing. Phospholipids are likely to be
transported to lamellar bodies directly, whereas SP-B and SP-C are initially packed into
multivescular bodies and subsequently transported from Golgi apparatus to the lamellar
bodies (Weaver et al., 2002). SP-B plays a crucial role in the packaging of surfactant

phospholipids and the proper formation of LB (Foster et al., 2003).
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Upon arrival at lamellar bodies, surfactant lipids transverse the limiting membrane of LB
facilitated by ATP-binding cassette (ABC) transporters. ABCA3 is found in the limiting LB
membrane, which is essential for normal mechanism for surfactant synthesis and storage
(Ban et al., 2007). It provides energy needed for the translocation of lipid into the lumen
of LB by ATP hydrolysis. ABCA3 gene mutation was found to cause fatal surfactant
deficiency in newborns (Shulenin et al., 2004).

1.2.2.3 Surfactant secretion

The lamellar bodies are secreted into the extracellular matrix through exocytosis.
Mechanical stretching of alveoli during inhalation is the primary physical stimulus for
secretion to take place. The distention may lead to elevation of cytoplasmic calcium
concentration in alveolar cells (Wirtz and Dobbs, 1990), which triggers surfactant
secretion. The elevated calcium leads to fusion of LB with the plasma membrane, fusion
pores are then formed, followed by the release of surfactant. Agents that stimulate
surfactant secretion includes terbutaline, forskolin, ATP, while SP-A is found to inhibit the
secretion (Dobbs et al., 1987) .

1.2.24 Surfactant in extracellular space

After secretion, surfactant content is unpacked into the forms of lamellar body like
particles, multi-layer packages and tubular myelin. SP-B and SP-C play a role in the LB
unpacking process. SP-A and SP-B are suggested to be essential for the formation of

tubular myelin (Cabre et al., 2009).

These organised forms of membranous assemblies provide lipid-protein complexes for
the formation of the surface-active monolayer at the air-liquid interface of the alveolus.
The insertion of surface-active material into the interface is facilitated by SP-B and SP-C

(Hobi et al., 2016), and the adsorption rate depends on the concentration of two forms of
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the surfactant components in the air space, large aggregates and small aggregates. Large
aggregates are the surface active form of surfactant, which can be isolated from tubular
myelin, secreted lamellar bodies and large lipid vesicles. Once being used, they are
dissociated into small aggregates, the small unilamellar vesicles, which are not surface
active.

1.2.25 Surfactant degradation and recycling

The surfactant component dissociated from the surfactant monolayer are either
internalized by AT-II cells, or cleared by alveolar macrophages and respiratory airways. In
the situation of lung injury or other lung conditions, surfactant may leak into the
circulation. Internalised surfactant could be remodelled and incorporated into LB for the
subsequent secretion or degraded by lysosomes. SP-A has been found to promote the
internalisation process, mediated by SP-A receptor and phospholipids were found
internalized together with SP-A in rat AT Il cells (Wissel et al., 2001).The absence of SP-D
are linked with accumulation of DPPC in the alveoli (Postle et al., 2011). SP-C is also
speculated as a contributor to extracellular surfactant metabolism, either for degradation

or recycling for compositional “re-programming” or both (Olmeda et al., 2017b).

Macrophages are critical for surfactant catabolism and are responsible for about 20% of
its clearance. Surfactant saturated PC were observed to have increased four to eight folds
in the lungs of granulocyte-macrophage colony-stimulating factor (GM-CSF) deficient
mice and GM common receptor B depleted mice, with normal synthesis and secretion
(Ikegami, 2006). This is caused by the defect in surfactant catabolism due to impaired

alveolar macrophages.
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1.23 Surfactant alteration in pulmonary diseases

Pulmonary surfactant is a complicated and tightly regulated system, and its components
are closely coordinated and highly correlated. Dysfunction of any part of the system could
result in surfactant alterations, and alterations at any level of metabolism could lead to or
be associated with respiratory conditions (Bernhard et al., 1997; Glasser and Mallampalli,
2012; Naroji et al., 2015). Surfactant alteration has been observed in most lung diseases,
which is a good indicator of abnormality of surfactant metabolism as well as impaired

lung function.

The most aggressive lung condition of respiratory distress syndrome are associated with
significant surfactant alteration. Surfactant deficiency is the cause of NRDS due to lung
immaturity and the application of surfactant replacement treatment has greatly improved
the mortality rate. The ARDS, another fatal secondary lung disease, is also characterised
with abnormal surfactant. ARDS patients have decreased fractional concentration of PC,
PG and increased concentration of Pl, PE and PS, accompanied with alveolar surface
tension increase (Gunther et al., 2001). Moreover, Schmidt et al. (2007) found that the
concentration of major surface-active species DPPC was significantly reduced and the
number of unsaturated PC species were increased. Surfactant alterations have also been
found in other less aggressive lung conditions. Pulmonary alveolar proteinosis (PAP) is a
rare disorder of surfactant catabolism characterised with an accumulation of surfactant
and alteration in the constituent lipids. Whitsett et al. (2015) reviewed the genetic
disorders of surfactant homeostasis including abnormalities in surfactant packaging,
function and degradation caused by mutations in the genes encoding SP-B, SP-C and
ABCA3. These mutations are associated with interstitial lung disease and chronic lung

diseases. Bacterial and viral infection can also lead to surfactant PC alteration. Wu et al.
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(2007) have found reduced surfactant DPPC synthesis in mice infected with mucoid
isolate of P.aeruginosa bacterial, as a result of reductions in mRNAs and immunoreactivity
levels for CTP: phosphocholine cytidylyltransferase. Changes in fatty acyls on
phospholipids were also observed in bacterial pneumonia (Baughman et al., 1984).
Human adenovirus can alter surfactant phospholipid composition (Miakotina et al., 2007).
Apart from the pathogenic germs, surfactant phospholipids also react to the non-
pathogen insult such as smoking. Decrease in phosphatidylcholine levels and the increase
in phospholipids hydrolysing activity of phospholipase A2 were observed in mice after

being exposed to cigarette smoke (Agarwal et al., 2014).

As stated above, alterations of surfactant and especially surfactant PLs are highly
associate with various lung conditions. However, the underlying mechanisms of the
alterations are still not well understood. Better knowledge of in vivo surfactant PL species
activities can help gain better understanding of disease mechanisms as well as explore
biomarkers that can be indicative of lung abnormalities. The in vivo kinetic studies of
surfactant phospholipids have been carried out for decades since the last century,
benefiting from the ever-developing isotope labelling techniques and label detection
techniques, particularly the presently dominated stable isotope labelling coupled with

mass spectrometry techniques.

1.3 Dynamic surfactant phospholipid analysis with isotope labelling and

mass spectrometry techniques

1.3.1 Mass spectrometry techniques

History of mass spectrometry (MS) began at the beginning of 19th century (Griffiths,

2008), which has experienced huge development ever since and was applied into the

11
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research of physical, chemical and biological sciences. Over the past few decades, MS has
become the essential analytical tool in biological research (Finehout and Lee, 2004),
which enables scientists to understand the biological systems at the molecular level.
Having undergone tremendous technological improvements, with the high sensitivity and
high-throughput manner, MS has become an irreplaceable tool in proteomics,
metabolomics and the relative young lipidomics (Di Girolamo et al., 2013).

1.3.1.1 Sample introduction approaches: shotgun and chromatography MS analysis

Generally, two sample introduction approaches commonly used in MS based lipidomic
analysis are direct infusion, also called “shotgun”, and chromatography (Page et al., 2009).
Shotgun approach does not require any sample pre-separation procedures before
injecting samples into the MS analyser. This allows MS to analyse all the lipid molecules in
a sample simultaneously (Lin et al., 2010). Chromatography approach needs at least one
extra step of sample separation before the sample goes into the mass spectrometer
(Coskun, 2016). In this way, different molecules in the biological samples are separated in
advance for better identification when analysed by the MS. However, separated detection
of individual molecules can result in inconsistent ion suppression among the molecules in
the same sample, which may lead to inaccurate measurement.

1.3.1.2 lonisation methods

lonisation is the process by which molecules acquire charges and turn into molecular ions
before being analysed by MS analysers. A variety of ionisation sources have been used for
ionising molecules. Before the 1980s, Electron ionization (El) was the primary ionisation
source for mass analysis, and now it is mainly used for gas chromatography (GC) MS
analysis in lipidomic research (Gordin et al., 2008). The technique works by bombarding

gas phase molecules by a beam of high energetic electrons to produce ions, and due to
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the extensive fragmentation power, it is also called hard ionisation technique. However,
its usage is limited to analysing smaller molecules with molecular weight under 600,
which is deficient in measuring larger biological compounds. This led to the development
of electrospray ionisation (ESI) and matrix assisted laser desorption ionisation techniques.
ESl is also well known as “soft ionisation”, is the primary ionisation technique used in
biological research nowadays, due to its advantage of keeping the entire macromolecules
from being dissociated. With ESI, sample solution is sprayed from the tip of a metal nozzle
with a potential to form charged droplets, which are subsequently evaporated using dry
gas or heat to release ions (Ho et al., 2003). Matrix assisted laser desorption ionisation is
another type of ionisation technique that causes transfer of a sample from the condensed
phase to the gas phase through laser excitation and ablation of the sample matrix (Karas
and Kruger, 2003). It is widely used for imaging mass spectrometry analysis.

1.3.13 MS analysers for lipidomic data acquisition

The commonly used MS analysers for lipid data acquisition include quadruple, ion traps,
time-of-flight, Orbitrap and ion cyclotron resonance (Wolff and Stephens, 1953; Marshall
et al., 1998).These analysers have undergone numerous modifications over the last few
decades to be able to interface with various ionisation sources as well as to achieve

better performance in accuracy, specification, resolution, scan speed and mass range.
Quadrupole analyser is currently the most commonly used mass analyser. It can be
interfaced with El, ESI ionization sources and is capable of analysing molecules with mass
over charge (m/z) range between 100 and 4000, which is suitable for macro biomolecules
including proteins and lipids that are typically under 3500. Quadrupole mass analysers

can be put together to perform tandem mass spectrometry data aquisition (Johnson et al.,

1990). Triple quadruple analyser with three quadrupoles placed in series can carry out
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collision-induced dissociation on molecules to offer extra component information of

molecules for better identification, which is widely used in lipidomic analysis.

Different types of MS analysers have their own advantages and limitations. Quadrupole
analysers can be linked together to perform targeted breakdown scans, but it has limited
resolution and the peaks may need to be tuned as a function of mass. Time of flight mass
analyser scans fast and is able to analyse highest practical mass range, although it is not
efficient in breaking down scans. Fourier transform ion cyclotron resonance and Orbitrap
use resonance and Fourier transform to provide the highest mass resolution among all
mass analysers but have limited dynamic range and sampling speed. With different
characteristics of the MS analysers, there is no ideal mass analyser that is good for all
applications.

1.3.1.4 Tandem mass spectrometry

The number of steps the mass spectrometry performs for an analysis is dependent upon
research requirements. One-step MS is usually for a general detection of molecules in a
sample based on their m/z values, sometimes combined with chromatography that offers
time information for further recognition of the molecules detected. Tandem mass
spectrometry (MclLafferty, 1981) is advantageous in targeted MS analysis, which is able to
monitor various molecules with certain structure by specifying a certain part of them. A
widely used technique is the two-step tandem mass spectrometry (MS/MS) and the
instruments can be assembled by combinations of mass analysers (deHoffmann, 1996). In
triple quadrupole MS/MS (Hsu and Turk, 2001), the first quadrupole analyser is used to
scan entire molecular ions before they are introduced into the second quadrupole, which
is called a collision cell. Within the collision cell, ions are collided into fragments using

argon or helium gas. In the third quadrupole the generated fragments are analysed. This
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method offers structural information of the detected molecules, which has been used to
sequence peptides (Shevchenko et al., 2002)and structurally characterise carbohydrates
(Carr et al., 1993), small oligo-nucleotides (Ni et al., 1996) and lipids (Shaner et al., 2009) .

1.3.1.5 Direct infusion ESI MS/MS for analysis of dynamic lipidomics with stable isotope

labelling

The combination of direct infusion with triple quadruple ESI MS/MS techniques facilitates
the rapid lipidomic analysis with high sensitivity, specificity and stability. The ESI
technique keeps intact molecules for high throughput lipidomic analysis. Direct infusion
approach allows lipid molecules in a sample to be introduced into MS analyser
simultaneously. This enables all analytes of interest including labelled and unlabelled lipid
species to be analysed under identical ionisation conditions (Pulfer and Murphy, 2003),
which is critical to the labelling studies in terms of the measurement accuracy. The
tandem MS approach allows monitoring molecules with certain structure by specifying
their fragment ions, which is especially useful in investigating certain classes of molecules
both in their labelled and unlabelled forms. The instrument can switch quickly between
different modes to scan different classes of lipid species almost in parallel. These
characteristics of the direct infusion ESI MS/MS makes it a perfect tool for stable isotope

labelling analysis of dynamic lipidomics (Shaner et al., 2009; Harkewicz and Dennis, 2011).

1.3.2 PC synthesis pathways and methy/Ds-choline labelling assessment with ESI MS/MS
1.3.2.1 PC synthesis pathways

De novo biosynthesis of PC in human relies on two molecular pathways (Gibellini and
Smith, 2010). The CDP-choline pathway is the primary PC synthesis pathway that operates

in all nucleated mammalian cells (Kennedy and Weiss, 1956). It starts with choline

phosphorylation to phosphocholine by choline kinase (CK). In the second reaction,
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phosphocholine is converted to CDP-choline by CTP:phosphocholine cytidylyltransferase
(CCT). The last step of synthesis is the formation of PC by choline phosphotransferase
(CPT), which transfers phosphocholine from CDP-choline to PC. Among the three-step
process, the second reaction is considered as being the rate-determining step. Surfactant

DPPC is synthesised de novo through CDP-choline pathway in AT Il lung cells.

The second PC synthesis pathway is the phosphatidylethanolamine N-methyltransferase
(PEMT) pathway by hepatocytes (Vance et al., 2007). PEMT enzyme is found in
endoplasmic reticulum and mitochondria-associated membranes. It converts PE to PC via
three sequential methylation reactions, with S-adenosylmethionine (SAM) as methyl
donor in each step. The PEMT pathway contributes approximately 30% of PC biosynthesis
in liver, while CDP-choline pathway generates around 70% (Vance, 2014).

1.3.2.2 Deuterium labelled PC by methy/Ds-choline chloride

The use of methy/Do-choline chloride for PC stable isotope labelling, combined with ESI
MS/MS determination technique is a novel way for dynamic PC metabolic analysis (Postle
etal., 2001; Postle et al., 2004). Through label incorporation, deuterium atoms replace
the hydrogen atoms on the methyl groups of the newly synthesised PC species.
Consequently the labelled species have a higher mass than the endogenous species, both
of which can be identified by MS. ESI MS/MS can perform precursor scans for deuterium
labelled PC species detection, which measure the masses of both entire molecular ions
and the specific fragments where the methyl groups are positioned. There are three
methyl groups on a PC species, and each methyl group has three hydrogen atoms.
Therefore, if a PC species are deuterium labelled on all three of its methyl groups, its
mass will be nine units higher than the endogenous PC, which happens to the CDP-choline

pathway synthesised PC species in the deuterium labelling studies, as well as PEMT
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pathway synthesised PC if each of the three sequential methylations involves a methy/D3
labelled S-adenosylmethionine. Similarly, if a PC species is deuterium labelled on one or
two of its methyl groups, its mass will be three or six units higher than its non-labelled
form. This can occur to the PEMT pathway synthesised PC species, which has undergone
one or two methylation reactions involving labelled S-adenosylmthionine. The deuterium
labelling process on the methyl groups of newly synthesised PC through both CDP-choline

pathway and PEMT pathway are shown in Figure 2.
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Figure 2: Deuterium labelling on PC methyl group through CDP-choline pathway and
PEMT pathway (Dushianthan et al., 2018).

~

The detection of deuterium labelled PC species is carried out by performing precursor
scans using ESI MS/MS. In a typical precursor scan, as illustrated in Figure 3, a lipid sample
in solvent is infused into ion source for ionization, and then the sample is sprayed out and

desolvated to form gas-phase molecular ions. The first MS analyser MS1 sorts and selects
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the molecular ions to be dissociated into fragments in the collision cell. In the second
analyser MS2, fragment ions with specified m/z are selected for the subsequent detection
and recording by a detector. The intensity of the fragment ions will be taken as the

intensity of their precursor molecule ions.

lon Source MS 1 Collision cell MS 2 Detector
lons lons of Fragments Selected
In gas selected of selected fragments
Sample phase . mass Collision induced ions  Fragment ion Fragments
ionization selection dissociation selection detection

Figure 3: A schematic diagram of precursor scanning process of ESI MS/MS analysis.

The common precursor scan, denoted as P184, for PC detection reports the intensities of
all the precursor ions that have a fragment ion with m/z value of 184, which include a
phosphate bonded with a choline group making the head group of PC. While for the
deuterium labelled forms of PC species, the scan is set to monitor the ions with fragment
of a phosphate bonded with choline with deuterium labelled methyl groups. Precursor
scan for fragment of m/z 187 (P187), monitors methyIDs-PC species with one methyl
group labelled with deuterium, which is three mass units higher than the non-labelled PC.
P193 scan monitors methy/Dq-PC with three deuterium labelled methyl groups, nine mass
units higher than the non-labelled PC. Figure 4 compares two spectra of ESI MS/MS
analysis for PC species and the methy/Do-PC species in the same bronchoalveolar lavage
fluid (BALF) sample of a mouse model.
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Figure 4: Spectra of P184 and P193 scans for PC and methy/Ds-PC detection, respectively,
in the same BALF sample of a mouse. (A) is the spectrum of P184 scan with detected lipid
molecules that have a PC head group. (B) is the spectrum of P193 scan with detected
molecules that have a methy/Dg labelled PC head group. The two spectra have similar
patterns, as species detected in P193 are the labelled version of those in P184. However,
there is a 9 mass offset between the two spectra due to deuterium incorporation on the
three methyl groups of the PC species, resulting in nine mass higher in the P193 scan.
PC16:0/16:0 (m/z 734.51) in the spectrum of P184 corresponds to its deuterium labelled
form D9PC16:0/16:0 (m/z 743.74) in the spectrum of P193, and PC16:0/18:1 (m/z 760.62)

corresponds to D9PC16:0/18:1 (m/z 769.57).

1.3.3 Dynamic surfactant phospholipids analysis with isotope labelling

1.3.3.1 Surfactant phospholipids kinetics

Current knowledge regarding surfactant metabolism has largely been acquired from in

vitro studies, which may not accurately reflect the real in vivo biological process. In vivo

surfactant metabolic research facilitated by labelling techniques is a better way to

understand the underlying mechanism of surfactant system. Using various labelled
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materials with corresponding detecting techniques to trace in vivo activity of molecules

has provided valuable insights of surfactant kinetics in the literature.

In labelling studies, the labelled molecules used for tracing endogenous molecules iare
called tracer and the endogenous molecules being traced are called tracee. Early
surfactant isotope labelling studies were dominated by using radioactive tracers due to
the sufficient supply of radioactive labels, their low costs and the readily available
scintillation counters for radioactivity determination. The application of this approach on
animals has gained fundamental knowledge of animal pulmonary surfactant metabolism,
in terms of surfactant synthesis, secretion, half-life and clearance. The mostly used
radioactive isotope labels in surfactant PL kinetic studies include **C, 3H and 32P (Foster
and Bloom, 1963). Most of these in vivo surfactant investigations were focused on
preterm or infant animals. Chida and Adams (1967) found an increased incorporation
rate of 1C labelled choline, palmitate and glucose into lung PLs, especially PCs, as the
lamb fetus matured, which suggested the active synthesis of surfactant in the near term
or new born and also implied the possibility of insufficient surfactant production in
preterm animals. For the investigation of DPPC turnover, Young and Tierney (1972) used
palmitate — 1 — **C as a radioactive label in rats and postulated that not all DPPC is
randomly secreted through a single pathway by the same type of cells without recycling
into lung tissue. The first study that investigated multiple phospholipid classes (PC, PG, PI
and PE) in samples of different lung fractions including alveolar wash, microsome and
lamellar bodies was performed by Jobe et al. (1978). The authors concluded that PC and
PG have shorter half-lives and higher turnover rates than other PL classes. Using similar
techniques, Jacobs et al. (1982) estimated the flux of surfactant PC from lamellar bodies

in rabbits, and observed shorter turnover time and a higher flux rate in adults than baby
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rabbits. These early surfactant PL kinetic studies have provided precious knowledge of the
in vivo activities of lung surfactant from various aspect and laid a good foundation for the

later understanding of surfactant metabolism in human.

Despite the success of in vivo lipid kinetic analysis, there are limitations of the radioactive
isotope labelling methods. Firstly, the health risk radioactive material poses to the
experimental subjects makes it not suitable for human studies. Secondly, the method
tracks the specificity of the radioactive labels along the entire metabolic process of the
radioactive label, rather than certain targeted molecular species of interest. Thirdly,
information obtained from animal studies is limited and cannot be directly used in clinical

work.

The improvement of mass spectrometry techniques has seen the increased use of the
stable isotope labelling approach in dynamic lipid studies. The traditional GC—MS and gas
chromatography-isotope ratio mass spectrometry (GC-IRMS) techniques (Torresin et al.,
2000; Cogo et al., 2005), have provided powerful tools for precisely measuring stable
isotopes and have been largely used in the studies of in vivo surfactant PL metabolic
kinetics in human. Stable isotope labels are safe for human if used properly. Bunt et al.
(1998) proved that the novel approach of stable isotope labelling they had used could
safely address issues concerning surfactant metabolism. In their study, [U-*3C] glucose
was used for investigating the in vivo surfactant synthesis and turnover in preterm infants.
They found the labelled PC palmitate reached maximum at 70 + 18 h, and calculated the
secretion time, fractional synthesis rate, absolute production rate and half-life of
surfactant PC palmitate. Similar approaches have been used in the studies of NRDS
(Torresin et al., 2000; Cavicchioli et al., 2001). Using GC-MS, Cogo et al. (2011) have

calculated the half-life, pool size and endogenous synthesis of surfactant disaturated PC
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isolated from serial tracheal aspirates of preterm infants with moderate to severe NRDS.
The authors suggested preterm infants with shorter disaturated PC half-life require

additional surfactant administration.

The downside of GC-based techniques is that they generally require derivatisation of non-
volatile lipids through saponification to generate methyl fatty acid esters to be analysed.
As a result, the derivatised species mixtures, e.g. the overall surfactant disaturated PC

rather than individual molecular specie (Facco et al., 2014), are analysed collectively.

Application of direct infusion ESI-MS/MS in combination with stable isotope labelling
techniques allows simultaneous identification and quantification of multiple lipid
molecules, labelled and unlabelled, which has offered deeper insights of surfactant
metabolism at species level (Postle and Hunt, 2009). Bernhard et al. (2004) applied this
technique and investigated the kinetic turnover of surfactant PC species in healthy people.
They found an overall incorporation rate of methy/D9 choline into sputum PC was linear
between 12 and 30 hours. Moreover, the pattern of fractional enrichment of individual
PC species over this initial period differed from that of surfactant PC composition.
Applying the similar approach, Postle et al. (2011) investigated lung PC synthesis and
secretion in SP-D null mice, and calculated the rate of accumulation in these mice with
impaired surfactant catabolism. Dushianthan et al. (2014) analysed PC turnover in BALF
samples of ARDS patients and healthy volunteers, both groups being given methy/Do-
choline infusion. They observed the fraction of deuterated DPPC of total deuterated PC
changes along the time. The study found different surfactant PC kinetics between
patients and healthy controls. Moreover, it varied considerably between individual
patients, suggesting heterogeneity of the patients characterized by different PC

metabolism.
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1.3.3.2 Limitations of traditional dynamic analysis of surfactant phospholipids

The common practice in surfactant PC turnover analysis facilitated by isotope labelling
techniques involves calculating the kinetic parameters to get insights of mechanisms of
surfactant regulation. The parameters of interest include fractional synthesis rate,
synthesis rate, half-life, decay rates, turnover time, pool size and secretion time, which
provide insights of metabolic flux characteristics of PL molecules. However, there are five

main areas of concern in the accurate calculation of these parameters.

Firstly, the assumptions for these calculations are not always met. Most of the kinetic
parameters formulae assume the surfactant system to be in steady state. However, in
many cases we would like to extract the biological activities of compounds in patients
with various conditions to understand disease processes. It is not appropriate to assume
the metabolism being in steady state under these conditions, therefore the use of these
formulae are questionable in such studies (Torresin et al., 2000; Cavicchioli et al., 2001;

Cogo et al., 2009)

Secondly, using different labelled precursors or MS instruments may generate different
results. Estimated half-life values for a given phospholipid vary depending on the
precursor used. For example, a study shows that if labelled palmitate is used, the half-life
of PC reported from rabbits range from 17-20 hour. However if labelled choline is used as
precursor, the range is 35-45 hours, and rat studies have reported similar trends (Wright
and Clements, 1987). This led to the suspicion that labelled parts on PC from different
precursors might metabolise differently. Bohlin et al. (2005) compared kinetic parameters
obtained from several labelling studies on premature infants, which used different tracers,

pools (PL or desaturated PL) and analytical methods (GC-MS/ GC-C-IRMS). It was observed
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that fractional synthesis rate was specific to labelled precursor used and fractional
catabolic rate was independent of tracers but dependent on the analysing methods. GC-

IRMS generated slower apparent fractional catabolic rate than GC-MS.

Thirdly, time points chosen for kinetic parameters calculations are crucial. For example,
fractional synthesis rate calculation only requires enrichment data at two time points
near to the starting point (Foster et al., 1993), which are supposed to be on the linear
part of the curve. However, the two data points available for calculation are subject to
the experimental design, which may not necessarily fulfil the assumption of being on the
linear part or close enough to the starting point. Consequently, the calculated fractional

synthesis rate may not be an accurate approximation.

Fourthly, it is not always possible to apply a standard label infusion method due to
various reasons. For example, in the study of Dushianthan et al. (2014), a short period of
intravenous label infusion was applied, rather than a standard bolus infusion or a
continuous infusion, due to the need for a continuous labelling period and the unstable
and fragile state of patients who may not tolerate longer period of infusion. The time
course label enrichment obtained from this experiment may exhibit very different
temporal patters from both bolus and continuous infusion, therefore the way of
calculating kinetic parameters in normal methods may not directly applicable in this

context.

Lastly, different functions or representations of variables are used for kinetic parameter c
calculations in different studies. For example, there is a dispute over which function
should be used for label enrichment calculation. For synthesis rate calculation, some

studies use tracer/tracee ratio as the label enrichment, whereas some use atom percent
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excess (APE) (Ramakrishnan, 2007). Different approaches remain in use by different
researchers, although it is rarely explicitly stated what assumptions have been made and

how the approaches are chosen.

Although kinetic parameter calculation is the main objective of traditional labelling
studies, and the only way of getting insights of in vivo flux of molecules, the challenges
stated above remain for obtaining accurate and consistent results. Therefore, using
kinetic information of surfactant PL for biomarker discovery may be hard to achieve by
using these kinetic parameters. In biomarker discovery studies, the essence is to extract
variables that characterise conditions and are both measurable and comparable between
groups for potential marker identification. In labelling studies, apart from kinetic
parameters, the time course species label enrichment can also provide dynamic
information and is comparable between groups, which is suitable for biomarker analysis.
Nevertheless, using time course enrichment as variable adds an extra dimension to the
data. Consequently, dynamic lipidomic biomarker discovery analysis will have to take into
account multiple species, multiple subjects, different groups and time factors, which

requires the aid of appropriate statistical methods.

1.4 Statistical methods for multivariate time series data analysis

There are very limited options of statistical methods for multivariate time series biological
data analysis, more so when the experiments have limited and irregular time points, small

guantities of biological replicates and numerous variables of interest.

Early methods for the analysis of time series biological data simply treat the time course
data as a bi-dimensional problem and do not explicitly include the time variable in the

model, unable to detect time-related variations. From the last decade, algorithms that are
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able extract more information from time series data have been used in genomics and
metabolomics studies. Smilde et al. (2010) proposed ANOVA-simultaneous component
analysis method, combining ANOVA method and principle component analysis for
longitudinal metabolic data analysis. The aim of the study was to determine the variation
caused by experimental design, such as time, doses or combinations thereof, typically
used in nuclear magnetic resonance. The drawback of the method is that it assumes the
time related effects to be linear in relation to time, which is rarely a valid assumption
(Rantalainen et al., 2008). Breit et al. (2015) presented a computational modelling and
statistical approach for identifying dynamic metabolic signatures by characterising and
categorising kinetic patterns of circulating metabolites during physical exercises. The
method utilises maximum fold changes and hypothesis tests to rank the metabolites
according to their level of change over time. Putative biomarker candidates exhibiting
different temporal patterns can then be selected and classified into several categories,
such as early and late markers. This method aims to characterise putative markers time
course patterns to be used as standard signatures of certain physical states, and is not for
identifying biomarkers from subjects with different conditions. Huang et al. (2011)
proposed a strategy for time series data biomarker discovery based on dynamic networks.
The strategy detects biomarkers by investigating the changes of ratios of metabolites over
time, stressing the association between metabolites during disease development. The
authors applied the strategy to identify lipid ratio biomarkers of Hepatocellular
Carcinoma by observing significant ratio changes at every two adjacent time points during
disease progression. This is an attempt of seeking alternative variables by transforming or
combining the observation data, which discloses more meaningful information than the
observation data itself. Tai and Speed (2006) proposed multivariate empirical Bayes

statistical approach for gene ranking in longitudinal replicated developmental microarray
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experiments. The method uses Bayes statistics for ranking genes in one sample
experiments as well as identifying genes whose temporal patterns differ across two
biological conditions. The method has also been applied to proteomic data analysis. Berk
et al. (2011) introduced a framework for the multivariate time series data analysis based
on the method of smoothing splines mixed effects (SME) model. This is a framework
designed for modelling high-dimensional time-varying metabolomics profiles and
detecting significant differences between two biological groups, being capable of dealing
with small sample size, irregular observation time, missing data and extreme outliers. The
method was applied to real hydrazine data measured by nuclear magnetic resonance
from the COMET longitudinal study, which proved to be able to efficiently identify known
metabolites that are differentially regulated in hydrazine Toxicity. According to the
author, the framework can be applied to longitudinal data acquired from mass

spectrometers.

1.5 Bioinformatics tools for mass spectrometry acquired lipidomics data

analysis and mass spectrometry data processing techniques

1.5.1 Bioinformatics tools for mass spectrometry based lipidomic analysis

Lipidomics is a comparatively new “omic” research field largely driven by the advances in
MS techniques, and there are very few bioinformatics tools available for the MS
facilitated lipidomic analysis. Around a dozen software applications are currently available
offering basic tools for lipidomics studies. These software tools mainly focus on general
lipid identification and quantification without comprehensive functionalities. Besides, all
of them are designed for certain types of MS instruments and analysing protocols. Nearly

half of the tools are developed for liquid chromatography (LC) MS lipid analysis, such as
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LOBSTAHS (Collins et al., 2016), LDA (Hartler et al., 2011), MS-DIAL (Tsugawa et al., 2015),
Lipid-Pro (Ahmed et al., 2015), LipidSearch (Houjou et al., 2005) and LipidMiner (Meng et

al., 2014), leaving few tools for direct infusion MS lipid analysis.

A few software platforms available for direct infusion lipid data analysis are specific for
certain instruments and protocols. For example, some tools are specific to time of flight
mass spectrometer, which identifies the molecules by combining the fragments spectrum
obtained from product ion scans. Such platforms includes LipidView (Ejsing et al., 2006),
which exploits multiple precursor scans approach, and Lipidinspector, which is designed
for the MS analysis in a data dependent acquisition mode. Alex (Husen et al., 2013) is
designed only for high resolution Orbitrap MS instrument. LipidQA (Song et al., 2007) and
LipidXplorer (Herzog et al., 2012) are able to process data from a wider range of
instruments acquired in data dependent acquisition mode or by multiple fragment scans.
All of these software tools detect lipid molecules by matching the fragments, which is
obtained by simultaneous acquisition of multiple product or neutral loss scans, with the
reference spectra from certain databases that are specific to the data acquisition
methods. This approach is suitable for global scanning of lipid contents in the samples.
For the more focused lipid detection using precursor scanning technique performed by
ESI MS/MS, which detect lipid molecules by combining the information of precursor ions
and specified fragment ions, there is LIMSA (Haimi et al., 2006) that supports the data
processing and lipid identification, although the detected molecules are presented only in
the cumulative composition format (e.g. PC 34:0) rather than the detailed form (e.g. PC
16:0/18:0), due to the limited information obtained from the fragment scans. However,
just like other software, LIMSA does not support lipid identification for batch samples or

labelling studies.

28



Chapter 1

Surfactant lipid kinetic studies investigate the dynamic activity of lipid molecules in the
surfactant system. As discussed in the previous section, shotgun ESI MS/MS offers great
tool for analysis on focused lipids, which is ideal for labelling lipidomics studies. Despite
the useful MS tools, the nature of labelling study requires integrated analysis for labelled
and non-labelled lipid species for comparison and calculation, which relies mainly on the
dedicated software tools. However, none of the software mentioned above handles

lipidomics labelling data or perform kinetic analysis.

The mass spectrometry lipid biology team at Southampton University Hospital has
developed a series of applications in Visual Basic for processing lipid data, and has
incorporated some functionalities to handle labelling data. However, there are a number
of shortcomings with the programme and the approach, which should be addressed
further.
e |tis cumbersome and not robust. The software crashes very often and running
errors occur at times.
e The user interface is unintuitive and not easy to use. It lacks clarity and error
preventing means.
e For labelling studies, the programme only allows labelling analysis of one PL class
and does not support non-labelling analysis of other PL classes at the same time.
e |t does not support labelling analysis of PL labelled with multiple labelling

materials.

There is a need for a robust, fast running, user-friendly and more comprehensive
software for the PL kinetic labelling studies as well as for the potential usage in clinical

work.
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1.5.2 MS data processing

The mass spectrometry acquired raw data is not directly useable, which requires multiple
steps processing for further analysis. There are some common processing procedures
needed for the data acquired by most MS methods, including background noise removal,
peak identification and isotope correction.

1.5.2.1 Background noise removal

The experimentally measured MS spectrum data is always interfered by background noise.
This is mainly electrical noise related to the instrument set-up (Bauer et al. 2011).
Consequently, removing background noise becomes a standard procedure of mass
spectrum data processing, which aims to separate the analyte signals of interest from the
background noise. Different algorithms have been applied for background noise removing
on MS data acquired from different instruments. Berndt et al. (1999) applied linear fit for
sequential mass segments on the mass spectra from MALDI MS and used cubic spline
interpolation method to approximate the background. Some researchers estimated the
MALDI spectrum background noise using a weighted average of the minimum and
maximum peak values within windows of small mass intervals (Samuelsson et al., 2004).
Some others use polynomial fittings, such as locally weighted scatter plot smoothing.
Wavelet transform theory also became popular for signal processing over the last two
decades. Coombes et al. (2005) applied the translation-invariant undecimated discrete
wavelet transform for noise filtering of SELDI spectra.

1.5.2.2 Peak detection

Peak detection is a key aspect of the MS data processing. A widely used algorithm for
peak detection is based on the calculation of signal-to-noise ratio (Petkovic et al., 2001).

The algorithm searches for the local maximum intensity among a certain number of
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neighbouring data points with local signal-to-noise ratio over a certain threshold for peak
detection. Some researchers (Strittmatter et al., 2003) applied mixture models to fit the
spectrum data acquired by TOF mass spectrometer for peak identification. Wehofsky and
Hoffmann (2002) made use of isotopic patterns of species and fitted the theoretical
patterns to the MALDI spectrum data to define peaks. Another set of peak detecting
techniques based on the continuous wavelet transform theory (CWT) were developed
and widely used in the last decade. Du et al. (2006) proposed an algorithm that applies
the CWT over spectrum and utilises the information over the 2D CWT coefficients to
determine the effective signal-to-noise ratio to identify peaks. The peak detecting
techniques available today are often specific to mass spectrometer used, and all of them
have their own advantages and drawbacks. Therefore, there is no standard method that
out performs others in every aspect (Bauer et al., 2011). As a result, researchers always
choose the appropriate methods for peak detection according to specific need of their
studies.

1.5.2.3 Isotope distribution calculation

Isotope peak patterns in the mass spectra of compounds are the result of the natural
occurrence of polyisotopic elements. In order to remove the isotope effect from the

spectra, the isotopic distribution must be calculated first.

The calculation of isotopic distribution has been extensively studied since 1960. The early
methods were mainly based on probability theory, and later its combinations with
polynomial expansion methods were explored and widely used by researchers (Yergey,
1983). However, these methods require computer intensive calculation and have
difficulties in dealing with large molecules, due to the large numbers of possible isotopic

combinations that need to be calculated. Consequently, efforts were made to reduce the
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amount of computation and increase the computing speed. A core concept of step-wise
calculation was applied to tackle this problem by many researchers, using a variety of
approaches. Snider (2007) proposed a method that kept track of all isotopes of a built up
molecule every time an element is added onto it. This method is based on dynamic
programming technique, and has become one of the most widely used algorithm for

isotope distribution calculation.

1.6 Research questions and structure of the thesis

1.6.1 Thesis objectives

Pulmonary surfactant is a critical substance for optimal lung function. The metabolism of
the major surfactant component surfactant PLs, as well as the underlying mechanisms of
their alteration in lung diseases are still not fully understood. The newly adopted ESI
MS/MS coupled with stable isotope labelling technique makes it possible to investigate in
vivo kinetics of surfactant PL species in human. However, the multi-step processing of raw
MS data and the calculation of labelled species enrichment require a high level of expert
knowledge, as well as the automatic computational tools for dealing with the high
throughput lipidomics data from batches of samples. The first objective of this project is
to develop a streamlined software platform for ESI MS/MS based pulmonary surfactant
PL labelling studies, which should be fast, robust and user friendly, and could potentially

be used for clinical diagnosis.

Despite the endless effort in biomarker discovery in lung diseases, there is hardly any
novel biomarkers that are verified and widely adopted in clinical work. There are some
limitations with the current studies. Firstly, the predominantly studied molecular

biomarkers in the studies of lung disease are proteins, genes and metabolites (Eisner et

32



Chapter 1

al., 2003; Terpstra et al., 2014; Ravipati et al., 2015; Chen et al., 2016; Gray et al., 2017;
Kim et al., 2017). Lipid biomarkers, especially surfactant PLs, which are found altered in
various lung diseases, have not been fully explored as putative biomarkers. Secondly,
most of the studies only concentrate on a single species from a certain compartment for
biomarker assessment (Eisner et al., 2003; Il Yoon and Sin, 2011; Terpstra et al., 2014; Yu
et al., 2017). However, the pulmonary diseases are usually associated with alterations
involving multiple interactive mechanisms, resulting in systemic changes of numbers of
molecules. Besides, the same molecules from different pathways, compartments and
even organs are correlated with each other. It is hard for a single species from a single
pool to work individually to indicate changes of the entire metabolic process, recognising
a disease or stratifying patients. Furthermore, many lung diseases have similar
manifestations, which makes it hard to distinguish them from changes of certain
molecules. Collective biomarkers or omics biomarkers from different pathways and
compartments could be more helpful in providing sufficient information for disclosing
underlying mechanisms from various aspects. Thirdly, the current interests in the
molecular biomarker studies are limited in measurable concentration of end product
molecules. However, the end product concentration does not always give sufficient
information for discriminating biological conditions. Moreover, the snapshot
concentration level does not reflect in vivo kinetics of molecules while undergoing
biological processes. Kinetics are critical for disclosing the underlying mechanism of
biological systems, which may contribute to identifying different biological conditions,
and become valuable biomarkers. There are a few longitudinal studies that monitor the
change of concentration levels of potential markers over a time period. Longitudinal
analysis takes time factor into consideration, which provides extra information and offers

more complete picture of changing process of molecules. However, time series
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concentration of a metabolic product only offers vague and limited information of its
metabolism, which does not indicate flux and turnover of molecules that characterise

their changing process and causes.

Dynamic surfactant lipidomics is an untapped area for pulmonary disease biomarker
discoveries, which can provide rich sources of kinetic knowledge in addition to the current
understanding of the pulmonary diseases, paving the way for the discovery of novel
individual biomarker or biomarker panels of collective markers. Analysis of lipids from
compartments, pathways and organs other than lung surfactant may complement the
understanding of surfactant metabolism and provide combined biomarkers for lung

disease diagnostic purposes.

Surfactant PLs, especially PC, are the major surface active material maintaining the
normal functioning of the lung and PC alteration is found in most lung diseases.
Facilitated by the high throughput ESI MS/MS coupled with stable isotope labelling
technique, it is possible to calculate the label incorporation of numerous PC molecular
species for human in vivo studies. Dynamic PC analysis often involves kinetic parameter
calculation in the literature. However, there are various issues with the precision and
comparability of theses parameters. The label enrichment of PLs over certain time period
holds flux information, which reflects the metabolic process of molecules, offering extra

layer of information than the end product concentration.

SME method provides a great platform for multivariate time course modelling to
characterize temporal features of variables from longitudinal studies, which makes the

basis for further kinetic biomarker discovery analysis. The method also benefits from
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being able to deal with small sample size and missing data, typical issues in longitudinal

biological studies.

The second objective of this project is to investigate the feasibility of using time course
enrichment of deuterium labelled surfactant PC species as potential biomarkers for
identifying pulmonary diseases, facilitated by SME multivariate time course statistical
method. Label enrichment of hepatic PC species will also be evaluated, where data is

available, to complement the analysis of surfactant PC.

1.6.2 The arrangement of the chapters

Chapter 2 introduces the SME statistical methods and other tools used for PC time course
label enrichment biomarker analysis. Chapter 3 introduces the development of a
dedicated software platform, Lipidomelabelling, for lipidomics kinetic analysis facilitated
by ESI MS/MS coupled with stable isotope labelling techniques. In chapter 4, 5 and 6, time
course labelled PC enrichment data from three previous projects is modelled using SME,
exploring the possibility of using the time course enrichment as biomarker for lung
diseases. In chapter 4, the surfactant PC kinetic biomarker analysis for mice models was
performed, aiming to use an established mice model system with a large difference in
effect to validate the methodology, which will be applied in the following less clear
clinical scenarios. In chapter 5, temporal patterns of surfactant PC label incorporation of
NRDS patients were modelled and analysed for investigating their ability in distinguishing
patient sub groups in the complex clinical environment. Plasma PC were also analysed in
the same way providing information regarding liver function. In chapter 6, time course

plasma PC label enrichment of ARDS and healthy people was analysed to check if hepatic

35



Chapter 1

PC are indicative for distinguishing the two groups, which have significant difference in

surfactant turnover.
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Chapter2 Methodologies

2.1 ESI MS/MS data acquisition

The PC data from different projects analysed in this thesis were all acquired through ESI
MS/MS analysis (Waters, UK). Precursor scans carried out for these projects include P184,
P187 and P193 for the detection of endogenous PC, labelled methyl/Ds-PC and methyIDs-
PC, respectively. The scanned m/z range is 400-900. The lipid sample solvent were
infused directly into ion source at a certain rate (5ul/minute or 8ul/minute). Energy for
the cone, which is used for extracting charge molecules after ionization and before
entering the MS 1, was set to 50V. Collision energy was set to 30V in the collision cell for
ion fragmentation. The resolution was set to be the same over the whole mass range with

fixed peak width at half height of 0.703 mass unit for the two analysers.

2.2 Statistical method

In this thesis, SME statistical framework is used for modelling the time course enrichment
of multiple deuterium labelled PC species, as well as group comparison for biomarker
discovery. For each investigated species, its temporal label enrichment for every
individual subject of the two comparing groups as well as the group mean temporal

enrichment were modelled first for subsequent statistical comparisons.

The main functional mixed-effects model of SME method includes a fixed unknown term,

a random effect term, and an error term, as shown below

y(ty) = u(ty) +vi(tyy) + € (1)
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The observation value of individual i at time t;; is denoted by y(tl-j), ,u(ti]-) is the mean
value of the whole group at the time point, and vi(tij) is the individual-specific deviation
from the group mean. The additive error term €;; is assumed to have some group and
species-specific variance. Both y ( * ) and v; ( * ) are treated as smooth functions of time.
u (=) is the fixed, unknown population curve, and in the label enrichment analysis it
represents the group mean temporal enrichment, whereas v; ( * ) is treated as a random
realisation of an underlying Gaussian process with the mean of zero. u (*) + v; (+) is the
smooth underlying PC enrichment function to be estimated. The smoothing parameters
of time course models are estimated by optimizing the corrected Akaike Information

Criterion (AICc) (Hurvich et al., 1998).

In the biomarker discovery analysis, the mean time course enrichment of certain species
for two biological groups are modelled, denoted as @4 and ug, and SME method offers a
moderated functional t-type statistic Ft for quantifying the difference between them over

the entire time course. The formula is shown as

Ft= L/ (Se + Sem) (2)

, where the numerator L is the distance between the two mean curves ¢ ( * ) and ugy ( * ).

. t e .
L is the square root of ft T, (t) — ug(t)]? dt, indicating the distance between the two
min
mean curves over the period from t,,,;;, t0 ty,4x- The term s is the functional standard

2 2

error, computed as the square root of Z—A + Z—B, is the sum of sample functional variances
A B

of the two groups, with s and n being the estimated variance and sample size of each

group. Similar to the standard t-test, the role of s. is to scale the L distance so that the

statistic Ft reflects the relative difference between the two mean curves of the groups by
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taking into account individual variance, and is comparable across different species
observed on different time scales. sem is the term to moderate the Ft statistic aiming to
correct the effect on the Ft statistic caused by inaccurately fitted variances due to small
sample size, especially when having large number of variables. However, although the
sample sizes are small in all projects analysed in this thesis, the number of variables, i.e.
the PC species, is comparatively small, which does not hugely affect the result when
comparing Ft statistics across all the species. Therefore, in this thesis sem is not adopted,

with only the s term left as the denominator.

The label enrichment in all PC labelling analysis in the thesis is presented as APE, which is
calculated as the ratio of intensities of labelled species over the sum of intensities of

labelled and unlabelled species:

_ Lint;
Lint;+ Uint;

(3)

i

, Where [ represents a PC species, E; is the deuterium label enrichment of species [, Lint;
is the intensity of labelled species I, and Uint; denotes the intensity of unlabelled

endogenous PC species i.

The modelling of time course enrichment of labelled PC species in this thesis has excluded
zero time point observations, which is the starting point of the label infusion. This value
should always be zero, as there is no immediate label incorporation while label infusion
just starts. Moreover, although it is not certain when the incorporation starts, the
appearance of the labelled species in the pool is always after zero time point, either
sooner or later after infusion. As the SME method is a piecewise smoothing method that

fits curves to the available time points, including zero time point, it does not take into
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account the time point of species appearance that is not available. Therefore, there is a
risk that SME takes zero time points as the emerging time point and links it with the next
available time point observation to simulate the species appearance curve, which is

incorrect.

The time course data modelling and biomarker discovery analysis in this thesis were
carried out using the SME package written in R provided by Berk et al. (2011). A VBA
programme was written to convert the enrichment data into required format for the SME

package.
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Chapter 3 A Software platform for kinetic surfactant
phospholipid analysis facilitated by ESI MS/MS

coupled with stable isotope labelling techniques

3.1 Introduction

The comparatively new approach of stable isotope labelling combined with ESI MS/MS for
PL labelling study suffers from a lack of dedicated streamlined software platform that
offers efficient and comprehensive functionalities for MS data processing and dynamic
lipidomics calculation. Consequently, a platform LipidomeLabelling was developed for the
purpose, which is written in Matlab and VBA. The workflow of all functionalities are

illustrated in Figure 5.
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Figure 5: Flow chart of functionalities of LipidomeLabelling.
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3.2 ESI MS/MS spectrum data processing

3.2.1 Data conversion

Spectrum data acquired by ESI MS/MS instrument (Xevo TQD, Waters) is initially analysed
in MassLynx (Waters Coporation) and the raw data is stored in a manufacture specific
format. As the data is in a format that is not readable or usable, Waters offers a library
called Data Access Component that only allows Visual Basic or VC++ programmes to
access the raw data. To convert the data into a manageable format, a new version of
extracting programme is developed in VBA by modifying the previous in house
programme developed by Dr Grielof Koster (Mass spectrometry lipidomics group,
University Hospital Southampton). The new extractor programme reads the raw data by
calling functions provided in the Data Access Component and exports into excel files. The
old programme performs several steps of data processing, so the output is the processed
result rather than the original raw spectrum data. In a typical ESI MS/MS analysis,
multiple scans are performed on each sample to detect molecules within a certain m/z
range. The extractor creates an excel file for every single scan performed for a sample.
The acquisition result in each scan excel file is a list of figure pairs with m/z value and its
corresponding ion intensity. In a typical scan, the MS instrument is set up to measure the
intensities of sixteen evenly scattered m/z points within each mass unit. Table 1 shows a
scan result at sixteen points within one mass unit of m/z 401. So if a range of 100 mass

unit, say 400 — 499, is scanned, the intensities of 16 *100 mass points will be reported.
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m/z Intensity
401.0337 1622
401.0968 1847
401.1598 1701
401.2228 1848
401.2858 13627
401.3489 11004
401.4119 1758
401.4749 2807
401.5379 2279
401.601 1887
401.664 1785
401.7271 23584
401.7901 2686
401.8531 2139
401.9161 1399
401.9792 2627

Chapter 3

Table 1: An example of raw MS data of m/z and intensity pairs measured at sixteen points

within the mass unit of 401.

3.2.2 Peak detection and integration

Peak detection is the first step for MS data processing. It forms the basis for the following

processing procedures, and accurate peak detection is critical for the data analysis. In a

spectrum, the detected ions are presented as intensity peaks plotted over their m/z

values. A peak is formed by joining up the intensities measured around the m/z value of

the ion. A peak detection module is developed to search for the m/z position of the

centre of each peak, which is considered as the m/z value of the detected ion, and to

integrate the intensities measured at sixteen time points of the peak for this ion. The

integrated intensity is taken as the abundance of a measured ion.

Most of the published peak detection algorithms are specific for MALDI-Tof, SELDI-Tof, or

LC/MS, GC/MS strategies (Yang et al., 2009), where there is a need to manage the

inconsistent peak shape, peak placement (floating mass Tof), curved baseline and peak
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width (LC). The ESI MS/MS spectrum benefits from fixed peak width (usually set to be
0.703 mass unit), quasi-normal distributed peak shape and comparatively stable baseline,
so it does not suffer from the problems of other MS approaches mentioned above.

Nevertheless, the peak centre can be hard to find due to various interference, such as

chemical noises.
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Figure 6: A peak of a molecule with an abnormal shape caused by chemical noise. The

highest intensity is observed at 700.42 m/z point, although 700.54 should be the actual
centre of the peak.

A perfect peak should have a quasi-normal distribution shape, and the highest intensity
within the peak should appear at the centre of the peak, where the m/z value of the
molecule locates. However, due to the instrument instability and noise interference, the
intensities obtained for a species do not always form a perfect peak, and the detected
highest intensity is not necessarily located at the peak centre. In an example shown in
Figure 6, the m/z value 700.54 should be the centre of the peak, which is the m/z value of

the detected ion, with the highest intensity. However, the highest intensity is observed at
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700.42, which is not the real peak centre, due to the noise affecting the accuracy of the

measurement.

To remove the noise effect and accurately recognise the peak centre, a weighted moving
average algorithm is applied in the peak detection procedure. The programme checks the
weighted sum of adjacent intensities of every five mass points through the entire mass
unit. The five mass points group that has the largest total of weighted intensities is taken
as the top and centre part of the peak, and the m/z of the middle point of the five is taken
as the centre mass point of the whole peak. In the spectrum, five points covers about
0.25 mass unit, and a third of a peak width (0.703 mass unit). The weights used for the
five adjacent points are 1,2,3,2 and 1 respectively, which gives the middle point the
biggest weight. The proposed peak detecting algorithm can be demonstrated by the

following model:

Maximize WSy () = Int(j —2) + 2+ Int(j — 1) + 3 = Int(j)

+2xInt(j+ 1) + Int(j + 2)

Subjectto M <j<M+1 (4)

, Wwhere WS,,(j) denotes the weighted sum of intensities of five adjacent points, the
centre of which is mass point j, within the mass unit M. Int(j) represents the intensity at

point j and equation (4) is set up to find the point j that maximize this value.

To demonstrate the effectiveness of the algorithm, it was applied to the example
discussed above. Table 2 lists the measured intensities of sixteen m/z points within the
700 as well as the weighted sum of every five adjacent points. Even though the highest
intensity (125000) is observed at 700.42 mass point in the original spectrum, the highest

weighted sum of intensities (977500) is found at mass point 700.54, so the centre m/z
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point of the peak detected by the algorithm is at 700.54. A new spectrum peak defined
by the intensities calculated using weighted sum method is shown in Figure 7, which has
corrected the effect of chemical noise shown in Figure 6 to present a smooth peak with a

quasi-normal shape and find the real peak centre, i.e. the m/z of detected molecule.

Mass point | Intensity Weighted Sum
700.00 2500
700.06 5000
700.18 7500 110000
700.24 18750 226250
700.3 37500 432500
700.36 75000 668750
700.42 125000 875000
700.48 100000 958750
700.54 112500 977500
700.6 108750 921250
700.66 97500 810000
700.72 75000 622500
700.78 37500 405000
700.84 18750 226250
700.9 7500
700.96 5000

Table 2: Intensity and weighted sum calculated for every five adjacent points in the m/z
700 of the peak in Figure 6.
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Figure 7: The peak defined by the weighted sum intensities in comparison with the
original peak in Figure 6. The peak corrects the effect of chemical noise, and recognise the
true peak centre in 700 mass unit, with the highest point at m/z 700.54.
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To avoid the situation where a peak with a substantial noise is mistaken as two separate
peaks as well as to take into account only one peak in one m/z unit, the following

constraint is added to the peak detection procedures.

Inty(m) > Inty(n) if m+0352<n (5)

, Wwhere m and n are the mass points where the highest intensities are found in two
adjacent mass unit M and M+1, respectively. This constraint states that if the distance
between m and n detected in M and M+1 is smaller than half of the peak width 0.352,
then the intensity of m in the mass unit M has to be higher than the intensity of mass
point m in mass unit M+1. This is to make sure that the highest point in M is not on the
slope of the peak in M+1. If the distance between m and n is no smaller than 0.352, there
is no such concern. If the constraint is not satisfied, the peak found in mass M will be

discarded.

Once the peaks are detected, the intensity of the molecule is approximated by averaging
the intensity of points measured around the peak centre. In the ESI MS/MS spectrum,
most peaks suffer from unsmooth peak shape, due to noise or measuring errors, and

even the rare unaffected peaks are not in perfect shapes, such as Gaussian and Lorentzian,
therefore, it is not accurate to fit the peaks using any of the commonly used peak-fitting
methods. Consequently, the programme adopts the simple solution of taking the mean
values of each peak to be compared with other peaks. It calculates the average of signal
intensities of the detected mass points within 0.352 mass distance on both sides of the
peak centre, as shown in equation 6. By doing this, the original sixteen data points in each
mass unit become one average intensity value, which is used to represent the signal of

the molecule.
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Alnt(M) = — x YInt; j—0352<i<j+0.352 (6)

AInt(M) is the average intensity of the molecule detected in the mass unit M, j is the
mass point of the peak centre, i represents the detected mass points that fall within the
range of 0.703 mass unit around the centre point, Int; is the intensity measured at mass

point i, and N is the number of points included.

Due to the low resolution of the quadrupole mass spectrometer, overlapping peaks can
occur. In the peak detection procedure, the peak weighted moving average method with
the constraint to drop the peak with lower intensity than a peak closely behind it,
attempts to reduce the complexity and only take into account overlapping peaks with
reasonable distance of 0.35. The peak integration takes into account the detected points
within 0.703 mass range, which is about 0.35 from the peak centre from both sides, to

further avoid including intensities of overlapping peak.

Figure 8 shows the integrated peak of the previous example shown in Figure 6 with an
average intensity of 52109.38. Figure 9 present a real spectrum and its integrated version.

Figure 10 is the flow chart of peak detection and integration procedures.

48



Chapter 3

60000

50000

Average Intensity
N w B
o o o
o o o
o o o
o o o

10000

P F & DD O D D ;O © AR O P
NNV S TP ECNNEP e P
DS AL S ALS LSS S A

m/z

Figure 8: Integrated sample peak in Figure 6. The peak becomes a vertical line after peak
integration by taking the average intensity of points around the centre mass point 700.54.
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Figure 9: Comparison of spectrum before and after integration. (A) is a part
of a real spectrum of P184 scan, and (B) is the result spectrum after peak
detection and integration procedures.
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Figure 10: Flow chart of peak detection and integration procedure.

3.23 Background noise removal

Background noise exists in every spectrum and LipidomeLabelling provides an optional

function for removing it. As MS data generated from ESI MS/MS usually has stable and

low baseline noises, a uniform background approximation for the whole spectrum is

estimated by taking the average of intensities of a user specified percent of the lowest

peaks in the spectrum. The estimated background is then subtracted from all detected

peaks over the whole spectrum. Figure 11 displays the plots of a spectrum before and

after background is removed.
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Figure 11: Comparison of spectrum before and after background removing
procedure. (A) is the original spectrum and (B) is the result spectrum after an
estimated background noise is removed.

3.3 Knowledge-based phospholipid annotation

331 Phospholipid database for stable isotope labelling studies

Once the ion peaks are detected, the species annotation are performed to give biological
meanings to the peak data, getting ready for the following molecule-specific processing

steps and analysis.

Species annotation for m/z value - intensity pair data acquired from ESI MS/MS relies

on -referencing the appropriate lipid databases which support ion mass searching
approach. There are very few lipidomics databases currently available for lipid research,
and LIPID MAPS (LIPID MAPS, 2018) and LipidBank (LipidBank, 2007) are the most popular
ones. However, these databases are not suitable for MS/MS acquired lipid data
identification. They are mainly for global search of lipids, and a confident identification of

a species requires more information, such as mass, chemical formula, lipid category, lipid
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class and molecular structure. As stated above, the ESI MS/MS acquired data only
provides m/z values of ions and their fragments detected by break down scans, but these
databases do not support lipid searching based on these pieces of information. Moreover,
none of the available databases support labelled species identification, which is critical for

the stable isotope labelling dynamic lipidomic analysis.

A dedicated database for identification of phospholipid and stable isotope labelled
phospholipid based on spectrum data acquired through ESI MS/MS is created by Dr
Grielof Koster. This database comprises of numerous species lists of certain classes of
phospholipids detected by numerous MS scans. Each list is for a particular scan type (e.g.
P184 for PC species) and a certain sample type, including BALF, lung tissue, cell
suspension of BALF and plasma. The species lists are created based on the empirical
knowledge of phospholipids that can be found in each sample type as well as theoretically
possible lipid species ,which is for preliminary species identification, and more precise
distributions of positions of acyl groups of the observed molecules can be verified by

doing further break down scans.

There are hundreds of empirical and theoretical phospholipid species in each species list
in ascending order of their m/z values. The lists are made to be complete to cover as
many masses as possible. Table 3 displays part of the species list of a normal P184 scan.
The species are annotated in the commonly accepted shorthand form. The annotation
describes the species chemical structure to the fatty acid level and number of double
bonds. For example, “PC 18:0/18:2” is the notation of a PC species that has two fatty acyl
chains of 18 carbons, with no double bonds on sn-1 position and two double bonds on

sn-2 position.
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m/z Species list for P184 scan
580 PC12:0a/10:0
582 LPC24:6a
590 PC12:1/10:1
592 PC12:0/10:1
594 PC12:0/10:0
596 LPC24:6
603 SM10:1a
604 PC10:1a/14:1
605 SM10:0a
606 PC14:1a/10:0
607 H2SM10:0a
608 PC10:0a/14:0
610 0x2PC16:0/5:1
616 LPC26:3a
617 SM10:1
618 PC14:1/10:1
619 SM10:0
620 PC14:1/10:0
621 H2SM10:0
622 PC10:0/14:0

Table 3: Part of the species list of a normal P184 scan. It displays 20 species (out of 349
species in the full list) arranged in the ascending order of their m/z value.

The problem with the database is that the annotations are more of indicative rather than
absolutely accurate, which assigns the detected molecules only to the most likely
occurred species, because the precursor scan does not provide enough information for a
confident identification in terms of the length of fatty acyl chains as well as the position of
double bond. The database makes this compromises to generate a speedy assignment for
the subsequent data processing. Further fragmentation scans will be needed for a more

accurate identification.

3.3.2 Species assignment

Lipidomelabelling adopts the database created by Dr Grielof Koster for species

identification and annotation. The PL species assighnment is carried out by mutually
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matching the m/z values of the detected peaks with the m/z values of species in the
species list of the corresponding scan type. If there is a match, the m/z -intensity pair data
will be assigned with the matching species, which is how the original spectrum data in the
form of m/z intensity pair becomes real species with intensities. The detected peaks of
which the m/z value could not find a match in the species list will be removed. Therefore,
the species lists have to be as complete as possible to avoid removing of real species.
Table 4 is an example of part of the result of an annotation. Unlike the old programme
that does not allow amendment to the database, Lipidomelabelling allows users to access

and edit the library for specific use.

m/z Combined Detail Intensity
580 PC22:0a PC12:0a/10:0 38355
582 LPC24:6a LPC24:6a 1524
590 PC22:2 PC12:1/10:1 113077
592 PC22:1 PC12:0/10:1 25324
594 PC22:0 PC12:0/10:0 25110
596 LPC24:6 LPC24:6 10914
603 SM10:1a SM10:1a 1216
604 PC24:2a PC10:1a/14:1 6227
605 SM10:0a SM10:0a 32691
606 PC24:1a PC14:1a/10:0 74621
607 H2SM10:0a H2SM10:0a 23715
608 PC24:0a PC10:0a/14:0 59230
610 0x2PC21:1 0x2PC16:0/5:1 9686
616 LPC26:3a LPC26:3a 4096
617 SM10:1 SM10:1 11967
618 PC24:2 PC14:1/10:1 15054
619 SM10:0 SM10:0 48147
620 PC24:1 PC14:1/10:0 25519
621 H2SM10:0 H2SM10:0 9830
622 PC24:0 PC10:0/14:0 57862

Table 4: Example of species annotation. This is part of a species annotation result of a
P184 scan. The identified species of certain m/z values together with their intensities are
assigned with the corresponding species name in detail form as well as in combined form.
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3.3.3 Combination form annotation

In order to tackle the issue that the database only assign the detected ions to the most
likely species, which may not be the real molecules, Lipidomelabelling offers the
combined form of a species alongside its detailed form from the database in the final
result. For example, the annotation of PC16:0/16:0 from the database for the detected
species will be accompanied by another annotation of PC32:0. This combined form is
offered to cover all possibilities of isobars and isomers of detected ions with the same

m/z values.

3.4 Lipid data processing

Once species are annotated, the subsequent procedures are specific to the identified
molecular species. Lipidomelabelling offers functional tools for species intensity data
processing and analysis, including adduct correction, isotope effect correction, CID
correction, cross scan isotope correction, composition analysis, quantification and label

enrichment calculation.

3.4.1 Adduct effect correction

Adduct formation takes place sometimes and adducts should be considered as another
presentation of the original molecule, rather than a distinguished molecule. Therefore,
the intensity of an adduct should be counted as the intensity of the original molecule. For
example, a sodiated DPPC as a result of sodiation during experiment, is an adduct of DPPC,

and the intensity of it should be added to that of DPPC.

The platform offers an optional function for adduct correction. For each scan type, the

user can define the m/z values for an ion and its adduct, then the programme will search
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for the intensities of them. The adduct-ion ratio of the specified adduct over the ion will
be calculated and used for calculating the adduct intensities of all other species within the
scan. The intensity of an adduct will be removed from the intensity of the species that has

the same m/z with the adducts. The function is as follows:
1(m) = L,(m) =1 (m — My) x & m €D (7)

, where I(m) is the adduct corrected intensity of a species with the m/z value of m.
I,,(m) is the uncorrected intensity. M, denotes the user specified m/z difference

between the adduct and its original ion, and I (m — M,) represents the corrected

a

intensity of a species, the adduct of which has m/z of m. S 0s the ratio of intensities of

4

the specified adduct and its original ion, and I (m — M,) X i—“ is the intensity of the

4

adduct of the species with m/z value of m — M, which is removed from the intensity of
I(m). D is the set of all detected m/z values. This procedure only removes adduct
intensity from the species that have the same m/z with the adduct. It does not add it to
the intensity of original species, although it can be done by dividing the ratio after the

correction has been performed.

3.4.2 Isotope effect correction

Isotope correction is an essential procedure in MS data processing, due to the naturally
occurring isotope effect of elements, which result in multiple isotopologues of the same
species. Isotopologues of a species have different masses and are identified as different
molecules by MS, which should be corrected and their intensities should be added up

together as the intensity of one species. Besides, an isotopologue could be mistaken for

another species having the same mass, so the correction can also correct the intensity
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result for this distinct species. Isotope correction is critical important for stable isotope
labelling studies, which require complete removal of naturally occurred isotope of a
species in order to get the accurate abundance of artificially labelled molecules for kinetic
analysis.

34.2.1 Isotope distribution calculation

To correct isotope effect of a detected molecule, the isotope distribution of the species
has to be calculated first. The programme adopts a Markov chain stepwise addition
dynamic programming algorithm (Snider, 2007) for the isotope distribution calculation.
Instead of calculating the probability of each isotope variant, the problem is seen as a
dynamic process. Every isotope variant is considered as a state within a Markov model
and every atom added onto the molecule is considered as a state transition step. The
programme calculates the probabilities of isotope variants every time an atom is added
and replace the probabilities calculated in the previous step before the atom is added. By
doing this, the probabilities of the isotope variants at each step are only related to the
calculations in the previous step and the isotope probabilities of the newly added

element.

The starting point of the isotope distribution algorithm is no atom status (Atom 0) with a
number of nodes of all possible isotope variants of a molecule. It then starts to add one
single atom of an element of the molecule at a time and calculates the probabilities of all
the isotope variants. Then the next atom is added and the probabilities of the variants are
calculated again by computing the transition from the previous step. This procedure
keeps on until all the atoms of the element are added, and then it starts to add the atoms
of another element of the molecule until all the elements are calculated. Figure 12 is a

simple example of this dynamic process of adding two atoms of the only element of a
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molecule to calculate its isotope variants distribution. The element has three stable

isotopes.
Atom 0 N +1 +2 +3 +4
Atom 1 N +1 +2 +3 +4
Atom 2 N +1 +2 +3 +4

Figure 12: Schematic diagram of dynamic calculation of isotope distribution for a
molecules with two atoms of the same element. The atom has three isotopes and
therefore the molecule can have five isotope variants denoted as “N“, “+1”, “+2”,
“+3”, “+4”, which represent the principle ion state with monoisotopic mass, and
isotope states that are one, two, three and four mass higher. Three atom states
include no adding atom (Atom 0), adding the first atom (Atom 1) and adding the
second atom (Atom 2). The arrows represent the possible transitions from one
isotope state to another after adding an atom.

A molecule that has one element with two atoms, each having three isotopes, can have
five possible isotope states in total, including the no isotope effect or principle ion state
“N” having monoisotopic mass, isotope state with one mass higher than the principle ion
state “+1”, two mass higher state “+2”, three mass higher state “+3” and four mass higher
state “+4”. At initial status “Atom 0”, no atom is added, the no isotope effect state “N” is
given the probability of one. The next step is to add “Atom 1”, and as this element has
three stable isotopes, it can only transit from the previous state “N” to “N”, “+1” or “+2”

states with the transition probabilities equal to the natural abundance of the three stable
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isotopes of atom added. Now there are three isotope states at this stage “N”, “+1” and
“+2” as the starting points for the following transitions when “Atom 2” is added, where
the transitions are more complicated as each of the three starting states has three
possible transitions. For starting point “N”, the result state after adding the second atom
could be “N”, “+1” and “+2”. If starts from “+1”, the transit isotope states could be “+1”,
“+2”,and “+3”. From starting point “+2”, it can get to the isotope states of “+2”,”+3” and
“+4”, The probability of an isotope variant can be obtained by summing up all the possible
transitions to this state, each obtained by multiplying the probability of starting isotope
state at “Atom 1” with the one step transition probabilities. For example, as shown in
Figure 12, the “+1” isotope state at “Atom 2” can be from either “N” or “+1” at “Atom 1”,
and its probability should be the sum of the two transition probabilities from these two
starting points. The first part is the transition from “N” at “Atom 1” to the current state,
which needs an atom with its isotope of one mass higher than the most abundant isotope
to get “+1” state. The probability can be obtained by multiplying the probability of “N” at
“Atom 1” with the transition probability, which is the natural abundance of the isotope
with one mass higher than the most abundant isotope of the added atom. The second
part is obtained by multiplying the probability of “+1” at “Atom 1” with the natural
abundance of the most abundant isotope of the added atom. The algorithm is shown

below:
Isoy(i) = X5y Isoy_1 () * Py vVi,j=1,.,K; N>1 (8)
, and the starting point is set as

Isoy(i) =1 i=1

(9)
Iso,(i) =0 1<i<K
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, Where Isoy (i) denotes the isotope state i when adding the Nth atom to the molecule,
and K is the number of isotope variants. P;;  is the probability of the one step transition
from isotope state j to the isotope state i, which is related to the natural abundance of
the isotope of the Nth atom being added, and it satisfies P;; y = 0 and Z?=1 Pin=1.
Formula (8) describes that the probability of a molecule at a certain isotope state i after
adding the Nth new atom on it, equals to the sum of the probabilities of all possible
isotope state transitions from the previous status. Formula (9) gives the probabilities of
the initial isotope states at “Atom 0”, and the probability of the no isotope effect is given

the value of 1 and other isotope states 0.

m/z of Isotope variants Probabilities
734 0.672590888
735 0.262635973
736 0.055411745
737 0.008296727
738 0.000976817
739 0.000095285
740 0.000007945
741 0.000000578
742 0.000000037
743 0.000000002

Table 5: Probabilities of 10 isotope variants of PC16:0/16:0 ion. The ion has a probability
of 0.672590888 to be in the monoisotopic form with the mass of 734, and a probability of
0.262635973 to be in the state with one mass higher of 735.

The isotope distribution function is set to calculate the probabilities of the first 10 isotopic
variants of a species, including the molecules of monoisotopic mass with only the

principle isotopes, as well as the ones with other isotopes up to 10 masses higher than
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the monoisotopic mass. This is reasonable for a typical PL analysis, as for a molecule with
a mass over 1700, the probability of it having more than 10 isotopologues could be well
under 10® which is negligible. The PL molecules mass are usually under 1700 and the
possibility of these specie having more than 10 isotopologues is even less. Table 5 is an
example of the calculated isotope distribution of PC16:0/16:0 ion using the programme.

3.4.2.2 Isotope effect correction

To correct the isotope effect shown in the MS analysis, LipidomeLabelling utilizes a

formula (Eibl et al., 2008) commonly used in isotope effect removal, shown as below

I(m) = (I,(m) = ¥5_,I(m — n) X Iso,(m —n))/Isoo,(m) m€ D (10)

, Where I(m) is the corrected intensity of a species with m/z value m, and I,,(m) is the
observed intensity of it. I(m — n) is the corrected intensity of species with m/z value of
m —n, and so Iso, (I — n) represents the natural abundance of “+n” isotopologues of
this species. The product of these two items I(m — n) X Iso,(m — n) gives the intensity
of the “+n” isotoplogues of the species. The programme corrects the isotope effect on a
species from 9 other species, with m/z values from m-1 to m-9, the isotoplogues of which
may have the same mass with m. I,(m) — Y5 _, I(m — n) X Iso,(m — n) is the
remaining of the intensity after removing the isotope effect. Iso,(m) denotes the
percentage abundance of principle ion of species m. Dividing the remaining intensity by
this term generates the real abundance of species m. Figure 13 shows spectrum of the

previous sample shown in Figure 9 after the isotope effect correction.
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Figure 13: Spectrum of the previous example in Figure 9 after isotope correction.

3.4.23 Cross scan isotope effect correction

The cross scan isotope effect correction step is a unique feature of the LipidomelLabelling
and the in house programme, which aims to correct the isotope effect occurring on the
fragment that is monitored in a precursor scan. In a precursor scan, the isotope effect of a
detected species which occurs on the non-monitored part of the molecule can be
corrected by calculating and removing the effect from other species detected in the same
scan using the algorithm discussed in the previous section. However, the species may also
suffer from the isotope effect from other different species that have the same m/z with
the detected species, but isotope effect occurs on their fragment making it has the same
mass with the fragment being monitored. For example, the monoisotopic mass of ion A is
100 and its fragment of 50 is monitored. The monoisotopic mass of ion B is 99, but
isotope effect occurs on its fragment with m/z of 49, making the fragment of 50 and the
m/z of the isotopologue of B 100. This variant of ion B will be detected by the MS and
taken asion A, as it has the same m/z for the monitored fragment and the whole ion of A.
However, this is a totally different species, which should be removed if possible.
Correcting this requires the intensity of the source species, the isotope effect of which

affects the result of the species of interest, but the intensity is not derivable from the
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scan itself. Nevertheless, multiple scans are often carried out for an ESI MS/MS facilitated
PL labelling analysis, which makes it possible to partly correct this isotope effect on a
species by working out the isotope effects from other species detected from other scans.
This is particularly important in labelling studies that require removing the naturally
occurred isotope effect in order to get an accurate abundance of artificially labelled

species for enrichment calculation.

For example, in a PC labelling study, DPPC (m/z 734) and methy/Ds labelled DPPC (m/z 737)
can be detected by P184 and P187 scans, respectively. However, the detected D3DPPC
molecules by P187 is the combination of artificially labelled D3DPPC and the naturally
occurred “+3” isotopologues of DPPC. With the information obtained from P184 scan, this
problem can be solved by calculating the abundance of “+3” isotopologues of DPPC
detected by P184 scan, and removing it from the D3DPPC measurement by P187. The

correction formula is as follows

Ir(m) = Ly(M) — Xr_7<n<y Iy(m—(f —n)) x Isof_p(n) (11)

, Where Iy (m) denotes the corrected intensity of species with m/z of m, the monitored
fragment of which has a mass of f. ;¢ (m) is the uncorrected intensity of the species. n
is the mass of the fragment monitored by another scan, which satisfies f —7 <n < f,
meaning the programme only corrects the effect of the species, the fragments of which
are smaller than that of the species of interest by maximum of 7 mass units. In(m -

(f — n)) is the corrected intensity of a species in the scan of fragment n, and the mass
difference between this species and species m is the same as that between the two
scanned fragments f — n. Taking the example above, if we are correcting an isotope

effect on species D3DPPC with m/z of 737 in P187 scan from a isotope variant of a species
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detected in P184, making “m” being 737 and “f’ being 187, we need to consider the “+3”
(187-184) isotopologues of a species from P184 having a mass of 737 — (187-184), which
is 734. The intensity of the species from scan n is used to calculate the isotopologues that
affect the species m in scan f, by multiplying their percentage abundance of the
Isof_n(n) . All the scans in the same mode will be treated in the same way as long as

their mass differences between the scanning fragments are smaller than 7.

3.4.3 CID correction

A tandem mass spectrometer with a collision cell can perform collision - induced
dissociation (CID), through which molecular ions are fragmented. However, the bigger a
molecule is, the more vibration modes it has, so it is less likely that a given collision
energy can induce fragmentation. Besides, the more energy put in for dissociating the big
ion, the greater the speed of the fragments, and the more difficult it is for the
containment field to keep them in, which leads to scatter loss. The effect of above is that
the detection rates of bigger precursor molecules tend to be lower than smaller precursor
molecules. Lipidomelabelling provides an optional CID correction function to correct the
effect occurred due to the first issue mentioned above, with an empirical formula as

follows

I(m) =I,(m) + (2 x 1013 x m™39873) x 100 (12)

, Where I(m) and I,,(m) are the corrected and uncorrected intensities of species with m/z

value of m.
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3.5 Phospholipids data analysis

3.5.1 Composition analysis

LipidomeLabelling offers a functionality for PL composition analysis. It calculates the
percentage of all the species detected in a scan. This calculation excludes the internal
standards, which are exogenous molecules artificially added into samples for species

guantification. The internal standards are specified by users in the setting up for analysis

by Lipidomelabelling.

lon Mass Species Intensities Qua(nnt :‘i:;tion
678 PC14:0/14:0 | 161446616.5 10
780 PC16:0/20:5 882214.6 0.0546
781 SM22:3 0 0
782 PC16:0/20:4 302661855 18.7469
783 SM22:2 5145607.8 0
784 PC18:1/18:2 1769086.9 0.1096
785 SM22:1 59115.9 0
786 PC18:0/18:2 131416916 8.13997
787 SM22:0 341345.5 0
788 PC18:0/18:1 1004836.6 0.06224
789 SM24:6a 0 0
790 PC18:0/18:0 118075112 7.3134
792 PC18:2a/20:4 0 0
794 PC18:1a/20:4 56540 0.0035
796 PC18:0a/20:4 759896 0.0471
797 SM24:2a 60661 0
798 PC18:0a/20:3 503165 0.03117
799 SM24:1a 109304 0
800 PC18:0a/20:2 139302 0.008628

Table 6: Part of the result from a P184 scan of a sample. 10nmol of internal standard
PC14:0/14:0 (first row) are used specifically for PC species quantification, so only the

amounts of PC species are calculated.
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3.5.2 Amount quantification

Quantifying the amount of species in a sample is one of the main purposes of MS analysis.
For lipid quantification, internal standards are added into samples before MS monitoring.
Internal standards are some exogenous compounds that have similar properties with the
endogenous species to be quantified when analysed by MS. It is possible to determine the
quantity of endogenous lipid by multiplying the amount of internal standard with the
intensity ratio of endogenous species over the internal standard. The LipidomeLabelling
supports three internal standards for multiple lipid class quantification. Table 6 is part of

the lipid quantification result of an ESI MS/MS analysis calculated by the programme.

3,53 Dynamic stable isotope labelling analysis

The isotopic enrichment of a stable isotope labelled material is calculated based on the
intensities of the detected labelled and unlabelled molecules. In the literature of tracer
kinetics study, there are two commonly used forms of enrichment, tracer/tracee ratio
(Cobelli et al., 1987) and APE. APE is the ratio of tracer over the sum of tracer and tracee
(Garlick et al., 1994). There are no clear explanations about which form should be used in
what situation. In the surfactant phospholipid stable isotope labelling studies, APE has
been widely used (Cogo et al., 1999; Torresin et al., 2000). The APE is described by the

following formula

APE = Tracer (13)

Tracer+Tracee

Lipidomelabelling supports both forms of enrichment calculation to be chosen by users
for lipid labelling analysis. The platform support studies with multiple labelling materials.

It can also analyse labelling and non-labelling PL studies at the same time. Table 7 lists the
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enrichment of some labelled PC species in a mouse sample measured by ESI MS/MS

through P184, P187, P190 and P193 scans.

Endogenous | m/z Enri D3 labelled m/z Enri D6 labelled m/z Enri D9 labelled m/z Enri
PC16:0/14:0 706 | 0.9973 | D3Pc16:0/14:0 | 709 | 0.001 | D6PC16:0/14:0 | 712 | 0.0001 | D9PC16:0/14:0 | 715 | 0.0016
PC22:6a/10:0 | 708 | 0.9671 | D3PC22:6a/10:0 | 711 | 0.0096 | D6PC22:6a/10:0 | 714 | 0.0128 | D9PC22:6a/10:0 | 717 | 0.0105
PC22:5a/10:0 | 710 | 0.9581 | D3PC22:5a/10:0 | 713 | 0.0198 | D6PC22:5a/10:0 | 716 | 0.0098 | D9PC22:5a/10:0 | 719 | 0.0123
PC14:1a/18:3 | 712 | 0.9604 | D3PC14:1a/18:3 | 715 | 0.0109 | D6PC14:1a/18:3 | 718 | 0.0174 | D9PC14:1a/18:3 | 721 | 0.0113
PC14:1a/18:2 | 714 | 0.9536 | D3PC14:1a/18:2 | 717 | 0.0064 | DePC14:1a/18:2 | 720 | 0.0354 | D9PC14:1a/18:2 | 723 | 0.0046
PC14:0a/18:2 | 716 | 0.9824 | D3PC14:0a/18:2 | 719 | 0.0082 | D6PC14:0a/18:2 | 722 | 0.0031 | D9PC14:0a/18:2 | 725 | 0.0063
PC18:0a/14:1 | 718 | 0.9935 | D3PC18:0a/14:1 | 721 | 0.002 | D6PC18:0a/14:1 | 724 | 0.0003 | D9PC18:0a/14:1 | 727 | 0.0042
PC16:0a/16:0 | 720 | 0.9966 | D3PC16:0a/16:0 | 723 | 0.0014 | D6PC16:0a/16:0 | 726 | 0.0001 | D9PC16:0a/16:0 | 729 | 0.0019
PC22:6/10:0 722 | 0.9816 | D3PC22:6/10:0 | 725 | 0.0094 | D6PC22:6/10:0 | 728 | 0.0032 | D9PC22:6/10:0 | 731 | 0.0059
PC22:5/10:0 724 | 0.9242 | D3PC22:5/10:0 | 727 | 0.0558 | D6PC22:5/10:0 | 730 | 0.0152 | D9PC22:5/10:0 | 733 | 0.0048
PC14:1/18:3 726 | 09762 | D3PCc14:1/18:3 | 729 | 0.0159 | DePc14:1/18:3 | 732 | 0.0069 | D9opc14:1/18:3 | 735 | 0.001
PC14:1/18:2 728 | 09732 | D3Pc14:1/18:2 | 731 | 0.0059 | D6PC14:1/18:2 | 734 | 0.0018 | D9Pc14:1/18:2 | 737 | 0.0191
PC14:0/18:2 730 | 0.9945 | D3PC14:0/18:2 | 733 | 0.0019 | D6PC14:0/18:2 | 736 | 0.0003 | D9PC14:0/18:2 | 739 | 0.0034
PC16:0/16:1 732 | 0.9961 | D3Pci16:0/16:1 | 735 | 0.0008 | DePC16:0/16:1 | 738 | 0.0000 | D9Pci6:0/16:1 | 741 | 0.0031
PC16:0/16:0 734 | 0.9958 | D3PC16:0/16:0 | 737 | 0.001 | D6PC16:0/16:0 | 740 | 0.0000 | D9PC16:0/16:0 | 743 | 0.0032

Table 7: Enrichment of PC species in a mouse sample analysed by P184, P187, P190 and
P193 scans measuring the endogenous, methy/Ds labelled, methy/Dg labelled and
methylDg labelled PC species, respectively. The isotopologues of a species detected in the
four scans are put in the same row. m/z values are listed behind species names. APE is
applied for enrichment calculation, so that the enrichment of a species in either labelled
or unlabelled form is the ratio of its intensity over the sum of the intensities of all
isotopologues detected. Therefore, the enrichment shown on each row add up to 1.

3.6 Graphical user interface

Lipidomelabelling offers a graphical user interface (GUI) (Figure 14) for users of all levels
with no programming skills requirement. The GUI is stored in GUl.mat file. To run a
labelling analysis, users need to make a few steps of setting up, including file selection,
species list selection, baseline noise removal specification, internal standards
specification, and criteria setting for species selection. The programme allows modifying
the specification of internal standards and selection criteria after analysis has been done
and only adjust the previous results, which does not require the recalculation of all the

results. This feature makes it easier for users to correct input errors made by mistake
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when setting up the programme, which saves the time of recalculation of the unaffected
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Figure 14: Graphical user interface of Lipidomelabelling.

3.7 Validation

Validation of LipidomelLabelling is performed by comparing it with the old in house

software on the results of the common functionalities they have. The comparison has
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found small differences in the composition and enrichment, which mainly stems from the

different background subtraction algorithms applied, resulting in the difference in the

calculated molecule intensities. A comparison of molecule intensities of a mouse sample

calculated by the two programmes are listed in Table 8.

Species LPC10:1 | LPC10:0 LPC12:1 | PC16:0/16:1 | PC16:0/18:2 PC16:0/18:1 PC18:1/20:4 | PC18:0/20:4
m/z 410 412 438 732 758 760 808 810

Old analyser 41855 132945 76469 425395368 7467709331 13079711579 1383499560 | 3361057215

Lipidomelabelling 44344 138086 81315 425399571 7467714456 13079715941 1383506189 | 3361064179

Table 8: Comparisons of intensities of selected species processed by the old analyser and
Lipidomelabelling. The intensities calculated for species from different mass ranges are
generally higher in the Lipidomelabelling, which approximates a smaller background than
the old analyser. The first three species within small mass range are affected more due to
their relatively small intensities compared to the background noise subtracted from all

species.

The old programme is more aggressive on the background removal, which generates

slightly higher background estimation. This mainly affects molecules with lower

abundance, because the procedure removes a fixed background noise from all spectrum

and so the smaller the intensity is, the more effect the removed background can make.

Although the mostly affected species are usually not of interest, as these species are with

an intensity level close to noises, it is still worth to evaluate further for a more

appropriate background algorithm for a better approximation of the molecule intensities.

It was also shown that Lipidomelabelling is much faster than the in house software. In a

test of analysing a typical PC labelling analysis with 4 scan types, the new platform runs 6

times faster than the old programme.
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3.8 Conclusions

Lipidomelabelling is a platform for ESI MS/MS lipidomics data processing and kinetic
analysis. It consists of a data converting programme and streamlined analysing modules,
offering functionalities for background noise removal, peak detection and integration,
adduct correction, isotope effect correction, CID correction, as well as composition,
quantification and kinetic analysis. It facilitates fast, comprehensive, automatic and user

friendly analysis for stable isotope labelling as well as non-labelling PL studies.

The algorithm used in LipidomelLabelling for peak integration takes the average of the
intensities measured at several points around a detected peak centre, due to difficulty in
modelling the peak based on the information available. Better algorithms should be
explored for integrating the whole peak area for better abundance approximation.
Besides, background subtraction algorithm of LipidomeLabelling could be tested and

examined in different studies for better parameter setting and background estimation.

70



Chapter 4

Chapter 4  Surfactant phosphatidylcholine dynamic

biomarker discovery analysis for animal models

4.1 Introduction

In this chapter, the pulmonary surfactant PC labelling data of mouse models from a
previous surfactant turnover study is used for dynamic biomarker discovery analysis. The
methodology for time course PC label enrichment modelling and biomarker analysis is
established for the following application to human clinical data. The mouse model is ideal
for investigating the possibility of using temporal PC label incorporation as a biomarker,
because the transgenic mouse in the study is an artificially established model with single
defined condition. It benefits from having a genetically homogeneous background and
common nutrition, conditions that do not apply in clinical studies. The SME statistical
method is used to characterise the time course enrichment of methy/Dg-PC, an indication
of PC turnover, to assess if it can potentially provide improved diagnostic insights over

static measurements.

41.1 Project description

The mice data analysed in this chapter is from a previous study carried out in
Southampton funded by Medimmune LLC. Medimmune has developed a therapeutic
antibody against the GM-CSF receptor, which they are using a biological drug to inhibit
macrophage-driven inflammation and so reduce painful symptoms in patients with
rheumatoid arthritis. As reduced GM-CSF stimulation of alveolar macrophages
development is a major cause of PAP disease, Medimmune was concerned that the
antibody for treatment of rheumatoid arthritis might have a harmful side effect of

accumulation of excess surfactant in the lungs of their patients. Therefore, Medimmune
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carried out a two-step study aiming to evaluate how their drug would affect the turnover
of the PC species in the respiratory system. The first part of the study sought to compare
the PC turnover of mice with and without PAP. They use GM-CSF receptor beta chain
depleted mice, also called KO mice in this chapter, as diseased mice to establish the effect
of blocking alveolar catabolism of surfactant PL due to the absence of macrophages. Then
they compared the turnover of PC species in BALF and lung tissue samples of these gene
depleted mice models with that of normal mice. There are three age groups of normal
mice including 169 days, 113 days and 84 days groups. The second part of the study
deployed another two groups of normal mice treated with low dose and high dose of the
developed antibody drug to see if excessive antibody caused any harm, where the low
dose is equivalent to the amounts given to rheumatic arthritis patients. Low dose and
high dose of drug were given to both 113 days and 169 days mice groups, to assess the
dose effect across two different age groups. The whole study found that the total PC
turnover of the KO mice was significantly lower than that of the normal mice at the
designed time points. Besides, PC turnover of low dose drug treated group was not
different from the normal mice. However, although the high dose treatment did not have
an effect on physiological functioning of the mice, it did have an impact on the PC label

incorporation pattern, which is more significant in 169 days high dose treated mice group.

In order to set up and validate the methodologies for time course PC label incorporation
modelling as well as biomarker discovery analysis, data of the mice groups that were
found with significant differences in the study were chosen to be analysed in this chapter.
Thus, the three age groups of normal mice, KO mice and 169 days high dose treated mice

were analysed to investigate if there is any difference between groups that can be
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recognized by temporal enrichment of labelled PC and which species are the most

significant in marking the difference.

4.1.2 Data description and method

The mice surfactant PC label incorporation data analysed in this chapter was provided in
the form of calculated methy/Dg-PC enrichment of sixteen PC species. The enrichment
data of BALF and lung tissue samples of three age groups of normal mice, KO group mice
and 169 days high dose treated mice, observed at four time points are included in the
analysis. The normal mice are considered as control mice, therefore the control group has

subsequent 169, 113 and 84 days age groups.

All of the mice received intraperitoneal injections of 0.1mg methy/D9-choline chloride for
three hours. The mice were sacrificed 5, 10, 24 and 48 hours after label infusion, and
BALF and lung tissue samples were collected immediately. Time series data for five mice
are kept in each group, although the samples were actually from 20 mice. As mice could
not be resampled, the samples collected at the 4 time points were actually from 4

different mice, rather than a single mouse resampled four times.

As the time series samples are not from the same mice, a random combination of
observations from 20 mice at the four time points was carried out to be considered as
repeatedly sampled time series data for five mice subjects. This is necessary as the nature
of the longitudinal study is to feature the time course characteristics of PC species, and in
biological experiments it is common that resampling is impossible. The made-up mice
subjects are denoted as Mouse 1 to Mouse 5 in 169 days group, Mouse 5 to Mouse 10 in
113 days group, and Mouse 11 to Mouse 15 in 84 days group for control group, and KO1

to KOS5 for KO group. Due to unknown error, the labelled material in some samples are at
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an undetectable level, including Mouse 1 of 169 days group and KOS5 of KO group at 5

hour. PC enrichment data of these samples were excluded from the analysis.

SME method was applied for model fitting for time course enrichment of sixteen
methylDo-PC species. Ft statistic was used for comparisons between groups and the SME

R package was used for the analysis.

4.1.3 Chapter objects and structure

This chapter aims to use SME method to model time course pattern of methy/D9 labelled
surfactant PC enrichment of mice samples and compare between groups for biomarker
discovery analysis, as well as to validate the methodologies for the analysis of clinical data
in the following chapters. The objects are as follows.

- Compare the D9DPPC temporal enrichment between control age groups, to
explore the appropriate application of SME framework to the data for best
performance, as well as to assess if age factor has any effects on the PC turnover.
The variation detected between the close assembled sub control groups can be
used as a reference for comparisons between other more diverse groups.

- Compare label incorporation patterns of sixteen PC species between control and
KO mice to evaluate the difference between the theoretically contrast groups for
biomarker analysis. The result could be used as reference of difference of contrast
groups, to be compared with that of the control age group, both of which could be
referred to when comparing other groups.

- Compare time course PC label incorporation between control and high dose

antibody treated groups, which should have mild difference comparing to that
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between control and KO mice, to check how well the established methodology can
identify and scale differences between groups.

- Analyse PC label incorporation in both BALF and lung tissue samples, for a
comprehensive longitudinal investigation of surfactant PC metabolism across

different compartments of the respiratory system.

4.2 Characterisation of time course methyl/Dslabelled DPPC enrichment

in BALF and group comparisons

In this section, the time course modelling and group comparison analysis were first
applied to a single DPPC species in BALF samples in mice groups, which aims to establish
the methodology as well as to demonstrate the use of it, before applying to multiple PC
species for biomarker discovery. SME method was used to model time course enrichment
of methylDs labelled DPPC species (D9DPPC or D9PC16:0/16:0) for three age groups of
control mice, combined control mice as well as KO group mice. The comparisons of the
DI9DPPC temporal enrichment were then carried out between three control age groups,
between age groups and KO group, as well as between combined control group and KO
group. Comparisons between control groups would indicate how much the comparatively
resembled age groups of control mice are different from each other in DPPC turnover.
The comparisons between control groups with KO group are to assess how much the mice
in the two biological states are different from each other in DPPC turnover. Furthermore,
the necessity of comparing combined control group with KO group instead of individual

sub age groups for the following analysis was discussed.
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421 Analysis of time course D9DPPC enrichment and group comparison

4.2.1.1 Dynamic modelling for control mice

DPPC is the most abundant PC species in pulmonary surfactant. The 169 days, 113 days
and 84 days age groups of control mice are all normal mice with genetically homogeneous
background. DPPC temporal label incorporation of the three age groups were firstly
modelled individually as independent groups to examine the age effect on the species
turnover, and then the DPPC label incorporation was modelled for the combined age

groups as a whole control group.

421.1.1 Modelling for 169 days control mice

Based on the observations at different time points, the time course D9DPPC enrichment
was modelled for each of the 5 individual mouse of the 169 days age group, as well as the
mean enrichment of the whole group, which is taken as the underlying biological process
of the whole group. Table 9 gives the estimated D9DPPC enrichment values at the 4
observation time points for individuals and the whole group. It also lists out the variation
of fitted individuals values from the fitted group mean, as well as the original

observations.

The fitted group mean model gives an estimated DODPPC enrichment value of 0.555% at
5 hour time point, which goes up to 1.158% at 10 hour. It then gets to a much higher
value of 1.699% at 24 hour, and decreases to 1.097% at 48 hour. The temporal trends for
all the individuals have the similar pattern. The variation of individual fitted values from
group mean values are generally small, ranges from -0.020% to 0.039% at 5 hour, -0.057%
to 0.109% at 10 hour, -0.046% to 0.084% at 24 hour, and -0.26% to 0.136% at 48 hour.
The fitted values among the individuals are very close suggesting similar time course

characteristics of the mice in 169 age group.
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Subjects 5 hour | 10 hour | 24 hour | 48 hour

Fitted mean enrichment of the group 0.555 1.158 1.699 1.096
Original enrichment 1.084 1.613 1.229

Mouse 1 | Fitted enrichment 0.535 1.100 1.654 1.233
Variation from group mean -0.020 -0.057 -0.046 0.136

Original enrichment 0.538 1.258 1.747 1.060

Mouse 2 | Fitted enrichment 0.564 1.186 1.722 1.033
Variation from group mean 0.009 0.028 0.023 -0.063

Original enrichment 0.493 1.222 1.726 1.089

Mouse 3 | Fitted enrichment 0.557 1.1685 1.709 1.074
Variation from group mean 0.002 0.011 0.010 -0.022

Original enrichment 0.592 1.196 1.763 0.944

Mouse 4 | Fitted enrichment 0.576 1.214 1.744 0.959
Variation from group mean 0.021 0.057 0.044 -0.138

Original enrichment 0.550 1.325 1.737 0.806

Mouse 5 | Fitted enrichment 0.594 1.266 1.783 0.834
Variation from group mean 0.039 0.109 0.084 -0.263

Table 9: Fitted enrichment values (%) of DODPPC in BALF samples of 169 days control
mice at four observation time points. In this table, the fitted group mean enrichment
values are listed in the first row. For each individual mouse, the original enrichment
observation value, model fitted value as well as the variation of the fitted value from the
group mean are all listed at each observation time point. Rows highlighted in blue are
fitted values through modelling.

A variation value as listed in the table is the difference between a fitted individual value
and the fitted group mean value at a certain time point, rather than that between the
fitted value and the original observation of an individual. For example, the variation of
-0.02% of Mouse 3 at 5 hour is the difference between the group mean value of 0.555%
and the fitted value 0.557%. But the difference between the original observational value
of 0.493% and the fitted value is -0.56%, which is bigger than the variation term. The
fitted values of individuals reflect the underlying biological feature of each individual
subjects, whereas the originally measured values are real observations, so the difference
between them reflects random variations of an individual model, while the variation of

fitted individual values from group means could be considered as variations within group.
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Figure 15: Time course enrichment model of DODPPC in BALF sample of 169 day age
group control mice. The empty circles are originally observed data points. The grey
dashed curves are enrichment models of individual mice, and the red solid curve is that of
the whole group.

Figure 15 shows the fitted curves of temporal enrichment of D9DPPC for each individual
mouse and the group mean of 169 days mice. The enrichment of DODPPC increases with a
big gradient at the beginning and gets to its highest level of 1.65% at 22 hour post
labelling. After reaching the highest point, the enrichment goes down slowly. The
maximum value as well as the time trend are approximated through modelling, which
cannot be obtained directly from the observed values at separated time points or by

simply lining them up to simulate the process.

The curves reflect the underlying biological activities of PC species by characterising the
change of their label incorporation over time. It indicates that D9DPPC species come into
the surfactant system and accumulate, and in the meanwhile they leave the pool at a
certain rate. In the steady state, when the amount of the entering DODPPC is higher than
that of the leaving DPPC, it accumulates in the pool, and the enrichment curve shows an

increasing trend. If the two equal to each other, the curve reaches a plateau. However,
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when the amount of incoming labelled species is less than that of the outgoing, the

enrichment values get smaller, therefore the curve drops down.

It can be seen from the plot that the group mean curve is not obtained by calculating the
mean values at each time point and joining them up. In fact, all the fitted values are
slightly deviated from the mean values calculated from observations at single time points.
For example, the fitted enrichment value of 1.096% at 48 hour on the group mean curve
is higher than the mean value 1.06% calculated directly from the individual mice at this
time point. This is because the SME method assumes a smoothing biological process of
the variables of interest, where the time effect is taken into account. As a result, critical
points can be found at unobserved time points, such as maximal and minimal points.
Simply taking means of observations at individual time points and lining them up would
lose the time information and leave discontinuity of variables at time knots. Moreover, it

is not able to estimate critical points other than observation time points.

Surfactant PC are synthesised by AT Il cells and are secreted into alveolar space, where
BALF samples are taken from, through exocytosis. If control mice are assumed in a steady
state, the swinging of the enrichment curves should be associated with the relationship
between the enrichment of labelled PC species before entering the pool, and the current
enrichment of labelled PC species in the pool. This is because in the steady state, the pool
size is constant, and the amount of entering species matches the leaving, which means
the rate and amount of new PC species coming into the pool should equal to those of PC
species leaving the pool. When it comes to the labelled species, under the constant
secretion, degradation and exchange rate, the rate of newly appeared labelled PC species
is related to its enrichment before coming into the pool, whereas the rate of

disappearance of the labelled species is related to their enrichment of the current pool.
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Therefore, as the enrichment curve reflects the relationship between the entering and
leaving labelled product PC species, it is actually down to the relation of the enrichment
of labelled precursor species and the enrichment of labelled species in the current pool.
Therefore, the increasing part in the curve means the label enrichment before entering
the pool is higher than the current pool enrichment, and the decreasing part of curves
indicates the label enrichment of species ready to get into the pool has already gone
lower than the current pool enrichment. As the label enrichment in the current pool is
mainly determined by the enrichment in the precursor pool steady state, the swing of an
enrichment curve is primarily due to the change of precursor pool label enrichment.

4.2.1.1.2 Modelling for 113 days age group mice

The fitted model of D9DPPC enrichment of 113 days group is very close to that of 169
days group. The approximated group mean values are 0.505%, 1.212%, 1.707% and 1.08%
at the four sample taking time points (Table 10). The enrichment curves increase from the
beginning and go down after reaching the maximum point (Figure 16). The maximum
enrichment is estimated to be 1.65% reached at about 21 hour after label infusion, which
is similar to that of 169 days group. The fitted individual curves and the group mean curve
are very close to each other, with a few observation points dispersed away from the fitted
curves. This indicates the small differences between fitted individual values and the group
means, but comparatively bigger differences between fitted individual values and their
observation, which implies a high group consistency and some variation among the
individual. The observed values deviating from modelled curves also show that the data
has not been over fitted by the model, in which case the fitted curves would go through

every single points on the plot.
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Subjects 5 hour | 10 hour | 24 hour | 48 hour

Fitted mean enrichment of the group 0.506 1.212 1.707 1.080
Original enrichment 0.416 1.1348 1.540 1.065

Mouse 6 | Fitted enrichment 0.470 1.173 1.669 1.080
Variation from group mean -0.036 -0.039 -0.038 -0.001

Original enrichment 0.434 1.431 1.710 0.973

Mouse 7 | Fitted enrichment 0.529 1.234 1.722 1.068
Variation from group mean 0.023 0.022 0.0146 -0.0124

Original enrichment 0.508 1.411 1.756 1.071

Mouse 8 | Fitted enrichment 0.536 1.244 1.734 1.076
Variation from group mean 0.031 0.032 0.0274 -0.004

Original enrichment 0.392 1.213 1.829 1.183

Mouse 9 Fitted enrichment 0.497 1.208 1.715 1.098
Variation from group mean -0.009 -0.004 0.008 0.018

Original enrichment 0.542 1.192 1.636 1.1034

Mouse 10 | Fitted enrichment 0.501 1.206 1.700 1.080
Variation from group mean -0.005 -0.006 -0.007 -0.001

Table 10: Fitted enrichment values (%) of DODPPC in BALF sample of 113 day age group

control mice at four observing time points.
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Figure 16: Time course enrichment model of DODPPC in BALF sample of 113 day age
group control mice. The empty circles are originally observed data points. The grey
dashed curves are enrichment models of individual mice, and the red solid curve is that of

the whole group.
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42.1.13 Modelling for 84 days age group mice

PC label enrichment data of 84 days control mice group is more spread out than 169 and
113 days groups, so the value range at each time point is wider (Table 11, Figure 17). The
enrichment of D9DPPC is between 0.986% and 1.902% at 24 hour, much wider than that
for 113 days group which is between 1.636% and 1.829%. The fitted curves have similar
temporal trend with those in 169 and 113 groups, which increase from the beginning to
the highest point and then decay towards 48 hour. However, the approximated values of
individuals and group mean are slightly different from 169 and 113 age groups, with
values at 5, 10 and 48 hour higher and values at 24 hour lower. The estimated maximum
value is about 16.7% reached at around 18 hour time point post labelling, which is earlier
than those of 113 and 169 days groups. The reason of more variation between individuals
in this group is unknown. But with such small sample size, the spread of these
observations, especially with the extreme values in them, has heavily affected the curve
shape. For example, it can been seen from the plot that the highest observation value at
12 hour and the lowest at 24 hour make a huge influence on the fitted curves. The high
value at 12 hour largely lifts up the mean value of all 5 observations at the time point and
the one 24 hour drags down the mean a lot. It can be imagined that without these
extreme values, the mean curve could shift to the right and reach the maximum at a later
time point, which may overlap with the curves of 113 and 169 days groups. However,
with data from only 5 mice, time course observation of each even from different mice, it
is hard to treat the extreme values properly or investigate further by looking into other
information. Besides, the plot also shows that although the observed data spreads out far
from the group mean curve, the fitted individual curves gather closely suggesting small

within group difference. However, this could potentially be an indication of slightly over-
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smoothing of the model. If this is the case, one possible reason for overfitting in this

example can be the effect of the AlCc fitting criteria, which can be further investigated

when necessary.

Subjects 5 hour 10 hour 24 hour 48 hour

Fitted mean enrichment of the group 0.670 1.425 1.573 1.1557
Original enrichment 0.617 1.974 1.783 1.372
Mouse 11 | Fitted enrichment 0.690 1.445 1.592 1.170
Variation from group mean 0.020 0.020 0.019 0.0144
Original enrichment 0.615 1.184 1.838 0.963
Mouse 12 | Fitted enrichment 0.666 1.421 1.569 1.152
Variation from group mean -0.004 -0.004 -0.004 -0.004
Original enrichment 0.781 1.129 1.306 1.233
Mouse 13 | Fitted enrichment 0.660 1.415 1.565 1.151
Variation from group mean -0.010 -0.010 -0.009 -0.005
Original enrichment 0.607 1.521 1.902 0.853
Mouse 14 | Fitted enrichment 0.675 1.430 1.576 1.154
Variation from group mean 0.005 0.005 0.003 -0.002
Original enrichment 0.607 1.488 0.986 1.360
Mouse 15 | Fitted enrichment 0.659 1.414 1.564 1.151
Variation from group mean -0.011 -0.011 -0.009 -0.004

Table 11: Fitted enrichment values (%) of DODPPC in BALF of 84 day age group control

mice at four time points.
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Figure 17: Time course enrichment model of DODPPC in BALF sample of 84 day age group
control mice. The empty circles are originally observed data points. The grey dashed
curves are enrichment models of individual mice, and the red solid curve is that of the
whole group.
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42114 Analysis of combined control group

42.1.1.4.1 Time course DPPC label enrichment of combined control group

The analysis of the three age group mice show a small difference of methyIDg label
incorporation of DPPC species, although 84 days group mice have more scattered
observations. All of the three groups have a very small sample sizes, with just 5 mice in
each group. In this section, the three age groups were combined to form a larger control
group with observations of 15 mice to characterise the time course DO9DPPC enrichment
of control mice population. Figure 18 shows a time trend of the combined group similar
with the three age groups modelled in previous sections. The maximum enrichment is

approximated at around 19 hour after labelling.
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Figure 18: Time course enrichment model of D9DPPC in BALF of combined control group
mice.

Table 12 lists the fitted values of the combined group. Comparing the results with
previous analysis, the fitted values for individual Mouse 1 to 5 of 169 days group analysed
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Table 12: Fitted enrichment values (%) of DODPPC in BALF of combined control group
mice at four time points.

Subjects 5 hour | 10 hour | 24 hour | 48 hour

Group Mean Fitted enrichment Value 0.564 1.298 1.663 1.087

Original enrichment 0.000 1.084 1.613 1.229

Mouse1 | Fitted enrichment 0.558 1.293 1.659 1.088
Variation from group mean -0.006 -0.006 -0.003 0.001

Original enrichment 0.538 1.258 1.747 1.060

Mouse 2 Fitted enrichment 0.564 1.298 1.663 1.087
Variation from group mean 0.000 0.000 0.000 0.000

Original enrichment 0.493 1.222 1.726 1.089

Mouse 3 | Fitted enrichment 0.562 1.296 1.661 1.087
Variation from group mean -0.003 -0.002 -0.002 0.000

Original enrichment 0.592 1.196 1.763 0.944

Mouse 4 | Fitted enrichment 0.564 1.298 1.662 1.085
Variation from group mean 0.000 0.000 -0.001 -0.002

Original enrichment 0.550 1.325 1.737 0.806

Mouse 5 | Fitted enrichment 0.565 1.299 1.662 1.083
Variation from group mean 0.001 0.001 -0.001 -0.004

Original enrichment 0.416 1.135 1.540 1.065

Mouse 6 Fitted enrichment 0.554 1.288 1.655 1.085
Variation from group mean -0.010 -0.010 -0.007 -0.002

Original enrichment 0.434 1.431 1.710 0.973

Mouse 7 | Fitted enrichment 0.565 1.298 1.663 1.086
Variation from group mean 0.000 0.000 0.000 -0.001

Original enrichment 0.508 1.411 1.756 1.071

Mouse 8 Fitted enrichment 0.567 1.301 1.665 1.088
Variation from group mean 0.003 0.003 0.002 0.001

Original enrichment 0.392 1.213 1.829 1.183

Mouse 9 | Fitted enrichment 0.561 1.295 1.662 1.089
Variation from group mean -0.004 -0.003 -0.001 0.002

Original enrichment 0.542 1.192 1.636 1.103

Mouse 10 | Fitted enrichment 0.561 1.295 1.660 1.087
Variation from group mean -0.004 -0.003 -0.003 0.000

Original enrichment 0.617 1.974 1.783 1.372

Mouse 11 | Fitted enrichment 0.586 1.318 1.680 1.095
Variation from group mean 0.021 0.020 0.017 0.008

Original enrichment 0.615 1.184 1.838 0.963

Mouse 12 | Fitted enrichment 0.566 1.299 1.664 1.086
Variation from group mean 0.001 0.001 0.001 -0.001

Original enrichment 0.781 1.129 1.306 1.233

Mouse 13 | Fitted enrichment 0.560 1.294 1.659 1.086
Variation from group mean -0.004 -0.004 -0.003 -0.001

Original enrichment 0.607 1.521 1.902 0.853

Mouse 14 | Fitted enrichment 0.575 1.308 1.669 1.086
Variation from group mean 0.010 0.010 0.006 -0.001

Original enrichment 0.607 1.488 0.986 1.360

Mouse 15 | Fitted enrichment 0.559 1.293 1.659 1.087
Variation from group mean -0.005 -0.005 -0.004 0.000
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in combined group are close to those analysed as an independent group, although at 10
hour the values are higher. However, for Mouse 6 to 10 of 113 days group, the fitted
values in combined group analysis are greater than individual group analysis at 5, 10 and
48 hours, and smaller at 24 hour. On the contrary, for individual Mouse 11 to 15 of 84
days group, the values in combined group analysis are lower at 5, 10, 48 hour, and higher
at 24 hour. The analysis of 84 days group mice (Figure 17) suggests the outlier with a high
value at 10 hour lifts up the fitted values at 5 and 10 hour, and the outlier with a small
value at 24 hour pull down the fitted values at these time points. The combined group
analysis has reduced the effect of these outliers, and the opposite way of handling 113
and 84 days mice indicates the SME takes all the individual subjects as a whole group for
modelling, which neutralises the variations among individual subjects.

4.21.1.4.2 Investigation of recombined time course data of control group

As stated before, the time series data for each mouse subject in this study is actually from
different mice rather than repeated samples from a single mouse. In order to check if the
combination of time points for each mouse subject affects the statistical analysis results,
the time point data is recombined to form new time series data of mice in each age group,
and the age groups are put together as a new control group for analysis. Two versions of
recombination of mice data were constructed for comparisons with the original

combination in the last section. The two plots are shown in Figure 19 and Figure 20.
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Figure 19: Modelling of D9DPPC enrichment of the first recombination of control group.
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Figure 20: Modelling of DODPPC enrichment of the second recombination of control
group.

Figure 19 shows that the modelling of the first recombination data of control mice is very
close to the original previously analysed. However, Figure 20 shows the individual curves
of the second recombination version are more scattered, although the group mean curve
is still similar to the other versions. The fitted group means of the two recombination
versions of time series data are both similar to the original combination. Table 13 lists the
fitted group mean values at the four observation time points for the three versions of

combinations, and the difference is subtle. This indicates that the way of combination of
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time series data has slightly affected the variation among individual models but not the

underlying group incorporation pattern.

Version of combination 5 hour 10 hour 24 hour 48 hour
Original combination 0.564378638 | 1.298180555 1.662924 1.087009
First recombination 0.566041783 | 1.296100238 1.663433 1.087032
Second recombination 0.565236142 | 1.297654328 1.663010 1.086973

Table 13: The group mean values of DODPPC enrichment in BALF fitted for three
combination versions of time course data of 169 days control mice.

4.2.1.2 Model fitting for KO mice group

The KO mice group consists of longitudinal enrichment data of five mice. Table 14 lists the
PC enrichment approximation results of KO mice at four observation time points. The
enrichment levels of KO mice are very low, and the fitted mean values of the whole group
are 0.018%, 0.067%, 0.130% and 0.186% at 5, 10, 24 and 48 hour, respectively. The
variations of individual fitted values are also small from the group means, ranging from -
0.013% to 0.007% at 5 hour, -0.016% to 0.035% at 10 hour, -0.026% to 0.018% at 24 hour,
and -0.044% to 0.025% at 48 hour. The differences between fitted values and
observations are generally small as well. DODPPC incorporation patterns are very close
among the individual mouse in this group, and the consistency is an ideal group
characteristic for biomarker discovery analysis. As mentioned before, KO5 mouse has an
undetectable level of labelled PC species at 5 hour, which has been excluded from the
analysis, but the SME method has made an estimation of the value of 0.005% without the

observation, showing its ability in dealing with missing values.
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Subjects 5 hour | 10 hour | 24 hour | 48 hour

Fitted mean enrichment of the group 0.018 0.067 0.130 0.186
Original enrichment 0.021 0.056 0.104 0.212

KO1 Fitted enrichment 0.021 0.056 0.104 0.212
Variation from group mean 0.003 -0.011 -0.026 0.026

Original enrichment 0.026 0.054 0.137 0.200

KO2 Fitted enrichment 0.026 0.054 0.137 0.200
Variation from group mean 0.008 -0.012 0.006 0.014

Original enrichment 0.019 0.051 0.129 0.187

KO3 Fitted enrichment 0.019 0.051 0.129 0.187
Variation from group mean 0.001 -0.016 -0.002 0.001

Original enrichment 0.018 0.075 0.133 0.185

KO4 Fitted enrichment 0.018 0.075 0.133 0.185
Variation from group mean 0.000 0.008 0.002 -0.001

Original enrichment 0.102 0.149 0.142

KOS5 Fitted enrichment 0.005 0.102 0.149 0.142
Variation from group mean -0.013 0.035 0.018 -0.044

Table 14: Fitted enrichment values (%) of D9DPPC in BALF of KO mice at four time points.

The model plot (Figure 21) shows that the enrichment of DODPPC in KO mice group
generally increases along the time course. In previous discussion for control mice, the
assumption was made as the mice being in a steady state with stable surfactant turnover.
However, for the KO mice, it is not appropriate to make such assumption, as these mice
models were PAP positive, with impaired macrophage degradation. With PAP the amount
of entering surfactant species outweighs that of the outgoing, which results in the

accumulation of the PC species as well as their labelled forms in the pool.

It is also noted that the curve for KO4 mouse, which has higher enrichment values at 10
and 24 hour and slightly lower value at 48 hour, exhibits a different temporal trend
comparing to others. However, it does not affect the overall increasing pattern of the
whole group. Besides, as described before, the time course data for each mouse subject is

actually from different mice, so it is possible that some of the observations are from the
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mice that have general higher incorporations and some are from the mice with low

incorporations, and the combination can make fluctuating time trends.
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Figure 21: Time course enrichment model of DODPPC in BALF of KO mice group.

4.2.1.3 Comparisons between control and KO groups

The modelling of time course D9DPPC enrichment for control and KO groups has provided
a wellspring of information regarding the species turnover. The curves do not only exhibit
the activities of D9DPPC in DPPC pool during the time period, but also contain the
information of activities of their precursors before turning up in the pool. The time of
appearance, enrichment level and the rate of change reflect the metabolic kinetics of
DPPC species indirectly, such as its synthesis, secretion, degradation and pool size.
Moreover, the experimental information are also implied in the curve, e.g. the bolus
infusion experiment has an enrichment curve with decreasing part after certain time
point. All these pieces of information can be integrally manifested in the time course
model, although they are not explicitly calculable as variables. Nevertheless, the temporal

patterns are comparable between subjects for metabolic insights, especially when certain
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conditions are identical to the subjects. In this study, general experimental procedures
were applied to all of the mice and mice in the same group are with identical biological
conditions, which allows the comparisons focus only on the different PC label

incorporation between groups without being interfered by other factors.

The following comparison analysis of time course enrichment of D9DPPC is performed
between every two age groups of control mice, as well as control with KO group, to get a
general idea about how much difference there is between control mice and between
control and KO groups. Table 15 shows the Ft statistics calculated for comparing the time

course D9DPPC enrichment between control groups as well as control group with KO

group.

(A): Ft statistics for control age groups.

Within Control groups G169 vs G113 G169 vs G84 G113 vs G84
Ft 1.340691 5.808352 15.03815
L 0.279276 1.174293 0.9763674
se 0.2083076 0.2021732 0.06492603
(B): Ft statistics for control and KO groups.
Control with KO G169 vs KO G113 vs KO G84 vs KO All control vs KO
Ft 41.87362 111.4986 142.3241 162.8645
L 8.657869 8.702522 8.50837 8.621543
se 0.2067619 0.07805052 0.05978164 0.05293691

Table 15: Ft statistics calculated for comparing every two age groups of control mice (A)
and control groups vs KO group (B). L denotes the distance between the two group mean
curves over the time period, and se is the functional standard error.

As shown in Table 15 (A), the calculated Fts are 1.34 for the D9DPPC temporal enrichment
of 169 days vs 113 days group mice, 5.81 for 169 vs 84, and 15.04 for 113 vs 84,
respectively. In the table, along with the Ft are the two statistics denoted as L and se. Ft is

calculated as the ratio of L over se. The numerator L is the distance between the two

91



Chapter 4

group means. It is worth to stress here that the difference is not calculated from
independent time point enrichment, but from the curves over the entire period. The
denominator se is the term of functional standard error. The ratio of L over se, namely Ft,
represents the scaled distance, which not only considers the difference between group
means over time, but also take into account how spread out the data is. So the bigger the
distance L between two groups is, the bigger the Ft will be. But the more scattered the
data is, meaning big se, the smaller the Ft will be. This is reasonable because when the
individuals in a group scatter far away from the group mean, the fitted group mean is less
effective in representing the group and explaining variations. Therefore, the individual
variations are taken into account by using se statistics. This is well demonstrated from the
Ft values computed between the control groups. The Ft for 169 vs 113 group is very small
with the value of 1.34, due to the small L of 0.279, indicating small difference between
the two groups. Although the 169 vs 84 has a similar se with 169 vs 113, it has a much
bigger L, resulting in a higher Ft of 5.81. While for the comparison between 113 vs 84,
although the L is similar with that of 169 vs 84, the se is much smaller with the value of
0.0649, making the Ft much higher at 15.04, suggesting a greater scaled difference than

other group pairs.

The Ft values between control groups are generally small, whereas the Ft statistics
calculated for control group vs KO group are considerably bigger. Table 15(B) shows that
the Ls of control vs KO group pairs are all over 8, much higher than those of control
groups which are around 1. The se values are comparatively low, leading to much higher
Ft values. The much higher Ft values of control vs KO comparing to those of control vs
control suggest that there is significant difference in DODPPC turnover between control

and KO mice.
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The Ft of combined control vs KO is 162.86, which is highly significant comparing with
those of the individual age control groups vs KO. This can be explained by checking the L
and se. Although the calculated L between combined control and KO groups is 8.62, not
much different from the Ls between individual age groups vs KO group, the se with the
value 0.0529 is smaller than the others, which results in a bigger Ft ratio. This suggests
the combination of all age groups not only keeps the similar distance with individual age
groups to the KO group, but also reduces the variations of models of individual mice,
which makes a good representation of control mice population and gives better results

when comparing with KO mice model.
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Figure 22: Comparison between time model of DODPPC in BALF between combined
control group and KO group

In Figure 22 the D9DPPC incorporation model of combined control group and KO group
are plotted together for comparison. The control group curve has a trend of increasing at
the beginning and decreasing after getting the highest level along the time axis. In
contrast, the KO group has a trend of increasing slowly along the time with no sign of

decreasing within the time window. The value ranges of the two groups are very different.
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The lowest enrichment level of control group is shown around 5 hour with the fitted
group mean value is 0.564%. While for the KO group, the highest enrichment values
appears around 48 hour with the group mean of 0.18%. The enrichment level in control
group, including group mean, individual mean and real observations, are all substantially
higher than the highest point in KO group. The distinctive time trend and value ranges

show the control and KO mice are significantly different.

As discussed before, a temporal enrichment model does not explicitly deliver any specific
parameters regarding the metabolic process of labelled or unlabelled species, but rather

it manifests the information integrally. Therefore, even though it is not possible to
quantify the factors that affect the timing of appearance in the pool, the enrichment level,
or the curve shapes, temporal models themselves are informative, and the difference

between them is meaningful and quantifiable for group comparison.

It is worth to mention that, although Ft is a t-style statistic for assessing the difference
between groups, there is no established distribution for the statistic under the null
hypothesis of no difference between the two mean curves. Thus, it is not possible to
make a standard statistical test to evaluate the significance of difference identified by the
variables directly. However, by checking the Ft values and observing the graph based on
the understanding of the mice model, it is possible to get a general idea about how far
the two groups are from each other and how significant it is.

4214 Combining age groups as control group for the biomarker discovery analysis

In the last section, both individual age groups and combined group of control mice have
been compared with KO group to assess the capability of DODPPC time course
incorporation in distinguishing control and KO mice. However, there are some downsides
of using individual age groups for the analysis, which suggests that it may be better to
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group them together as a whole group to be compared with KO group. The sample size is
very small in each group, with data for only 5 subjects, some of which are even excluded
due to measuring errors. It is hard for an individual group with such few subjects to cover
the underlying population. Besides, it is found that some extreme outliers exist in the
already scarce dataset and heavily influence the modelling of the time series data,
however, removing the outliers would result in even less observations. Figure 23 shows
the fitted temporal enrichment models of species D9PC16:0a/16:1 for the three age
groups. It is shown that under the effect of an extreme outlier at 5 hour, the mean value
of 169 days group mice has been lifted to be around 1.3%, which could have been well
under 1.0% and had a curve shape close to the other two groups. Note that there are only
4 observations at this time point for 169 mice, due to the exclusion of one data point of
measuring error, which results in the outlier asserting greater impact to the overall group

mean value, and removing the outlier would worsen the data insufficiency.

Another issue with the mice model data is that the time series are actually a random
combination of different mice at different time points rather than repeated sampling
from a single subject over a time period. The individual curve obtained by putting
together the time point data for a made-up mouse can be different from a real mouse
from the underlying population, which can affect the estimation of the mean curve of the

whole population, especially when the sample size is small.
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Figure 23: Time course enrichment model of species D9PC16:0a/16:1 for the three age
groups of control mice. The lines in red, blue, and green are the enrichment curves of 169,
113 and 84 days mice groups. The extreme outlier of a mouse in 169 day age group at five
hour time point, with the value of 3%, hugely affects the mean value of the whole group.

In order to tackle these issues, it is appropriate and more sensible to combine all the
three age groups as one control group for the comparison with KO group, given that the
three groups resemble each other quite well (Figure 24). The benefit of combining has
already been demonstrated in the last section when comparing with KO group, which has
generated better results than using individual age groups. Besides, the rare extreme
outlier should be removed, as they may significantly twist the shape of the underlying
group mean curve. The impact can be even worse when inappropriately combining the
time point observations from significantly different mice, which could result in great
fluctuations in the fitted curves for made-up mice. Therefore, in the following group
comparisons for biomarker discoveries, the combined control group will be used and

extreme outliers will be removed.
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Figure 24: Integrated graph of D9DPPC time course enrichment modelled for three
individual age control groups and KO group. The curves for the three age groups of 169
days, 113 days and 84 days, highlighted in red, blue and green respectively, have similar
time trend and mean curve values. 84 days group has wider spread of values and outliers,
which makes the whole curve shape lean forward slightly comparing to the other two
groups. Generally, the time series models of the three control groups are very close to
each other, and all of them are far above the KO group highlighted in purple, suggesting
the substantial difference between control and KO groups.

4.3 Characterisation of time course methylD9 -PC enrichment in BALF of

control vs KO groups and biomarker analysis

Based on the methodology established through analysing label incorporation of the single
species DPPC, the time course enrichment of sixteen labelled PC species in BALF were
modelled and analysed for both control and KO mice groups in this section. Comparisons

were carried out between the two groups for multivariate time course biomarker analysis.

43.1 Time course enrichment of labelled PC species

The SME method has worked effectively in modelling the time course enrichment of
DI9DPPC for control and KO groups, as well as comparing groups to investigate if and how
well the DPPC label incorporation can distinguish between different groups. In this

section the temporal enrichment of sixteen methylDq labelled PC species in BALF are
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modelled and compared between combined control and KO groups, for understanding

the species metabolism as well as looking for potential biomarkers.

m/z Species Group Enrichment (%)
5 hour 10 hour 24 hour 48 hour
Control 0.466 1.104 1.512 1.020
715 D9PC16:0/14:0
KO 0.018 0.051 0.152 0.213
727 DOPC16:0a/16:1 Control 0.505 1.227 1.409 1.102
KO 0.036 0.057 0.116 0.216
729 D9PC16:03/16:0 Control 0.563 1.188 1.521 1.016
KO 0.025 0.044 0.143 0.167
741 D9PC16:0/16:1 Control 0.643 1.436 1.724 1.041
KO 0.029 0.086 0.186 0.248
743 D9PC16:0/16:0 Control 0.564 1.298 1.663 1.087
KO 0.018 0.067 0.130 0.186
767 D9PC16:0/18:2 Control 1.042 1.686 1.716 1.051
KO 0.032 0.092 0.162 0.228
769 D9PC16:0/18:1 Control 1.016 1.813 1.898 1.107
KO 0.056 0.113 0.184 0.233
771 D9PC16:0/18:0 Control 0.074 0.252 1.169 0.751
KO 0.005 0.031 0.098 0.137
791 D9PC16:0/20:4 Control 0.911 1.560 1.773 0.981
KO 0.043 0.136 0.230 0.297
793 DOPC18:1/18:2 Control 0.756 1.273 1.556 0.964
KO 0.048 0.100 0.248 0.169
795 DOPC18:0/18:2 Control 0.409 0.599 1.129 0.841
KO 0.058 0.073 0.110 0.145
797 DOPC18:0/18:1 Control 0.501 0.680 1.081 1.203
KO 0.091 0.075 0.170 0.167
815 DIPC16:0/22:6 Control 1.003 1.435 1.857 0.998
KO 0.047 0.112 0.199 0.231
317 DOPC18:1/20:4 Control 0.878 1.308 1.981 1.042
KO 0.112 0.165 0.176 0.223
Control 0.439 0.582 0.942 0.894
819 D9IPC18:0/20:4 ontro
KO 0.044 0.050 0.078 0.172
Control 0.365 0.522 1.080 0.978
843 D9IPC18:0/22:6 ontro
KO 0.015 0.043 0.105 0.117

Table 16: Fitted group mean values of time course enrichment of sixteen methy/Dq
labelled PC species in BALF samples of control and KO mice groups at four sampling time
points. The species are classified into three categories in terms of temporal enrichment
levels of control group based on the result of hierarchical clustering analysis. The species
with comparatively higher time course enrichment are in the high category highlighted in
pink, and the species with comparatively lower time course enrichment values are in low
category highlighted in blue, with the rest of species in the middle category.
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The modelling results are listed in Table 16, which gives the fitted values of group means
of sixteen labelled PC species at four sampling time points, for both control and KO
groups. The species in control group are classified into three categories based on their
time course enrichment level using hierarchical clustering analysis, and the three groups
can be generally recognised as high, middle and low label incorporation groups. The
clustering result is shown in Figure 25, and the species in the three categories are

highlighted Table 16.
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Figure 25: Dendrogram of hierarchical clustering analysis for time course enrichment of
sixteen methylDs labelled PC species in BALF samples of control mice. Species is denoted
as “D9PC” with their m/z value in the dendrogram.

The species that have similar level of time course enrichment with D9PC16:0/16:0

(D9DPPC) are in the middle category, including the characteristic surfactant PC species

99



Chapter 4

D9PC16:0/16:0, D9PC16:0/14:0, D9PC16:0a/16:1, D9PC16:0a/16:0, D9PC16:0/16:1, and
D9PC18:1/18:2. In the high category, most of the species with higher enrichment are with
a fatty acyl chain of 16:0 and another unsaturated longer chain, including D9PC 16:0/18:2,
D9PC 16:0/18:1, D9PC 16:0/20:4 and DIPC 16:0/22:6, with one exemption of D9PC
18:1/20:4 that does not have a 16:0 chain. Species in the low category include
D9PC16:0/18:0, D9PC18:0/18:1, D9PC18:0/18:2, DI9PC18:0/20:4, and DIPC18:0/22:6, all
of which are with a saturated 18:0 fatty acyl chain. Moreover, D9PC16:0/18:0 is the only
species with a 16:0 acyl that falls in this category. As 16:0 is the component of major
surfactant PC with high synthesis, the low level of its combination with 18:0 into
D9PC16:0/18:0 is a strong evidence that the species with 18:0 have lower incorporation

than other species.

As discussed before, the control mice are assumed to be in a steady biological state. In
steady state, the fractional rate of appearance of species is directly proportional with the
initial change rate of labelled PC species enrichment upon arrival at the pool (at time
zero), and inversely proportional with the initial enrichment of labelled species in the
source pool. It is known that surfactant PC species in BALF is synthesised and remodelled
in AT Il cells (Chen et al., 2006), which are wrapped in lamella bodies and secreted into
the BALF through exocytosis. In the steady state where secretion rate is constant, it is
reasonable to assume all surfactant PC species at alveolar surface turn up in the pool at

the same time and have the same fractional appearance/disappearance rate.

_ Zp(0)
FAR = 0 (14)

In equation (14) FAR is the fractional appearance rate of a species secreted from pool A

into pool B. Z;(0) is the initial change of enrichment of the labelled form of the species
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appeared in pool B at time 0, and Z4(0) is the enrichment of the labelled species in pool

A before secreted into pool B.

Although we do not have the enrichment values of labelled PC species in the pools at
time zero to calculate the parameters, based on the assumption of same turning up time
in the surfactant pool of all PC species, a higher enrichment level of a species at very early
time point indicates a higher initial change rate of incorporation, hence the greater Z5(0)
the species has. Under the assumption of same fractional appearance rate, the bigger
Zg(0) is, the higher Z,(0) will be. Therefore, the species in BALF samples with high early
time enrichment should be down to their initial high enrichment level in the source pools

in the lung cells.

The analysis above categorises the species in BALF into three categories. The species in
the high category with higher start of enrichment level should also have higher
enrichment level in their source pool in AT Il cells than those in the middle category.
While within the category the species having similar early time enrichment level may
probably have similar source pool enrichment as well. In particular, the characteristic lung
surfactant species PC16:0/16:0, PC16:0/14:1 and PC16:0/16:1 in the middle category have
a similar time course enrichment level at early time as well as during the whole time
period, therefore, they may have similar Z,(0) in the source pool before secretion. As to
the lower category species with 18:0 acyl, the low early time point enrichment indicates

low initial enrichment from the source pool.

From the modelled time course enrichment of KO group, it was found that the PC species
in KO group have the similarities in that, species in the higher/lower enrichment level

category of control group can generally fall in the higher/lower category in KO group. This

101



Chapter 4

may imply that despite the impaired degradation of surfactant PC, their secretion from

lung cells into the surfactant pool may not be affected much.

4.3.2 Temporal trend of labelled PC species

The time course enrichment of each labelled PC species in control groups all follows an
increasing - decreasing trend. The curve shapes of their models can be grouped into two
categories. Figure 26 displays the enrichment curves of some species that represent the
two main types of curve shapes among the sixteen analysed species. The curves of
species without 18:0 have larger gradient at the increasing part and smaller slope at the
decreasing part. The curves rise up to reach their maximum level at around 18 hours after
labelling and then gradually drop down. The species with 18:0 acyl have a very different
time trend from other species. They all start out at lower enrichment but keep increasing
slowly to get the highest level at around 30 hour post labelling, much later than other
species, and then go down. Another finding is that, the enrichment of all the species get
close to 1% at 48 hour time point post labelling, no matter if they start high or low,
increase or decrease. However, as the observations do not cover the full decreasing part,
it is not possible to further examine the rate of disappearance of the species. The
temporal enrichment of most of the labelled PC species of KO group has an increasing
trend during the 48 hour time window, except DO9DPPC16:0a/16:1, DODPPC16:0a/16:0,
D9DPPC18:1/18:2 and D9DPPC18:0/18:1, which decreases a bit at the end of the time
period. Overall, the curves of control and KO group are distanced far away from each

other, making significant gaps for all the PC species.
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Figure 26: Time course enrichment models of four species in BALF of control and KO mice
groups. There are two types of curve shapes for control mice (in blue). Species
D9PC16:0/16:1 and D9PC16:0/20:4 have the typical curve shape of the species without 18:0
acyl chain, which increases fast at the beginning, and decrease slowly after reaching the
highest enrichment level at around 18 hour. Species D9PC16:0/18:0 and D9PC18:0/22:6
represent the species with 18:0 acyl chain and have a curve shape of slower increase to the
highest enrichment level at around 30 hour. The models of KO mice (in red) generally show
an increasing trend with very small gradient.

It has been discussed in the previous sections that the swing of time course enrichment
curves of species is directly related to the label enrichment in the source pool before
secretion, and the enrichment level can imply species turnover characteristics. The curve
shape can also provide valuable information. Benefiting from being able to analyse
multiple species, it is possible to get extra information by comparing the curve shapes of

these species. As shown in the plots in Figure 26, the PC species without 18:0 enrichment

103



Chapter 4

have a similar temporal pattern, indicating the similar time patterns of their enrichment
in the source pool, which means the flood of these labelled species change in the same
way in the AT Il cells before secretion into surfactant pool. Similarly, all species with an
18:0 fatty acyl exhibit a similar pattern, suggesting similar flood change of labelled
molecules in lung cells. However, the pattern of these species is very different from that
of the species without 18:0, which may suggest a different metabolism of the two group

of species.

4.3.3 Group comparison and biomarker analysis

The control and KO groups are distinguished in their PC label incorporation, in terms of
enrichment values and model curve shapes of species. Yet for multivariate biomarker
discovery analysis, it is needed to quantify and compare the group difference recognised
by each species to identify the most significant species that can distinguish the two
groups. This is done by calculating and comparing the Ft statistics. The Ft, L, and se for the

sixteen species are listed in Table 17, and the species are sorted in descending order of Ft.

The result shows that all the species with high L values above 9, which features larger
distance between the two groups, have higher time course enrichment and falling in the
high category in model fitting. These species include D9PC16:0/18:2, D9PC16:0/18:1,
D9PC16:0/22:6 and D9PC18:1/20:4. Other species with high L values over 8 include
D9PC16:0/16:0, D9PC16:0/16:1 and D9PC16:0/24:0. The species with 18:0 fatty acyl chain
have the lowest L values about 5. This is due to the low incorporation of these species
especially between the starting time point and the maximum time point, resulting in the
bigger gaps between the enrichment of the control and KO comparing to those of the

species without 18:0 acyl chain.
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m/z Species L se Ft

743 | D9PC16:0/16:0 8.621543 | 0.0529369 | 162.864500
727 | D9PC16:0a/16:1 | 7.572277 | 0.0469461 | 161.297200
715 | D9PC16:0/14:0 7.572791 | 0.0474698 | 159.528600
741 | D9PC16:0/16:1 8.660240 | 0.0627928 | 137.917767
769 | D9PC16:0/18:1 9.936843 | 0.0723025 | 137.434293
767 | D9PC16:0/18:2 9.137802 | 0.0967007 94.495746
771 | D9PC16:0/18:0 5.746057 | 0.0647328 88.765731
815 | D9PC16:0/22:6 9.148791 | 0.1154591 79.238371
729 | D9PC16:0a/16:0 | 7.844602 | 0.1103914 71.061713
791 | D9PC16:0/20:4 8.693447 | 0.1558689 55.774096
819 | D9PC18:0/20:4 5.079186 | 0.1082473 46.922057
795 | D9PC18:0/18:2 5.685439 | 0.1466385 38.771790
843 | D9PC18:0/22:6 5.699652 | 0.1503399 37.911780
817 | D9PC18:1/20:4 9.630963 | 0.4165925 23.118426
793 | D9PC18:1/18:2 7.564625 | 0.3800108 19.906342
797 | D9PC18:0/18:1 5.814019 | 0.3003244 19.359130

Table 17: Ft statistics for sixteen methylDg labelled species in BALF of control and KO mice.
The species are sorted in descending order of their Ft values. D9PC16:0/16:0 has the
highest Ft value and is the most significant species in distinguishing control and KO groups.

The D9PC16:0/16:0, D9PC16:0a/16:0, D9PC16:0/14:0 and D9PC16:0/16:1 are not the
species with the highest L values, however, they have the highest Ft values due to small
low se values. Species D9PC16:0/18:1 has the highest L, but its Ft is ranked behind the
species mentioned above due to a moderate se value. Species D9PC18:1/20:4, the only
one in the high category without 16:0 fatty acyl, is ranked very low due to a bigger se.
Another interesting species D9PC16:0/18:0, with the lowest enrichment over the time
period, has a small se and a comparatively high Ft. The results demonstrate that Ft
statistic not only reflects the group distance L, but also takes into account the how

scattered, represented by se, the individuals are from their group mean curve.

The analysis in previous sections compared time course incorporation of D9DPPC of

individual age groups of control mice separately, and it also compared the control with
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KO mice. The comparisons between the three age groups get small Ft ranging from 5 to
15, due to the small differences between the groups, whereas the comparison between
control and KO mice obtained considerably big Ft value. The comparisons between KO
mice with both 113 days group and 84 days group have generated high Ft values over
100, and even the smallest Ft for 169 days group vs KO group is over 40, due to the larger
variations of individual mice in 169 group. The range of Ft values obtained from these
comparisons make a good reference for other group comparisons. By referring to these
figures, the high Ft values for the sixteen BALF species listed in Table 16 suggest the
significance of most labelled PC species in identifying the difference between control and

KO groups.

Sorting the species by descending order of Ft means sorting them according to their
significance in distinguishing the two groups. Hence, the higher a species is ranked, the
better it can identify the difference between the two groups. It can be seen from the list
that the species with a 16:0 or 16:0a acyl are all ranked higher than those without them,
which suggests higher significance of these species in differentiating control and KO
groups. Therefore, in BALF sample, these species are more likely to be taken as biomarker

candidates for discriminating the two conditions.

The analysis shows that control mice are significantly different from KO mice, in terms of
time pattern of enrichment as well as the value range of analysed labelled PC species in
BALF. This result is consistent with the current knowledge about the pulmonary
surfactant metabolism. The macrophages are known to play an important role in
surfactant catabolism, which degrade around 20% surfactant from the alveoli. GM-CSF
receptor beta chain knock out mice have impaired macrophages degradation of

pulmonary surfactant, leading to its abnormal accumulation and the development of PAP.
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The accumulation of both labelled and unlabelled PC leads to the largely increased value
of the denominator term in the enrichment function. Despite the increased labelled
species in the numerator, the sum of these labelled species and huge proportion of
unlabelled species in the denominator terms makes the overall enrichment much smaller

than that of control mice having a stable pool size with normal catabolism.

It can be hard to elucidate what affects the temporal trend of each individual PC species
of the mice in each group, which may involve various factors. These could be the physical
status of the mice, age factor, strain of the mice, label infusion approach, sample
processing procedures and many other. These factors can have an impact either directly
or indirectly, identifiable or unidentifiable with current knowledge. Although details of
these factors are yet to be found out, luckily, their influences manifest integrally in the
species time course enrichment. The SME method has successfully characterized the
temporal enrichment patterns and facilitated the biomarker discovery analysis by
guantifying and comparing the group differences identified by the individual species,
which gives reliable results that are consist with the current knowledge. Therefore, it is
viable to use the surfactant methy/Ds-PC time course enrichment as potential biomarkers

for identifying PAP mice from healthy mice.

4.4 Characterisation of time course methyIDs-PC enrichment in lung

tissue of control vs KO groups and biomarker analysis

4.4.1 Time course enrichment of labelled PC species

To further investigate surfactant PC species metabolism across different compartments in

the respiratory system, the temporal enrichment of labelled PC species in lung tissue
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. Enrichment (%)
m/z Species Group
5 hour | 10 hour 24 hour 48 hour

715 D9PC 16:0/14:0 Control 1.571 1.318 1.244 0.942
KO 0.253 0.243 0.278 0.278
727 D9PC16:0a/16:1 Control 0.575 0.531 0.633 0.698
KO 0.247 0.244 0.297 0.348
729 D9PC16:0a/16:0 Control 0.982 0.968 0.933 0.892
KO 0.217 0.218 0.225 0.276
741 D9PC16:0/16:1 Control 2.355 1.869 1.493 0.968
KO 0.362 0.357 0.344 0.330
743 D9PC16:0/16:0 Control 1.636 1.373 1.222 1.144
KO 0.306 0.295 0.269 0.262
767 DOPC16:0/18:2 Control 2.261 1.749 1.332 0.894
KO 0.775 0.703 0.531 0.373
769 D9PC16:0/18:1 Control 1.997 1.619 1.352 0.994
KO 0.911 0.818 0.600 0.458
771 D9PC16:0/18:0 Control 0.721 0.765 0.919 0.815
KO 0.252 0.257 0.271 0.297
791 D9PC16:0/20:4 Control 1.837 1.524 1.332 0.909
KO 1.292 1.104 0.681 0.547
793 DOPC18:1/18:2 Control 1.957 1.477 1.304 0.880
KO 1.440 1.333 1.037 0.557
795 D9PC18:0/18:2 Control 1.499 1.437 1.261 0.960
KO 1.080 1.021 0.854 0.567
797 D9PC18:0/18:1 Control 1.187 1.147 1.334 1.100
KO 1.127 1.089 0.980 0.788
315 D9PC16:0/22:6 Control 2.010 1.721 1.206 0.871
KO 0.937 0.689 0.472 0.383
817 DOPC18:1/20:4 Control 2.075 1.616 1.276 0.871
KO 1.478 1.105 0.754 0.400
319 D9PC18:0/20:4 Control 1.386 1.334 1.234 0.901
KO 1.244 1.150 0.899 0.536
Control 1.202 1.160 1.041 0.833

843 D9PC18:0/22:6
KO 0.705 0.666 0.558 0.372

Table 18: Fitted group mean values of time course enrichment of sixteen methy/Dqg
labelled PC species in lung tissue samples of control and KO mice groups at four sampling

time points. The species are classified into three categories in terms of temporal

enrichment levels of control group based on the result of hierarchical clustering analysis.
The species with comparatively higher time course enrichment are in the high category
highlighted in pink, and the species with comparatively lower time course enrichment
values are in low category highlighted in blue, with the rest of species in the middle

category.
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were analysed in addition to those in BALF samples. The same methodology was applied
to lung tissue samples and the results are shown in Table 18. By applying the hierarchical
clustering analysis to the control group (Figure 27), the species can be categorized into
three groups based on their time course enrichment levels. The species in the high
enrichment level group include D9PC16:0/16:1, D9PC16:0/18:2, D9PC16:0/18:1,
D9PC16:0/20:4, D9PC18:1/18:2, D9PC16:0/22:6, and D9PC18:1/20:4. D9PC16:0/16:1 has
the highest time course enrichment. The D9PC16:0a/16:1 and D9PC16:0/18:0 are in the
low category with extremely low incorporation comparing to other species. The remained
species are in the middle category. Generally, among all the sixteen species, the
enrichment levels of those with 18:0 are lower than other species, except

D9PC16:0a/16:1, which has the lowest enrichment of all.
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Figure 27: Dendrogram of hierarchical clustering analysis for time course enrichment of
the sixteen deuterium labelled PC species in lung tissue samples of control mice. Species
is denoted as “D9PC” with their m/z value.
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Although species of KO group mice are not categorised into groups, the characteristic
surfactant species and some species, including D9PC16:0/14:0, D9PC16:0a/16:1,
D9PC16:0a/16:0, D9PC16:0/16:1, D9PC16:0/16:0 and D9PC16:0/18:0, have much lower
enrichment levels than the other species. In particular, the time course enrichment of
some unsaturated species with longer fatty acyl chains are very high, which are close to
those of control group, such as D9PC18:0/20:4. Generally, the PC label enrichment of KO
group is much higher in lung tissue samples than in BALF samples, and the gaps between

control and KO group are smaller in lung tissue samples.

The PC species detected in lung tissue samples can be from several pools, such as
synthesised surfactant, cell membrane, and blood. Therefore, the label incorporation
pattern of a PC species observed in the sample actually reflects the collective activities of
it from multiple pools. This may partly explain the much lower enrichment of
characteristic surfactant species in KO groups than other species. The surfactant
accumulation of PAP mice mainly affects the surfactant species pool, and other pools like
membrane or blood PC are not affected. Consequently, the characteristic surfactant
species, which only come from the surfactant pool, suffer from the impact of
accumulation more significantly, but the same effect on the non-characteristic surfactant
species has been reduced by the normal activities of the same species from other pools,
as the calculation of enrichment takes all of them into account. Similarly, the multiple
pools in the lung tissue sample may also be the reason of smaller gap of label enrichment
between control and KO groups in lung tissue than in BALF samples. This is because PC
species in BALF are mainly surfactant PC, while in lung tissue samples, additional pools of
the same PC species with higher enrichment and fractional appearance rate can raise up

the overall enrichment level.
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In the analysis of PC species in BALF, fractional appearance rate was discussed to
characterise the surfactant secretion process, and same fractional appearance rate was
assumed to investigate the label enrichment of PC before and after secretion. Providing
the multiple pools of the same species in lung tissue, it is not appropriate to assume the
same turnover as well as the fractional appearance rate of the integrated PC pools.
However, if the whole labelling process, from label infusion to the detection of a labelled
PC species, is to be seen as an entire synthesis process regardless the intermediate
phases, then all product PC species can be assumed to have the same initial precursors,
the methylDg substrate, provided they are synthesised in the same mouse under the same
conditions. The same label precursor means the label enrichment of precursor pool is the
same for all. The method of evaluating the fractional appearance rate can also be applied
to characterise the fractional synthesis rate. Therefore, according to equation (14), if the
initial enrichment of precursor pool is the same to all species, the initial change of label
enrichment in product pool should be directly proportional to the fractional appearance
rate. Using early time point enrichment level to represent the initial change of product
pool enrichment, then the higher the early time point label enrichment is, the higher the
fractional appearance rate will be. Consequently, the PC species in the high category in
control group would probably have higher collective fractional rates of

appearance/synthesis and the low category would have the lower ones.

Table 18 shows that the species with 18:0 or 16:0a chain have general lower rate of
appearance in the pool than other species, indicated by the low enrichment level early
time point. The low fractional appearance rate of species with 18:0 acyl is consistent with
the result of the same species in BALF. As the surfactant PC from lung cells are

subsequently secreted into the surfactant pool in the air space, which is collected as BALF
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sample, the lower enrichment level in the lung cells may result in the lower enrichment in
the product pool. Contrarily, the species with 16:0a alkyl, especially D9PC16:0a/16:1 has
much lower rank of early time enrichment and fractional appearance rate in the lung
tissue in contrast to its high rank in the BALF, which may indicate different pool sources or

even different metabolism of the species from others.

44.2 Temporal trend of labelled PC species

In lung tissue samples, the time course enrichment of the species without 18:0 and 16:0a
chains have a decreasing trend in both control and KO group, which indicates fast label
incorporation of these species in the lung cells after label infusion, as there must be an
increasing part starting from zero enrichment to reach certain enrichment level before
going down, which may have happened before the first observation. The enrichment
decreases as the labelled species leaving the lung tissues without enough newly
synthesised labelled species coming in the pool. This enrichment pattern of labelled PC
species in lung tissue is different from that in BALF, which slowly increases to the
maximum and decreases gradually. Combining the two patterns may present a process
that the newly labelled surfactant PC are firstly synthesised and remodelled in the lung
cells, and then secreted into the alveolar space with time delay. The continuous supply of
labelled species from lung cells results in the accumulation in surfactant monolayer where
the species enrichment increases, and as the labelled species leaves the pool without new

ones coming in, the enrichment goes down.

A feature in the time course curves of labelled PC without 18:0 and 16:0a chain is that the
enrichment decreases rapidly between 5 to around 15 hour (Figure 28). Then the

decrease slows down and the enrichment level stabilizes for a period of time until around
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24 hour, followed by another decreasing trend. The stable state period from 15 to 24
hour should be paid more attention as it should not be the case in a bolus infusion
experiment if the labelled species only leave the system without coming back. Therefore,
there may probably be a new flood of labelled PC species coming into the pool during or
even before this period. It is also possible to see from the figure that the label
incorporation of characteristic lung surfactant species in KO group are more affected than
other species, where the curves of characteristic surfactant species in KO group lie far
away from the control group, but those of non-characteristic species are closer to control
group. This may be due to the multiple pools combined in lung tissue samples as

explained before.

=nnchment{ %)
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Figure 28: Time course enrichment curves of four methylDs -PC species in lung tissue
samples of control (in blue) and KO (in red) mice models. The species have similar
time trend over the 48 hour period. The label incorporation of characteristic
surfactant species D9PC16:0/14:0 and D9PC16:0/16:1 in KO group are further away
from the control group than that of the other two non-characteristic surfactant

species.
113



Ennchment%)

Enrichrment( %)

03 04 05 C6 07 08

0.z

Chapter 4

Ennchment%)

T T T T T
10 20 a0 40 10 il 30 40

Time (Hour) Time (How)

771 D9PC16:0/18:0 797 D9PC18:0/18:1

o

o
8

s oo

0 O OROECOOD O

comBoo 5o

©
@
]
-]

anchment] %)
08
1
o@ O

08
I

04

oz
L

10 20 30 40 10 20 a0 40
Time {Hour) Time (How)

727 D9PC16:0a/16:1 729 D9PC16:0a/16:0

Figure 29: Time course model of D9PC16:0/18:0, D9PC18:0/18:1, D9PC16:0a/16:1 and
D9PC16:0a/16:0, which have different enrichment patterns from the other species
shown in Figure 28.

There are some species with different curve shapes to the others (Figure 29). Species
PC16:0/18:0 has a low incorporation and the enrichment increases towards 30 hour time
point, which is consist with that in BALF. Another species with the 18:0 acyl chain,
PC18:0/18:1 exhibits a different time trend, but it also has a significant increasing part
towards 30 hour. Within the same experiments, different shapes of time trend of species
enrichment to other species in the same compartment could be due to that the species
have different source pools in lung tissue, or that they metabolise differently.
Interestingly, apart from these two species, others with 18:0 do not have a significant
difference from the species without it, suggesting that species with 18:0 may not be from

the same source or metabolise differently. In addition, species with 16:0a have low
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incorporation and different time trend from other species. They do not have a decreasing
trend over the time period, and species PC16:0a/16:1 even has an increasing part from 10

hour towards 40 hour, which may indicate different metabolism from other species.

443 Group comparison and biomarker analysis

Comparisons of time course enrichment of each labelled species between control and KO
groups were carried out using SME method. The L, se and Ft values are listed in Table 19,
and the species are sorted in descending order of their Ft values. The time course
enrichment of D9PC16:0/16:1 marks the largest distance between the two group means,
with an L value of 7.670, and is ranked at the second place with a high Ft value of
71.2798. Some other surfactant characteristic species also have comparatively higher L

and Ft values, including D9PC16:0/14:0, D9PC16:0a/16:0 and D9PC16:0/16:0.

m/z Species L se Ft

815 D9PC16:0/18:0 3.884709 | 0.04981282 77.98612
741 D9PC16:0/16:1 7.670280 0.107608 71.27983
727 D9PC16:0/14:0 6.182472 0.1151509 53.69019
743 D9PC16:0a/16:0 4.576028 0.1065365 42.95267
769 D9PC16:0/16:0 6.430485 0.2182161 29.46843
795 D9PC18:0/18:1 2.152155 | 0.09407033 22.87814
767 D9PC16:0/18:2 5.470157 0.2395183 22.83816
843 D9PC16:0/22:6 4.999620 0.3224717 15.50406
771 D9PC16:0/18:1 4.836043 0.3460205 13.97618
715 D9PC16:0a/16:1 2.193747 0.1783389 12.30100
797 D9PC18:0/22:6 3.149484 0.2615119 12.04337
729 D9PC16:0/20:4 3.677153 0.4655047 7.899281
817 D9PC18:1/20:4 3.372458 0.5335027 6.321352
819 D9PC18:0/18:2 2.784551 0.4544229 6.127664
793 D9PC18:0/20:4 2.102729 0.3528222 5.959741
791 D9PC18:1/18:2 2.033169 0.5399264 3.765641

Table 19: Ft statistics for lung tissue PC specie of control and KO groups.
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Unexpectedly the species in the first place is D9PC16:0/18:0, which has very low label
incorporation over the period. Although the difference between the two groups is small,
with the L value of just 3.8847, the species has an extremely small se value of 0.0498,
suggesting very small variations among individual mice in the two groups. This is
illustrated in the plots of the species in Figure 29, where the fitted curves of individual
mouse are more closely around the group mean especially in the KO group, comparing

with other species.

It is obvious that the Ft calculated between control and KO groups in lung tissue are not
as high as those in BALF, and many of them are under 15, indicating the temporal
enrichment of these species are less significant in lung tissue samples than in BALF. The
previous comparison analysis of BALF D9DPPC between age groups of control mice
generated comparatively small Ft values ranging between 5 and 15, and the Ft values
calculated for control and KO groups have values from 40 to over 160. Using these ranges
as standards, the fact that the Ft values calculated for many PC species in lung tissues
being under 15, suggests the low viability of their temporal enrichment in differentiating
KO mice from control. The small number of species ranking at the top of the list, with
higher Ft values over 40, can be considered as potential markers for distinguishing the

two groups in future studies.

4.5 Characterisation of time course methyIDs- PC enrichment in BALF of
control and high dose antibody treated mice groups and biomarker
analysis

The last two sections compared time course enrichment of labelled PC species in BALF

and lung tissue between control and KO groups facilitated by SME method. To further

assess and validate the methodology, in this section, the time course PC enrichment of a
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group of 169 days mice, which were treated with high dose antibody drug, were modelled
and compared with the control group. The study conducted in Southampton has shown
changes in PC turnover of this group of mice. This analysis will further verify the result,
and explore possible dynamic biomarkers. Moreover, as the antibody drug has a milder
effect of accumulation of surfactant PC species than that of PAP disease, the difference
between control and high dose groups should be theoretically smaller than that between
control and KO groups analysed in the last section. Therefore, performing SME analysis on
them is helpful to test if the statistical method is sensitive in identifying different degrees

of group variation.

The SME modelling shows that, in this high dose group, the time course enrichment of
labelled PC in BALF has some similar features with the control group. The temporal trend
is similar, and the ranking and categorization of the species are similar as well. Species
with a 16:0 acyl chain and an unsaturated longer acyl chain, including D9PC16:0/18:1,
D9PC16:0/18:2, D9PC16:0/22:6 and D9PC16:0/20:4 have the highest enrichment in the
high dose group. Species with 18:0 acyl are still the ones with the lowest enrichment

levels.

The plots of time models (Figure 30) show that the label incorporation of most of the
species follow an increasing — decreasing trend during the 48 hours after label infusion.
High dose drug treated mice group have generally lower enrichment levels over the time
comparing with control group. This is consistent with what is expected that the antibody
treated mice may have impaired degradation of surfactant PC species, which increases
the surfactant pool, and results in a different temporal enrichment trend comparing with

the control mice. Nonetheless, the difference between the groups are much smaller than
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that between control and KO groups, suggesting a smaller impact from the antibody drug

than the PAP on the surfactant PC turnover of mice.
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Figure 30: Time course enrichment curves of methy/Dy.PC species for both control group
(in blue) and high dose treated mice group (in red) in BALF.
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It appears that the highest enrichment levels of many species are reached at later time
points in high dose than in control mice. Especially for D9PC16:0/14:0, D9PC16:0a/16:1,
D9PC16:0a/16:0, D9PC16:0/16:1, D9PC16:0/16:2, DOPC16:0/18:2 and D9PC16:0/18:1, the
group difference at the initial increasing part makes the major contribution to the total
difference between the two groups over time. As stated above, the species with 18:0 acyl
in the high dose treated mice have lower label incorporation than other species, which is
the same with control mice. Species D9PC16:0/18:0 in high dose group has an enrichment
trend that increases slowly in a linear way, which is contrast to that of control group.
Moreover, the species has the lowest time course enrichment among all the species

analysed.

Ft values are calculated for evaluating the differences between control and high dose
group recognised by the temporal enrichment of labelled PC. Table 20 lists the sorted
species on descending order of their Ft values. Again, D9PC16:0/18:0 turns out
unexpectedly to be the most significant species with the highest Ft, owing to its greater L
and smaller se values. As mentioned above, D9PC16:0/18:0 has the lowest temporal
enrichment both in control and high dose mice in BALF sample. The difference is mainly

owing to the distinguished temporal trend of the two groups.

The Ft for control vs high dose group are generally much smaller than those calculated for
control vs KO group. This suggests that the differences of time course label incorporation
of the methy/Ds-PC species between control and high dose antibody treated mice are
much smaller than those between control and KO group, which is consistent with the
current understanding that the antibody has milder impact on surfactant turnover than
the PAP disease. This also demonstrates the SME method is effective in quantifying and

scaling the difference between groups. Apart from D9PC16:0/18:0, the Ft values of the
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other species are not very high. Nevertheless, it is still worth to choose the species ranked

higher in the list for further investigation on potential markers.

m/z Species L se Ft

771 D9PC16:0/18:0 3.53755 | 0.06748898 52.4167
729 D9PC16:0a/16:0 2.252287 0.1030562 | 21.85494
795 D9PC18:0/18:2 0.8717616 0.0406007 | 21.47159
791 D9PC16:0/20:4 2.366708 0.124248 | 19.04825
743 D9PC16:0/16:0 3.141018 0.1653191 | 18.99973
769 D9PC16:0/18:1 3.375497 0.2612953 | 12.91833
843 D9PC18:0/22:6 1.990326 0.1691978 | 11.76331
767 D9PC16:0/18:2 2.547251 0.230024 | 11.07385
727 D9PC16:0a/16:1 2.175126 0.2106802 10.3243
819 D9PC18:0/20:4 1.599397 0.1781391 | 8.978359
741 D9PC16:0/16:1 2.824162 0.3271821 | 8.631773
817 D9PC18:1/20:4 3.141313 0.4067864 | 7.722268
815 D9PC16:0/22:6 2.422177 0.3809698 | 6.357925
715 D9PC16:0/14:0 2.251787 0.4029425 | 5.588357
793 D9PC18:1/18:2 3.594759 0.6737384 | 5.335541
797 D9PC18:0/18:1 1.604938 0.5262081 | 3.050007

Table 20: Ft statistics for BALF PC of control and high dose drug treated mice groups.

4.6 Characterisation of time course methyIDs - PC enrichment in lung
tissue of control and high dose treatment mice groups and

biomarker analysis

PC label incorporation in lung tissue samples are analysed for the high dose group mice in
addition to that in BALF for a deeper insight of surfactant PC turnover. The SME analysis
suggests the labelled PC time course enrichment of high dose treated mice are very
similar to the control mice, and the categories of the species are similar too.
D9PC16:0/16:1, D9PC16:0/18:2 and D9PC16:0/22:6 are the top three species that have
the highest time course label enrichment level. D9PDC16:0a/16:1, D9PC16:0/18:0, and

D9PC16:0a/16:1 are the three species with the lowest enrichment in the lung samples
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of high dose group.

The enrichment curves of most species have the similar temporal enrichment patterns
except a few species with 18:0 and 16:0a acyl. Besides, the species of the high dose group
are very similar to the control group in terms of the curve shapes and enrichment levels,
although there are still some exceptions shown in Figure 31. The fitted model of
D9PC16:0/16:0 of the control mice group has a decreasing trend over the whole period,
whereas that of the high dose group displays an increasing trend at the beginning and
decreasing after reaching the maximum at around 27 hour. The curve of species
D9PC16:0a/16:1 of control group decreases at the early time point and later lifts up to
reach the highest point after 30 hour, whereas the curve of the high dose group increases
all the way and reaches the maximum at around 30. This feature also happens to the time
model of species D9PC18:0/18:1. The reason of these abnormal features are not clear and

should be further investigated.

Comparison of the time models between control and high dose group were performed by
calculating the L, Se and Ft, listed in Table 21. The top three species with high L values
greater than 1 include D9PC16:0/16:0, D9PC16:0/14:0 and D9PC16:0/16:1. However, they

are only ranked at the 6%, 2", and 4™ places due to the comparatively big se values.

D9PC16:0/24:0 has a small L value, indicating small difference between the two groups,
but due to the extremely small se, it gets the highest Ft and ranks in the first place.
However, the plot (Figure 31) has shown that models for this species in both groups are
very close to each other, therefore the result of highest Ft, which indicates high capability

in differentiating the two groups does not look straightforward. This should be
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investigated further as to if the modelling of the species is appropriate, such as if the

model is over smoothed, which can results in extremely small variance term.

Overall, the comparison between control and high dose groups has not identified as many
viable species for discriminating groups as the comparisons between control and KO
groups, with very small Ft values of most species. Nevertheless, the species with highest
Ft values, including D9PC16:0/20:4, D9PC16:0/14:0 and D9PC16:0a/16:0 should be

checked further as potential biomarker candidates.

m/z Species L se Ft

791 D9PC16:0/20:4 0.4347934 0.00645087 67.40078
715 D9PC16:0/14:0 1.144752 0.02560512 44.70796
729 D9PC16:0a/16:0 0.7866485 0.02102845 37.40878
741 D9PC16:0/16:1 1.127695 0.06496118 17.35952
793 D9PC18:1/18:2 0.5634926 0.03941952 14.29476
743 D9PC16:0/16:0 1.830349 0.1917868 9.543662
795 D9PC18:0/18:2 0.3605815 0.03900632 9.244183
771 D9PC18:0/16:0 0.3388316 0.03861647 8.774277
843 D9PC18:0/22:6 0.438177 0.05632649 7.779236
815 D9PC16:0/22:6 0.8427376 0.1279054 6.588759
819 D9PC18:0/20:4 0.2415565 0.04138286 5.837116
727 D9PC16:0a/16:1 0.3704806 0.07703749 4.809095
769 D9PC16:0/18:1 0.4831807 0.1686932 2.864258
797 D9PC18:0/18:1 0.4918722 0.252976 1.944344
767 D9PC16:0/18:2 0.4982655 0.2843049 1.752574
817 D9PC18:1/20:4 0.2012468 0.1480195 1.359596

Table 21: Ft statistics for lung tissue PC of control and high dose drug treated mice.

4.7 Conclusions

In this chapter, time course methylDo-PC label enrichment modelling and biomarker

discovery analysis were carried out for control mice, GMCSF beta receptor knock out mice
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and high dose antibody drug treated mice. The comparison was performed between
individual age groups of control mice, between control and KO groups, as well as between
control and high dose group. Sixteen methyIDs labelled PC species in both BALF and lung
tissue samples were analysed, and the SME method is used for the time series data
modelling, group comparison, as well as identification of species that are most significant

in distinguishing the groups.

Time course enrichment of D9DPPC in BALF of mice models was analysed in detail to set
up the methodology for the following analysis. The temporal models of multiple species
have revealed different incorporation patterns of species with 18:0 both in BALF and lung
tissue pools. Many of the BALF PC species are significant in distinguishing the control and
KO groups, and species with 16:0 acyl in BALF are generally more significant than other
species. PC label incorporation in BALF sample is more capable than that in lung tissue in
identifying two compared groups as BALF PC species have generally higher Ft values than
those lung tissue. Temporal enrichment of the species are not as significant in
distinguishing control and high dose drug treated mice in both BALF and lung tissue, and
only a few species have the potential to be used as biomarkers. Besides, the difference
between the PC label incorporation of control group and KO group is greater than that
between control group and high dose group, suggesting the high dose antibody drug does
induce some side effects on the healthy mice in terms of surfactant PC turnover, but the
effect is smaller than that of PAP disease. All these results are consistent with the current
understanding as well as assumptions of surfactant metabolism. The analysis
demonstrates it is viable to use time course enrichment of methy/Dg labelled surfactant
PC species, which reflects the PC species metabolism, as potential biological markers for

identifying mice with PAP diseases from healthy ones.
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SME method works well in modelling time course multivariate data. It is good at dealing
with data with small sample size and missing values, which are common problems in
biological studies. The method is sensitive and effective in identifying group difference as
well as quantifying and scaling the differences, which is critical for comparisons among
large numbers of variables for biomarker discovery analysis. An issue with the method is
that there are a couple of models that might be possibly over smoothed, which needs to
be investigated further as to if the results are reliable. Another issue with the SME
method is that, as there is no theoretical probability distribution for the Ft statistic under
the null hypothesis of no difference, it is not possible to do a standard statistical test to
evaluate its significance. However, in this chapter, the comparison of D9DPPC between
three different age groups, as well as between control and KO groups provided a general
standard of the Ft ranges which were referred by the following analysis. Therefore,
despite the lack of theoretical distribution for a significance test, this chapter sets good

reference ranges for Ft for the analysis in the following chapters.
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Chapter 5 Surfactant and hepatic phosphatidylcholine
dynamic biomarker discovery analysis for NRDS

patients

5.1 Introduction

In the last chapter, time course enrichment modelling of surfactant PC and biomarker
analysis were carried out for mice models, which has established the methodology for
dynamic PC biomarker analysis. As ESI MS/MS coupled with stable isotope labelling
technique is capable of facilitating investigation of in vivo kinetics of molecules in human,
in this and the following chapters, methylDg labelled PC species are analysed for human
subjects, for characterising human surfactant and hepatic PC turnover as well as

investigating the feasibility of using them as biomarkers in less clear clinical scenarios.

NRDS is a primary lung disease caused by lung immaturity, where the AT Il cells are
underdeveloped and unable to synthesise pulmonary surfactant. All NRDS patients are
given surfactant supplement at birth, which has largely improved the mortality rate.
However, the survived babies have high probability of getting long term lung conditions in
later life. It will be beneficial to be able to identify patient groups in terms of disease
severity, tendency of developing lung diseases in the long term, and response to the
treatment, for the application of early interventions to prevent bad outcomes as well as
for developing new treatment. All of these require effective biomarkers, which will also

be helpful in understanding the underlying mechanisms of different biological conditions.

The NRDS infants in the study are categorised into two groups based on disease severity,
indicated by on or off ventilation five days after label infusion. The grouping aims to check

if PC in vivo activity can indicate any difference between the two groups of patients with
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different disease severity, and predict outcomes as biomarkers. Time course enrichment
of labelled surfactant PC species as well as hepatic PC species were modelled and
analysed. Assessing hepatic PC species can provide additional view to the surfactant PC
analysis regarding liver function, as both of them are integrated into the whole body PC

metabolism and are interacted with each other.
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Figure 32: Enrichment levels of liver synthesised methy/Ds-PC through CDP-choline
pathway and methylDs-PC through PEMT pathway in plasma samples of healthy people
and ARDS patients at six time points. In each graph, an enrichment line is obtained by
connecting the mean values of observations of a group at six time points. The enrichment
levels of the methyIDe-PC species synthesised through CDP-choline pathway are slightly
lower in control group than in ARDS patients group. Whereas methyID3-PC synthesised
through PEMT pathway are significantly higher in control group (Dushianthan et al.,
2018).
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In liver, PC species can be synthesised through both CDP-choline pathway and PEMT
pathway. Dushianthan et al. (2018) has found that label incorporation of PC synthesised
through CDP-choline pathway in liver are similar between healthy people and ARDS
patient, but that of PC synthesised through PEMT pathway are significantly different
between the two groups (Figure 32), suggesting that the label incorporation of hepatic PC
via PEMT pathway are more indicative in ARDS disease than those via CDP-choline
pathway. Therefore, in this chapter, the PEMT pathway PC were assessed along with
those of pulmonary surfactant PC synthesised through CDP-choline pathway to examine if

they can characterise different stages of NRDS disease and predict outcomes.

5.1.1 Project description

The data analysed in this chapter is obtained in the form of raw MS datasets from a
previous study carried out in Southampton, named as “The Surfactant, Nutrition and
Microorganism Interaction study in babies at risk of developing neonatal chronic lung
disease (TsuNaMl)”. The study was designed to identify and correlate risk factors for
development of neonatal chronic lung disease (nCLD) in preterm infants. The preterm
babies are recruited from Princess Anne Hospital, Southampton. They all received
infusion of methyIDs choline chloride in dextrose for three hours and had sequential
blood and endotracheal aspirate (ETA) samples collected. Those infants still ventilated

five days after label infusion received a second infusion of methyIDg choline chloride.

The samples are processed following the TsuNaMI Sample Processing Protocol. As
described in their report, blood samples were centrifuged and the upper plasma layer
was aspirated. Lipid extraction was performed using Bligh and Dyer method (Bligh and

Dyer, 1959). Plasma and ETA were added with methanol and chloroform, and then
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centrifuged. The supernatant was carefully drawn off and added with distilled water and
chloroform to be centrifuged again, after which the lower layer was carefully aspirated
and dried for the subsequent ESI MS/MS analysis. Precursor scans P184, P187 and P193
were performed to monitor endogenous surfactant PC molecules, methyIDs labelled PC

molecules and methyIDs labelled PC molecules.

5.1.2 Data description and methods

In the clinical study, five days after first label infusion was used as a cut-off time point,
and the infants were categorized into two groups based on their status at the time point,
i.e. on or off ventilation. The labelled PC enrichment data of the two groups before the

time points are analysed in the following analysis.

For ETA samples, the time course enrichment of sixteen methyIDg labelled PC molecules
were modelled for probing the lung surfactant PC kinetics. These species were selected
based on the confidence of existence of the endogenous species and deuterium labelled
species based on the MS analysis result. Restricted by the availability of samples, there
are PC observations of twelve NRDS patients in off ventilation group and eleven patients

in on ventilation group.

The time course enrichment of methy/Ds labelled form of the same sixteen PC molecules
in plasma samples were also analysed for assessing the hepatic PC turnover through
PEMT pathway in liver. There were observations of seventeen patients in off ventilation
group and thirteen patients in on ventilation group. Observations at seven time points
were included for the time course PC kinetic study, including 6, 12, 24, 48, 72, 96 and 120

hour after initial label infusion.
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MS data processing and calculation in this chapter were all performed by the newly
developed Lipidomelabelling platform. The procedures conducted include raw data
extraction, background removal, peak identification, peak integration, species
identification, isotope correction, between scan isotope correction, and enrichment
calculation. The multivariate time course modelling and biomarker discovery analysis

were performed using SME method facilitated by the SME R package.

5.2 Characterisation of time course methyIDs - PC enrichment in ETA

and comparison between off and on ventilation NRDS patients

The model fitting for the methylDq labelled PC time course enrichment in ETA samples
was conducted using SME method and the fitted values at seven time points are listed in
Table 22. The result shows that, the off ventilation group tend to have higher group
means than the off ventilation group for most PC species at the early time of the whole
period, whereas the situation changes after certain time point and the mean values of on
ventilation group become higher towards the end of the period. The enrichment levels of
the labelled PC species of the off ventilation group are not much different, although the
ones with the highest masses, especially those with 20:4 and 20:6 acyl chains are
comparatively higher. The D9PC16:0a/16:0 has an exceptional high enrichment at the end
of the period, while other characteristic surfactant species are comparatively low. In the

on ventilation group, D9PC18:0/22:6 has the highest enrichment level over time.
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Table 22: Fitted group mean values of time course enrichment of methy/Ds-PC in ETA
samples of the off and on ventilation NRDS patient groups.

. . Enrichment (%)
Mass | Species Assignment | Group

6h 12h 24h 48h 72h 96h | 120h
715 DIPC 16:0/14:0 off Vent_l 0.006 | 0.015 | 0.058 | 0.157 | 0.209 | 0.236 | 0.239
OnVenti | 0.000 | 0.022 | 0.069 | 0.207 | 0.373 | 0.393 | 0.392
off Venti | 0.114 | 0.126 | 0.152 | 0.203 | 0.254 | 0.304 | 0.355

727 D9PC16:0a/16:1 e
OnVenti | 0.031 | 0.064 | 0.131 | 0.257 | 0.351 | 0.407 | 0.449
29 DIPC16:0a/16:0 off Vent_l 0.011 | 0.043 | 0.108 | 0.235 | 0.358 | 0.477 | 0.592
OnVenti | 0.007 | 0.024 | 0.060 | 0.179 | 0.336 | 0.356 | 0.367
241 DIPC16:0/16:1 off Vent_l 0.012 | 0.039 | 0.093 | 0.188 | 0.249 | 0.286 | 0.304
OnVenti | 0.003 | 0.043 | 0.104 | 0.276 | 0.525 | 0.466 | 0.474
off Venti | 0.005 | 0.022 | 0.055 | 0.118 | 0.169 | 0.209 | 0.242

743 D9PC16:0/16:0 e
OnVenti | 0.000 | 0.021 | 0.049 | 0.190 | 0.389 | 0.430 | 0.414
767 DIPC16:0/18:2 off Vent_l 0.012 | 0.042 | 0.101 | 0.191 | 0.238 | 0.278 | 0.316
OnVenti | 0.008 | 0.037 | 0.098 | 0.265 | 0.453 | 0.464 | 0.444
269 DIPC16:0/18:1 off Vent_l 0.022 | 0.051 | 0.107 | 0.203 | 0.258 | 0.281 | 0.287
OnVenti | 0.019 | 0.050 | 0.114 | 0.305 | 0.525 | 0.510 | 0.496
Off Venti | 0.010 | 0.026 | 0.060 | 0.128 | 0.177 | 0.207 | 0.228

771 D9PC16:0/18:0 e
OnVenti | 0.002 | 0.029 | 0.066 | 0.181 | 0.319 | 0.401 | 0.397
791 DIPC16:0/20:4 off Vent_l 0.019 | 0.046 | 0.098 | 0.192 | 0.254 | 0.287 | 0.301
OnVenti | 0.010 | 0.049 | 0.128 | 0.347 | 0.588 | 0.560 | 0.537
293 DIPC18:1/18:2 off Vent_l 0.015 | 0.044 | 0.102 | 0.207 | 0.269 | 0.283 | 0.269
OnVenti | 0.017 | 0.051 | 0.124 | 0.342 | 0.560 | 0.546 | 0.525
off Venti | 0.031 | 0.071 | 0.148 | 0.261 | 0.308 | 0.317 | 0.308

795 D9PC18:0/18:2 e
OnVenti | 0.013 | 0.072 | 0.134 | 0.326 | 0.597 | 0.523 | 0.532
297 DIPC18:0/18:1 off Vent_l 0.025 | 0.056 | 0.116 | 0.216 | 0.264 | 0.277 | 0.275
On Venti | 0.006 | 0.058 | 0.095 | 0.231 | 0.490 | 0.425 | 0.427
815 DIPC16:0/22:6 off Vent_l 0.037 | 0.061 | 0.153 | 0.271 | 0.300 | 0.352 | 0.396
OnVenti | 0.025 | 0.079 | 0.192 | 0.471 | 0.696 | 0.600 | 0.578
Off Venti | 0.043 | 0.097 | 0.201 | 0.342 | 0.413 | 0.435 | 0.417

817 D9PC18:1/20:4 e
OnVenti | 0.007 | 0.066 | 0.188 | 0.444 | 0.634 | 0.648 | 0.592
Off Venti | 0.026 | 0.054 | 0.110 | 0.204 | 0.260 | 0.290 | 0.306

819 D9PC18:0/20:4 ent
OnVenti | 0.014 | 0.054 | 0.134 | 0.291 | 0.469 | 0.490 | 0.494
843 DIPC18:0/22:6 off Vent_l 0.071 | 0.103 | 0.162 | 0.246 | 0.291 | 0.329 | 0.367
OnVenti | 0.046 | 0.098 | 0.182 | 0.482 | 0.838 | 0.568 | 0.724

Figure 33 for the time course enrichment models of labelled PC shows that for most
species, the on ventilation group in red lines has wider range of enrichment levels and
more diverse individual curves than the off ventilation group. The substantially high
enrichment levels of some ventilated patients account for the overall greater mean curve

of this group than the off ventilation group.
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Figure 33: Time course enrichment of some methyIDs-PC in ETA samples of the off
ventilation (in blue) and on ventilation (in red) NRDS patients.

The temporal curves of species of on ventilation group slowly increase from the starting
point and reach the highest enrichment level at around 72 hour, and then gradually

decrease towards the end of the period, except for some species picking up slightly at the
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end. The maximum enrichment of D9PC16:0/18:0 is estimated to be reached at around
96 hour, which is different from most of other species. Another exception is
D9DPPC16:0a/16:1, which has an increasing trend throughout the period. The most
varied individual curve shapes are found in the model of the species D9PC16:0/16:1,
D9PC16:0/16:0 and D9PC16:0/18:0, suggesting different turnover patterns among these
ventilated babies. Moreover, in these species, the curves of many individuals have more
than one peak within the time frame, which can imply either more waves of labelled

species coming into the system, or the change of the pool size.

The PC species of the off ventilation babies exhibit flat and lower temporal enrichment
trend with small gradient and there are hardly any stationary point on the curves. It is
important to note that the data points of the off ventilation group suffers from a lack of
observations after 72 hour, with only three or four observations for each time point. As
the babies recovered and went off ventilation, ETA samples were not collected, so there
was no observation available after the time point. Consequently, it is possible that the

insufficient data may only represent part of the population.

The group comparison and biomarker analysis were conducted using SME method and
the Ft, L and se values are listed in Table 23. The distance between the two groups is quite
small, indicated by the L values. Among all the species, D9PC18:0/22:6 has the highest L
value of 3.11, followed by D9PC16:0/22:6 of 2.42, and D9PC16:0/20:4 and 2.24,
suggesting the differences between group means of these species are higher than others
with L values range between 1 and 2. The se values are comparatively large with values
between 0.4 and 0.9. The individual models show diverse incorporation trends among
individuals within each group, particularly the on ventilation group with largely varied

individual curves, which contributes to the variance term se. Due to the generally small L
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values and large se values, the Ft values are generally small. The highest Ft with the value

of 7.28 belongs to D9PC18:0/22:6, owing to its biggest L and smallest se value.

m/z Species L se Ft
843 D9PC18:0/22:6 3.112788 0.4276522 | 7.278784
729 D9PC16:0a/16:0 1.696044 0.4765379 | 3.559095
767 D9PC16:0/18:2 1.682209 0.5436523 | 3.094274
815 D9PC16:0/22:6 2.419692 0.8090925 | 2.990625
791 D9PC16:0/20:4 2.241368 0.7919274 2.83027
727 D9PC16:0a/16:1 1.725831 0.6294649 | 2.741742
793 D9PC18:1/18:2 1.650062 0.6069545 | 2.718592
769 D9PC16:0/18:1 1.724096 | 0.6612318 2.6074
743 D9PC16:0/16:0 1.836189 0.7086587 | 2.591076
715 D9PC16:0/14:0 1.601133 0.6524921 | 2.453873
741 D9PC16:0/16:1 1.867165 0.7873556 | 2.371437
817 D9PC18:1/20:4 1.960294 | 0.8445815 | 2.321024
797 D9PC18:0/18:1 1.339566 0.6187157 | 2.165075
795 D9PC18:0/18:2 1.435755 0.7166049 | 2.003552
819 D9PC18:0/20:4 1.2818 0.6556711 1.954944
771 D9PC18:0/16:0 1.176324 0.6910945 1.702117

Table 23: Ft statistics for ETA PC species of the off and on ventilation NRDS patients.

The small Ft values of these species in the ETA samples suggest that the temporal

enrichment of these labelled PC species are of little significance in distinguishing the two

groups. Despite the different curve shapes for the two groups, close group mean and

especially the large variances between individuals weaken the ability of PC turnover in

discriminating the two groups. The large differences among individuals in ventilated

group, leading to small Ft statistics, should also be considered as to if the grouping is

appropriate. It is worth to investigate what causes the big differences in the time patterns

and enrichment levels between individual patients, and if there are subgroups within this

group. These facts indicate that the classification of groups directly affect the result of

group comparison, and biomarker discovery requires reasonable grouping of subjects.
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Besides, it should be noted that the observations of the off ventilation group is scarce,
which could possibly fail to cover some part of the underlying population and should be

taken into consideration when analysed further.

5.3 Characterisation of time course PEMT pathway methy/Ds - PC
enrichment in plasma and comparison between off and on

ventilation NRDS patients

In order to analyse the turnover of liver synthesised PC through PEMT pathway, the time
course enrichment of methy/Ds labelled PC in plasma samples were modelled using SME

method and the fitted values of the four designed time points are listed in Table 24.

The figures in Table 24 show that the PEMT pathway PC enrichment values in plasma
samples are much lower than those in ETA samples, suggesting their lower incorporation
levels. It shows that the group mean values of most PC species are not significantly
different between the on ventilation and off ventilation groups, but many of them are
slightly higher in the off ventilation group, which is opposite to the results of ETA PC
species analysis, where the mean values of on ventilation group are notably higher. The
species with the highest enrichment are D3PC18:0/22:6, D3PC16:0/22:6, D3PC18:1/20:4
and D3PC18:0/20:4 in the off ventilation group. In the on ventilation group, the
enrichment values are also high in these species. Moreover, there are some species in this
group that have slightly different trends, e.g., D3PC16:0a/16:1 and D3PC16:0a/16:0 that
have the highest enrichment only at the end of the investigated time period, and

D3PC16:0/18:0 has the highest enrichment value just at 72 hour.

136



Chapter 5

Table 24: Fitted group mean values of time course enrichment methyID3-PC synthesised
by liver through PEMT pathway in plasma samples of the off and on ventilation NRDS
patient.

Enrichment (%)
6h 12h 24h 48h 72h 96h | 120h
Off Venti | 0.070 | 0.074 | 0.087 | 0.116 | 0.119 | 0.087 | 0.079
On Venti | 0.066 | 0.068 | 0.070 | 0.077 | 0.085 | 0.094 | 0.103
Off Venti | 0.124 | 0.123 | 0.123 | 0.126 | 0.135 | 0.149 | 0.166
OnVenti | 0.092 | 0.089 | 0.086 | 0.084 | 0.146 | 0.123 | 0.133
Off Venti | 0.090 | 0.091 | 0.094 | 0.100 | 0.105 | 0.111 | 0.116
OnVenti | 0.090 | 0.092 | 0.097 | 0.105 | 0.114 | 0.124 | 0.134
Off Venti | 0.058 | 0.071 | 0.080 | 0.092 | 0.096 | 0.094 | 0.080
OnVenti | 0.042 | 0.054 | 0.079 | 0.085 | 0.071 | 0.090 | 0.076
Off Venti | 0.056 | 0.059 | 0.064 | 0.074 | 0.081 | 0.082 | 0.077
OnVenti | 0.052 | 0.045 | 0.071 | 0.071 | 0.070 | 0.057 | 0.067
Off Venti | 0.056 | 0.066 | 0.082 | 0.100 | 0.099 | 0.094 | 0.081
On Venti | 0.048 | 0.056 | 0.069 | 0.079 | 0.081 | 0.078 | 0.074
Off Venti | 0.056 | 0.063 | 0.074 | 0.087 | 0.090 | 0.084 | 0.075
On Venti | 0.049 | 0.053 | 0.065 | 0.073 | 0.075 | 0.066 | 0.074
Off Venti | 0.062 | 0.065 | 0.070 | 0.082 | 0.094 | 0.107 | 0.119
On Venti | 0.080 | 0.044 | 0.099 | 0.028 | 0.168 | 0.135 | 0.047
Off Venti | 0.061 | 0.082 | 0.096 | 0.120 | 0.110 | 0.109 | 0.098
On Venti | 0.055 | 0.065 | 0.082 | 0.096 | 0.095 | 0.094 | 0.090
Off Venti | 0.064 | 0.076 | 0.098 | 0.122 | 0.119 | 0.108 | 0.094
On Venti | 0.062 | 0.067 | 0.076 | 0.088 | 0.090 | 0.088 | 0.087
Off Venti | 0.059 | 0.084 | 0.094 | 0.111 | 0.105 | 0.097 | 0.085
OnVenti | 0.051 | 0.061 | 0.083 | 0.086 | 0.086 | 0.072 | 0.075
Off Venti | 0.052 | 0.067 | 0.071 | 0.084 | 0.080 | 0.074 | 0.071
On Venti | 0.049 | 0.053 | 0.060 | 0.065 | 0.064 | 0.063 | 0.068
Off Venti | 0.111 | 0.128 | 0.156 | 0.174 | 0.159 | 0.140 | 0.120
OnVenti | 0.067 | 0.104 | 0.145 | 0.126 | 0.109 | 0.094 | 0.095
Off Venti | 0.083 | 0.129 | 0.155 | 0.150 | 0.143 | 0.129 | 0.117
OnVenti | 0.078 | 0.091 | 0.114 | 0.127 | 0.121 | 0.111 | 0.101
Off Venti | 0.077 | 0.104 | 0.134 | 0.146 | 0.134 | 0.119 | 0.100
On Venti | 0.058 | 0.083 | 0.115 | 0.118 | 0.116 | 0.099 | 0.091
Off Venti | 0.112 | 0.129 | 0.159 | 0.187 | 0.177 | 0.151 | 0.125
OnVenti | 0.097 | 0.103 | 0.114 | 0.121 | 0.115 | 0.110 | 0.106

m/z Species Group

709 | D3PC16:0/14:0

721 | D3PC16:0a/16:1

723 | D3PC16:0a/16:0

735 | D3PC16:0/16:1

737 | D3PC16:0/16:0

761 | D3PC16:0/18:2

763 | D3PC16:0/18:1

765 | D3PC16:0/18:0

785 | D3PC16:0/20:4

787 | D3PC18:1/18:2

789 | D3PC18:0/18:2

791 | D3PC18:0/18:1

809 | D3PC16:0/22:6

811 | D3PC18:1/20:4

813 | D3PC18:0/20:4

837 | D3PC18:0/22:6

It can be seen from the plots (Figure 34) that the plasma PC species of PEMT pathway
have lower incorporation and smaller gradients along the temporal curves than the ETA
samples. Moreover, the shapes of the mean curves are different among species. Many of
the individual curves fluctuate with multiple local maximum and minimum points, which

indicates multiple waves of flooding of remodelled or resynthesised species entering the
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pool during the time period. As shown in the figure, the enrichment curve shapes of most
PC species are very different among individuals, due to the diverse incorporation patters,
which indicates heterogeneous turnover patterns of different PC species through PEMT
pathway. There are a few exceptions where the fitted individual curve shapes are
consistent, such as D3PC16:0/18:2, D3PC18:1/18:2 and D3PC18:0/22:6. This may suggest
more consistent label incorporation patterns among the individuals, but it is also possible
that the SME takes heterogeneous individuals as being in the same category and imposes
a consistent shape for them. For example, on the plot of D3PC18:0/22:6, the individual
curves have a similar time pattern, although there are many points scatter randomly
away from the curves. It should be noted that the SME method uses the same smoothing
parameter to all individuals when fitting each curve of them to reduce the computational
burden, which may have contributed to the consistent species pattern among individuals
in a group, such as D3PC18:0/22:6. However, there is another important step of the curve
fitting that determines the final curve shape, the model selection, for which AlCc criteria
is adopted in the SME method. The smoothing parameters are selected to achieve the
best fit, and it may result in individual curves with disparate shapes within the same
group, which is seen in most of the species in the figure. It can be helpful to further
evaluated these factors that affect the model shapes as to if the AlCc criteria is

appropriate in all cases.
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Figure 34: Time course enrichment of methy/Ds3-PC species synthesised by liver
through PEMT pathway for the off and on ventilation NRDS patients.
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m/z Species L se Ft

837 D3PC18:0/22:6 0.5428842 0.1010202 5.374019
787 D3PC18:1/18:2 0.2681372 0.0567689 4.723312
761 D3PC16:0/18:2 0.1725278 | 0.04394618 3.925889
721 D3PC16:0a/16:1 0.3282075 | 0.08770852 3.742025
809 D3PC16:0/22:6 0.4292514 0.1302551 3.295468
789 D3PC18:0/18:2 0.2143859 0.0756707 2.833142
791 D3PC18:0/18:1 0.1460655 | 0.05667729 2.577143
763 D3PC16:0/18:1 0.1430773 | 0.05688063 2.515395
709 D3PC 16:0/14:0 0.2802902 0.1163214 2.409618
737 D3PC16:0/16:0 0.1534859 | 0.06562033 2.338999
811 D3PC18:1/20:4 0.2767172 0.1372274 2.016486
813 D3PC18:0/20:4 0.2202025 0.1113 1.97846
785 D3PC16:0/20:4 0.1788182 0.0916905 1.950237
765 D3PC16:0/18:0 0.4672063 0.3760173 1.242513
723 D3PC16:0a/16:0 0.1027319 | 0.09802702 1.047995
735 D3PC16:0/16:1 0.1381838 0.1640108 0.8425282

Table 25: Ft statistics for plasma methy/Ds-PC for the off and on ventilation NRDS patients.

Table 25 lists the L, se and Ft values calculated between the off ventilation and on
ventilation groups. The L values range from 0.13 to 0.54, which are much smaller than
those for ETA samples. The se values are also quite small, ranging from 0.004 to 0.16. Due
to the extremely small L values, indicating small gaps between time models of the two
groups, the Ft values are generally small with values between 0.84 and 5.37.
D3PC18:0/22:6 is the species that has the biggest L and the highest Ft, just as it is in the
ETA sample. D3PC16:0/22:6 has the second highest L value of 0.43 and its Ft value is 3.3,
ranking at the fifth place. The overall small Ft values suggest that the time course
enrichment of PEMT pathway PC species may be not significantly indicative in
discriminating between the two groups. Similar to the result of ETA PC species analysis,
the PEMT pathway species have heterogeneous enrichment patterns among individuals.

This may suggest that the current grouping is not appropriate, which can lead to the
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failure of using PC label enrichment as biomarkers for identifying group differences, and it
underlines the critical importance of appropriate grouping in biomarker discovery

analysis.

5.4 Conclusions

In this chapter, the time course enrichment of methy/Ds-PC species in ETA samples and
methyIDs-PC of PEMT pathway in plasma samples were modelled for both off ventilation
and on ventilation NRDS patients. PC label incorporation level of the off ventilation group
is lower than that of the on ventilation group over time, and also have wider range. The
individual patients in this group have shown heterogeneous patterns. The time course
enrichment of labelled PC in ETA samples are not significant in distinguishing the on and

off ventilation NRDS patient groups.

PEMT pathway PC species have not shown significance as biomarkers in discriminating
the two groups in the biomarker analysis, however, it provided extra knowledge for a
more comprehensive understanding of PC turnover in pulmonary disease. The PEMT PC
of neither the off ventilation nor the on ventilation NRDS patients have consistent
incorporation patterns. Multiple peaks are shown on the fitted curves, indicating multiple
waves of labelled species coming into the circulation. Different to surfactant PC in ETA
samples, the enrichment levels of the off ventilation group are higher than those of on

ventilation group.

The individual NRDS patients show varied labelled PC incorporation patterns in both
groups, which may suggest they may have heterogeneous nature, and the categorising of
the two groups may not be appropriate to be distinguished by PC kinetics. This also

demonstrates group categorisation is critical important in biomarker discovery. The
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modelling has shown consistent incorporation patterns in a couple of species with large
amount of unfitted points dispersed far away from the fitted curves, which may be an

indication of over-smoothing and should be carefully examined.
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Chapter 6 Hepatic phosphatidylcholine dynamic

biomarker discovery for ARDS patients

6.1 Introduction

ARDS is a secondary lung disease triggered by various insults causing damage to the lung.
Clinical management of ARDS includes ventilation strategies as well as therapies for the
known underlying conditions, and there has been no newly developed treatment with
proven benefit for improving the mortality rate. There is a need for a better
understanding of the disease mechanism to guide treatment development. It would be
useful to characterise the in vivo kinetics of critical materials for pulmonary function of
ARDS patients and assess the implications from it for potential effective clinical

management of the disease.

The PC label enrichment data analysed in this chapter is from a study investigating
surfactant PC kinetics in ARDS patients and healthy people. Longitudinal observations of
label incorporation of PC in BALF and plasma samples were made for both healthy control
and ARDS patients. The study found the altered PC composition and label incorporation in
BALF as well as plasma in patients comparing to healthy control. The mean enrichment of
a few methylDo-PC species at different time points were calculated for both patient and
control groups. As the BALF samples were only collected at 24 and 48 after label infusion
for control group, the comparison between the two groups were carried out only at the
two time points, where higher mean enrichment values of total surfactant PC as well as
D9PC16:0/16:0 were found in ARDS patients (Dushianthan et al., 2014). In plasma
samples, increased flux of PC through the CDP-choline pathway and reduced flux through

the PEMT pathway were found in ARDS patients comparing to healthy people. Based on
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the findings of the study, it would be helpful to characterise PC kinetics for the two
groups of individual subjects, offering better insights of time patterns of PC label
incorporation than simply evaluating the mean values at each time points. Modelling the
time course PC label incorporation also facilitates biomarker analysis through group
comparison. However, BALF samples were only collected at 24 and 48 hour time points
for healthy control group, which is not enough for time course modelling and biomarker
analysis by SME method. As the study found that, in plasma samples hepatic PC
synthesised through PEMT pathway is more indicative than those through CDP-choline
pathway while comparing ARDS with control groups (Figure 32), therefore in this chapter
the kinetics of PEMT pathway PC will be analysed for biomarkers identification for the

control and ARDS patient groups.

6.2 Data description and methods

The data analysed in this chapter is obtained in the form of raw MS data sets from two
previous studies carried out by Dushianthan et al. (2018). The first study “Pulmonary
surfactant in adult patients with acute respiratory distress syndrome” was conducted in
the General Intensive Care Unit at University Hospital Southampton, where the ARDS
patients were recruited. The second study “Comparison of bronchoalveolar lavage and
induced sputum surfactant phospholipid kinetics in healthy adult volunteers” was
conducted in the Wellcome Trust Clinical Research facility at University Hospital
Southampton. Detailed experimental methods can be found in the study of Dushianthan

et al. (2018).

In the study, ARDS patients’ blood sample were collected at 6, 12, 24, 48, 72 and 96 hours

after label infusion, and healthy volunteers blood samples were taken at 8, 12, 24, 48, 72
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and 96 hours post labelling. There were 10 people in both patient and healthy groups,
although not all the subjects had complete samples collected at each time points. In this
chapter sixteen methyID3 PC, selected based on the confidence of existence, in these

plasma samples from patient and healthy groups were analysed.

MS data processing and kinetic calculations were carried out using LipidomeLabelling. The
procedures conducted for MS data processing include raw data extraction, background
subtraction, peak identification, peak integration, species identification, isotope
correction, between scan isotope correction, and enrichment calculation. The
multivariate time course modelling and biomarker discovery analysis were performed

using SME method facilitated by the SME R package.

6.3 Characterisation of time course PEMT pathway methy/Ds - PC
enrichment in plasma and comparison between control and ARDS

patients

In this analysis, time course enrichment of methyleDs-PC in plasma samples are modelled
using SME method, for healthy control group for the time period from 8 to 92 hour post
label infusion, and for ARDS patient group from 6 to 92 hour. The fitted mean values at
the four sample collecting time points are listed in Table 26. As shown in the table, the
healthy control group has generally higher enrichment level than ARDS patients over the
time period, which is opposite with that of surfactant PC observed at 24 and 48 hour
points described in the introduction section. The species with the highest temporal
enrichment level in healthy control group is D3PC18:0/22:6. The other species with
comparative high enrichment include D3PC16:0/22:6, D3PC18:0/20:4, D3PC18:1/20:4,
and D3PC16:0a/16:1. D3PC16:0/16:0, D3PC16:0/18:0 and D3PC16:0a/16:0 are the three

species with the lowest enrichment level over time. For ARDS patients, the species with
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the highest time course enrichment are the same with those of the healthy volunteers,
and the species with the lowest enrichment level is D3PC16:0/16:0, which is also low in
healthy people. But species D3PC16:0/18:0, which is the lowest in healthy group, is not as
low in patient plasma. It exhibits a fluctuating pattern and gets quite high at some time

points, which can be seen from Figure 35.

Table 26: Fitted group mean values for the time course enrichment of PEMT pathway
methylDs3-PC in plasma samples of healthy control and ARDS patients.

. Enrichment (%)
m/z Species Group
6h | 8h | 12h | 24h | 48h | 72h | 96h
Control 0.086 | 0.093 | 0.180 | 0.230 | 0.240 | 0.200
709 | D3PC 16:0/14:0
Patient | 0.081 0.089 | 0.103 | 0.121 | 0.123 | 0.128
721 | p3pcicoa/i6 | Control 0.151 | 0.189 | 0.227 | 0.290 | 0.234 | 0.228
Patient | 0.258 0.205 | 0.139 | 0.191 | 0.200 | 0.216
123 | p3pc16:08/16:0 |COntrO! 0.081 | 0.091 | 0.121 | 0.135 | 0.168 | 0.169
Patient | 0.102 0.103 | 0.106 | 0.112 | 0.119 | 0.126
735 | papcisojis |-ontrol 0.096 | 0.084 | 0.204 | 0.253 | 0.283 | 0.249
Patient | 0.060 0.075 | 0.119 | 0.133 | 0.135 | 0.155
137 | parcisoiso | -ontrol 0.057 | 0.063 | 0.101 | 0.166 | 0.191 | 0.195
Patient | 0.050 0.061 | 0.081 | 0.093 | 0.112 | 0.115
s61 | papcisioisa | Control 0.083 | 0.070 | 0.227 | 0.303 | 0.314 | 0.298
Patient | 0.059 0.078 | 0.122 | 0.160 | 0.157 | 0.160
763 | papcisiojiga |-ontrol 0.072 | 0.067 | 0.178 | 0.251 | 0.285 | 0.274
Patient | 0.060 0.068 | 0.103 | 0.149 | 0.131 | 0.133
765 | papcisoiso | ontrol 0.054 | 0.062 | 0.085 | 0.131 | 0.177 | 0.223
Patient | 0.132 0.162 | 0.073 | 0.225 | 0.139 | 0.069
75 | papcisio/a0a | Control 0.102 | 0.077 | 0.266 | 0.323 | 0.332 | 0.308
Patient | 0.059 0.081 | 0.120 | 0.148 | 0.156 | 0.176
787 | papcigiijiga | Control 0.102 | 0.084 | 0.276 | 0.330 | 0.317 | 0.309
Patient | 0.062 0.092 | 0.139 | 0.148 | 0.163 | 0.179
789 | papcisioyiga | ontrol 0.116 | 0.091 | 0.352 | 0.395 | 0.363 | 0.326
Patient | 0.061 0.095 | 0.157 | 0.200 | 0.191 | 0.178
701 | papcisioyiga | Control 0.095 | 0.079 | 0.229 | 0.290 | 0.292 | 0.289
Patient | 0.057 0.070 | 0.107 | 0.152 | 0.164 | 0.140
509 | papcisiofaze |-Control 0.324 | 0.280 | 0.961 | 0.817 | 0.626 | 0.497
Patient | 0.090 0211 | 0.313 | 0.334 | 0.246 | 0.234
Control 0.210 | 0.095 | 0.528 | 0.501 | 0.436 | 0.373
811 | D3PC18:1/20:4 |—2ntro
Patient | 0.079 0.145 | 0.228 | 0.219 | 0.199 | 0.186
Control 0.216 | 0.119 | 0.566 | 0.524 | 0.451 | 0.388
813 | D3PC18:0/20:4 200
Patient | 0.077 0.157 | 0.217 | 0.221 | 0.206 | 0.206
Control 0.395 | 0.635 | 1.211 | 1.154 | 0.813 | 0.623
837 | D3PC18:0/22:6 |——nr©
Patient | 0.090 0.214 | 0.406 | 0.440 | 0.292 | 0.284
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Figure 35: Time course enrichment of methyIDs-PC for healthy control (in blue) and ARDS
groups (in red). (To be continued)
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(Figure 35 continued)

Figure 35 shows the plots of fitted enrichment curves of plasma methyIDs-PC species for
the two groups. The healthy group has apparent higher enrichment levels than ARDS

patients over the time period. It can be found that the incorporation of most species

148



Chapter 6

exhibit tidal style temporal patterns. This is more obvious in the control group, where two

peaks can be found in each curve along the time curves.

In control group, the first peak of the labelled PC species appears at around 30 hour, and
the second appears at around 72 hour, which can be either lower or higher than the
previous peak in different species. Another feature of the control group is that, for most
of the species, there is a short term of dropping between 6 and 12 hours, and after this
the enrichment goes up dramatically, implying decreasing label incorporation at the early
time period before picking up. As healthy control people are assumed to be in steady
state with constant PC turnover, the multiple peaks on the curves indicates there are
multiple waves of labelled PC species coming into circulation. The increasing part is the
period that the amount of newly entered labelled species overweighs those leaving the
pool, and the decreasing part means the opposite. Based on the signs of decreasing trend
at early time period on the curves, it is appropriate to assume that the experiment may
have missed the early waves of incoming labelled species after label infusion, but
captures two later ones that peak at around 33 hour and 72 hour. The four species having
the fastest increasing rates also have the highest temporal enrichment levels over time,
including D3PC16:0/22:6, D3PC18:0/22:6, D3PC18:0/20:4 and D3PC18:1/20:4. The
decreasing rates of them are also fast, which can be seen from the steep slopes at the
beginning of the time period and after the first peak, suggesting higher fractional
appearance and disappearance rate of these species than others in the blood of healthy
people. This further implies higher fractional synthesis rate of these species through

PEMT pathway by liver.

A species that should be paid more attention is D3PC16:0/16:0, the labelled form of

PC16:0/16:0, which is the most abundant species in pulmonary surfactant. However, this
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species turns out to have low temporal enrichment level, suggesting its low fractional
turnover in blood. Besides, the group mean curve does not show an obvious two-peak
pattern, but keeps increasing over the time period. However, the individual curves on the
plot show that many of them have more than one peak, although they do not change at
the same pace, and even go in the opposite direction especially at the 48 hour, which
cancels out the fluctuation and results in an increasing mean curve. The species that act
most diversely among individuals, in terms of enrichment level as well as temporal
pattern, in the healthy group, include D3PC16:0/14:0, D3PC16:0a/16:1, D3PC16:0a/16:0,
D3PC16:0/16:1 and PC16:0/16:0. This shows that these species, the counterpart of which
are characteristic species in pulmonary surfactant, are not dominant in the blood and the

turnover vary a lot among individuals.

The ARDS patient group has generally low enrichment level and small change over time
for all species. Besides, although the multi-peak curve shape appears in some species in
some individual patients, the multiple peaks are not obvious in the group mean curves.
But D3PC16:0/18:0 is an exception, which increases at the beginning and reaches a local
maximum value at around 10 hour, and then decreases to a minimum at around 24 hour
followed by another increase to reach the local maximum at around 50 hour. Moreover,
its enrichment level is not lower than the control group all the time, but their relationship
changes with the fluctuation of the curves. However, a close examination of the individual
patients shows that some extreme values of a few patients have largely affected the

curve shape of the whole group.

The incorporation curves of most individuals as well as the whole ARDS group are much
lower and flatter comparing to the healthy group, but there are three patients with

different shapes and much higher enrichment levels than the other patients. On the plot
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of D3PC16:0/18:1, the three fitted individual curves with red dotted lines that are above
the group mean curve are for patient No.4, 3 and 1, from high to low. Furthermore, these
three patients are also found to have different curve shapes and higher enrichment levels
than other patients in most of other species, especially the longer fatty chain species.
Taking species D3PC18:1/20:4 as an example, the curves for the three patients are much
higher than other individuals and largely lift up the group mean values, which results in
the overall group difference between ARDS and control groups much smaller. Without
these three patients, the gap between the two groups would have been much greater.
However, there are only three patients in question, which is not enough to be analysed as
a group by the SME for further examination. Nevertheless, other analysis could be done
by looking into other clinical information of these patients to investigate the reason

behind it.

Group comparisons were carried out for identifying potential markers. The observation
time points of the two groups are not completely the same, with the first time point of
control group at 8 hour after label infusion, and 6 hour for ARDS group. In spite of this,
the SME can model the enrichment over the whole time period for both groups and

compare them over the overlapping period from 8 hour to 120 hour after label injection.

The Ft values are generally very small for all the species (Table 27), suggesting their
limited ability of distinguishing the two groups by the time course label enrichment. The
species with the highest L values include D3PC18:0/22:6, D3PC16:0/22:6, D3PC18:0/20:4
and D3PC18:1/20:4, exactly the ones with the highest time course enrichment in both
groups, with the value of 5.928, 4.501, 2.745 and 2.534, respectively. Despite the
comparative high L values, these specie do not get big Ft. This is due to the big se values

owing to the large variances among individual patients. Species with longer acyl chains
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are ranked higher, due to their dominancy and high turnover in blood. Characteristic lung
surfactant species are not as active in plasma as in lung surfactant, and they are ranked
lower in the list with the smallest L values. Species D3PC16:0/16:0, D3PC16:0/18:0,
D3PC16:0a/16:0 and D3PC16:0a/16:0 have the smallest Ft values among all the species.
This is reasonable as these species are not the major PC species synthesised through

PEMT pathway.

m/z Species L se Ft

837 D3PC18:0/22:6 5.927751 | 0.8062072 | 7.35264
785 D3PC16:0/20:4 1.514275 0.209139 | 7.240519
811 D3PC18:1/20:4 2.53435 | 0.3737603 | 6.780682
813 D3PC18:0/20:4 2.745033 | 0.4144251 | 6.623713
809 D3PC16:0/22:6 4501139 | 0.7016266 | 6.415292
761 D3PC16:0/18:2 1.281495 | 0.2024036 | 6.331383
787 D3PC18:1/18:2 1.453808 | 0.2353299 | 6.177744
763 D3PC16:0/18:1 1.103629 | 0.1871716 | 5.896346
789 D3PC18:0/18:2 1.709253 | 0.2922198 | 5.849202
709 D3PC 16:0/14:0 0.9187931 | 0.1744889 | 5.265626
735 D3PC16:0/16:1 1.091156 0.208337 | 5.237459
791 D3PC18:0/18:1 1.218338 | 0.2473827 | 4.92491
737 D3PC16:0/16:0 0.6014878 | 0.1383454 | 4.347724
765 D3PC16:0/18:0 0.7256573 | 0.3026004 | 2.398071
723 D3PC16:0a/16:0 0.3236736 | 0.1370244 | 2.36216
721 D3PC16:0a/16:1 0.6685675 | 0.5415068 | 1.234643

Table 27: Ft statistics for plasma PC species of control and ARDS patient groups.

As mentioned before, the individual fitted curves of ARDS patient group indicate that the
big variances are mainly from the three individual patients who have substantial higher
incorporation than other patients. The temporal PC enrichment of these three patients
hugely affect the patient group mean, and largely narrow the distance between ARDS and
control groups. This effect brings down the L values, and enlarges the variance within the
group, which increases the se values. Taking species D3PC16:0/20:4 as an example, it has

the second largest Ft, although it is not one of the species with highest enrichment level
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or L value, but it has a comparatively smaller variance. By checking the individual models
of the group, it was found that only two of the three patients mentioned above, rather
than all three, have higher enrichment levels of this species than the group mean. This
generates much smaller variance and reduces the se value, resulting in a big Ft value for
the species. Therefore, these patients should be further investigated as to 1) what causes
the significant difference of these patients comparing with others, 2) if they are

appropriate to be put in the same group with other patients.

According to the analysis, due to the small Ft values of all the species, they are not
significant as potential biomarkers. However, if the grouping of the heterogeneous
individual patients is properly treated, the result will be hugely improved, and the label
incorporation of PEMT pathway PC species can be promising biomarkers for ARDS. This
analysis and the original study integrally suggest that, the PC turnover of the ARDS
patients are altered comparing with healthy people, but the alteration is different
between surfactant PC and PEMT pathway PC, where the label incorporation of
surfactant PC of the patients are higher than healthy people, but that of PEMT PC are

lower.

6.4 Conclusions

In this chapter, the time course enrichment of plasma methy/Ds-PC synthesised through
PEMT pathway for both healthy people and ARDS patients were characterised, and the
group comparisons were carried out for identifying potential biomarkers for distinguish

the group difference.

In plasma, the incorporation level of PEMT pathway PC species at 24 and 48 hour are

higher in control healthy group than the ARDS patient group, which is different from that
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of surfactant PC which is higher in ARDS group. The species with longer unsaturated fatty
acyl chains are more active than the species that are highly active in lung surfactant. The
group comparisons generated small Ft values, indicating poor capability of PEMT pathway
PC species in distinguishing healthy people and ARDS patients. Nevertheless, the analysis
has recognised comparatively large difference between group mean enrichment levels,
denoted by L values, and found that the small Ft values are due to three ARDS patients
with significantly high PC label incorporation. Further investigation was suggested to
identify the cause of the heterogeneity and improve the grouping, which may achieve

high significance of the PEMT PC time course incorporation as potential biomarkers.

The SME method has successfully modelled the temporal PC label enrichment for both
individual subjects and groups, estimated the group differences for all the species, as well
as identified the unusual high PC label enrichment of three ARDS patients. The results are

reliable for biomarker discovery analysis.
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Chapter 7 General discussion

The clinical management of various pulmonary diseases suffers from a lack of specific and
sensitive biomarkers. Despite the endless effort put into the biomarker discovery studies,
there have been hardly any established new biomarkers proven to be sensitive and
effective enough to replace the traditional measures for diagnosing and predicting in
clinical settings. Pulmonary surfactant is critical for normal lung function, and PC species
are the major component and surface active material of lung surfactant. The PL
alterations in surfactant are associated with malfunctions of lungs and pulmonary
diseases, and in vivo PL turnover studies have provided valuable insights of surfactant PL
metabolism in healthy and disease states. The traditional techniques for analysing species
in vivo kinetics have their drawbacks. The radioactive labels do not trace target molecules
and they are harmful to human health. Lipid detection by GC techniques are not
informative regarding molecular species. The relatively new ESI MS/MS coupled with
stable isotope labelling techniques offer good tools for analysing molecular species in vivo
kinetic activities in human. This methodology not only identifies intact molecular species,
but can also trace multiple targeted species at the same time, which has provided new

insights of pulmonary surfactant system.

Due to the comparatively new ESI MS/MS coupled with stable isotope labelling
techniques applied in lilpidmoics analysis, there is a lack of efficient and comprehensive
software for dealing the generated data for dynamic PC analysis. In this study a new
comprehensive, robust, user friendly, and fast running platform, LipidomelLabelling was

developed for the special needs. It allows PL species of multiple lipid categories and
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classes as well as their labelled forms to be analysed together in the dynamic analysis. It
also supports data analysis of labelling studies with more than one type of label used for
different researching purposes. The software facilitates large-scale high-dimensional data
processing and dynamic pulmonary surfactant lipidomic analysis. In spite of the
comprehensive functionalities, the platform can be further improved to serve wider use
in the future. Firstly, although the platform is able to manage various labelling techniques,
the current library only offers reference lists of species labelled with deuterium and *3C.
Therefore, a more comprehensive database will be needed to facilitate studies using
different labelling materials. Secondly, as the platform offers batch analysis for omics data
analysis that generates large datasets in parallel, which is not easy to be transferred into
common statistical software for statistical analysis. Therefore, it would be useful to add
some statistical functions into the platform or to add some features that can make the
results compatible with other statistical packages. Thirdly, the platform can also be
improved in user convenience. For instance, there is only one output format of the PL
analysis, and more choices of output format can better satisfy the various needs of

different users.

This is the first study to characterise the time course enrichment of multiple methy/Dg
labelled PC species, and to use them as variables for biomarker discovery analysis for
pulmonary diseases. As the major lipid class in surfactant PL, the abnormal turnover of
surfactant PC have been found in various lung diseases, so the surfactant PC kinetics has
the potential to indicate lung disease. The traditional metabolic flux analysis tries to
calculate metabolic kinetic parameters, such as synthesis rate, pool size, degradation rate,
and half-life. However, it is not always possible to calculate these parameters accurately

due to various limitations. Nevertheless, time course label incorporation of a species in a
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certain pool contains the integrated information of the species metabolism, including that
the kinetic parameters can offer, although inexplicitly. This study modelled and used time
course label enrichment of PC species, from three studies facilitated by ESI MS/MS
analysis, as variables to compare between different groups, and evaluated their

significance in distinguishing the two groups for biomarkers discovery analysis.

This study is the first to model the time course PC label incorporation in bolus label
infusion experiment, facilitated by SME method. SME has its roots in functional data
analysis that sees an observed time series as the realisation of the underlying stochastic
process, i.e. a smooth curve (Berk et al., 2011). The fitted continuous curves can capture
the time factor of the process and estimate turning points and inflection points that are
not observed, such as maximum and maximum points. This is a big step forward for the
current longitudinal PC labelling analysis, which normally characterise the time trend by
joining up the observations at separate time points. It may lose the time effect, and is not
possible to approximate any unobserved turning points or inflection points within the
observation time period. This study has characterised temporal incorporation trend of
sixteen PC species for group of subjects from different studies, for better understanding
of PC metabolism in various subjects, whereas previous studies only concentrate on a few

major species, such as PC16:0/16:0, and the total PC species.

The modelling of the time course enrichment of multiples species in various sample types
and different subject groups of the three studies has provided massive new insights of in
vivo kinetics of surfactant PC species. By comparing the early time point enrichment level

of multiple species, it is possible to compare relative fractional appearance, synthesis and
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secretion rate among these species. In addition, by comparing the shapes of time curves
of multiple species, it allows us to recognise species with different metabolisms. In the
mice study, BALF and lung PC with 16:0 acyl chain present much higher fractional
appearance rate than those with 18:0 indicated by the high enrichment level at early time
points. The delayed increasing and low level of enrichment of the species with 18:0
suggest a different metabolism comparing with the other species. In the ARDS study, the
PC species synthesised through PEMT pathway in healthy people have shown multiple
waves of incoming labelled PC species into the plasma pool within 96 hour time frame
after label infusion. The ETA PC enrichment curves of NRDS patients illustrate low
incorporation and late arrival of labelled species into the pool. The enrichment curves for
ARDS and NRDS patients vary largely among individuals, indicating heterogeneous flux
kinetics of PC species between them. The modelling of time course PC label incorporation
takes into account the time factor and simulates the dynamic biological process, which

lays the basis for the biomarker discovery analysis.

The biomarker analysis for the GM-CSF beta chain depleted mice and normal mice were
conducted first for validating the methodology for the following application to the more
complicated clinical data. The mice models have clear and consistent incorporation
patterns among individuals within each group. The most significant differences were
found between control and KO mice groups with large Ft values, and small difference
were between control age groups with very small Ft values. The characteristic lung
surfactant PC species and those with 16:0 acyls are more significant than others in
discriminating the control and KO groups. Most of the PC species in BALF are highly
significant and are promising potential biomarkers, and in lung tissue there are also many

significant species, although fewer than those in BALF. The comparisons between control
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and high dose antibody treated mice showed lower enrichment at the increasing part of
the curves of the high dose group than the control, indicating the difference in PC
turnover, and a few species are significant in identifying the differences. However, the Ft
values suggest that the difference between control and high dose group recognised by
the species are much smaller than that between the control and KO groups. The Ft range
obtained from the mice analysis is a good reference to be compared to the analysis of less
clear clinical scenarios, in which the group difference are less significant, to evaluate to
what extent patient groups are different from healthy groups. The analysis between the
off ventilation and on ventilation NRDS patients suggests that the time course enrichment
of surfactant PC is higher in the weaker ventilated infants, but there is no significant
species in distinguishing the two groups, largely due to the small group difference and
large variances among individual patients. Besides, ETA sample is not as effective as BALF
in recovering pulmonary surfactant, which can be the reason that the surfactant PC
dynamic biomarker analysis for the NRDS patient ETA samples are not as significant as

that of the BALF in the mice study.

The dynamic biomarker analysis of hepatic PC synthesised through PEMT pathway for
NRDS patients groups as well as ARDS patients and healthy people have provided valuable
insights of surfactant PC turnover. By integrating the result with the analysis of surfactant
PC, it was found that the physically better group have lower label incorporation of
surfactant PC than the physically worse group, whereas the situation is opposite for the
PEMT pathway PC, where the incorporation of the physically better group is higher than
the physically worse group. The off ventilation group of NRDS patients have lower PC

incorporation in ETA samples but higher PEMT PC label incorporation in plasma than the
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ventilated group. The healthy group has lower surfactant PC incorporation at certain time

points (Dushianthan et al., 2014), but higher PEMT PC label incorporation than ARDS

group.

Although the analysis of PEMT PC species have not been recognised as significant in
distinguishing groups in the two analysis, large gaps between group means of healthy and
ARDS, i.e. L values, were recognised in many species. Due to three heterogeneous
patients in the ARDS group, the distance between the two groups has been largely
narrowed and the variance of ARDS group increased, resulting in low Ft values. An
improved grouping and proper management of the heterogeneous patients may generate

much better results and find promising biomarkers.

SME method worked well in modelling the time course label incorporation, and was able
to manage the issues of small sample sizes and missing values. It provides efficient tools
for group comparison for biomarker discovery analysis. It can tackle the issues of
different sample collecting times between groups by modelling over the whole time
period and comparing two groups over the overlapping time periods. The only issue with
the method is that a couple of models might be slightly over smoothed in the study, and if
that is the case, it could somehow affect the se values and hence the Ft statistics. This
issue should be further investigated in terms of what cause this issue and if it is

appropriate to use AlCc criteria in all situations.

The time course modelling and biomarker discovery analysis carried out in the three
studies have demonstrated the importance of the following points. Firstly, the more
experimental subjects there are, the better approximation of the underlying population

we can get. The scarce enrichment data of ETA PC of the off ventilation NRDS patients has
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shown weak representation of the underlying group. Although the SME method can deal
with small sample size with its correcting features, it is always the best solution to have

more subjects when possible.

Secondly, the more time points within a time frame are observed, the more reliable the
model fitting will be. The SME method models the time series data based on the values
from the observed time points, and is able to approximate turning points and inflection
points within the observation period. However, it is still possible that some important
features may be lost due to missing observations at some critical time points, and even
SME method would not be able to capture it, resulting in incorrect curve shapes. An
example is shown in Figure 36, where the plot of D9PC16:0/16:0 in BALF of mice sample is
compared with the plot of the same data but with an extra fake time point observation
between the 24 and 48 hour. The time trend has been dramatically changed by adding
the fake observation. This indicates that sample collecting time should be carefully
designed in an experimental study to cover the critical part of changing as much as
possible, ideally at least two observations for each curvature between two stationary
points for the whole biological process, although this design will need expertise

theoretical and empirical knowledge with appropriate assumptions.

161



Chapter 7

Ennichment %)
Enrichment |%)

10 20 30 40 10 20 30 40

Time (Hour) Time (Hour)

Figure 36: Time course enrichment of D9PC16:0/16:0 enrichment in BALF of 169 days
control mice group (left) and the same data with an extra fake observation of with a
small value of 0.5% at 36 hour (right).

Thirdly, grouping is critical important for biomarker discovery. The groups in the three
studies are classified based on the current knowledge and assumptions, some of which
may not be appropriate for PC label incorporation biomarker analysis. This can be due to
the heterogeneous subjects within groups as well as wrong assumptions. The three
patients in ARDS group with extremely high PEMT pathway PC incorporation largely lift
the group mean and narrows the gap between the groups, which is an example of
grouping issue due to heterogeneity within a group. The Ft analysis found no difference
between the two groups of NRDS patients, and the great variances occurred in each
groups, which is another example of heterogeneity individuals as well as the
inappropriate grouping criteria. An ideal grouping should generate large group distance

and small individual variation.

This study concentrates on the feasibility of using time course PC incorporation as
biomarkers for pulmonary diseases. There are still a lot to be done in future studies.
Firstly, the modelling of the PC species has provided large amount of information on their

metabolism, which has not been fully explored. More investigation could be done on the
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turnover patterns of individual PC species in different compartments, hydrolysed species
turnover patterns, investigation of surfactant secretion by comparing species between
lung and BALF, and transporting information by comparing those between plasma and
ETA samples. These would give wider views and deeper insights of PC species metabolism.
Secondly, the time course enrichment modelling in this study does not report confidence
interval in the results. This is because the main purpose is to investigate possible
biomarkers by comparing between species, and confidence interval of each group mean
curve is not much of a concern in this context. The confidence interval can be further
investigated in future studies, especially when biomarkers are identified and the value
range should be defined in both groups for diagnostic or prognostic purposes. Thirdly, in
this study the time course PC enrichment of the entire observing time frame was
modelled and used as a variable for biomarker analysis. In future studies, it can also be
considered to use enrichment within certain time window, in which the two groups have
the largest gap and smallest variation, or even as precise as enrichment at certain time
points, as biomarker variables, which may be more significant, efficient and applicable.
Fourthly, SME can cope with large numbers of variables for biomarker discovery. Berk et
al. (2011) has evaluated around 2000 variables in a biomarker analysis. A typical
biomarker analysis by SME method involves calculating moderated Ft values of each
variables, simulating the Ft distribution and selecting the most significant species as
potential biomarkers. However, the number of species assessed in this pilot study is
limited due to the detectability of labelled species as well as their capability in indicating
PC metabolism. Therefore, the Ft values were not moderated and the distributions were

not determined. In future studies, it can be considered to add more relevant and
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detectable species into the analysis, for distribution determination and biomarker
selection. Lastly, in this study, only PC species were analysed for dynamic biomarker
discovery for lung diseases. However, kinetics of other major surfactant phospholipids like
PG, Pl and PE may also be indicative, which is worth to be assessed, although the labelling

techniques for these species might be different from those for PC species.
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