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Computational Aeroelasticity for Next-generation Aircraft

by Daniel Kharlamov

During the conceptual stage of an aeroplane design project, the use of high—fidelity
computational methods as a routine engineering design tool for the estimation of aero-
dynamic loads on wings is prohibitive due to the high computational costs for de-
sign exploration studies. This difficulty can be overcome by a novel methodology for
rapid, physics-based predictions of aerodynamic loads and can be deployed as a uni-
fied approach for subsonic and transonic flow analysis in steady—state and unsteady
flow regimes. The approach, which is presented in this thesis, is based on three compo-
nents: 1) a cost-effective flow solver of the infinite-swept wing problem that captures
sectional viscous phenomena, 2) a steady—state and unsteady Vortex—Lattice method
(VLM) that captures three-dimensional inviscid flow effects around a finite wing, and
3) an appropriate coupling algorithm that corrects low—fidelity three-dimensional in-
viscid flow with high—fidelity sectional nonlinear viscous aerodynamic data. In this
thesis the formulation of all three components of this approach are described in detail
followed by test cases, where the capabilities and performance of the novel efficient
nonlinear aerodynamic model are demonstrated in steady-state and unsteady flow
regimes. Finally, in this work the application of this mixed—fidelity and low—cost aero-
dynamic model is demonstrated in the field of computational aeroelasticity, where the
aerodynamic algorithm is coupled with a nonlinear geometrically-exact beam model
with the purpose of obtaining aerodynamic loads on highly deflected and twisted aero-
plane wings. The computational aeroelasticity framework, which incorporates the
nonlinear FE-beam model and the aerodynamic coupling code, provides the ability
to obtain rapid aeroelastic results, which are in the same order of magnitude of the
accuracy as results obtained by high-fidelity computationally intensive aeroelasticity

frameworks.


http://www.southampton.ac.uk




Contents

List of Figures

List of Tables

Acknowledgements

Declaration of Authorship

1 Introduction

1.1

1.2
1.3

14

Review of major future trends in aviation technology . . . ... ... ..
1.1.1  Alternative fuel systems . . . . . .. ... ... ... ........
1.1.2 Hybrid-electric powered air vehicles . . ... .. ... ......
1.1.3  Alternative aerodynamic design of commercial aeroplanes . . . .
The rise of high—aspect ratio composite wings in commercial aviation . .
Design methodology of future commercial aeroplanes and multidisci-
plinary optimisation . . . ... .. ... ... ... . ... 0 L.
Summary . . . ...

2 Background

2.1

2.2

2.3
24
25
2.6
2.7

Potential flow . . . . . . . . . .. ..o
211 Thin-wing lifting surface methods . . . . ... ... ... .. ...
Quasi-3D hybrid aerodynamic coupling algorithm . . . . . ... ... ..
221 Steady-state formulation . ... ... ... ... ... ... ...
2.2.2  Unsteady hybrid coupling algorithms . . . . . ... ... .. ...
Infinite—swept wingsolver . . . . . ... ... ... ... ..., ..
Fluid-Structure Interaction . . . . . . ... ... ... ... ........
Summary . . . ...
Aim and Objectives . . . . . . .. ... ... . Lo
Structure of thisthesis . . . . .. ... ... ... ... .. .. ... ....

3 Computational methodology

3.1
3.2

Outline of the computational methodology . . . .. ... ... ......
Linear Vortex-Lattice Method . . . . . .. ... ...............
3.2.1 Steady-state formulation . .. .. ... .. ... ... ... ...,
3.2.1.1 Steady-state aerodynamic force formulation . . . . . . .

3.2.1.2  Evaluation of the steady-state induced drag and the lo-

cal spanwise induced angle of attack using the Treffz—

planemethod . . . . . . ... ... ... . oL

xii

xxiii

XXV

xxvii

N U WO NN =



vi CONTENTS
322 Unsteadyextension. . . .. ...................... 43
3.22.1 Unsteady aerodynamic forces . ... ........... 46
3.2.2.2 Estimation of the unsteady induced angle of attack and
induceddrag . . . . ..... .. ... .. L 47
3.3 Infinite-sweptwingsolver . . . . .. .. ... ... .. ... .. ... ... 48
3.4 Hybrid aerodynamic coupling algorithm . . .. .. ... .. ... .... 53
3.4.1 Steady-state hybrid coupling procedure. . . . . .. ... ... .. 54
3.4.2 Unsteady extension of the hybrid coupling procedure . . . . . . . 56
3.42.1 PartI: Synchronous management of aerodynamic models 58
3422 Partll: Datafusion. ... ... ............... 61
3.4.3 Estimation of nonlinear viscousdrag . . .. .. .......... 62
3.5 Fluid-Structure interaction. . . . . . .. ... ... ... .. o L., 63
3.5.1 Anisotropicbeamtheory . .. ... .. ... .. .. .. ... .. 63
3.5.2 Extension to nonplanar g3D-coupling algorithm . . . . . ... .. 66
3.5.3 Aeroelastic coupling procedure of aerodynamic and structural
models . . ... ... 68
3.5.3.1 Mapping of aerodynamic forces onto the structural FEM
beam . ... ... ... 70
3.5.3.2 Deformation of the VLM lattice . .. ... ........ 72
3.6 Summary . . ... 74
4 Results 75
41 Validation of the linear Vortex-Lattice Method . . . . ... ... ... .. 76
41.1 Steady-state VLM model .. ... ... ... ... ......... 76
412 Unsteady VLM model . ... ... ... ... .. .......... 78
41.2.1 Suddenly accelerated flatplate . . . . . . ... ... ... 78
4122 Forced motion of a thin aerofoil in pitch and plunge . . 78
42 Steady-state aerodynamicmodel . . . ... ... ... 00000 80
421 Systematic study around a NACA2412-wing in steady-state flow
conditions . . . ... ... L Lo 81
4211 Dependenceonangleofattack. . ... .......... 83
4212 Dependenceonsweepangle . . ... ........... 101
4213 Dependenceontaperratio . .. ... ........... 105
42.2 DLR-F4 wing body configuration in steady-state flow . . . . .. 107
4221 Aerodynamicwingload . ................. 111
4222  Sectional pressure distribution, ¢y, at Cp =05 . . . . . . 114
423 Computationalcost. . . ... ......... ... ... . ..., 120
424 Summary . ... ... 120
43 Unsteady aerodynamicmodel . . . . .. ... ... .. ... .. ... ... 122
43.1 Forced harmonic motion in pitch and plunge: aerofoil . ... .. 122

44

4.3.2 Forced harmonic motion in pitch and plunge: finite-span wing . 124
43.3 Transonic forced harmonic pitch oscillation of the NACA2412-

wingatM=08. ... ........ ... .. ... . .. 135
434 Convergenceanalysis . ... ..................... 139
43.5 Computationalcost. . . . ... ....... ... ... ..., 140
43.6 Summary . ... ... 140

Aeroelasticity . . . ... ... 142



CONTENTS vii

4.4.1 Inviscid steady-state NACAO0012-wing . . . ... ... ...... 142

442 Viscous NACA0012-wing in compressible flow . . ... ... .. 145

443 Summary . ... ... 151

5 Conclusion 153

51 Projectsummary . .. ... ... ... ... 154

51.1 PartI: Steady-state aerodynamic coupling algorithm . . . .. .. 155

5.1.2 Part II: Unsteady aerodynamic coupling algorithm . . . ... .. 157

5.1.3 PartIIl: Aeroelasticity . . . ... ... ... ............. 158

5.2 Generalresultsof thisthesis . . . . . .. ... ... ... .......... 159

53 Researchoutput . . . ... ... ... ... ... ... .. 160

54 Futurework . . . . . . . ... e 160

Appendix A Appendix 163
Appendix A.1 Sectional flow of the unswept NACA2412-wing in unsteady

flow . . . o e e e 163

Appendix A.1.1 Unsteady force harmonic pitching oscillation . . . . . 164

Appendix A.1.11 MachM =03 .................. 164

Appendix A.1.1.2 MachM =05 .................. 175

Appendix A.1.1.3 MachM =07 .. ................ 186

Appendix A.1.14 MachM =08 ... ............... 197

Appendix A.1.2 Unsteady force harmonic plunging oscillation . . . . . 208

Appendix A.1.21 MachM =03 ... ............... 208

Appendix A.1.22 MachM =05 .................. 219

Appendix A.1.23 MachM =07 ... ............... 230

Appendix A.1.24 MachM =08 .. ................ 241

References 253






ix

Nomenclature

Acronyms

COy i Carbon Dioxide

ACARE .......... Advisory Council of Aviation Research in Europe[2]

CAD ............ Computer Aided Design

CFD ............. Computational Fluid Dynamics

DLR ............. Deutsches Zentrum fiir Luft- und Raumfahrt

EDF ............. Electric-Ducted Fan

FALCon ......... Fast Aerodynamic Loads Calculations

FSI .............. Fluid-Structure-Interaction

GEBT ............ Geometrically—Exact Beam Theory

HALE ........... High-Altitude Long-Endurance

HALE UAV ...... High—-Altitude Long-Endurance Unmanned Aerial Vehicle

HAPS ........... High-Altitude Pseudo-Satellites

HAR ............ High Aspect Ratio

HARW .......... High Aspect Ratio Wing

MDO ............ Multidisciplinary Design Optimisation

MG .............. Design Maturity Gate

NOx ............. Nitrogen Oxides, a mixture of binary compounds of oxygen and
nitrogen

ONERA ......... Office National d'Etudes et de Recherches Aérospatiales

Q3D ... Quasi-3D aerodynamic approach

RANS ........... Reynolds—-Averaged Navier-Stokes equations

UVLM ........... Unsteady Vortex—Lattice method

VABS ............ Variational Beam Sectional Analysis

VAM ............ Variational-Asymptotic method

VIM ............ Vortex—Lattice method

Greek Symbols

Koo Angle of attack [rad]



X NOMENCLATURE

0 TP Zero lift angle of attack [rad]
Ko oeeeieeannnnnn Effective angle of attack [rad]
S Induced angle of attack [rad]
JAY Angle of attack correction increment [rad]
A Pitching angle of attack increment, only in Section 3.4.2 [rad]
AB oo Side-slip correction increment [rad]
ATjj oo, Time derivative of the leading edge vortex intensity of a

VLM panel [m?/s%]
I Vortex-ring intensity [m?/s]
) A Taper ratio of a wing, v = crip/ CRoot [—]
Ao Geometrical sweep of a wing section or a wing [rad]
Voo Relaxation factor [”-"]
Wi Frequency [1/5]
D Velocity potential, see Section 2.1 [m?/s]
O o Density of the fluid [kg/m?3]
T oo Reduced time, T =tV /cef [—]
Orj v Current aeroelastic deflection angle [rad]
€ Prescribed convergence tolerance error [”-"1]
6{7 ................ 1st Wiener-Milenkovi¢ rotation parameter [—]
93 ................ 2nd Wiener-Milenkovi¢ rotation parameter [—]
Qé’ ................ 3rd Wiener-Milenkovié rotation parameter [—]

Roman Symbols

JAS Velocity of the collocation point of a VLM panel [m/s]
) Spanwise aerodynamic force [N]
OFij oo, Steady-state aerodynamic force on a wing bounded VLM

panel [N]
OFj i oo, Unsteady aerodynamic force contribution of a VLM panel

in unsteady flow regime [N]
JAY /R Vertical displacement increment, only in Section 3.4.2 [m]
AxP oo Translational displacement of a FEM beam node in x—direction [m]
Ay Translational displacement of a FEM beam node in y—direction [m]
Az Translational displacement of a FEM beam node in z—direction [m]
o Vertical plunge velocity, only in Section 3.4.2 [m/s]
Vector of vortex—ring intensities of all wing bounded VLM

panels ["m?/s”]
A Aerodynamic influence matrix in VLM ["—"]
AN Displacement vector of a FEM node, see Equation 3.87 [1
N oo Normal vector [m]

Lo B Normalised velocity contribution of the vortex-ring of the



NOMENCLATURE xi

m—th VLM panel on the collocation point of the n-th VLM

panel [s]
Right-hand-side vector containing in VLM non-circulatory
velocity contribution ["m?/s”]
Rotation matrix about the z axis [—]
FEM stiffness matrix [
Quasi-steady lift force coefficient in UVLM [—]
Aerodynamic influence coefficient, a,,;, = ny, - qum [—]
Aspect ratio of the wing, AR = b*/S [—]
Wing span of the wing [m]
Chord length of a wing [m]
Aerodynamic drag force coefficient [—]
Non-dimensional friction coefficient, ¢y = 7/q [—]
Aerodynamic lift force coefficient [—]
Lift slope, Cf = dCp/da [1/7rad]
Aerodynamic moment coefficient [—]
Non-dimensional pressure coefficient, c, = (p — pref) /oo [—]
Induced drag force coefficient [—]
Unsteady lift force coefficient contribution in UVLM [—]
Maximal lift force coefficient at stall [—]
Aerodynamic moment coefficient of an aerofoil with respect to quar-
ter chord [—]
Young modulus [N/m?]
Shear modulus [N/m?]
Area moment of inertia in direction x5 of the local

GEBT beam frame of reference, see Figure 3.11 [m3]
Area moment of inertia in direction x3 of the local

GEBT beam frame of reference, see Figure 3.11 [m3]
Torsional constant [m3]
Reduced frequency, k = wcy.r/V [—]
Shear coefficients in direction x; of the local GEBT

beam frame of reference, see Figure 3.11 [m?]
Shear coefficients in direction x3 of the local GEBT

beam frame of reference, see Figure 3.11 [m?]
Maximal take—off weight [kg]
Operating empty weight [kg]
Total number of wing bounded VLM panels on a VLM

lattice, N = N X Nj [—]
Total number of beam nodes in a FEM beam mesh [—]

Total number of wing bounded chordwise VLM panels on a
VLM lattice (-]
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Nj oo, Total number of wing bounded spanwise VLM panels on a

VLM lattice [—]
P oo Pressure [N/m?]
A Angular pitch velocity, only in Section 3.4.2 [rad/s]
Joo v ovenenenenennn Dynamic pressure at the farfield, g = 0.5000 V2 [N/m?]
R ... Range (only in Section 1.2) [m]
e Distance between two positions [m]
Re ............... Reynolds-number [—]
S Cross—section area of the beam (only in Section 3.5.1) [m?]
S Reference wing area [m?]
U i Cartesian aerodynamic flow velocity in x—direction [m/s]
Vo Velocity magnitude [m/s]
Voo Cartesian aerodynamic flow velocity in y—direction [m/s]
(/7 Cartesian aerodynamic flow velocity in z—direction [m/s]
(L Induced downwash velocity, only in Section 3.2.1.2

and Section 3.2.2.2 [m/s]
Yo Dimensionless wall distance [”-"]
(CL/Cp) oo Aerodynamic efficiency [—]
Axp oo Centre of aerodynamic sectional pressure [m]
Subscripts
00 it Quantity at the freestream farfield of the flow field
Lo Chordwise index of the collocation point on a VLM lattice
Jooe Spanwise index of the collocation point on a VLM lattice
nv ............. Flow quantity obtained with an inviscid computational method,

here VLM or UVLM
VISC ..l Nonlinear viscous quantity, for example Cy ;isc or Cp visc, Obtained

by 2D or 2.5D+ ISW- or 3D (U)RANS CFD solver
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Chapter 1

Introduction

In the modern daily life aviation, and primarily commercial air transportation, takes
an inevitable role providing the ability to maintain social contacts and business devel-
opments around the world. During the last half century, besides advances in aero-
dynamics and materials, a significant breakthrough in this area has been made by in-
troducing the jet-propulsion to commercial aviation followed by a complete redesign
of the overall aeroplane configuration. By the introduction of legendary airliners like
the De Havilland Comet, Tupolev Tu-104 or the Boeing B707, air transportation has be-
come available to a significant part of the worldwide population. In the last decades,
after the introduction of jet-powered civil aviation huge progress in jet-propulsion,
configurational aerodynamics and aviation materials has been made leading to eco-
nomically more efficient aeroplanes. In recent years, significant progress has been
made by introducing novel composite materials, which have led to more lightweight
and fuel-efficient aeroplanes like the Boeing 787 Dreamliner or the Airbus A350. Those
aeroplanes are fitted with extra—large turbofan—engines with a high bypass-ratio, and
their structure consists significantly of lightweight composite materials. As commonly
known, the commercial aviation market is highly competitive. Thus, for the future,
there is a high demand for commercial air-vehicles which are even more efficient and,
therefore, even more economical[6][11]. Additionally, future aviation technology needs
to become more friendly to the environment by reducing noise and emissions. The Eu-
ropean ACARE! released emission reduction targets which have to be met by the future
aeroplanes within the next 20 to 40 years. However, as stated in Ref. [36], these targets
are too optimistic if the design procedure for future commercial aeroplanes continues to
be conventional, for example, employing empirical knowledge-based handbook meth-
ods during the early conceptual design stage or linear computational methods cor-
rected with knowledge-based semi—empirical corrections preserving today’s dogmas
of commercial aeroplane design. By relying on such methods, for which computational
cost is indeed the lowest compared to other alternatives, it is expected that the design

1 Advisory Council of Aviation Research in Europe
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of future aeroplanes is not going to make revolutionary progress and meet the design
targets set, for example, by ACARE. Therefore, the aviation industry is currently facing
on the one side the challenge to break away from semi-empirical computational design
methods based on knowledge collected over the last decades in design of commercial
aviation, and on the other side manage the additional project risks due to the uncer-
tainty which is related to novel advanced designs. Thus, a significant rethinking of the
design of commercial aviation and its design methodologies has to take place by intro-
ducing novel approaches on the one side, while keeping the overall design risks and
design uncertainties as low as possible on the other side. This could allow establish-
ing alternative aviation fuel, non—conventional technology and advanced aerodynamic
design in the field of commercial aviation. Especially, novel reliable rapid numeri-
cal physics-based design methods have to be introduced, which could completely or
partly replace old knowledge-based and semi—empirical design approaches in the fu-
ture conceptual design stage of projects and introducing low computational cost meth-
ods based on real physics modelling. This could allow investigating design concepts
which are located outside of today’s knowledge-based design envelope and lead to
highly advanced aviation technology, which will satisfy even more the future needs of

commercial air transportation.

1.1 Review of major future trends in aviation technology

In this section, a short overview of the most recent alternative configurations and de-
sign studies is given starting with a review of future design concepts of aeroplane
configurations, which are currently trending in the aviation research community. In
Section 1.1.1 the employment of alternative aviation fuel systems based on hydrogen or
bio—fuel from renewable sources is discussed. Further, in Section 1.1.2 hybrid—electric
powertrain and its perspective of employment in general and commercial aviation are
briefly reviewed. Finally, in Section 1.1.3 alternative approaches of the overall aerody-

namic configuration design of future commercial air vehicles is presented.

1.1.1 Alternative fuel systems

The modern aviation propulsion systems are playing the central role in the negative
impact of commercial aviation on the environment due to the emission of nitrogen ox-
ide particles (NOx), carbon dioxide (CO;) and noise. Over the last decades, turbojet,
turbofan and turboprop engines were introduced into commercial aviation with great

success. The environmental impact of those engines in the form of emissions and noise
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were significantly reduced during the last decades. However, the further radical re-
duction of emissions and noise of aviation propulsion systems running on petroleum-
based fuel is nearly impossible, as the technology is already converged against the most
optimal solution of its class by employing today’s state—of-the-art technology. Thus,
the principal alternative in this area could be the replacement of the petroleum-based
fuel by alternative propulsion fuel. One of the approach to tackle this challenge is
the employment of aviation bio—fuel from renewable biomass resources. In Ref. [44], a
general review and an assessment of this approach are presented. Another direction is
given by the idea to replace the conventional fuel with hydrogen[105][46]. Hydrogen
opens the perspective to employ fuel with the highest possible energy—density which
exists in nature. The emission of such an aeroplane would contain only water-vapour
and nitrogen oxide particles (NOx). Carbon-based emissions would not exist. This fuel
was already successfully applied in aeroplanes like the Hes1 and Tupolev Tu-155[46].
However, today, this technology has still not matured to the stage where it can be used
in daily life powering commercial aviation and remains still to be more a subject of ba-

sic scientific aviation research.

FIGURE 1.1: Hydrogen powered aeroplane with non-integral tank (source: [105])

1.1.2 Hybrid-electric powered air vehicles

Another attempt to reduce the demand for aviation gasoline is the introduction of
hybrid—electric powered aeroplanes. In Ref.[12], an overview is given of electrical
components, and electric propulsion architectures are presented. Further, existing com-
mercial products, prototypes, demonstrators, and conceptual studies are discussed.
However, the author concludes that a high—fidelity multidisciplinary design analysis
and optimisation of an electric aeroplane which also includes safety and economic as-
pects remains today an open challenge. Another study is made by choosing an Airbus
A320 class aeroplane as a baseline design with a range of about 2400 km, which is
then equipped with an electric-ducted fan (EDF)[100]. Here, the sizing study of an
electric engine powering a ducted fan on a discrete parallel hybrid—electric medium-
range aeroplane is conducted. The author concludes, however, that with respect of
the chosen baseline design derived from an Airbus A320, the strategy to replace the



4 Chapter 1. Introduction

conventional propulsion by a hybrid—electrical engine is not offering today the best
solution according to the overall efficiency of the vehicle. The author concludes that
the design study of a hybrid—electrical aeroplane must be carried out from scratch and
should include more aspects than only the redesign of the powertrain. Further, Por-
net and Isikveren[72] analysed a quad—fan narrow—body configuration which has two
most advanced and geared turbofans and two electrical fans installed under the main
wing. Here, conventional mechanical power is used to recharge the batteries and is
also partly used for the propulsion. The study shows that the maximisation of the
hybridisation of the powertrain leads to a significant reduction of required conven-
tional fuel. However, the increase of the hybridisation will also affect the optimal flight
speed and altitude negatively. Thus, such concepts could be successfully applied in
the short-range/regional market segment or even general aviation. In this segment,
the hybrid—electrical technology offers at the moment the greatest perspective. An ex-
ample study is also made by Ref. [75] of a light hybrid—electrical motor—glider, where
it is concluded that an introduction of the hybrid—electrical propulsion in this niche
area would lower the noise and the environmental pollution while keeping the flight
performance of such a powered glider at the same level as conventional engine pow-
ered gliders running on aviation gasoline. However, regarding the design process, the
introduction of such a hybrid—electric powertrain would, as for commercial aviation,
expand the design landscape by additional design variables describing the powertrain.
It can be seen that the introduction of hybrid—electrical technology offers a significant
reduction of the acoustic noise and the atmospheric pollution. However, using today’s
state—of-the art technology this approach can be only implemented successfully in the

lightweight general or short-range/regional market segment.

FIGURE 1.2: Boeing SUGAR Volt concept (source: NASA /Boeing image)
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1.1.3 Alternative aerodynamic design of commercial aeroplanes

It is known that the efficiency of a traditional turbofan engine depends on two main pa-
rameters: the fan pressure ratio and bypass ratio of the engine. To increase the overall
engine efficiency, the bypass-ratio has to be maximised, and the fan pressure ratio min-
imised. However, for traditional configurations, where the engine is installed under
the main wing, the limit of the fan diameter is almost reached. Thus, the integration
of larger engines create today a nearly unsolvable challenge. In Ref. [106], ONERA?
presents a conceptual aerodynamic study of possible future aerodynamic configura-
tions, where four alternative designs of a future mid-range airliner with super large
turbofan engines are analysed, and preliminary and detailed aerodynamic design work
carried out. The result of this study are the presented four alternative configurations
called NOVA (Nextgen ONERA Versatile Aircraft), which basic aerodynamic shape can
be seen in Figure 1.3. The BLI configuration could be a real alternative configuration,
where the bypass—ratio of the engines would be even higher and therefore the engine
more efficient. Also, the BLI configuration has a clean wing providing a much higher
aerodynamic efficiency, (Cr/Cp). Here, Cy is the total aerodynamic lift and Cp the
total aerodynamic drag force coefficient in the cruise condition. However, due to the
present boundary layer on the fuselage, the lifetime of the engine might be reduced as
the turbulent boundary layer might cause vibrations on the engine as non-uniform and

turbulent air enters the engine.

Podded BLI

FIGURE 1.3: General view of the NOVA configurations (source: [106])

In Ref. [99], a preliminary design study of a so—called Joined-Wing configuration trans-
port aeroplane for transonic Mach-numbers is presented, see Figure 1.4. The Joined-
Wing approach is a collective name for Diamond Wings, Strut—and Truss—Braced Wings
and Box Wings. Joined-Wing configurations offer the advantage to reduced signifi-
cantly the induced aerodynamic drag force coefficient, Cp ;, of the configuration as no

20Office National d’Etudes et de Recherches Aérospatiales
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finite wing tip is present on the main wing and tail in such design. This is automatically

leading to higher aerodynamic efficiency, i.e. increased Lift-to-Drag ratio, (Cr./Cp).

b

FIGURE 1.4: Joined-wing configuration (source: [99])

In Ref. [16], an overview of recent advances regarding such joined—wing configurations
is given, and a detailed discussion of aerodynamics and structural integration is pre-
sented. Also, a parameter study of major macroscopic parameters, e.g. wing loading
or cruise Mach number, is carried out with the aim to explore the design landscape of
the presented PrandtIPlane configuration. This review paper is also covering impor-
tant technological innovations and achievements made worldwide by various research
groups in the related field. However, these configurations are structurally overcon-
strained and differ enormously from classical monoplane wings in their structural na-
ture. The overconstrained nature of the wing results leads to additional parameters and
mostly yet unknown design aspects which have to be managed during the design pro-
cess. On the other side, this approach also offers great opportunities to design future
highly efficient aeroplane configurations as a much larger design space is available.
Unfortunately, a detailed exploration of the design envelope of joined-wing configura-
tions is today still a very complicated challenge as it requires an enhanced interaction
between different disciplines in aeronautical engineering. Here, a multidisciplinary
optimisation (MDO) approach is inevitable, which includes the disciplines like aero-
dynamics, flight mechanics, control and aeroelasticity. This framework needs to build
a strong link between them during an iterative search for an overall optimal design.
Today, the author also notes that the quantification and exploitation of the real advan-
tages of the joined-wing configuration approach is still unknown as the modern MDO
frameworks, traditionally employed during conceptual design stages, are not provid-
ing enough fidelity to capture the design landscape of such an advanced approach
carefully. On the other side, the employment of modern high-fidelity Computational
Fluid Dynamics methods (CFD) within an MDO framework during a sizing study is
too expensive due to its high computational cost. However, these high—fidelity tools are
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necessary to explore all advantages and disadvantages of such joined—wing configura-
tions by capturing all essential nonlinearities in aerodynamics and the overconstrained
structure. For instance, the aeroelastic response of such a complex wing configuration
could show extremely complex deformations and unsteady phenomena, which have
to be extensively studied in the near future. Therefore, computational methods are
required which demands low computational cost and can capture the required detail
level necessary for the investigation of such an advanced conceptual configuration.

1.2 The rise of high—aspect ratio composite wings in commer-

cial aviation

Aeroplane configurations based on the joined-wing approach are not expected to ap-
pear on the aviation market in the next several decades as this approach is too advanced
and for now not feasible to be realised. Also, aeroplanes powered by hybrid—electrical
or hydrogen powertrain seems to be subject of research and need to be further inves-
tigated. However, advances in aviation propulsion technology and materials can still
lead to more economical and environmental friendly configurations. In Equation 1.1,

Breguet range equation[73] is shown for a jet-powered aeroplane:
R = (CL> ) Lln <m°> (1.1)
Cp/) crg Mo — My

Here, R is the range of an aeroplane with the aerodynamic efficiency, (Cr./Cp), in cruise
conditions, thrust specific fuel consumption, cr, cruise velocity, V, the mass of the aero-
plane at departure, mg, and the consumed fuel mass, m f- Thus, the mass my — m f is the
total mass of the aeroplane on arrival. It can be clearly seen that the aerodynamic effi-
ciency of the aeroplane configuration, (Cr/Cp), plays a significant role as it is directly
proportional to the range of the aeroplane. The range of an aeroplane is usually a fixed
design target. Thus, by following this observation, it can be stated that besides the
introduction of more efficient aero—engines with a lower fuel specific consumption, cr,
and required fuel mass, n, for a specific design range, the efficiency can be furher max-
imised by increasing the aerodynamic efficiency, (C1./Cp), of the overall configuration.
This work deals with advanced design methodologies for the overall wing design of
future aeroplanes. Therefore, the aerodynamic efficiency, (Cr./Cp), plays the central
role in the presented and further discussed work.
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Type of the aeroplane (C./Cp)

Gliders 25-60
Commercial aviation 12-20
Military trainer 9-16
Fighters (M < 1) 10-13
Fighters (M > 1) 4-9

TABLE 1.1: Typical aerodynamic efficiency of different types of aeroplanes

In Table 1.1 the typical (Cr/Cp) values for different types of aeroplanes are shown.
This parameter is highly influenced by the aspect ratio, AR, of the wing which is de-
fined as:

AR = — (1.2)

Here, b is the total span and S the projected area of the wing. The aerodynamics of
high aspect ratio (HAR) wings is less impacted by the present wing tip vortex as less
surface area is affected by this 3D aerodynamic phenomena, resulting in a decreased
induced drag, Cp ;, and increased overall aerodynamic efficiency, (CL/Cp). In the area
of glider aviation, for example, the aspect ratio of wings can reach AR ~ 20 result-
ing in the highest aerodynamic efficiency ever reached in aviation. Gliders have the
highest aerodynamic efficiency as the high—aspect ratio wing is a “clean” wing design
without engine nacelles or other components on the wings which create the so called
additional “parasite” drag while not contributing to the lift force of the wing. This high
aerodynamic efficiency is required as gliders are not powered by an engine and have
to stay airborne as long as possible. The employment of composite materials in this
field of gliders and design of high—aspect ratio wings was introduced already several
decades ago as the wing load, (myrow/S), is significantly lower compared to com-
mercial or even general aviation. Here, myrow is the maximal take—off weight of the
air vehicle. The additional project risks and design uncertainties related to the employ-
ment of the more advanced composite materials in wing design of less loaded glider
wings (compared to general or commercial aviation) was manageable already in the
past. However, over the last decades, also the wings of commercial aviation aeroplanes
have undergone a significant stretching. In Figure 1.5 the aspect ratio of the main wing
of commercial jet-powered air vehicles from 1947 is shown for narrow—and wide-body

aeroplanes over the year of introduction.

One can further identify in Figure 1.6 the “Pareto—front” for long-haul wide-body aero-
planes, which relates the aspect ratio, AR, to number of passengers (PAX). The reason
for this “Pareto—front” lies in the increased Root-Bending-Moment (RBM) of the wing,

which the configuration has to maintain[3]. For narrow-body configurations in the



1.2. The rise of high-aspect ratio composite wings in commercial aviation 9
12
| 4
B787-10 s
N Cs300 7
| = v
€s100
| A330-200 >
A330-800neo
° ok Tu204-100 / A319-100 T B -
a A320-200 B737<Classic.- ~ B777-9
c 0 2 0{‘ < ‘/Asm‘mé'\As
A321-2 ,_A318- 50-900
o | BAe 146-200 . » 7 M<nzags00
= M ’
© | ereur Vak42 - <M a777.000eR 0 100
= B737-200 7
17} Caravelle s’ 7 11-96-300 B747-8
8_ 8 'Y X / /A Fokker 100 “E-190
@ A3 i .\ B737 Classic
s | 30200 —=%  Rg767.300 -
B707-120B -
2 aZ-B727-100  11-86 A380-500
S Comet &, ° Tu-154B2
- // K ATu-1 34
L= 2/ w2
6 , “Tu-i0a Ar ADc-10/MD-10 A Narrow body
a rident n Wide body
! ! 1 ! ! 1 ! ! 1 ! ! 1 !
1940 1960 1980 2000 2020

Year of maiden flight

FIGURE 1.5: Wing aspect ratio AR of narrow— and wide-body commercial aeroplanes

over the year of introduction[3]

regional-jet or middle-haul market segment no such “Pareto—front” is observed to this

current date. Thus, in th

is market segment there is still optimisation potential for the

next-generation composite wing for a regional- and a middle-haul configuration re-

garding the aspect ratio.
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For the long-haul configurations, up to date, the highest aspect ratio has the Boeing
B-787 Dreamliner with AR = 11. In Figure 1.7 the deflection for the wing on the

ground, cruise condition

in 12000 m altitude and at maximal load state is shown. While
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providing high aerodynamic efficiency, it has to be noted that additional aeroelastic ef-
fects are not neglectable of such a flexible configuration.

FIGURE 1.7: Wing deflection under the ultimate load of the Boeing 787 Dreamliner
(source: newfoxy.com)

1.3 Design methodology of future commercial aeroplanes and

multidisciplinary optimisation

As an example, in Figure 1.8, a sequential diagram of the overall aeroplane design
project at Bombardier Aerospace is shown. Generally, the whole project is subdivided
into six major segments: Market analysis, conceptual design, preliminary design, de-
tailed design and the final flight testing. The second, third and fourth part of the project
stages involves design activities of engineers at three major detail levels.

Thus, during an aeroplane design project, the design goes through a series of maturity
gates (MG), as shown in Figure 1.8. At the early conceptual design stage, the design
landscape is investigated by employing empirical and linear methods[76], which are
used to explore the large design landscape by only optimising general macroscopic
design parameters with respect to the current and future requirements of potential
customers. The employed methodology must provide low computational cost to be
able to perform a parametric search on such a wide design landscape in a limited time
frame. Throughout this stage, a down-selection of the design subspace is performed,
and parameters are tightened and addressed in constantly increasing detail[71]. At a
specific point of the overall project, the design is frozen, when the aerodynamic shape
and structural layout is converged. Here, the aeroplane design target loads are set,
which are the maximal limit loads the particular design has to maintain. Further, these

loads are also used as certification load level. This design step, where the aerodynamic
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(source: [71])

shape and structural layout is finally defined, is a very critical stage in the context in
the overall project, as an underestimation of the limiting loads can lead to a later expen-
sive redesign of the configuration followed by additional penalties due to the program
delay. On the other hand, an overestimation can lead to a heavier air vehicle and a
degraded performance[31].

Nowadays, advanced unusual aeroplane configuration sizing studies can be addressed
using the MDO (Multidisciplinary Design Optimisation) technique, where multiple
aviation engineering disciplines like aerodynamics, control, structure and propulsion
are coupled together in a single or distributed optimisation architecture and are con-
sidered during the optimisation procedure in the context of the overall design and its
performance[37][14]. In Ref. [57] the different architectures of modern MDO algorithms
are presented and compared against each other. Further, in Ref. [39] an adjoint-based
optimisation solver DAFoam is presented which is implemented into the computa-
tional framework OpenFOAM and is integrated into a gradient-based optimisation
framework MACH. Here, CFD technology based on Finite-Volume method (FVM) is
used to solve the aerodynamic aspect of the MDO problem coupled together with struc-
ture, heat transfer and radiation. Another example is presented in Ref. [81] where the
an MDO optimisation is preformed on a highly advanced hybrid—electrical aeroplane
configuration. Here, FAST3, an ONERA / ISAESUPAERO aeroplane sizing code, and

3Fixed-wing Aircraft Sizing Tool
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OpenMDAOI37] are coupled together. However, as stated by the author, the applica-
tion of MDO in a full overall aeroplane design procedure remains an open challenge.

In Figure 1.9, a typical traditional iterative design procedure during the early concep-
tual design stage is shown, where a wing is iteratively optimised with the aim of meet-
ing the target loads and design parameters. At the beginning of the design study major
design targets, like the centre of lift, lift force coefficient in cruise conditions, Cy, cryise,
maximal lift force coefficient, Cr, ..y, and total drag force coefficient, Cp, are set. Then,
the planform of the wing is defined including parameters like the sweep, taper ratio
and dihedral of the wing. In the next step, numerical load estimations are performed
employing a conceptual aerodynamic solver of mixed fidelity, which is often denoted
in the literature as a quasi-3D aerodynamic coupling approach. This method relies
on an iterative coupling of 3D linear methods, like the Lifting-line theory (LLT) or
Vortex-Lattice method (VLM), and nonlinear sectional 2D and 2.5D infinite-swept—
wing aerodynamic data obtained from experiments or CFD calculations[71]. Here, lift
curves of the particular sectional aerofoils are picked from the precomputed database
and are placed along the span at several positions on the thin VLM lattice, representing
volumetric wing sections. By correcting the linear 3D flow results based on potential
flow theory with nonlinear sectional aerodynamic data, a nonlinear 3D solution can
be obtained at a highly reduced computational cost. The designer uses at this stage
of the iterative loop the quasi-3D aerodynamic method until preliminary aerodynamic
results are achieved, which are meeting the initial target goals. Once those target goals
are met, a 3D CAD* model of the wing and a corresponding 3D CED? grid is created us-
ing the planform parameters of the wing and geometrical shapes of the aerofoils placed
optimally along the span. As a next step, 3D CFD computations are carried out on an
HPC®—cluster and high-fidelity aerodynamic results are obtained based on 3D formu-
lation of RANS’—equations. These results are then used to asses in the final stage of the
loop again the design of the wing with respect to the initial design targets. Finally, a
decision is made to repeat the loop and improve the design or to proceed to the next
design step. One iteration can take up to nine months as here several departments of

the design bureau are involved.

Such a design methodology is commonly established in the aviation industry[13]. How-
ever, the aeroelasticity, as earlier pointed out, becomes more and more important dur-
ing the conceptual and preliminary design of a wing due to the increased employ-
ment of lighter, and therefore more flexible, materials on highly stretched wings. In the
state—of-the-art design methodology shown in Figure 1.9 the high-fidelity results are
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FIGURE 1.9: Traditional design loop of modern wings for commercial aviation

obtained according to the 3D undeformed wing geometry. Nowadays, computational
aeroelastic assessment of the wing design is usually carried out by a separate depart-
ment as a separate step outside the presented design loop. However, on HARg—wings
the aerodynamic load estimations obtained by the final step of the iterative loop us-
ing high-fidelity CFD computations can vary significantly due to the high structural
deflection and twist of the wing in cruise conditions. Therefore, the aeroelastic aspect
of the sizing study needs to be integrated directly into the design loop at the early
stages of the project. In Figure 1.10 the steady-state aeroelasticity is considered in a
proposed iterative design loop. Here, the quasi-3D conceptual aerodynamic solver
of mixed fidelity estimates the aerodynamic forces on a flexible wing and is embed-
ded into a rapid computational Fluid-Structure-Interaction (FSI) framework, coupled
with a usually beam-based FEM solver which obtains the structural deformation of the
wing. Here, on the structural part of the rapid computational FSI-framework, a geo-
metrically exact nonlinear beam model (GEBT) can be employed to capture nonlinear
geometric effects due to the large deflection of the composite wing[107][40][110]. Now,
a deformed 3D CAD model of the wing for the particular cruise condition can be cre-
ated by considering, besides the basic geometric parameters, also the aeroelastic twist
and deflection of the wing obtained by preliminary FSI computation results. The high—
fidelity aerodynamic results, which are required for the final assessment of the overall
wing design, are obtained by computing 3D CFD simulation using the deformed ge-

ometry of the wing at cruise conditions.

This approach offers an efficient design procedure for HAR-wings where the com-

putational cost is still manageable and the project uncertainties are highly reduced.

8High Aspect Ratio Wing
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FIGURE 1.10: Proposed design loop of future HAR-wings

Furthermore, GEBT-based FEM methodologies are available, which can compute ex-
act nonlinear deformation of a slender structure with variable cross—section proper-
ties at a fraction of the computational cost compared to high-fidelity (nonlinear) FEM
methods[40][110]. By employing a geometrically—exact nonlinear FEM-beam solver,
the overall project risks can be further reduced, and the design of highly flexible wings

can be efficiently assessed.

1.4 Summary

In this chapter, a general overview of the most popular design directions of the fu-
ture commercial aviation is briefly presented. It is also shown that in the near future
concepts powered by alternative fuel-systems or air vehicles with advanced uncon-
ventional designs of the configuration are not going to be realised as profound engi-
neering knowledge is missing in some disciplines, and the predictive capabilities of
existing MDO-frameworks applied in the industrial field on the daily basis for practi-
cal conceptual aeroplane sizing studies are still partly or fully based on handbook and
knowledge-based computational methods, preserving the conventional design dogma.
Thus, to perform an aeroplane sizing study during an early project stage while using
modern high—fidelity MDO techniques remain today still an open challenge[81].

For the wing aerodynamics, the overall efficiency of the conventional commercial aero-
plane configurations can be increased by increasing the aspect ratio of the wing, AR.

This challenging design goal is realisable in the near future. However, the aeroelasticity
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will play a significant role already at the conceptual stage of the project as aeroelastic
effects of such HAR-wings need to be considered already at early stages of the overall
design program due to the increased flexibility of the wing structure[3][69]. By facing
the challenge of a more flexible commercial aviation wing, a computational aeroelastic-
ity framework is required, which can provide efficiently accurate high—fidelity results
at a lowest possible computational cost. This FSI-framework need to be embedded
directly as a standard engineering tool into the design procedure of a wing at the con-
ceptual stage of a sizing study. The structural domain of the problem can be reduced
to a beam-based structural model of a slender wing. Here, it is important to deploy
a geometrically—exact formulated beam model (GEBT), as geometrical nonlinearities
are not negligible on highly flexible structures[69]. Classical linear beam theories are
linearised around the undeformed state of the geometry and assume therefore small
geometric deformations of the structure. Thus, this methodology can not be used to
estimate high wing tip deflections accurately[107]. Moreover, it can be assumed that
the wing sections are rigid and are not changing their shapes. They can only be dis-
placed and twisted in space. Thus, the complex structural nonlinear problem of a
slender structure (i.e. a high-aspect ratio wing) can be reduced in its dimension to
a geometrically—exact nonlinear beam problem by applying the variational-asymptotic
method (VAM), while coupling it with variational beam sectional analysis (VABS) to
estimate sectional stiffness and mass properties[110][103]. Due to this reduction of the
dimension the trade—off between the physical detail level and computational cost is fur-
ther increased while maintaining the physical fidelity of the structural domain of the
aeroelastic problem. Also, this approach still offers possibilities to optimise the design,
for example, by employing the approach of aeroelastic tailoring[49][64][56].
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Chapter 2
Background

In this chapter literature review and background of different areas, which are involved
in this research of a future efficient computational design methodology for estimation
of aerodynamic loads on HAR-wings, is presented and discussed. In the area of the
three—dimensional (3D) numerical aerodynamic methodology, the employed Vortex—
Lattice method (VLM) code is based on the formulation of the potential flow model.
Therefore, in Section 2.1 potential flow model is briefly discussed, and in Section 2.1.1
computational flow models based on the thin-lifting surface formulation and poten-
tial flow singularities are briefly reviewed. Next, in Section 2.2 literature review of
the quasi-3D aerodynamic hybrid coupling algorithms is presented, and the historical
background which dates back to the 1930s is discussed. The literature survey contin-
ues with the review of recent progress in the unsteady formulation of such an aerody-
namic q3D—coupling approach. Following this section, in Section 2.3 the background
of the novel 2.5D+ ISW-CFD URANS solver is presented, which is employed in the
steady—state and unsteady aerodynamic q3D—coupling method for the estimation of
the nonlinear viscous sectional flow at the particular span position of the wing. Here,
the importance of the consideration of the crossflow phenomena on swept wings in
high-speed flow regimes is discussed, and explained how this aerodynamic phenom-
ena is included in the 2.5D+ ISW CFD formulation. Finally, recent advances in rapid
aeroelasticity modelling of HAR-wings are reviewed in Section 2.4, including the non-
linear efficient beam-based structural model employing the Geometrically-Exact Beam
Theory (GEBT).

2.1 Potential flow

The aerodynamic model based on the potential flow theory is the most simplified aero-
dynamic flow formulation. The potential flow is inviscid, incompressible and irrota-

tional and is governed as follows:
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V-V=V®=0 2.1)

Here, V = [u,v,w]|T is the velocity vector at an arbitrary location. This is a linear and
elliptic partial differential equation of the type of a Laplace equation for the velocity
potential ®, which results directly from the continuity equation of the incompressible
potential flow. The three-dimensional flow velocities can be expressed as follows by

knowing &:

oD od oD
U= —, V= —, W = —
0z

0 3y (2.2)

The solution of this flow formulation must be subject to an applied kinematic bound-
ary condition on every point of the contour of the aerodynamic body and a boundary
condition at the farfield. In the applications where the potential flow is solved, flow
tangency condition on the surface of the aerodynamic body is enforced by:

n-v=0 (2.3)

Here, n is the local normal vector and V is the velocity disturbance due to the moving
aerodynamic body through a fluid according to space-fixed frame of reference. This
expression means that the flow can not propagate through the solid surface, thus the
normal flow velocity at a location on the surface of the body must be zero. Further, the
flow needs to be subject to the farfield boundary condition:

lim V =0 (2.4)

r—»00

Here, r is the distance between an arbitrary point on the surface of the aerodynamic
body and current point in space. Thus, at infinite range the velocity disturbance V de-

cays to zero[45].

In modern aerodynamics, the common procedure to solve the potential flow on the
boundary of an object moving through an incompressible and irrotational fluid is the
approximate numerical estimation of the velocity potential, ®, and velocity distur-
bance, V, by applying the boundary—element methods, i.e. Green’s function theory.
This approach can be applied to both, 2D and 3D problems by identifying elementary

solutions, i.e. singularities, on the boundary of the moving object. Those singularities
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are algebraic functions with strengths which are a—priori unknown. By applying the su-
perposition principle on this linear formulation of the flow problem the strength of all
singularities placed on the boundary of the object can be estimated so that Equation 2.1
and Equation 2.3 are satisfied. From the point of view of solving the potential flow
based on the singularity methodology the appropriate estimation of the strengths of
the singularities, which are placed on the boundary, is performed by solving a set of
algebraic equations. This enables to solve the potential flow problems around aerody-
namics in an efficient and fast way. Further, methodologies which are based on singu-
larity formulation are satisfying the farfield condition automatically as the disturbance
velocity field, which they are inducing, decay with distance. The strength of the placed
singularities is estimated this way that the flow tangency condition (Equation 2.3) is
also fulfilled at any discrete location on the solid surface where the singularities are
placed. However, the system of linear equations is still undetermined regarding the
circulation around the aerodynamic body. Here, the Kutta—Joukowski flow condition
needs to be imposed at the edge of the aerodynamic body where the flow separates
from it and propagates towards the farfield. On a wing geometry, this would be typ-
ically the trailing edge of the wing. By imposing the Kutta—Joukowski condition, the
flow becomes unique.

2.1.1 Thin-wing lifting surface methods

Classification of existing 2D and 3D methods based on the singularity approach can
be categorised by the type of employed singularities: volumetric sources, doublets and
vortexes. However, there are also codes existing which are employing a combination of
those three types of singularities. In lifting surface methods, the wing is represented by
a thin—surface on which the singularities are placed, and the strength of those singular-
ities is estimated this way that the flow tangency condition on a set of discrete locations
on the surface is fulfilled. In this type of linear aerodynamic formulations where the
potential flow is solved the thickness of the aerodynamic body is neglected. Therefore,
the volumetric source singularities are not playing a significant role in these models. A
volumetric wing consisting of an asymmetric cambered aerofoil can be represented by
a corresponding cambered thin-wing lifting surface. In subsonic flow regimes the ad-
ditional effect of the sectional thickness of the wing has only a notable influence on the
aerodynamic pressure drag force coefficient, Cp, but not on the aerodynamic lift force
coefficient, Cy, as long as the local aerofoil thickness stays moderate under t/c = 20%

with respect to the local chord length, c.

The order of the lifting surface methods can be increased by assuming that the singu-
larity distribution is not constant on a single panel of the thin-wing lattice. High—order
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methods provide the ability to use fewer panels. However, in practical application, this
trade—off between accuracy and the size of the lattice is often not beneficial as finer lat-
tices are often required to resolve geometrical details of the thin wing. Therefore, in the
scientific and industrial environment low—order methods are mostly employed, which
are faster and cheaper, while the necessary accuracy is achieved through a finer lattice.
Further, nonplanar formulation can also increase the order of the model compared to

conventional planar formulations of thin-wing singularity methods.

The Laplace equation is time-independent. However, the lifting surface methods can
be extended to unsteady flows by introducing temporal dependence of the solution
through the boundary conditions[60]. In the unsteady flow regimes, wake modelling is
an important part of the formulation of lifting surface methods as the wake behind the
surface is responsible for the unsteady temporal delay of the development of aerody-
namic forces, also known as “aerodynamic lags”. In unsteady flow regimes, the wake
is shed from the lifting surface at the trailing edge of the wing and is, therefore, force—-
free. Thus, it moves with the flow away from the lifting surface following the local
flow velocity in the wake area of the flow domain. When free-wake modelling is ap-
plied, the temporal shape of the wake becomes part of the flow solution. However, this
approach is computationally expensive as at every vertex of the wake panels the local
flow velocity needs to be estimated. Hence, simplification is often made by assuming
a “flat” dynamic formulation of the wake. Here, the shape of the wake is prescribed
and moves only according to prescribed freestream velocity. This flat wake simplifi-
cation leads in most cases to acceptable results. However, when the wing undergoes
highly unsteady motions in time and space involving complex kinematics or is heavily
deflected, this assumption can lead to inaccuracies in the numerical results.

Thin-strip DLM UVLM
Domain Both Frequency Time
Dimension | 2D 3D 3D
Singularity | Vortex Doublet Vortex
Higher order | No Possible Possible
Wake Flat Flat Flat/Free

TABLE 2.1: Classification of inviscid and incompressible linear methods based on po-
tential flow and thin—-wing approximation[60]

In Table 2.1 three most popular computational thin-wing surface methods based on the
singularity approach are presented: Thin-strip theory, Doublet-Lattice method (DLM)
and the Vortex—Lattice method (VLM). The first method is the Thin-strip theory, which
is also often referred to as the blade—element theory. It is based on Peter’s finite—state
model[70] or the state-space representation of unsteady aerofoil behaviour introduced
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by Leisham[53]. This aerodynamic approach is often used to model HALE UAVs! due
to their quasi-2D unswept ultra—high aspect ratio wings[82][68][89]. On such wings,
the effect of the finite wing on the spanwise lift distribution is often neglected or cor-
rected by a semi—empirical algebraic approach. The two—dimensional strip theory can
be formulated in the time and frequency domain. The potential flow is obtained by
placing vortex—singularities. Here, the formulation of the wake is flat as no induced
wing tip vortexes are present on a two—dimensional geometry. This formulation can
be extended by semi-empirical stall modelling as presented in Ref. [54]. However, this
theory is not suitable for the quasi-3D approach which is presented in this work as
the constructed computational framework also needs to be applicable on wings with a
moderate aspect ratio of around AR = 10 or less. On such wing geometries, the wing
tip vortex plays a significant role in the estimation of the local aerodynamic loads, and
the effect of the finite wing needs to be taken into account by the employed aerody-
namic method.

A singularity method which also resolves the spanwise aerodynamics on a finite wing
is the so—called Doublet-Lattice method (DLM). It is formulated in the frequency do-
main in the three-dimensional space and employs doublets as singularities on its thin—
wing lattice configurations. The DLM provides the solution to the Laplace’s potential
flow equation by employing the so—called acceleration—potential doublet[10]. Here, the
lifting surface is subdivided into spanwise and chordwise panels. Due to the formu-
lation of this method in the frequency domain, the solution is assumed as out—of-the-
plane harmonic motions of the thin-wing and the flat wake. Even if this method is
widely used, it is not applicable on wings with large deflections as the boundary con-
ditions are linearised and flat wake is assumed. Also, DLM provides inaccurate results
when in-plane kinematics like T-tail flutter occurs[61][62][97][15]. However, for flutter
and gust response analysis it is the first-choice aerodynamic method providing beside
the efficiency and low computational cost also robustness. However, its main disad-
vantage is the linearised boundary condition, which assumes only out-of-the—plane

harmonic motions.

The presented steady-state and unsteady quasi-3D aerodynamic methodology is based
in this research on the Vortex—Lattice method, which is formulated in the time domain
by employing three—dimensional vortex—ring panels placed on the thin-wing lattice.
The wake can be modelled as flat and free-wake. However, in most practical applica-
tions, flat formulation of the wake is sufficient and provide low computational cost. The
vortex-rings are quadrilateral ring elements which consist of four discrete vortex seg-
ments in a closed loop. Also, the wake panels are consisting of vortex-rings composed

of four discrete vortexes, and are convected in unsteady flow regimes into the farfield.

IHigh-Altitude Long-Endurance Unmanned Aerial Vehicles



22 Chapter 2. Background

In steady-state flow regimes an in—time frozen wake carpet is prescribed. VLM can be
seen as an extension of Prandtl’s lifting-line model (LLT)[92], where the only one horse-
shoe vortex per wing is replaced by a network of horseshoe vortexes resolving this way
the chordwise and spanwise lift distribution of the thin-wing geometry at a higher de-
tail level. The name Vortex—Lattice method (VLM) goes back to Falkner in 1946[30] and
is since then improved and refined by many researchers. A detailed formulation of the
steady—-state and the unsteady variant of VLM can be found in Ref. [45]. The advan-
tages of this approach compared to DLM are the not necessarily linearised boundary
conditions, providing the ability to estimate aerodynamic loads also on highly flexible
lifting—surfaces under a huge deflected and twisted state. VLM allows to assume gen-
eral kinematics of the lattice, while not being restricted only to small out-of-the—plane
harmonic motions like in DLM. Thus, VLM in steady-state and unsteady flows can
also be applied on wings which are undergoing highly unsteady complex motions by
employing nonplanar force formulation, non- linearised boundary conditions and free

wake.

2.2 Quasi-3D hybrid aerodynamic coupling algorithm

In this section an introduction to the quasi-3D methodology of coupling two aerody-
namic solvers of mixed—-fidelity is given. Therefore, in Section 2.2.1 the background of
the steady-state formulation of this approach is discussed and in Section 2.2.2 recent

research activity in the field of the unsteady counterpart is presented.

221 Steady-state formulation

Nowadays, the application of Navier-Stokes (NS) equations is recognised by the scien-
tific and industrial environment as a prerequisite for realistic flow applications. How-
ever, due to its enormous computational cost required to solve a single three-dimensional
case the CFD technology became limiting for application in parameter searches and ex-
ploration of the design space. Therefore, besides surrogate modelling techniques[77] or
adaptive design of experiments[19] a so—called quasi—-3D approach is used for aerody-
namic load estimations during early design stages. This approach employs Prandtl’s
linear lifting-line model (LLT) or linear Vortex-Lattice method (VLM), which are re-
solving the three-dimensional linear flow around a finite wing based on potential flow
theory. In the quasi-3D approach, the nonlinear flow solution is obtained by correc-
tion of the linear sectional three-dimensional flow with nonlinear viscous 2D or 2.5D
flow data obtained from experiments or 2D/2.5D CFD methods. The actual required
computational cost for the quasi-3D approach is in steady-state flow conditions at the
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same order of magnitude as Prandtl’s lifting-line model (LLT) or the linear Vortex—
Lattice method (VLM) once the sectional aerodynamic database is available.

MDO Level Fidelity Aerodynamics Structures Propulsion
l Lo Knowledge-based Knowledge-based Fixed architecture,
aerodynamics weight prediction scaled engine model
oMo BRI IR Beam or thin-shell Variable architecture
L1 (3D VLM / Panel method ; U
models generic rubber engine

+ 2D High-Fidelity CFD)

Surrogate model(s) from

N L1.5 Disciplinary L2 Surrogate Models Exiobe schlerti)
Mid-to-High Fidelity CFD
PMDO L2 (3D TSD to RANS) Global FEM
I 2 25 Disciplinary L3 Surrogate Models Real engine model
______________ ' s v (fixed)
DMDO L3 RANS Detail FEM

FIGURE 2.1: Deploying MDO in the Bombardier Aerospace Engineering System (BES)
(source: [71])

In Figure 2.1 an overview is given of employed numerical methodologies at Bombardier
Aerospace during the conceptual, preliminary and detailed design stages[71]. The
quasi-3D methods in aerodynamics are employed at Bombardier Aerospace at the late
conceptual design stage (L1) in combination with beam or thin—shell models represent-
ing the structure of the wing. The popularity of the quasi-3D aerodynamic approach
in the industrial aerodynamic design of wings lies in the straightforward setup of the
wing geometry, as no 3D geometry information is needed, requiring only information
of the planform of the wing parametrised by a hand of geometrical parameters and
sectional nonlinear aerodynamic aerofoil data from the database and its position along
the span. This provides great flexibility during the conceptual design of the wing. Fur-
ther, as already mentioned, the computational cost of quasi-3D methods are compara-
ble with linear LLT or VLM methods once the nonlinear sectional aerodynamic data is
available. The computation of the sectional aerodynamic database is performed usually
with 2D/2.5D RANS ISW-CFD methods, whose computational cost is also manageable
and the output reusable for other design studies. Moreover, quasi-3D methods can be
easily extended with multidisciplinary considerations like icing effects and control siz-

ing.

The first nonlinear coupling between linear lifting-line models and nonlinear viscous
lift slopes of sectional wing aerofoils was proposed by Tani [90] in 1934 and Multhopp [58]
in 1938. The approach corrects the circulation intensity of the vortex-ring elements
within the linear lifting-line model, using sectional viscous lift curves of the aerofoils.

This approach ensures a better match of the nonlinear lift slope of the entire finite wing
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at higher angles of attack and improves the overall wing load estimation at high speeds.
In 1947, a VLM based on the same approach was formulated, which iteratively corrects
the numerical results obtained by the lifting-line model using nonlinear sectional lift
curve data [85]. In 1951, Sivells et al. [86] extended the coupling algorithm to unswept
wings in subsonic flow regimes, including flaps and ailerons. All these coupling al-
gorithms are based on the so—called I'-correction method. Those methods correct the
vortex intensity, I, of the panels regarding the nonlinear sectional database and ma-
nipulate this way the aerodynamic load distribution on the lifting surface. Their re-
sults are in good agreement with 3D reference data before stall angle of attack, as,;.
However, the application range of I'-based coupling algorithms is limited to the maxi-
mum lift coefficient of the entire wing, Cr, ... Beyond stall, the slope of the lift curve,
Cf, becomes negative and the solution not unique. The non-uniqueness of Prandtl’s
lifting—line equation during the coupling procedure at post-stall flow conditions with

negative nonlinear lift slopes was demonstrated by Sears[80] in 1956.

To overcome this problem, Tseng and Lan [94] proposed the a—based correction method
in 1988. Their method couples the linear lifting-line model with sectional data by ad-
justing the freestream angle of attack on every spanwise panel independently. In the
2000s, Van Dam et al. [95, 96] further improved the coupling method and used it to
predict the lift on swept wings at high angles of attack beyond the maximal lift force
coefficient, Cr y4x. The a—based correction method provides unique solutions at high
angles of attacks where the sectional lift slope of the aerofoils is negative. Thus, this
approach can be therefore also applied in the post-stall regions. Most recently, Gal-
lay and Laurendeau extended the coupling algorithm to general wings in steady-state
subsonic and transonic flight regimes and improved the aerodynamic load predictions
at high angles of attack even further [33] [34] .

A profound overview of the application of the quasi-3D methodology within today’s
aeroplane design procedure is given by Piperni[71]. Nowadays, in the industrial en-
vironment the aerodynamic design of an aeroplane wing is built from early stages of
the design procedure using quasi-3D method with the aim to obtain a pre—optimised
shape. A typical application of the quasi-3D approach is shown in Ref. [93] where
this method is exercised during optimisation of a flexible high-lift wing configura-
tion. This approach is also often used for drag minimisation of an aeroplane wing.
For example, in Ref. [29] this approach is utilised during an aerodynamic optimisation
procedure with the goal to minimise the drag of a wing. Here, the required sectional
two—-dimensional aerodynamic data for the lift correction of the three-dimensional flow
was obtained by the MSES aerofoil prediction tool introduced by Mark Drela in 1987,
which itself is based upon the numerical solution of the Euler—equations coupled with
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an integral formulation of the boundary layer model, and includes a build-in transi-
tion model[25]. However, this approach is only limited to low Reynolds-number flow
regimes due to the formulation of the MSES solver. Another, very important applica-
tion of the quasi-3D approach is the utilisation of it inside a wing twist optimiser with
the overall aim to reduce the total aerodynamic drag[108]. At the late conceptual stage
of the design procedure, the engineers are relying on a database of already existing
aerofoil geometries and its aerodynamic characteristics. Thus, the optimisation of the
aerofoil geometry itself at this stage is usually not an option anymore. Therefore, it is
demonstrated in this publication how the computational aerodynamic qg3D-coupling
framework FALCon2, which is presented in this thesis, can be utilised to minimise the

overall drag of a wing by optimising the spanwise wing twist[108].

2.2.2 Unsteady hybrid coupling algorithms

The unsteady extension of the steady-state quasi-3D approach combining solvers of
different fidelity is a relatively new field, where the research activity is currently on-
going. In 2017, Parenteau et al. presented another unsteady a—based coupling al-
gorithm [66]. Here, two coupling algorithms are presented. The first algorithm is
designed for quasi-steady aerodynamics. Here, the three-dimensional flow is repre-
sented by the linear three-dimensional UVLM solver and the nonlinear sectional flow
effects are taken into account by precomputed sectional lift curve database of an aero-
foil using an URANS CFD solver. This algorithm is intended for quasi-steady flow
regimes at low reduced frequencies. The second algorithm utilises Theodorsen’s un-
steady aerodynamic model for a two-dimensional aerofoil[91] which undergoes un-
steady forced harmonic pitch and/or plunge oscillations. This approach extends the
validity of the second model to higher reduced frequencies by including this algebraic
unsteady thin—-aerofoil lift model into the formulation. However, it limits this model
only to forced harmonic oscillations in pitch and plunge. Also for the second coupling
algorithm Parenteau’s approach utilises a precomputed sectional unsteady CFD-RANS
database. Therefore, the presented aerodynamic unsteady model is suitable to be ap-
plied for a rigid wing to estimate unsteady aerodynamic loads while the wing under-
goes a prescribed harmonic oscillation in pitch or plunge at a fixed frequency. Thus,
this model can not be used to estimate, for instance, the aerodynamic loads on wings
encountering unsteady aeroelastic flutter instability or aeroelastic buffeting, as here the
involved sectional frequencies of the wing torsion and bending motions are a—priori

unknown and are varying along the span of the wing.

2Fast Aerodynamic Load Calculation
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2.3 Infinite-swept wing solver

The quasi-3D methodologies rely on a sophisticated 2D and 2.5D sectional estimation
of aerodynamic data. Therefore, in this work a 2.5D+ ISW-CFD solver introduced at the
University of Southampton is used, which is discussed in Ref. [31]. On swept wings, es-
pecially in transonic flow regimes, quasi-3D methods in combination with 2D sectional
aerodynamic data are not providing reliable results. In these flow regimes, the sectional
flow is affected by local crossflow phenomena in the boundary layer[42]. Those cross-
flow effects influence, in particular, the boundary layer separations and the position of
the shock waves on swept wing sections. In the past, these unmodelled effects were
corrected with knowledge-based and semi—empirical corrections and introduced this
way additional inaccuracies and uncertainty of the conceptual aerodynamic results.
Thus, over the last decades, the conceptual design of aerodynamic wings was limited
to a well-known envelope and unconventional designs were prohibited due to the ad-

ditional project risks and flow physics uncertainties.

In this work the novel 2.5D+ ISW-CFD solver is employed, which addresses a well de-
fined industrial challenge, which is a (U)RANS-CFD solver specialised to solve flows
around infinite-swept-wing (ISW) geometries at the computational cost of a 2D (U)RANS
simulation. The new flow solution, which correctly reproduces the physics responsible
for crossflow effects, is obtained using a truly 2D CFD grid, whereas the existing state—
of-the-art methods rely on a 3D mesh of the aerofoil with a thickness of one cell along
the span, which introduces additional computational cost to obtain a numerical solu-
tion. The computational cost of the employed ISW-CFD solver is reduced by at least
75% compared to that of the existing state—of-the—art 2.5D methods. With a limited ef-
fort required to enhance an existing computational fluid dynamics solver (either 2D or
3D), the ISW method was implemented in an industrial-grade package DLR-tau used
across Europe for rapid engineering analysis. The solver, denoted as 2.5D+, is available
in the DLR-tau flow solver from version 2016.1.0 for production [28] [79].

The DLR-tau flow solver is a finite—~volume based CFD computational framework. It
uses an edge-based vortex—centred scheme, where the convective terms may be com-
puted via several first- and second-order schemes, including central and upwind scheme.
The viscous terms are computed with a second—order central scheme. Time integra-
tion is performed either with various explicit Runge-Kutta schemes or the Lower—
Upper Symmetric Gauss—Seidel (LU-SGS) implicit approximate factorisation scheme.
For time-accurate computations, the dual time stepping approach of Jameson [43] is
employed. The convergence rate is improved with a multigrid acceleration technique

based on agglomerated coarse grids generated by a preprocessing tool. Several models
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for turbulence closure are available including, for example, the one—equation Spalart-
Allmaras (SA)[88] and more complex two—equation models of the k—w family.

2.4 Fluid-Structure Interaction

The traditional FSI-frameworks based on CFD/CSD—-coupling are used in the field of
computational aeroelasticity in a very limited scope[16][21]. In most cases, high fidelity
CFD codes are applied within a computational aeroelastic framework in a narrow sub-
space of the design landscape to analyse a specific configuration or highly limited set
of designs[87][35][78]. Therefore, computational aeroelastic methods based on linear
aerodynamic assumptions (i.e. LLT, DLM, VLM or classical 2D strip—theory) are still
dominating the field of computational aeroelasticity since the 1960s [8] due to a) the
straightforward set-up of the problem, using simplified description of the lifting sur-
faces; b) the low computational effort of the analysis, allowing envelope searches and
parametric studies for aeroplane representative structural models; and c) its applicabil-
ity, as the method has been calibrated on a number of existing aeroplane configurations

to account for unmodelled nonlinear flow phenomena.

For the (computational) aeroelasticity of HAR-wing geometries a comprehensive re-
view is given in Ref. [3] summarising the so far carried out work in this field. The
lightweight composite HAR-wing is currently studied especially in the field of the so-
called High—Altitude Long-Endurance (HALE) Unmanned Aerial Vehicles (UAV). One
of the applications are the High—Altitude Pseudo-Satellites (HAPS), which are pow-
ered by solar or hydrogen powertrain and should stay airborne for several months or
virtually forever at cruise altitudes around 20 km. This way, an alternative to satellites
can be created for tasks, where an orbiting satellite would be too expensive. Here, an
ultra-light composite high aspect ratio wing is required. However, such a wing is vul-
nerable to destructive fluid/structure interactions like torsional divergence and flutter.
The employment of a rapid aeroelasticity framework integrated into the overall design
loop is inevitable during the design procedure of such an air vehicle. Currently, there
are several aeroelasticity frameworks combining low-fidelity aerodynamics and lin-
ear beam-based FEM or nonlinear geometrically exact formulations of a beam (GEBT).
For instance, Wang presented the code NANSI (Nonlinear-Aerodynamics/Nonlinear—
Structure Interaction)[104] which couples unsteady Vortex—Lattice method (UVLM)
and the nonlinear geometrically exact formulated beam (GEBT). The formulation of
GEBT assumes a beam which is geometrically exact defined in space and time and
could be a subject of large structural deformations, while the internal structural strain
is assumed as low. Here, the UVLM could be useful for low—-aspect ratio wings or even
Delta—wing as this thin-wing panel method is able to predict three-dimensional flow
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effects in potential flow. An equivalent framework is the SHARP code (Simulation of
High Aspect Ratio Planes) which is presented by Murua and also combines UVLM with
a displacement-based geometrically exact beam theory model[61].

Some computational aeroelasticity tools are defined for high—aspect ratio wings only.
For example, Mark Drela’s conceptual tool ASWING combines unsteady lifting-line
model with nonlinear isotropic beam formulation[24]. The fidelity of a lifting-line
model is lower compared to (U)VLM and restricts the wing geometry to unswept
high—aspect ratio wings only. Recently, a Matlab toolbox called UM/NAST (University
of Michigan/Nonlinear Aeroelastic Simulation Toolbox) is presented by Shearer and
Cesnik[83], where a strain-based geometrically nonlinear beam formulation is coupled
with a finite state two—dimensional incompressible flow aerodynamic theory[70]. Fur-
thermore, in the recent years the aeroelastic tailoring is also gaining more attention as it
is the most cost—effective way to optimise composite airframe structures by modifying
the layups of the composite material. This approach exploits the anisotropy of compos-
ite materials. For example, a detected adverse aeroelastic response of a wing during the
late detailed stage of a project can be corrected quickly by changing the layup configu-
ration of the composite material while avoiding a cost-intensive redesign of the wing
shape. For instance, the computational framework NATASHA (Nonlinear Aeroelas-
tic Trim and Stability of HALE Aircraft)[18], presented by Chang, Hodges and Patil,
is able optimise high—aspect ratio wings by employing the method of aeroelastic tai-
loring. This code couples an intrinsic beam formulation with Peters” two—dimensional

incompressible aerodynamic flow theory.

The three—dimensional structure of a wing can be dimensionally reduced and rep-
resented by a simplified one-dimensional structural beam model defined in three-
dimensional space[109]. Normally, slender structures like a wing can be represented
by one-dimensional (1D) beam elements when the cross—sectional dimension is much
smaller compared to the total length of the object. Even if this approach is widely used
since 1985, the research community continued to focus on a formulation allowing to
define a beam with arbitrary cross—section properties[41]. A breakthrough happened
in the 1990s when Hodges and his research team defined an efficient high—fidelity ap-
proach by proposing a mixed variational formulation based on exact intrinsic equations
for dynamics of moving beams[40]. This approach is geometrically exact and nonlin-
ear as it is able to resolve high deflections of the structure exactly[69]. However, the
internal material strain inside the beam is assumed as small and only elastic. This ap-

proach found in the scientific and industrial environment since then a wide acceptance.
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2.5 Summary

The foundation of the research, which is presented in this thesis, was discussed in this
chapter. From the point of view of linear aerodynamic methods based on singularity
approach three nowadays mainly employed methods are reviewed: 2D strip-theory,
Doublet-Lattice method (DLM) and the Vortex-Lattice method (VLM). For the pur-
pose of this research the 2D strip-theory is not adequate as it is not taking spanwise
flow phenomena due to the finiteness of the wing into account which is present on
typical wings of commercial air vehicles. Further, the DLM approach provides great
advantages, especially during a computational analysis of gust response or flutter phe-
nomena due to its formulation in the frequency domain. However, on the other side,
it assumes only small out-of-the—plane harmonic motions of the geometry. For highly
deflected wings or unsteady in—plane kinematics of the structure, for example, T—tail
flutter, this method is not able to provide an accurate aerodynamic solution. There-
fore, for further research, VLM is chosen as the basic inviscid three—-dimensional flow
solver solving efficiently three-dimensional potential flow around wings which are not
only restricted to high aspect ratios, AR. This model is formulated in time-domain and
provides the highest generality compared to the other two methods due to the non-

linearised boundary conditions like in the DLM approach.

The quasi-3D approaches are very popular in the academic and industrial environment
as they are able to provide nonlinear aerodynamic results by significantly improving
the classical linear inviscid panel solution with two—-dimensional nonlinear sectional
aerofoil data, while keeping on the other side the computational cost comparable to
linear aerodynamic panel methods. The steady—state formulation of the aerodynamic
gq3D-coupling methods was extensively studied over the last century. However, in re-
cent decades the CFD technology made huge advances, and the sectional aerodynamic
data usually obtained from wind tunnel experiments is now often replaced by data
precomputed by 2D/2.5D ISW-CFD solvers. Therefore, in combination with the 2.5D+
ISW-CFD solver implemented in the DLR-tau computational framework an aerody-
namic g3D-coupling method can be researched for steady-state flow regimes, which
would also be applicable automatically as a unified engineering tool for low—and high—
speed flow analysis and would be able to resolve the present crossflow effects in the

boundary layer on swept wings accurately.

Further, parallel to this work research on unsteady extension of the aerodynamic q3D-
coupling method is carried out also by other research groups. Especially, the work of

Parenteau has to be mentioned here[66].
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However, a formulation of an unsteady aerodynamic q3D—-coupling method which is
not only restricted to a specific type of the unsteady motion of the wing at a fixed pitch-
ing or plunging frequency remains still an open challenge.

In the field of computational aeroelasticity the computational FSI-frameworks based
on the coupling of full-fidelity three-dimensional CFD and FEM codes are used today
in a highly limited scope mostly to research the multiphysics of a particular design or to
collect validation data for less computational intensive methods based on some flow as-
sumption like the aerodynamic q3D—coupling method or other simplifications. Rapid,
computationally less intensive, FSI-frameworks are discussed today mostly in the con-
text of the design of low—speed ultralight HALE UAV aeroplanes where the compress-
ibility of the fluid and sweep of the wing are not present. However, the advances which
are made in this research field by employing the high—fidelity and cost—efficient non-
linear beam-based FEM—codes (for example GEBT) can also be applied in the design
of wings for commercial air vehicles, which are usually operating in transonic flow
regimes and are swept. Thus, an integration of the aerodynamic q3D—-coupling algo-
rithm in such an FSI-loop in combination with a GEBT formulation of the structural
model and the application of such a robust aeroelasticity framework as a standard en-
gineering tool for daily design procedures of transonic HAR-wings in the industrial

environment remains still challenging and it is intended.

2.6 Aim and Objectives

With the introduction and motivation of the overall topic described in Chapter 1 and
the literature survey of the current state—of-the-art discussed in this chapter, the aim

of this thesis reads as:

Develop a novel computational aerodynamic tool that combines models of different
fidelity and cost, managing in such a way to provide rapid, yet accurate, predictions
for low and high speed, steady and unsteady flow problems

In order achieve this aim, the following set of objectives are defined:

1. Implement a linear aerodynamic panel code based on the Vortex-Lattice method
(VLM) formulation for steady—state and unsteady flow conditions which is suit-
able for computational aerodynamic analyses of low—-speed aeroplane in an invis-
cid flow without flow separations, captures three-dimensional flow effects and

models unsteady wake dynamics in unsteady mode and nonplanar aerodynamic
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forces. The solver has to be conceived in such a way to facilitate exchange of

relevant information with other aerodynamic solvers.

2. Formulate, implement and validate an aerodynamic q3D—-coupling algorithm for
steady—state flow regimes between nonlinear 2D /2.5D sectional aerodynamic data
and three-dimensional linear and inviscid VLM panel code to capture local sec-
tional flow nonlinearities, i.e. sectional flow separations, viscosity due to the
boundary layer and compressibility. By coupling the three-dimensional VLM
panel code with two—dimensional sectional aerodynamic data the fidelity of the
model is increased to the order of a 3D RANS solution while keeping the com-
putational cost at the same order of magnitude as the computational cost of the
linear model. It must be a unified computational framework for low- and high-

speed subsonic flow analysis suitable for swept and unswept wing geometries.

3. Extend this quasi-3D (q3D) aerodynamic coupling approach to unsteady flow
regimes by adding an outer time-marching loop and embed directly a set of 2D
CFD solvers, which delivers the required nonlinear transient sectional aerody-
namic data for the coupling—procedure on—demand throughout the entire un-

steady simulation.

4. Demonstrate the ability of the steady-state coupling algorithm to be deployed
in a steady—state computational aeroelasticity framework to obtain high—fidelity
aerodynamic loads on flexible wing geometries at highly reduced computational
cost.

5. Perform extensive numerical studies on test cases of increasing complexity that
demonstrate the advantages of the full computational framework over existing
techniques.

2.7 Structure of this thesis

The thesis is subdivided into three major parts: In Chapter 3 the formulation of the
employed linear steady-state and unsteady Vortex—Lattice method (VLM) is discussed,
followed by the formulation of the 2.5D+ ISW-CFD (U)RANS CFD solver. Then, the
formulation of the steady-state quasi-3D hybrid aerodynamic coupling algorithm is
presented, and the unsteady extension of it is explained. Finally, in the last part of this
chapter the methodologies related to the aeroelasticity are examined: the employed
anisotropic beam-based FEM solver is presented, which is used to obtain the structural
response of the wing during FSI-coupling activity, and the nonplanar extension of the
aerodynamic q3D-coupling algorithm is discussed, making the aerodynamic solver

suitable to estimate aerodynamic loads on highly deflected wings.
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The mapping procedure of aerodynamic and structural data between the aerodynamic
and structural domain of the FSI-problem is presented in the last part of this chapter.

The results of the validation studies of all parts of this research are presented in Chapter 4.
Here, at first results of the validation study of the linear steady-state and unsteady
Vortex—Lattice method (VLM) are presented, followed by an extensive validation of
the steady-state nonlinear quasi-3D aerodynamic approach. The chapter is continued
by the discussion of the validation results of the unsteady aerodynamic q3D-coupling
method and accomplished by presenting results of the validation study of the steady-
state computational aeroelasticity framework FlexiFALCon.

Finally, in Chapter 5 the conclusions to all three major parts of this research are given,
followed by Section 5.4 where the future effort and possible future objectives of this
research are outlined.
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Chapter 3
Computational methodology

In this chapter, the methodology of all involved areas of this research is explained.
The formulation of the employed linear Vortex—Lattice method (VLM) for steady-state
and unsteady flows is presented in Section 3.2. Further, the formulation of the 2.5D+
ISW-(U)RANS-CFD solver, which is applied in this research to obtain the nonlinear
sectional flow on a wing, is briefly discussed in Section 3.3, followed by a detailed de-
scription of the quasi-3D hybrid aerodynamic coupling algorithm for steady-state flow
and its unsteady extension, see Section 3.4. Finally, in Section 3.5, the methodology of
the aeroelasticity related aspects of this work are presented. Here, the employed struc-
tural model based on the nonlinear anisotropic beam-formulation is briefly discussed.
Further, the extension of the quasi-3D aerodynamic method to nonplanar coupling pro-
cedure on deflected wings is revealed and, finally, the transfer of the aerodynamic and
structural data between the two aerodynamic and structural domains of the computa-
tional FSI-framework FlexiFALCon is revealed.

3.1 Outline of the computational methodology

Analysing the external aerodynamics of a wing configuration to a suitable physical
resolution is computationally expensive. To address this challenge, a methodology
was developed that computes rapidly aerodynamic loads for steady and unsteady
flows. The methodology is compatible with generally available aerodynamic models,
using information and data shared during the aeroplane conceptual design, favouring

a seamless integration within an existing environment.
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The approach, which has been followed is to divide the overall problem of the com-
plex flow into two simpler problems. The first part is to solve rapidly a global solu-
tion, which gives an overview of the impact of the wing planform design variables
onto the three-dimensional aerodynamic wing loads. Those design variables, which
play an important role during the late conceptual stage of a sizing activity of a future
configuration, are the aspect ratio, taper ratio and sweep and dihedral angles of the
wing. To account this part of the problem a linear VLM model is implemented for
steady-state and unsteady flow regimes, see Section 3.2. This method is computation-
ally cheap and is well optimised for fast computations of a simplified inviscid solution
of the flow around a 3D wing. The second, local, problem deals with the more detailed
flow physics to a desired accuracy around one or few 2D sections of the wing and in-
cludes viscous and compressible flow effects, as well as thickness effects, otherwise
neglected in standard linear VLM. The sweep angle unites the two separate problems.
Therefore, the sectional flow problem, which involves high—fidelity flow physics, is
solved by the infinite—swept wing Navier-Stokes solver (ISW) which is implemented
in DLR-tau CFD-framework, see Section 3.3, and is applied in this project. This solver
can obtain a numerical solution around a 2D or a 2.5D wing section. The latter account

also the crossflow effects due to the geometrical sweep angle of the section.

The two independent computational methods of different fidelities for the 3D flow (lin-
ear steady-state and unsteady VLM) and for the more detailed sectional 2D/2.5D flow
problem are brought together by a q3D-coupling algorithm and unified under one
computational framework, referred to as FALCon!. The coupling methodology of the
3D linear inviscid and the 2D/2.5D nonlinear viscous and compressible methods is
described in Section 3.4, where also the novel extension of such a coupling approach
to unsteady flows is examined, see Section 3.4.2. The rapid computational aerody-
namic framework FALCon allows to obtain rapidly a more detailed numerical solution
of medium till high aspect ratio wings, suitable for the deployment as a engineering
design tool during early stages of an aeroplane sizing study. At this design stages usu-
ally a much more expensive high—fidelity 3D solution of the flow around a novel wing

configurations is too expensive and, therefore, not yet available.

As an additional step of this work the computational aerodynamic tool FALCon is cou-
pled with a geometrically exact formulated beam model (GEBT) in a steady—state com-
putational aeroelasticity framework, referred to as FlexiFALCon. The aim of this project
step is the demonstration of a seamless integration of FALCon into a multi—disciplinary
analysis tool, which take also the structural aspects of the wing parameters into account
and extend the modelling of the physics by the flexibility of the wing structure. This

Fast Aerodynamic Load Calculation
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step of the work is described in Section 3.5, where an overview of the employed struc-
tural GEBT model is given and the aeroelastic coupling procedure is explained.

3.2 Linear Vortex—Lattice Method

The VLM follows the classic implementation of Katz and Plotkin [45] and Murray [60].
However, there are certain necessary expedients to transform the classic implementa-

tion into one suitable to exchange information with an external, viscous solver.

3.2.1 Steady-state formulation

A typical VLM vortex-ring is shown in Figure 3.1. It is described by four quadrilateral
edges. The four vortexes, composed to one single VLM vortex-ring, are placed shifted
by the quarter chord, cx/4, of the VLM panel into the farfield. The collocation point is
the point where the kinematic boundary condition of the potential flow is fulfilled by
imposing that the normal velocity component at this point is zero. It is placed at 3/4 c;
of the local chord of the panel.

Vortex ring Collocation point

FIGURE 3.1: A single Vortex—Lattice VLM panel

In Figure 3.2 the two types of wing bounded VLM panel index are presented, which are
employed in the following formulation. On the one side, the local chord— and spanwise
indexing, (i, ), are used, where j is the spanwise and i the chordwise index of the VLM
panels on a lattice. A VLM lattice is subdivided into N; VLM panels along the chord
and N; VLM panels along the span. On the other side, for every algebraic equation
of the steady—state (and later unsteady) VLM problem a global index, n, of the VLM
panel is employed which also corresponds to the index of the algebraic equation for
the particular wing bounded VLM panel in the set of all equations, which have to be

solved for the unknown vortex-ring intensities, I';.
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In total, N = N; x N; wing bounded VLM panels are placed on a thin-wing lifting

surface.

FIGURE 3.2: Local (i, ) and global n index of wing bounded VLM panels

Further, in Figure 3.3 one single spanwise section of a VLM lattice is shown. All VLM
vortex-ring panels are shifted by the quarter—chord of the local geometric lattice panels,
followed by a single wake panel going into the farfield behind the lifting surface. Every
VLM panel has its own vortex-ring intensity, I'; ;. For the wake panel the vortex-ring
intensity is the same as the corresponding vortex-ring intensity of the trailing edge
wing bounded VLM panel to ensure that the Kutta-Joukowski flow tangency condi-
tion is fulfilled at the trailing edge of the wing, as described later.

\Aw

Fnis1p=Tovi) ™ 0

FIGURE 3.3: Steady-state VLM lattice of one spanwise row, j

As already described in the introduction, a-based coupling algorithms correct the local
freestream angle of attack, «, acting on the collocation point of every VLM panel at the

particular j—th span position:

A= =Qpj =" = AN, = Koo + Da;j (3.1)
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Here, ao is the uniformly prescribed freestream angle of attack for all lift generating
wing bounded panels. Finally, Ax; is the actual correction increment of the freestream
angle of attack prescribed for the row of all wing bounded VLM panels at the particular
span position j, and is estimated by the hybrid q3D—coupling algorithm. By knowing
the total freestream angle of attack, «;, of all wing bounded vortex-rings at the par-
ticular j—th span position, the current freestream non-circulatory velocity vector at the

collocation point of these VLM panels can be expressed as follows:

COS i
Voo,j = Voo,l,j = Voo,2,j — .= VOO,NI,,]. = Vo 0 (3.2)

sin D(]'

For the linear steady-state VLM model the freestream angle of attack correction incre-
ment, Aaj, is permanently neglected at the entire lattice, i.e. Ax; = 0. This parameter
is essential to estimate the nonlinear lift and acts as an interface between the quasi-3D
aerodynamic hybrid coupling code and the linear VLM. The detailed role of A«; is de-
scribed in Section 3.4.1.

Further, Biot-Savart law is applied in the present linear VLM module of FALCon to
estimate a single induced circulatory velocity contribution, V;,, of the vortex-ring of
the m—th VLM panel onto the collocation point of the n-th VLM panel[60]:

- dsm X Tum _

Here, I'y, is the yet unknown intensity and s, the geometrical contour line of the
vortex—ring of the m—th VLM panel. Further, r,,, is the distance vector between the
current position on the vortex-ring contour on the m—th panel and the collocation point
of the n—th panel. The integral is evaluated clockwise. It needs to be noted that in this
description of the linear VLM the global index n and m are the indices corresponding to
the global matrix—vector index of the overall steady—state VLM problem, which formu-
lation is derived later. For better clarity, the global index notation is used to formulate

the linear set of algebraic equations.

A single vortex, which is shown in Figure 3.4, defined between X; and X, induces the
velocity AVj; on an arbitrary point X in space as follows:

I' rmxn I )
2 4n\r1xrz\2r°<rrn \m\) S 34)
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Here, I' is the vortex intensity, r; is the directional vector between X; and X, r is the
directional vector between X, and X and ry is the directional vector between X; and X».

FIGURE 3.4: A vortex defined between X; and X, inducing velocity AV at arbitrary
point X

Thus, Equation 3.3 can be also expressed as a discrete VLM formulation:

Vnm == 1—‘mqnm - Fm (qnm,12 + Qnm,24 + Qnm43 + qnm,Sl) (35)

Here, qum,12 is the normalised spanwise velocity contribution of the upper vortex,
qnm,24 is the normalised chordwise velocity contribution of the right vortex, q 43 is
the normalised spanwise velocity contribution of the bottom vortex and qy,31 is the
normalised chordwise velocity contribution of the left vortex of the m-th VLM panel.
Further, I';, is the vortex ring intensity of the entire VLM panel. The four velocity contri-
butions of the four vortexes of a one single VLM panel can be added to the normalised
velocity contribution, q.,;, of the m—th vortex ring onto the collocation point of the n-th
VLM panel.

Therefore, the total local velocity, V,, acting on the collocation point of the n—th wing
bounded vortex-ring panel can be stated as:

N
VvV, = Z L Qum + Voo,n(Afxn) (3.6)
m=1

It contains the summation of all induced velocity contributions from all wing bounded
vortex-rings, I';,q.m, onto the collocation point of the particular n—-th VLM panel and
the non—circulatory freestream velocity contribution, Vo, which also acts at the collo-
cation point of the n-th VLM panel. Here, it needs to be noted that the non—circulatory
velocity contribution, Ve, at the particular panel might be rotated by the angle of
attack correction increment, Ax,,, in the nonlinear aerodynamic q3D-coupling method

to obtaining local nonlinear VLM panel lift. Thus, as it can be seen in Equation 3.2,
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only in linear VLM V., corresponds to the global freestream velocity vector, Vo, i.e.
VOO,n - VOO'

Further, the VLM kinematic boundary condition is applied by enforcing

N
n, -V, =ny- (Z qunm + Voo,n) =0 (37)
m=1

on all wing bounded VLM panels of the lattice. Here, n, is the normal vector of the
n—-th wing bounded VLM panel and enforces that the normal flow velocity at this col-

location point is zero, see Equation 2.3.

At the trailing edge of the VLM lattice Kutta—Joukowski flow tangency condition is
imposed to make the solution unique. This condition is imposed by setting the vortex—
ring intensity, I'y,;1,, of the “frozen” wake panel at the j-th span position the same as

the vortex—ring intensity of the corresponding wing bounded trailing edge VLM panel,

FNi,j:

It =T j (3.8)

The vortex, which connects the wing bounded panel and the corresponding wake
panel at the particular span position, j, is cancelled out due to the Kutta—Joukowski
flow tangency condition (Equation 3.8) leading to one single vortex-ring placed at the
trailing edge of the wing reaching into the farfield and consisting of six vertices, see
Figure 3.3. That way the contribution of the wake panels are considered in Equation 3.7

and Equation 3.6 making the flow solution unique[45].

Finally, Equation 3.7 leads directly to a set of linear algebraic equations, which can be

expressed for every wing bounded vortex-ring in matrix—vector form:

apn ax az - ant | [T —1ny - Ve,

app axp axp -+ anz | | Iz —ny - Ve

a3 a3 asz -+ ans| |3 = | —n3- V3 (3.9)
;N aN asn -c- ann| |[In] | N Ven|

Here, a,; = ny, - qun is a single aerodynamic influence coefficient between the colloca-
tion point of the n—th panel and the vortex-ring of the m—th VLM panel. Further, I is
the unknown vortex-ring intensity vector of all wing bounded VLM panels, which has
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to be solved by the linear algebra solver. On the right side of this system of linear equa-
tions the non—circulatory velocity contribution coming from the freestream conditions
is located and will be modified by the freestream angle of attack correction increment,
Aa, by the later described g3D—-coupling method. The system of equations can be ex-
pressed in the compact matrix—vector notation as follows:

AT =R(Ax) (3.10)

Here, A is the aerodynamic influence matrix with the overall matrix dimension of
(N x N) and R(Ax) is the right-hand-side vector of the problem with the length N,
which depends on the freestream angle of attack correction increment, Ax, of all wing
bounded VLM panels estimated by the nonlinear aerodynamic g3D-coupling method
by incorporating Equation 3.2. Finally, I' is the global vector of the unknown circulation
intensities of all wing bounded VLM panels ordered by the global index n. For a deeper
study of the linear Vortex—Lattice method (VLM), the reader is referred to Ref. [45].

During the iterative steady—state coupling procedure of the a-based aerodynamic q3D-
coupling algorithm, this aerodynamic influence matrix, A, is constant and need to be
estimated only once at the beginning of the procedure. Thus, in FALCon the aerody-
namic influence matrix A is then inverted once at the beginning of the iteration and
reused to obtain the unknown I vector in respect to the right-hand-side vector, R(Ax),
which varies during the iterative coupling procedure of the aerodynamic g3D—-coupling
method:

r=A"1 R(Aa) (3.11)

As long as the geometry of the VLM lattice is not changing in space (or in unsteady
version also in time), A, and therefore A1, stays constant.

3.2.1.1 Steady-state aerodynamic force formulation

As the final step the linear aerodynamic forces are obtained as a post—processing step
when the circulation intensities, I', of all wing bounded panels are known. A mod-
ern vectorised nonplanar formulation is used here to obtain the aerodynamic forces of
the wing bounded VLM panels by applying the Kutta—Joukowski theorem in vector
form [84]:
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0F;j = pV;j x Al ; = pAT;; (V;; x Al ;) (3.12)

For the simplicity, here, the local discrete indexing (i,j) of the wing bounded VLM
panels is again used. Further, p is the density of the fluid uniformly prescribed for the
entire VLM lattice configuration and V; ; is the local freestream velocity vector acting
at the collocation point of the (i, j)-th vortex-ring element. Moreover, I';; = AT; jAl; ; is
the total vortex strength placed at the quarter—chord line of the (i, j)-th wing bounded
VLM panel, see Figure 3.3. Here, 1, is the geometric directional quarter—chord line
vector of the particular VLM vortex-ring panel in vector form. The local vortex strength
intensity, AT’; ;, of the quarter—chord line of the panel is obtained from the global vector
I' as follows:

T —Tiq; ifi>1
Aljj=S " 7 (3.13)
Fi,]- ifi=1

Here, it needs to be distinguished whether the panel is located at the leading edge of
the lattice (i = 1) or not (i > 1). The aerodynamic forces in the present VLM solver
are evaluated at the midpoint of the panel’s quarter—chord line. Equation 3.12 is an
algebraic equation. The nonplanar formulation of the aerodynamic forces ensures that

the nonplanar aerodynamic loads are resolved accurately on complex nonplanar wings.

The local lift force coefficient, Cy 0, , of the (i, j)~th panel can be estimated as follows:

5Fi,j,z

_— 3.14
JooSijNzi j (3.14)

CLinv,ij =

Here, F; ; . is the vector component in z direction of the steady-state aerodynamic force
vector, 0F; ;. Further, goo = 1P V2 is the dynamic pressure at the farfield and Si Nz,
is the reference surface area of the VLM panel projected on the xy-layer of the iner-
tial frame of reference. Finally, the total inviscid lift at the particular span position, j,
which is important for the later coupling procedure in the aerodynamic q3D—coupling
method, can be obtained as by:

N,
Yil1 CLino,ijSijNzi

, (3.15)
Zfil SijNzij

ClLinvj =
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3.2.1.2 Evaluation of the steady-state induced drag and the local spanwise induced
angle of attack using the Treffz-plane method

In the steady-state formulation of VLM the Treffz—plane approach is used to estimate
the induced drag, Cp ;,4[45]:

1 X
Cp,ind = AT Y T, iWind,w,jAY; (3.16)
02)z j—1

Here, Ny, is the total number of wake panels and I',j is the particular vortex intensity of
the wake panel at the j—th span position. Further, Ay; is the width of the wake panel at
the j—th span position and S; , is the projected reference surface area of the wing section
at j—th span position. Finally, wj4,4,; is the induced downwash at the farfield behind
the wing at the Treffz—plane induced by the wing geometry at the j-th span position.
On the particular spanwise position, j, the local induced drag can be stated as:

rw,jwind,w,jA]/j
Cp,indj = _VZ—S]-Z
009,

(3.17)
The central key of this formulation plays the induced downwash, w;,4.,; at the geo-
metrical mid—point of the wake panel of the j—th spanwise lattice section. This value

can be estimated as follows:

No

Windw,j = Ny Y Tojelij (3.18)
k=1

Here, n,, ; is the normal vector of the particular wake panel, I';,x is the vortex intensity
of the k—th wake panel and §;  is the normalised velocity contribution of the k-th wake
panel onto the mid—point of the j-th wake panel, where only streamwise vortexes of
the panel are considered and spanwise panels are neglected:

ik = qjk23 + qjka1 (3.19)

Thus, g is the summation of the non-dimensional velocity contribution of the vortex
between vertices 2 and 3 and vortex between vertices 4 and 1 of the k-th wake panel

onto the mid—point of the j-th wake panel, see Figure 3.1.

In Figure 3.5 a typical distribution of w;,; ., along the span at the Treffz—plane of a rect-
angular wing is shown. At the wing tips of the wing w,, is maximal due to the wing tip

vortex. It needs to be noted, that in Equation 3.18 only wake panels are considered as
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the wing bounded panels are far away from the Treffz—plane and, therefore, only the
wake panels have influence on the downwash w,,. This method is described in detail
in Ref. [45].

Finally, the local spanwise distributed induced angle of attack, ;4 ;, can be estimated
as follows in steady-state flow:

(3.20)

wind(y)

FIGURE 3.5: Induced downwash
on the Treffz—plane of a VLM lattice wake

3.2.2 Unsteady extension

In Figure 3.6 the arrangement of a typical unsteady VLM lattice segment is shown. It
consists of wing bounded panels and free wake panels which are shed at every discrete
time step, t; = ty + iAt, into the farfield. Thus, at ¢y only wing bounded VLM panels
are present. Then, when the time marches on, at the trailing edge of the lattice, a new

row of unsteady wake panels is shed. Their wake intensities, I'y;, are the same as the

+1,J7

corresponding intensity of the wing bounded VLM panels at the trailing edge, I'y; , at
the moment they were shed at time step #;:

r(fk) r(fk)

Nit1,j N;,j (3.21)
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FIGURE 3.6: Unsteady Vortex—Lattice method

After the new wake panels are shed, they propagate with the local (free wake) or
freestream velocity (flat formulation of the wake) into the farfield. The vortex-ring
intensity estimated by Equation 3.21 on the newly created wake panel at the particular
physical time, t;, stays constant for the rest of the entire simulation. Here, the Kutta—
Joukowski flow condition is automatically satisfied and makes the unsteady solution at
every time step unique. Therefore, in the unsteady formulation of VLM the local flow
velocity at the n—th collocation point of a wing bounded VLM panel can be stated as:

Vn - Vn,ag + Vn,ba + Voo[n + AXC,TI (3.22)

Here, V,, 4, is the circulatory velocity contribution induced by all wing bounded VLM
lattice panels onto the collocation point of the n-th wing bounded panel at the par-
ticular time step, t;. Further, V, ;, is the circulatory velocity contribution of all wake
panels onto the collocation point of the n—th wing bounded panel and Vo, is the non—
circulatory local freestream velocity contribution, see Equation 3.2. When the wing
undergoes a relative motion in space, additional unsteady aerodynamic effects appear
on the surface of the thin-wing lattice. Especially when the wing undergoes periodic
motions, hysteresis effects will be notable in the aerodynamic forces. Therefore, here,
AX.,, is the additional velocity contribution of the n—th wing bounded VLM panel onto
itself due to the unsteady motion of the entire VLM panel and is estimated by deriving
the position of the collocation point over time using finite—difference approximation:

: (3.23)

This quantity is evaluated at the collocation point of the n-th wing bounded vortex—

ring only.
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As in the steady-state formulation of VLM, in an unsteady counterpart the kinematic
boundary condition is enforced at all collocation points of the lattice also by using
Equation 3.7. Thus, by using Equation 3.22 in combination with Equation 3.7 one single
algebraic equation for the n—th wing bounded VLM panel at the particular time step,
tx, can be expressed as follows:

N Nu)
n; - E 1—‘%(Jrl)qnm = —ny <V((>]c§,)n + 2 1—‘wuke,mqm + AXEQ) (324)

m=1 m=1

Here, N = N; - N; is the total number of wing bounded vortex-ring elements and N,

is the total number of all wake panels which are present at the current physical time,
te. The circulatory wing bounded vortex-ring intensities, F,(qf ™, for the next physical
time step, tx1, are yet unknown and have to be estimated through solving the system
(te—1)

wake,m’

and therefore on the right side of the equation. Thus, the known unsteady right-hand-

of linear equations. The vortex-ring intensities of the wake panels, I’ are known

side velocity contribution, Vg ,, on the n—th collocation point can be expressed as:

Ny
V) = V& + Y Tukem@um, + A (3.25)
1

U
m=

Now, the overall unsteady VLM problem for the particular time step, t;, in unsteady
flows can be expressed by a set of algebraic equations (Equation 3.24) in a matrix—vector
state—space formulation as follows:

a1 41 A4z -+ AN1 I —ny- Vg1

aip axp  ax v+ AN2 I —ny - Vg

a3 A3 asz -+ AN3 I3 | = —n3-Vgs (3.26)
(miN aon asn - ann| \I'n —ny - VRN

The same as for the steady-state counterpart of VLM, here, a,,,, = n, - qun is a single
aerodynamic influence coefficient describing the influence of the m-th wing bounded
vortex—ring element onto the collocation point of the n-th wing bounded VLM panel.
The unknown vortex-ring intensities, I', for all wing bounded VLM panels are obtained
for the particular time step by solving Equation 3.26. These vortex-ring intensities are
only valid for the particular time step, t.

AT =R(Ax) (3.27)
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3.2.2.1 Unsteady aerodynamic forces

The aerodynamic forces are estimated as a post—processing step after I' is obtained
for the particular time step, t;. A nonplanar formulation is used to estimate aerody-
namic forces on the wing bounded lattice by applying the vectorised Kutta—Joukowski
theorem[84]. The quasi—steady contribution of the aerodynamic force vector on a VLM
panel is estimated here the same as in the steady—state formulation of VLM by equation
Equation 3.12. However, in unsteady flow regimes, additional unsteady force contribu-
tion depending on unsteady time depended flow quantities is present. Therefore, the
additional contribution of the aerodynamic force vector is formulated as follows[84]:

OFf; = pAl';;S;mi (3.28)

Here, p is the uniformly prescribed density of the fluid and AT’ is the time derivative
of the vortex-ring intensity at the quarter chord of the n-th wing bounded VLM panel
at the particular physical time step, t;. Further, S;; is the surface area of the particu-
lar panel and n;; is the normal vector of the VLM panel. In UVLM this aerodynamic
force contribution is added on top of the quasi—steady aerodynamic force described by

Equation 3.12.

The time derivative of the vortex-ring intensity, Al';;, at the quarter chord line of the
(i,j)-th panel is evaluated by applying a numerical first-order derivation scheme be-

tween the current time step, t, and the previous time step, t_1:

AT — ATli)
AT~ — N ! (3.29)

(1)
L]
VLM panels. Finally, the linear unsteady local lift force coefficient can be stated on a

At to the vortex intensity AT is unknown and therefore assumed as zero for all

single n—th wing bounded VLM as:

u
5FZ,i,j (SFZ,i,j (3.30)
qooSi,jnZ,i,j qOoSi,jnz,i,j

~ u _
CLinvij = CLinv,ij + CLinvi; =
j j Jino,i,j

u
L,inv,i,j

Here, C L,inv,i,j 18 the quasi steady and C is the unsteady contribution of the local
lift force coefficient, Cf yy,ij, of one single wing bounded VLM panel. Further, S; i1, ; ;
is the by the z—component of the normal vector of the VLM panel, n; j, projected refer-
ence area of the vortex-ring onto the xy-layer. The total spanwise unsteady lift force
coefficient, Cp jno,; at the particular span position, j, can be estimated the same way as

in the steady-state formulation of the VLM using Equation 3.15.
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3.2.2.2 Estimation of the unsteady induced angle of attack and induced drag

Finally, for the unsteady q3D-coupling algorithm accurate estimation of the induced
angle of attack, a;, plays an important role, as it allows to couple the inviscid 3D so-
lution estimated by UVLM and the actual sectional transient viscous data, which is
provided by URANS solvers. In the unsteady model of VLM the wake mesh is part
of the solution and propagates at every time step into the farfield behind the wing
bounded VLM lattice. Thus, the Treffz—plane method for the evaluation of the induced
downwash, w;,4, and the induced angle of attack, «;,,, is not applicable here. There-
fore, those quantities must be evaluated in the alternative way directly on the wing
bounded VLM lattice panels.

The by, is the aerodynamic influence coefficient of the m—th vortex—ring onto the collo-
cation point of the n—th VLM panel, where only both right stream— and left anti stream-
wise vortexes of a panel are considered (only spanwise contribution of the flow), see

Figure 3.1:

bpm =Ny, - Qum (3.31)

Here, §ym is the normalised velocity contribution (see Equation 3.19) of the m—th vortex—
ring, where only the two stream— and anti—streamwise vortexes of the panel, see Figure 3.1,
are taken into account. The induced downwash coefficients, w;,;, and induced angle
of attack, a;,4, are estimated in the presented unsteady VLM at the collocation points
of all wing bounded vortex-ring elements at the particular physical time step, f;, using

the following vector—matrix multiplication:

Wind,1 byt by by - ba I't
Wind bip byn by - b I
Wing3 | = |biz bz bz -+ bna| | I3 (3.32)
Wind,N |bin Doy ban -- bun] \I'n

Hence, the matrix has a dimension of (N x N). This operation is carried out as a post—
processing step for the current time, tx, after the I'-vector is previously estimated using
Equation 3.26. Finally, the local induced angle of attack, ;4 ;, is estimated on every
wing bounded vortex-ring panels at their collocation points by using Equation 3.20.
The spanwise distribution of a;,,;, which is required for further unsteady coupling
procedure, is then estimated by interpolating the appropriate induced angle of attack
values of the particular spanwise lattice section, j, at the quarter chord where also the
sectional inviscid lift, C L,inv,j, 18 located, as described later in Section 3.4.2. The local
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unsteady induced drag at the collocation point of a (i, j)-th single-wing bounded panel

can then be estimated using;:

ODind,ij = PooWind,ijAl'i jAYi (3.33)

The total span distributed induced drag, 6D;,,;, at the particular span position, j, can
be estimated similarly as Cy ,;;,; by using summation of every chordwise induced drag
force coefficient at the particular span position, j, see Equation 3.15. Finally, for the

spanwise induced drag coefficient, Cp 4 j, in can be stated:

1 &
Cpyindj = —<— 3 0Dind,i (3.34)
qeoSjz i

3.3 Infinite-swept wing solver

The formulation of a high-level presentation of the infinite-swept wing Navier—Stokes
solver is described here. However, the reader may also consult Ref. [31] for further de-
tails.

For a 2D analysis the flow solution does not depend on the third direction. Practically,
when it comes to the analysis of swept wing cross—sections this approach becomes re-
strictive, as it does not take the crossflow effects into account which are present due to
the geometrical sweep, A, of the section from the in—flight direction (or the direction of
the in—coming flow). Especially at higher flow velocities on swept wing cross—sections
the crossflow effects are becoming dominant, and greatly affect the flow development
around the wing cross—section. With the purpose to take those effects also into account,
the infinite—swept wing Navier-Stokes solver is developed for these cases in mind. In
the ISW-RANS solver the flow component along the third direction is calculated as part
of the solution process, rather than being prescribed. The solver allows to investigate a
greater generality of flow conditions around unswept and swept wings, employing the
same 2D grid traditionally used in a classical, 2D analysis.

The presented ISW model is implemented in the DLR-tau flow solver and is applied
in this work to obtain the sectional flow physics around a 2D and a swept 2.5D wing
cross—section. Due to its computational efficiency compared to existing state—of-the—
art options, the implementation was denoted as 2.5D+. The steady and unsteady 2. 5D+
flow solver was demonstrated on single and multi-element wing sections in low— and

high-speed flow regimes, using laminar and various turbulence models[31].
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The flow solver was also applied to study transonic buffet for a family of wing con-
figurations [27] and in aerodynamic shape optimisation using solvers of different fi-
delity [108].

The infinite—swept wing model (ISW) assumes a wing of an infinite span, which is
swept at a moderate sweep angle, A. The chord length, ¢, is assumed as constant or
slightly variant along the span. Such a solver is employed in this work to model lo-
cal sectional aerodynamic nonlinear flow effects, which are not accounted by the linear

Vortex—Lattice method based on potential three-dimensional flow theory.

In Figure 3.7a the arrangement of the global and local frame of reference is presented.
The steady-state and unsteady Vortex—Lattice method is formulated in the global frame
of reference (A—-A cut). However, to take the crossflow effects efficiently into account, a
more suitable frame of reference is defined for the ISW problem (A’-A’ cut). The local
frame of reference, (x,y/,z) is rotated along the z—axis by the local sweep angle, A,
this way that the y'-axis is aligned with the quarter—chord sweep of the wing.

NACA2412 in 2.5D+ grid (A-A section)

Boundary BC

\\

NACA2412 in 2.5D+ grid (A-A’ section)

(A) Planform of a swept wing and arrange- (B) NACA2412 airfoil in global and local
ment of the frame of reference frame of reference, here Aq /4 = 30°

FIGURE 3.7: Arrangement of global and local frame of reference of the employed
2.5D+ ISW-CFD solver

Traditional ISW-CFD solvers are performing their calculations on a one—cell width
3D stencil. There are two widely used approaches: “Sheared” and “beta” approach.
The “sheared” approach uses a two—dimensional grid in the global frame of reference,
where the grid layer is extruded “sheared” by the sweep angle, A, and on the two sten-
cils of the grid periodic boundary conditions are imposed. The freestream boundary
conditions at the farfield are formulated in the global frame of reference:
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COS Ko

SIN Koo

The second approach, often denoted as the “beta” approach, is formulated in the local
frame of reference, i.e. in (x/,1/,z"). Here, the two—dimensional aerofoil CFD mesh is
extruded normal, and the freestream boundary conditions are transformed by the local
sweep angle, A, where R;(A) is the rotation matrix around the z-axis:

COS oo COS A
Vi, = Rz(A) - Voo = Vo | cosaeo sin A (3.36)

SIN Koo

Besides the freestream velocity vector, V., in local frame of reference, the freestream
angle of attack, a, and side-slip angle, B, are also transferred into the local frame of
reference as follows[31]:

W tanae

tanal, = — =
<y cos A

(3.37)

u/
sin B, = = COS Koo SIN A (3.38)
u’? + 02 + w'?

For small freestream angles of attack, a,, < 15°, a simplification can be made by as-
suming that B, ~ A. Also, due to the reduced absolute freestream velocity magnitude,
|V, in the body-attached local frame of reference the local Reynolds—number is also

scaled down as follows:

Rel, = Re cos A4 (3.39)

However, in practical applications, the impact due to the reduced Reynolds—-number at
moderate sweep angles, A, is nearly not notable and can be neglected by using Re in
the “beta”—approach and the following 2.5D+ ISW—(U)RANS CFD solver.

As described in Ref. [31] the “sheared” and “beta” approaches employ a three-dimensional
one—cell thick CFD mesh, which demands a higher computational cost to solve the
NSz—equations. In this work, a so—called 2.5D+ approach is used, which solves the

2Navier-Stokes
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ISW-RANS equations on a truly 2D stencil at a computational cost of a conventional
two—dimensional CFD calculation. The key idea of this approach is to reformulate the
NS—equations formulated usually with respect to the global frame of reference in the
more suitable body-attached local frame of reference, (x’,1/,z’). In this frame of refer-
ence, it is assumed that the flow has a statistical homogeneity in the y'—direction along
the swept span. This leads to the assumption that the flow is locally fully developed
in the y'—direction. Thus, all terms in the NS—equation, which are transformed into the
local frame of reference, containing d(-) /dy’ = 0 can be neglected simplifying that way
the reformulated NS—formulation for the particular ISW problem. In Eqgs. 3.40-3.44 the

modified system of equations are presented.

agl:’ N a(gbjc’/u’) N a(pgtz’/w’) _ gff N aaz'c;c n i’afza'c/z (3.41)
agzﬂ N a(gb;’/v’) N a(paz;zv’) _ aanf n aagz (3.42)
agztu’ . a(paifv/) N a(pazi’,w’) _ gg %sz';c %Z{z (3.43)
agfo N B(Pafi)lu') N B(nglw/) _ aax/ (M/chx + 0T, + w/’l’,/cz)

b2 (i o, i) - 2B 0 )

Here, ¢ is the total energy and hy is the total enthalpy of the fluid[31]. It can be seen
that the mass conservation equation, Equation 3.40, the momentum conservation equa-
tion along the x’—axis, Equation 3.41, and the momentum conservation equation along
the z—axis, Equation 3.43, are itself decoupled from the momentum conservation equa-
tion along the y'—axis, Equation 3.42, which describes the crossflow momentum, pv/,
of the ISW flow problem. The coupling between the crossflow momentum equation,
Equation 3.42, and the rest of the momentum and the mass conservation equations is
performed over the energy equation, Equation 3.44, through the shear forces 7,
in the boundary layer. So, it can be followed that at low subsonic Mach-numbers, M,

/
and 7,

the crossflow is independent from the rest of the flow. However, with increasing Mach-
number the crossflow starts to affect the overall aerodynamic load on the swept wing
section as Equation 3.44 starts more and more influence the solution. This means that at
low speeds Equation 3.42 is an independent additional transport equation, which has
no impact on the overall sectional load[31]. Following this observation, it can be stated
that at low—speed analysis on a swept wing, a conventional 2D solver is sufficient for
the g3D-solver. However, in this work, the constructed aerodynamic q3D—coupling

methodology, which employs this ISW-CFD solver, is applicable as one unified tool
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for low speed and compressible high—speed transonic flow analyses, where the cross-
flow effects are playing an essential role at high-speed flow analysis. The crossflow at
higher Mach-numbers modifies the transport equation, Equation 3.42, through the en-
ergy equation (Equation 3.44) over the viscous terms in the boundary layer of the flow.
The formulation of the 2.5D+ ISW-RANS equations based on this modified Navier—
Stokes system of equations is presented in Ref. [31] in detail. For a detailed study, the
reader is referred to this source.

In this work the nonlinear sectional lift curves of the swept-wing sections for the steady—
state solver are precomputed using the 2.5D+ ISW-RANS solver implemented in DLR-tau
CFD framework with respect to the local frame of reference (x’,y’,z), which is rotated
by the local quarter—chord sweep angle of the wing, A; /4, around the z—axis (A" — A’
cut). In the unsteady aerodynamic q3D—coupling method this solver is integrated di-
rectly into the computational aerodynamic framework FALCon to obtain the viscous
lift on-demand during the unsteady computations. In the local body-attached frame
of reference the local chord length, ¢/, becomes shorter compared to the global chord
length, c, by a factor of cos A;,4. However, for the simplification of the geometry and
the simulation setup it is decided to keep the local geometrical chord length same as the
global chord length of the section, i.e. ¢’ = ¢, in the employed 2D CFD grid. Therefore,
the thickness of the aerofoil in the local frame of reference (A’ — A’ cut), needs to be

modified as follows:

z/ 1
—_ 3.45
z cos A1y ( )

Here, (z'/z) is the scaling factor of the thickness of the aerofoil geometry. A modified
NACA2412 aerofoil shape in local frame of reference, suitable for 2.5D+ ISW-CFD com-
putations, can be seen in Figure 3.7b. It needs to be noted, that the 2D mesh can be only
geometrically stretch as long as the initial wall spacing of the CFD grid at the contour
of the aerofoil is small enough and the condition of the initial non-dimensional wall
distance, y+ < 1, is satisfied. As an alternative, one can also create a 2D aerofoil mesh,

where the aerofoil contour is already in the local frame of reference.

The results obtained by the ISW solver are also with respect to the local frame of refer-
ence, (x/,1/,z). Thus, as the hybrid g3D-solver and the Vortex-Lattice method (VLM)
are formulated in the global frame of reference, the precomputed aerodynamic data
for the steady-state aerodynamic q3D—coupling method or the on—-demand computed
aerodynamic data for the unsteady aerodynamic q3D-coupling method needs to be
transformed back to the global frame of reference, (x,y,z). The freestream angle of
attack, a, can be transformed between the two different frames of references using

Equation 3.37. Further, also the aerodynamic force and moment coefficients, i.e. C’L,
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Cp and CE\/Ly" needs to be transformed back to global frame of reference as they are
estimated by the 2.5D+ ISW solver according to the local chord length, ¢’:

, C C!

Cy = ng = ﬁ (3.46)
Here, C, stands for the aerodynamic force and moment coefficients. Additionally, the
viscous drag is formulated in the local frame of reference, (x',y/,z), according to the x'-
axis, which is also rotated by A. Therefore, Cp is transformed by applying the trigono-
metric cosine additionally, as D’ = D cos A. For the aerodynamic moment coefficient,
Cm,y, in the global frame of reference it needs to be remarked that there the reference
length, c,.f, is in the global and local reference frame of reference the same. However,
also here, the reference area, S’ # S, and therefore this coefficient also needs to be
scaled up by the factor 1/ cos A.

The equations for the three aerodynamic force and moment coefficients are shown in
Egs. 3.47-3.49:

CL

== 3.47

L cos A1 /s ( )
Cp

= 3.48

b cos? A1y (348)
City

Cpy =—2— 3.49

My cos Aq /4 ( )

Finally, it needs to be noted that in the DLR-tau 2.5D+ ISW-(U)RANS solver the ref-
erence freestream velocity in the local frame of reference, V,, and the corresponding

velocity in the global frame of reference, V., are the same, i.e. V), = V..

3.4 Hybrid aerodynamic coupling algorithm

In this section the methodology is presented which describes the quasi-3D hybrid aero-
dynamic coupling algorithm between the three-dimensional inviscid Vortex—Lattice
method (VLM) and two-dimensional nonlinear sectional aerodynamic data in steady—
state and unsteady flow regimes. In Section 3.4.1 the steady-state formulation is pre-
sented, followed by the unsteady extension in Section 3.4.2.
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3.4.1 Steady-state hybrid coupling procedure

The steady-state hybrid aerodynamic g3D-solver, depicted in Figure 3.8, builds on
the a-based coupling algorithm introduced by Tseng and Lan [94] and Van Dam et
al. [95, 96]. The key idea of this approach is to adjust the local freestream angle of
attack along the span of the wing until the local lift on every section of the VLM lat-
tice matches the corresponding two—dimensional nonlinear lift, Cy s, of the aerofoil
wing sections obtained from precomputed nonlinear CFD-database. This way, viscous
and compressible nonlinear three-dimensional aerodynamic loads can be estimated
on VLM lattices at highly reduced computational cost. It has to be noted that in this
approach the aerodynamic nonlinearity comes from the precomputed aerodynamic
database, which contains the sectional aerodynamic lift and drag force coefficients,
CrLpisc and Cp yisc, impacted by the viscosity and compressibility of the flow physics.
The three—dimensional flow effects, like the wing tip vortex, are represented here by
the three—dimensional inviscid and linear Vortex—Lattice method.

« Calculate C, ,, @
» Calculate o,

» GetR(Aq)
* Solve linear VLM

2 7
Get viscous lift @ I o] @;’/CL
I 2xlift curve o
from database 3 . Cr i
k=k+1 15 < e
| I : Z
d le of k ! \, f SN
Update angle of attac r .7 [Viscous icune |
correction (Eg. 19) @ o 1f . ! —
Z
2 [ [
P Ao Ly
0.5 ‘ ‘
| |
| |
L ‘ L L ‘ L L L L
0 10 15

(B) Coupling inviscid and viscous lift
(A) Sequence diagram of the algorithm curve

FIGURE 3.8: Steady-state hybrid coupling procedure

At the beginning of the procedure, the computation needs to be initialised. The ini-
tialisation includes the estimation of the inverted constant aerodynamic influence ma-
trix, A~!. Therefore, A~! needs to be estimated only once before the main iterative
loop starts, see Equation 3.11. After this step, the iterative coupling procedure begins.
Inside the loop, the global non—circulatory velocity contribution vector, R(Ax), is re—
estimated according to the actual angle of attack correction increment, Aw, of all wing

bounded VLM vortex-rings, see Equation 3.9.
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Then, the linear system of equations is solved using Equation 3.11 to obtain the global
vector I containing local vortex circulation intensities of the wing bounded VLM vortex—
rings. The inviscid lift force, Cp iy, j, at the particular span position, j, is obtained using
Equation 3.15.

The corresponding spanwise effective angle of attack, a,, in the global frame of refer-
ence at the particular iteration, k, can be stated as follows:

ch
k k L,inv, k—1
0l = ao—afl) = =2 — pafY (3.50)

Here, oo is the uniformly prescribed global freestream angle of attack and “1(:.)1, j1s the

spanwise induced angle of attack at the particular iteration, k. Further, C éki)m jis the
current inviscid spanwise lift force coefficient obtained by the linear VLM code, see
(k1)
j

angle of attack correction increment estimated in the previous iteration, (k — 1), at the

Equation 3.15, at the spanwise VLM lattice section, j, and Ax is the actual total

same spanwise position of the lattice. It has to be noted that the induced angle of at-

(k)

tack, a; j» contains already the effect of the locally increased freestream angle of attack,

Atx](kfl), as this quantity is estimated by the linear Vortex—Lattice method at an locally
(k1)

increased sectional lift, C i, due to Azx].

Along the chord at the particular spanwise position, j, the local freestream angle of

attack correction step, Aa;, is prescribed uniformly:

Historically, Equation 3.50 was proposed by Van Dam for the linear Lifting—-Line method
as follows[95, 96]:

ch
(k) _ TLinvj o (k=1) ‘
(Xe,]' - C% e A[X]' + X0, visc (352)

Here, ag oisc is the zero lift angle of attack of the nonlinear sectional lift curve and Cf} ...
is the particular lift slope of the sectional nonlinear lift curve at the current effective
(k=1)
e

stall as here the viscous lift slope, C

angle of attack, « . However, this approach encounters numerical instability at the

o

L viscr becomes zero. Therefore, the lift slope has

been assumed by Gallay as C} ... = 27t and constant throughout the entire iterative
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procedure[33] [34]. In his work he proved that this assumption provides accurate re-
sults and stability also at stall.

The two-dimensional viscous sectional lift-force coefficient, Cp yis ;, at the j—th span
position is interpolated at the corresponding effective angle of attack, «,;, from the
tabulated and already precomputed or experimental viscous 2D or 2.5D aerodynamic
database using standard interpolation techniques. In FALCon standard piecewise linear
interpolation methodology is employed to obtain Cp yisc,; at the particular span posi-
tion, j, and the corresponding effective angle of attack, «, ;, estimated by Equation 3.50.

Once both the linear and the equivalent nonlinear viscous lift force coefficients are ob-
tained the angle of attack correction increment, Ax;, is updated for the next iteration,
(k+1), at every span position, j, on the VLM lattice as follows:

(k) (k)
A (k) A (k—1) + CL,visc,j o CL,inv,j (3.53)
06]» = D(j 1% o .

Here, v is the prescribed relaxation factor. A relaxation factor v is required to make the
iterative procedure more stable, especially at higher freestream angles of attack. This fi-
nal step, described in Equation 3.53, completes one iteration of the steady—state hybrid
coupling loop. The iterative loop continues until convergence of the inviscid lift coef-
ticient distribution, Cy ;,,, is achieved along the span within a prescribed convergence
tolerance error, €, on every spanwise section, j, of the VLM lattice:

|CLyvise,j — CLinv,j| <€ (3.54)

3.4.2 Unsteady extension of the hybrid coupling procedure

This section describes the formulation of the novel unsteady hybrid mixed—fidelity a—
based q3D-coupling algorithm, which combines two solvers of different fidelities: a
linear unsteady low—fidelity UVLM solver and a 2D or 2.5D high-fidelity URANS CFD
solver. In this section the main novelty of this work is described. This section builds on
the previous section, where the steady-state version of the a—based algorithm is pre-
sented.

The proposed unsteady hybrid g3D-coupling approach is presented in Figure 3.9 and
is based on the steady-state a—based coupling procedure[94, 95, 96, 33, 34] extended
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by an outer time-marching loop for the unsteady VLM and URANS solvers. The main

differences regarding the equivalent steady-state approach are:

¢ the presence of an additional outer time loop, which time-marches the linear
UVLM and URANS solvers

¢ the computation of unsteady viscous sectional aerodynamic data, i.e. Cf s, are

performed by several independent DLR-tau URANS-solvers on-demand during

the simulation, which are marching synchronously over time with the linear un-
steady VLM

¢ the UVLM wake carpet which is shed dynamically from the trailing edge of the

lattice at every new physical time step

FIGURE 3.9: Unsteady hybrid coupling procedure for simultaneous time-marching of
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the unsteady VLM and URANS equations

For a specific time step, t, the unsteady version of the hybrid aerodynamic coupling

algorithm between the sectional aerodynamic database and linear UVLM can be subdi-

vided into Part I and Part II. In the first part the actual transient unsteady aerodynamic

database is precomputed on-demand by synchronised 2D DLR-tau CFD solvers and

parameterised along the span of the wing, y/b, and two—dimensional freestream an-

gle of attack, axp. The result of the first part of this algorithm is a surface function

of the viscous nonlinear lift, C ,is.(t, /b, «), which depends on the span, y/b, two-

dimensional freestream angle of attack, a;p, and is only valid for the particular time
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step, tx. This surface function is based on the tabulated data which is obtained by the
synchronised CFD solvers, and is then used in the second part of the algorithm to ob-
tain the actual unsteady three—dimensional nonlinear aerodynamic wing load on the
VLM lattice for the particular time—step, . The second part the algorithm performs
iterative quasi—steady sub-iterations with the aim to obtain the actual nonlinear aero-
dynamic load on a finite-span VLM lattice by employing the on-demand precomputed
nonlinear unsteady aerodynamic database for the particular time step, t,. The second
part of the algorithm is similar to the steady—state version of the a—based hybrid aero-

dynamic coupling approach described in Section 3.4.1.

3.4.2.1 Part I: Synchronous management of aerodynamic models

The overarching goal of Part I is to manage sectional aerodynamic data generation from
the aerodynamic 2D or 2.5D+ ISW-CFD solver model. The different aspects of coordi-
nating the time integration of the models are seen as elements of an interdependent
process, managing them in a manner to optimise the performance of data generation

for any arbitrary geometry motion.

Part I supervises critical aspects, such as, advancing the UVLM and URANS solutions
in the time domain, adopting the same time step size. For cases with geometry mo-
tion, the position and rotation of the planar VLM lattice is trivially updated. Moving
the 2D grid of the URANS solver is done by a rigid translation and rotation. This
method is preferred over alternatives because in all cases, it avoids warping the mesh
or re-meshing the grid, operations that would otherwise become necessary and add
computational cost when performing an aeroelastic analysis with a 3D grid and 3D
CFD. It is worth noting that a translation, i.e. in—plane or out-of-plane bending, and
a rotation, i.e. torsion, are fundamental components to reconstruct any general type of
motion. Motion rates have an impact on flow unsteadiness and shall be included. In the
UVLM, the velocity of the collocation point of every wing bounded panel, Ax,, con-
tributes to Equation 3.22 and is calculated with finite difference from the actual position
of the collocation point, see Equation 3.23. In the URANS solver, motion rates are im-
posed through additional unsteady whirl-flux velocities calculated once the motion at
the current time step is known. As a result, FALCon offers the capability to analyse any
arbitrary motion, whether prescribed or unknown a—priori. The current formulation of
the unsteady coupling procedure supports the heave and pitch motion, parametrised
as follows:
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Aw : angle of attack increment in [rad]
* g : angular pitch velocity along the y—axis in [rad/s]

e Ah: vertical displacement increment in []

Ji : vertical plunge velocity in [m/s]
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FIGURE 3.10: Schematic illustration of CFD-airfoil instances arranged in a
(Ny/b % Np) tabulated data structure

Managing data generation is the most challenging aspect of the coupling algorithm.
The view is to have a database, or container, of unsteady, viscous aerodynamic data
which is interrogated on-demand during the iterative process coordinated by Part
IT (further details follow in Section 3.4.2.2). Confronted with existing alternatives al-
ready discussed in the Introduction, the implementation follows the most general ap-
proach which comes with a number of implementation challenges. With support of
Figure 3.10, consider a wing with a cross section that varies along the span. As an ex-
ample, three sections (20, 50 and 80% of the span) are considered where sectional aero-
dynamic characteristics are sought after. At the core of Part I is the ability to compute
the dependence of the unsteady, sectional lift coefficient on the instantaneous angle of
attack and on relevant motion rates, at each particular wing section. The dependence
on the angle of attack is not unexpected because the approach builds upon the steady-
state, a-based coupling algorithm. Referring back to Figure 3.10, Part I spawns for this
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example 15 URANS analyses, grouped into three spanwise sections. Initially, the vis-
cous database stores data from 15 RANS analyses which are initialised from different
freestream values of the angle of attack. Figure 3.10 shows an exemplary range chosen
between —8 and 8°. The initial database is steady—state and does not include unsteady
effects. To overcome this limitation, at each time step iteration, t;, the instantaneous
motion and rates are known. Then, Part I spoons this information to all URANS anal-
yses (which are marched in time using dual-time stepping [43]) and a new unsteady
database valid at t; is generated. Data are stored in a tabular form that visually takes
the form of a carpet plot (see insert in Figure 3.9) representing the sectional, viscous
Cr (t) versus a, (t;) and y/b. In the figure, the dependence on motion rates is omitted
for brevity. As explained in the next Section, Part II will access this database to extract
at each wing section, y/b, the viscous lift coefficient necessary for the actual coupling
procedure at the current time step, f;, which is interpolated at a specified value of the

effective angle of attack:

CL,vz'sc (tk) = f (“e (tk) ’ y/b) (3.55)

Two final considerations are worth giving. The first is for the initial angle of attack
range, see Figure 3.10. Part II accesses the viscous aerodynamic database with a value
of w, (tx) calculated from Equation 3.57. The iterative nature of data fusion, exemplified
by Equation 3.59, proceeds through variations or corrections of the angle of attack. It is
therefore critical to have a sufficiently wide range to avoid hampering the convergence
of the algorithm (i.e. interpolation rather than extrapolation of the data). The second
consideration relates to the motion. There are cases when the motion is unknown a-
priori, e.g. in flight dynamics or aeroelastic studies. An external, dedicated model will
then be responsible to calculate the motion and rates for a set of aerodynamic loads
calculated at t;. The motion information is then spooned to Part I that continues the

above-mentioned process.

This parameterised function is valid only for the particular physical time step, t, and
has to be re—estimated in the next physical time step again by advancing the physical
time, t, + At, in all CFD solvers, perform motion of the CFD grids and run dual-time
stepping sub-iterations in all CFD solvers again. For the particular time step, t, this
parameterised surface function is then used in the next part, Part II, of the algorithm to
estimate the nonlinear aerodynamic wing load on the VLM lattice and obtain the time
depended nonlinear UVLM solution for the particular physical time step, t.

Finally, it has to be remarked that if the wing consists of only one aerofoil shape geom-
etry, is undergoing a prescribed motion and is rigid, only one set of CFD solvers at a
single span position of the wing can be spawned using the same aerofoil CFD mesh at



3.4. Hybrid aerodynamic coupling algorithm 61

various freestream angles of attack, «. In this case the surface function of Cj ,;;c would
not have a gradient along the span, (y/b), as it can be seen in Figure 3.9, as the gradient
of the function along the span is only depending on the aerofoil shape geometry and

varying unsteady motion rates along the span.

3.4.2.2 Part II: Data fusion

The following description is based on Van Dam’s a—based coupling algorithm for steady—
state flow regimes[95]. By having this as a reference, a mathematical formulation is

presented here, which is adopted to unsteady flow regimes.

A possible approach is to resort to the calculation of the sectional, effective angle of
attack, &, j, using the formulation [52]

Cy

— (3.56)

Nej =
where C, is the unsteady, sectional normal force coefficient from the inviscid solver.
The caveat of this simple relationship is that C,, shall relate to the circulatory contribu-
tion only, but the UVLM does not separate the circulatory contribution from the non-
circulatory one [51]. As a result, an overestimation of &, ; has been observed which
leads to a significant over—prediction of the unsteady, sectional, viscous lift coefficient,
CLyvisc- Thus, an alternative suggestion to estimate the effective angle of attack, ., at

the particular span position, j, is denoted as

Rej = oo — indjl(c/4) (3.57)
where a, is the nominal freestream angle of attack. The second term on the right hand
side is the induced angle of attack directly at the quarter chord of the wing section cal-
culated using the inviscid UVLM solver. Generally, the VLM formulation calculates
the induced angle of attack at the collocation point of wing bounded panels. To obviate
this conflict, &g, | (c/4) at the wing sectional quarter chord is based on chordwise inter-
polation of the values of a; located at the collocation points of two or more chordwise
panels, N; > 1.

At the j-th wing section, the instantaneous, viscous lift coefficient Cy ;5. is extracted
from the viscous database created at the actual time step, ;. The database is inter-
rogated with the value of a,; obtained from Equation 3.57. Then, the angle of attack
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correction at the j—th wing section is estimated for the next time—frozen subiteration,
(i + 1), for the particular time step, t;

clki) _ olki)

L,visc,j L,inv,j

271

Al = Al 4y (3.58)
where v is the relaxation factor used to control the update of the variable at each inner
iteration. As depicted in Figure 3.9, Part Il supervises the convergence behaviour of the
pseudo-iterations. Convergence at each time step is achieved when the lift coefficient
from the two aerodynamic sources, at all spanwise wing stations, meets the following

condition:

ICLviscj — CLinvjll < & (3.59)
The parameter ¢ is a user-defined tolerance regulating solution accuracy. If this condi-
tion is met on every spanwise section of the VLM lattice, the iterative time—frozen loop

stops and the calculation continues for the next time step, t;1.

3.4.3 Estimation of nonlinear viscous drag

The hybrid coupling algorithm of FALCon can also estimate the nonlinear total drag
force coefficient, Cp, of the wing. The calculation of the total drag is performed as a
post-processing step. The total drag of the wing configuration consists of the viscous

sectional drag, Cp ,isc, and the induced drag, Cp j4:

CDJ = CD,visc,j + CD,ind,j (3.60)

For the total sectional drag force coefficient, Cp,, the induced drag force coefficient,
Cp,ina,j, is estimated by VLM in steady-state flow condition, see Section 3.2.1.2, and by
UVLM in unsteady flow regimes, see Section 3.2.2.2. Further, the local sectional viscous
drag, Cp yisc,j, at the j—th span position is obtained by interpolating the drag from the
precomputed sectional aerodynamic database using the actual spanwise effective angle
of attack, a, j, at the particular j-th span position:

Chvise,j <= fav ((y/b), e j) (3.61)
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3.5 Fluid-Structure interaction

In this section, the methodology related to the steady-state aeroelasticity is discussed.
At first, the anisotropic nonlinear beam-based FEM model is presented in Section 3.5.1.
Then, in Section 3.5.2 it is discussed how to extend FALCon solver to cases with a flexible
wing structure, and finally, in Section 3.5.3 the aeroelastic system including the map-
ping procedure of the data between the two aerodynamic and structural domains is
explained.

3.5.1 Anisotropic beam theory

In order to account large structural deformation of the wing, a geometrically nonlin-
ear FEM-beam model is required, which aim is to estimate the static deformation of
the wing geometrically—exact deformed by the aerodynamic loads. Therefore, it was
decided to employ an open—source tool named GEBT (Geometrically-Exact Beam The-
ory) developed by Yu and Blair[110][111][103][102]. This tool is designed to capture
the physics of slender composite structures under large deflections and rotations and
can consider exactly geometrical nonlinearities of the beam geometry. Plasticity of the
material is neglected as the internal structural strains are considered as small and only
elastic. The mathematical formulation of this tool is the mixed variational formulation
based on exact intrinsic equations for dynamics of moving beams, which is developed
by Hodges[40]. The exact intrinsic equations of this model are derived from Hamilton’s

weak principle, which is asymptotically formulated along the beam axis:

tr L _ _
/t /0 [6(K — U) + 6W] dxydt = 6A (3.62)

Here, t; and t; are the arbitrary fixed times, K is the kinetic and U is the internal strain
energy of the beam. Respectively, 6W is the virtual work of applied external loads and
JA is the virtual action in the same temporal period, where ¢ is the usual Lagrangian
variation for a fixed time. It needs to be noted that dx; is the local coordinate oriented
coincidentally with the local beam axis, see Figure 3.11. The detailed formulation of

this approach is given in Ref. [40].
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This computational framework allows to define an initially curved and twisted net-
work of beams and is able to perform different types of simulation on isotropic or com-

posite slender structures with various section properties along the local beam axis:

¢ nonlinear static simulation
¢ nonlinear steady-state dynamic simulation
* nonlinear transient dynamic simulation

¢ eigenvalue analysis of small motions about the steady—state deformed state of the

beam using a linearisation approach

AX3
X3
N
AN

FIGURE 3.11: Local GEBT beam coordinate system

In FlexiFALCon, besides single-wing geometries, a full aeroplane configuration can
be modelled using several VLM lifting—surface lattices representing the main wing,
fin and tail of the aeroplane, connected by a single FEM beam mesh representing the
structure of the vehicle with various cross—sectional structural properties. However,
in this thesis, only single wings are modelled, and the results are discussed. Also, in
this work, the second type of the GEBT model is used where all time derivatives of the
formulation are neglected. All simulations can be performed by the tool GEBT using
a linear and nonlinear formulation of the beam. This tool is implemented in FORTRAN

and employs well-optimised libraries.

In GEBT it is required to provide the symmetric flexibility matrices of the particu-
lar cross—sections in the input file to link internal beam loads and internal structural

strains:



3.5. Fluid-Structure interaction 65

2%1 [S11 S12 Siz - Sig 11::1
T2 S1 S» S -+ Sz >
sl Ss1 S32 Ssz -+ S3e 5 (3.63)
K1 ) ) . ) M,
% : S U M,
s |Se1 Sz Ses ++ Ses Ms
—5-1

Here, 711 is the beam axial stretching strain, 2712 and 213 are the engineering trans-
verse shear strains, x; is the twist measure, and finally x, and x3 is the curvature about
the local beam axis x; and x3, see Figure 3.11. By providing an explicit inverted stiff-
ness matrix, S7!, in the input file, the potential coupling between the different beam
solicitations can be enabled or disabled through coefficients of the matrix. For in-
stance, to enable the twisting of the wing, coefficient S44, and for bending Ss5 needs
to be non-zero. Complex cross—sectional modelling of composite or isotropic wing sec-
tions can be performed by applying the VABS (Variational Beam Sectional Analysis)
approach presented in Ref. [17]. This code is able to take cross—sectional geometries
into account which consists of anisotropic, non-homogeneous materials and estimate
cost—efficiently the appropriate stiff- and mass-matrix of the cross section suitable for
the GEBT input.

Hence, the flexibility matrix for an isotropic cross—section at its shear centre is defined
as follows:

& 0 0 0 0 0
1
0 g 0 0 0 0
0 0 2L 0 0 0
-1 GK
5= o 0 0 L 0 o0 (3.64)
GJ
1
0 0 0 0 ¢ 0
1
0 0 0 0 0 g

Here, E is the Young modulus, S is the area of the cross—section, G is the Coulomb mod-
ulus, K; and K3 are the shear coefficients in direction 2 and 3 of the local beam frame of
reference and, finally, I and I3 are the area moment of inertia also in direction 2 and 3 of
the local beam frame of reference, see Figure 3.11. Further, for a simple Euler-Bernoulli
beam this matrix can be even further simplified by neglecting shear strains 1, and 713
and setting in Equation 3.64 the second and third lines and columns to zero as demon-
strated in Ref. [50].
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3.5.2 Extension to nonplanar q3D-coupling algorithm

For non—planar coupling procedure the VLM solver is extended also by a side-slip cor-
rection angle, AB. This correction increment corrects the non—circulatory freestream
velocity vector, Vi, on the VLM vortex-ring at the particular span position, j, by ro-
tating it around the z—axis. Therefore, Equation 3.2 needs to be modified as follows:

cosa;jcos AP
Voo,i,j = V- Ry(lxl‘,j) : Rz(Aﬁi,j) c€y, = Voo sin A,Bi,j (365)

sina;jcos AB

By correcting the orientation of the non—circulatory freestream velocity also with Af the
linear VLM is now able to reproduce also nonlinear aerodynamic loads on highly de-
flected wing geometries. The employed linear VLM is formulated in the undeformed
aerodynamic frame of reference, < x;,y,4,2z, >, while the steady—state g3D-coupling
procedure couples the nonlinear aerodynamic loads in deflected aerodynamic frame of
reference, < ¥, Ys, Z, >, which is rotated by the current aeroelastic deflection angle 6, ;

around the x,-axis, as it can be seen in Figure 3.12.

In the steady-state q3D—coupling algorithm the spanwise aerodynamic force coefficient

vector, (A?i,w,j = [Cinv, D,js CAim,,slj, CAim,, L,j] T canbe estimated by rotating the total spanwise

aerodynamic forces by the current Eulerian aeroelastic deflection angle, 0, :

éD/j CD]
Cs; ¢ =Rx(0x) - { Cs (3.66)
Lj CL;

For the first aeroelastic coupling iteration in the computational FSI-framework the
aeroelastic deflection angle, 0, j, is zero on all spanwise segments of the VLM lattice.
Here, R, is the rotation matrix around the global x—axis. If the wing contains a natural
dihedral in an unloaded state, this can be considered by a geometric deflection of the
VLM lattice provided by the user. By following Equation 3.66 the aerodynamic lift co-
efficient, C L,inv,j, at a particular span position, j, in the deflected state of the wing can be
stated as:

éL,j = Cs,jsinby; + Cp jcos b, (3.67)

Further, in the steady-state q@3D-coupling algorithm the effective angle of attack, &,
(Equation 3.50) is estimate here in the deflected aerodynamic frame of reference, < Xy, Y, 2, >:
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(k) Cg(') ‘ (k=1)
A(k) _ TLinvj (k=

The angle of attack correction, &;,4,, of the aerodynamic frame of reference can be ob-

tained by:

tan A&; = tan AB; - sin 6, ; + tan Aa; cos 0, ; (3.69)

This equation is derived from the general contemplation of a velocity vector, V= (1,0, D) T

in the deflected aerodynamic frame of reference:

1l u
0 p = Rx(Qx]) v (3.70)
W w

Thus, by normalising all velocity components by #i = u the relation between tan A&

and tan Ax and tan Ap can be seen:

1 1 1 0 0 1
6/ p = qtanABp = |0 cosfy; —sinby;| -4 tanAp (3.71)
W/ tan A& 0 sinfy; cosOy; tan Ax

Further, the aerodynamic freestream angle of attack correction increment in the de-
flected frame of reference, Ai;, updates for the next iteration as follows:

A(k A (k)
Cloisej ~ CLinvj (3.72)
i j 27 ‘

The viscous sectional aerodynamic lift force coefficient, CL,UiSC, in deflected aerody-
namic frame of reference is obtained directly from the viscous database and is already
formulated with respect to the local deflected aerodynamic frame of reference. Finally,
by applying Equation 3.71 in the inverted form

1 1
tanAB p = Ry(0y;) - { tan AP (3.73)
tan Awx tan A&
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the freestream angle of attack correction increment, Aw, and side-slip correction incre-
ment, AB, can be recovered form A&; in the undeflected aerodynamic frame of refer-
ence, < Xg,Ya,Zq >, suitable for the linear VLM:

tan Aa = tan A& - cos 6, (3.74)
tan Af = tan A& - sin 6, ; (3.75)

FIGURE 3.12: Frame of reference arrangement of GEBT

3.5.3 Aeroelastic coupling procedure of aerodynamic and structural models

In Figure 3.12 the arrangement of all defined frame of references for the structural and
aerodynamic domains are shown: the aerodynamic undeformed body-fixed frame of
reference is defined as < x,,,,2z, > by pointing the x—axis to the farfield behind the
wing and y-axis along the wing. The linear VLM model is formulated in this frame
of reference even if the lattice is highly deflected and twisted. The corresponding non-
planar fixed aerodynamic frame of reference, < %,,74,2, >, is defined locally along
the deformed elastic axis of the wing. The coupling code is formulated according to
this frame of reference. Further, the local undeformed frame of reference of the beam,
< Xp,Yp,2p >, is defined by orienting the x—axis along the local axis of the beam ele-

ment and the z—axis upwards. The corresponding deformed local frame of reference of
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the beam is defined by < xp,yp,zg >. The last frame of reference axis is defined by
< Xf,Yf,2f >, which is the aerodynamic frame of reference of the employed Vortex—
Lattice method (VLM), where the x—axis is aligned along the local flow direction.

The sequential diagram of the employed FSI-coupling interface between GEBT and
FALCon can be seen in Figure 3.13. Here, within one inner loop of the coupling proce-
dure at first, the linear VLM or the hybrid q3D-solver are executed, which estimates
the aerodynamic loads on the currently deformed VLM lattice. Then, the aerodynamic
forces, 0F;, located at every VLM section, j, are transferred to the nodes of the GEBT
beam. Here, the aerodynamic loads, JF;, are obtained from the spanwise distributed
aerodynamic force coefficients, i.e. Cp;, Cs;and Cpj, in body attached frame of refer-

ence.

/ Initialise /

3

Run linear VLM or
hybrid q3D-solver

S F°

\

Run GEBT ]

f 16x°,8y",82°,80.,80°,50,

VA

[ Deform VLM lattice ]

Convergence?

yes
/ Finalise /

FIGURE 3.13: Schematics of the employed FSI-loop in FlexiFALCon

After the aerodynamic forces are mapped onto the beam nodes, the structural solver
GEBT[110] estimates the deflection and twist of the beam nodes and the inner strains
and forces of the beam are computed. The VLM lattice is deformed as the last step of
the inner loop by estimating the total displacement of every geometrical VLM lattice
vertices according to the beam deflection and twist. After that, the VLM vortex-ring lat-
tice, which is shifted by a quarter-chord from the geometrical VLM lattice, is updated,
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i.e. position of collocation point, four vortex-ring vertices and the normal vector of the
vortex—ring. The FSI loop continues until an equilibrium between the aerodynamic and

structural domain is reached.

3.5.3.1 Mapping of aerodynamic forces onto the structural FEM beam

The most complex and central aspect of a computational FSI-framework is the map-
ping of aerodynamic forces from the aerodynamic domain onto the structural domain
and then the deformation of the VLM lattice geometry with respect of the beam defor-
mation. In FlexiFALCon, the mapping procedure is shown in Figure 3.14 schematically.

FIGURE 3.14: Mapping of aerodynamic forces and deformation of VLM lattice verices
in FlexiFALCon

The sectional aerodynamic force, §F; (here: 0F?), at an arbitrary span position, j, of
the VLM lattice is obtained by either summing up all aerodynamic forces along i—
th direction at the section j (in linear mode) or obtaining them from the viscous sec-
tional database at the particular converged effective angle of attack, &, computed by
the aerodynamic q3D-coupling algorithm. In linear VLM the total sectional aerody-
namic force is always located at the quarter—chord of the current local wing section,
i.e. Ax,/c = 0.25. However, in hybrid nonlinear aerodynamic g3D-solver the sectional
aerodynamic force, 6F;, can be shifted along the local chord of the wing section accord-
ing to the actual sectional aerodynamic centre of pressure. The exact position of the

aerodynamic centre of pressure on a VLM section can be estimated as follows:

Ax dC
—F — 0254 —MID 3.76

C dCL ( )
Here, Cy,0.25 is the nonlinear viscous moment of the section with respect to the quarter—
chord position of the local chord and is obtained from the viscous sectional database
in the same way as the viscous lift force coefficient, Cy »;s., through interpolation of the
aerodynamic database at the particular span position, (y/b), and at current effective
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angle of attack, &,. The absolute position, X, of the sectional aerodynamic force, JF;,

in undeformed aerodynamic frame of reference, < x,, y,,z, >, is estimated as follows:

Axy Axy
XF] == ]. — T XLE,]' + TXTEJ (377)

Here, X is the position of the geometrical leading edge and Xt is the position of
the geometrical trailing edge of the j—-th VLM lattice mesh section. For the mapping
of the aerodynamic force, 6F;, onto the beam, the corresponding position on the beam,
le’z”‘b, needs to be estimated, see Figure 3.14. Here, ab means that Xll”zab is the corre-
sponding position on the beam used for the mapping of the aerodynamic force onto
the beam structure. For the correct interpolation, the distance between ij and Xll”zab
needs to be minimal. The minimal distance is given, when the vector < Xp].,X?’Z” b

and r;; = X2 — X! are orthogonal:
2 1 g

ro- (X5" — Xg) =0 (3.78)

Any point on a beam element segment can be represented in a parametrised way. The

point located on a beam section can be described as:

X = (1- )Xt +Ax5 (3.79)

with the parameter A defined in the interval {A € R| 0 < A < 1}. Thus, for the map-
ping procedure of the aerodynamic force, 5F;, at an arbitrary span position j of the VLM
lattice the beam element segment is selected, where A is in the required interval, and the
length of the vector < Xp, Xl{fb > is minimal compared to all other beam section. The
parameter A?’;b for the mapping of the aerodynamic force onto the FE-beam element

can be estimated as follows:

Xp. — Xb * T2
Ayt = ( ] 1> (3.80)
I -T2
Thus, the corresponding mapping position on the beam is:
Xi3" = (1= M0 + A (3.81)

The linear interpolation of the aerodynamic force, dF?, onto both nodes of the beam

section is preformed as follows:
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oF} = (1- ") oF, (3.82)
SF) =A3P SF; (3.83)

This both force contributions are only the contribution of the aerodynamic force vec-
tor, (SF]-, onto the corresponding two structural nodes of the particular FEM element
segment. They have to be added on top of the contribution of other spanwise aerody-
namic forces. Further, in the same manner the aerodynamic moments, SM?, and (5MZ2’,

are estimated at Xll’ and Xg:

oMy = (1= 25" (x¢ - X4") x oF (3.84)

oMb =5 (Xt —X{5") x oF, (3.85)

This is a mapping methodology based on linear interpolation techniques. In such a
mapping method the total force and moment in both, the aerodynamic and structural
domain after the mapping procedure are the same and no force and moment contribu-
tion can vanish or additional created.

3.5.3.2 Deformation of the VLM lattice

The deformation of the VLM lattice employs the same methodology. However, in VLM,
the positions of the aerodynamic force and the geometrical vertices of the lattice are lo-
cated at different places. Therefore, for the deformation of a vortex-ring vertex on the
VLM lattice the estimated location of the corresponding point on the beam, X?Z” b, is not
valid. The estimation of the reference point on the FEM beam segment with respect to

the position of a single VLM vortex-ring vertex, X?, is performed as follows:

(X* = X{) - 11

M=
I1p - I12

(3.86)

Here, ba means the direction of the mapping from the beam to the VLM lattice. For
every k-th node on the beam FEM mesh the resulting vector is described as follows:
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Ax?
Ay}
Az}
0L
0
075

£ (3.87)

Here, the first three items are the translational displacements of the beam node and the
last three items are the Wiener-Milenkovi¢ rotational parameters[103][102], which are
defined as follows:

05| =d- 4tan£ (3.88)

Here, fi = [n1,n3,13]7 is the rotation axis and has the length of |A| = 1, and ¢ is the
actual Eulerian rotation angle around that axis. From Y, 93 and 9§ the axis, i1, and the

rotation angle, ¢, are recovered and are used in the (3 x 3) rotation matrix:

n3(1—cosp)+cos¢  nyna(l—cos¢) —nzsing nynz(1—cos) + nysing
R(f,¢) = [nan1(1 —cos¢) +nzsing  n3(1—cos¢)+cos¢  nanz(1—cos¢) — nysing
nani (1 —cosp) —npsing nzna(l—cos¢) +nysing  n3(1—cos¢) + cos¢
(3.89)

By using /\ll’zb ? the corresponding position on the beam, Xll”zb ?, and the structural solution

vector, fﬁ”zb ? can be obtained through linear interpolation:

Xpp" = (1= A")X + A1 (3:90)

£57 = (1= AJ") 8 + ALy (3.91)

Finally, the aerodynamic vertex position, X{ iy of the VLM lattice is updated for the

next aeroelastic iteration, (i 4+ 1), as follows:

A b,bﬂ
X12
@ = X0 R(5P?, gl - (X” - xl{f;’“) + [ ayble (3.92)
Azh,b(l
12
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3.6 Summary

In this chapter the methodology of all related areas of this research has been discussed.
For the linear steady-state and unsteady VLM the formulation closely follows Katz and
Plotkin[45]. However, a nonplanar vectorised formulation of the aerodynamic forces is
applied here[84] allowing also to estimate aerodynamic loads on highly deformed and
nonplanar lattices accurately. Further, the formulation of the steady-state aerodynamic
gq3D—coupling algorithm is discussed and an extension to unsteady aerodynamics is
presented, which is the main novelty and scientific contribution of this thesis. The un-
steady aerodynamic q3D—coupling algorithm is not restricted to any type of unsteady
motion of the lattice geometry, for example only for harmonic oscillations in pitch or
plunge, and can be applied to any arbitrary wing kinematics as the unsteady nonlin-
ear aerodynamic viscous reference loads are estimated here on demand by the URANS
solvers embedded in the aerodynamic computational framework FALCon and can re-
spond to any type of unsteady motion of the lattice.

In the last section, aeroelasticity related topics are discussed: The open source FEM
code GEBT[110] representing the structural aspect of the wing as a nonlinear FE-beam
is briefly introduced. As the development of that structural model is not part of this
research, the reader is referred here to all related literature dealing with an anisotropic
nonlinear beam formulation. Further, the adoption of the steady—state aerodynamic
q3D-coupling algorithm to nonplanar aerodynamic coupling of deflected wings, which
is required during the aeroelastic analysis, is described and, finally, the computational
FSI-framework FlexiFALCon and its mapping procedures of the data between the struc-
tural and aerodynamic domain is presented. Here, the author extended the steady—
state a—based coupling algorithm by a side-slip correction angle to account also aero-
dynamic loads on non—-planar deflected wing geometries. In the following chapter the

results of validation campaigns for all major fields of this research are presented.
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Chapter 4

Results

In this chapter, the results of the validation campaigns are presented and the com-
putational framework is demonstrated by several test cases. The chapter starts with
Section 4.1 where the verification and validation results of the linear VLM in steady-
state and unsteady flow regimes are presented. During this research, the linear Vortex—
Lattice method (VLM) is implemented from scratch and is part of the computational
aerodynamic framework FALCon. Therefore, the implementation was followed by an
extensive validation campaign of the linear aerodynamic solver. Further, in Section 4.2
the validation results of the aerodynamic steady-state quasi-3D approach are pre-
sented, followed by Section 4.3 where the results of the validation campaign of the

unsteady aerodynamic hybrid coupling algorithm are shown and discussed.

In the last section of this chapter, Section 4.4, the results of the validation campaign
of FlexiFALCon are shown. FlexiFALCon is the computational FSI-wrapper of FALCon
and couples the linear or 3D aerodynamic solver with a nonlinear geometrically—exact
beam model. It performs, at the current state of the development, steady-state aeroe-
lastic analysis of highly flexible wings. Therefore, in Section 4.4.1 results are presented
of a high—aspect ratio wing in inviscid flow by running linear steady-state VLM of
FALCon in combination with the nonlinear beam model. Finally, in Section 4.4.2 the val-
idation campaign of FlexiFALCon is continued by validating this FSI-wrapper using a
NACA2412 high aspect ratio wing in viscous and compressible flow at several Mach-
numbers, where the presented hybrid aerodynamic coupling algorithm is used in the

numerical fluid-structure interaction analysis.
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4,1 Validation of the linear Vortex—Lattice Method

In this section the steady-state and unsteady VLM solvers are validated using simple
test cases. In Section 4.1.1 the steady-state linear VLM solver is validated by comparing
the obtained lift slope, C}, of swept and unswept thin-wing geometries to a reference
VLM code, and in Section 4.1.2 the linear UVLM model of FALCon is validated by us-
ing two test cases: A suddenly accelerated flat plate and a 2D aerofoil (VLM lattice of
AR = 100), which undergoes a forced harmonic oscillation in pitch and plunge. Here,
the results are compared to the algebraic model of Theodorsen describing a thin aero-
foil in unsteady flow regimes[91]. The purpose of this section is to demonstrate the
accuracy of the steady-state and unsteady linear VLM solver implemented in the com-
putational aerodynamic framework FALCon, which serves later on in the g3D-coupling
solver as the low—fidelity solver computing the 3D flow physics around a wing geom-

etry.

411 Steady-state VLM model

In this section the results of the validation campaign of the steady—state linear Vortex—
Lattice method (VLM) solver are presented. The purpose of this validation test case
is the demonstration of the accuracy of the implemented linear VLM solver in FALCon.
Therefore, a series of thin-wing geometries are examined and the resulting linear lift
slope, Cf, is compared with reference results obtained by Mark Drela’s VLM code
AVL[26] at various aspect ratios, AR, and sweep angles, A, of the wing geometry.

In Figure 4.1 the lift slope of a single flat plate, swept by A = 30°, is shown at vari-
ous aspect ratios, AR, where results of a coarse, middle and fine lattice of the same
geometry computed by the linear VLM of FALCon are compared. For the further val-
idation study the middle sized lattice is chosen, which is discretised along the chord
with N; = 8 and along the half-span of the wing with N; = 26 vortex-rings. The ver-
tices of the wing bounded lattice are equidistant distributed across the lattice and are

forming this way a uniform VLM vortex-ring mesh, see Figure 4.2b.

In Figure 4.2a the linear lift slope, C}, of the thin-wing geometries of various sweep
angles, A, are plotted versus the aspect ratio, AR = b/c. All lattices have a uniform
taper ratio of v = 1.0. Thus, the chord length along the span of the wing is uniform,
¢ = 1 m. All calculations for this study were carried out at a freestream angle of attack
of aee = 1.0°. The lift slope, Cf, is estimated from the obtained total linear lift, C;, of

the wing.
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FIGURE 4.1: Lift slope of a flat and swept plate (A = 30°) of various aspect ratios, AR,
obtained by linear VLM solver using three different mesh sizes of the lattice (coarse,
52 vertices, middle, 208 vertices, and fine, 832 vertices)

It can be seen that the linear steady—state VLM solver of FALCon matches the reference
results with good agreement. This validation study shows that the linear VLM solver
of FALCon is able to estimate aerodynamic loads on swept and unswept thin-wing ge-
ometries in inviscid flow at small angles of attack. Thus, the linear steady-state VLM
solver is suitable for further application within the iterative hybrid aerodynamic q3D-

coupling algorithm.
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FIGURE 4.2: Validation of the steady-state linear VLM model by comparing the results
to reference VLM model[26]
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4.1.2 Unsteady VLM model

This section concerns the validation of the UVLM for a set of canonical problems: a
suddenly accelerated flat plate of different aspect ratios, and a thin aerofoil undergoing
forced motion in two degrees of freedom.

4.1.2.1 Suddenly accelerated flat plate

The lift coefficient build—up for a suddenly accelerated flat plate is reported in Figure 4.3
for values of the aspect ratio (AR) from 4 to infinity. The VLM lattice is subdivided into
N; = 4 chordwise and Nj = 26 spanwise vortex-ring elements, which vertices have
an equidistant distribution long the chord and span. For the special case of AR = oo,
the flow is fully 2D. Practically, the UVLM uses for this special case a sufficiently large
aspect ratio (AR = 100) combined with one spanwise panel, N; = 1, to neglect mod-
elling 3D effects. A nondimensional time step AT = 1/16 is used for all unsteady
analyses, where the reduced time, 7, is defined as follows:

tVoo
T =

o (4.1)

Here, t is the physical time, ¢, is the reference chord length of the aerofoil and Ve
is the freestream velocity. The initial impulsive part and the trend to steady-state for
increasing times are well captured. Reference data are from Ref. [45].

As it can be seen in Figure 4.3, the results of the employed linear UVLM are matching
the reference data from Katz and Plotkin[45] with a good agreement. This validation
test case demonstrates that the unsteady linear VLM is implemented correctly and is
able to estimate the unsteady time depended aerodynamic loads on a flat unswept plate
of various aspect ratios, AR, while accelerated suddenly to constant velocity.

4.1.2.2 Forced motion of a thin aerofoil in pitch and plunge

The second validation test case is for a thin aerofoil undergoing a prescribed motion.
The test case introduces the dependence on two degrees of freedom that are indepen-
dently excited with the reduced frequency of oscillations:

- w Cref

k== (4.2)
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FIGURE 4.3: Sudden acceleration of a flat plate (N; 8, N; 26) of different aspect ratios
AR at freestream angle of attack &« = 5.0° performed with linear unsteady Vortex-
Lattice Method and compared to Katz and Plotkin (Ref [45])

Here, w is the angular velocity, ¢,y is the reference chord length and Vi is the freestream
velocity. For an harmonic motion, the time history of the pitch degree of freedom is de-
fined by

a(t) = ag + apsin (2kT) (4.3)

where «g is the mean value and a4 the amplitude of oscillations. Similarly, for plunge

¢ (1) = Co + Casin(2kT) (4.4)

where ¢ = h/c represents the nondimensional plunge or heave. Two types of motion
are here considered: 1) a pure pitch, defined by parameters ap = 0° and a4 = 2.5°%
and 2) a pure plunge, o = 0and {4 = 0.1. For both types of motion, three values of
the reduced frequency are used: k = 0.5,1.0 and 1.5.

In the UVLM, the 2D aerodynamics around the thin aerofoil is obtained using one panel
in the spanwise direction, as in the previous Section for AR = oco. The number of
chordwise panels was determined by a convergence study, similarly to Ref. [59], and
this is summarised in Table 4.1. It is worth noting that the nondimensional time step
satisfies the relation AT = 1/N,.
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This ensures that the chord length of new wake panels shed into the wake is equal to
the chord length of wing bounded panels. The freestream velocity is in all cases con-
stant: Vo = 100.0 m/s.

k Nl' N] AT[—]
05 25 1 0.0400
1.0 28 1 0.0357
1.5 42 1 0.0238

TABLE 4.1: Lattice discretisation and physical time step sizes used for the test cases

Hysteresis loops are shown in Figure 4.4. Here, the third cycle of the unsteady results
is presented where the initial transients are not present and only the periodic nature of
the lift coefficient is highlighted. Reference data are obtained using Theodorsen’s ana-
lytical model [91]. Good match between the analytical curves and the results obtained
by the linear UVLM of FALCon can be observed for all cases, ranging from low to high
values of the reduced frequency.
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(A) Airfoil at harmonic plunge oscilla- (B) Airfoil at harmonic pitch oscillations,
tions, amplitude A(h/c) = 0.2 amplitude Aa = 5.0°

FIGURE 4.4: UVLM versus Theodorsen at various reduced frequencies k = 0.5,k = 1.0
and k = 1.5

4.2 Steady-state aerodynamic model

In this section results of the validation campaign of the steady—state aerodynamic hy-
brid q3D-coupling approach are presented. In the first part, a NACA2412-wing geom-
etry is used with various geometrical parameters. The purpose of this test campaign
is to validate the steady-state nonlinear aerodynamic solver in combination with aero-
dynamic sectional data computed by the 2.5D+ ISW-RANS CFD solver on swept and
unswept wing geometries at several flow velocities. The first part of this NACA2412-

test case contains also flow regimes at high freestream angles of attack, where the flow
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is usually affected by flow separation, see Section 4.2.1. The systematic validation cam-
paign using the NACA2412-wing continues further by analysing the accuracy of the
steady-state aerodynamic g3D-coupling solver on the wing geometry with various ge-
ometrical sweep angles, A, and taper ratios, .

In Section 4.2.2 the second test case is presented. Here, the validation campaign contin-
ues by using the DLR-F4 wing/body configuration in transonic flow regimes. This test
case uses a much closer geometry to modern commercial airliners containing a wing

with complex geometrical parameters and a fuselage.

4.2.1 Systematic study around a NACA2412-wing in steady-state flow con-
ditions

The first test case is for a NACA2412 aerofoil-wing of an aspect ratio of AR = 10 with
various geometrical parameters, i.e. sweep angles, A, and taper ratios, y. This sec-
tion is subdivided into three main subsections: In Section 4.2.1.1 a validation study is
conducted, where the aerodynamic loads, obtained by the hybrid g3D-coupling code
at various freestream angles of attack, a, are compared to reference data obtained by
three—dimensional DLR-tau CFD code. For this study two wings, an unswept, A = 0°,
and a swept wing, A = 30°, of a constant taper ratio of 7y = 1.0 are used. The freestream
angles of attack are also covering stall- and near post—stall flow conditions. Further, the
calculations are performed at three Mach-numbers, M = 0.3, M = 0.5and M = 0.7,
to demonstrate the unified capabilities of this novel solver regarding the aerodynamic
load estimation at low— and high—speed flow regimes. Furthermore, in Section 4.2.1.2
a sweep variation study of the same wing is conducted. Here, during this study, the
freestream angle of attack is kept constant at ., = 3° and the aerodynamic load esti-
mations are compared on the NACA2412-wing with various geometrical sweep angles.
This study is carried out also at the same three Mach-numbers, M = 0.3, M = 0.5 and
M = 0.7, and investigates the dependence of the accuracy of the novel aerodynamic
q3D-coupling solver with respect to the geometrical sweep of the wing, A. Finally, in
the last Section 4.2.1.3 the results of a validation study are discussed where the taper
ratio, 7, of the A = 30° swept NACA2412-wing is varied. The validation is carried
out also at constant freestream angle of attack of « = 3.0°. The aim of this study is
the analysis of the accuracy of this novel hybrid coupling algorithm with respect to the
geometrical taper ratio of the wing.

The results obtained by FALCon are compared to equivalent three-dimensional numer-
ical data obtained by full-fidelity three-dimensional CFD code DLR-tau. Therefore,
a structured volumetric CFD mesh of the NACA2412-wing with 2 - 10° grid nodes
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FIGURE 4.5: Three-dimensional volumetric CFD mesh of the swept NACA2412-wing
(A = 30°) employed for three-dimensional CFD simulations

around the NACA2412-wing is created. The tip of this wing is kept flat. The two-
dimensional CFD aerofoil mesh, used for the computation of the nonlinear sectional
lift curves, is extracted directly from the symmetry layer of the three—dimensional
mesh and contains 25.7 - 10° grid points. For the computation of the lift curves for
swept wing sections this 2D mesh is then stretched vertically by the factor obtained
from Equation 3.45. The employed 3D and 2D CFD meshes are of the structured O-
grid mesh type. The farfield is located 100 chord lengths away from the wing geom-
etry. The chord length of the wing is constant along the span, ¢ = 1 m. The three-
dimensional mesh used for calculations of swept wings, A > 0°, or tapered wing ge-
ometries, v = ¢1/co < 1.0, are modified by skewing and transforming the mesh point
locations of the original unswept wing CFD mesh. In Figure 4.5 the three—dimensional
swept and non-tapered CFD mesh is presented, and in Figure 4.6 the two—dimensional

CFD mesh, which is also the symmetry layer of the three-dimensional grid, is shown.

The initial wall spacing of the 2D and 3D CFD-grids at the wall boundary is set to
Ayo=13- 107° m to ensure that the dimensionless wall distance condition, y+ < 1.0,
is satisfied. Due to vertical stretching of the two—dimensional meshes necessary for
the 2.5D+ computations of the sectional database at a particular sweep angle, A, the
initial wall distance, Ay, is also stretched. Thus, the maximal initial wall distance
is Ayp = 1.7 -107° for the 2D CFD grid, employed during the computation of sec-
tional aerodynamic database at a maximal geometrical sweep of this validation study of
A > 40°. However, the non—-dimensional wall distance condition is kept in all simula-
tions under y* < 1.0 with the purpose to resolve the viscous boundary layer accurately.
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FIGURE 4.6: Two—dimensional CFD grid of the NACA2412 airfoil (25704 grid points)
extracted from the three—-dimensional mesh
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As the temporal relaxation solver an implicit backward Euler—scheme in combination
with a local steady-state time-stepping approach is employed. Further, the second-
order central scheme is used to discretise the convective RANS flux. All computa-
tions are carried out at a constant Reynolds-number of Re = 5.5 - 10°. The one equa-
tion Spalart-Almaras turbulence model in its original formulation is used to model
the turbulent flow[88]. The gas constant is set to ¥ = 1.4 and the Prandtl-number to
Pr = 0.72. The described parameters are identical for 3D and corresponding sectional
2D CFD computations to ensure that the sectional two—dimensional flow corresponds

to the three—-dimensional flow.

4.2.1.1 Dependence on angle of attack

In this subsection results of the NACA2412-wing study are presented where the freestream

angle of attack a, is varied. This validation campaign is conducted separately on a
swept wing, A = 30°, and an unswept wing, A = 0°, with the purpose to asses the ac-
curacy of the hybrid g3D-coupling code at various Mach-numbers, M, and freestream

angles of attack, a, including also near post—stall flow regimes, i.e. & > gy

The results of the corresponding variation of the employed unswept VLM lattice dis-
cretisation is presented in Figure 4.7 for Mach M = 0.7. Three lattices are used with
different vortex-ring resolutions. It can be seen that the numerical solution is already

here independent from the lattice resolution.
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Therefore, for the further results, presented in the following sections, the lattice is used,
which is discretised in N; = 5 chordwise and N; = 25 spanwise vortex-rings on the

half-wing.
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FIGURE 4.7: Variation of the VLM lattice size of the unswept NACA2412 wing at
M = 0.7 (coarse: N; = 3, N; = 13, middle: N; =5, N; = 25, fine: N; = 10, N; = 50)

Further, in Figure 4.8 the variation of the 2D angle of attack interval, Ax, of the em-
ployed precomputed viscous 2D database of NACA2412 is presented and compared
between 3D results estimated on the q3D—coupling alpgorithm while employing the
middle sized VLM lattice. Also here, it can be seen that a resolution of the precom-
puted viscous database with an interval of Aa = 1.0° is sufficient for the further in-
vestigation. As a general rule of thumb it has to be noted that the viscous sectional
aerodynamic aerofoil database should be resolved by « in stall regions with a smaller
Aux interval, whereas at linear part of lift curve (at small freestream angles of attack)

two or three data points are sufficient.
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FIGURE 4.8: Variation of the angle of attack interval in the viscous NACA2412 2D
airfoil database using the unswept wing geometry at M = 0.7
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Unswept wing

For the unswept wing the required NACA2412 aerofoil lift and drag curve for the hy-
brid coupling procedure is computed only by the 2D DLR-tau CFD solver as no geo-
metrical sweep of the wing is present. In Figure 4.9 the overall lift and drag force coeffi-
cients, C, and Cp, are presented of the unswept wing of an aspect ratio of AR = 10 for
all three Mach-numbers in steady-state flow condition. The data is obtained by the pre-
sented steady-state hybrid q3D-coupling code and is compared to three—dimensional
CFD reference data and classical linear VLM.

At low—speed flow regimes, M = 0.3, the total lift force coefficient, C;, matches at low
freestream angles of attack, a«, the reference data obtained by linear VLM. However, at
higher freestream angles of attack the overall lift slope, C7, is decreased due to flow sep-
arations on the wing, which the linear VLM can not capture. At higher Mach-numbers
it can be seen that the overall pre—stall lift slope, C7, at moderate freestream angles of
attack is slightly higher compared to the subsonic incompressible reference lift slope ob-
tained by classical linear VLM, see Figure 4.9c and Figure 4.9e. This happens due to the
additional compressibility effects, which are impacting the flow especially at M = 0.7.
Further, it can be observed, that the total drag force coefficient, Cp, see Equation 3.60,
estimated by the hybrid q3D—coupling code matches perfectly three-dimensional ref-
erence data. Also, it can be seen, that the classical linear VLM is only resolving the
induced component of the drag force coefficient, Cp, of the thin—-wing lattice which is

lower compared to the three-dimensional reference drag obtained by 3D CFD.

Athigh angles of attack the flow is affected by local flow separations. Thus, in Figure 4.10
the pressure coefficient, ¢, of three-dimensional numerical CFD results is shown on
the upper—surface of the wing. Further, in the same figures the friction coefficients,
Cfqs Cry and ¢y, are used to plot the stream lines. In Figure 4.10a for M = 0.3 it can
be clearly seen that the separation is first time present at a freestream angle of attack
of ae, = 13° and progresses from the trailing edge towards the leading edge uniformly
along the span of the wing. At high flow velocities, M = 0.7, the separation is first time
present between ao, = 1° and ao = 5° and progresses in the same way as in subsonic

flow regimes towards the leading edge of the wing, see Figure 4.10c.

The spanwise local lift distribution, Cy, can be seen in Figure 4.11 for this unswept wing
for the Mach-number M = 0.3, M = 0.5 and M = 0.7. At pre-stall conditions the hy-
brid q3D solver can obtain accurate load distributions on unswept wing geometries.
However, at higher freestream angles of attack, a., at stall and post-stall flow regimes
the estimation of local spanwise lift is affected by discrepancies, as it can be seen for ex-

ample for M = 0.5 and M = 0.7. The reason for the discrepancies which are present at
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obtained with three-dimensional CFD (DLR-tau, 3D), A = 0.0°, Taper ratio y = 1.0
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FIGURE 4.11: Lift distribution along wing span of unswept NACA2412 wing, Sweep
A = 0.0°, Taper ratio v = 1.0

high freestream angles of attack, a., is the violation of the assumption that the flow is
locally fully developed along the span of the wing, i.e. 9(-)/dy’ = 0[31], and therefore
along the spanwise axis of the wing independent. Here, i/’ is the spanwise axis along
the quarter—chord line of the wing and is only identical to y—axis in case of an unswept
wing. For example, in Figure 4.10c it can be seen for « = 9.0° that a separation vortex
is present at nearly 75% of the half-span of the wing. This is a three-dimensional local
aerodynamic effect on the surface which leads to a not fully developed local flow in
this region of the wing. The hybrid q3D-coupling code, based on this assumption, is
not able to resolve accurately the flow in this region leading to the discrepancies of the
local spanwise lift force coefficient, C;. At moderate and higher freestream angles of
attack, ao, the spanwise flow along the span (excluding the near wing tip region due
to the wing tip vortex) is fully developed leading to correct estimation of the overall
aerodynamic force coefficients and spanwise distributed wing loads.

The local flow physics for compressible Mach-number M = 0.7 can be seen for a« = 1.0°
in Figure 4.12, for for « = 5.0° in Figure 4.13 and for « = 9.0° in Figure 4.14. The sec-
tional ¢)— and cy—distribution is obtained by computing the aerodynamic flow in 2D
CFD at the particular effective angle of attack, «,, of the converged FALCon solution at
several span positions. It can be seen, that the sectional ¢,— and cy-distributions are
matching the reference three-dimensional CFD results with a good agreement on most
span positions of the wing and at most freestream angles of attack, . However, it can
be also noted that the accuracy of the estimations is in general decreased at the wing
tip area compared to the corresponding three-dimensional CFD solution. The position
of the suction peak is slightly mismatched at 90% of the half-span due to the present

wing tip vortex, which is a local three-dimensional flow phenomena.



4.2. Steady-state aerodynamic model 89

Thus, at the wing tip region of the wing the flow is not along the span fully developed
and therefore not in the spanwise direction independent. Therefore, the validity of the
hybrid coupling algorithm is in this region of the flow not given as the q3D coupling

algorithm assumes always a spanwise independent sectional flow.

On the other side, it has to be noted that the presented q3D-approach is well capturing
the sectional separation of the unswept wing at high angles of attack. In the region,
where the flow is separated the pressure coefficient, ¢, stays constant and the friction
coefficient, cs, become negative along the chord due to reversed flow. This can be ob-
served in Figure 4.13 and Figure 4.14.

Finally, in Table 4.2 the local relative error of the sectional aerodynamic lift force coeffi-
cient, Cr, is presented. This error is evaluated as follows:

Ae — Cruwvim — CrLap (45)
Cr3p

It can be seen, that the error at several span positions is below 1%. However, at tran-
sonic flow regimes (M = 0.7) and high angles of attack (xe = 9°) the error rises nearly
to 6% of the local aerodynamic lift force coefficient, Cr, compared to three—dimensional
reference CFD results.

Spanwise location
M  as 25% 50% 75% 90%
0.3 1.0° 070 075 120 0.76
05 10° 071 070 1.00 0.40
0.7 1.0° 043 020 000 075
03 5.0° 067 058 0.60 043
05 5.0° 066 049 034 0.15
0.7 5.0° 090 124 082 1.09
03 9.0° 074 061 072 204
0.5 9.0° 086 058 060 213
0.7 9.0° 218 443 685 575

TABLE 4.2: Relative error, Ae, of the local spanwise lift between aerodynamic q3D-
coupling algorithm and 3D DLR-tau on unswept NACA2412-wing in percent
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FIGURE 4.12: Sectional data of unswept NACA2412 wing, M = 0.7, aeo = 1.0°, A =
0.0°
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Swept wing

For the swept wing the computation of the aerodynamic sectional data is preformed in
local frame of reference, which is shown in Figure 3.7a as the (A’ — A’) cut. Therefore,
the contour of the employed two—dimensional NACA2412 CFD grid stencil is stretched
by factor (1/ cos A) = 1.1547 along the z—axis as shown in Figure 3.7b. The swept wing
has a uniform sweep angle of A = 30° and is not tapered, i.e. y = 1.0. The planform of
the half-wing can be seen in Figure 4.17 at different freestream angles of attack, a«, and
three Mach-numbers, M = 0.3, M = 0.5and M = 0.7. Here, the non—-dimensional pres-
sure coefficient, c,, is shown on the upper wing surface. The friction coefficients, c s
cfy and ¢, are used to plot the stream lines on the contour of the three-dimensional

wing.

In Figure 4.15, the overall lift and drag force coefficients, C;, and Cp, of the entire swept
wing are shown at several freestream flow conditions. The data computed by FALCon is
also here compared with three-dimensional CFD results and classical linear VLM. Two
datasets of the aerodynamic data obtained by the hybrid g3D-coupling code are pre-
sented, where the first one is obtained in combination with classical two-dimensional
sectional aerofoil dataset, where crossflow effects are neglected, and the second one
with the sectional dataset computed by the 2.5D+ ISW-RANS solver. In this figure it
can be seen that with the increase of the Mach-number the lift slope, C%, is also in-
creased at moderate angles of attack. For the linear VLM, the lift slop is not affected
by the compressibility of the fluid (and therefore independent from the Mach-number)
due to the assumption that the potential flow is incompressible. However, in viscous
nonlinear flow the lift slope, C}, is affected by the Mach-number M. Therefore, in
Figure 4.15e it can be seen that the hybrid aerodynamic q3D—coupling code in combi-
nation with sectional aerodynamic data obtained by the 2.5D+ ISW-CFD solver is able
to predict the correct lift slope at M = 0.7 until ., = 5.0°. However, the employment
of classical 2D sectional aerodynamic data with neglected crossflow effects in the aero-
dynamic coupling code leads to a slightly overestimated lift slope, C§, compared to
three—dimensional CFD reference data.

In this example case, where the lift and drag prediction of a swept wing configuration
with a sweep of A = 30° is studied, it is notable that the maximal lift force coefficient,
CL,max, is estimated less accurate compared to predictions in the previous example of
the unswept geometry of the NACA2412-wing. As it can be seen in Figure 4.17 at
M = 0.7 and ae = 9.0° the flow is highly separated and therefore along the quarter—
chord line, i/, see Section 3.3, not locally developed. Therefore, at this flow condition
the validity of the 2.5D+ ISW-CFD model in combination with the coupling code is
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not given and therefore the maximal lift force coefficient, Cr 4y, is Overestimated com-
pared to three-dimensional reference CFD data.

The local lift distribution of the swept half~wing is shown in Figure 4.16 for Mach-
numbers M = 0.3, M = 0.5 and M = 0.7. Here, it needs to be noted that the coupling
code is able to estimate the characteristic shape of the lift distribution of a swept wing,
where the maximal local lift of the wing is shifted away from the symmetry layer to-
wards the mid-span area of the half-wing. Also, it can be seen that the local lift is
estimated much more accurately by the coupling code in combination with 2.5D+ sec-
tional aerodynamic data compared to numerical results of the coupling code where
crossflow is neglected (sectional 2D aerofoil dataset). Especially at high—speed flow
regimes, crossflow effects have to be considered during the coupling procedure, as this
comparison demonstrates. At M = 0.7 and ae = 9.0° the coupling code fails to esti-
mate the load distributions partly as here the upper surface of the wing is nearly com-
pletely covered by a complex three—dimensional separated flow, see Figure 4.17c, and
therefore the validity of the aerodynamic g3D-coupling model in combination with 2D
and 2.5D sectional aerodynamics is not given as no homogeneous flow along the span

direction of the wing is present.
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o DLR-tau, 3D

0,20.00 02222204

C.[]
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(A)Mach M =0.3 (B) Mach M =05 (c)Mach M =0.7

FIGURE 4.16: Lift distribution along wing span of swept NACA2412 wing, Sweep
A = 30.0°, Taper ratio y = 1.0

The sectional aerodynamic flow data at M = 0.7 is presented in Figure 4.18 for a, = 1.0°,
in Figure 4.19 for ae = 5.0° and in Figure 4.20 for ae = 9.0°. Here, ¢, and ¢ plots are
shown for 25%, 50%, 75% and for 90% of the half-wing. Sectional data obtained with
the coupling code including and excluding crossflow effects are compared against nu-
merical sectional results of the reference three-dimensional CFD data obtained by 3D
DLR-tau CFD code. The difference of sectional c, and cf plots between the results ob-
tained with the steady-state aerodynamic g3D-coupling method incorporating 2D and
2.5D+ sectional aerodynamic database is clearly visible, especially for high-speed flow
regimes. For example, by neglecting the local crossflow at transonic flow velocities (2D
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(¢) Mach M = 0.7

FIGURE 4.17: Nondimensional pressure coefficient, ¢, of swept NACA2412 wing ob-
tained with three-dimensional CFD (DLR-tau, 3D), A = 30.0°, Taper ratio y = 1.0
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sectional dataset) the coupling code overestimates slightly the non-dimensional pres-
sure coefficient, ¢y, at ac = 1.0°. Further, at ac = 5.0° the position and magnitude
of the suction peak of the sectional non-dimensional pressure distribution, c,, is not
estimated correctly when classical 2D sectional aerodynamic data is employed during
the coupling procedure. This leads to the slightly overestimated lift slope, Cf, shown in
Figure 4.15e. Thus, here, it is demonstrated that on swept-wing geometries, especially
at transonic Mach-numbers, the employment of sectional aerodynamic data, which in-
cludes the crossflow effects, is necessary to estimate correctly the local compressible

aerodynamic load.

Finally, in Figure 4.20 the sectional aerodynamic flow comparison is presented at M = 0.7
and as = 9.0°. As already mentioned, at this flow condition the validity of the aero-
dynamic q3D—coupling method is not given as here the upper surface of the wing sec-
tion is mostly covered by separated flow, which is not locally fully developed and,
therefore, is not independent with respect to the quarter—chord line of the wing. The
aerodynamic q3D-coupling methodology assumes always an independent flow along
the local quarter—chord line, as described in Section 3.3. Therefore, it fails to predict
at this flow condition the aerodynamic wing load accurately. Compared to the three—
dimensional reference CFD data it can be seen that the presented aerodynamic q3D-
coupling method in combination with the 2.5D sectional aerodynamic data overesti-
mates the local lift at the upper—front part of the four wing sections and is not estimat-
ing here separated flow, as the corresponding non—dimensional friction coefficient, cf,
is positive (thus, no reverse flow is present). This leads to an overestimated overall
lift force coefficient, C;, and an underestimated drag force coefficient, Cp, compared
to three-dimensional reference CFD data. This can be clearly observed in Figure 4.15e
and Figure 4.15f.

Spanwise location

2D aerofoil 2.5D aerofoil

M  aew | 25% 50% 75% 90% | 25% 50% 75%  90%
03 1.0°| 339 265 075 272|181 1.08 075 410
05 10°| 523 429 194 18 |175 080 136 477
0.7 1.0°|1095 980 637 194 | 073 048 319 6.36
03 5.0°| 265 252 123 130 |127 112 009 244
05 50°| 426 411 252 021 |095 074 064 296
07 5.0°| 123 093 087 033|110 080 194 385
0.3 9.0°| 352 403 299 012 |171 214 126 152
05 9.0°| 503 591 48 157 | 118 192 115 1.53
0.7 9.0°19.79 2215 16.52 20.02 | 8.65 42.72 38.03 30.69

TABLE 4.3: Relative error, Ae, of the local lift between aerodynamic g3D-coupling
algorithm and 3D DLR-tau on swept wing (A = 30°) in percent
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4.21.2 Dependence on sweep angle

In this section the validation campaign is continued, where the sweep of the NACA2412
wing at a constant freestream angle of attack of ao, = 3° is varied. The purpose of this
validation study is to analyse the accuracy of the coupling algorithm estimating aero-
dynamic loads on swept wings. The study is carried out at subsonic and transonic
flow regimes, i.,e. M = 0.3, M = 0.5 and M = 0.7. The wing geometries have a con-
stant taper ratio of vy = 1.0. The employed wing geometry can be seen in Figure 4.21
for A = 0° and A = 40°. Here, the non-dimensional pressure coefficient, c;, is shown,
which is obtained by the three-dimensional DLR-tau solver at M = 0.7 at a freestream
angle of attack of a, = 3°. The corresponding 3D CFD meshes are obtained by displac-
ing the mesh points of the unswept 3D CFD mesh along the x—axis according to the
corresponding sweep angle, A. The spatial distribution of the grid points and the size
of the mesh are not changed.

In Figure 4.22 the aerodynamic lift force distributions are presented for the NACA2412-
wing with four different sweep angles between A = 0° and A = 40°. As it can be seen,
the steady-state aerodynamic q3D-coupling algorithm is able to reproduce reliable
aerodynamic results when it is used with sectional aerodynamic data of the NACA2412
aerofoil precomputed with the 2.5D+ ISW-RANS CFD solver. However, when sectional
aerodynamic data of the NACA2412 aerofoil precomputed with conventional 2D CFD

{

T T T T T

y/b,,=0.50 frrmeme -

(A) Sweep A =0° (B) Sweep A = 40°

FIGURE 4.21: Nondimensional pressure coefficient, c, of NACA2412 wing of different
sweep angles at M = 0.7 and a« = 3.0° obtained with three-dimensional CFD (DLR-
tau, 3D)
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solver is used, the aerodynamic q3D-coupling algorithm overestimates the local sec-
tional lift. This happens especially at high Mach-numbers, M, and sweep angles, A, as
it can be seen in Figure 4.23 for a wing section at 50% of the half-span.

_____ FALCon, 2D database

FALCon, 2.5D database
DLR-tau, 3D

602 04 06 08 1 602 04 06 08 002 04 06 08 1

y/ b1/2 [-] y/ b1/2 [ y/ b1/2 [
(A) Mach M = 0.3 (B) Mach M = 0.5 (¢)Mach M = 0.7

FIGURE 4.22: Lift distribution along wing span, Taper ratio v = 1.0, « = 3°

The reason for the overestimated local lift, Cr,, which is obtained with the aerodynamic
q3D—coupling method in combination with nonlinear 2D aerodynamic data, can be
seen in Figure 4.23. Here, the ¢, plot is showed for the particular swept wing at the
mid-span of the half-wing, y/b;,, = 0.5, at various Mach-numbers, M. Especially at
M = 0.7, it can be seen that the position of the local pressure suction peak of the sec-
tion is not estimated correctly when 2D sectional aerodynamic data of the NACA2412-
aerofoil on swept wing geometries is employed, as the crossflow component of the
velocities is not considered in the boundary layer. Thus, for a successful application
of the aerodynamic q3D-coupling method during high—speed or transonic aeroplane
wing design procedures it is necessary to apply the novel efficient 2.5D+ ISW-RANS
CFD solver to take accurately also crossflow phenomena into account.

Finally, in Table 4.4 the relative error of the local lift force coefficient, C;, is shown be-
tween the steady-state aerodynamic q3D—coupling approach and the three—dimensional
reference lift. The error is obtained using Equation 4.5. It can be seen that especially at
A = 40° relatively huge discrepancies are present at M = 0.7 when the aerodynamic
gq3D—coupling approach is used with a 2D sectional aerodynamic dataset.
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FIGURE 4.23: Non-dimensional pressure coefficient, c,, at various sweep angles and
Mach numbers, aoo = 3.0°, /b1, = 0.5
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2D aerodynamic dataset

2.5D aerodynamic dataset

Sweep M03 MO05 MO0.7 M03 MO05 MO0.7
0.0° 0.71 0.66 0.54 0.71 0.66 0.54
10.0°  0.65 0.50 0.74 0.79 0.90 1.01
20.0°  0.25 0.90 1.24 0.31 0.62 1.99
30.00 221 3.76 7.61 083 047 121
40.0°  5.98 8.69 16.39 297 285 1.66

TABLE 4.4: Relative error, Ae, of the local lift at the mid-span section of the half-wing

(y/by /2 = 0.5) during the sweep variation
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4.2.1.3 Dependence on taper ratio

In this final subsection results of the NACA2412 test case are presented where the taper
ratio, 7y, of the NACA2412 swept wing geometry with a constant geometrical sweep of
A = 30° is varied at a constant freestream angle of attack of « = 3°. This validation
study is also performed at three different Mach-numbers reaching from M = 0.3 till
M = 0.7. The purpose of this validation test case is to capture flow physics on tapered
wing geometries using the implemented q3D-approach.

For this variation, the taper ratio of the three-dimensional CFD mesh of the swept wing
is modified by skewing the grid points of the 3D CFD grid to meet the geometrical ta-
per ratio of the respective wing. The sweep, A = 30°, of the employed wing geometries
is defined with respect to the quarter—chord line of the wing and is constant along the
span. For the predictions with the hybrid q3D—coupling algorithm the VLM lattice is
also modelled as tapered wing geometry. The employed 2.5D aerodynamic sectional
database along the span of the wing is precomputed for a constant sweep angle of
A = 30°.

In Figure 4.24 the planform of the two tapered variants of the swept NACA2412-wing
are presented. Here, the geometry of the considered tapered wings is shown and pres-
sure coefficient, c,, is plotted on the upper surface of the wing, which is obtained by
the three-dimensional DLR-tau CFD code at M = 0.7.

The numerical results are presented as spanwise lift distribution in Figure 4.25. Here,
it can be seen that due to the sweep of the wing and the additional taper ratio,i.e. v < 1,
the outboard spanwise distributed lift is more pronounced with increasing Mach-number,
M, and decreasing taper ratio, -y, than the inboard aerodynamic lift. It can be seen that
the steady-state g3D-algorithm of FALCon is able to reproduce the same spanwise lift
distribution as the equivalent 3D CFD-RANS method. However, a notable overall dis-
crepancy of the spanwise local lift force coefficient, Cy, is visible on the wing geometry
with the taper ratio of y = 0.5 at high—speed flow regimes, M = 0.7. Here, the dis-
crepancy between results is maximal at nearly /by, = 0.75 of the half-span of the
wing. The corresponding non-dimensional pressure coefficient, c,, of this wing at the
same flow condition is presented in Figure 4.26, where in Figure 4.26¢ the pressure co-
efficient, c,, is shown at 75% of the half-span of the wing for M = 0.7. It can be seen,
that FALCon is slightly underestimating this section. Also, it can be seen that due to the
tapered wing geometry the suction peak is located closer to the leading edge in the 3D

results.
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(A) Taper ratio v = 0.50

(B) Taper ratio y = 0.75

FIGURE 4.24: Nondimensional pressure coefficient, ¢, of NACA2412 wing of dif-
ferent taper ratios and swept by A = 30° around quarter—chord line at M = 0.7 and

oo = 3.0° obtained with three-dimensional CFD (DLR-tau, 3D)

The local error of the sectional lift force coefficient, C;, can be seen in Table 4.5. The

error is estimated using Equation 4.5. It is notable that at high Mach-number, M = 0.7,

and at the low taper ratio of v = 0.5 the error can reach up to 4.5% of the local lift.

0.61 _
0.5F
T 0.4
- A% v=0.5
o 1=0.75
0.3F v=1.0
0.2k FALCon, 2.5D database \
. A DLR-tau, 3D L
0 02 04 06 08 02 04 06 08 10 02 04 06 08 1
y/b [] y/by [-] Y/byp [-]

(A) Mach M = 0.3

(B) Mach M = 0.5

(c) Mach M = 0.7

FIGURE 4.25: Lift distribution along wing span, Sweep 30.0°, x = 3°
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FIGURE 4.26: Sectional data of tapered and swept NACA2412 wing, M = 0.7, aeo =
3.0°, A =30.0°,v =05

y/bl/z =05 y/bl/Z =0.75
Taper ratio M 03 MO05 M0.7 M03 MO05 MO0.7
0.50 0.81 144 359 099 187 446
0.75 005 053 239 077 150 376
1.00 071 033 128 066 127 319

TABLE 4.5: Relative error, Ae, of the local lift during the taper ratio variation (2.5D
aerodynamic database) in percent

4.2.2 DLR-F4 wing body configuration in steady-state flow

The validation campaign is continued using the DLR-F4 wing/body configuration
which contains a swept and twisted nonplanar wing geometry. This geometry con-
tains a fuselage. The purpose of this test case is the demonstration of the capabilities of
the novel computational framework to estimate rapidly aerodynamic loads on a, for the
civil aerospace industry highly relevant, configuration at transonic flow regimes. The
geometry of this configuration is presented in Figure 4.27 which was defined in 1994
by the German aerospace agency, DLR![74]. Several experimental wind tunnel mea-
surements of this configuration were conducted by three major European aerospace re-
search agencies[5]. Nowadays, this experimental data obtained from this experiments
is widely used to validate numerical CFD frameworks.

This wing/body geometry is inspired by a typical geometry of a modern commercial
airliner. The aspect ratio of the DLR-F4 wing is AR = 9.5 and the taper ratio is v = 0.3.
The dihedral of the wing is 4.8° and is constant along the span. The sweep angle at the
leading edge of the wing is constant at A = 27.1°. The wing consists of two trapezoidal
wing sections. Thus, the quarter chord line of the inner section is sweptby A;,4 = 21.0°
and the quarter chord line of the outer section is swept by A4 = 25.0°.

IDeutsches Zentrum fiir Luft— und Raumfahrt
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FIGURE 4.27: DLR F-4 configuration

0 05 1
x/c [-1

(B) Two—dimensional CFD grid of the first sec-
(A) Three—-dimensional CFD grid[55] [98] [5] tionaty/b = 0.185

FIGURE 4.28: Grids of the three-dimensional DLR F-4 configuration and sectional 2D
grid

In Figure 4.28a the employed three-dimensional CFD grid is presented. The three-
dimensional mesh is generated by the three-dimensional CFD grid generator SOLAR[32].
Here, only the right half-model of the DLR-F4 configuration is resolved by the 3D CFD
mesh, which is a hybrid CFD mesh with 17 layers of regular hexahedral elements in
the boundary layer region. The rest of the flow domain is filled up with tetrahedral
elements. The farfield has the shape of a half-sphere. This 3D mesh contains nearly 4
Mio. grid points, 2.7 Mio. tetrahedra, 12.9 thousand prism, 79.5 thousand pyramide
and 3.5 Mio. hexahedra cells.

The sectional aerodynamic database for FALCon is computed at eight span positions in
the local frame of reference at the particular quarter chord sweep, Aj,4, for the 2.5D+
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aerodynamic database. For the equivalent 2D aerodynamic database the data is com-
puted with respect to the global frame of reference. For the first seven sections (Section
1-7) chordwise experimental aerodynamic data, i.e. non—-dimensional pressure coeffi-
cient, ¢y, is published in the online repository, see Ref. [5]. This data was obtained dur-
ing the experimental campaigns by using pressure taps on the wing surface of the wind
tunnel model at the particular spanwise positions. Therefore, for the hybrid coupling
algorithm, the sectional aerodynamic database is precomputed at the same spanwise
positions of the wing with the purpose to compare the aerodynamic data between the
experimental, 3D CFD and aerodynamic q3D—coupling results. The spanwise position
of the first seven sections is shown in Figure 4.33. Section 8 is located directly at the
wing tip and is used to cover also the area of the VLM lattice between section 7 and
the wing tip to avoid the extrapolation of the aerodynamic database in this area of the

lattice. In Table 4.6 the spanwise position, y/b, of the 8 sections is presented.

Section y/b  Chord (proj.) Chord Twist Aj/4
[—] [m] [m] 1 [l
0.185 0.3145 0.3155 458 21.0
0.238 0.2874 0.2881 423 21.0
0.331 0.2398 0.2402 343 21.0
0.409 0.2028 02030 255 25.0
0.512 0.1855 0.1857 220 25.0
0.636 0.1647 0.1648 1.73 25.0
0.844 0.1298 0.1298 0.85 25.0
0.990 0.1052 0.1052 0.01 250

IO G WIN -

TABLE 4.6: Geometrical parameters of the eight sectional airfoils on the DLR-F4 wing

The shape of the aerofoils at those span positions are extracted from the CAD model of
the DLR-F4 configuration which is published also in Ref. [5]. For the 2.5D+ sectional
database the thickness of all aerofoils is modified using Equation 3.45 in combination
with the particular quarter-chord sweep angle, A;/4. For the two-dimensional sec-
tional aerodynamic database the thickness of the aerofoil shapes is not modified as the
calculations are performed in the global frame of reference. In total two sets of 8 aero-
foil grids were generated. One set concerns 2D sections extracted from the in—flight
direction, neglecting the local sweep. The second set relates to sections that were modi-
fied to account for the quarter chord sweep. The first set of grids is used to precompute
the 2D and the second set of grids is used to obtain the 2.5D+ sectional aerodynamic
database, which includes crossflow effects. In Figure 4.28b the 2.5D+ CFD mesh of
the first section in the local frame of reference is shown. Here, a hybrid O-mesh is
employed, where the first layers are generated by extruding the shape of the aerofoil
geometry normally to the initial contour. An initial wall distance of Ay =1-10"%m
is chosen to ensure, that the dimensionless wall distance condition, y™ < 1, is fulfilled

for all computations. The rest of the flow field is filled up with an unstructured mesh
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consisting of two-dimensional triangles. The 2D meshes for all sections are generated
in the same way with the same parameters. In Table 4.6 the geometrical properties for
the eight sections are summarised.

In Figure 4.29 the corresponding VLM lattice of the half-wing model is shown. It is a
thin lifting—surface created considering the geometrical twist and dihedral of the DLR-
F4 wing. The lattice is created between the leading and trailing edge of the three-
dimensional wing configuration. The geometrical twist at the root of the wing is 4.584°.
The wing tip is not twisted. The fuselage is neglected. Instead, one VLM vortex-ring is
placed in this area, where normally the fuselage would be located. Only the half wing
is modelled while applying the symmetry condition along the xz-symmetry layer in
the linear VLM model.

FIGURE 4.29: Vortex—Lattice mesh of the DLR-F4 half-wing configuration

In Figure 4.30 the lift curve over the angle of attack is shown for three different VLM lat-
tices of the DLR-F4 wing at M = 0.75, discretised by N; = 1, 3 and 6 VLM vortex-ring
elements along the chord. It can be seen that with N; = 1 a grid independent solution
is already achieved. Therefore, for the further investigation the lattice is used which is
discretised into N; = 100 spanwise and N; = 1 chordwise vortex-ring elements on the
half-wing.

This DLR-F4 validation campaign is carried out for high—speed flow regimes only.
Here, three Mach-numbers are covered: M = 0.6, M = 0.75 and M = 0.8. In the same
way as for the NACA2412 validation campaign the one—equation SA turbulence model
in its original formulation is employed[88]. For calculations at M = 0.6, the second
order central scheme is used to discretise the convective RANS flux. However, due to
convergence problems, which were observed at M = 0.75 and M = 0.8, the convec-
tive RANS flux discretisation type is changed to a second-order Upwind AUSMDV
scheme[101] for the datasets at M = 0.75 and M = 0.8. The sectional aerodynamic
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FIGURE 4.30: VLM lattice convergence analysis of the DLR-F4 wing at M 0.75

lift curves of the eight sections are calculated independently from each other for three
different Mach-numbers. The parameters of the computations regarding the discreti-
sation schemes and other major settings are kept the same as for the three—dimensional
computations. The data points in the aerodynamic 2D/2.5D database which is em-

ployed in the 3D solver are resolved with an interval of Ax = 1.0°.

4.2.2.1 Aerodynamic wing load

The overall aerodynamic forces of the DLR-F4 configuration obtained by the q3D-
solver and three-dimensional CFD solver are presented in Figure 4.31. Here, results of
the hybrid g3D-solver are presented, where the crossflow is included (2.5D+ aerofoil)
and where the crossflow is neglected (2D aerofoil). For the results, where the crossflow
is taken into account, the lift curves are estimated in the pre—stall region without any
notable discrepancies with respect to three-dimensional numerical reference data. At
higher freestream angles of attack notable discrepancies are visible. However, it has
to be noted that here due to partly detached flow the 3D RANS-method also does not
often predict reliable wing load data. On the other hand, it has to be mentioned that
the steady—state aerodynamic q3D—coupling algorithm of FALCon is able to predict the
impact of the compressibility of the flow onto the stall behaviour of the wing, moving
from sharp (M = 0.6) to moderate (M = 0.8) behaviour. This information is very im-
portant during conceptual design stages of an aeroplane sizing study indicating that
the data in this region of the freestream angle of attack has to be predicted by a more
accurate computational CFD method to obtain more reliable results.
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FIGURE 4.31: Overall aerodynamic forces of the DLR-F4 configuration

However, for results, where the crossflow is neglected, discrepancies are present, es-
pecially regarding the lift slope, C{. Also, the maximal lift force coefficient, Cy 4y, is
overestimated by the hybrid g3D-solver for M = 0.6 and M = 0.75 for both datasets
as here three-dimensional flow effects are present on the surface of the wing which
can not be reproduced by the aerodynamic qg3D—coupling solver in combination with
2D or 2.5D sectional aerodynamic database of the aerofoils. It has to be noted that in
general RANS as a computational fluid dynamic method is not a reliable method when

it comes to the predictions of detached flow physics at high angles of attack. However,
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under those circumstances it can be still seen that the 3D CFD-RANS solver and FAL-
Con, which incorporates 2D or 2.5D sectional aerodynamic data obtained by a 2D or
2.5D+ RANS CFD solver, are estimating relativly reliable the region where detached
flow impacts the solution and stall occurs. Detached flow as a three—dimensional flow
phenomena is usually reducing the local aerodynamic loads in these regions of the
wing. Thus, in general it can be stated that the aerodynamic qg3D—-coupling methodol-
ogy shows promising results, especially before stall-angle, ag;,;;, and can estimate the
region where stall is present, and therefore indicate where a higher—fidelity (and more
expensive) CFD method should be used to capture more accurately results including

detached flow, if required so.

For the total drag force coefficient, Cp, a constant discrepancy is present with respect
to the three-dimensional reference data. The reason for this constant offset of Cp
is the missing contribution of the fuselage, which is present in the numerical three—
dimensional reference data. According to Ref. [5] the drag force coefficient contribution

of the fuselage is Cp poay = 9.0 - 103 estimated by wind tunnel experiments.

In Figure 4.32 the spanwise lift distribution of the DLR-F4 is shown for three Mach-
numbers at low angles of attack before the stall. For this range, FALCon in combination
with the 2.5D+ sectional aerodynamic database estimates the lift distributions on this
complex wing geometry with great confidence at the same order of accuracy as three—
dimensional CFD. However, around the stall angle of attack, a,;;, FALCon fails to pre-
dict partly the spanwise aerodynamic load distribution, as three-dimensional locally
not fully developed flow effects appear leading to the violation of the assumption that
the flow in the spanwise direction along the quarter—chord line of the wing is locally
fully developed and independent along the spanwise direction, see Section 3.3. How-
ever, one should consider that during a conceptual stage of a design project, where no
high—fidelity 3D solutions of the novel configuration are available, the rapid solution
provided by FALCon can provide essential information of the nonlinear aerodynamic
loading of a wing geometry to the wing designer, and indicate that from a specific
high freestream angle of attack, a, another computational methodology with a higher
fidelity should be used to capture the detached flow physics more accurately.
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FIGURE 4.32: Lift distribution along wing span of the DLR-F4 configuration
4.2.2.2 Sectional pressure distribution, c;,, at C; = 0.5

The chordwise numerical results of the 7 sections estimated by the hybrid q3D—coupling

code including and excluding crossflow effects are compared here with the three-dimensional
and experimental reference results at a fixed total lift force coefficient of C; = 0.5. Ex-
perimental chordwise data is available and was obtained by using local pressure taps in

the DLR-F4 wind tunnel model located at 7 positions of the wing, see Figure 4.33[98][5].

The experimental dataset is obtained from three different wind tunnel measurement
campaigns at the Dutch NLR High-Speed Wind Tunnel (HST), the French ONERA
Continuous—flow wind tunnel (S2MA) and the British 8ft x 8t DRA wind tunnel in
Bedford. The comparison of the local sectional flow is carried out for three transonic
Mach-numbers: M = 0.6, M = 0.75 and M = 0.8.

Mach Xoo
0.60 0.596°
0.75 0.127°
0.80 —0.048°

TABLE 4.7: Corresponding freestream angle of attack, a«, for three-dimensional CFD
and 3D aerodynamic load estimations on DLR-F4 configuration corresponding to
CL=05

In Table 4.7 the corresponding freestream angle of attack, a«, is presented, which cor-
responds in 3D CFD to an overall aerodynamic load of C; = 0.5 of this DLR-F4 con-
figuration at three different Mach-numbers. These values are estimated for the three—
dimensional reference data at C;, = 0.5 by interpolation of the total lift curves predicted
by the 3D DLR-tau CFD solver and presented in Figure 4.31. The numerical results ob-
tained by the hybrid g3D-solver are also calculated at the same freestream angles of
attack as three-dimensional reference data. The spanwise local lift of the results esti-
mated by the hybrid q3D—coupling code is overestimated compared to numerical re-

sults obtained by three-dimensional DLR-tau CFD code as the fuselage is neglected in
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hybrid g3D-solver at the symmetry layer. The presented experimental c,~data is ob-

tained by wind tunnel measurements at C; = 0.5.

Further, in Figure 4.33 the non—-dimensional surface pressure distribution, Cp, ON the
DLR-F4 configuration obtained by three—dimensional DLR-tau CFD code is shown at
three different Mach-numbers at C; = 0.5 on the three-dimensional wing geometry.
Here, the position of the 7 sections is also marked. It can be seen that at M = 0.75 and
M = 0.8 strong local shocks are present, which are created due to the local compress-
ibility of the fluid. At M = 0.7 the shock is present at nearly quarter—chord position
of the wing and is moved at M = 0.8 towards trailing edge of the geometry, while the

shock intensity increases over M.

Co

0.80
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-0.09
-0.30
-0.55
-0.70
-1.00
-1.30
-1.60

Mach 0.75 Mach 0.80

FIGURE 4.33: Surface pressure coefficient, c¢;, on the DLR-F4 wing at C;, = 0.5,
DLR-tau CFD solver

In Figure 4.34, Figure 4.35 and Figure 4.36 the c¢,—distributions for the three Mach-
numbers at the prescribed seven spanwise sections are shown and compared to three—
dimensional reference data and experimental results. For g3D-solver, the c¢,~plots are
obtained at the particular converged effective angle of attack, ., at the spanwise po-
sition of the seven sections. For M = 0.6 it can be seen that the hybrid qg3D-coupling
code in combination with the 2.5D+ sectional database estimates the c,—distribution
very well with respect to three-dimensional numerical results and the experimental
dataset. However, due to the three-dimensional flow effects on the surface of the wing,
the overall results estimated by the hybrid g3D—coupling code are less accurate at those
Mach-numbers. For example, it can be seen in Figure 4.33 that the inner wing section
between 0% and 30% and the wing tip region between 80% and 100% of the local span,
y/b, are highly impacted by three-dimensional flow effects. While the flow around the
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wing tip region of the geometry is impacted by the wing tip vortex, the root region of
the wing is affected by accelerated flow induced by the fuselage. In the aerodynamic
q3D—coupling algorithm the fuselage is not considered, what automatically leads to
discrepancies at this inner region of the wing. The reason for this is that here the flow
physics violate the ISW hypothesis, which states that the flow along the span direc-
tion has to be fully developed and therefore section-wise independent, see Section 3.3.
Additionally, at M = 0.75 a shock is present at nearly 25% of the local chord, which
moves at M = 0.8 to 75% of the local chord length. The flow becomes at higher Mach-
number more complex and less independent along the local swept span direction due
to the dominating local shock leading to less valid results obtained by the hybrid aero-
dynamic q3D—coupling algorithm.

Moreover, the importance of the local crossflow phenomena in transonic flow regimes
is demonstrated here: the solution obtained by the hybrid aerodynamic coupling code
in combination with 2D aerofoil is overestimated at some sections due to the neglected
crossflow physics. This leads to an incorrect prediction of the sectional shock in tran-

sonic flow conditions.

Finally, in Table 4.8 the relative error between the results of the sectional aerodynamic
lift, C, which are obtained by the quasi-3D steady-state aerodynamic coupling algo-
rithm and 3D DLR-tau CFD-solver is presented. This quantity is also estimated by
using Equation 4.8. It can be seen that the overall spanwise error is less than 10% for
results which are estimated with FALCon in combination with the 2.5D+ aerodynamic
database. However, for results obtained in combination with the 2D aerodynamic sec-

tional data, the error rises up to nearly 30% at high transonic Mach-numbers.

2D CFD 2.5D+ ISW-CFD
Section | M0.6 M0.75 M08 | M06 MO0.75 MO.8
1 7.72 10.41 26.62 | 544 472 2.22%
6.10 9.04 25.61 | 4.01 3.23 0.99%
3.21 6.25 2542 | 1.13 0.19 1.94%
2.78 5.69 25.31 | 0.00 1.96 3.35%
1.74 442 24.30 | 0.50 3.14 2.28%
1.67  3.87 23.68 | 0.60 4.10 2.15%
7 0.24 1.60 27.07 | 2.02 6.37 7.23%
Average | 3.35 5.90 2543 | 1.96 3.39 2.88%

N Ul = W N

TABLE 4.8: Relative error, Ae, of the local lift between aerodynamic g3D-coupling
algorithm and 3D DLR-tau on the DLR-F4 wing
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FIGURE 4.34: DLR F-4, sectional cp-distribution, C; = 0.5, M = 0.6, compared to

reference experimental data, see Ref. [5]
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4.2.3 Computational cost

In this final subsection, the computational cost of this novel solver is discussed for the
DLR-F4 test case which is presented here and the speed—up with respect to conven-
tional three-dimensional CFD computations is estimated. For the computation of the
viscous 2.5D+ database for all eight sections at three different Mach-numbers and 30
angles of attack (720 steady-state computations in total using the 2.5D+ DLR-tau ISW-
CFD solver) 3.11 - 10> CPU-hours were required. Similarly, for the estimation of the
corresponding 2D database with the same amount of steady-state database 3.23 - 10
CPU-hours were required. In total, 168 single calculations of the steady-state aerody-
namic q3D-coupling algorithm at three Mach-numbers and 28 freestream angles of at-
tack were executed for this validation study while employing the 2D and 2.5D sectional
aerodynamic database. In total, 634.44 CPU-hours (3.18 CPU-hours per freestream an-
gle of attack of a single FALCon calculation including the employed sectional database)
were required to obtain data from the hybrid aerodynamic coupling code presented in
this thesis.

Task Total CPU-hour
2D sectional database 323.14

2.5D sectional database | 310.57

FALCon load estimation | 0.73

Total 634.44

TABLE 4.9: Total computational CPU-hours necessary to obtain the 2D and 2.5D+
sectional database and the aerodynamic load on the DLR-F4 wing using the hybrid
aerodynamic coupling procedure

The total computational cost necessary to compute 42 numerical data points using
the conventional three-dimensional full-fidelity DLR-tau CFD code can be stated as
3.883 - 10* CPU-hours. Thus, in average for one flow condition, this makes 9.245 - 103
CPU-hours for a DLR-tau 3D computation. Therefore, based on the average CPU-
hours per one flow condition an average speedup factor of 6.12 - 10! is achieved, which
is a significant speed—up achievement compared to conventional three—dimensional
CFD methods. Therefore, it can be concluded that a promising trade—off is reached in
the computational aerodynamic wing load predictions between numerical accuracy of

the q3D-coupling solver (at least until stall occurs) and required computational cost.

4.24 Summary

In this section the validation study of the steady—state quasi-3D aerodynamic coupling

algorithm was presented and the accuracy and computational cost of this solver was
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discussed. Two major test cases were used to demonstrate the capabilities of the novel
solver to predict rapidly aerodynamic loads at low— and high-speed flow regimes: The
NACA2412-wing and the DLR-F4 configuration. The first study is a systematic study
where the accuracy of the aerodynamic qg3D-coupling algorithm is evaluated using a
swept and unswept NACA2412-wing geometry at low and high freestream angles of
attack. Further, the validation campaign is extended by considering wing geometries
with various geometrical sweep angles, A, and taper ratios, y. The second test case is
the DLR-F4 configuration, which geometry is much more similar to geometries of typ-
ical commercial air vehicles, and therefore often used to validated CFD solvers which

are applied in aeronautical design and analyses procedures.

This method captures the nonlinear lift slope, C}, at low—and high-speed flow regimes
and predicts the flow around the wings at moderate angles of attack, «, with good
agreement to equivalent results obtained by a 3D CFD-RANS solver. At moderate
freestream angles of attack a typical relative deviation of the total C;, between the q3D-
coupling solver and 3D CFD solver ranges between 0.5% and 5.0%. However, when 2D
precomputed aerodynamic database is used on a swept wing, the error can reach up to
10%. Thus, it is recommended to use 2.5D sectional aerodynamic databases on swept
wing geometries to increase the accuracy of the results by taking crosstflow effects into
account. Otherwise, by neglecting the crossflow effects the boundary layer and the sec-
tional position of the transonic shock are predicted incorrectly. This 2.5D database has
to be precomputed by an ISW-RANS CFD solver model, see Section 3.3.

At high angles of attack in the stall region the q3D—coupling solver is not able to re-
solve the flow physics with the same accuracy as at low freestream angles of attack
as the validity of this solver here is often not given due to three-dimensional locally
detached flow areas. However, it gives a rapid indication that at certain aerodynamic
flow conditions detached flow is present, which has to be captured by another solver
with a higher physical fidelity. However, the rapid indication of the presence of de-
tached flow is very helpful during early aeronautical project stages when high—fidelity
three-dimensional numerical results of a novel configuration are not available yet.
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4.3 Unsteady aerodynamic model

This section demonstrates the applicability of the complete computational tool FALCon
to a number of test cases of increasing complexity in unsteady flow regimes. The
physics ranges from incompressible to compressible flows in a 2D and 3D setting,
driven by unsteady motions at different reduced frequencies. Reference data are ob-
tained from DLR-Tau code solving the URANS equations. In all cases the turbulent
boundary layer is predicted using the one—equation Spalart-Allmaras turbulence model [88].

4.3.1 Forced harmonic motion in pitch and plunge: aerofoil

The first demonstration test case is for the high subsonic flow around a pitching and
plunging NACA 2412 aerofoil. Flow conditions are for M = 0.7 and Re = 5.5 - 10°.
The harmonic motions are prescribed at low and high values of the reduced frequency,
respectively, k = 0.025 and 0.750. In pitch, the mean value of the angle of attack and
the amplitude are np = 0° and a4 = 2.51°, and in plunge, {p = Oand 4 = 0.1. The
pitching motion is performed around the quarter—chord position of the aerofoil.

Reference data are obtained from time marching the 2D URANS equations. The O-
type, structured grid in Figure 4.6 used in all calculations was chosen to guarantee grid
independent results. Three levels of grids were generated, from about 25 thousand to
70 thousand grid points. The coarser grid was found adequate to model the unsteady
lift coefficient, as reported in Figure 4.37. The convective RANS flux is discretised us-
ing the second-order central scheme. Spalart-Almaras turbulence model in its original
formulation is employed [88]. For time integration, the dual time-stepping scheme is
used. The 2w—cycle multigrid scheme with 50 quasi-steady subiterations per physical

time step is chosen at a Courant-Friedrichs-Lewy number of 2.5.

0.8
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T0.4F
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L Coarse, 25704 grid point
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Fine, 69472 grid points
1 | 1 T R

B R S R
o]

FIGURE 4.37: Grid convergence analysis of the 2D NACA2412 airfoil CFD grid
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The analysis setup for FALCon is as follows: the UVLM lattice consists of one single
panel (N; = 1and N; = 1) of high aspect ratio (AR = 100) motivated by the 2D
aerodynamics of this test case. For the 2D viscous solver around the aerofoil, numerical
parameters are identical to those above-mentioned for the reference data. For this 2D
case the coupling algorithm initially spawns one URANS analysis at the mean static
freestream angle of attack of a9 = 0°. As for the 2D nature of the flow, Equation 3.57
of the unsteady, a—based coupling algorithm simplifies to

22D = we (4.6)

after elimination of the induced angle of attack from the original formulation. As it is
known, in 2D flow the induced angle of attack, «;, is zero as no wing tip and, there-
fore, no wing tip vortex is present. Thus, in 2D the effective angle of attack becomes
the mean static aerodynamic angle of attack of the aerofoil, which is here ag = 0°.
Therefore, only one 2D URANS CFD solver is required at ap = 0°, which delivers the

viscous nonlinear lift force coefficient for the aerodynamic coupling procedure.

For the coupling algorithm, the relaxation factor is set to v = 0.1, and the convergence
criterion at each time step is defined by the parameter ¢ = 1-107°. This guarantees

numerical stability and accuracy during the computations.

Figure 4.38 shows the lift coefficient time responses to forced motions in pitch and
plunge in 2D obtained by FALCon. Initial transients were removed and arrows indicate
the direction of the loops. A perfect match is observed between the two aerodynamic
options for all cases, indicating a correct functioning of the unsteady coupling algo-
rithm in 2D flows.
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a[] (he) []
(A) Harmonic pitch oscillation (B) Harmonic plunge oscillation

FIGURE 4.38: NACA2412, 2D airfoil, M = 0.7
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4.3.2 Forced harmonic motion in pitch and plunge: finite-span wing

The second test case is for a finite—span, unswept and untapered wing. The aspect ratio
is 10. The wing cross—section is based on the NACA 2412 aerofoil. The forced harmonic
motion in pitch and plunge has the same parameters as described in Section 4.3.1. The
test case is run at three values of Mach number (M = 0.3, 0.5 and 0.7) keeping the
Reynolds number fixed at 5.5 - 10°. The pitching motion is performed here around the
quarter—chord line of the lattice. This test case allows to investigate predictive perfor-
mance of the unsteady hybrid aerodynamic q3D-solver taking into account the effect
of compressibility and the impact of mild shock waves, which appear and disappear
during the forced motion. Also, by using a finite—span wing this chapter investigate the
predictive performance of this approach on 3D flow around a wing geometry, where
an induced wing tip vortex is present.

L

Wy =

i
"%%M/% —= "

0

O\
> (B) Top-down view on
(A) Wall and symmetry boundary the wall boundary

FIGURE 4.39: NACA2412, 3D grid, unswept, AR10, 2 Mio. grid points

Also here, reference data were obtained solving the 3D URANS equations. Results were
calculated for three cycles, using 100 time steps per cycle, to achieve a periodic flow
state after the decay of initial transients. The maximum number of pseudo-iterations
per time step was set to 600, and the single grid method was used. Other relevant nu-
merical settings were the same as those described in Section 4.3.1 for the 2D NACA2412
aerofoil. Figure 4.39 shows the chosen 3D grid. The grid point distribution at the sym-
metry plane uses the coarse 2D grid shown in Figure 4.6. This optimal grid for 2D flows
was then extruded in the spanwise direction to obtain a 3D grid. It was found that a
discretisation with 63 layers of the 2D planes along the span was adequate for grid in-
dependent results, as documented in Figure 4.40. The final 3D grid consists of about
two million grid points.
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FIGURE 4.40: 3D CFD grid convergence analysis (coarse: 2 Million, middle: 4.2 Mil-
lion, and fine: 8.97 Million grid points)

FIGURE 4.41: VLM lattice used for unsteady coupling procedure, AR 10, N; 2, N; 100

For the hybrid aerodynamic q3D-solver in FALCon, the VLM lattice consists of N; = 2
and N; = 100 panels, as shown in Figure 4.41. Coarser grids revealed a tendency to
overestimate the lift coefficient at the lowest and highest values of the angle of attack,
as shown in Figure 4.42.

Due to the finite-span of the wing the actual spanwise effective angle of attack, «a,,
will not exceed the static freestream angle of attack, ag, at the symmetry of the wing
configuration. However, due to the reduced spanwise lift at the wing tip the actual
a, becomes negative in this region when an unsymmetrical aerofoil geometry is used

due to the spanwise lift force converging to no lift directly at the wing wing tip of the
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FIGURE 4.42: Grid convergence analysis wing lattice used in the hybrid g3D-solver
(coarse: 2 x 25, middle: 2 x 50, and fine: 2 x 100 VLM panels)

geometry. Therefore, the coupling algorithm spawns nine URANS analyses uniformly
distributed between —6° and 2° angle of attack. The relaxation factor is v = 0.1, and

the convergence criterion at each time step is based on the tolerance ¢ = 10~%.

Further, the reproducibility of the flow physics using the hybrid aerodynamic q3D-
solver solver is discussed. Reference data are from time marching the 3D URANS
equations. Figure 4.43 reports time domain results for the forced motion in pitch, and
Figure 4.44 results for the forced motion in plunge. Qualitatively, the fundamental char-
acteristics associated with flow unsteadiness, i.e. reduced frequency and compressibil-
ity, are well captured in results obtained by the unsteady q3D solver of FALCon. In par-
ticular, the hybrid aerodynamic q3D-solver correctly captures the following elements:

¢ the increase of the hysteresis loops for increasing reduced frequency, and the de-
crease of this trend for increasing Mach number

¢ for increasing reduced frequency, loops tilt clockwise and the aerodynamic stiff-
ness, related to the loop mean slope, increases with Mach-number

Qualitatively, the impact of reduced frequency and Mach number on aerodynamic
loops are reproduced. Quantitatively, average discrepancies of total lift force coeffi-
cient, Cr, over one cycle are observed between 1% for k = 0.025 and 11% for k = 0.75,
as it can be seen in Table 4.10.
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The relative deviation is obtained by normalising the total deviation of C; between the

two solvers over one (third) cycle with respect to the mean steady-state C; obtained by

3D DLR-tau CFD solver, and finally averaged the time series of the relative deviation

over the cycle:
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Case Minimal Average Maximal
pitching, k = 0.025 0.034 1.798 3.953
pitching, k = 0.750 0.163 7.959 14.605

plunging, k = 0.025 1.041 1101 1219
plunging, k = 0.750  0.095 11544  21.943

TABLE 4.10: Relative deviation of the total C; between FALCon and DLR-tauat M = 0.7
in percent over the third cycle

h
Ao = i et - cij? 4.7)
TN& & |

where N is the number of time steps per cycle, C?%VLM

is the particular lift force coef-
ficient estimated by the coupling code and CfﬁD the coefficient obtained from 3D CFD
analysis at the k—th time step, CfP is the mean coefficient per cycle estimated by 3D
CFD analysis. Reproducing these features, in particular point 2 above, guarantees the
suitability of the hybrid aerodynamic q3D-solver for future aeroelastic analyses. This
solver offers the appealing feature to reconstruct distributed flow features at any span-
wise location which does not coincide with the sections used to generate the viscous
data. This is done at no extra cost because the existing database is simply interrogated

with the effective angle of attack provided by he UVLM solver.

The instantaneous c, and ¢ plots at various flow conditions and all three reduced fre-
quencies are excluded to the appendix of this work. Therefore, in Section A.1.1 (page
164) the instantaneous sectional plots are presented for the pitching motion and in
Section A.1.2 (page 208) for the plunging motion. As an example, for M = 0.7, the data
is summarised in Figures 4.45 and 4.46 for pitching motion and in Figures 4.47 and 4.48
for plunging motion of the wing by overlaying the results obtained at k = 0.025 and
k = 0.75. In every figure the instantaneous ¢, and cy is illustrated separately. To
comprehend these articulated figures, rows correspond to four time instants during
an oscillatory cycle: maximal position, mean downstroke, minimal position and mean
upstroke position of pitch or plunge in third cycle. The columns correspond to three
locations along the wing span: 25, 50 and 80% of the half-span, see Figure 4.39b. As an
example, the fourth row of the figures reports the instantaneous c, at stations located at
25, 50 and 80% of the wing span during the upstroke, for « = 0° or ¢ = 0. In general,
the reconstruction of the instantaneous flow features is done well. It is not unexpected

that the larger discrepancies in prediction are at the wing tip for all Mach-numbers.
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These are due to the presence of a strong wing tip vortex forming around a straight
wing. Comparing pitch and plunge, differences seen in the total C, are attributed to
deviations in a) the high speed region of the flow interacting with the wing tip vortex,
and b) intensity of the suction peak of the ¢, and ¢y data between the results of the two
solvers at high reduced frequency of k = 0.75.

Referring back to Section 4.3.1, where a 2D aerofoil is examined, it can be seen that the
discrepancies of the results on this 3D finite-span wing must come from the estimation
of the effective angle of attack, a., as on a 3D wing geometry it is affected by the non-
zero induced angle of attack, «;, which is neglected for 2D calculation of the aerofoil
in the previous section. The induced angle of attack is estimated by UVLM and is of a
high importance for the accuracy of the solver. During this work it was figured out that
the best overall results are obtained when the induced angle of attack, «;, is calculated
or interpolated at the spanwise quarter—chord position of the VLM lattice. Thus, it can
be stated that the accuracy of the coupling code is highly dependent on the accurate
estimation of the unsteady spanwise induced angle of attack, «;. Further work should
investigate ways to improve the estimation of the effective angle of attack in unsteady
flows and reduce the discrepancies even further also for wing geometries undergoing

unsteady motions at high reduced frequencies.
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wing at M = 0.7 at third cycle
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4.3.3 Transonic forced harmonic pitch oscillation of the NACA2412-wing at
M =038

This section presents the unswept NACA2412-wing undergoing forced harmonic pitch
oscillation in transonic flow at M = 0.8. The amplitude of pitch and reduced frequen-
cies are the same as in the previous subsection. In Figure 4.49 the upper surface of the
wing geometry is shown for four stages of the third cycle for two different reduced
frequencies: k = 0.025 and k = 0.75. On the surface the friction coefficient in flow
direction, ¢y, is plotted and areas of the wing with reversed (i.e. separated) flow are
marked.
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(A) k = 0.025 (8) k = 0.750

FIGURE 4.49: Areas of reversed flow on the upper surface of the pitching NACA2412
wing at M = 0.8; numerical results obtained with 3D DLR-tau CFD, symmetry at the
bottom of illustration

A comparison of the total aerodynamic lift force coefficient, Cy, of the wing between
the two solvers is made in Figure 4.50. Here, it can be seen that the cycle loop is highly
nonlinear and is affected by the compressibility of the flow. Also, it can be seen that at
M = 0.8 FALCon is less capable to reconstruct the flow features, as significant discrep-
ancies are present.

The extended sectional flow data at M = 0.8 is excluded into the appendix in Section A.1.1.4

on page 197 for pitching and in Section A.1.2.4 on page 241 for plunging. However, a
summary of the data for the reduced frequency k = 0.025 and 0.75 is presented in
Figure 4.51 for the sectional pressure coefficient, c,, and in Figure 4.52 for the friction
coefficient, ¢y, at three spanwise stations of the wing during the pitching motion.
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FIGURE 4.50: 3D NACA2412-wing in unsteady flow at M = 0.8, Re = 5.5 x 109,
Sweep 0.0°

It can be seen that a local compressible shock is present on the upper surface of the
wing which apears and disapears preiodically and extends uniformly in the spanwise
direction until it hits a point where it interacts with the vortex emanating at the wing
tip. The strong interaction between the shock wave and wing tip vortex, and their com-
plex dynamics, arise from the forced motion. This complex three-dimensional physical
phenomenon goes beyond the assumptions underlying the hybrid aerodynamic q3D-
solver in FALCon, as here the hypothesis of uniform flow is invalid and limitations of the
proposed fast methodology start to appear. The flow reconstruction using the hybrid
aerodynamic q3D-solver falls short when the flow has a strong three—dimensionality.
This can be seen in Figure 4.51 and Figure 4.52 at 50% and, especially, at 80% of the
half-wing. In general, one can observe from those two figures that the reconstruction
of the flow at lower frequency (k = 0.025) outperforms the one at higher frequency
(k = 0.75). At the higher frequency, the shock position in the outboard sections of the

wing may be erroneous.
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4.3.4 Convergence analysis

As an example, the convergence behaviour of the unsteady aerodynamic solver can be
seen in Figure 4.53 for the pitching NACA2412-wing at M = 0.7 and k = 0.025 for
the first six initial physical time steps. The solid red line is the average coupling resid-
ual over the span and the dashed blue line is the total lift force coefficient, Cr, of the
wing. The values are plotted against the total iteration counter, which is incremented
throughout the simulation. The beginning and end of a particular time step is marked
in the plot. The convergence tolerance is set to € < 1-107° and the relaxation factor
is set to v = 51072, which has been observed as a optimal relaxation factor to pro-
vide rapid convergence rate and numerical stability. The estimated freestream angle of
attack correction increments, Ax, from the previous time step are used as initial guess
in the next time step to accelerate additionally the convergence of the solution at the
following time steps.
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FIGURE 4.53: Convergence behavior of the unsteady aerodynamic coupling code on
the pitching NACA2412-wing at M = 0.7 and k = 0.025
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4.3.5 Computational cost

The calculations performed with the unsteady hybrid coupling algorithm in FALCon
were running in parallel on 16 processors, where internally the computation of the re-
quired aerodynamic database (first part of the algorithm, see Figure 3.9) was performed
on 16 cores for every spawned 2D URANS solver in parallel, the UVLM solution was
obtained also on 16 cores in parallel and the actual coupling procedure between the
UVLM solution and the database was performed on one core (second part of the al-
gorithm). In average, 28 CPU hours (i.e. 1 hour and 45 minutes) were required for a
single flow condition to run such a configuration in FALCon for three cycles with 600
dual-time stepping subiterations per physical time step and 100 physical time steps
per cycle. From experience, this computational cost can be further decreased by letting
the CFD solvers detect quasi-steady flow conditions in 2D sectional flow at a particular
time step and exit the dual-time stepping subiterative CFD loop even earlier. However,
here a fixed amount of dual-time stepping subiterations in the 2D and 3D CFD solvers
are used to create results, which are comparable regarding the computational effort.
Thus, the equivalent computations of the 3D CFD reference data using the same CFD
settings on the coarsest 3D NACA2412 CFD mesh wing with nearly 2 Mio. grid points
required in average 1404.7 CPU-hours for three cycles with 100 physical time steps per
cycle (i.e. nearly 22 hours on 64 parallel processors). Therefore, an average speedup
factor of 5 x 10! is reached compared to equivalent 3D DLR-tau calculations, which is

in between the first and second—order of magnitude.

4.3.6 Summary

This section has presented the results of test cases obtained by the unsteady aerody-
namic g3D-solver. The capabilities of the novel aerodynamic solver, which is extended
by the author of this work from the steady—state formulation of the aerodynamic q3D-
coupling approach, are demonstrated using an unswept NACA2412-wing. The aero-
dynamic loads are estimated while the wing undergoes a forced harmonic oscillation
in pitch or plunge. It is shown that at three different reduced frequencies, k = 0.025,
k = 0.1 and k = 0.75, the solver is able to estimate unsteady loads. However, the ac-
curacy of the results at k = 0.75 is slightly lower compared to quasi-steady flow at
k = 0.025. Nevertheless, at all three frequencies the shape of the chordwise ¢, and
¢y distributions at several span positions is captured in most cases very well and are
comparable to equivalent three-dimensional reference data. For the transonic Mach-
number, M = 0.8, the shock-induced flow separations are captured also in most cases

correctly as long as the flow is in spanwise direction locally fully developed.
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However, the method fails to capture the aerodynamic load at regions of the wing
where not fully developed flow along the span and complex local three-dimensional
flow effects are present, i.e. local flow separation spots and interaction between the
shock wave and the wing tip vortex.

Moreover, same as for the steady—state formulation the accuracy at the wing tip is
slightly decreased for all Mach-numbers as also here a three-dimensional wing tip vor-
tex is present and, therefore, the flow is not fully developed along the span of the wing.
Nevertheless, a great trade—off between accuracy and computational cost is achieved
by a speedup factor of 5 x 10> compared to full-fidelity three-dimensional computa-
tions with 3D URANS DLR-tau CFD solver.
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4.4 Aeroelasticity

This section concerns a number of aeroelastic test cases in steady-state flow regimes.
The results are obtained using the computational FSI-framework FlexiFALCon, which
is an extension of the FALCon framework, validated in previous sections of this chapter,

to calculate aerodynamic loads around flexible wing geometries.

4.4.1 Inviscid steady-state NACA0012-wing

In this section a validation test case is presented, in which the linear Vortex—Lattice
method (VLM) is coupled with the nonlinear beam model (GEBT) using an isotropic
HALE-wing geometry[67][38][87]. In Table 4.11 the structural data of this unswept
AR = 32 wing is presented. It is an ultra-light wing design with an overall span of
32 m, which has been used in many test cases in the scientific community for validation
purposes of computational aeroelasticity frameworks[4]. The freestream flight condi-
tions of these wings are taken from the 1976’s Standard Atmosphere model according
to a cruise flight level of H = 20km. Thus, the freestream density is poo = 0.088 kg /m®
and the freestream velocity is set to V = 25 m/s.

Property Unit | Value
Half span m 16.0
Chord m 1.0

Mass per unit length of span kg/m | 0.75

Spanwise elastic axis 50% chord
Center of gravity — 50% chord
Bending rigidity, EL, Nm? | 2 x 10
Torsional rigidity, GJ Nm? | 1x10*

Bending rigidity (edgewise), EI3 | Nm? | 4 x 10°

TABLE 4.11: Patil’s isotropic HALE-wing[67]

Here, linear Vortex-Lattice method (VLM) is employed to address the estimation of
inviscid aerodynamic loads. The total aerodynamic lift force coefficient, Cr, of a wing
obtained by VLM is lower compared to the load estimation obtained using the finite—
state aerodynamic model introduced by Peters[70], as the local sectional lift at the wing
tips in VLM is reduced due to the wing tip vortex. Thus, the strip-theory is usually
overestimating the local spanwise lift at the wing tips leading to a higher deflection
and torsion of the wing. Therefore, a direct comparison between VLM and 2D strip-
theory on a flexible wing would show a discrepancy in the results. Thus, in this val-
idation study, the results obtained by the linear VLM and nonlinear GEBT model us-
ing this wing geometry are also compared with Ref. [87] where Smith et. al. present
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numerical data of the same validation test case obtained by a nonlinear beam model
in combination with a linear aerodynamic panel-code and inviscid three-dimensional
CFD model. Further, Hallissy presented in 2011 also a validation campaign of such
an FSI-framework in Ref. [38], where several aerodynamic models were employed to
obtain the aerodynamic loads on such a HALE-wing in combination with a nonlinear
geometrically exact beam-based FEM-model.

%

FIGURE 4.54: Patil wing at &« = 4.0° and V = 25 m/s, GEBT and linear VLM

In Figure 4.54 the deformed wing geometry is shown at this high-altitude flight con-
dition and the freestream angle of attack of « = 4°. This solution is obtained by
FlexiFALCon. The purple bold line represents the beam geometry and the red arrows
the mapped aerodynamic forces on the beam nodes, which are mapped from the VLM

lattice mesh.

In Figure 4.55 the deflection and twist of the wing tip of this wing configuration is
shown with respect to the freestream velocity and is compared with results presented in
Ref. [4]. In this work the authors used the 2D strip theory to estimate the aerodynamic
load on the wing, which overestimates the sectional aerodynamic lift force especially
close to the wing tips. Therefore, for validation purposes two sets of results are pre-
sented obtained by the presented computational framework: In first set the sectional
lift is estimated using the 2D strip theory as described in Ref. [4], and in the second
set the linear VLM model of FALCon is employed. It can be seen, that the wing deflec-
tion and twist obtained by the computational framework involving VLM are slightly
underestimated due to the lower (and more accurate) lift distribution. However, both
data sets are showing good agreement with the reference results.
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FIGURE 4.55: Patil wing at e = 2° and cruise altitude of H = 20000 m. Comparison
of 2D strip theory and VLM 3D aerodynamic model in combination with linear beam
and nonlinear GEBT model, Ref. [4]

The results of this validation study at a single flight condition are presented in Figure 4.56
for two freestream angles of attack, ac = 2° and a., = 4°. Here, the results of the non-
linear beam model in combination with linear VLM obtained by FlexiFALCon are com-
pared with reference results, where a linear panel code is used in combination with
a corresponding nonlinear beam model[87]. In Figure 4.56a the shape of the static
wing deflection, in Figure 4.56b the corresponding wing twist along the span and in
Figure 4.56¢ the lift distribution are presented. Two reference data sets are available at
Noo = 2° and A = 4°. It can be seen, that at o, = 4° the lift distribution, estimated by
Smith’s panel code, is slightly under—predicted, leading to a small discrepancy of the
wing deflection and twist at ae = 4°. Finally, in Figure 4.56d the convergence of the

maximal structural displacement vector

max ‘ [Ax?, Ay®, Azt, 6%, A6, Aeg]ﬂ —0 ke[l,Ny (4.8)

for all beam nodes and the total linear lift force coefficient, C;, of the wing are shown

for aeo = 2° and ae = 4°. Here, Nj, is the total number of beam nodes.

In Figure 4.57 the corresponding comparison is made, where the hybrid qg3D-solver of
FlexiFALCon is used to estimate the aerodynamic loads at low subsonic speed. The re-
sults are compared also at the same flight conditions with results obtained by Smith[87],
where inviscid CFD code was used to estimate the aerodynamic loads. It can be clearly
seen that the projected wing span of the deformed wing is shortened due to the high
vertical deflection, while keeping the total length of the slender structure constant. This
can not be modelled with a classical linear beam model due to its linearisation and as-

sumption of small geometrical deformations, which leads to a nonphysical effective
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FIGURE 4.56: Patil wing at aec = 2° and cruise altitude of H = 20000 m. Comparison
of nonlinear GEBT model and linear VLM with[87]

stretching of the wing along its deflected span axis.

In this section it is demonstrated that FlexiFALCon is capable of estimating efficiently
aeroelastic quantities like wing deflection, twist and aerodynamic load on a highly flex-
ible ultra-light HALE wing when a linear or hybrid q3D-solver is employed in combi-
nation with the structural nonlinear GEBT model. The results, obtained by FlexiFALCon

are in good agreement with reference data sets provided by Smith[87].

4.4.2 Viscous NACA0012-wing in compressible flow

In this section a viscous nonlinear case of a NACA(0012-wing is presented, where the
estimation of aerodynamic loads is performed over a wide range of the flow velocity in-
cluding compressible transonic flow regimes (until M = 0.7). For this case Palacios was
coupling a full-fidelity CFD solver with a geometrically nonlinear beam model[65]. It

is also an isotropic wing. The dimensions of this wing are the same as for the wing
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FIGURE 4.57: Patil wing at & = 2° and cruise altitude of H = 20000 m. Comparison
of nonlinear GEBT model in combination with the hybrid aerodynamic VLM coupling
code with Smith[87]

presented in the previous section: The total wingspan is 32 m, and the constant wing
chord is ¢ = 1 m. A NACAO0012 aerofoil is used along the span of the reference wing
geometry, and the stiffness of this wing is increased compared to the classical test case
of Patil as it has to withstand higher aerodynamic loads at transonic flow regimes. In
Table 4.12 the modified structural and geometrical properties of this NACA0012-wing
are presented.

Property Unit | Value

Half span m 16.0

Chord m 1.0
Spanwise elastic axis — 25% chord
Bending rigidity, EI, Nm? | 8 x 10°
Torsional rigidity, GJ Nm? | 1 x 107
Bending rigidity (edgewise), EI3 | Nm? | —

Airfoil - NACAO0012

TABLE 4.12: Palacios’ isotropic wing[65]

The freestream flight conditions are kept the same as for Patil’s wing in his thesis. The
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altitude is H = 20 km and the freestream density is pc = 0.088 kg/m?>. Compared to
Patil’s wing, here, the aeroelastic axis is moved to 25% of the local chord, leading to
a negligible twist of the wing under aerodynamic loads. The employed VLM lattice
of the half-wing has N; = 100 spanwise and N; = 1 chordwise vortex-ring elements.
The estimation of the aerodynamic loads is performed in this study by the aerody-
namic hybrid g3D-coupling algorithm. Therefore, an aerodynamic database of the 2D
lift force coefficients along the freestream angle of attack, a, and Mach-number, M,
is precomputed by preforming steady-state 2D CFD RANS calculations with the 2D
DLR-tau CFD solver. The one—equation Spalart-Allmaras turbulence model in its orig-

inal formulation[88] is employed to model the turbulent boundary layer.

In Figure 4.58 the tip deflection of this NACA0012-wing is shown at different flow ve-
locities. Here, two data sets are obtained using FlexiFALCon by employing the hybrid
g3D—coupling method and linear VLM. It can be seen that at the higher Mach-number
of M = 0.7 the wing tip deflects by 28.2% for the linear VLM solver in inviscid flow
and by 33.5% for the hybrid q3D-solver in compressible viscous flow with respect to the
semi-span of the wing. By employing the hybrid q3D-solver within the FSI-coupling
procedure in FelxiFALCon, it can be seen that the results are deviating by nearly 5%.
The results of the hybrid q3D-solver are in a good agreement with the nonlinear refer-
ence data presented by Palacios, who used a three-dimensional CFD RANS solver in

combination with a geometrically exact nonlinear beam model[65].
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FIGURE 4.58: Normalized wing deflection vs. Mach number at a constant freestream
angle of attack & = 2°, Ref. [65]

In Figure 4.59a the shape of the wing deflection is shown for this wing at several Mach-
numbers ranging from M = 0.1 till M = 0.7 and in Figure 4.59b the corresponding lift
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distribution is shown. At low flow velocities, the shape of the lift distribution is gener-
ally similar to an undeformed high-aspect ratio wing. However, at high Mach-number
M = 0.7 a reduction of the local lift at the outer half of the semi—span is notable.

Deflection [m]

5 70 15 - S [/ E—T
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(A) Vertical wing deflection (B) Lift distribution

FIGURE 4.59: Wing deflection and aerodynamic load at s = 2° using the hybrid aero-
dynamic coupling algorithm and nonlinear beam model

In Figure 4.60a the sectional pressure coefficient, c,, of the wing is shown at M = 0.7
at three spanwise positions. Further, in Figure 4.60b the corresponding lift distribution
which is obtained by the g3D—coupling method in combination with GEBT is compared
to linear VLM in combination with GEBT at M = 0.7. Here, it can be seen that the com-
pressibility of the fluid needs to be considered as the nonlinear shape and the total lift
force coefficient, C;, differs significantly from results which are obtained in this aeroe-
lasticity analysis employing linear VLM.
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FIGURE 4.60: Aerodynamic load of statically deformed NACA0012-wing at M = 0.7
and ae = 2°

The corresponding sectional aerodynamic flow field is presented in Figure 4.61. Here,
the Mach-number and c,—field at three different span positions, 25%, 50% and 75% of
the half-span, are shown for results at M = 0.7 obtained by the hybrid aerodynamic
g3D—coupling code and GEBT. The sectional data is shown according to the effective
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angle of attack, &, at the particular span position with respect to the local deformed

frame of reference, < %,, 74,2, >, see Figure 3.12.

(A) y/b = 025, & =(B) y/b = 050, & =(C) y/b = 075, & =
1.585° 1.220° 1.022°

(®) y/b = 025 & =(E) y/b = 050, & =(F) y/b = 075, & =
1.585° 1.220° 1.022°

FIGURE 4.61: Sectional flow of the deformed NACA0012-wing at M = 0.7 and #eo =
20

In Figure 4.62 the inner parameters of the hybrid g3D-solver for the first and last itera-
tion are presented. The spanwise effective angle of attack distribution, &,, with respect
to the local aerodynamic coupling frame of reference is shown in Figure 4.62a, the cor-
rection increment of the freestream angle of attack, Aa, with respect to the undeformed
aerodynamic frame of reference, < x,, Y4, z, >, is show in Figure 4.62b and, finally, the
correction increment of the side-slip angle, AB, also with respect to the undeformed
aerodynamic frame of reference is presented in Figure 4.62c. At the overall freestream
angle of attack, a,, = 2°, the maximal effective angle of attack is &, = 1.85°. Due to the

wing deflection, AB ~ 0.2°, is also positive in this case.

The convergence of FlexiFALCon for this transonic NACA0012-wing at M = 0.7 and
a = 2° is presented in Figure 4.63 for the structural and aerodynamic domain, i.e. the
hybrid q3D-solver and GEBT solver. Also, the convergence of the total lift force coef-
ticient, Cr, of the flexible wing geometry is shown in the same figure. In this section
only one aerodynamic coupling iteration in the aerodynamic g3D—coupling solver is
preformed per FSI-coupling step. As FALCon saves the aerodynamic correction incre-
ments for the angle of attack, A, and side-slip angle, AB, for the next iteration, the
convergence of the structure, see Equation 4.8, and the aerodynamic convergence in
the g3D—coupling solver of FALCon are performed hand-in-hand in parallel. This saves
additional computational cost. For the aerodynamic system and for the FSI-coupling
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FIGURE 4.62: Spanwise hybrid VLM parameters of the NACA(0012-wing at M = 0.7
and ae = 2°

procedure a constant relaxation factor of v;3p = 0.1 and vrs; = 0.1 is used leading to a
stable convergence behaviour.
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FIGURE 4.63: Convergence behavious of hybrid VLM and GEBT at M = 0.7, « = 2°

Finally, in Figure 4.64 the total aerodynamic lift force coefficient, C, of this wing is
shown over the freestream angle of attack, a, separately for M = 0.3, M = 0.5 and
M = 0.7. At subsonic flow regimes at M = 0.3, due to the low velocity (and therefore
lower absolute aerodynamic forces), the influence of the flexibility of the wing on the
aerodynamic lift due to the much stiffer structure compared to Patil’s original wing is
nearly not notable. However, at M = 0.7 the reduction of the aerodynamic lift force
coefficient, Cy, is clearly notable and can not be neglected during a preliminary sizing
study of such future lightweight and flexible aeroplane wing configurations.
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FIGURE 4.64: Rigid and elastic NACA0012 wing, hybrid VLM and GEBT

The computational cost can be expressed as the average and maximal required CPU-
time to run one case. For the seven cases of this flexible NACA(0012-wing, presented
in Figure 4.58, an average CPU-time of 43 seconds and the maximal CPU-time of 45
seconds are required. In average, 137 FSI- and aerodynamic iteration and maximal 149
iterations were required to obtain a numerical solution. The aerodynamic convergence
tolerance in all cases is e,y < 1-1077 and the overall aeroelastic equilibrium residual
isers; < 1-107°.

4.4.3 Summary

In this section an application of the aerodynamic framework FALCon is demonstrated
within a steady-state computational FSI-framework FlexiFALCon. In the first part of
this section this computational aeroelasticity framework is validated using linear VLM
and nonlinear structural GEBT solver by using the well-known test case of a ultra-light
and ultra—flexible HALE-wing of AR = 32 which is defined by Patil. In the second
part of this thesis steady—state nonlinear viscous and compressible aerodynamic q3D-
coupling method in combination with GEBT is validated at several Mach-numbers by
using a much stiffer wing based on Patil’s wing geometry. Here, the results are com-
pared to reference data (see Ref. [65]) and show that the numerical solution obtained by
FlexiFALCon is in good agreement with those reference results. Due to the fact that the
computational cost of the hybrid q3D-solver is several orders of magnitude lower than
the computational cost of a 3D RANS CFD solver for an equivalent geometry it can be
stated that due to the low overall computational cost of FlexiFALCon it is possible to use
this approach for the prediction of steady—state aerodynamic loads on flexible wing ge-
ometries in the industrial environment during conceptual sizing studies of lightweight
HAR-wings.
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Chapter 5

Conclusion

Over the last decade an effort has been made by the industry to introduce high as-
pect ratio wings in commercial aviation with the goal of increasing the aerodynamic
efficiency, (C./Cp), and therefore the overall efficiency of an aeroplane. However,
due to the increased flexibility of such a wing additional uncertainties during the con-
ceptual design stage are present, which introduce not negligible overall project risks.
The approach in this thesis is to research and construct physics—based models, which
can address the additional physical phenomena on such a flexible high aspect ratio
wing, which have been previously neglected or estimated using knowledge-based
semi—empirical methods. To address efficiently the additional effects coming from the
structural flexibility of such a highly loaded lightweight composite wing, the physical
modelling of the aeroelastic response is essential and has to be introduced as early as
possible during the initial stage of the design project. Therefore, a physics—based engi-
neering tool is required which covers the rapid estimation of steady—state and unsteady
aerodynamic load assessments on rigid and flexible wing geometries in subsonic and
transonic flow regimes. This engineering tool has to provide accurate results, accept-
able for the conceptual and early preliminary design procedures, while requiring low

computational cost.

In this thesis, the computational aerodynamic framework FALCon and the aeroelastic
framework FlexiFALCon are presented and validation results are discussed. In both
physics-based frameworks semi-empirical corrections of unmodeled flow and struc-
tural phenomena are avoided while the computational cost is kept as low as possible.
In FALCon the complex problem of the flow around a finite-span wing is split into two
much simpler problems, where the 3D flow is captured by a computationally cheap
3D linear VLM solver and corrected section-wise by a 2D or 2.5D ISW-CFD solver
to take the nonlinear viscous and compressible flow phenomena into account. By in-
corporating sectional nonlinear data obtained by an ISW-CFD solver the framework

is now modelling, as one unified engineering analysis tool, the flow in low subsonic
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and high transonic flow conditions, where in the industrial environment a fragmented
approach is still employed. The crossflow phenomena on swept wings is modelled in
the 2.5D+ ISW-CFD solver by a crosslow momentum equation directly incorporated
into the RANS-ISW equations and computed on a truly 2D aerofoil grid. This saves
computational cost compared to state—of-the—art ISW-CFD solvers, because this solver
performs the computations on a truly 2D airfoil grid. This quasi-3D aerodynamic ap-
proach, used for rapid aerodynamic load estimations, is extended in this thesis to un-
steady flow regimes allowing unprescribed unsteady motions of the wing geometry to
be carried out. This opens up, for example, the possibility to deploy FALCon in future
studies and assess unsteady aeroelastic responses or perform low—cost nonlinear flight
mechanics analyses. The architecture of the framework is build up systematically and
is modular with the aim of replacing, extending and improving particular modules of
the framework. In FlexiFALCon, within an FSI-coupling loop this aerodynamic frame-
work is employed in combination with a geometrically-exact formulated beam model,
which models the structural response of the wing. The purpose of this part of the
thesis is the demonstration of a seamless integration of FALCon in a multi-physics sim-
ulation framework, which performs multi-disciplinary analyses of a complex swept or
unswept flexible wing geometry.

The presented computational framework is implemented in the programming language
Python and follow an object—oriented design. The architecture of the software is highly
modular. Computationally intensive routines, for example estimation of the aerody-
namic influence matrix in VLM, are moved to a dynamic link library implemented
in C, and are loaded into the main Python code. The code is parallelised using the
OpenMP library[20][63] and uses well optimised BLAS[9][23] and LAPACK]7][22] 1i-
braries to perform linear algebra operations solving the system of linear equations in
steady-state and unsteady VLM. Due to the flexible nature of the Python program-
ming language FALCon can be easily integrated into other computational frameworks

as demonstrated with FlexiFALCon or a wing twist optimiser presented in Ref. [108].

5.1 Project summary

During this project a mixed—fidelity low—cost computational aerodynamic framework
FALCon was implemented, which combines a low—fidelity three-dimensional Vortex—
Lattice method (VLM) with nonlinear 2D or 2.5D+ sectional wing aerodynamic data
computed by the 2.5D+ ISW-CFD (U)RANS-CFD solver, which resolves flow non-
linearities due to the viscosity and compressibility of the fluid in the particular sec-
tion. At the beginning of the research the linear VLM was implemented, where the
linear steady-state and unsteady VLM builds the foundation of the particular aero-
dynamic computational framework. The formulation of the steady—state VLM solver
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is presented in Section 3.2.1, while the formulation of the unsteady linear VLM is de-
scribed in Section 3.2.2. The linear VLM code underwent an extensive validation cam-
paign, which results are presented in Section 4.1.1 for the steady—state model and in
Section 4.1.2 for the unsteady UVLM. On top of the linear panel code the g3D-coupling
algorithm is implemented, which extends the 3D linear aerodynamic panel method by
considering flow nonlinearities due to viscosity and compressibility of the fluid. For
the steady—state aerodynamic q3D—coupling method the formulation is presented in
Section 3.4.1. Here, the linear VLM is coupled on every wing section with precom-
puted nonlinear lift curves of the particular wing aerofoil. In the unsteady counter-
part, presented in Section 3.4.2, the 2D /2.5D+ ISW-URANS DLR-tau CFD-solver is di-
rectly included into FALCon and obtains on—-demand the sectional nonlinear viscous
aerodynamic data, which is necessary to perform coupling activities also in unsteady
flow regimes. The validation results for the steady—state aerodynamic qg3D—coupling
method of FALCon can be found in Section 4.2, and for the unsteady extension of the
aerodynamic q3D-coupling method they can be found in Section 4.3. As a last step,
the steady-state aerodynamic q3D-coupling method is applied in a computational
aeroelasticity framework, where the aerodynamic solver is used to estimate the aerody-
namic loads on highly deflected and twisted wing geometries during a numerical fluid—
structure-interaction analysis. Therefore, the formulation of the steady-state aero-
dynamic g3D-coupling algorithm is extended for nonplanar, highly deflected, wing
geometries. This nonplanar extension of the aerodynamic q3D-coupling method is
discussed in Section 3.5.2. The modified aerodynamic q3D-coupling method and a
structural model based on the exact formulation of an anisotropic beam are coupled
together in one single FSI-framework, which is discussed in Section 3.5.3. This FSI-
framework is called FlexiFALCon and is an external wrapper utilising the aerody-
namic q3D—coupling approach and the open source structural solver GEBT described in
Ref. [110]. The results of the validation of this efficient computational FSI-framework
are presented in Section 4.4.

5.1.1 PartI: Steady-state aerodynamic coupling algorithm

The steady-state aerodynamic q3D—coupling algorithm is well known and is deployed
already as an engineering analysis tool in the industrial environment. However, the
particular research interest here is the analysis of the performance of such an approach
in combination with the novel 2.5D+ ISW-RANS CFD formulation implemented in
DLR-tau solver, see Section 3.3. The novelty of this ISW-CFD solver, which is not part
of this work, is the ability to perform flow analysis in low subsonic and high tran-
sonic flow regimes using one unified approach. In the current industrial process a
fragmented situation is still present. Thus, by applying this novel 2.5D+ ISW-CFD
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solver in FALCon on swept and unswept wing geometries a unified aerodynamic q3D-
coupling algorithm for low and high speed flow analysis is obtained. This novel solver
(and therefore automatically the g3D-solver) resolves essential crossflow phenomena
on the ISW-wing sections in the boundary layer and, therefore, estimates the flow
separations and locations of the transonic shock waves on swept wing segments ac-
curately. In Section 4.2 aerodynamic flow predictions are presented of two test cases,
NACA2412-wing and DLR-F4 wing/body configuration. The NACA2412-wing test
case contains a swept and unswept wing geometry. On swept wing geometries two
sets of the aerodynamic data is available which is estimated by the aerodynamic q3D-
coupling method. For the first set, lift curves are used which were precomputed with
conventional 2D CFD solver neglecting automatically crossflow phenomena on swept
wings. For the second set of the aerodynamic g3D-coupling results, sectional lift curves
are used which were precomputed by the novel ISW solver including physics-based
modelling of crossflow effects. Both sets of data were compared to three—dimensional
reference results which are obtained by 3D DLR-tau RANS-CFD code on equivalent
full-fidelity three-dimensional CFD grids of the configurations. As already mentioned
in Section 3.3 the crossflow phenomena has only an influence on the aerodynamic
forces at high—speed flow regimes. Therefore, for aerodynamic load analysis of swept
wings in low subsonic flow regimes two—dimensional sectional nonlinear aerodynamic
database is sufficient. At high—speed flows, however, the consideration of the local
crossflow is essential as otherwise the viscous boundary layer and the position of the
transonic shock will not be estimated accurately. Also, it is observed that this approach
struggles to resolve local flow physics on wing sections where local three-dimensional
inhomogeneous flow along the span is present. Such a three-dimensional flow phe-
nomena could be the wing tip vortex, interaction between the transonic shock-wave
and the wing tip vortex or local areas on the surface of the wing with detached flow at
high freestream angles of attack, . For example, in Section 4.2 it can be seen that the
accuracy of the local aerodynamic flow predictions at 90% of the span near the wing tip
of the NACA2412-wing is decreased. The reason for that is the locally not fully devel-
oped flow along the span of the wing due to the presence of a wing tip vortex which can
not be represented by 2D or 2.5D sectional aerodynamic data of that section. However,
in general it can be stated that the developed steady-state aerodynamic qg3D-coupling
method in combination with the novel 2.5D+ ISW-RANS CFD solver is a highly effi-
cient and unified steady-state aerodynamic analysis approach for swept and unswept
wings for low— and high-speed (transonic) flow regime analyses. By including the
computational cost of the ISW solver for the pre-computation of the sectional nonlin-
ear aerodynamic data it can be also stated that this aerodynamic solver has a highly
reduced computational cost and achieves a speedup factor of 6.12 - 10! compared to

equivalent full-fidelity computations using a 3D CFD solver.
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5.1.2 Part II: Unsteady aerodynamic coupling algorithm

During this research the steady-state aerodynamic coupling algorithm is extended to
unsteady flow regimes. The formulation of this novel unsteady aerodynamic q3D-
coupling approach is described in Section 3.4.2. The novelty here is among the first gen-
eralised formulation and implementation of an unsteady aerodynamic qg3D—coupling
algorithm which can estimate unsteady wing loads on the wing geometry as a response
to arbitrary kinematic motions. Thus, this aerodynamic solver can be deployed in the
analysis of flight physics or in unsteady computational aeroelasticity, where the motion
of the VLM lattice over time is a—priory unknown. The novel 2.5D+ ISW-URANS CFD
solver, which is part of the DLR-tau flow solver, is embedded directly into the unsteady
g3D-solver of FALCon and the required sectional nonlinear aerodynamic data is esti-
mated here on—-demand throughout the simulation. This ensures that the solver is not
only restricted to predict unsteady aerodynamic loads as a response of kinematic mo-
tions which are prescribed employing a—priori precomputed unsteady sectional aero-
dynamic database. The on-demand computation of the sectional aerodynamic data
throughout the entire simulation at any physical time step allows to predict nonlinear
aerodynamic loads on VLM lattices, which are either undergoing as a rigid body kine-
matic motions in time and space, i.e. flight mechanics, or their geometry is deformed
due to the flexibility of the structure, i.e. unsteady aeroelastic analysis. The solver
is based on UVLM and is formulated in time-domain. The validation of this solver
is performed on the NACA2412-wing geometry and is presented in Section 4.3. The
unsteady aerodynamic results are obtained by letting the wing geometries undergo a
prescribed forced harmonic oscillation in pitch or plunge. The same as for the steady—
state aerodynamic q3D—coupling solver of FALCon, the validation is performed by com-
paring the results obtained by the unsteady aerodynamic q3D-coupling method with
results obtained by full-fidelity 3D DLR-tau CFD code. The presented unsteady q3D-
solver is able to predict accurately the aerodynamics on wing geometries which are
undergoing a quasi-steady or highly unsteady motion. However, the unsteady solver
inherits the same disadvantages as the steady-state counterpart: The unsteady aerody-
namic q3D—coupling method estimates local aerodynamic flow on wings where local
three—dimensional flow effects are present with a lower accuracy compared to refer-
ence three-dimensional computations. Local detached flow, the wing tip vortex and
complex interaction between the transonic shock-wave and the wing tip vortex are not
resolved accuratly, as here the flow is not homogeneous along the span and the as-
sumption of quasi-3D flow is not given. On the other side, flow separations are very
well resolved as long as they have two-dimensional nature and are independent along
the span. By concluding the research of this unsteady aerodynamic q3D-coupling ap-
proach it can be stated that the average speedup factor, which is achieved with the

unsteady aerodynamic q3D-coupling approach, is 5 - 10! with respect to equivalent
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computations using unsteady 3D DLR-tau CFD solver. Therefore, this unsteady aero-
dynamic q3D—coupling method provides a great trade—off between accuracy and re-
quired computational cost.

5.1.3 Part III: Aeroelasticity

The aerodynamic loads on flexible wing geometries can be obtained by deploying a
computational aeroelasticity framework where the structural deformation of the wing
structure is adjusted as long as no equilibrium is present between the aerodynamic
and structural domain of the overall problem. Regarding the computational cost, most
fraction of it depends usually on the aerodynamic solver employed in a computational
FSI-framework. Therefore, in this research the highly efficient steady—state aerody-
namic q3D-coupling method of FALCon is used as a low—cost nonlinear aerodynamic
solver. Usually, the existing state—of-the—art aerodynamic q3D-coupling algorithms
are formulated “flat” with respect to the span—chord layer and are not assuming a
wing with deflected geometry and rotated aerofoil sections along the span. There-
fore, in this work the g3D-formulation is extended by a prescribed deflection of the
wing along span to make it suitable to be deployed as an aerodynamic solver in a com-
putational aeroelasticity framework, see Section 3.5.2. To the best knowledge of the
author this is the first time where an aerodynamic q3D-solver is coupled with a struc-
tural solver to obtain a mixed-fidelity aeroelastic framework. The aeroelastic system
is described in Section 3.5.3. Especially the mapping procedure of the aerodynamic
loads from the aerodynamic q3D—coupling solver onto the FEM-beam and the defor-
mation of the VLM lattice with respect to the deformation of the FEM-beam are dis-
cussed here. The mapping procedure is based on linear interpolation. As the structural
solver, the GEBT solver developed by Yu and Blair is used in this research[110]. It is
important to take geometrical nonlinearities at high wing deflections into account by
using a high-fidelity GEBT beam model. This part of the research is kept short as here
the overall aim is the demonstration of the possibility of a seamless deployment of
the steady-state aerodynamic q3D—coupling solver in an aeroelastic analysis of highly
flexible wings. In Section 4.4 the results of the validation study of FlexiFALCon are pre-
sented and compared to reference data from literature. Here, FlexiFALCon is validated
in steady-state flow regimes only. In this framework the employed aerodynamic model
can be switched between the linear steady—state VLM and nonlinear steady-state aero-
dynamic q3D-coupling method. A great trade—off between the computational cost and
accuracy is demonstrated. Such a computational aeroelasticity framework could be

deployed within a future sizing study of a HAR-wing for a commercial aeroplane.
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As described in Section 1.3 this approach could replace old design methodologies of
aeroplane wings in the industrial environment and make a sizing study of an efficient
lightweight HAR-wing feasible.

5.2 General results of this thesis

This research has increased the knowledge base in the field of rapid aerodynamic load

estimations on rigid and elastic wings in following areas:

¢ This research helped to understand in detail the impact of the local crossflow
phenomena of swept wings onto the overall aerodynamic loads at different flow
velocities. By analysing the aerodynamic flow with and without modelling the
crossflow phenomena while employing the steady-state aerodynamic q3D—coupling
solver a comparison to reference three-dimensional full-fidelity RANS-CFD re-
sults is conducted and the impact of the crossflow onto the overall aerodynamic
load at different Mach-numbers is identified. It is found that crossflow phenom-
ena is necessary to include at high-speed flow regimes, M > 0.5, as a significant
impact of this flow phenomena onto the aerodynamic load is notable.

¢ By employing the 2.5D+ ISW-CFD solver[31] a unified g3D-solver for low sub-
sonic and high transonic flow regimes is created and validated in this thesis.
Therefore, a fragmented approach, still present up—to—date in the industrial envi-

ronment, is not necessary anymore.

¢ For unsteady flow regimes an aerodynamic q3D-solver is defined which is based
on the steady-state aerodynamic q3D—coupling method and is extended with an
outer time-marching loop while coupling the linear UVLM and 2D URANS CFD
solver. A unified tool for unswept wing geometries is constructed, which can
be used for low subsonic and high transonic flow analysis and where the wing
geometry can undergo an arbitrary unprescribed motion.

* The coupling of the steady-state aerodynamic q3D—coupling approach with the
nonlinear structural beam model leads to the realisation that the steady-state
(and unsteady) aerodynamic q3D—-coupling procedure needs to be extended by
a nonplanar ability to couple the aerodynamic load on highly deflected wings.
Thus, the local spanwise aeroelastic deflection angle, 6, ;, of the particular wing
section needs to be considered during the aerodynamic q3D coupling procedure
on deflected flexible wing geometries.
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* The outcome of this research is the aerodynamic framework FALCon and aeroelas-
tic FSI-framework FlexiFALCon. The two computational frameworks underwent
an extensive validation campaign. Both computational frameworks are imple-
mented from scratch by the author of this thesis and are highly extendable.

5.3 Research output

The unsteady q3D-solver of FALCon was presented in 2018 at the AIAA Atmospheric
Flight Mechanics Conference in Georgia, USA[47] and received 2018 AIAA Atmospheric
Flight Mechanics Best Paper Award[1].

A journal paper which deals with the unsteady aerodynamic qg3D-coupling algorithm
is revised and accepted for the print[48]. Currently it is under final correction proce-
dure by the authors.

The steady-state q3D-solver was extended by a wing twist variable and was used in-
side an optimisation framework to optimise the wing twist with the purpose of overall
drag minimisation. The results were presented by Gunagda Yang at the 31st Congress
of the International Council of the Aeronautical Sciences in 2018[108].

5.4 Future work

This research shows that the hybrid aerodynamic coupling approach has a great trade-
off in steady-state and unsteady flow regimes between accuracy of the numerical re-
sults and computational cost when it is compared to 3D CFD methodology. Also, it
was demonstrated that such an aerodynamic solver can be easily deployed during a
steady-state aeroelastic analysis. However, it is found that the effective angle of at-
tack, ., is overestimated when Equation 3.50 is employed in unsteady flow regimes.
As stated in Ref. [51] an accurate estimation of &, is only possible when the involved
sectional inviscid lift force coefficient, C .y, contains only circulatory contribution. In
unsteady VLM the inviscid lift force coefficient, Cf ;n,,j, contains circulatory and non—
circulatory contribution leading to a significantly overestimated value of .. Therefore,
in the unsteady aerodynamic q3D-coupling method the effective angle of attack is es-
timated by using Equation 3.57, and is validated in this research using unswept wing

geometries.
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On swept geometries this approach overestimates the local spanwise lift force coeffi-
cient, C, at the symmetry of the wing significantly. Therefore, one of the major future
effort should be made to extend the unsteady aerodynamic q3D-coupling algorithm

also for swept wing geometries.

The presented computational aeroelasticity framework is for now only deployable in
combination with the steady-state aerodynamic aerodynamic g3D-coupling solver of
FALCon. In future, FlexiFALCon can be extended also to unsteady flow regimes and
could be deployed to perform very efficiently nonlinear unsteady aeroelastic flutter or
buffeting analysis on swept and unswept wing geometries. Also here, the computa-
tional cost of the overall analysis would be highly reduced due to the cost-efficient
aerodynamic g3D—-coupling solver approach compared to a conventional 3D unsteady
URANS CFD-solver deployed in a computational FSI-framework. Also, it needs to
be noted that in future research, it could be stated that a computational aeroelasticity
framework where such an unsteady aerodynamic q3D—coupling method is employed
is more robust as conventional computational FSI-framework where conventional un-
steady 3D CFD solver is used as the aerodynamic model. The reason for this is that
during the deformation procedure of the 3D CFD grid so—called “negative volumes”
or highly skewed grid cells can be created which would slow down the convergence of
the numerical method, decrease the accuracy of the numerical results or simply crash
the simulation due to numerical instabilities. On the other side the procedure of the
deformation of the thin-wing VLM lattice is highly robust compared to the deforma-
tion procedure of a three-dimensional volumetric CFD mesh. During the deformation
of the wing geometry it is assumed that the shape of the sectional aerofoils is rigid and
can not change its shape. Therefore, the sectional aerofoils placed at several span po-
sitions on the VLM mesh are only translated and rotated in space with respect to the
current kinematics of the particular wing section. During the nonplanar aerodynamic
coupling procedure within the FSI-framework the orientation of the resulting viscous
aerodynamic forces coming from the sectional aerodynamic database or the 2D CFD
solver instances has to be considered by the actual aeroelastic deflection angle, 0, j, of

the particular wing section.
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Appendix A

Appendix

A.1 Sectional flow of the unswept NACA2412-wing in unsteady

flow

Detailed results of the validation study of the unsteady q3D-solver by using a pichting
and plunging NACA2412-wing are excluded from Section 4.3.2 to the appendix of this
thesis. The wing undergoes a forced harmonic oscillation in pitch and plunge at three
different reduced frequencies, k = 0.025, 0.1 and 0.75, and at four different freestream
Mach-numbers, M = 0.3, 0.5, 0.7 and 0.8. For the pitch the mean angle of attack and
amplitude are np = 0° and a4 = 2.51°, and for plunge the mean nondimensional ver-
tical displacement and corresponding amplitude are o = 0 and {4 = 0.1. The time
history of the pitching angle of attack is described by Equation 4.3 and the nondimen-
sional vertical displacement is described by Equation 4.4.

It has to be mentioned that in the following figures, where the upper wing surface is
shown with the particular contour plot, ¢ = 7r/2 of the third cycle corresponds to the
maximal position, ¢ = 7 correspond to the mean downstroke position, ¢ = 37/2
corresponds to the minimal position, and finally ¢ = 27t corresponds to the mean
upstroke position of the pitching angle of attack or vertical plunging displacement of

the wing.
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A.1.1 Unsteady force harmonic pitching oscillation
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FIGURE A.1: Pressure coefficient, ¢, of the NACA2412-wing at M = 0.3 and k = 0.025
during forced harmonic pitching oscillation, third cycle
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FIGURE A.2: Friction coefficient, ¢ iz of the NACA2412-wing at M = 0.3 and k = 0.025
during forced harmonic pitching oscillation, third cycle
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FIGURE A.3: Pressure coefficient, ¢, of the NACA2412-wing at M = 0.3 and k = 0.100
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FIGURE A .4: Friction coefficient, ¢ s of the NACA2412-wing at M = 0.3 and k = 0.100



166 Chapter A. Appendix

Y

! ¢=n/2 rad ¢=n rad ©=3n/2 rad ©=27 rad
X

f o
— 90%
o | |
= oo I | — 80%
0.20 — 75%
-0.20
-0.60
-0.71
-0.80
-1.20
-1.60
200 — 50%
— 25%

FIGURE A.5: Pressure coefficient, ¢, of the NACA2412-wing at M = 0.3 and k = 0.750
during forced harmonic pitching oscillation, third cycle
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FIGURE A.6: Friction coefficient, ¢ r of the NACA2412-wing at M = 0.3 and k = 0.750
during forced harmonic pitching oscillation, third cycle
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FIGURE A.7: Sectional pressure coefficient, ¢y, of the third cycle of the pitching
unswept NACA2412 wing at M = 0.3 and Aa 4 = 2.51°, at 25% of the half-span
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FIGURE A.8: Sectional friction coefficient, ¢y, of the third cycle of the pitching unswept
NACA2412 wing at M = 0.3 and Aax 4 = 2.51°, at 25% of the half-span
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FIGURE A.9: Sectional pressure coefficient, ¢y, of the third cycle of the pitching
unswept NACA2412 wing at M = 0.3 and Aa 4 = 2.51°, at 50% of the half-span
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FIGURE A.10: Sectional friction coefficient, cs, of the third cycle of the pitching
unswept NACA2412 wing at M = 0.3 and Aa 4 = 2.51°, at 50% of the half-span
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FIGURE A.11: Sectional pressure coefficient, ¢, of the third cycle of the pitching
unswept NACA2412 wing at M = 0.3 and Aa 4 = 2.51°, at 75% of the half-span
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FIGURE A.12: Sectional friction coefficient, cs, of the third cycle of the pitching
unswept NACA2412 wing at M = 0.3 and Aa 4 = 2.51°, at 75% of the half-span
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FIGURE A.13: Sectional pressure coefficient, ¢, of the third cycle of the pitching
unswept NACA2412 wing at M = 0.3 and Aa 4 = 2.51°, at 90% of the half-span



174

Chapter A. Appendix

0.015

0.01

-0.005

0.015

1 P
= 0,005 §
) 5

0.015
0.01F

- s
= 0,005 §

T 8
= 0.005 %
S §

0.015

0.01F

0005 (O I R T Y 0005 02 04 06 08 T
x/c [-] x/c [-]
(A) « = 2.51°, k = 0.025 (B) « = 2.51°, k = 0.100 () « =2.51°,k =0.750
0,015 0,015
oot 0.01

-0.005

(D) &« = 0° down, k = 0.025

0.015

0.01f 78

e
=2 0.005 [ g

-0.005 -2

(G) w = —2.51°, k = 0.025

0.015

-0.005

(J) &« = 0° up, k = 0.025

-0.005 -+

-0.005

\ | \ ,
0 0.2 0.4 0.6 0.8
x/c [-

(E) « = 0° down, k = 0.100

0.015

-0.005 2

~ f
=2 0.005 &

L L L
0 0.2 0.4 0.6 0.8 1

x/c [-]

() & = 0° down, k = 0.750

0.015

0.01F I}

b . . , . ,
0 02 04 06 08 T

L L L L
0 0.2 0.4 0.6 0.8

x/c [-]
(H) & = —2.51°, k = 0.100

0.015

-0.005

x/c [-]
(1) &« = —2.51°, k = 0.750

0.015

= T
=7 0.005 =2 0.005
o
0 0
. N 000sl
0.005 0 0.2 0.4 0.6 0.8 0. 0.2 0.4 0.6 0.8 1
x/c [ x/c [

(K) « = 0° up, k = 0.100

(L) &« = 0° up, k = 0.750

FIGURE A.14: Sectional friction coefficient, ¢y, of the third cycle of the pitching
unswept NACA2412 wing at M = 0.3 and Aa 4 = 2.51°, at 90% of the half-span
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FIGURE A.15: Pressure coefficient, ¢y, of the NACA2412-wing at M = 0.5 and
k = 0.025 during forced harmonic pitching oscillation, third cycle
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FIGURE A.16: Friction coefficient, cr of the NACA2412-wing at M = 0.5 and
k = 0.025 during forced harmonic pitching oscillation, third cycle
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FIGURE A.17: Pressure coefficient, ¢y, of the NACA2412-wing at M = 0.5 and
k = 0.100 during forced harmonic pitching oscillation, third cycle
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FIGURE A.18: Friction coefficient, cf of the NACA2412-wing at M =0.5 and
k = 0.100 during forced harmonic pitching oscillation, third cycle
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FIGURE A.19: Pressure coefficient, c,, of the NACA2412-wing at M = 0.5 and
k = 0.750 during forced harmonic pitching oscillation, third cycle
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FIGURE A.20: Friction coefficient, cf of the NACA2412-wing at M =0.5 and
k = 0.750 during forced harmonic pitching oscillation, third cycle



178

Chapter A. Appendix

FALCon
DLR-tau 3D
X A A , , , L1 , , . . | . . . , .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1
x/c [-] x/c [-] x/c [-]

(A) & = 2.51°, k = 0.025

(B) & = 2.51°, k = 0.100

(C) a = 2.51°, k = 0.750

1 L L L
0 0.2 0.4 0.6 0.8 1

x/c [-]

(D) &« = 0° down, k = 0.025

? L L L
0 0.2 0.4 0.6 0.8

x/c []

(E) « = 0° down, k = 0.100

L L L
0 0.2 0.4 0.6 0.8 1

x/c [-]

() & = 0° down, k = 0.750

1 X 1 1 1 1
0 0.2 0.4 0.6 0.8 1

x/c [-]
(G) « = —2.51°, k = 0.025

L L L L L
0 0.2 0.4 0.6 0.8

x/c [-]
(H) & = —2.51°, k = 0.100

L L L
0 0.2 0.4 0.6 0.8 1

x/c [-]
(1) &« = —2.51°, k = 0.750

x/c [-

(J) &« = 0° up, k = 0.025

A TR IR SRR A RE N
0 0.2 0.4 0.6 08 1

I R H S S R BRI
0 0.2 0.4 0.6 0.8

x/c [-]
(K) « = 0° up, k = 0.100

R R SRS SRR SR R
0 0.2 0.4 0.6 0.8 1

x/c []
(L) &« = 0° up, k = 0.750

FIGURE A.21: Sectional pressure coefficient, ¢, of the third cycle of the pitching
unswept NACA2412 wing at M = 0.5 and Aa 4 = 2.51°, at 25% of the half-span
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FIGURE A.22: Sectional friction coefficient, ¢y, of the third cycle of the pitching
unswept NACA2412 wing at M = 0.5 and Aa 4 = 2.51°, at 25% of the half-span
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FIGURE A.23: Sectional pressure coefficient, ¢, of the third cycle of the pitching
unswept NACA2412 wing at M = 0.5 and Aa g = 2.51°, at 50% of the half-span
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FIGURE A.24: Sectional friction coefficient, cs, of the third cycle of the pitching
unswept NACA2412 wing at M = 0.5 and Aa 4 = 2.51°, at 50% of the half-span
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FIGURE A.25: Sectional pressure coefficient, ¢y, of the third cycle of the pitching
unswept NACA2412 wing at M = 0.5 and Aa 4 = 2.51°, at 75% of the half-span
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FIGURE A.26: Sectional friction coefficient, ¢y, of the third cycle of the pitching
unswept NACA2412 wing at M = 0.5 and Aa 4 = 2.51°, at 75% of the half-span
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FIGURE A.27: Sectional pressure coefficient, ¢y, of the third cycle of the pitching
unswept NACA2412 wing at M = 0.5 and Aa g = 2.51°, at 90% of the half-span



Sectional flow of the unswept NACA2412-wing in unsteady flow

185

0.015

- &
= 0.005 §
5 g

0.015

[ 7
= 0,005 §
o §

0.015

; y
= 0.005 §
(3] 8

0 0 0
FALCon
DLR-tau 3D

0005 0z 04 05 08 0005 (O I R T Y 0005 02 04 06 08 T

x/c [-] x/c [-] x/c [-]
(A) « = 2.51°, k = 0.025 (B) « = 2.51°, k = 0.100 () « =2.51°,k =0.750
0.015- 0,015 0,015
oo1f oot ootF

-0.005 %

-0.005 -+ L

L ' L L
0 0.2 0.4 0.6 0.8

x/c [-]
(D) &« = 0° down, k = 0.025
0.015

001 &

e
=2 0005 T4 T

-0.005 1

-0.005

\ | \ ,
0 0.2 0.4 0.6 0.8
x/c [-

(E) « = 0° down, k = 0.100

0.015

-0.005

L L L L
0 0.2 0.4 0.6 0.8 1

x/c [-]
(E) & = 0° down, k = 0.750
0.015

0o1f &

~ g
= 0005 Lf

-0.005 L

L L L L
0 0.2 0.4 0.6 0.8

x/c [-]
(G) « = —2.51°, k = 0.025

0.015

L L L L
0 0.2 0.4 0.6 0.8

x/c [-]
(H) & = —2.51°, k = 0.100

0.015

L L L L
0.2 0.4 0.6 0.8 1

x/c [-]
(1) &« = —2.51°, k = 0.750

0.015

=7 0.005 =7 0.005 =2 0.005
0 0 0
. N . I 000sl
0.005 0 0.2 0.4 0.6 0.8 0.005 0 0.2 0.4 0.6 0.8 0. 0.2 0.4 0.6 0.8 1
x/c [~ x/c [ x/c [-

(J) &« = 0° up, k = 0.025

(K) &« = 0° up, k = 0.100

(L) &« = 0° up, k = 0.750

FIGURE A.28: Sectional friction coefficient, ¢y, of the third cycle of the pitching
unswept NACA2412 wing at M = 0.5 and Aa 4 = 2.51°, at 90% of the half-span
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FIGURE A.30: Friction coefficient, cr of the NACA2412-wing at M = 0.7 and
k = 0.025 during forced harmonic pitching oscillation, third cycle
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FIGURE A.31: Pressure coefficient, cp, of the NACA2412-wing at M = 0.7 and
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FIGURE A.32: Friction coefficient, cf of the NACA2412-wing at M = 0.7 and
k = 0.100 during forced harmonic pitching oscillation, third cycle



188 Chapter A. Appendix

Y

¢=n/2 rad ¢=r rad ¢=3n/2rad  @=2r rad
. W\
— 90%
Ny i | T

1 I I _ 80%
0.20 - 75%
-0.20
-0.60
-0.80
-1.20
-1.60
-2.00
— 50%
- 25%
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FIGURE A.34: Friction coefficient, cf of the NACA2412-wing at M = 0.7 and
k = 0.750 during forced harmonic pitching oscillation, third cycle
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FIGURE A.35: Sectional pressure coefficient, cp, of the third cycle of the pitching
unswept NACA2412 wing at M = 0.7 and Aa 4 = 2.51°, at 25% of the half-span
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FIGURE A.36: Sectional friction coefficient, ¢y, of the third cycle of the pitching
unswept NACA2412 wing at M = 0.7 and Aa 4 = 2.51°, at 25% of the half-span
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FIGURE A.37: Sectional pressure coefficient, ¢, of the third cycle of the pitching
unswept NACA2412 wing at M = 0.7 and Aa 4 = 2.51°, at 50% of the half-span
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FIGURE A.38: Sectional friction coefficient, cf, of the third cycle of the pitching
unswept NACA2412 wing at M = 0.7 and Aa 4 = 2.51°, at 50% of the half-span



A.l.  Sectional flow of the unswept NACA2412-wing in unsteady flow

FALCon
DLR-tau 3D
Lk , , , , , (L , , . . L . . . , .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1
x/c [-] x/c [-] x/c [-]

(A) & = 2.51°, k = 0.025

(B) & = 2.51°, k = 0.100

(C) a = 2.51°, k = 0.750

L

y L L L
0 0.2 0.4 0.6 0.8 1

x/c [-]

(D) &« = 0° down, k = 0.025

L L L
0 0.2 0.4 0.6 0.8

x/c []

(E) « = 0° down, k = 0.100

§ L L L L
0 0.2 0.4 0.6 0.8 1

x/c [-]

(E) & = 0° down, k = 0.750

s

1 1 1
0 0.2 0.4 0.6 0.8 1

x/c [-]
(G) « = —2.51°, k = 0.025

L L L
0 02 0.4 0.6 0.8

x/c [-]
(H) & = —2.51°, k = 0.100

i L L L L
0 0.2 0.4 0.6 0.8 1

x/c [-]
(1) &« = —2.51°, k = 0.750

x/c [-

(J) &« = 0° up, k = 0.025

AN S T S S S S
0 0.2 0.4 0.6 08 1

b
0 0.2 0.4 0.6 0.8

x/c [-]
(K) &« = 0° up, k = 0.100

T R HE R SRR S
0 0.2 0.4 0.6 0.8 1

x/c []
(L) &« = 0° up, k = 0.750

FIGURE A.39: Sectional pressure coefficient, ¢y, of the third cycle of the pitching
unswept NACA2412 wing at M = 0.7 and Aa 4 = 2.51°, at 75% of the half-span
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FIGURE A.40: Sectional friction coefficient, ¢y, of the third cycle of the pitching
unswept NACA2412 wing at M = 0.7 and Aa 4 = 2.51°, at 75% of the half-span
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FIGURE A.41: Sectional pressure coefficient, ¢, of the third cycle of the pitching
unswept NACA2412 wing at M = 0.7 and Aa 4 = 2.51°, at 90% of the half-span
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FIGURE A.42: Sectional friction coefficient, ¢y, of the third cycle of the pitching
unswept NACA2412 wing at M = 0.7 and Aa 4 = 2.51°, at 90% of the half-span
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FIGURE A.44: Friction coefficient, cr of the NACA2412-wing at M = 0.8 and
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FIGURE A.46: Friction coefficient, cf of the NACA2412-wing at M = 0.8 and
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FIGURE A.52: Sectional friction coefficient, cs, of the third cycle of the pitching
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FIGURE A.54: Sectional friction coefficient, cs, of the third cycle of the pitching
unswept NACA2412 wing at M = 0.8 and Aa 4 = 2.51°, at 75% of the half-span
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FIGURE A.55: Sectional pressure coefficient, ¢y, of the third cycle of the pitching
unswept NACA2412 wing at M = 0.8 and Aa g = 2.51°, at 90% of the half-span
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FIGURE A.56: Sectional friction coefficient, ¢y, of the third cycle of the pitching
unswept NACA2412 wing at M = 0.8 and Aa 4 = 2.51°, at 90% of the half-span
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A.1.2 Unsteady force harmonic plunging oscillation
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FIGURE A.57: Pressure coefficient, c,, of the NACA2412-wing at M = 0.3 and
k = 0.025 during forced harmonic plunging oscillation, third cycle
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FIGURE A.58: Friction coefficient, cr of the NACA2412-wing at M = 0.3 and

k = 0.025 during forced harmonic plunging oscillation, third cycle
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FIGURE A.59: Pressure coefficient, ¢y, of the NACA2412-wing at M = 0.3 and
k = 0.100 during forced harmonic plunging oscillation, third cycle

Y

¢=n/2 rad ¢=n rad ¢=3n/2rad  @=2rrad
X

“ L il | o
0.08 ‘ \ ‘ — 80%
0.04 — 75%
0.01
0.00
0.00
-0.02
-0.06
-0.10
— 50%
— 25%

FIGURE A.60: Friction coefficient, cr of the NACA2412-wing at M = 0.3 and
k = 0.100 during forced harmonic plunging oscillation, third cycle
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FIGURE A.62: Friction coefficient, cf of the NACA2412-wing at M = 0.3 and
k = 0.750 during forced harmonic plunging oscillation, third cycle
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FIGURE A.68: Sectional friction coefficient, cf, of the third cycle of the plunging
unswept NACA2412 wing at M = 0.3 and ¢4 = 0.1, at 75% of the half-span
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FIGURE A.69: Sectional pressure coefficient, ¢y, of the third cycle of the plunging
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FIGURE A.70: Sectional friction coefficient, cf, of the third cycle of the plunging
unswept NACA2412 wing at M = 0.3 and ¢4 = 0.1, at 90% of the half-span
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FIGURE A.72: Friction coefficient, cr of the NACA2412-wing at M = 0.5 and
k = 0.025 during forced harmonic plunging oscillation, third cycle
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FIGURE A.74: Friction coefficient, cf of the NACA2412-wing at M =0.5 and
k = 0.100 during forced harmonic plunging oscillation, third cycle
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FIGURE A.76: Friction coefficient, cf, of the NACA2412-wing at M = 0.5 and
k = 0.750 during forced harmonic plunging oscillation, third cycle
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FIGURE A.77: Sectional pressure coefficient, ¢y, of the third cycle of the plunging
unswept NACA2412 wing at M = 0.5 and ¢4 = 0.1, at 25% of the half-span



Al

Sectional flow of the unswept NACA2412-wing in unsteady flow

223

0.015

v 4
= 0.005 [
Q [

0.015
0.01F

[ [~
= 0,005} }
g ¥

0.015
0.01F

v ]
= 0.005 %
S é

of 0 0
FALCon
DLR-tau 3D
0005 0z 04 05 08 i 0005 (O I R T Y 0005 02 04 06 08 T
x/c [-] x/c [-] x/c [-]
(A) ¢ =0.1,k=0.025 (B) & =0.1,k =0.100 (©)¢=0.1,k=0.750
0.015- 0,015 0,015
oo1f oot 0.01

-0.005

00052 1

L ' L L
0 0.2 0.4 0.6 0.8

x/c [-]
(D) & = 0 down, k = 0.025
0.015

0.01F

~
= 0.005

s

-0.005

-0.005

\ | \
0 0.2 0.4 0.6 0.8
x/c [-

(E) & = 0 down, k = 0.100
0.015

0.01F

o~ 2
=2 0.005| [

L L L L L
0 0.2 0.4 0.6 0.8 1

x/c [-]
(F) & = 0 down, k = 0.750
0.015

0.01F ®

~ 0
= 0.005} f¢

-0.005—+

L L L L
0.2 0.4 0.6 0.8

x/c [-]
(G) & = —0.1,k = 0.025

0.015

-0.005

L L L L
0.2 0.4 0.6 0.8

x/c [-]
(1) & = —0.1, k = 0.100

0.015

L L L L
0 0.2 0.4 0.6 0.8 1

x/c [-]
—0.1, k= 0.750

T 0
=7 0.005 =7 0.005
0 0
. N N S S . I 000sl
0.005 0 0.2 0.4 0.6 0.8 1 0.005 0 0.2 0.4 0.6 0.8 0. 0.2 0.4 0.6 0.8 1
x/c [~ x/c [ x/c [-

(1) ¢ =0up, k = 0.025

(K) & = 0 up, k = 0.100

(L) € = 0 up, k = 0.750

FIGURE A.78: Sectional friction coefficient, cf, of the third cycle of the plunging
unswept NACA2412 wing at M = 0.5 and ¢4 = 0.1, at 25% of the half-span
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FIGURE A.79: Sectional pressure coefficient, ¢y, of the third cycle of the plunging

unswept NACA2412 wing at M = 0.5 and ¢4 = 0.1, at 50% of the half-span
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FIGURE A.81: Sectional pressure coefficient, ¢y, of the third cycle of the plunging
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FIGURE A.90: Friction coefficient, cf of the NACA2412-wing at M = 0.7 and
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FIGURE A.92: Sectional friction coefficient, cf, of the third cycle of the plunging
unswept NACA2412 wing at M = 0.7 and ¢4 = 0.1, at 25% of the half-span
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FIGURE A.93: Sectional pressure coefficient, ¢y, of the third cycle of the plunging
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FIGURE A.96: Sectional friction coefficient, cf, of the third cycle of the plunging
unswept NACA2412 wing at M = 0.7 and ¢4 = 0.1, at 75% of the half-span
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FIGURE A.97: Sectional pressure coefficient, ¢y, of the third cycle of the plunging
unswept NACA2412 wing at M = 0.7 and ¢4 = 0.1, at 90% of the half-span
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FIGURE A.98: Sectional friction coefficient, cf, of the third cycle of the plunging
unswept NACA2412 wing at M = 0.7 and ¢4 = 0.1, at 90% of the half-span
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FIGURE A.101: Pressure coefficient, ¢y, of the NACA2412-wing at M = 0.8 and
k = 0.100 during forced harmonic plunging oscillation, third cycle
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FIGURE A.102: Friction coefficient, ¢, of the NACA2412-wing at M = 0.8 and
k = 0.100 during forced harmonic plunging oscillation, third cycle
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FIGURE A.108: Sectional friction coefficient, cf, of the third cycle of the plunging
unswept NACA2412 wing at M = 0.8 and ¢4 = 0.1, at 50% of the half-span
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FIGURE A.109: Sectional pressure coefficient, cp, of the third cycle of the plunging
unswept NACA2412 wing at M = 0.8 and ¢4 = 0.1, at 75% of the half-span
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FIGURE A.110: Sectional friction coefficient, cf, of the third cycle of the plunging
unswept NACA2412 wing at M = 0.8 and ¢4 = 0.1, at 75% of the half-span
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