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The current state-of-the-art of genetic algorithms is dominated by high-performing specialist-

solvers with fast convergence. These algorithms require prior knowledge about the charac-

teristics of the optimised problem to operate effectively, although such information is not

available in most real cases. Most of these algorithms are only tested on a narrow range of

similar benchmarking problems with lower complexity than the real cases. This leads to the

promotion of high-performing strategies for these cases, but which might prove to be ineffec-

tive on practical applications. This hypothesis is supported by a low uptake of the current

specialist/convergence algorithms on real-world cases; NSGA-II remains the most popular

algorithm despite being developed in 2002. It is suggested that this is due to its uniformly

good performance across a wide range of problems with distinct characteristics, indicating

high generality, and a high diversity retention across iterations.

To assess if increasing the generality and diversity of the search improves the performance on

real problems, the Multi-Level Selection Genetic Algorithm (MLSGA) is extended to develop

a “diversity-first” general-solver genetic algorithm. It is selected as it shows high promise

for the diversity-oriented methodology. Firstly, the reasons behind why it exhibits high di-

versity are investigated, as it is shown that the collective-level mechanisms create additional

evolutionary pressure, while the fitness separation approach leads to collectives targeting dif-

ferent regions of the search space. This creates unique region-based search which leads to

retention of higher diversity of solutions between generations. Secondly, as the MLSGA is

exhibiting a poor convergence, the algorithm is combined with the current state-of-the-art

algorithms in the hybrid approach (MLSGA-hybrid) to offset this problem. MLSGA-hybrid

focuses on increasing the convergence of the search, over the original MLSGA algorithm,

while retaining its emphasis on the diversity. The results demonstrate that this improvement

leads to top performance on a range of problems. This is particularly the case on constrained

problems indicating that the diversity has been retained. Thirdly, the co-evolutionary vari-

ant is introduced and tested (cMLSGA), which combines multiple evolutionary algorithms

to improve the generality of the method. To validate the performance of the “diversity-first”

general-solver approach, the algorithm is tested on 100 benchmarking problems and compared

with top algorithms from the current state-of-the-art. It is shown that cMLSGA is the best
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general-solver, due to the most robust performance across the evaluated cases, while main-

taining a higher focus on problems where elevated diversity of the search is preferred, such as

discontinuous, constrained and biased cases. Finally, the cMLSGA approach is benchmarked

on 3 engineering cases with a wide range of diverse characteristics and compared with other

leading genetic algorithms. It is shown that the convergence-oriented solvers are ineffective

for real-world applications due to higher complexity of practical problems, whereas perfor-

mance of specialist-solvers is low due differences between real-world cases and benchmarking

functions they are adjusted to. According to that, the “diversity-first” genetic algorithms

with a high generality are preferred and there should be more focus on algorithms with these

characteristics in the future.
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Chapter 1 Introduction

1.1 Background

It is predicted that the development of Artificial Intelligence will have a significant impact

on the global economy, resulting in an increase of the global GDP by over US$ 13 trillion

in the next 10 years [2]. An important subfield of the artificial intelligence are genetic al-

gorithms which are inspired by Darwinian theory of evolution [3]. Up to 2017, Coello [4]

has collected over 10000 references relating to the genetic algorithms’ development showing

a wide interest in this field. Genetic Algorithms (GA) have found applications over a diverse

range of industrial and scientific fields, due to their ability to accurately approximate the set

of solutions on multimodal problems with multi-objectives and large search spaces. Exam-

ples include: medical and biological data classification for Parkinson, diabetes and cancer

sicknesses diagnosis [5,6]; adjustment of beam-angle in radiotherapy [7]; DNA sequencing [8]

machine learning and artificial intelligence for intelligent stock trading and market forecast-

ing [9]; control systems for greenhouse gases and fuel consumption reduction [10]; design of

engineering artefacts, such as space satellite antenna [1];training of neural network for feature

selection [11]; and job shop scheduling [12]. Utilisation of genetic algorithms often leads to

unusual, but more effective solutions that do not follow the field-related experience, with

example in Fig. 1.1, further showing their usefulness.

One of the first ideas of utilisation of evolutionary-like mechanisms into the computational

field come as early as 1950s [13]. This was followed by first developments of GAs in the 1960s

to study evolution [14–17], before their rapid development in the 1980s and 90s, as they were

found to be successful global optimisers [18–25].

In the current state-of-the-art three main branches of algorithms can be recognised: nich-

ing methods [26]; the decomposition methods [27]; and hybrid and co-evolutionary ap-

proaches [28, 29]. Most of the algorithms from both groups promote, a “convergence-first

diversity-second” approach. The main search mechanisms focus on the convergence, achiev-

ing the global optimum, while the exploration of the different regions of the search space,

diversity, is achieved by secondary mechanisms. The performance of such an approach has

been successfully demonstrated on many multi-objective problems with gradually increasing

complexity [30–33].

1
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Figure 1.1: The 2006 NASA ST5 spacecraft antenna [1]

However, the uptake of genetic algorithms into scientific and engineering applications does

not utilise the state-of-the-art solutions from evolutionary computation. The most commonly

applied genetic algorithm is NSGA-II developed in 2002 [34] with 14,800 results in the Google

Scholar 1 and 30785 citations. The MOEA/D developed in 2007 [35] comes second with 3,250

results in the Google Scholar and 4161 citations2. The modern algorithms are significantly

less often applied: HEIA (2016) [36] with 81 results in Google Scholar and 69 citations;

MOEA/D-MSF (2018) [32] with 2 results and 27 citations; MTS (2007) with 69 results and

40 citations; NSGA-III (2014) [37] with 1500 results and 1792 citations; despite the fact that

those algorithms has been shown to outperform both NSGA-II and MOEA/D in multiple

comparative benchmarks and competitions [32, 33, 36–39]. It is possible that this is simply

due to a certain lag between an academic science and real-world applications, but it is also

possible that the benchmarking problems in the evolutionary computation literature do not

represent real-world optimisation, leading to genetic algorithms that perform well on these

problems, but ineffective in practical applications.

Many of practical problems contains multiple constraints, resulting in discontinuities of the

search space, and thus the complexity of their characteristics is significantly higher than of

commonly utilised benchmarking sets, making the choice of suitable genetic algorithm non-

trivial. Therefore, it is suggested that real-world problems may require a higher diversity and

generality of the search, than the current state-of-the-art is providing, and thus this possibility

should be explored. It is supported by a high popularity of NSGA-II algorithm. NSGA-II,

despite not being the top performer in evolutionary computation problems, is showing a

uniform performance across wide range of cases with diverse characteristics where is able

to provide a high diversity of obtained solutions [32–34, 36, 40–44]. Therefore, indicating its

high generality and diversity focus in comparison to the rest of alternatives in the genetic

algorithms field.

1All Google Scholar searches have been conducted on 03.01.2020 with the term “Name of the GA applica-
tion” for the 2017-2019 range.

2As for 03.01.2020, according to Google Scholar
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A potential candidate for the diversity-oriented methodology is Multi-Level Selection Genetic

Algorithm (MLSGA) originally proposed by [45]. It has been shown that this approach

utilises a unique sub-population-based search strategy resulting in additional evolutionary

pressure, which in result encourages the exploration of a particular region of the search

space [45]. In total, three Multi-Level Selection (MLS) strategies have been introduced, each

with a different preferred region. It is suggested that this strategy can be further modified

to simultaneously target multiple regions of the search space leading to a higher overall

diversity of exploration in result. This is supported by other research on sub-population-

based approaches, as a valid strategy of improving the diversity [46, 47]. However, unlike

other sub-population-based methods, which usually utilise a decomposition of the search

space, MLSGA does not require extensive hyper-parameter tuning to operate. Sensitivity to

hyper-parameters is disadvantageous for real-world applications, due to complexity of those

problems and not knowing the location of the global optimum, making the tuning process

expensive or even impossible. Furthermore, it is suggested that the generality of MLSGA can

be improved by utilisation of co-evolutionary approach, where different sub-populations will

use distinct evolutionary algorithm. By utilising a range of search strategies with different

areas of applications there is a lower chance that the overall methodology will be ineffective

on a particular problem, and thus increasing its robustness.

1.2 Aim and objectives

The aim of the project is to investigate whether genetic algorithm designed for high diversity

of the search and a high generality over a wide set of evolutionary computation problems will

improve its performance on the real-world problems. This aim will be met through a number

of objectives:

� Literature review of the state-of-the-art genetic algorithms and currently utilised bench-

marking sets with emphasis on trends in development, their strengths and the flaws.

� Understanding the principles of working of the previously developed Multi-Level Selec-

tion Genetic Algorithm:

– Investigating if the diversity increase from the MLSGA can be retained, while

improving its convergence through implementation of the current state-of-the-art

mechanisms.

– Investigating if the generality of the search can be enhanced through co-evolutionary

approach.

� Validation of the applicability of the developed methodology:

– Demonstrating the effectiveness on diverse, with various dominant characteristics,

set of benchmarking functions and selected real-world problems.

– Comparison to the current state-of-the-art.
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1.3 Research novelty

Main novelty of this study is to demonstrate the importance of diversity and generality as

opposed to convergence by development and understanding of the genetic algorithm with

these properties. That knowledge will be used to suggest why the uptake of modern genetic

algorithms in real-world applications is slow and to propose improvements to the existing

methodologies to make them more suited for the needs of industry.

1.4 Outline of the study

The reminder of this work is organised as follows. The state-of-the-art literature on genetic

algorithms and the benchmarking test functions is reviewed and discussed in Chapter 2. In

Chapter 3 the principles of working of Multi-Level Selection Genetic Algorithm and its high

potential for diversity-oriented methodology are investigated. Chapter 4 presents extension

of the original methodology with the current state-of-the-art mechanisms in order to im-

prove its convergence while maintaining a high diversity of solutions, resulting in the hybrid

methodology. The co-evolutionary approach is introduced in Chapter 5, where multiple evo-

lutionary algorithms are combined within the MLSGA, in order to maximise the generality.

The performance of the MLSGA is validated and compared with the current state-of-the-art

on a range of real cases in Chapter 6. This thesis is concluded, with discussion including the

indication of potential limitations and the future work in Chapter 7.

1.5 List of publications

P.A. Grudniewski* and A. J. Sobey, “Multi-Level Selection Genetic Algorithm applied to

CEC'09 test instances”, 2017 IEEE Congress on Evolutionary Computation (CEC), San

Sebastian, pp. 1613-1620, 2017.1

U. Mutlu*, P. A. Grudniewski, A. J. Sobey and J. I. R. Blake, “Selecting an Optimisation

Methodology in the Context of Structural Design for Leisure Boats”, RINA International

Conference on Design and Construction of Super & Mega Yachts 2017, 2017.

A. J. Sobey* and P.A. Grudniewski, “Re-inspiring the genetic algorithm with multi-level selec-

tion theory: multi-level selection genetic algorithm (MLSGA)”, Bioinspiration and Biomimet-

ics, vol. 13, no. 5, pp. 1-13, 2018.1

P. A. Grudniewski* and A. J. Sobey, “Behaviour of Multi-Level Selection Genetic Algorithm

(MLSGA) using different individual-level selection mechanisms”, Swarm and Evolutionary

Computation, vol. 44, no. September 2018, pp. 852-862, 2018.1

* Main author
1Peer-reviewed
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P. A. Grudniewski* and A. J. Sobey “Do general Genetic Algorithms provide benefits when

solving real problems?”, 2019 IEEE Congress on Evolutionary Computation (CEC2019),

Wellington, 2019.1

A. J. Sobey*, J. Blanchard, P. A. Grudniewski and T. Savasta, “There’s no Free Lunch: A

Study of Genetic Algorithm Use in Maritime Applications”, 18th Conference on Computer

Applications and Information Technology in the Maritime Industries (COMPIT), 2019.

J. W. Steer*, P. A. Grudniewski, M. Browne, P. R. Worsley, A. J. Sobey, and A. S. Dickinson,
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2019.1

P. A. Grudniewski* and A. J. Sobey, “Benchmarking the performance of genetic algorithms

on constrained dynamic problems”, Natural Computing, 2020.1

P. A. Grudniewski* and A. J. Sobey, “cMLSGA: co-evolutionary Multi-Level Selection Ge-

netic Algorithm”, Natural Computing, 2021, Under review.





Chapter 2 Literature review

2.1 Genetic algorithms

2.1.1 The history of genetic algorithms

In 1950 Turing proposed the idea of evolutionary-based machine learning, where machines

could self-develop and form unique responses after being injected with knowledge and ideas

[13]. However, the first numerical testing of evolutionary computing was conducted over a

decade later, in 1963, by Barricelli [15]. The primary subject was to evaluate if the evo-

lutionary improvement can be directed to the selected problem and thus produce a desired

performance. According to results the individuals at more advanced stage of evolution were

of a higher quality than the more primitive ones, due to better abilities in performing neces-

sary tasks and a higher survivability rate. Therefore, Barricelli was the first one to conclude

that evolutionary-like mechanisms may lead to overall improvement of individuals.

The first theoretical view of evolutionary inspired genetic algorithms was presented by Hol-

land in 1960s [14, 16, 17]. Later, Holland proved by mathematical analysis that evolutionary

reproduction leads to the improvement of population's average quality on a generation-to-

generation basis [48]. Thus, further confirming the Barricelli's work. Holland's work led to

a growth of the interest in improvement of the genetic algorithms mechanisms and furtherly

followed by development of new methodologies. However, the first implementations of evo-

lutionary algorithms for single-objective problems solving in engineering were conducted in

late 1960s towards early 1970s by Rechenberg [49] and Schwefel [50], leading to development

of evolutionary algorithms branch known as Evolution Strategies (ES).

In 1972 Bosworth et. al introduced the theory of elitism for single-objective cases, as the

procedure to improve convergence of solutions by retaining the best individuals between

generations [51]. In 1975 De Jong introduced crowding, as the first technique for maintaining

the population diversity [52] across the search spaces with single objective. Crowding assumes

that individuals in less densely populated regions have higher chance of survival, leading to the

expansion into diverse regions of the search space. Both elitism and crowding are successfully

utilised in many genetic algorithms that followed their work. They remain useful even in the

current state-of-the-art.

7
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Schaffer introduced in 1985 the Vector Evaluated Genetic Algorithm (VEGA) for single-

and multi-objective problems, where individuals are grouped based on the best values of

each objective, and the parents, for the reproduction process, are selected randomly from

these groups [18]. Additionally, the Pareto-optimality concept is introduced for the first

time as a form of elitism. In each generation, the offspring population is compared with

their parents, and the non-dominated solutions from both groups are selected, which leads

to a better convergence as the result. Due to that the VEGA was first GA able to find the

Pareto optimal front during a single run, and thus the first multi-objective genetic algorithm.

However, due to basing the parents’ selection on a single objective only, a strong bias toward

extreme values of the objective space could be observed. In this case the individuals with the

lowest values of each objective were strongly preferred, and thus there was no incentive for

individuals to obtain more “average” values.

In 1989 Goldberg proposed a methodology that become a foundation for the current state-

of-the-art niching methods [19]. The Pareto ranking approach, based on Pareto's dominance

principle [26], is introduced for the first time for the multi-objective cases, where the pop-

ulation is classified into several sub-groups, based on the individual's dominance relations.

The best, non-dominated, points are assigned to the first rank and have a highest chance

of being selected. Then, from among remaining individuals the non-dominated solutions are

assigned to the second rank. The process repeats until every individual has a rank assigned.

Introducing the Pareto ranking allowed removal of the bias towards extreme regions of the

search space, occurring in the VEGA, and thus increase overall convergence. The concept of

Pareto ranking for multi-objective problems is extended by Fonseca and Fleming to develop

the Multi-Objective Genetic Algorithm (MOGA) [20], and further improved to promote con-

vergence by Srinivas and Deb in the Non-dominated Sorting Genetic Algorithm (NSGA) [21].

However, the key breakthrough for the NSGA algorithm was development of the crowding

estimator, called fitness sharing by Deb and Goldberg in 1991 [22]. This method expanded De

Jong's crowding idea to stronger promote the individuals in a less population-dense regions

of the objective space with a lower number of iterations needed to achieve it. However, the

significant increase in computational complexity introduced by non-dominated sorting and

fitness sharing, and the sensitivity to utilised hyper-parameters limits its usability in practical

applications. The concepts of non-dominated sorting, ranking and niching for multi-objective

problems have been further studied and followed [23–25, 53–56], and the niching algorithms

become the most used branch of the current state-of-the-art genetic algorithms [34,37].

In Strength Pareto Evolutionary Algorithm (SPEA) introduced in 1999 by Zitzler and Thiele

for the multi-objective problems, the front is stored externally, outside of the main population,

for the first time [25]. It is used to evaluate the fitness values of the individuals instead of the

domination relations inside of the population, unlike the NSGA. The fitness is proportional

to the number of points, from the external front, which dominate the individual and the

number of individuals dominated by those external points. This approach was introduced to

reduce the overall complexity of the algorithm; by eliminating the necessity to compare all

individuals with each other to check the dominance relations separately for each rank; and
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to achieve a better convergence rate. The biggest drawback of this methodology is that the

fitness of individuals is based only on the points from the external archive. Therefore, many

individuals can potentially have the same rank even if they dominate each other. This resulted

in a highly random and ineffective search, and often leading to premature convergence. This

issue has been addressed in the SPEA-II [54], where the fitness of individuals is based not only

on the relation to the external front, but also on the quality of points that either dominate

or are dominated by it. However, the resulting methodology has comparable performance to

the NSGA, but with a higher computational complexity.

The idea of a crowding-based selection strategy has been extended by Corne et. al in the

multi-objective Pareto Envelope-based Selection Algorithm (PESA) [55] and an improved

version of its PESA-II [56], developed for a better convergence and diversity. In both al-

gorithms, the objective space is divided into a number of hyper-boxes, and the fitness of a

non-dominated individual is dependent only on the amount of points sharing the box with

it. As the points in less crowded areas are always chosen, it is the first methodology that

strongly promotes diversity by full integration of the selection mechanisms with the diversity

maintenance. Despite the low computational complexity, both PESA and PESA-II are overly

sensitive to a number of utilised hyper-parameters reducing its usefulness.

In 1994 Srinivas and Patnaik proposed the Adaptive Genetic Algorithm (AGA), addressing

issues with low performance on multimodal, multi-objective problems shown by previously

developed methodologies [57]. In this approach, the probabilities of crossover and mutation

operations are changing over generations, in order to avoid premature convergence on local

optima. Therefore, AGA was the first self-adaptive genetic algorithm. In 1996 this concept

is further extended, by Hinterding et. al to develop the Self-Adaptive Genetic Algorithm

(SAGA), where the population size adaptation is added, leading to elevated performance on

multimodal, multi-objective problems in comparison to AGA [58]. However, the biggest draw-

backs of the adaptive-based methodologies are high computational complexity of self-adaptive

mechanisms and significant hyper-parameters of those. That is due to the requirement for

tuning the algorithm to the shape of search and objective spaces in advance. Therefore, the

usability of the adaptive methodologies in real-world is limited.

A different approach to promoting diversity of the search has been proposed by Whitley

et. al in the Island Model Genetic Algorithm (IMGA) [46] designed for single-objective

problems. In IMGA, the population is divided into the sub-populations, called islands. Each

island operates in parallel on the same search space, where individuals are allowed to migrate

between groups. As the populations operate semi-independently, they have a higher chance

of exploring different regions of search space [46] leading to a better diversity in overall, while

the between-groups migration minimises the chance of premature convergence for a single

group. The concept of sub-populations is successfully implemented in many single- and multi-

objective GA methodologies [59] and has become the foundation for modern decomposition

and hierarchical-based algorithms. However, due to the lack of additional diversification

mechanisms between the groups in the IMGA, the groups often evaluate the same regions

of the search space, especially on more complex problems, leading to an ineffective search.
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Furthermore, similarly to adaptive methods the sensitivity to a number of hyper-parameters

can be observed.

Similar concepts have been implemented in the micro-GA (MGA) [60] and an adaptive version

of its AMGA [61], both designed for multi-objective environments. However, instead of

running multiple populations in parallel, a serial approach is utilised, where a single small

population is used in a series of runs. After each run, the obtained solutions are stored in the

external archive and then used for population initialisation of the next run. These methods

were initially developed to reduce the computational time for the practical applications by

minimising population sizes and as an approach to maximise the convergence. However, due

to strong emphasis on convergence, a low diversity in the final solutions can be observed.

From the presented methods, a high interest in the niching approach can be observed. Most

of these methods were developed to improve the convergence of solutions or to lower the

computational complexity while maintaining a similar convergence: MOGA, NSGA, SPEA,

SPEA-II, PESA-II, AGA, SAGA, MGA, AMGA. With only a few attempts to develop a

better diversity preservation mechanism: NSGA, PESA, IMGA. Furthermore, in all of the

presented methodologies, except PESA, diversity is maintained by secondary mechanisms

resulting in a “convergence-first diversity-second” approach, which is prevalent in the current

state-of-the-art.

Here the modern methods are considered to be from NSGA-II [34]. NSGA-II is selected

due to a substantial improvement in efficiency and effectiveness of this methodology, in com-

parison to the previously developed algorithms; as well as its high competitiveness with the

current state-of-the-art; and utilisation in a wide range of real-world applications. The lead-

ing methodologies are considered to form 3 categories: niching; decomposition-based; and

co-evolutionary and hybrid methods. These will be discussed in the following sections. Only

the highest performing multi-objective algorithms are reviewed, as illustrated in Fig. 2.1.
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Figure 2.1: Development tree of genetic algorithms. The colours represent different ap-
proaches in the GAs development.

2.1.2 Niching genetic algorithms

In the current state-of-the-art, niching approach is dominated by improved Non-dominated

Sorting Genetic Algorithm (NSGA-II) [34] and the next iteration of it, NSGA-III [37]. In

the NSGA-II algorithm, similarly to the original NSGA [21], the population is sorted into
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Figure 2.2: The principles of working of NSGA-II methodology. Non-dominated sorting
and the crowding distance calculation.

several ranks. Individuals in less dominated fronts are assigned a lower rank, and there-

fore are more likely to be selected for reproduction with prioritisation of individuals in less

crowded regions. The principles of this methodology are illustrated in Fig 2.2. The main

improvements over the NSGA are the implementation of the Fast Non-Dominated Sorting

Approach, allowing the reduction in an overall computational complexity; and improving the

crowded-comparison operator to enhance diversity. In the original NSGA each solution was

compared with every other solution in order to find the dominance-relations separately for

each rank, which required O(MN3) comparisons in the worst case scenario, where M is the

number of objectives and N is the population size. In NSGA-II, the dominance calcula-

tion is performed only once for all ranks, allowing reduction of complexity to O(MN2). In

the NSGA, the density of solutions is calculated by using a predefined sharing parameter,

which determines the Euclidean range in which two solutions are additively sharing each

other fitness. In the NSGA-II the distance between closest solutions is calculated instead, as

illustrated in Fig 2.2. This change allows to remove the sharing value, due to its sensitivity

to predefined hyper-parameter, and the reduction of the computational complexity of the

crowding-distance calculation from O(MN2) to O(MNlogN). Furthermore, the diversity

is strongly promoted by implementation of the crowded-comparison operator into selection

procedure, where the individuals in a less crowded areas are always selected from among the

same rank. Despite, often being outperformed by more recent methods, the NSGA-II remains

the most widely utilised GA and has been successfully applied to diverse branches of science

and industry [12,62–69]. The interest can be explained by the fact that NSGA-II shows good

performance across the range of multi-objective problems, such as: unconstrained [30,41,70],

constrained and with complex Pareto optimal sets [31]; indicating a general-solver approach..

Furthermore, multiple modifications to it have been proposed in order to adjust its perfor-

mance to the other types, such as dynamic [71], imbalanced [33], large scale [72] and bi-level

problems [73].

However, the NSGA-II is ineffective on cases with more than two objectives, due to low
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selection pressure towards Pareto optimal front and thus a low convergence, in comparison to

other methods. The improvements in this aspect have been proposed by Deb and Jain in 2014,

resulting in the NSGA-III [37]. Instead of the crowding distance for diversity preservation, a

number of the predefined reference points are used, similarly to many decomposition methods

[35]. Where the points are used to predict the position of the final front. It is assumed that

the ideal solutions will be located on the vectors drawn from these reference points, to the

predefined ideal point. This is usually (0)M for the minimisation problem, where M is the

number of objectives. During the reproduction step, the closest individual to each vector is

chosen from non-dominated rank, to form a new population. According to the benchmarks,

the NSGA-III outperforms the other state-of-the-art algorithms on a range of test instances

up to 15 objectives [37, 43, 74, 75] or at least exhibit comparable performance. However, due

to utilisation of predefined reference points, the performance of NSGA-III is sensitive to the

quality of those points. The positions of reference points have to be adjusted regarding to the

shape and geometry of the Pareto optimal front and potential discontinuities in it, similarly

to many decomposition methods [32,47]. Furthermore, due to the small amount of reference

points utilised, resulting in small population sizes as the number of individuals is equal to the

number of the reference points. Due to that, this methodology is ineffective on one- and two-

objective problems. In 2015 the U-NSGA-III is proposed which combines mechanisms from

NSGA-II and NSGA-III in order to solve that issue. In this method individuals are selected,

based not only on the distance to the reference point, but also on their crowding distance

like in the NSGA-II. Furthermore, higher population sizes are allowed due to utilisation of

crowding distance as a parameter. Proposed changes lead to performance similar to NSGA-II

on one and two-objective problems, but with slightly lowered effectiveness on cases with more

objectives in comparison to the NSGA-III. Therefore, U-NSGA-III was successful in unifying

the effectiveness of both NSGA-II and NSGA-III, resulting in more universal methodology.

However, the sensitivity to reference points has not been addressed in this case.

A similar approach to NSGA-II is utilised in Genetic Algorithm with Multiple ParEto sets

(GAME) [76] and an improved self-adaptive version of it (aGAME) [77]. In GAME the

population is classified into several Pareto fronts depending on their ranks, and crowding

distance mechanisms are used for the diversity preservation. However, in contradiction to

NSGA-II, the selection process is less biased towards low-rank individuals. In GAME the rank

is used to calculate fitness, instead of being key element of the selection process. Resulting

methodology is shown to outperform algorithms such as DMOEA-DD, LiuLi and MTS on

multi-objective constrained CF problems [76]. However, the algorithm's behaviour varies on

diverse kinds of search spaces due to utilisation of statistically tuned priority parameters

for the fitness calculation, resulting in a sensitivity to these parameters. Partial solutions to

those problems have been proposed in the self-adaptive version of it, aGAME [77], where those

parameters are being automatically adjusted to the search basing on the quality of current

population. However, the aGAME introduces additional set of hyper-parameters to manage

its self-adaptiveness. Therefore, as the performance evaluation is limited to only 7 constrained

function, with no data on other types of problems given. As there is no comparison with the

current state-of-the art and no indication of potentially the best hyper-parameters for other
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kind of problems the generality of both GAME and aGAME is low. According to that, it is

likely that the high performance of GAME on constrained problems is due to being adjusted

to these cases rather than a better diversity in comparison to other methods.

2.1.3 Decomposition based methods

Unlike the niching methods, which are based on the Pareto-dominance principle, the decomposition-

based algorithms operate by splitting the objective or search space into number of subspaces

and evaluating each of them separately. This approach originates from the modification to

NSGA-II where cone separation of the search space is implemented (CS-NSGA-II), as the

mean of improving the efficiency of the genetic algorithms in parallel computing [27]. How-

ever, the peak interest in those methods originates in Multi-Objective Evolutionary Algorithm

Based on Decomposition (MOEA/D) presented by Zhang and Li in 2007 [35]. It was due to

significantly higher performance on unconstrained problems such as UF [31], ZDT [30] and

DTLZ [40] sets in comparison to other leading methods.

In MOEA/D the multi-objective problem is decomposed into a predefined set of sub-problems,

by assigning a distinct weight vector to each individual, and utilising scalarisation method for

the fitness calculation. Therefore, each sub-problem has exactly one individual assigned. In

the original work three scalarisation methods were proposed: Weighted Sum [78], Tchebycheff

(TCH) [78] and penalty-based boundary intersection (PBI) [35]; with Tchebycheff approach

proven superior in the performance testing. The vectors remain constants during a single

run and the individuals can reproduce only within the same sub-problem or its neighbour-

hood. The neighbourhood is defined as predefined amount of sub-problems that have the

closest weigh vectors based on the Euclidean distances, as illustrated in Fig. 2.3. During

the reproduction step the offspring replaces predefined number of worse individuals in the

parents'sub-problem or its neighbourhood. Finally, the Pareto optimal front is composed by

non-dominated solutions originating from each sub-problem.

Over past decades the range of improvements to different mechanisms of MOEA/D has

been proposed: weight generation [79,80], decomposition [32,70,81,82], Scalarising functions

[83, 84], selection [39, 85], reproduction [86, 87] and mutation [88]. In 2016 Trivedi reviewed

over 50 different improvements and variants of MOEA/D [47]. However, due to the lack of

comprehensive benchmarks between each variant and compatibility tests of distinct improved

mechanisms, it is not trivial to choose unquestionably the best methodology. Furthermore,

most of them are tested on selected problems with a narrow range of characteristics leading

to the family of specialist methodologies, where each member can be used on different kind

of problems. From the benchmarks on WFG [41], MOP [32] and UF [31] it can be concluded

that the best variants of MOEA/D for two- and three-objective unconstrained cases are

MOEA/D-PSF and MOEA/D-MSF [83]. However, as no data is provided on constrained,

discontinuous and 4+ objective cases it is not possible to conclude them as the best variants

of MOEA/D in overall.
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The MOEA/D based methods have been shown to outperform niching and other decom-

position methods on unconstrained and dynamic functions, by promoting convergence over

diversity [32, 47]. The decomposition removes the necessity of using any diversity maintain-

ing mechanisms, as each sub-problem seek different regions of the search space leading to a

stronger focus on convergence. However, due to utilisation of the vector approach based on

reference points, low effectiveness can be observed on constrained and discontinuous problems,

where gaps on the search and objective spaces can be observed. As it cannot be predicted

where the infeasibilities occur, the weight vectors tend to guide the search straight through

them, resulting in individuals being stuck on the boundaries of those regions. Thereby result-

ing in inefficient search. Furthermore, it has been shown that the relationship of the shape

and structure between the grid of reference points and the Pareto optimal front can have

significant impact on the final performance [32, 47]. In the ideal case, the shape of the grid

should be identical to that of global optimum. According to that, those methods usually

require prior knowledge about the characteristic of the space in order to adjust the vectors in

advance. That knowledge is usually not available on a real-world scientific and engineering

cases, which may limit its potential application to real-world problems.

In 2014, the Multi-objective to simple Multi-objective decomposition method (M2M) for

MOEA/D framework was proposed in order to balance convergence and diversity [32]. In

the MOEA/D-M2M, instead of decomposing the problem into a set of one-objective sub-

problems, each with a separate individual assigned to them, the split of the objective space

into a set of sub-regions, of the same dimensions, via predefined direction vectors is imple-

mented. Therefore, each sub-population operates on a different sub-region for which the

boundaries are defined by the direction vectors. This methodology can achieve better per-

formance than other state-of-the-art algorithms on imbalanced problems [32], [33], but it is

outperformed by other methods on biased and unconstrained cases [83] indicating its special-

isation. As the decomposition by predefined vectors is applied, similarly to other MOEA/D-

based methods, the mechanisms are subject to hyper-parameter tuning, further limiting its

generality. Furthermore, as no information is provided on behaviour of this strategy on

constrained and highly discontinuous problems and as mostly cases with continuous charac-

teristics have been used for testing, it is not possible to conclude if the high performance of

M2M on imbalanced problems is due higher diversity of the search than other methodologies

or rather due to implementation of mechanisms tailored to them.

A different way of decomposition was utilised in LiuLi [89] and DMOEA-DD [90] algorithms.

In them, the decomposition is applied to the search space instead of the objective space,

resulting in higher overall convergence and a better performance on constrained cases [89].

In LiuLi each sub-region has a separate sub-population, called class, assigned to it instead

of single individual. Each sub-region has an external archive assigned to it in order to

store achieved non-dominated points and thus preserve elite individuals. In the reproduction

step, first parent is chosen randomly from among the class, whereas a second one is chosen

from its corresponding archive, leading to better convergence. Dynamical Multi-Objective

Evolutionary Algorithm with Domain Decomposition technique (DMOEA-DD) [90] combines:
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Figure 2.3: The principles of working of MOEA/D methodology.

principles of the minimal free energy in thermodynamics for the fitness calculation from its

predecessor DMOEA [91], based on the Simulated Annealing [92]; the decomposition of the

search space similar to LiuLi; and the crowding distance from the NSGA-II [34].

The effectiveness of both algorithms has been tested on the set of multi-objectives constrained

and unconstrained problems with complex POS [31]. According to the final ranking [42], Li-

uLi [89] and DMOEA-DD are the best genetic algorithms for constrained cases, while being

outperformed only by MOEA/D [35] and MTS [93] on the unconstrained problems. However,

both algorithms have been evaluated only on the CEC test set [31], with no indication of

performance for other types of problems or any following studies. In the presented results,

high variation between best and worst performance on different runs can be observed, im-

plying high randomness of the algorithm's behaviour, as at least few independent runs are

needed to provide reliable result. Furthermore, both algorithms have non-uniform perfor-

mance across all tested problems, despite high similarity between them. In addition, due

to utilisation of decomposition, a high sensitivity to the hyper-parameters can be observed.

According to that, it is not possible to predict the behaviour on other kinds of problems, or

even theoretically similar cases, which limits their generality. Furthermore, as those methods

has not been evaluated outside of the original publications, it is possible that they are highly

ineffective on problems other than the CEC set on which they were originally tested 1.

2.1.4 Hybrid and Co-Evolutionary approaches

Different approach is to combine multiple search strategies, which have distinct advantages

and areas of application, via hybridisation or co-evolution. The hybridisation is defined as

combining search, update or reproduction mechanisms from different methodologies, whereas

1In addition the code of LiuLi and DMOEA-DD is not available online and the publications do not provide
enough details to replicate the results
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co-evolution is defined as evolving multiple sub-populations simultaneously, potentially each

by distinct reproduction mechanisms, with the data exchange introduced between them [29].

According to this definition, each sub-population-based algorithm could be potentially con-

sidered as co-evolutionary, even most decomposition methods, which is not accurate. There-

fore, in this work these definitions are extended and the hybrid methods are defined as

methodologies that utilise distinct mechanisms on the same population in serial way, while

co-evolutionary methods combine distinct evolutionary algorithms that operate in parallel on

different sub-populations. The simplifications of hybrid and co-evolutionary approaches are

shown in Fig. 2.4 and Fig. 2.5 respectively.

Hybrid GAs often incorporate other non-GA evolutionary computation approaches, such as

Particle Swarm Optimisation (PSO) [94] or Differential Evolution (DE) [86], in order to

adjust the algorithm to characteristics of the search space or to improve the convergence.

Examples of adjusting the algorithm include NSGA-II-DE and MOEA/D-DE where typical

SBX-crossover is replaced with the DE-based mechanism in order to significantly improve the

performance on problems with complicated POS [86]; or the Quantum-inspired GA (QGA)

for more effective optimisation of the multi-objective flow shop scheduling [95]. Different ap-

proach is utilised in memetic genetic algorithms, where local search methods are incorporated

to enhance the convergence rate. One of the first GAs of that type has been proposed by

Ishibuchi and Murata in 1998 to increase the convergence on practical problems [96]. Other

notable memetic GAs are Multiple Trajectory Search (MTS) [93] and Local Search NSGA-II

(NSGA-II-LS) [97]. In MTS four different local-search methods are implemented instead of

a single one. Each of them has distinct performance on different structures of the search

surfaces, which mitigates the risk of using a single search mechanism. NSGA-II-LS has been

shown to increase convergence over the original NSGA-II on unconstrained problems during

the CEC'09 competition [31, 42]. MTS was the second-best algorithm across unconstrained

Figure 2.4: The simplified methodol-
ogy of hybrid genetic algorithms

Figure 2.5: The simplified method-
ology of co-evolutionary genetic algo-

rithms
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and constrained functions on the same test set. However, robustness of both algorithms

is low across the sequence of runs, therefore multiple runs are needed in order to obtain

representative results. Furthermore, implemented search methods may be ineffective on the

problems with other characteristics than those to which search method was adjusted to. This

is possible even if multiple search strategies are utilised. Therefore, in ideal scenario the

search strategy should be adjusted in advance to the characteristics of the optimised problem

to maximise the performance. According to that, hybrid approach should be considered as

a method to specialise the algorithm to specific problem or to increase overall convergence;

rather than a mean to improve its generality or diversity.

The co-evolutionary approach was introduced by Potter and De Jong in 1994 [28]. The

co-evolutionary methods are usually split into two groups, cooperative [28] and competi-

tive [98], depending on the form of the data exchange between the groups. In the com-

petitive approach, groups compete with each other to form offspring sub-populations [99]

or the entire population [36]. In the process, fitter sub-populations have higher chances of

mating and producing offspring, and the less-fit sub-populations are encouraged to counter

the better ones by quicker adaptation via “arms race” [100]. In the cooperative approach,

the individuals are separated into distinct species, e.g. by decomposition of a problem into

sub-problems along the search space [28], and they have to collaborate by sharing the genetic

information in order to form valid solutions. Originally all groups operated on the same

objective space [101], but in more modern methods decomposition is introduced in order to

improve convergence [99, 102]. The most significant co-evolutionary algorithms in the cur-

rent state-of-the-art are: competitive-cooperative CO-Evolutionary Algorithm (COEA) [99],

Hybrid Evolutionary Immune Algorithm (HEIA) [36] and Bi-Criterion Evolution algorithm

(BCE) [103] due to high performance in comparison to other co-evolutionary methods and

high generality of the search. In COEA the problem is decomposed into a set of single-

objective problems, where each of them is evaluated by one sub-population. Furthermore,

two selection procedures are introduced: competition, where the individuals contest for a

place in each group; and cooperation, where distinct species collaborate to create a valid so-

lution. Therefore, cooperation is used to promote convergence, while competition maintains

the diversity of gene-pool. The resulting methodology exhibit higher convergence rates than

other methods, as shown on the dynamic problems [104]. However, due to decomposition

of the search space and solving each variable individually, low performance on discontinuous

and irregular problems is observed with poor diversity of the results due to lack of additional

diversity preservation mechanisms. Furthermore, COEA has not been tested on constrained

and highly discontinuous problems, such as MOP [32], IMB [33] and DAS CMOP [44], but

due to discussed drawbacks a low performance on those cases is expected.

In HEIA, two distinct crossover methods, SBX and DE, are used independently on differ-

ent sub-populations instead of the problem decomposition. After each generation, the best

individuals are moved to the external archive and sub-populations are recreated with the Im-

mune Algorithm based cloning process. Performance of this method has been evaluated on a

wide range of unconstrained problems with mostly continuous geometries, such as WFG [41],
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UF [31], DTLZ [40] and ZDT [30]. The results show comparable performance to the state-

of-the-art on all tested cases. However, HEIA is showing significantly better performance on

discontinuous cases, such as ZDT3 and UF5-6, and better spread of points along the true

Pareto optimal front on all cases, indicating its high focus on diversity of the search. Further-

more, obtained performance is uniform across different test cases indicating high generality

of the search strategy. In the BCE instead of implementing different crossover strategies, two

distinct fitness indicators are utilised for selection and reproduction: Pareto-based criterion

(PC) for convergence and Non-Pareto-based (NPC) for diversity. In PC standard Pareto

dominance rule is applied; in NPC the selection is based on the Hyper-volumes [105]. In the

performance testing over diverse set of unconstrained problems WFG [41], UF [31], DTLZ [40]

and ZDT [30] it has been shown that different search methodologies can be utilised for both

criteria. Improvement in the performance over implemented algorithms, MOEA/D and IBEA

in this case [103], was observed on average, but not in every tested case. Therefore, the results

indicate that combining multiple search strategies under a single methodology leads to better

generality in overall. However, both HEIA and BCE are tested only on a limited set of prob-

lems, therefore more research has to be conducted regarding the potential of co-evolutionary

approach for the general-solver GA.

2.1.5 Methodologies inspired by Multi-Level Selection theories

Another approach to improve the convergence of genetic algorithms is utilised in methodolo-

gies inspired by Multi-Level Selection (MLS) theories [106,107]. These sub-population-based

algorithms implement an additional group-selection level, where different sub-populations

compete with each other for the reproduction in analogous manner to individuals. This

generates an additional evolutionary pressure leading to higher convergence rates.

Lenaerts et. al were the first to implement multi-level selection into GAs, by introducing the

group selection model [108]. In Multi-Level Evolutionary Algorithm (MLEA), individuals are

distributed from the shared pool into isolated sub-populations. In the selection process, first

parent is selected from all individuals and its mate is chosen from the same group. As fitter

individuals have higher chances of being selected, the groups with “more fit” individuals

grow bigger in the process. After a specified number of generations, individuals from all

groups are moved to the shared pool, and sub-populations are recreated. This promotes

better individuals and results in higher convergence rates. However, no distinct fitness value

is assigned to the higher level, and no direct sub-population selection method is implemented.

Therefore, this methodology does not introduce an additional selection pressure, but is based

on a strong elitism approach, missing the key aspects of the MLS. Due to that and lack

of diversity-preservation mechanisms, it is likely that MLEA will exhibit low performance

on multi-objective and multimodal problems, which is typical for elitist approaches due to

premature convergence [109].
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Akbari et. al introduced the colonization-inspired mechanism for interaction between groups

of individuals [110, 111]. The between-group dynamics is proposed in which single sub-

population is selected based on its fitness and then is used for generation of two offspring.

First offspring replaces the parent population, when the second one has a chance to replace

other groups, basing on its fitness and fitness of other groups. The resulting algorithm is

efficient on single-objective problems, but no tests on multi-objective instances are provided.

The biggest drawback of this mechanism is that the fitness of whole group is based only

on the quality of the best individual within it. Therefore, the collective fitness definition

and the additional selection levels are implemented in the manner that strongly favours best

solutions and therefore leads to loss of many good solutions and thus reduction of the gene

pool's diversity. This results in the strong elitism approach which has similar disadvantages

as MLEA.

Finally, Wu and Banzhaf presented the hierarchical cooperative evolutionary algorithm based

on the multi-level selection [112]. However, in this case the hierarchy is introduced in order

to select potential candidates that may cooperatively form a valid solution, similarly to

cooperation-based co-evolutionary algorithms, rather than developing an additional evolu-

tionary pressure. Therefore, no separate units of selection are introduced at all levels, even

though it is a basic concept of the multi-level selection theory.

All of the algorithms presented in this section are ignoring the key aspects of the theory and

do not demonstrate any improvement over current methods. In none of the presented mech-

anisms, including non-MLS based methodologies, the fitness separation, with an additional

collective-based selection pressure, is introduced. Furthermore, in none of those algorithms

the potential of an additional evolutionary pressure for a higher diversity is explored, as these

focus only on the convergence improvement.

2.1.6 Novelty search

A shift towards diversity-oriented optimisation has been introduced in novelty search algo-

rithms. This methodology has been firstly introduced by Lehman and Stanley in 2008 [113]

basing on the NeuroEvolution of Augmenting Topologies (NEAT) method developed by Stan-

ley and Miikkulainen in 2002 [114] for optimisation of topologies of the neural networks. This

was followed by a number of publications that explored the importance of novelty search and

furtherly developed this method, led mostly by Lehman and Stanley [115–120].

The base principles of working of the novelty search algorithms show resemblance to SPEA

[25], SPEA-II [54] and PESA [55] algorithms, where a separate fitness function is introduced

to evaluate the quality of individuals, instead of the Pareto dominance principle, but without

decomposition of the problem. However, unlike the SPEA, SPEA-II and PESA where the

fitness is based on the value of objectives or mutual dominance/non-dominance relations

between individuals, a separate factor, called sparseness, is introduced. According to this

indicator, the individuals in less populated regions are preferred and thus strongly promoted,
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leading to a higher diversity of offspring. However, unlike other diversity-inducing indicators,

such as the Deb's crowding distance [22,34], the diversity along the search space is measured

and all previously found individuals are considered instead of the current population only.

The novelty search has been shown to be effective on complex deceptive methods where a

higher diversity of the search is preferred [113, 115–117]. However, due to discarding the

impact of the objective’s values in the fitness function, a significantly lower convergence can

be observed [119]. This issue has been addressed in 2011 by Mouret [119]. A second fitness

value, based on the values of objectives, is introduced, leading to the novelty-based multi-

objective algorithm. This methodology has been shown to maintain better balance between

convergence and diversity, while strongly promoting the diversity.

However, the biggest disadvantage of novelty search algorithms is in the sparseness indicator

used to evaluate diversity. As it is based on the values across the search space, its effectiveness

drops exponentially with higher number of variables, due to necessity of evaluating multi-

dimensional spaces; and in many kinds of problems the diversity of points on the search space

do not translate to better exploration of the objective space or a higher diversity across it,

such as biased, imbalanced or discontinuous problems [32,33]. Therefore, higher diversity of

results is not guaranteed. Furthermore, sparseness indicator introduces a number of hyper-

parameters, which potentially have to be adjusted to the characteristics of optimised problem,

leading to similar issues as in decomposition-based methods; and due to calculation based on

all previously find individuals its computational effectiveness is getting exponentially lower

with higher number of iterations required to solve the problem reducing its usability for more

complex cases.

2.1.7 Diversity in genetic algorithms

In the presented algorithms, strong focus on the convergence-based methodologies can be

observed, while the diversity is often maintained by secondary mechanisms, leading to the

“convergence-first, diversity-second” approach. In the niching methods, the crowding dis-

tance promotes a wide spread of points on the objective space, but more converged solutions

are still preferred even if resulting in lowered diversity of the search. In decomposition-based

methods, the solutions are selected according to the convergence on predefined weight-vectors,

while the co-evolutionary and hybrid methods are developed to usually increase generality

and convergence of the search rather than diversity.

Despite the fact that the “convergence-first, diversity-second” methodologies are showing low

performance on the diversity-demanding functions [32, 33, 121–124], not much work is done

for development of methodologies which would strongly promotes diversity over convergence,

“diversity-first, convergence-second” methods. Furthermore, there is no literature that would

definitively show that strong convergence is preferred over the diversity while applied to the

real-world problems. This indicates a gap in the field of genetic algorithms.
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However, the development of genetic algorithms is strongly dictated by established bench-

marking functions, as those provide the easiest measurement of the comparative performance.

Therefore, it is possible that these functions may be biased towards certain characteristics

and thus promote convergence-oriented algorithms. The influence of available benchmarking

functions on the genetic algorithms’ development is investigated in the following section.

2.2 Test functions and benchmarking

In order to verify the performance of developed methodologies, a number of artificial bench-

marking functions have been created. This allowed to operate on problems for which the

calculation time is computationally feasible; and for which the final solutions and character-

istics of the search area are known in advance, leading to better understanding of the testing

algorithm. The complexity of those problems is gradually increasing, but remain significantly

lower than most of the practical problems, especially regarding the geometry of the search

space and biases towards certain regions; amount of local and global optima; size and shape

of the infeasible regions across the search space; and interactions between variables.

Most of the benchmarking problems possess one dominant characteristic such as: imbalanced

search space [32, 33]; time dependent Pareto optimal sets and fronts [104, 125, 126]; com-

plex Pareto optimal sets [31]; large quantity of variables [127], defined as 500+ variables, as

usually 10-50 are utilised; bi-level [128]; sequence-dependent [129]; constrained [74] and un-

constrained [70]. However, as large scale, bi-level and sequence dependent problems, usually

are significantly more complex and requires specialist mechanisms in order to effectively solve

them, those are not reviewed nor utilised in this work. The most commonly utilised bench-

marking functions are reviewed in this section, as summarised in Table 2.1 for unconstrained

functions; in Table 2.2 for constrained cases; in Table 2.3 for imbalanced; and in Table 2.4

for unconstrained dynamic problems. Extensive review of all other functions developed up

to 2006 can be found in [70]. In addition to the main characteristic, those functions can be

described by a number of additional properties, which describe the geometry or complexity

of the search space. Those are defined as follows:

Definition 2.4 Convex, concave, linear or mixed: describes the shape of final Pareto optimal

front, where in mixed type the shape is a combination of other types.

Definition 2.5 The discontinuous problem contains one or more infeasible regions on the

objective space.

Definition 2.6 The degenerate problem contains Pareto optimal front that is of a lower

dimension than the objective space in which it is embedded.

Definition 2.7 The biased problems have significant variation in mapping from the Pareto

optimal set to the Pareto optimal front. Therefore, some regions on the objective space are

preferred.



Chapter 2 Literature review 23

Definition 2.8 The multimodal problems contain multiple local optima.

Definition 2.9 The deceptive problems are a special case of multimodal problems, where the

geometry of the search space favours deceptive local optimum. Therefore, global optimum is

localised in the unlikely to find region.

Definition 2.9 The non-separable problem cannot be decomposed into many separated sub-

problems that can be solved independently, i.e. variables cannot be optimised independently

of one another.

Definition 2.10 The scalable problem can be adjusted to potentially any number of objec-

tives.

Definition 2.11 The variable-linkage problem contains at least one set of variables which

numerical values are strongly correlated to each other.

2.2.1 Unconstrained and constrained problems

The first comprehensive set of unconstrained functions is Zitzler-Deb-Thiele (ZDT) set de-

veloped in 2000 [30]. A total of six two-objective functions have been presented, including

different geometries of the Pareto Fronts, biases and multimodality, as detailed in Table 2.1.

However, in all introduced problems, except ZDT6, the first objective function is solely based

on a single variable, and, except of ZDT4, Pareto optimal set is for the boundary values

of remaining variables with identical parameter value for each of them. As Pareto optimal

front consists of almost identical points differentiated only by a value of the first variable,

the complexity of the problems is low. Therefore, low diversity of the search is required, as

after finding a single point on the global optimum, the Pareto optimal front can be easily

expanded by limiting the exploration to the first variable.

The ZDT set has been extended in 2001 by the DTLZ test suite [40]. In this case a total

of nine fully scalable test functions are proposed, introducing additional geometries and

characteristics of the problems, such as linear, mixed and degenerated fronts, as detailed in

Table 2.1. This test suite has similar disadvantages as the ZDT test suite: small parameter

domains; global optima which are on the boundaries or centre of the search range and which

have identical parameter values for almost every dimension. However, despite these flaws

DTLZ remains one of the most popular sets for the multi-objective benchmarking due to its

scalability in comparison to the UF test set [31] and the simplicity in defining the true Pareto

optimal fronts in comparison to WFG set [41].

In order to mitigate mentioned issues of the DTLZ set, the WFG test problem toolkit has been

proposed in 2005 [41]. This toolkit allows to freely create scalable problems with different

Pareto optimal front geometries and characteristics of the search space including biases,

deceptions, uni/multimodality, degeneration of the Pareto optimal front and non-separability

of objectives. In addition, nine exemplar functions are introduced to highlight the possibilities
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Table 2.1: Summary of the state-of-the-art unconstrained multi-objective test problems

Name Objectives Variables Problem characteristics

Zitzler-Deb-Thiele set [30]

ZDT1 2 30 Convex

ZDT2 2 30 Concave, Biased

ZDT3 2 30 Discontinuous

ZDT4 2 10 Convex, Multimodal

ZDT5 2 10 Convex, Multimodal, Binary

ZDT6 2 10 Concave, Multimodal

Deb-Thiele-Laumanns-Zitzler set [40]

DTLZ1 M M+4 Linear, Multimodal

DTLZ2 M M+9 Concave

DTLZ3 M M+9 Concave, Multimodal

DTLZ4 M M+9 Concave, Biased

DTLZ5 M M+9 Concave, Degenerated

DTLZ6 M M+9 Concave, Degenerated, Biased

DTLZ7 M M+19 Mixed, Discontinuous, Multimodal

Walking Fish Group set [41]

WFG1 M 2M+18 Mixed, Biased

WFG2 M 2M+18 Convex, Discontinuous, Non-Separable

WFG3 M 2M+18 Linear, Non-separable, Degenerated

WFG4 M 2M+18 Concave, Multimodal

WFG5 M 2M+18 Concave, Deceptive

WFG6 M 2M+18 Concave, Non-separable

WFG7 M 2M+18 Concave, Biased

WFG8 M 2M+18 Concave, Biased, Non-separable

WFG9 M 2M+18 Concave, Biased, Non-separable, Deceptive

Unconstrained Function set [31]

UF1 2 30 Convex, Complex Pareto optimal set

UF2 2 30 Convex, Deceptive, Complex Pareto optimal set

UF3 2 30 Convex, Complex Pareto optimal set

UF4 2 30 Concave, Complex Pareto optimal set

UF5 2 30 Linear, Distinct points, Complex Pareto optimal set

UF6 2 30
Linear, Discontinuous, Deceptive, Complex Pareto

optimal set

UF7 2 30 Linear, Complex Pareto optimal set

UF8 3 30 Concave, Complex Pareto optimal set

UF9 3 30 Discontinuous, Complex Pareto optimal set

UF10 3 30 Concave, Complex Pareto optimal set

M denotes the number of objectives in scalable problems.

of the toolkit, as detailed in Table 2.1. Due to that, WFG remains the most comprehensive

toolkit for multi-objective problems. However, unlike other test sets the final Pareto optimal

fronts are not easily computable and have to be obtained from the authors 2; or to be solved

in advance e.g. by running a separate optimisation procedure; limiting its usability.

In 2009 during the Congress of Evolutionary Computation (CEC), [31] presented the test suite

that focuses on a more complex Pareto optimal sets, regarding their geometry and structure,

and relations to the Pareto optimal front and in-between variables. Total of twelve two-, three-

and five-objective unconstrained functions (UF) with various complexity and geometries of

2The fronts are not made available online by the authors and are available only from the secondary sources.
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Table 2.2: Summary of the state-of-the-art constrained multi-objective test problems

Name Objectives Variables Problem characteristics

Constrained Functions set [31]

CF1 2 10
Linear, Distinct points, Discontinuous, Complex Pareto

optimal set

CF2 2 10 Convex, Discontinuous, Complex Pareto optimal set

CF3 2 10 Concave, Discontinuous, Complex Pareto optimal set

CF4 2 10 Linear, Complex Pareto optimal set

CF5 2 10 Linear, Deceptive, Complex Pareto optimal set

CF6 2 10 Mixed, Complex Pareto optimal set

CF7 2 10 Mixed, Deceptive, Complex Pareto optimal set

CF8 3 10
Concave, Discontinuous, Degenerated, Complex Pareto

optimal set

CF9 3 10 Concave, Discontinuous, Complex Pareto optimal set

CF10 3 10 Concave, Discontinuous, Complex Pareto optimal set

Deb-Thiele-Laumanns-Zitzler set [40]

DTLZ8 M 10M Mixed, Discontinuous, Degenerated, Biased

DTLZ9 M 10M Concave, Discontinuous, Degenerated

Imbalanced set [33]

IMB11 2 10 Convex, Imbalanced

IMB12 2 10 Linear, Imbalanced

IMB13 2 10 Concave, Imbalanced

IMB14 3 10 Linear, Imbalanced

Difficulty Adjustable and Scalable Constrained Multi-Objective Optimization
Problems set [44]

DAS-CMOP1 2 30 Concave, Discontinuous

DAS-CMOP2 2 30 Mixed, Continuous

DAS-CMOP3 2 30 Linear, Discontinuous, Multimodal

DAS-CMOP4 2 30 Concave, Discontinuous

DAS-CMOP5 2 30 Mixed, Discontinuous

DAS-CMOP6 2 30 Distinct points, Degenerated

DAS-CMOP7 3 30 Linear, Discontinuous

DAS-CMOP8 3 30 Concave, Discontinuous, Multimodal

DAS-CMOP9 3 30 Concave, Discontinuous

M denotes the number of objectives in scalable problems.

the Pareto optimal set and front has been introduced as detailed in Table 2.1. Importantly,

unlike the ZDT set, the objective functions depend on a number of variables and the Pareto

optimal set is achieved for non-extreme values of them. This set has been used for the most

comprehensive benchmark of the GAs on constrained and unconstrained functions [42] up-

to-date. Furthermore, unlike the WFG set this test focuses on the complexity of the Pareto

optimal sets rather than Pareto optimal fronts therefore is considered as an alternative to it

rather than replacement.

A separate kind of problems are constrained cases where additional conditions must be met

by potential solutions in order to consider them feasible. The introduction of constraints

leads to occurrence of gaps in the search and objective spaces, as no achievable points exist

in those regions. This is illustrated in Fig. 2.6. Due to that, constrained problems require

higher diversity of the search in order to avoid infeasible areas and to find the global op-

timum on highly discontinued spaces. Despite that and the fact that most of real-world
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Figure 2.6: Infeasible regions and obtainable Pareto optimal fronts on the constrained
objective space.

problems contains multiple constraints, less emphasis is given in development and utilisation

of this kind of test cases. The most commonly utilised is the constrained functions set (CF)

developed in 2009 for the GA competition during the Congress of Evolutionary Computa-

tion [31]. In the CF set, total of 10 cases with up to 2 constraints and up to 3 objectives

are implemented. Importantly, objective functions are based on the UF set, and thus those

contains similar problem characteristics, as detailed in Table 2.2. Similar principle applies

to the DTLZ set [40] where 2 scalable cases with up to 2 constraints are included; and for

4 two-objective cases with up to 2 constraints that can be found in the Imbalanced problem

set [33]. Therefore, those may be biased towards similar search strategies as their uncon-

strained counterparts resulting in lowered diversity of available test sets. Furthermore, only

16 constrained cases in total have been introduced in most commonly utilised sets, including

imbalanced functions, comparing to the 49 unconstrained problems, showing an imbalance

in the problems'development. Only recently, in 2019, this issue has been addressed by DAS-

CMOP test suite [44] where 9 test problems with scalable difficulty are introduced. Their

difficulty can be adjusted according to 3 parameters: feasibility, convergence and diversity

allowing to define on which of these parameters the tested genetic algorithms is focusing on.

Therefore, making it easier to understand the principles of working. However, the objective

functions are based on the UF and DTLZ sets and thus similar biases may be expected.

2.2.2 Imbalanced functions

Imbalanced problems refer to MOPs where the global optimum consists of multiple parts

with varying difficulty to find. Therefore, the Pareto optimal front consists of “easy” and

“hard” to find parts, where the “easy-to-find” parts can effectively prevent finding the values

of variables that are essential in discovering the other, more difficult, regions. In the various

benchmarks [32,33], it has been shown that those problems may require additional diversity
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Table 2.3: Summary of the state-of-the-art imbalanced multi-objective test problems

Name Objectives Variables Problem characteristics

Multi-Objective Problem set [32]

MOP1 2 10 Convex

MOP2 2 10 Convex

MOP3 2 10 Concave

MOP4 2 10 Mixed, Discontinuous

MOP5 2 10 Convex

MOP6 3 10 Linear

MOP7 3 10 Concave

Imbalanced set [33]

IMB1 2 10 Convex

IMB2 2 10 Linear

IMB3 2 10 Concave

IMB4 3 10 Linear

IMB5 3 10 Concave

IMB6 3 10 Linear

IMB7 2 10 Convex, Non-separable

IMB8 2 10 Linear, Non-separable

IMB9 2 10 Concave, Non-separable

IMB10 3 10 Linear

enhancing mechanisms, as the typical convergence-first methods fails to maintain necessary

diversity due to higher complexity of the search spaces. However, there is no data available

regarding if the imbalance is part of many real-world problems, but it is possible due to highly

constrained environment of those.

It is relatively new branch of benchmarking functions and only two test sets have been

developed, MOP [32] and IMB [33]. Both test sets are summarised in Table 2.3. In MOP

suite five two-objective and two three-objective unconstrained problems are included, with

various geometries of Pareto optimal front, but without indication of potential modality or

variable linkage. For all presented functions, the extreme regions of the Pareto optimal front

are preferred, and the simulations shows that most of the algorithms fails to find the points

in-between. In the IMB set total of fourteen two- and three-objective functions is included,

from which four include constraints. In this case three types of imbalance are introduced:

bias; different variable linkages in each region; and constraint isolation where the favoured

Pareto optimal front is localised in the infeasible region.

However, both sets are based on ZDT [30] and DTLZ [40] functions, thus they share similar

disadvantages, and all introduced problems, except of MOP4, have continuous structures of

the Pareto optimal set and front. Furthermore, in all cases the position of favoured and

unfavoured regions is dependent on the value of the first variable, deriving the difficulty of

the problem to maintaining high diversity of this variable. Therefore, this set is promoting

the methods that artificially separate the population and decompose the problem, such as

MOEA/D. According to that, the currently developed imbalanced problems may require a

higher diversity of the search in theory, but with such a bias towards decomposition methods
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and specific structure of Pareto optimal sets and fronts, those cannot be considered as impar-

tial for defining the diversity capabilities of tested algorithms. In most of real problems the

shape and characteristic of the Pareto optimal front are not know, therefore it is not trivial

to hyper-tune the decomposition method to them.

2.2.3 Dynamic problems

In dynamic problems, the geometry and characteristics of the search and objective spaces

changes over time. As the problem remain static in between the time steps, it is possible to

consider it as set of sub-problems that have to be optimised in series. The major challenge

with DMOPs is to find the Pareto optimal front of the current sub-problem in the lowest

possible function calls or generations before the environmental change occurs. Therefore, the

convergence rate is a crucial aspect of successful DMOP solver, and the diversity of the search

is less important [130]. This is shown by a significantly higher performance of the algorithms

with high convergence rates, such as MOEA/D or COEA, on these problems [104]. Dynamic

functions can be classified into four distinct types based on the dynamics of the objective

and decision-variable spaces [131]:

I. Only the Pareto optimal set changes over time

II. Both Pareto optimal set and front are dynamic

III. Only the Pareto optimal front changes over time

IV. Both Pareto optimal set and front are static, although the assigned constraints or

objective functions can change over time.

The first comprehensive DMOP benchmarking set was FDA set introduced by Farina et.

al [131]. FDA set is based on based on ZDT and DTLZ functions and contains problems of

I-III type with various complexity of the change, as detailed in Table 2.4. This set has been

widely used in multiple competitive benchmarks [99] indicating its usefulness. However, the

FDA set has limited complexity as all included problems are unimodal and have continuous

Pareto fronts geometries. Furthermore, due to being based on ZDT and DTLZ functions it

shares the same disadvantages as those sets.

The UDF test set was developed in 2014 in order to introduce a higher challenge [130]. This

set is based on the UF functions, and thus contains a wider range of problem's characteristics

than FDA cases, including multimodality, discontinuity, and non-separability. Similar types

of the dynamic change to FDA set are introduced, with the randomness of Pareto optimal

front change being introduced for the first time, as detailed in Table 2.4. Randomness of

change allows to test the effectiveness in more unpredictable environments. Usually the

time changes in artificial problems follow a specific pattern that can be exploited, making

the problem easier to solve with front-prediction based methods [132]. Importantly, the
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Table 2.4: Summary of the state-of-the-art unconstrained dynamic multi-objective test
problems

Name
Variation/Shift Geometry of

the front
Type

Pareto optimal set Pareto optimal front

Unconstrained Dynamic Functions set [130]

UDF1 Vertical shift Diagonal shift Continuous II

UDF2
Curvature change;

vertical shift
Diagonal shift Continuous II

UDF3 No change Diagonal shift Disconnected III

UDF4 Horizontal shift Angular shift; curvature variation Continuous II

UDF5
Curvature change;

vertical shift
Angular shift; curvature variation Continuous II

UDF6 No change Diagonal shift; angular shift Distinct points III

UDF7 No Change Radial shift Continuous III

UDF8
Random vertical or

horizontal shift
Random diagonal shift; random

angular shift or curvature variation
Continuous II

UDF9
Random curvature

change or vertical shift
Random diagonal shift; random

angular shift or curvature variation
Continuous II

Jiang-Yang set [104]

JY1 Vertical shift No Change Continuous I

JY2 Curvature change Angular shift; curvature variation Continuous II

JY3 Curvature change Angular shift; curvature variation Continuous II

JY4 No change Discontinuity shift Discontinuous III

JY5 No change Angular shift; curvature variation Continuous III

JY6 Vertical shift No Change Continuous I

JY7 Vertical shift Angular shift; curvature variation Continuous II

JY8 No change Angular shift; curvature variation Continuous III

Farina-Deb-Amato set [131]

FDA1 Vertical shift No Change Continuous I

FDA2 No change Angular shift; curvature variation Continuous III

FDA3 Vertical shift Vertical shift Continuous II

All problems are two-objectives except of UDF7, which is three-objective.

randomness of time change is common in practical problems [104, 132]. Unfortunately, this

test set contains only the functions of Type II and III, and only a single discontinuous problem.

Therefore, it may promote methods that are adjusted to this kind of change and which prefer

continuous search spaces.

The most comprehensive DMOP benchmarking set is JY suite developed in 2017 [104]. This

test set not only contains all characteristics of problems implemented in previously discussed

sets, but also introduces mixed Pareto optimal front geometry; time-varying multimodality;

and novel problem with a mixed type of change. In the mixed type, the environmental

change varies between types I-III over time. That approach, similarly to the randomness

introduced in the UDF set, allows to track and analyse the performance in more unpredictable

environment and to resemble practical problems more closely. Importantly it is the only set

that point the similarities of each function to real-world cases and which is not based on

previously developed static problems.
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2.2.4 Bias of the benchmarking problems

Multiple benchmarking functions have been developed to evaluate the performance of GA

methodologies over a range of problems with distinctive characteristics. It can be observed

that most of the cases are based on the same frameworks, ZDT or UF; or have similar

definition of objectives and thus similar search spaces; or those are developed by the same

groups of researchers. This is illustrated in Fig. 2.7. Importantly, most of the presented sets

are co-developed by the same authors whom developed two of the most popular methodologies

NSGA-II and MOEA/D. Deb, author of NSGA-II [34], co-developed ZDT, DTLZ, DAS-

CMOP, IMB and FDA sets, while Zhang, author of MOEA/D [35], took part in development

of UF, CF, MOP and DAS-CMOP test problems. This may indicate a development-bias

towards those top-performing genetic algorithms, which is supported by high performance of

MOEA/D, NSGA-II and NSGA-III on those problems.

Most of the sets are limited to continuous and unconstrained characteristics, despite the

facts that many, if not most, optimisation problems have various constraints resulting in

discontinuities along the search and objective spaces. Furthermore, discontinuous cases are

considered to be significantly more complex to solve [133]. From the 74 discussed static

problems, only 22 are discontinuous, and 25 have at least one constraint.

Evaluating the performance and comparing the novel methodologies over a limited range of

similar problems may lead to over-development of genetic algorithms that have a strong bias

towards certain characteristics, and which are able to effectively solve only those functions.

Figure 2.7: Relations tree between developed Multi-Objective Problems.



Chapter 2 Literature review 31

Only recently, it has been noticed that currently existing test sets are promoting strategies

focusing predominantly on the convergence and are neglecting the importance of the diversity

preservation [32,33].

Despite described issues with developed artificial test sets, resulting in narrowed range of

available characteristics and complexities of the problem, most of the developed GA method-

ologies are tested only on a few arbitrary-chosen problems instead of all of them. This is

detailed in Table 2.5. As it can be observed only NSGA-II and MOEA/D are tested on all

presented test sets, except of MOEA/D on MOP, while most of algorithms are tested on

2-4 sets only. Furthermore, higher emphasis is put on unconstrained problems rather than

constrained and imbalanced problems, as indicated previously. According to that, most of

developed genetic algorithms can be considered as specialist-solvers. However, due to dif-

ferences between artificial and practical problems, especially regarding their complexity, the

question is raised if those specialist-solvers, which are tested on a limited set of problems

with narrow range of characteristics, will achieve correct results on real problems.

According to discussed issues, a higher emphasis is needed on the development of general-

solver genetic algorithms to produce good quality results on a wide range of problems. Pro-

moting a consistent performance across the cases with divergent characteristics, will allow to

maximise the chance of success on real problems as there is no free lunch.
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Table 2.5: Summary of the literature on the benchmarking sets used to test genetic algorithms.

Test set
Unconstrained Constrained ImbalancedAlgorithm

ZDT DTLZ WFG UF CF DTLZ IMB DAS-CMOP MOP IMB

NSGA-II [34, 36] [36, 40,43] [36, 41] [36, 42] [42] [40, 43] [33] [44] [32] [33]

NSGA-III [43, 103] [37, 43,103,134] [37, 103] [103,134] [43, 74] [44]

U-NSGA-III [43] [43, 134] [134] [43]

GAME [76]

aGAME [77]

MOEA/D [35, 36,103] [35–37,103,134] [36, 103] [36, 42,103,134] [74] [33] [44] [33]

MOEA/D-DE [88] [88] [32]

MOEA/D-M2M [83] [83] [32, 83]

MOEA/D-PSF [83] [83] [83]

MOEA/D-MSF [83] [83] [83]

LiuLi [42] [42, 76]

DMOEA-DD [42] [42, 76]

COEA [99] [99]

HEIA [36] [36] [36] [36]

BCE [103] [103] [103] [103]

MTS [93] [93] [93] [42] [42, 76]
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2.3 Summary of the literature review

In the literature review chapter, the work conducted on multi-objective problems optimisation

using genetic algorithms was reviewed. The history and current trends in genetic algorithms

development as well as multi objective benchmarking test suites utilised to verify their per-

formance and understand their principles of working were discussed. From this review, the

following issues about the current state-of-the-art of genetic algorithms can be highlighted:

� The field is dominated by methodologies promoting convergence over diversity, called

“convergence-first diversity-second” GAs, which demonstrate low performance on the

diversity-demanding functions [32].

� In many methods, the diversity is maintained by decomposition of the problem or

introduction of a diversity evaluating metric, requiring hyper-tuning in advance and

extensive knowledge about the characteristic of the search space to work effectively [47].

That information is usually not available for most of real-world applications.

� The commonly utilised benchmarking sets promote specialist approaches. Algorithms

are tested on a limited range of problems with similar characteristics.

According to that, two gaps in the genetic algorithms’ development can be identified: low

interest in the diversity-oriented methodologies; and low emphasis on the generality of search

strategies. Furthermore, it is yet to be investigated if the specialist/convergence or the

general/diversity approach is preferred for real-world applications. However, due to high

popularity of NSGA-II, general-solver GA, in engineering and scientific applications and a

low uptake of newer methods, it is suggested that the general/diversity approach is preferred

for real-world applications

Possible approach is utilisation of a sub-population strategy, where each group is exploring

different regions of the search and objective spaces, resulting in improved diversity. Ideally

this methodology should not utilise decomposition or other mechanisms that require extensive

hyper-tuning towards the problem's characteristic, to increase its usability for the real-world

applications. Another approach could be utilisation of the co-evolution in order to improve

the generality of the search. In this case the risk that a single search strategy will be ineffective

with the characteristic of a given problem is mitigated. This can be particularly useful for

the real cases where the search and objective spaces are not well understood.





Chapter 3 Development of

MLSGA

The early version of MLSGA has been developed and initially benchmarked by Paksuttipol

and Sobey for solving weighted single-objective problems [135]. However, low performance

on multi-objective cases could be observed, due to incorrectly coded collective reproduction

mechanisms. Sobey and Grudniewski [45], show that the collective-level selection and re-

production mechanisms are generating additional evolutionary pressure leading to extended

diversity of the results. In this chapter the principles behind this phenomenon are further

investigated. It is evaluated if this additional selection pressure can be directed into different

regions of the objective space by using divergent fitness functions definitions on each level

of selection. It is possible that by combining several types of fitness assignment in separate

sub-populations, the methodology with disperse region-based search may be achieved leading

to even better overall diversity of the search. Importantly, due to utilisation of simple split

in the fitness function, rather than forced decomposition of the objective space, no extensive

tuning to the characteristic of search space will be needed, unlike weighted approaches or

other decomposition-based methods. Therefore, utilisation of such a method will be poten-

tially better for practical applications.

3.1 Levels of Selection

MLSGA is based on the multi-level selection theory, which was re-inspired by Wilson and

Sober in 1989 [106] and further reviewed by Okasha in 2006 [107]. It is not implied here

that the MLS theory is true explanation of evolutionary processes, as the biological evolu-

tion is complex topics, and many divergent theories have been proposed with an attempt

to describe it [136, 137]. However, this theory provides a promising inspiration for new GA

methodology, as it provides a simpler way of breaking the problem into subsets and to in-

crease the evolutionary pressure. The collective-level mechanisms can be put in parallel with

currently existing individual-level evolutionary algorithms leading to more flexibility in the

fitness function interpretation and potentially a discovery of new solutions with a higher

diversity.

35
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In typical GAs, only one level, called individual-level, is considered. The individuals are

chosen for reproduction from among themselves and even if a grouping is introduced, those

groups are not subjects for a separate selection procedure. MLS theory proposes the idea that

evolution may occur separately at distinct levels of a hierarchical structure, which is normally

viewed as nested hierarchy with one level being enclosed within another. For example, in

the basic two-level organisation, the individuals form collectives in order to pass some of

their survival responsibilities, such as food gathering or danger elimination, to the whole

group, increasing their chances of survival. Inside each collective, every individual maintains

its personal fitness and the natural selection between them still occurs. Additionally, each

collective has a separate fitness value that describes the quality of individuals inside, according

to their usefulness for the group. Therefore, different collectives, similarly to the individuals,

may compete with each other, e.g. for food sources or occupied space, where better groups

survive and further reproduce, whilst less fit sub-populations go extinct. In this model,

individuals need to not only improve themselves, to maximise their chances for reproduction,

but also maintain the survivability of whole collective.

According to Okasha the levels-of-selection problem is a consequence of three factors [107]:

� The natural selection, according to which fitter individuals produce more offspring than

others, which drives the evolution.

� The adaptation of species to the environment in order to increase their chances of

survival, such as development of thick furs by polar-regions animals; fangs or claws by

predators; or camouflage-like colours of skin.

� The hierarchical organisation mentioned before

According to that, two types of multi-level selection (MLS) have been proposed, determining

the way of fitness calculation [107]. In the first type (MLS1), survival of all levels of selections

depend on the same evolutionary factor. Collectives and individuals have the same “goals”

and focus on improvement of the same parameters. Therefore, the fitness of the group is an

aggregate of the individuals inside of it. In the second type (MLS2), the fitness, and thus

the selection, is different on each level. The success of whole group depends on different

factors than the success of individuals inside. Due to that, the individuals are forced to

simultaneously develop properties needed for their own well-being and those necessary for

survival of the, even if these are contradictory. This generates an emergent property to

selection on each level, leading to competition between them and a higher diversification of

individuals.

Basing on those definitions three variants of multi-level selection are here introduced: MLS1,

MLS2 and MLS2R. Fitness function definitions used in each MLS type are shown in the Table

3.1, where f1(x) and f2(x) are first and second fitness function of the optimised problem

respectively.
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Table 3.1: Fitness functions used on each level of selection in two-objective optimisation,
depending on the MLS type

MLS1 MLS2 MLS2R

Individual-level f1(x)+f2(x)
2 f1(x) f2(x)

Collective-level f1(x)+f2(x)
2 f2(x) f1(x)

3.2 Methodology of the MLSGA

3.2.1 Description of mechanisms

In this section the MLSGA mechanisms inspired by the concept of multi-level selection are

outlined. The algorithm works as follows with a more detailed description of the MLSGA

mechanisms provided below 1:

Inputs:

� Multi-objective problem;

� Np: Population size;

� Nc: Number of collectives;

� Ne: Number of eliminated collectives;

� Fitness function definitions for each level;

� Stopping criterion;

Output: External non-dominated Population (EP)

Step 1) Initialisation:

Step 1.1) Set EP = NULL.

Step 1.2) Randomly generate the initial population P of Np individuals {xj , . . . , xNp}.

Step 2) Classification:

Step 2.1) Classify the individuals from the initial population P into Nc collectives,

{Ci, . . . , CNc}, so each of them contains a separate population {Pi, . . . , PNc}. Clas-

sification is based on the search space.

Step 3) Individual-level operations:

1The code of MLSGA, and all subsequent implementations of it, is made available online at
https://bitbucket.org/Pag1c18/cmlsga
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For i = 1, . . . , Nc do

Step 3.1) Individual-level GA’s operations: Perform the selection, crossover and

mutation procedures with elitism. Selection is based on the fitness function defi-

nition from the individual-level.

Step 3.2) Update External Population:

For j = 1, . . . , |Pi| do

Remove from the EP all solutions dominated by xij (the individual j, from popu-

lation i). Add individual xij to the EP if no solutions from EP dominate xij .

Step 4) Collective-level operations:

Step 4.1) Calculate collective's fitness:

For i = 1, . . . , Nc do

Calculate the fitness of collective Ci as an average fitness of population Pi based

on the collective-level fitness definition.

Step 4.2) Collective elimination:

Find collective Ci with the worst fitness value, and store the index of that collective,

z.

Store the size of eliminated collective |Pz| as variable s.

Erase sub-population Pz of eliminated collective Cz.

Step 4.3) Collective reproduction:

For i = 1, . . . , Nc do

if (i ! = z)

Copy the best s
(Nc−1) individuals, according to the collective-level fitness definition,

from population Pi to Pz.

Step 5) Termination: If the stopping criteria are met, stop and give EP as an output.

Otherwise, return to Step 3).

In step 1 the initial population is created. Each individual has every variable assigned ran-

domly according to the search space boundaries for the given problem.

During the Classification, Step 2, the supervised learning classification method is used to

assign the collective labels to each individual in the initial population, basing on the distances

between them in the decision variable space. In this work the multi-class classification SVM

with C parameter, called C-SVC, and with a linear function is used. The utilised code has

been taken from LIBSVM open library [138] and the training parameters have been left the

same as in the publication. In this method the user predefines a number of label types, and

thus the number of collectives, rather than size of each group. This means that, the number

of individuals in each collective is highly likely to be divergent. Due to that, the minimum

size of 10 individuals and the maximum size of half of the overall population is predefined

in order to avoid empty, small or too big collectives as it has been shown in pre-benchmarks
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to negatively impact the overall performance. Organising the collectives with most similar

individuals inside has been shown to be more beneficial over the random initiation after

testing using three different classification variants: SVM, k-means clustering and random

assignment. Clustering and SVM exhibit similar performances, but the SVM is chosen due

to its lower calculation time and a higher robustness. The classification according to the

decision variables, instead of the objectives, is utilised in order to retain diversity of solutions

inside the collectives.

Inside each collective evolutionary operations are applied to the individuals in the same

manner as in typical GA, Step 3. However, with distinction that in this case only a single

fitness value is utilised, according to individual-level fitness definitions, as described previously

in this Chapter. Therefore, case is treated as a single objective, and concepts such as Pareto-

dominance are not needed. In step 3.2 the non-dominated solutions from all collectives are

stored in an external population. However, the external population is used as a storage only

and is not used for any calculations or the fitness evaluations.

During the collective elimination, Step 4.2, the collective with the worst collective fitness

is eliminated and all of the individuals inside are erased. This collective is repopulated in

Step 4.3 by copying the best individuals, according to the collective fitness definition, from

all of the remaining collectives. This is done in order to maximise the fitness of offspring

collectives. Importantly the size of the collective remains the same and this procedure has

no effect on parent collectives. Therefore, Step 4.3 is the only step where collectives are

able to “communicate” with each other. In between the various levels of selection, the only

information passed is the fitness of the individuals, necessary to calculate the collective fitness

in Step 4.1.

The algorithm continues in loops from Step 3, unless the termination criterion is met. Here

the maximum number of fitness evaluations is utilised, which is the most common approach

in the state-of-the-art literature.

3.2.2 Hyper-parameters setting and benchmarking

At the current stage, simple mechanisms are implemented to easily study the impact of

proposed strategy without the interference of more complex methods. Therefore, in order

to operate on real values, the simulated binary crossover (SBX) [23] and the polynomial

mutation [53] are used. Initial operating parameters are based on the best practice in current

state-of-the-art. These are listed in Table 3.2.

The benchmarking of GAs on test problems is performed over 30 separate runs with 300,000

function evaluations for each run, following the CEC'09 regulations [31]. Adaptation of best-

practice standards will allow reproducibility and continuity of the benchmarking process.

Most of the developed performance metrics are able to signify both convergence and diversity

of the solutions simultaneously, but each of them has certain limitations as indicated in [139].
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Table 3.2: Initial GA mechanisms and hyper-parameters used within the MLSGA

Step Parameter Value

1. Initialisation

Type Random

Encoding
Real values
16 decimals

Pop. Size 800

2. Classification

Method SVM
No. Collectives 8

Collective size limits
min 10 individuals

max 1/2 of pop. size

3. Individual-level operations

Fitness Evaluation Type According to Table 3.1

Selection Type Roulette wheel

Mating

Crossover type Real variable SBX
Crossover rate 1
Mutation type Polynomial
Mutation rate 0.08

Elitism Rate 0.1

4. Collective-level operations

Fitness Evaluation Type According to Table 3.1

Elimination No. eliminated collectives 1 every generation

5. Termination Criterion 300,000 fitness evaluations

In this thesis the Inverted Generational Distance (IGD) [140] and Hyper Volume (HV) [25] are

selected as the most widely used metrics in the current state-of-the-art. Both have different

emphasis on the quality of solutions regarding the convergence/diversity, where IGD promotes

convergence and HV the diversity.

IGD measures the average Euclidean distance between each point in a true Pareto optimal

front and the closest solution from the achieved set and is calculated according to eq. 3.1.

IGD(A,P ∗) =

∑
ν∈P ∗

d(ν,A)

|P ∗|, (3.1)

where P ∗ is a set of uniformly distributed points along the true Pareto Front in the objective

space, A is the approximate set to the Pareto Front being evaluated and d(ν,A) is the

minimum Euclidean distance between the point ν and points in A.

Lower scores for this metric indicate a higher convergence and uniformity of the points, where

the ideal value is 0. However, IGD is overly sensitive to the predefined reference set, which

ideally should be as big as possible and with perfectly uniform spread of points in order to

avoid bias toward certain regions.
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HV is a measure of the objective space's volume between a predefined reference point and

the obtained solutions and is calculated here according to [141], which provides the fastest

and most widely used method for HV calculation. This indicator is to be maximised and has

a stronger focus on diversity and edge points, but with slight bias towards the knee points

and concave regions. As the results are highly dependable on the predefined reference point,

usually it is not possible to compare results coming from different publications, as there is

no standard procedure to define this point. Additionally, there is not a “best” value for HV

indicator, and thus it cannot be used to define the quality of obtained Pareto optimal front by

itself but rather is used to compare the performance of different algorithms. HV metric value

of 0 indicates that all of the points obtained from the front are dominated by the reference

point or that no feasible solutions have been found.

In this thesis, 1,000,000 uniformly spread reference points are generated as the true Pareto

optimal front, for the purposes of IGD calculation. The reference point for HV is defined as

(1.1 ∗ z1, . . . , 1.1 ∗ zm) where zi is the maximum value of the i-th objective of the reference

front, and M is the number of objectives.

In all conducted performance comparisons, the average values of the metrics across all runs

are utilised and presented in the main part of this work. The more detailed data, includ-

ing min and max values and standard deviations are attached as supplementary material.

Wherever applicable, the Wilcoxon’s rank sum test was conducted to assess the statistical

significance of the differences between obtained results with the confidence level of α = 0.05.

The representative graphs are selected according to the closest-to-the-average values of IGD,

unless stated otherwise.

3.2.3 Computational complexity and constraint handling

The computational cost of one generation of MLSGA algorithm is determined by the most

complex of three main operations: the non-dominated sorting of the fronts; individual re-

production step; or the offspring collective generation. The front selection utilises the fast

non-dominated sorting approach from NSGA-II [34] and therefore is bounded by O(mN2),

where m is the number of objectives and N is the size of evaluated population. For the

individual reproduction step, as the full replacement of old generation with elitism takes

place, only O(N2) computations are needed at most. Only one of the objectives is considered

in the process, therefore m is discarded. For the offspring collective generation, the fitness

evaluation requires O(N) computations at most, as the average of single valued fitness of the

individuals inside is calculated. The actual collective replacement takes O(N2) complexity

at most, as the best values have to be found.

Therefore, the overall computational complexity of MLSGA is bounded by the non-dominated

sorting that requires O(mN2) calculations at most, which is not higher than most of the solu-

tions in the current state-of-the-art. The complexity of NSGA-II, NSGA-III, MTS isO(mN2);
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in case of MOEA/D it is O(mNT ), where T is number of solutions in the neighbourhood

and is typically 0.2N ; and O(N2) in case of BCE and HEIA.

For the constraint handling the constraint-domination principle taken from NSGA-II is adopted,

which can be defined as follows [34]:

Definition 3.1 an individual x1 is said to dominate another individual x2, if: x1 is feasible

and x2 is infeasible or both x1 and x2 are infeasible, and x1 has a smaller constraint violation

(CV) value or both x1 and x2 are feasible, and x1 dominates x2 with the standard fitness

domination principle.

This is applied during the selection process whenever two individuals are compared in the

constrained problems optimisation. However, at this stage no direct constraint handling

is introduced on the collective-level. As the overall fitness of a collective is not affected

by infeasibility of the individuals inside of it, collectives can maintain a higher diversity of

solutions inside of them.

3.3 Early-stage benchmarks

The effectiveness of developed genetic algorithm is tested over selected two-objective functions

with various characteristics. At this stage only problems with two objectives are considered,

as they allow to study cases where the behaviour is simple to interpret, while providing

enough complexity to replicate a number of real-world problems.

According to that, MLSGA is benchmarked on the unconstrained ZDT1-6 problems [30],

where there is a strong imbalance between the complexity of both objective functions; and

unconstrained/constrained cases with a higher complexity of the Pareto optimal sets [31],

UF1-7 and CF1-7 functions. In this case only the graphical representation of results is

presented, as considered to provide more insight into behaviour of different MLS variants

than the performance indicators.

3.3.1 Unconstrained ZDT problems with simple characteristics

In order to investigate the differences in behaviour between MLSGA variants, the preferred

areas of search for each of them are illustrated using plots of the achieved Pareto optimal

fronts and the heat maps. The fronts for the ZDT1 test instance are shown in Fig. 3.1.

The fronts for the more complex ZDT6 function are illustrated in Fig. 3.2. Heat maps

are illustrated in Fig. 3.3 and 3.4 for ZDT1 and ZDT6 problems, respectively. Those two

functions are chosen as they illustrate the biggest contrast in behaviour between variants. In

addition, the plots for “simple GAs”, with sub-population and single population variant, are

included to investigate the impact of the population splitting on the final performance and

to demonstrate the performance improvement introduced by MLS mechanisms. Simple GA
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utilises the same selection, reproduction and elitism mechanisms as MLSGA, but without the

fitness separation or the collective reproduction.

Heat maps illustrate distribution of the search on the objective space. For that purpose,

the concentration of individuals inside each region is calculated by considering all evaluated

individuals during a single run. On the maps, the brighter areas, indicates a higher density

of individuals, and thus higher focus of the search, with peak shown by green colour; whereas

dark areas represents a low concentration of individuals and thus search. The maps are

presented for the comparative purposes, with enlarged graphs attached in Appendix G.

For ZDT1, Pareto optimal fronts in Fig. 3.1 and heat maps in Fig. 3.3, it can be seen

that MLS2R is the only variant with a wide area of search and a good coverage near the

real front, range of 0-0.65 according to first objective. The search is initially focused on the

“left” region of Pareto optimal front, but then it spreads towards lower values of the second

objective. MLS1 focuses its search on the central areas with more average fitness, region with

0.3-0.35 values of the first objective. Due to that, its Pareto optimal front is more limited,

range of 0.1-0.5 according to first objective. MLS2 stops on the left side of the front and

is unable to move further. Comparing the MLSGA variants to the simple GAs, with and

without sub-populations, it can be seen that simple GAs obtains comparable results to the

MLS1 variant, with a strong bias towards central regions of the objective space. Similarity

between those variants was expected as in all of them the selection is based on the averages

of both objectives. However, comparing heat maps for those algorithms it can be seen that

search pattern of a simple GAs is more dispersed, range of 0.2-0.45 according to the first

objective, showing higher focus of MLS1 strategy.

For ZDT6 the Pareto optimal fronts, Fig. 3.2, of all variants are similar, but MLS2 has a

significantly better convergence. Comparing the heat maps Fig. 3.4 it can be seen that all

MLSGA variants are avoiding central regions of the objective space. This behaviour is caused

by the bias towards extreme regions of the objective space, points (0,1) and (1,0), introduced

in ZDT6 problem. Similarly, to the previous case, preferred regions of each MLS variant can

be observed. In MLS2 the left side of the objective space is explored more often, while in

MLS2R the search is shifted towards the right side. MLS1 shows similar search pattern to

MLS2R, but with a lowered convergence. Similarly, to ZDT1 function, the single population

GA is showing a similar, but more dispersed, search pattern to the MLS1 variant of MLSGA.

Interestingly, sub-population GA is showing similar behaviour to the single-population variant

and MLS1, but with a better convergence of points on true Pareto optimal front.

The contrast in behaviour between MLS2 and MLS2R on ZDT1 shows the importance of

choosing appropriate fitness function for each level. It is caused by the nature of ZDT 1-4

functions, where first fitness function is simple and is based on a single variable only; and

most of the complexity comes from the second objective. This statement is supported by the

fact that performance of both MLS2 and MLS2R variants is similar on the ZDT6 function,

where both fitness functions have approximately the same level of complexity, but with slight
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(a) MLS1 (b) MLS2

(c) MLS2R (d) Single population GA

(e) Sub-population GA

Figure 3.1: Comparison of the Pareto optimal fronts achieved by different MLS and simple
GA variants on ZDT1 problem.



Chapter 3 Development of MLSGA 45

(a) MLS1 (b) MLS2

(c) MLS2R (d) Single population GA

(e) Sub-population GA

Figure 3.2: Comparison of the Pareto optimal fronts achieved by different MLS and simple
GA variants on ZDT6 problem.
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(a) MLS1 (b) MLS2

(c) MLS2R (d) Single population GA

(e) Sub-population GA

Figure 3.3: The heat maps of different MLS and simple GA variants on ZDT1 problem.

bias towards the first objective, which could explain the better performance of MLS2 and a

lowered convergence of MLS1.

3.3.2 Constrained and unconstrained functions with complex Pareto opti-

mal sets

In order to investigate in more details, the differences in behaviour between different MLS

variants, the tests are repeated on a more complex unconstrained and constrained problems,

UF and CF, respectively. Similarly, to the previous case the preferred areas of search are

illustrated in the form of obtained Pareto optimal fronts and the heat maps, which are

compared to the results obtained by simple GAs. In this case only CF2 and UF3 problems

are shown and discussed, as the cases with most divergent behaviour between MLS variants.
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(a) MLS1 (b) MLS2

(c) MLS2R (d) Single population GA

(e) Sub-population GA

Figure 3.4: The heat maps of different MLS and simple GA variants on ZDT6 problem.

For CF2 test instance, the obtained fronts are shown in Fig. 3.5, and the heat maps are

illustrated in Fig. 3.6. The corresponding graphs for UF3 problem are shown in Fig. 3.7 and

in Fig. 3.8 respectively.

For CF2 problem it can be observed that all variants are able to converge on the final Pareto

optimal front, but neither of them is able to provide a high diversity of the final solutions.

However, it can be seen that each MLS variant concentrate the search in different regions

of the objective space. MLS2 shifts toward the right side of the true Pareto optimal front,

around 0.9 value of the first objective; MLS2R focuses on the left, around value of 0.1;

while MLS1 focuses on the area “in between”, around value of 0.2 in this case. Similarly, to

the ZDT cases, single population simple GA exhibit a similar search pattern to the MLS1,

but with more dispersed search. This indicates that implementation of the collective-level
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(a) MLS1 (b) MLS2

(c) MLS2R (d) Single population GA

(e) Sub-population GA

Figure 3.5: Comparison of the Pareto optimal fronts achieved by different MLS and simple
GA variants on CF2 problem.
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(a) MLS1 (b) MLS2

(c) MLS2R (d) Single population GA

(e) Sub-population GA

Figure 3.6: The heat maps of different MLS and simple GA variants on CF2 problem.

selection with fitness separation can potentially direct the search towards different regions of

the objective space.

However, this behaviour is not observed for all of the tested problems. One example is UF3.

From the presented graphs, with the Pareto optimal fronts shown in Fig. 3.7 and the heat

maps in Fig. 3.8, it can be seen that all MLS variants and the simple GAs focus on the same,

central, area. A similar principle can be observed for UF6, CF5 and CF7, with corresponding

graphs provided in supplementary data. However, in all those cases a poor convergence and

a low diversity of the final points is observed. All of these problems are deceptive and have

a similar definition of the objectives. Therefore, lack of difference between MLS variants is

most likely to be caused by the difficulty of these problems and implementation of ineffective

individual-level mechanisms in the current version of MLSGA. Simple search-strategies are

more likely to converge on an ”easy-to-find” deceptive, local optimum rather than the global
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(a) MLS1 (b) MLS2

(c) MLS2R (d) Single population GA

(e) Sub-population GA

Figure 3.7: Comparison of the Pareto optimal fronts achieved by different MLS and simple
GA variants on UF3 problem.
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(a) MLS1 (b) MLS2

(c) MLS2R (d) Single population GA

(e) Sub-population GA

Figure 3.8: The heat maps of different MLS and simple GA variants on UF3 problem.

one [109]. However, as this behaviour is seen only on 4 out of 14 tested functions, simulations

with stronger individual-level mechanisms have to be conducted in order to validate if this

unusual behaviour is due to limitations of those mechanisms or the MLSGA methodology in

overall.

Interestingly, in all tested CF and UF cases the sub-population variant of a simple GA was

able to achieve a higher diversity of the final results than other tested algorithms. It is caused

by utilisation of sub-population approach without information sharing between the groups.

In MLS approach, the eliminated collectives are re-populated by the remaining groups, and

thus all groups are likely to reach the same local optimum. Whereas in sub-population simple

GA, all groups are fully independent, therefore those are more likely to diversify.
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3.4 Combining the MLS strategies

United Multi-Level Selection (MLS-U) variant is introduced to determine if the combination

of MLS mechanisms can be used to increase the diversity of the simple genetic algorithm. In

MLS-U all three MLS variants are used in parallel where some collectives are being subject

to MLS1 type fitness definitions; others to MLS2 type; and remaining groups to MLS2R. The

following modification to the overall MLSGA methodology, presented previously in Section

3.2.1, is introduced:

� Add Step 2.2) stating: Assign the fitness definitions from types {MLS1, MLS2,

MLS2R} to each collective in the following order: MLS1 → MLS2 → MLS2R →
MLS1→

All hyper-parameters, GA mechanisms, constraint handling and complexity remains the same.

The only exception is frequency of the collective elimination, which is decreased to 1 every 5

generation, in order to allow higher differentiation of collectives. Importantly, in conducted

pre-benchmarks this change resulted in lowered performance of previously tested MLSGA

variants but is preferred with the new variant.

The resulting methodology is benchmarked on the same functions; ZDT1-6, UF1-7 and CF1-

7. The performance of MLS-U is compared to the MLS1, MLS2 and MLS2R variants and is

presented in Table 3.4 according to HV metric and in Table 3.3 for the IGD values.

From the presented results, MLS-U shows significantly better performance than other variants

on most of the tested functions, 14 out of 19 according to the IGD metric and 15 out of 19

for the HV. It can be concluded that combination of different variants has led to an increase

in the diversity of obtained points and the convergence toward more regions of true Pareto

optimal front on most of the tested cases. Furthermore, the MLS-U is never outperformed

by all of the other variants. However, as for most of the tested problems the values of both

indicators are far from ideal, it can be predicted that MLS-U was not been able to achieve

the true Pareto optimal front on those cases.

The impact on the performance by MLS-U is further verified via comparison of the Pareto

optimal fronts achieved by each MLS variant. This is followed by examination of the heat

maps generated by each of them in order to better understand the behaviour of MLS-U. The

corresponding Pareto optimal fronts are illustrated in Fig. 3.9 for UF2 and in Fig. 3.10 for

UF4. Those functions are chosen as representatives of a divergent impact of MLS-U variant

on the final performance.

For CF2 it can be seen that, similarly to other MLSGA variants, MLS-U fails to discover

all areas of the true Pareto optimal front. It can be seen that MLS-U is mostly covering

the regions where at least one of other types, MLS1, MLS2 or MLS2R, is achieving a good

convergence; but is unable to discover any new areas where all variants are under-performing.
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Table 3.3: The comparison of MLS-U performance to the other MLS variants according to
average IGD results

Variant
Problem

MLS1 MLS2 MLS2R MLS-U

ZDT1 1.17E-01 9.93E-01 1.55E-01 3.17E-02 [+]

ZDT2 7.41E-04 1.89E+0 4.19E-04 9.60E-02 [+][-]

ZDT3 1.15E-01 8.94E-01 4.23E-01 7.76E-03 [+]

ZDT4 7.61E-02 2.81E+01 5.32E-02 2.76E-02 [+]

ZDT6 1.63E-01 3.03E-03 7.58E-02 1.74E-02 [+][-]

UF1 1.87E-01 2.75E-01 1.34E-01 9.58E-02 [+]

UF2 1.36E-01 1.32E-01 8.12E-02 6.03E-02 [+]

UF3 2.95E-01 2.78E-01 2.69E-01 1.47E-01 [+]

UF4 9.30E-02 1.14E-01 1.53E-01 1.48E-01 [-]

UF5 5.11E-01 8.41E-01 8.96E-01 7.70E-01 [+][-]

UF6 3.49E-01 4.64E-01 3.15E-01 2.12E-01 [+]

UF7 4.34E-01 3.86E-01 5.18E-01 2.17E-01 [+]

CF1 9.28E-02 9.35E-02 9.38E-02 7.80E-02 [+]

CF2 2.08E-01 2.83E-01 1.77E-01 9.77E-02 [+]

CF3 1.86E-01 6.50E-01 2.56E-01 1.90E-01 [+]

CF4 3.05E-01 3.57E-01 2.08E-01 1.04E-01 [+]

CF5 4.46E-01 4.63E-01 3.21E-01 2.03E-01 [+]

CF6 2.48E-01 2.38E-01 2.34E-01 8.10E-02 [+]

CF7 3.43E-01 4.39E-01 3.96E-01 1.93E-01 [+]

[+] and [-] indicates if the results of MLS-U are significantly better or worse than
the next worse/better variant, respectively. The results of MLS-U are highlighted:
in green if it is best variant; in orange if it is outperformed by only one of other

variants; and in red if it is exhibiting the worst performance

In the case of CF2 function, neither variant is able to discover the left part of the right Pareto

optimal front, range of 0.5-0.8 according to the first objective. It indicates that MLS-U variant

may be able to successfully combine the advantages of each type of fitness separation, but is

unable to reach beyond their scope, resulting in exploration of more regions simultaneously,

and thus a significant increase in diversity, rather than flat improvement in performance or

convergence. This was expected, as MLS-U do not provide any new diversity preservation

mechanisms but is a simple combination of other developed variants.

Interestingly, on some cases the MLS-U is showing a lower quality of solutions than at least

one other MLSGA variant, according to Tables 3.4 and 3.3. In the case of UF4, Fig. 3.10

MLS-U is able to discover more points in extreme parts of the Pareto optimal front, near

points (0,1) and (1,0), but with a lowered convergence in other regions. MLS-U combines

different variants; therefore, it is logical that reducing the quantity of “good” collectives,

MLS1 and MLS2 in this case, will result in worse final solutions, especially if the performance

of different “modules” is highly contrasting. Similar observation was made for the other GAs

that combines multiple divergent methodologies such as BCE [103] or HEIA [36].
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Table 3.4: The comparison of MLS-U performance to the other MLS variants according to
average HV results

Variant
Problem

MLS1 MLS2 MLS2R MLS-U

ZDT1 0.8302 0.3774 0.8224 0.9068[+]

ZDT2 0.8318 0.0004 0.8331 0.8048[+][-]

ZDT3 1.0897 0.5209 0.7100 1.1861[+]

ZDT4 0.8480 0.0000 0.8943 0.9036[+]

ZDT6 0.7005 0.7547 0.7215 0.7499[+]

UF1 0.7544 0.7125 0.7863 0.8434[+]

UF2 0.8050 0.8067 0.8272 0.8731[+]

UF3 0.6247 0.6211 0.6205 0.7176[+]

UF4 0.7827 0.7659 0.7144 0.7674[-]

UF5 0.4332 0.2906 0.2535 0.3628[+][-]

UF6 0.5550 0.4889 0.5543 0.6592[+]

UF7 0.5634 0.5675 0.5213 0.7019[+]

CF1 0.7811 0.7949 0.7781 0.8344[+]

CF2 0.7523 0.7404 0.7557 0.8430[+]

CF3 0.5518 0.4415 0.4648 0.6357[+]

CF4 0.6261 0.5706 0.6287 0.7495[+]

CF5 0.5397 0.4940 0.5241 0.6108[+]

CF6 0.7245 0.7407 0.7331 0.8298[+]

CF7 0.6198 0.6044 0.6049 0.7364[+]

[+] and [-] indicates if the results of MLS-U are significantly better or worse than
the next worse/better variant, respectively. The results of MLS-U are highlighted:
in green if it is best variant; in orange if it is outperformed by only one of other

variants; and in red if it is exhibiting the worst performance

In order to verify if the MLS-U variant is able to concentrate the search on divergent regions

of objective space, rather than initially finding different parts of the true Pareto optimal front

and then concentrating the search on single one of them, like MLS1, MLS2 and MLS2R, the

heat maps are evaluated to find the preferred areas of search. Those are illustrated in Fig.

3.11 for CF2 case and in Fig. 3.12 for UF4.

From the heat maps it can be concluded that MLS-U is able to uniformly spread the concen-

tration of the search into different regions of the true Pareto optimal front. In case of CF2,

Fig. 3.11, 3 regions of interest are clearly visible for the MLS-U and 2 regions in case of UF4,

Fig. 3.12. Comparing to the heat maps for MLS1, MLS2 and MLS2R, it can be seen that

those regions corresponds to the search patterns of other variants. This may indicate that the

most left region is achieved by the MLS2R-type collectives, centre by the MLS1-type and the

right side by the MLS2-type groups. From the presented data it can be concluded that MLS-

U variant of the MLSGA is showing a high potential for the dispersed, region-based search,

as the divergent evolutionary pressures resulting from different collective-types, MLS1, MLS2

and MLS2R, can be maintained under a single methodology.
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(a) MLS-U (b) MLS1

(c) MLS2 (d) MLS2R

Figure 3.9: Comparison of the Pareto optimal fronts achieved by different MLS variants
on the CF2 problem.

3.5 Understanding mechanisms of the MLSGA

MLSGA combines multiple search mechanisms, such as sub-population based approach, col-

lective reproduction and fitness separation. It is essential to investigate the impact of each

of them on the final behaviour in order to fully understand the principles of working of the

MLSGA.

Firstly, MLSGA is compared to the weight-vector based simple GAs with and without sub-

populations in order to investigate if MLSGA's sub-region search is similar to simple de-

composition methods and if the performance improvement is obtained. In the weight-vector

variant without sub-populations, each individual has weights assigned to both objective func-

tions based on the uniformly spread linear weight-vector V = {v1 = (0, 1), . . . , vi = ( i−1n−1 , 1−
i−1
n−1), . . . , vn = (1, 0)} where n is the number of individuals. In the sub-population version

three types of sub-groups are introduced, with following weight-vectors {v1 = (0.001, 0.999), v2 =
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(a) MLS-U (b) MLS1

(c) MLS2 (d) MLS2R

Figure 3.10: Comparison of the Pareto optimal fronts achieved by different MLS variants
on the UF4 problem.

(0.5, 0.5), v3 = (0.999, 0.001)}. The types assignment to each group follows the same rules

as in MLSGA, but sub-populations are not allowed to exchange any information regarding

their objectives or variables during the optimisation process. Therefore, every individual in

each group has the same weight-vector and mating is restricted to among the individuals of

a particular group.

The proposed GA methodologies are simulated, and the average results are compared with

the performance of MLS-U variant of MLSGA. Those are presented in Table 3.5 for the IGD

indicator and in Table 3.6 for HV.

From the presented data it can be seen that MLS-U variant of MLSGA has the best overall

performance on most of the tested problems, 12 out of 19 cases for the IGD; and 15 out of

19 cases for the HV; while the single population variant of weight-vector GA always comes

last. This is showing the superiority of proposed solution, especially regarding the diversity

of achieved solutions due to significantly better HV metrics. Furthermore, in most cases
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(a) MLS-U (b) MLS1

(c) MLS2 (d) MLS2R

Figure 3.11: The heat maps of different MLS variants on the CF2 problem

(a) MLS-U (b) MLS1

(c) MLS2 (d) MLS2R

Figure 3.12: The heat maps of different MLS variants on the UF4 problem.

where MLSGA is outperformed by other variants, there is no statistical significance between

results, such as UF3, UF4, CF4 and CF5 cases for the IGD indicator, Table 3.5, and UF3

and CF2 for the HV metric, Table 3.6.
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The better performance of the sub-population variant over the single-population one, indi-

cates that splitting the population by itself leads to a better performance. Similar principle

has been observed for non-weight-vector variants of simple GA, as discussed in Section 3.3

and in the literature [46]. However, as MLS-U is better than both sub-population approaches,

this indicates that split in population is not the main reason for the increased performance

and diversity of MLSGA. The low performance of single-population weight-vector method,

shows that additional mechanisms, such as neighbourhoods of similar weights, should be ap-

plied in order to effectively find the best solutions for each weight, as demonstrated by the

MOEA/D algorithm [35].

Applying weights to each sub-population separately is shown to yield better results than

the single population approach, leading to a comparable performance with MLSGA on some

cases. This phenomenon is investigated further, by comparison of the Pareto optimal fronts

achieved by MLSGA and the weight-vector GA with sub-populations. These are illustrated in

Fig. 3.13 for UF2 and in Fig. 3.14 for CF2. UF2 and CF2 are selected as the representatives

for better and worse performance of MLS-U in comparison to the sub-population weight-

vector GA, respectively.

On CF2 problem, Fig. 3.14 the weight-vector approach finds more regions of the true Pareto

Table 3.5: The performance of MLS-U compared to the weight-vector variants of simple
GA, according to the average IGD metric

Problem MLS-U Weight-vector GA
Sub-population

weight-vector GA

ZDT1 3.17E-02 [+] 1.43E-01 7.18E-02 [+]
ZDT2 9.60E-02 [+] 6.09E-01 6.09E-01
ZDT3 7.76E-03 [+] 1.21E-01 2.06E-02 [+]
ZDT4 2.76E-02 [+] 1.15E-01 7.07E-02 [+]
ZDT6 1.74E-02 [+] 1.41E-01 3.60E-02 [+]
UF1 9.58E-02 2.50E-01 1.09E-01 [+]
UF2 6.03E-02 [+] 1.21E-01 7.43E-02 [+]
UF3 1.47E-01 [+] 2.77E-01 1.42E-01
UF4 1.48E-01 1.60E-01 1.34E-01
UF5 7.70E-01 8.88E-01[+] 7.63E-01
UF6 2.12E-01 [+] 3.64E-01 1.47E-01 [+]
UF7 2.17E-01 [+] 4.29E-01 3.27E-01 [+]
CF1 7.80E-02 [+] 9.19E-02 8.99E-02
CF2 9.77E-02 2.74E-01 7.38E-02 [+]
CF3 1.90E-01 4.51E-01 2.15E-01
CF4 1.04E-01 [+] 2.29E-01 9.64E-02
CF5 2.03E-01 [+] 3.62E-01 1.92E-01
CF6 8.10E-02 [+] 2.55E-01 1.70E-01 [+]
CF7 1.93E-01 [+] 3.16E-01 9.87E-02 [+]

The best algorithm for each problem is highlighted in green, the second best is highlighted
in orange. [+] indicates if the results are significantly better than the next worse variant.
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Table 3.6: The performance of MLS-U compared to the weight-vector variants of simple
GA, according to the average HV metric

Problem MLS-U Weight-vector GA
Sub-population

weight-vector GA

ZDT1 0.9068 [+] 0.8246 0.8466 [+]
ZDT2 0.8048 [+] 0.5000 0.5000
ZDT3 1.1861 1.0476 1.1812 [+]
ZDT4 0.9036 [+] 0.8363 0.8529
ZDT6 0.7499 [+] 0.7075 0.7434 [+]
UF1 0.8434 0.7192 0.8375 [+]
UF2 0.8731 [+] 0.8123 0.8511[+]
UF3 0.7176 [+] 0.6210 0.7224
UF4 0.7676 0.7318 0.7666 [+]
UF5 0.3628 [+] 0.2420 0.3379 [+]
UF6 0.6592 [+] 0.5335 0.6891 [+]
UF7 0.7019 [+] 0.5733 0.6450 [+]
CF1 0.8344 [+] 0.7833 0.8099
CF2 0.8430 [+] 0.7329 0.8526
CF3 0.6357 [+] 0.4369 0.6231 [+]
CF4 0.7495 0.6309 0.7455 [+]
CF5 0.6108 0.5410 0.6042 [+]
CF6 0.8298[+] 0.7301 0.8029 [+]
CF7 0.7364[+] 0.6574 0.8122 [+]

The best algorithm for each problem is highlighted in green, the second best is highlighted
in orange. [+] indicates if the results are significantly better than the next worse variant.

optimal front in comparison to MLSGA, localised on the “left part” of the front. The po-

tential explanation for this phenomenon is that in developed weight-vector variant the sub-

populations are fully independent. Therefore, the groups may freely explore different regions

of the objective space even if they share the same weights, resulting in more optima found on

highly multimodal problems, such as CF2. Whereas in MLSGA the collectives of the same

type strongly promote similar individuals due to utilised collective-reproduction mechanisms

and thus are more likely to converge on the same optimum as discussed previously.

However, comparing the UF2 case, Fig. 3.13, it can be observed that MLSGA is able to

retain a higher diversity on more continuous problems. The potential explanation for this

phenomenon is that in the weight-vector approach each individual in a sub-population will

try to converge on the same point, as solutions are sharing the same weights. In MLSGA,

the collectives can retain a higher diversity of solutions, as long as the average of them is

following the values promoted by the collective-level reproduction mechanisms. Therefore,

in MLSGA the diversity of each group is not penalised as strongly as in the weight-vector

approach. Furthermore, in the collectives of MLS2 and MLS2R type the diversity is addi-

tionally encouraged as both levels of selection have different evolutionary goals. It could be

suggested that the weight-vector based method may include more than 3 types of groups,

which will lead to a higher diversification of sub-populations. However, the same principle

can be applied to the MLSGA, as potentially unlimited number of divergent fitness definitions

can be used on each level of selection. Furthermore, each additional weight presumes that
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(a) MLS-U (b) Sub-population weight-vector GA

(c) MLS-U1 (d) MLS-U2

Figure 3.13: Comparison of the Pareto optimal fronts achieved by different MLS-U variants
and the sub-population weight-vector GA on the UF2 problem

there are feasible solutions in the regions promoted by that weight. That approach usually

requires the extensive knowledge about optimised problem, which is highly problematic for

the practical applications as discussed in Chapter 2. This further shows the usefulness of

MLS-based methodology.

Secondly, in order to investigate the impact of the fitness separation on each level, the ad-

ditional variants of MLS-U where the separation is performed only on a single level are

introduced. In MLS-U1 variant the influence of divergent individual-level definitions on the

region-based search is examined, while for MLS-U2 it is the importance of the collective-

level. Corresponding fitness function definitions for each level of selection are presented in

Table 3.7. Similarly, to MLS-U, only three types of collectives are introduced, and the same

hyper-parameters are used for all simulations.
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The Pareto optimal fronts obtained by both variants are compared to the results achieved

by MLS-U. These are illustrated for UF2 function in Fig. 3.13 and in Fig. 3.14 for CF2

problem.

(a) MLS-U (b) Sub-population weight-vector GA

(c) MLS-U1 (d) MLS-U2

Figure 3.14: Comparison of the Pareto optimal fronts achieved by different MLS-U variants
and the sub-population weight-vector GA on the CF2 problem

Table 3.7: Fitness functions used on each level of selection, depending on the collective
type, for MLS-U1 and MLS-U2 variants

Type of collective 1 2 3

MLS-U1

Individual-level f1(x)+f2(x)
2

f1(x) f2(x)

Collective-level f1(x)+f2(x)
2

MLS-U2

Individual-level f1(x)+f2(x)
2

Collective-level f1(x)+f2(x)
2

f1(x) f2(x)
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For both cases it can be seen that for MLS-U1 variant the final Pareto optimal front is

narrowed to the central regions of the objective space in comparison to the original MLS-U.

It indicates that limiting the fitness separation to the individual-level, strongly narrows the

final diversity. Therefore, even if the individual reproduction is promoting the extreme regions

of the objective space, by using a single objective, the collective-level mechanisms will quickly

eliminate the groups that derive from the preferred “average” values. The opposite can be

observed for MLS-U2. In the MLS-U2 variant a stronger shift towards “left” and “right” side

of the true Pareto optimal front can be observed in comparison to the MLS-U. It indicates

that the evolutionary pressure is directed towards the regions with more extreme values of

both objectives. Therefore, by utilisation of an average of both objectives for the individual

reproduction, the individual-level search is in weaker opposition to the evolutionary pressure

developed by the collective-level. This proves that the region-based search of MLSGA is

achieved by implementing different fitness definitions on the collective-level. However, the

individual-level can be adjusted to promote the extreme regions of the objective space, as

in MLS-U2, or more central regions, as in MLS-U, depending on utilised definitions of the

fitness functions.

3.6 Multi-level selection theory applied to a genetic algorithm

In this chapter the potential of the fitness separation and collective-level mechanisms for a

diversity promoting methodology have been investigated. For that purpose, three divergent

MLS types with different fitness definitions on each level of selection are proposed: MLS1,

MLS2 and MLS2R. The results show that each of proposed variants is focusing its search

on a particular region of the objective space, MLS1 on the centre, while MLS2 and MLS2R

on the right and left side, respectively. Therefore, it is proven that the additional evolution-

ary pressure developed by MLSGA can be successfully targeted into various regions of the

objective space.

In the next step the MLS-U variant of MLSGA is proposed in order to combine advantages

of each MLS type. Presented results show that the distinct search strategy of each MLS

type is maintained under the combined variant, leading to a more dispersed search and thus

increase in diversity. It is concluded that this behaviour is due to distinct types of collectives

strongly promoting certain values of the objectives in its members, and thus limiting free

exploration in other directions. Therefore, MLS1-type collectives push for the average values

of both objectives, the central region of Pareto optimal front; MLS2 collectives focuses on

minimising the second objective and thus right-hand-side areas; and the groups with MLS2R

fitness definitions are promoting the first objective and the left region respectively. This

indicates a high potential of MLSGA methodology for the region-based search strategy.

The mechanisms used in MLSGA show some similarities in design to the sub-population

and weight-vector approaches. However, according to the conducted benchmarks, MLSGA is

outperforming simple sub-population and weight-vector approaches, especially regarding the
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diversity of obtained solutions. Furthermore, unlike the weight-vector approaches, MLSGA

do not fully restrain the free exploration of the objective space by individuals. The collective-

level mechanisms only promote certain regions of the objective space, but the individual-level

search is not hard-bounded by them, and thus the individuals may retain a higher diversity

inside each group.

However, on more complex problems, such as UF and CF sets, the MLSGA is unable to

properly approximate the true Pareto optimal front. On most of those cases, MLSGA is

able to successfully discover different regions of the Pareto optimal front, but obtained re-

sults are often limited to a narrow set of solutions or a poor convergence is observed. It is

suggested that this phenomenon is due to utilisation of simple individual-level mechanisms,

which are unable to provide a sufficient evolutionary pressure. Furthermore, with currently

implemented mechanisms the individuals in the same collective do not have any incentive to

diversify among themselves, as each of them is sharing the same goals. Therefore, the MLS

mechanisms are able to increase the diversity of the search globally, on the objective space,

but are unable to maintain it locally, inside of each collective.

According to that, stronger individual-level reproduction strategies with proper diversity

preservation mechanisms have to be implemented into MLSGA, in order to fully evaluate the

potential of this approach. This will potentially lead to the methodology, where the collective-

level promotes a global diversity, through the discovery of different regions of the objective

space, while the individual-level mechanisms are used to obtain a diverse front of solutions

inside each group with a proper convergence. However, it is yet to be investigated if the

behaviour exhibited by the current version of MLSGA will be maintained with those stronger

mechanisms, as this phenomenon may be subject to currently implemented individual-level

mechanisms only.





Chapter 4 Hybridising the

MLSGA

In this chapter it is investigated if the diversity focus and region-based search shown by

the MLSGA will be retained with stronger individual-level mechanisms. For that purpose,

selected methodologies, taken from the current state-of-the-art, will be implemented into

individual-level of the MLSGA. Performance of developed variants will be validated on bench-

marking test sets and then compared with implemented algorithms and previous version of

the MLSGA. In an ideal outcome, resulting methodology will strongly promote overall di-

versity by the collective-level mechanisms, while individual-level mechanisms will maintain

convergence and diversity inside each sub-population.

4.1 Methodology of the MLSGA-hybrid

4.1.1 Description of mechanisms

In this study, eight different GAs are chosen as potential individual-level reproduction mecha-

nism for the MLSGA, leading to development of eight distinct hybrid variants of the MLSGA.

Following algorithms are selected from the state-of-the-art due to given reasons:

1. U-NSGA-III [43] as a general-solver GA and the combined variant of the most commonly

utilised algorithm for two-objective problems: NSGA-II [34]; and an improved version

of it for 3+ objective cases: NSGA-III [37];

2. MOEA/D [35] as the best GA for unconstrained and continuous problems according to

the CEC’09 comparison [42];

3. MOEA/D-MSF and MOEA/D-PSF [83] as updated versions of the MOEA/D with

better performance on a number of test cases.

4. MTS [93] as the best available algorithm for constrained problems and representing

distributed search algorithms.

5. IBEA [121] as the most commonly utilised indicator-based GA.

65
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6. BCE [103] and HEIA [36] as the most highly performing co-evolutionary approaches.

Resulting algorithm, denoted as MLSGA-hybrid, works as follows with the changes, in com-

parison to the previous version of the MLSGA, given in red text colour:

Inputs:

� Multi-objective problem;

� Np: Population size;

� Nc: Number of collectives;

� Fc: Frequency of collective elimination;

� Fitness function definitions for each level;

� Individual-level specific parameters e.g. from MOEA/D;

� Stopping criterion;

Output: External non-dominated Population (EP)

Step 1) Initialisation:

Step 1.1) Set EP = NULL.

Step 1.2) Randomly generate the initial population P of Np individuals {xj , . . . , xNp}.

Step 2) Classification:

Step 2.1) Classify the individuals from the initial population P into Nc collectives,

{Ci, . . . , CNc}, so that each contains a separate population {Pi, . . . , PNc}. Classi-

fication is based on the search space.

Step 2.2) Assign fitness definitions from types {MLS1, MLS2, MLS2R} to each col-

lective in following order MLS1→MLS2→MLS2R→MLS1 . . . etc..

Step 2.3) Perform the individual-level assignment specific to implemented algorithm

separately for each collective, as documented in corresponding literature. For

example, in case of MOEA/D hybrid, assign the nearest weight vectors λi to each

individual.

Step 3) Individual-level operations:

For i = 1, . . . , Nc do

Step 3.1) Individual-level GA’s operations: Perform the reproduction, improve-

ment and update steps over the sub-population Pi; subject to the hybrid variant

e.g. MOEA/D, as documented in corresponding literature.
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Step 3.2) Update External Population:

For j = 1, . . . , |Pi| do

Remove from the EP all solutions dominated by xij (the individual j, from pop-

ulation i). Add individual xij to the EP if no solutions from the EP dominate

it.

Step 4) Collective-level operations:

Step 4.1) Calculate collective's fitness:

For i = 1, . . . , Nc do

Calculate fitness of the collective Ci, as the average fitness of the population Pi

based on the collective-level fitness definition.

Step 4.2) Collective elimination:

Find the collective Ci with the worst fitness value and store the index of that

collective, z.

Store the size of the eliminated collective |Pz| as the variable s.

Erase the sub-population Pz of the eliminated collective Cz.

Step 4.3) Collective reproduction:

For i = 1, . . . , Nc do

if (i ! = z)

Copy the best s
(Nc−1) individuals, according to the collective-level fitness definition,

from population Pi to Pz.

then

Copy all individual-level parameters, specific to the implemented algorithms from

eliminated collective Cz to the new collective, e.g. In the case of the MOEA/D

hybrid: assign the weight vector λz randomly to population Pz.

Step 5) Termination: If the stopping criteria are met, stop and give EP as an output.

Otherwise, return to Step 3).

It can be seen that general methodology of the MLSGA-hybrid is not significantly differ-

ent than of the MLSGA. The only difference is the change in individual-level mechanisms,

whereas classification and collective-reproduction mechanisms remains unmodified. Imple-

mented individual-level mechanisms are recreated from the literature or utilised as is, if the

code was provided, without any significant modifications. Detailed principles of working for

them can be found in corresponding literature.

However, it has to be considered that some of implemented algorithms includes hard-coded

individual-assigned parameters, such as weight vectors in MOEA/D. Therefore, in the sub-

population based MLSGA methodology a following strategy is proposed: all parameters are

defined before classification step, for the initial population as whole, but these are assigned

to the individuals after the classification step; where individuals in the first collective are
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Table 4.1: Fitness functions definitions on each level of selection for MLSGA-hybrid

Type of collective MLS1 MLS2 MLS2R

Individual-level f1(x) and f2(x)

Collective-level f1(x)+f2(x)
2

f1(x) f2(x)

assigned first, followed by the assignment for the next collectives until every individual has

values assigned to it. Inside each collective the assignment is performed randomly. This

strategy leads to a higher diversification of sub-populations, as each of them potentially

contains different parameters. Pre-tests regarding MOEA/D have shown that if each sub-

population has the same weight-vectors, this leads to overlapping of collectives and to highly

ineffective search in the process.

Importantly as implemented individual-level mechanisms requires all objectives to operate

effectively, the fitness separation introduced in the original MLS-U strategy cannot be utilised.

Instead, the strategy similar to the MLS-U2 variant, proposed in a previous chapter, is

implemented; where both objectives are always available on the individual-level, as shown

in Table 4.1. In previous chapter it has been shown that there is no significant difference

between the performance of MLS-U2 and MLS-U, with only change that the MLS-U2 variant

leads to a higher diversification of collectives.

4.1.2 Hyper-parameter setting and benchmarking

Implemented individual-level reproduction mechanisms remain unchanged in comparison to

the original algorithms. Therefore, the operational parameters related to those mechanisms

are directly copied from the corresponding literature, and are detailed in Appendix E. The

same parameters are used when simulating original algorithms for the purpose of comparative

benchmarks, including population sizes. It is possible that the performance of MLSGA-hybrid

could be higher after careful hyper-tuning of those, but the principles of this study is not to

find the best setting for each individual-level mechanism.

Different MLSGA parameters: population size, number of collectives, steps between collective

reproduction and number of eliminated collectives have been parametrically evaluated and

the description of hyper-parameter tuning can be found in the section 4.4 of this chapter.

Therefore, only the parameters that give the best performance across all of the problems

are used to perform presented simulations. Those parameters are detailed in Table 4.2 and

remain constant over all the runs for all tested functions. The distinction between parameter

values used MTS and other hybrids can be observed, and to those used by the standard

MLSGA. It is due to the fact that most of the algorithms are dependent on developing and

maintaining uniform Pareto front each generation. Therefore, the collectives must maintain

a high number of individuals for the individual-level mechanisms to be effective; resulting

in bigger population sizes in overall. Additionally, frequency of the collective elimination
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Table 4.2: Hyper-parameters utilised in the MLSGA-hybrids for benchmarking.

Parameter MTS Others

Population size 225 1000

Crossover rate 1

Mutation rate 0.08

Number of collectives 6 8

Collective reproduction delay 1 10

has to be lowered to occur once every 10 generations. Otherwise, the collectives do not

have enough iterations to properly develop the fronts, leading to a premature elimination of

potentially good sub-populations. In contrast to other methodologies, MTS utilises multiple

local searches for each individual, requiring a significantly higher number of iterations per

generation. That results in a requirement for smaller populations. In this case, the collective

reproduction may occur more often, as the search strategy is not dependent on a front

propagation.

Similarly, to the previous chapter, the tests are performed over 30 separate runs, with 300,000

function evaluations for each run; and both IGD and HV are used as the performance indi-

cators. The comparative performance is assessed via average IGD and HV values across all

runs, and only this data is presented in the main part of this thesis. Additionally, wherever

applicable, the Wilcoxon’s rank sum test was conducted in order to assess the statistical

significance between the results with a confidence level of α = 0.05.

4.1.3 Computational complexity and constraint handling

In this case the computational cost of the MLSGA-hybrid is determined by two operations:

individual-level reproduction, taken from the embedded algorithm and thus with the same

complexity, denoted here as C, and the collective reproduction of MLSGA, which requires

O(mN2) comparisons. Therefore, the overall computational complexity of one generation of

MLSGA-hybrid is bounded by C, or O(mN2) whichever is higher.

The constraint handling strategy remains the same as in the previous version of the MLSGA.
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4.2 Improvement over the MLSGA and comparison to the

implemented algorithms

The performance is evaluated over 14 different problems: 7 unconstrained functions, UF1-

UF7, and 7 constrained cases, CF1-7. Tests on ZDT1-6 functions have been conducted as

well, but those are not included in the main part of this thesis, due to no significant differences

in comparative performance on those problems. This phenomenon is caused by the relative

simplicity of the ZDT set.

The average IGD and HV scores achieved by the MLSGA-hybrids are calculated for each

tested problem and compared with the scores obtained by the standard MLSGA and im-

plemented algorithms. The results are presented in Table4.3 for CF1-7 cases, and in Table

4.4 for UF1-7 problems. MTS, MOEA/D-PSF and MOEA/D-MSF, and the correspond-

ing MLSGA-hybrids, are not included in the comparison as their performance shows similar

trends to MOEA/D and MLSGA MLSGA MOEA/D comparative performance.

The constrained results, Table 4.3, show that the MLSGA-hybrids are significantly outper-

forming implemented algorithms on most of the cases. It is 6 out of 7 cases for U-NSGA-III

based variant, 5 cases for the BCE hybrid and all cases for the IBEA one, according to both

metrics, and in 5 and 7 cases for MOEA/D according to the IGD and HV, respectively. In-

terestingly, HEIA is better than MLSGA HEIA , on 4 out of 7 cases according to the IGD

indicator, but only on one of them according to the HV metric. Furthermore, the performance

of HEIA is not significantly better on CF6 problem. Similar principle can be observed for the

MLSGA MOEA/D in comparison to MOEA/D. The better performance of the MLSGA-hybrid

according to the HV metric, in comparison to IGD-based results, indicates a stronger focus

on the diversity of the search rather than convergence.

It can be noticed that the MLSGA leads to a worse performance on CF1 problem with

most of the implemented algorithms. However, it can be explained by a geometry of the

objective and search spaces in CF1 function. In this case the spaces consist of a number

of straight lines, which are uniformly spread, rather than a proper discontinuity. Therefore,

the difficulty of this problem can be derived to finding at least one point in each region, and

then properly converge on them separately, and thus it is suggested that a high convergence

rather than diversity is needed. On the most of other cases, where the MLSGA-hybrids are

being outperformed according to the IGD metric, such as CF2 for HEIA and MOEA/D, and

CF4 for HEIA, it is most likely due to outstanding performance of the original algorithms,

i.e. IGD values lower than 1E-02. Therefore, this indicates that the MLSGA mechanisms

leads to lowered convergence in overall.
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Table 4.3: The performance of different MLSGA-hybrid variants on CF test set, in comparison to the corresponding implemented algorithms and
simple MLSGA according to the IGD and HV metrics

MLSGA U-NSGA-III MOEA/D BCE HEIA IBEA
Case

Original Hybrid Original Hybrid Original Hybrid Original Hybrid Original Hybrid Original

IGD

CF1 7.801E-02 2.211E-02 1.040E-02 7.828E-03 2.140E-01 1.663E-02 1.202E-02 2.755E-03 3.510E-04 3.357E-02 1.522E-01
CF2 9.774E-02 1.059E-02 2.567E-02 4.503E-03 9.460E-04 1.146E-02 2.007E-02 3.762E-03 7.980E-04 1.411E-02 6.083E-02
CF3 1.899E-01 1.491E-01 2.633E-01 2.093E-01 1.755E-01 5.900E-01 5.625E-01 9.273E-02 1.718E-01 1.352E-01 6.019E-01
CF4 1.042E-01 2.999E-02 7.288E-02 4.586E-02 1.495E-01 6.207E-02 9.654E-02 1.453E-02 8.233E-03 4.635E-02 3.089E-01
CF5 2.026E-01 9.921E-02 1.812E-01 1.941E-01 2.190E-01 3.057E-01 5.591E-01 5.274E-02 9.337E-02 1.098E-01 4.707E-01
CF6 8.102E-02 3.350E-02 5.332E-02 4.021E-02 1.332E-01 6.206E-02 9.383E-02 4.801E-02 3.615E-02 8.496E-02 1.407E-01
CF7 1.933E-01 1.167E-01 2.099E-01 2.146E-01 1.275E+0 3.934E-01 4.431E-01 8.080E-02 1.248E-01 1.299E-01 2.553E+0

HV

CF1 0.8344 0.8604 0.8648 0.8642 0.6932 0.8626 0.8642 0.8677 0.8686 0.8313 0.7326
CF2 0.8430 0.8962 0.8914 0.8998 0.8905 0.8957 0.8901 0.9027 0.8889 0.8880 0.8374
CF3 0.6357 0.7383 0.6938 0.7081 0.6910 0.3978 0.4003 0.7468 0.6889 0.7141 0.4576
CF4 0.7495 0.8176 0.7882 0.7903 0.7170 0.7958 0.7766 0.8266 0.8251 0.7916 0.6276
CF5 0.6108 0.7473 0.7171 0.6634 0.6610 0.5574 0.4334 0.7844 0.7273 0.7321 0.5087
CF6 0.8298 0.8776 0.8694 0.8795 0.8360 0.8473 0.8395 0.8637 0.8665 0.8468 0.8127
CF7 0.7364 0.8190 0.7640 0.7258 0.6226 0.5980 0.5737 0.8317 0.7775 0.8037 0.3730

Better results between the hybrid and the individual-level algorithm are highlighted in blue, if the results are statistically better, and in green otherwise. The
MLSGA-hybrid variants outperformed by simple MLSGA are in bold.
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Table 4.4: The performance of different MLSGA-hybrid variants on UF test set, in comparison to the corresponding implemented algorithms and
simple MLSGA according to the IGD and HV metrics

MLSGA U-NSGA-III MOEA/D BCE HEIA IBEA
Case

Original Hybrid Original Hybrid Original Hybrid Original Hybrid Original Hybrid Original

IGD

UF1 9.583E-02 2.014E-02 6.162E-02 3.595E-02 2.156E-03 8.349E-02 7.260E-02 1.521E-02 1.617E-03 2.682E-02 9.698E-02
UF2 6.031E-02 1.172E-02 1.755E-02 1.466E-02 8.272E-03 4.569E-02 3.914E-02 1.143E-02 3.147E-03 1.891E-02 4.254E-02
UF3 1.475E-01 1.008E-01 7.572E-02 1.054E-01 2.398E-02 2.352E-01 1.483E-01 5.255E-02 2.367E-02 1.385E-01 2.249E-01
UF4 1.476E-01 4.326E-02 3.881E-02 7.742E-02 6.432E-02 6.361E-02 5.910E-02 4.342E-02 3.515E-02 5.585E-02 5.402E-02
UF5 7.700E-01 2.037E-01 2.299E-01 6.875E-01 3.898E-01 1.677E+0 1.470E+0 2.331E-01 1.900E-01 2.381E-01 3.745E-01
UF6 2.117E-01 6.843E-02 8.959E-02 1.960E-01 1.661E-01 4.961E-01 5.089E-01 7.250E-02 1.321E-01 6.093E-02 2.184E-01
UF7 2.172E-01 1.150E-02 2.819E-02 1.858E-02 3.220E-03 9.223E-02 3.178E-02 8.423E-03 1.811E-03 2.361E-02 2.750E-01

HV

UF1 0.8434 0.9067 0.8796 0.8829 0.9142 0.8604 0.8586 0.9105 0.9160 0.8935 0.8535
UF2 0.8731 0.9103 0.9034 0.9044 0.9102 0.8870 0.8906 0.9113 0.9154 0.8986 0.8760
UF3 0.7176 0.7986 0.8218 0.8741 0.8900 0.8254 0.8576 0.8864 0.9049 0.7360 0.7008
UF4 0.7676 0.8059 0.8069 0.7790 0.7880 0.7858 0.7921 0.8070 0.8108 0.8015 0.7999
UF5 0.3628 0.7135 0.6791 0.3995 0.5841 0.0383 0.0710 0.6932 0.7057 0.6564 0.5795
UF6 0.6592 0.7986 0.7234 0.6596 0.7265 0.4965 0.4951 0.7684 0.7049 0.7738 0.6114
UF7 0.7019 0.8686 0.8610 0.8608 0.8711 0.8112 0.8434 0.8713 0.8740 0.8588 0.6792

Better results between the hybrid and the individual-level algorithm are highlighted in blue, if the results are statistically better, and in green otherwise. The
MLSGA-hybrid variants outperformed by simple MLSGA are in bold.
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However, the results for unconstrained problems, Table 4.4, are less favourable for MLSGA-

hybrids. Corresponding MLSGA-hybrids are outperformed by MOEA/D on all cases, BCE

and HEIA on 5 out of 7 and U-NSGA-III on two of them, according to both utilised indicators.

This shows that the MLSGA-hybrid is not suited for continuous and unconstrained problems,

due to requirement of a high convergence rate rather than diversity on them. This is further

supported by a high performance of the MLSGA-hybrids on discontinuous UF6 problem,

where only MLSGA MOEA/D is outperformed by its corresponding algorithm. From the

presented data it can be seen that for many unconstrained cases the original algorithms have

been able to accurately approximate true Pareto optimal front, i.e. IGD values lower than

1E-02. That further supports the statement that MLSGA mechanisms leads to a decreased

convergence, as indicated previously. Logically, implementing additional mechanisms to a

highly specialist-solver will lead to a decreased performance, as the additional diversity is not

needed, so the computational effort is wasted.

Surprisingly, despite utilisation of a stronger individual-level mechanisms, the MLSGA-hybrids

are exhibiting a worse performance than original MLSGA on some of the tested problems.

However, on all of those cases the implemented algorithm is achieving a poor quality of results

as well, e.g. MOEA/D and BCE on CF7 problem and BCE on UF5 case. Therefore, it is in-

dicating that MLSGA-hybrid is bounded by the performance of implemented individual-level

mechanisms. It was expected, as performance of the MLSGA-hybrids is dependent on their

ability to properly converge on a global optimum. If the individual-level search strategies

do not provide a sufficient convergence, then the MLSGA-based algorithms will not be able

to further improve it, due to lack of such mechanisms. A similar principle has been shown

previously while evaluating standard MLSGA.

According to that it is shown that the MLSGA is preferred on cases where a higher diversity is

essential, such as constrained and discontinuous problems, but leads to a lowered convergence

on more continuous cases. However, more tests on a wider set of functions is required in order

to further validate this statement.

4.2.1 Extending the benchmarking set by high diversity demanding func-

tions

In order to further investigate the impact of MLSGA mechanisms on the diversity of obtained

solutions, the benchmarking test set is extended by imbalanced and biased functions. Follow-

ing the state-of-the-art literature, 14 functions in total are added to the utilised set, with 11

unconstrained cases, MOP1-5, IMB1-3, IMB7-9 and with 3 constrained imbalanced functions,

IMB11-13. Importantly all of these problems, except of MOP4 have continuous search and

objectives spaces, which may have impact on the final performance, as it was indicated pre-

viously that discontinuous spaces are preferred by the MLSGA. Therefore, due to that, and

reasons discussed previously in the literature review, Chapter 2, those may promote certain

solutions rather than a higher diversity, as originally suggested in the literature [32,33].
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Furthermore, a set of difficulty adjustable and constrained problems is added in order to

tailor functions with desired characteristics [44]. Following the guidelines in [44], the design

parameters are set to: (0.5,0,0) for diversity-hard problems; (0,0.5,0) for feasibility-hard; and

(0,0,0.5) for convergence hard cases; these are denoted as DAS-CMOP1-6(5), DAS-CMOP1-

6(6) and DAS-CMOP1-9(7) respectively.

Results are simulated and the average IGD and HV values achieved by the MLSGA-hybrids

are compared to the scores of the corresponding algorithms. These are presented in Table

4.5 for MOP and IMB problems; and for DAS-CMOP cases in Table 4.6 for the IGD indi-

cator, and in Table 4.7 for HV. Similarly, to the previous benchmarks, the results for MTS,

MOEA/D-PSF and MOEA/D-MSF, and corresponding MLSGA-hybrids, are not included as

those show similar trends to MOEA/D and the MLSGA MOEA/D comparative performance.

Original MLSGA is not included due to inferior performance of this strategy on those cases.

From presented data, Table 4.5 it can be seen that the MLSGA-hybrids are outperforming

corresponding algorithms on most of the biased MOP problems, or at least achieve a compara-

ble performance, whereas they are ineffective on the most of imbalanced IMB cases, especially

IMB7-13. This indicates that MLSGA's diversity enhancing strategy is effective on biased

cases, such as MOP and ZDT; discontinuous and constrained cases, as shown previously; but

other kind of diversity preservation is needed for IMB problems.

However, as it has been suggested in the literature review, Chapter 2, those functions may

require problem decomposition techniques or a specific reproduction mechanism, rather than

a dispersed search. IMB7-9 cases introduce the variable-linkage, therefore adjustments to

crossover and mutation strategies are preferred, as suggested in [33,86], whereas in IMB11-13

the constraint isolation is introduced, and thus a different constraint handling strategy have

to be utilised, as suggested in [33, 142]. Therefore, the only cases in the IMB set where a

dispersed search is preferred are IMB1-3 problems due to introduced bias towards favoured

regions of the Pareto optimal front. On those cases the MLSGA mechanisms lead to a better

performance for most of the compared algorithms. That is here supported by an outstanding

performance of MOEA/D on all IMB problems, especially IMB7-13 as the IGD values are

lower than 1E-03, and a high performance of all tested algorithms on IMB7-13 cases; which

shows that the diversity enhancement was not needed and thus indicating a relative simplicity

of this set. According to this it is suggested that MLSGA do not provide reliable benefits

for a highly imbalanced problems, due to a specific structure of these functions. MLSGA

may encourage exploration of different regions of objective space, which is beneficial on cases

with discontinuous or biased objective spaces, but do not help to maintain a high diversity

of variables which is needed for the imbalanced problems such as IMB7-13.
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Table 4.5: The performance of different MLSGA-hybrid variants on MOP and IMB test sets, in comparison to the corresponding implemented
algorithms according to the IGD and HV metrics

Case
U-NSGA-III MOEA/D BCE HEIA IBEA

Hybrid Original Hybrid Original Hybrid Original Hybrid Original Hybrid Original

IGD

MOP1 1.794E-01 1.810E-01 1.837E-01 1.805E-01 1.839E-01 1.841E-01 1.781E-01 1.820E-01 1.818E-01 1.865E-01
MOP2 3.550E-01 3.550E-01 3.027E-01 3.411E-01 3.263E-01 3.333E-01 2.035E-01 3.411E-01 3.550E-01 3.553E-01
MOP3 4.102E-01 4.301E-01 4.326E-01 4.858E-01 4.656E-01 4.842E-01 4.157E-01 4.717E-01 4.088E-01 4.085E-01
MOP4 2.535E-01 2.999E-01 2.708E-01 2.643E-01 2.303E-01 2.624E-01 2.244E-01 2.813E-01 2.622E-01 2.990E-01
MOP5 1.870E-01 1.901E-01 3.066E-01 2.559E-01 2.912E-01 2.959E-01 1.880E-01 2.550E-01 2.199E-01 2.357E-01
IMB1 7.085E-02 8.157E-02 1.571E-01 9.513E-02 2.210E-01 2.231E-01 2.278E-02 9.673E-03 2.169E-01 3.375E-01
IMB2 1.173E-01 1.278E-01 1.964E-01 1.157E-01 1.958E-01 1.971E-01 1.649E-01 1.354E-01 1.643E-01 2.244E-01
IMB3 2.127E-01 2.406E-01 2.993E-01 2.228E-01 2.010E-01 2.657E-01 2.942E-01 2.840E-01 2.602E-01 2.974E-01
IMB7 1.626E-03 8.170E-04 7.121E-03 7.930E-04 1.858E-01 2.314E-02 1.285E-03 7.260E-04 1.222E-03 3.146E-03
IMB8 9.050E-04 8.140E-04 8.088E-03 6.480E-04 2.456E-01 4.389E-02 1.156E-03 7.120E-04 1.623E-03 3.445E-03
IMB9 1.001E-03 9.030E-04 9.185E-03 7.700E-04 4.109E-01 1.409E-01 7.580E-04 7.200E-04 5.760E-04 5.529E-03
IMB11 1.078E-01 1.105E-01 4.858E-02 9.990E-04 1.240E-01 9.832E-02 9.401E-02 9.311E-02 1.259E-01 1.693E-01
IMB12 8.124E-02 7.249E-02 2.900E-02 6.280E-04 7.072E-02 5.878E-02 5.863E-02 1.331E-03 1.147E-01 2.519E-01
IMB13 8.735E-02 8.299E-02 6.310E-02 9.540E-04 9.513E-02 6.482E-02 6.518E-02 1.230E-02 1.348E-01 2.956E-01

HV

MOP1 0.8473 0.8462 0.8442 0.8463 0.8442 0.8440 0.8479 0.8452 0.8462 0.8426
MOP2 0.7500 0.7500 0.7556 0.7508 0.7530 0.7521 0.7785 0.7527 0.7499 0.7472
MOP3 0.7482 0.7310 0.7300 0.6964 0.7070 0.6989 0.7433 0.7054 0.7500 0.7492
MOP4 0.7956 0.7871 0.7908 0.7924 0.8004 0.7954 0.8063 0.7803 0.7913 0.7423
MOP5 0.8404 0.8393 0.7317 0.7818 0.7638 0.7351 0.8323 0.7877 0.8243 0.8090
IMB1 0.8909 0.8876 0.8626 0.8863 0.8438 0.8432 0.9088 0.9134 0.8455 0.7696
IMB2 0.7878 0.7834 0.7084 0.8306 0.7218 0.7162 0.7306 0.7676 0.7990 0.6809
IMB3 0.7422 0.6756 0.5214 0.7597 0.6843 0.6249 0.5376 0.5686 0.6585 0.5327
IMB7 0.9160 0.9164 0.9138 0.9163 0.8529 0.9075 0.9161 0.9164 0.9161 0.9153
IMB8 0.8746 0.8747 0.8716 0.8747 0.7682 0.8568 0.8745 0.8747 0.8743 0.8735
IMB9 0.8032 0.8034 0.7997 0.8033 0.5770 0.7370 0.8032 0.8032 0.8034 0.8024
IMB11 0.8324 0.8344 0.9031 0.9163 0.8162 0.8409 0.8461 0.8480 0.8207 0.8061
IMB12 0.7487 0.7520 0.8640 0.8747 0.7499 0.7621 0.7617 0.8743 0.7211 0.6553
IMB13 0.6682 0.6696 0.7464 0.8329 0.6604 0.6807 0.6802 0.8021 0.6222 0.5577

Better results between the hybrids and corresponding individual-level algorithm are highlighted in blue, if the results are statistically better,
and in green otherwise.
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Positive impact of the MLSGA mechanisms on the diversity is shown on the DAS-CMOP

test set, Tables 4.6 and 4.7. It can be seen that the MLSGA-hybrids have significantly better

performance than corresponding original algorithms on most of the tested diversity- and

feasibility-hard problems, but they are outperformed on many convergence-hard cases. In

case of the U-NSGA-III-based variant, it is better than implemented algorithm in 11 and 9

cases out of 12 according to the IGD and HV indicators respectively for the diversity- and

feasibility-hard problems, but worse in 5 out of 6 cases for the convergence-hard functions.

For the HEIA-based variant, it is 11 out of 12 cases, for both indicators; and 3 out of 6 cases

for the IGD and 4 out of 6 for the HV indicator correspondingly. For IBEA, and BCE an

improvement is observed for all cases but one, DAS-CMOP3(6), even the convergence-hard

problems. However, due to lack of the significant differences on most of the convergence-hard

cases between the corresponding MLSGA-hybrids and IBEA and BCE algorithms, it is here

suggested that this is caused by a high randomness of the search within these methodologies

on the DAS-CMOP(7) cases, leading to a low performance. Opposite can be observed for the

MOEA/D based algorithms, where the MLSGA search strategy leads to a worse performance

on most of tested cases, similarly to the previous benchmarks. According to presented results,

such as the lowered performance of the U-NSGA-III and HEIA variants on convergence-

hard problems, but significantly better on the diversity- and feasibility-hard cases, the high

potential of MLSGA for the diversity-oriented methodology is proven.

Regarding a low performance of the MLSGA MOEA/D , MLSGA MOEA/D-PSF , MLSGA MOEA/D-

MSF and MLSGA MTS it is here suggested that it is due to incompatibility of the MLSGA's

collective-level mechanisms with implemented individual-level strategies. Performance of

MOEA/D is highly dependent on the quality of predefined weight-vectors, as indicated

in [32, 47]. In the MLSGA MOEA/D hybrid a newly created collective inherits the weight

vectors of the eliminated collective, during the collective reproduction step. However, the

assignment of solutions to each vector is random and thus is not subject to the value of this

weight vector. Therefore, the individuals do not have the best possible weight vector assigned

to them. Furthermore, the neighbourhood of solutions is being recreated basing only on the

vector's values, rather than actual “quality” of individuals. Therefore, the new neighbour-

hood does not accurately reflect the relationship between two neighbour individuals. This

lowers an overall fitness of individuals in the new collective, and thus leads to a decreased

performance.
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Table 4.6: The performance of different MLSGA-hybrid variants on DAS-CMOP test set, in comparison to the corresponding implemented algorithms
according to the IGD metric

U-NSGA-III MOEA/D BCE HEIA IBEA
Case

Hybrid Original Hybrid Original Hybrid Original Hybrid Original Hybrid Original

DAS-CMOP1(5) 3.086E-01 3.685E-01 3.409E-02 3.153E-02 3.686E-01 4.030E-01 6.224E-02 3.398E-01 2.928E-01 4.169E-01
DAS-CMOP2(5) 2.775E-01 3.276E-01 3.466E-02 3.216E-02 3.185E-01 3.540E-01 1.307E-01 3.315E-01 2.691E-01 3.465E-01
DAS-CMOP3(5) 3.298E-01 3.557E-01 3.266E-02 1.297E-01 3.564E-01 5.362E-01 8.641E-02 2.576E-01 3.730E-01 4.835E-01
DAS-CMOP4(5) 5.759E-01 6.273E-01 5.123E+00 4.503E+00 1.390E+01 1.877E+01 8.841E-01 1.158E+00 5.265E-01 9.292E-01
DAS-CMOP5(5) 5.705E-01 6.540E-01 4.792E+00 5.534E+00 1.391E+01 2.047E+01 1.037E+00 9.791E-01 6.052E-01 9.024E-01
DAS-CMOP6(5) 5.627E-01 6.415E-01 5.711E+00 5.569E+00 1.292E+01 2.053E+01 8.453E-01 1.249E+00 6.369E-01 1.190E+00
DAS-CMOP1(6) 7.279E-01 7.650E-01 6.321E-01 6.403E-01 7.429E-01 7.494E-01 6.347E-01 6.393E-01 7.188E-01 7.958E-01
DAS-CMOP2(6) 7.766E-01 8.040E-01 6.509E-01 6.556E-01 7.852E-01 8.125E-01 6.513E-01 6.541E-01 7.619E-01 8.331E-01
DAS-CMOP3(6) 7.055E-01 6.330E-01 6.147E-01 6.144E-01 7.175E-01 6.998E-01 6.185E-01 7.063E-01 7.457E-01 7.004E-01
DAS-CMOP4(6) 1.122E-01 2.749E-01 8.000E+13 9.333E+13 1.000E+14 1.000E+14 6.667E+12 4.667E+13 2.611E-01 5.333E+13
DAS-CMOP5(6) 1.182E-01 2.338E-01 1.000E+14 8.667E+13 1.000E+14 1.000E+14 1.333E+13 3.333E+13 2.211E-01 7.333E+13
DAS-CMOP6(6) 2.095E-01 2.601E-01 1.000E+14 1.000E+14 1.000E+14 1.000E+14 2.667E+13 7.333E+13 1.333E+13 6.667E+13
DAS-CMOP1(7) 5.764E-01 5.821E-01 1.464E-01 1.435E-01 5.940E-01 6.074E-01 5.709E-01 5.624E-01 5.297E-01 6.126E-01
DAS-CMOP2(7) 5.658E-01 4.817E-01 3.476E-02 3.216E-02 3.643E-01 8.075E-01 6.172E-01 5.941E-01 2.548E-01 3.557E-01
DAS-CMOP3(7) 6.988E-01 6.715E-01 2.586E-02 2.216E-02 6.990E-01 7.046E-01 6.700E-01 7.896E-01 2.311E-01 2.928E-01
DAS-CMOP4(7) 1.365E+00 1.206E+00 5.235E+00 6.651E+00 1.153E+01 2.000E+01 1.903E+00 1.935E+00 6.678E-01 1.189E+00
DAS-CMOP5(7) 1.558E+00 1.231E+00 5.622E+00 4.948E+00 1.100E+01 1.927E+01 2.131E+00 2.131E+00 9.242E-01 1.262E+00
DAS-CMOP6(7) 1.429E+00 1.214E+00 7.044E+00 6.944E+00 1.223E+01 1.819E+01 2.026E+00 2.070E+00 9.717E-01 1.602E+00

Better results between the hybrids and corresponding individual-level algorithm are highlighted in blue, if the results are statistically better, and in green
otherwise.
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Table 4.7: The performance of different MLSGA-hybrid variants on DAS-CMOP test set, in comparison to the corresponding implemented algorithms
according to the HV metric

U-NSGA-III MOEA/D BCE HEIA IBEA
Case

Hybrid Original Hybrid Original Hybrid Original Hybrid Original Hybrid Original

DAS-CMOP1(5) 0.4865 0.4544 0.8050 0.7931 0.4490 0.4308 0.7628 0.4804 0.4988 0.4572
DAS-CMOP2(5) 0.6797 0.6515 0.8964 0.8966 0.6474 0.6281 0.8121 0.6525 0.6936 0.6396
DAS-CMOP3(5) 0.6804 0.6412 0.8708 0.7785 0.6032 0.4826 0.8102 0.7226 0.6920 0.6152
DAS-CMOP4(5) 0.4174 0.3658 0 0.1101 0 0 0.2695 0.1933 0.4471 0.3063
DAS-CMOP5(5) 0.5223 0.4862 0.0386 0.0006 0 0 0.3186 0.3588 0.4955 0.3861
DAS-CMOP6(5) 0.4961 0.4410 0 0.0002 0 0 0.3526 0.2172 0.4277 0.1645
DAS-CMOP1(6) 0.5764 0.5567 0.8846 0.8856 0.5553 0.5240 0.8854 0.8848 0.6355 0.5567
DAS-CMOP2(6) 0.7412 0.7232 0.9394 0.9401 0.7164 0.6984 0.9400 0.9395 0.7674 0.7141
DAS-CMOP3(6) 0.7465 0.7139 0.9237 0.9245 0.7895 0.7333 0.9220 0.8341 0.7539 0.7091
DAS-CMOP4(6) 0.5613 0.6625 0.1303 0.0436 0 0 0.5132 0.2953 0.5966 0.2926
DAS-CMOP5(6) 0.6015 0.6935 0 0.1239 0 0 0.5273 0.4194 0.6258 0.2140
DAS-CMOP6(6) 0.5493 0.6782 0 0 0 0 0.4155 0.1750 0.4405 0.1912
DAS-CMOP1(7) 0.3197 0.3125 0.7802 0.7815 0.2988 0.2852 0.3293 0.3433 0.3678 0.3035
DAS-CMOP2(7) 0.4909 0.5418 0.9053 0.9065 0.6101 0.3079 0.4571 0.4793 0.7107 0.6508
DAS-CMOP3(7) 0.3693 0.3873 0.8808 0.8820 0.3696 0.3632 0.3879 0.3364 0.6840 0.6448
DAS-CMOP4(7) 0.0851 0.1465 0.0002 0.0028 0 0 0.0027 0.0027 0.3402 0.1343
DAS-CMOP5(7) 0.1141 0.2063 0 0.1572 0 0 0.0028 0.0029 0.3449 0.2125
DAS-CMOP6(7) 0.1154 0.1850 0 0 0 0 0.0029 0.0026 0.2647 0.0867

Better results between the hybrids and corresponding individual-level algorithm are highlighted in blue, if the results are statistically better, and in green
otherwise.
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MTS utilises multiple local search methods in order to evolve each individual. Therefore, the

fitness calculations per generations are significantly higher than in other GAs. This results

in a lowered number of total generations. As an example, in the conducted benchmarks

MTS lasted 7 generations in average with 300,000 iterations, while other algorithms reach at

least 300 generations during that time. According to that, the collective-level mechanisms

are not able to contribute to the search pattern in a reasonable part, thus explaining a low

performance of the MLSGA MTS . These issues could be solved by adjusting the collective-

level mechanisms, to be bespoke to the algorithm utilised on the individual-level, so the

characteristic of the implemented algorithms would be considered by them. However, it is

not a principle of this thesis to develop a perfectly adjusted solution for each of tested search

strategies.

4.3 Evaluating the impact of MLS

In previous sections it has been shown that implementation of stronger individual-level mech-

anisms leads to a significantly better performance in comparison to standard MLSGA. Fur-

thermore, the MLSGA-hybrids are usually outperforming the implemented algorithms on

most of tested cases, especially problems that require high diversity of the search. However,

it is yet to be investigated if this behaviour is result of the region-based search, which is

retained from the original MLSGA, or it is due to utilisation of sub-population approach or

other new phenomena.

For this purpose, the combined search areas for each type of collective are visualised in the

form of heat maps and compared with similar data obtained by simulating the implemented

algorithm separately. These are presented in Fig. 4.1 for MLSGA U-NSGA-III on UF2 problem,

and in Fig. 4.2 for MLSGA MOEA/D on CF2 case.

For both MLSGA-hybrids, for each type of collective a favoured region can be observed. For

the U-NSGA-III based variant, Fig. 4.1, it is central-left region of the objective space for

MLS1 and MLS2R types, range 0 to 0.5 of the Objective 1; and right-hand side of the Pareto

optimal front for the MLS2-type, range 0.5-1.3. Interestingly, MLS1 and MLS2R preferred re-

gions are similar, but it is caused by the bias towards the left-hand side of the Pareto optimal

front introduced in UF2 problem. This is further supported by similar behaviour shown by

U-NSGA-III, where the poor convergence can be observed in range 0.6-1. The differentiation

between collectives is even more noticeable for MLSGA MOEA/D on CF2 problem, Fig. 4.2.

In this case MLS2 and MLS2R focuses on the right- and left-hand side of the Pareto optimal

front, ranges 0.6-1 and 0-0.4 correspondingly; and the most uniform search can be observed

for MLS1, but with a stronger focus towards the central region, range 0.1-0.4 of the Objective

1. According to that, it is shown that the region-based search strategy exhibited by stan-

dard MLSGA is maintained with stronger individual-level mechanisms. Interestingly in both

presented cases, each type of collective is able to maintain a wide range of solutions instead
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(a) MLS1-type (b) MLS2-type

(c) MLS2R-type (d) U-NSGA-III

Figure 4.1: The heat maps of different collective types in the MLSGA U-NSGA-III algo-
rithm compared to the U-NSGA-III search pattern on UF2 problems.

(a) MLS1-type (b) MLS2-type

(c) MLS2R-type (d) MOEA/D

Figure 4.2: The heat maps of different collective types in the MLSGA MOEA/D algorithm
compared to the MOEA/D search pattern on CF2 problems.
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(a) Fronts obtained by collectives with dif-
ferent MLS-types

(b) Combined front

Figure 4.3: Combined Pareto optimal front of the MLSGA U-NSGA-III on UF2 problem.

of concentrating only on the “preferred” areas. This indicates that the MLSGA's collective-

level mechanisms are not harshly punishing the diversity inside each group. Therefore, each

sub-group is simply a local instance of the implemented algorithm with a bias toward certain

regions of the objective space, but without strong limitations in a free exploration. That

explains a high performance of the MLSGA based algorithms.

Comparing to the original algorithms, U-NSGA-III in Fig. 4.1 and MOEA/D in Fig. 4.2, it

can be seen that both MOEA/D and U-NSGA-III are developing a more uniform search than

the MLSGA. This is due to utilisation of a search strategy that is based on the prevalence

of a single front of non-dominated solutions. In the MLSGA, multiple fronts are maintained,

and the final Pareto optimal front is a combination of them as illustrated in Fig. 4.3. In this

case it can be observed that the final Pareto optimal front is combination of region 0-0.1 of

the MLS2R-type collective, and regions 0.1-0.55 and 0.55-1 for the MLS1 and MLS2-types

of collectives respectively, according to the first objective. High independence of collectives

allows them to move around the infeasible “gaps” more easily in the objective space created

by the constraints or the areas with discontinuities. Furthermore, due to utilisation of the

collective elimination and reproduction mechanism, collectives are less likely to permanently

get stuck on the boundaries of infeasible regions. This claim is supported by high gains

in performance shown by the MOEA/D based hybrids on constrained and discontinuous

problems. MOEA/D's search strategy is ineffective on non-continuous spaces as utilised

weights are defined in straight lines. Therefore, these lines may pass through the infeasible

regions, forcing the algorithm to look for valid solutions in these regions and thus leading to

an inefficient search.
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Table 4.8: Performance comparison of the sub-population and single-population variants of different algorithms taken from the current state-of-the-art,
according to the IGD metric.

U-NSGA-III MOEA/D HEIA MTS
Case

Sub-pop Original Sub-pop Original Sub-pop Original Sub-pop Original

UF1 2.074E-02 6.162E-02 1.406E-02 2.156E-03 1.698E-02 1.617E-03 2.420E-03 1.829E-03
UF2 1.580E-02 1.755E-02 1.008E-02 8.272E-03 1.175E-02 3.147E-03 2.348E-03 1.592E-03
UF3 1.084E-01 7.572E-02 8.167E-02 2.398E-02 6.937E-02 2.367E-02 4.183E-02 4.294E-02
UF4 4.564E-02 3.881E-02 7.376E-02 6.432E-02 4.441E-02 3.515E-02 2.939E-02 2.931E-02
UF5 2.088E-01 2.299E-01 8.873E-01 3.898E-01 2.754E-01 1.900E-01 1.138E-01 1.137E-01
UF6 6.988E-02 8.959E-02 1.140E-01 1.661E-01 7.429E-02 1.321E-01 6.470E-02 6.332E-02
UF7 1.182E-02 2.819E-02 9.913E-03 3.220E-03 9.234E-03 1.811E-03 2.832E-02 3.213E-02
CF1 2.615E-02 1.040E-02 8.530E-03 2.140E-01 2.946E-03 3.510E-04 2.461E-02 2.209E-02
CF2 1.090E-02 2.567E-02 2.327E-03 9.460E-04 4.621E-03 7.980E-04 1.308E-03 1.051E-03
CF3 1.563E-01 2.633E-01 8.515E-02 1.755E-01 9.872E-02 1.718E-01 1.782E-01 1.169E-01
CF4 3.067E-02 7.288E-02 1.872E-02 1.495E-01 1.496E-02 8.233E-03 5.829E-03 5.704E-03
CF5 1.021E-01 1.812E-01 7.018E-02 2.190E-01 5.635E-02 9.337E-02 5.110E-02 2.340E-02
CF6 3.442E-02 5.332E-02 4.872E-02 1.332E-01 4.923E-02 3.615E-02 6.005E-03 5.445E-03
CF7 1.197E-01 2.099E-01 7.159E-02 1.275E+00 8.983E-02 1.248E-01 3.815E-02 2.462E-02

MOP1 1.836E-01 1.810E-01 1.822E-01 1.805E-01 1.832E-01 1.820E-01 1.347E-01 1.332E-01
MOP2 3.635E-01 3.550E-01 2.759E-01 3.411E-01 2.667E-01 3.411E-01 1.430E-01 1.767E-01
MOP3 4.278E-01 4.301E-01 4.136E-01 4.858E-01 4.295E-01 4.717E-01 1.492E-01 1.415E-01
MOP4 2.625E-01 2.999E-01 2.436E-01 2.643E-01 2.367E-01 2.813E-01 7.737E-02 6.607E-02
MOP5 2.004E-01 1.901E-01 2.478E-01 2.559E-01 1.975E-01 2.550E-01 1.064E-01 8.611E-02

Better results between the sub-population and single-population variants are highlighted in blue, if the results are significantly
better, and in green otherwise. A value is in bold if the sub-population variant is significantly worse than corresponding

MLSGA-hybrid.
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Finally, the effect of population separation on the final performance is investigated. It has

been indicated by other researchers that population separation by itself may provide certain

benefits on the discontinuous problems [46]. For that purpose, sub-population variants of the

implemented algorithms are developed for the purpose of this thesis and evaluated. They

are prepared following the MLSGA's methodology, but with exclusion of the collective-level

mechanisms i.e. without steps 2.2 and 4 in the MLSGA-hybrid pseudo-code. Developed

variants are simulated over the same test cases, and the results are compared to the original

algorithms. Those are presented according to the IGD indicator in Table 4.8 for CF, UF and

MOP problems. The results according to the HV indicator; with IMB and DAS-CMOP test

sets; and for the MOEA/D-PSF, MOEA/D-MSF, BCE and MTS are not included in the

main part of this thesis, but similar trends to the presented data can be observed.

From the presented data, some similar trends to the MLSGA-hybrids, regarding the impact

on performance, can be observed. It can be seen that the sub-population approach leads to

a worse performance on average on unconstrained UF cases; and a better effectiveness on

constrained CF, discontinuous UF6 and biased MOP cases. Therefore, it supports the state-

ment that the sub-population approach is beneficial on diversity demanding functions, but

less preferred on convergence-hard problems. That partly explains the elevated performance

of the MLSGA based algorithms on those problems. On constrained and discontinuous prob-

lems, each sub-population decreases the chance of premature convergence on the infeasible

regions. On continuous and constrained cases those sub-populations are often evaluating

the same regions, lowering the efficiency of the search. Comparing the results of the sub-

population variants to corresponding MLSGA-hybrids it can be seen that the sub-population

variants of the U-NSGA-III and HEIA algorithms are achieving a significantly worse per-

formance than corresponding MLSGA-hybrids on each tested case. Therefore, it is shown

that additional mechanisms, such as the collective-level reproduction and fitness separation,

are required to obtain a higher diversity of the results. Similar principle has been observed

previously with standard MLSGA. The low performance of MLSGA-hybrids against the cor-

responding sub-population variants of MOEA/D, MOEA/D-MSF, MOEA/D-PSF and MTS,

further indicates the incompatibility of collective-level mechanisms with these methodologies,

as discussed previously in this chapter. Furthermore, significantly lower performance of the

MTS sub-population variant, in comparison to the single-population one, indicates that di-

viding population is highly disadvantageous for this algorithm, as multiple sub-populations

are evaluating the same regions.

4.4 Investigating the sensitivity to hyper-parameters

It has been suggested in the literature review that a high sensitivity to the hyper-parameters

may lead to a lowered usefulness to real-world applications, due to lack of practical pos-

sibility to tweak them in advance. Therefore, in order to fully evaluate the usability of

developed algorithm, the sensitivity to hyper-parameters must be investigated. Importantly,

it is very unlikely that algorithm will be insensitive to all of them, as even population sizes
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Table 4.9: The min, max and step values for each tested hyper-parameter of the MLSGA
algorithm

Parameter Population size Number of collectives Collective elimination

Min. 400 4 2

Max. 1800 10 20

Step 100 1 2

or mutation/crossover rates have a significant impact on the obtained results. However, the

parameter-sensitive mechanisms do not decrease the value of the methodology, as long as the

best possible setting of those exists and if this setting is universal for all potential problem;

or if the clear guide for their set-up is defined that does not need prior knowledge about the

optimised case. Along the sensitivity testing, a minor hyper-parameter tuning is conducted

to approximate the best set of parameters for the benchmarked problems. Simple generate-

evaluate brute-force method based on the Design of Experiment (DOE) approach has been

chosen, It is considered sufficient for the principles of this work and preferred over more com-

plex automatic and iterative methods such as: IRace, ParamILS or SMAC [143]. It is not

principle of this thesis to produce the best possible results for a narrow range of problems,

but to evaluate generality on a wide range of problems and investigate the search strategy

of the MLSGA. Extensive hyper-parameter tuning to a narrow selection of benchmarking

problems, would limit that generality.

Following the chosen method, a series of benchmarks is conducted with different values of

the population size, number of collective and frequency of collectives’ elimination. Impor-

tantly the parameters are evaluated separately, and the rest of them remains constant, due

to computational limitations. The setting of constant values is defined based on the per-

formed pre-benchmarks. Due to computational limitation only U-NSGA-III, HEIA, BCE

and MOEA/D are simulated, and the DAS-CMOP, IMB and ZDT test sets are not included.

Furthermore, due to huge differences in principles of working of MTS in comparison to other

utilised algorithms, this methodology is not included in the main part of hyper-tuning but

is discussed separately at the end of this section. Maximum and minimum values, and the

steps used for the hyper-parameter tuning are summarised in Table 4.9. Tuning process is

following the same rules as in the previous sections. Due to high quantity of data, only the

summary is presented according to the following steps:

1. The results for each function are normalised based on the best and worst value obtained

from among all tested hyper-parameters. Every problem is normalised separately. Ac-

cording to that, 1 means the best possible value and 0 the worst on a given case.

2. Then, the average value and the standard deviation is calculated for all algorithms and

functions for a given value of hyper-parameter. Those values are presented on graphs.

Firstly, the impact of population-sizes on the MLSGA performance is evaluated and the

results are illustrated with the IGD indicator in Fig. 4.4. The number of collectives is set to
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4, 6 and 8, whereas the collective elimination occurs once every ten generations. From the

presented graphs it can be seen that the population sizes do not have significant impact on

the performance within a wide range, but the larger population sizes are preferred. For 4

collectives, the performance is approximately stable within 600-1800 range, but a visible peak

can be observed for 600 individuals. For 6 and 8 collectives, slightly bigger populations are

preferred, and the stable zone is within 700-1800 range, with the peak for 1000 individuals for

6 collectives, and a range of 800-1800 for 8 collectives, with the peak in 1000. A significantly

lower effectiveness can be observed with small sizes of the population for all presented cases.

However, by comparing the data, it can be seen that for a lower number of collectives less

individual are required in order to maintain effective search. This indicates that setting the

population sizes too low will lead to tiny collectives, which are unable to properly develop

the front and thus maintain a high quality search. In contrast, high population sizes result

in enormous collectives that would require too many fitness evaluations in order to properly

converge. Furthermore, higher population sizes limit the total number of generations that GA

may achieve. Therefore, there is less time for the collective reproduction mechanisms. This

principle is supported by the current state-of-the-art where population sizes are usually in

range 100-600 in order to maximise the convergence rates. Bigger populations lead to lowered

convergence, which is usually obtained on generation-to-generation basis [60]. Whereas, too

small population sizes do not provide enough individuals to maintain a high diversity [74].

In the next step, the impact of the number of collectives is evaluated, with the calculated

results presented in Fig. 4.5 according to the IGD indicator. The population size is constant

and equal to 1000, whereas the collective elimination occurs once every 10 generations. From

the chart it can be seen that the number of collectives does not have significant impact on the

final performance within the range 6-9, with a peak for 8 collectives. Indicating the insen-

sitivity to this parameter when minor changes are applied. Significantly lower performance

with 4,5 and 10 collectives is due to synergy between population sizes and the number of

collectives as discussed before; thus 1000 individuals is too much for 4 and 5 collectives but is

not sufficient for 10 groups. Therefore, to find the best setting of those values, the top results

for different numbers of collectives, each with a preferred population size, are compared and

presented in Fig. 4.6. From the data it can be seen that the best results are obtained for

8 collectives and 1000 individuals, with comparable performance is achieved for 6, 7 and 9

collectives. It is indicating that at least 2 collectives of each type, and preferably 3 are needed

for more effective search. With fewer collectives, there is not enough sub-populations of the

same type to provide high quality solutions during the re-population process; whereas with

more collectives, too many sub-populations are evaluating the same regions. Therefore, lead-

ing to an inefficient search. Surprisingly 8 collectives are preferred, instead of 9, which would

seem more natural choice, as there is equal number of collectives of each type. The potential

reason for this is that with higher numbers of collectives more individuals are needed in order

to perform effective search, as discussed before.

According to that, it is here suggested that 8 collectives and 1000 populations have to be

utilised. However, if the optimisation has to be performed with less fitness evaluations e.g.
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(a) 4 collectives (b) 6 collectives

(c) 8 collectives

Figure 4.4: Comparison of the IGD values obtained by the 4, 6 and 8 collective versions
of the MLSGA with different population sizes.

due to computational limitation, it is suggested that 6 collectives with 800 individuals should

be utilised, or even 4 collectives with 600 individuals in more extreme cases. However, it

has to be kept in mind that the overall performance will be lowered. According to that it

is concluded that one of the MLSGA disadvantages is requirement for larger populations,

as most of the state-of-the-art algorithms, needs 100-600 individuals to operate effectively.

However, it was expected from an algorithm that focuses on a good spread of obtained

solutions rather than the fast convergence.

Finally, the impact of the collective elimination frequency is evaluated for 8 collectives and

1000 individuals. The results for the IGD indicator are presented in Fig. 4.7. It can be

observed that elimination should occur after 10 generations, the best result, but a similar

performance is maintained within 8-16 range. The reason for this behaviour is that most of

the implemented GAs rely on a constant front propagation, as discussed before. Therefore, if
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Figure 4.5: Comparison of the IGD values obtained by the MLSGA algorithm with different
number of collectives.

Figure 4.6: Comparison of the IGD values obtained by the MLSGA algorithm with different
number of collectives, using the best population sizes.

the collective elimination occurs too often, the front cannot be properly generated leading to

elimination of potentially good solutions and thus a random search. Whereas if the frequency

is too low the collective-level mechanisms do not have a significant impact on the search.

According to the presented data it is concluded that the MLSGA is not sensitive to introduced

hyper-parameters. Furthermore, the best values for each of them have been provided, which

with a high confidence can be used for all problems.

4.5 Diversity-first, convergence-second

In this chapter it has been investigated if the region-based search shown by the standard

MLSGA is maintained with stronger individual-level mechanisms. For that purpose, eight
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Figure 4.7: Comparison of the IGD values obtained by the MLSGA algorithm with different
frequencies of the collective elimination.

different algorithms taken from the current state-of-the-art have been used to replace the

individual reproduction mechanisms within the MLSGA, resulting in the hybrid approach.

The presented results have shown that the MLSGA-hybrids are strongly outperforming the

original MLSGA on almost all of the tested cases. Furthermore, the improvement over most of

the implemented algorithms can be observed, especially on cases where “convergence-first”

based approaches are ineffective, such as constrained, biased and discontinuous problems.

In proposed hybrid approach, the stronger individual-level reproduction leads to a better

exploitation of both objective and variable spaces; and to a higher diversity preservation

inside each group, as the collectives are local versions of the original algorithms. Furthermore,

similarly to the standard MLSGA, the collective-level mechanisms strongly penalize certain

regions of the objective space for each group, while the fitness separation leads to each group

having a different favoured region. That leads to better spread of the sub-populations and

thus a higher global diversity. According to that it is concluded that the unique region-based

search of the MLSGA is retained in the hybrid approach.

It is here suggested that the high performance on cases where a high diversity is needed is

the result of three factors: sub-population approach that decreases the chances of premature

convergence on a local optima or infeasible regions, as typical behaviour for the algorithms

with distinct sub-populations [46]; collective reproduction that introduces the additional

selection pressure and removes the groups that are stuck in “bad” regions; and the fitness

separation that diversify the collectives and thus enhance the ability to explore different parts

of the objective space. Therefore, MLSGA is able to move around “gaps” more easily in the

objective space and thus maintain a higher diversity. This claim is supported by high gains

in performance shown by the MLSGA-MOEA/D hybrid on constrained problems. Original

MOEA/D struggled to operate in non-continuous search spaces due to defining the weights in

straight lines, which potentially may pass through infeasible regions, leading to an inefficient

search.
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However, the performance of MLSGA-hybrids is often lower than implemented algorithms

on continuous and unconstrained problems, especially for the MOEA/D and MTS based

variants. It is due to the fact that these problems require a high convergence of the search

rather than diversity. Therefore, implementation of additional diversity-preservation mech-

anisms is disadvantageous and leads to lowered convergence, as there is no free lunch after

all. Furthermore, the low performance of MOEA/D and MTS based hybrids is due to incom-

patibility of the utilised mechanisms, as discussed before. In the MTS, due to high demand

for the fitness evaluation of the individual-level, the collective elimination do not occur a

sufficiently number of times in order to provide any benefits; whereas utilisation of multiple

sub-populations leads to exploration of the same regions repeatedly, leading to an inefficient

search. In the MOEA/D based variant, the weigh-vectors used for the individual-level search

are forcing exploitation of different regions than the collective-level mechanisms. Due to that,

the individuals are not malleable to the evolutionary pressure propagated by collectives, and

thus potentially “good” solutions are often eliminated. This indicates that MLSGA is moving

from the “convergence-first” approach to the “diversity-first, convergence-second”, as even

the more converged individuals are eliminated unless they follow the additional evolutionary

pressure developed by the collective. This is further supported by a high performance on the

diversity-demanding problems and a low effectiveness on the others.

Importantly, as the MLSGA-hybrid is utilising individual-level mechanisms taken from an-

other algorithms, it is still highly bounded by the effectiveness of implemented methodology.

As shown here by low performance of the MLSGA-hybrids on cases where the implemented

algorithm is also achieving poor results. Therefore, the collective-level mechanism may pro-

vide a better global diversity, but if the individuals are not able to properly converge on the

Pareto optimal front, or to maintain in-group diversity, the overall performance will remain

low. According to that, it is concluded that, despite not showing a sensitivity to the hyper-

parameters, the suggested approach do not provide any benefits regarding the generality of

methodology, and thus its usefulness will remain low on the cases with limited knowledge

about the problem's characteristics.





Chapter 5 Co-evolutionary

approach for the MLSGA

In this chapter it is investigated if the generality of the MLSGA can be improved, by im-

plementation of multiple distinct search strategies on the individual-level of the MLSGA,

in parallel using different sub-populations, in a comparable manner to the co-evolutionary

approaches. Therefore, improving its capability as the general-solver type algorithm. This

will potentially lead to an increase in the overall robustness of the methodology also, as there

is a lower chance that multiple search strategies will be ineffective on a particular problem.

Simultaneously, MLSGA's group-level mechanisms will maintain the information exchange,

regarding potential candidate solutions, between groups and will lead to a better overall

diversity, as shown in the previous chapters.

5.1 Methodology

5.1.1 cMLSGA

The co-evolutionary based variant of MLSGA, denoted as cMLSGA, works as detailed below,

with the changes regarding to the MLSGA-hybrid given in red text colour. Furthermore,

simplified flowchart of the proposed methodology is presented for the illustrative purposes

in Fig. 5.1, where darker circles indicate fitter individuals whereas darker yellow rectangles

indicate a higher fitness of the collective. Only two collectives are shown for the illustrative

purposes of using two distinct evolutionary algorithms. In the cMLSGA multiple collectives

of each type are used.

Inputs:

� Multi-objective problem;

� Np: Population size;

� Nc: Number of collectives;

� Fc: Frequency of collective elimination;

91
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� Fitness function definitions for each level;

� Evolutionary algorithm 1 (EA1) e.g. MTS;

� Evolutionary algorithm 2 (EA2) e.g. MOEA/D;

� Individual-level specific parameters for EA1 and EA2;

� Stopping criterion;

Output: External non-dominated Population (EP)

Step 1) Initialisation:

Step 1.1) Set EP = NULL.

Step 1.2) Randomly generate the initial population P of Np individuals {xj , . . . , xNp}.

Step 2) Classification:

Step 2.1) Classify the individuals from the initial population P into Nc collectives,

{Ci, . . . , CNc}, so that each contains a separate population {Pi, . . . , PNc}. Classi-

fication is based on the decision variable space.

Step 2.2) Assign the EA1 to first Nc/2 collectives and EA2 to the rest.

Step 2.3) Assign the fitness definitions from MLS types {MLS1, MLS2, MLS2R} to

each collective in the following orderMLS1→MLS2→MLS2R→MLS1 . . . etc..

Step 2.4) Perform the individual-level assignment specific to the implemented algo-

rithm, separately for each collective, according to assigned evolutionary algorithm.

Step 3) Individual-level operations:

For i = 1, . . . , Nc do

Step 3.1) Individual-level GA's operations: Perform the reproduction, improve-

ment and update steps over the sub-population Pi according to assigned strategy

{either EA1 or EA2}
Step 3.2) Update the external population:

For j = 1, . . . , |Pi| do

Remove from the EP all solutions dominated by xij (the individual j, from popu-

lation i). Add the individual xij to the EP if no solutions from EP dominate the

xij .

Step 4) Collective-level operations:

Step 4.1) Calculate collective's fitness:

For i = 1, . . . , Nc do

Calculate fitness of the collective Ci as an average fitness of the population Pi

based on the collective-level fitness definition.
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Step 4.2) Collective elimination:

Find the collective Ci with the worst fitness value, and store the index of that

collective, z.

Store the size of the eliminated collective |Pz| as the variable s.

Erase the sub-population Pz from the eliminated collective Cz.

Step 4.3) Collective reproduction:

For i = 1, . . . , Nc do

if (i ! = z)

Copy the best s
(Nc−1) individuals, according to the collective-level fitness definition,

from population Pi to Pz.

then

Copy all individual-level parameters, specific to the assigned evolutionary algo-

rithm, from the eliminated collective Cz to new collective, e.g. In the case of

MOEA/D strategy: assign the weight vector λz randomly to population Pz.

Step 5) Termination: If the stopping criteria are met, stop and give EP as an output.

Otherwise, return to Step 3).

It can be seen that general methodology of the cMLSGA is not significantly different to the

MLSGA or MLSGA-hybrid. Only practical differences are in the individual-level reproduc-

tion mechanisms, where different strategies are applied to each distinct collective in parallel,

Steps 2.2-2.4. In this case, first half of the collectives utilise the selected “Evolutionary Al-

gorithm 1” (EA1) subroutine, and the others “Evolutionary Algorithm 2” (EA2). The type

of evolution is assigned randomly to collectives during the classification step and does not

change over the run. At any given time, half of the collectives are using EA1 and the other

half use EA2. Therefore, it is recommended that the number of collectives should be even,

in order to maintain even spread of search and to avoid the bias towards a single strategy.

The individuals in each sub-population evolve separately using the assigned strategy. After

a predefined number of generations, the collective with the worst fitness value is eliminated,

with all of the individuals inside of it, and is repopulated by copying the best individuals

from among rest of the collectives. After the collective reproduction step offspring collec-

tive inherits the individual reproduction methodology from the eliminated collective. It is

demonstrated further in Fig. 5.1, where the left collective retains MTS strategy, when the

right ones continues to use MOEA/D. Therefore, cMLSGA utilises the multi-level approach

to generate a distinct competitive co-evolutionary approach, but this occurs via elimination

and repopulation of one group by other sub-populations, rather than migration of the indi-

viduals [103]; competition in each group [99]; or recreation of all groups [36]. In addition,

unlike in other co-evolutionary GAs, the sub-populations are not allowed to exchange in-

formation every generation but are doing so only during the collective reproduction steps.

This will potentially lead to a high diversity of the search and a lack of bias towards spe-

cific problem types. Furthermore, the same rules as in MLSGA-hybrid are applied regarding
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Figure 5.1: Simplified flowchart of the cMLSGA methodology.

the hard-coded individual-assigned parameters such as weight vectors in MOEA/D. In this

chapter, a variety of reproduction mechanisms are replicated from the original papers and

combined within the MLSGA methodology. A total of eight algorithms taken from the

current state-of-the-art are utilised: U-NSGA-III [34], MOEA/D [35], MOEA/D-MSF and

MOEA/D-PSF [83], MTS [93], IBEA [121], BCE [103] and HEIA [36]. These GAs are the

same as in Chapter 4 and are selected due to the same reasons. Furthermore, all combina-

tions of utilised mechanisms are evaluated. However, the combinations between U-NSGA-III,

MOEA/D-TCH, MOEA/D-PSF and MOEA/D-MSF have been discarded. This is because all

of the MOEA/D variants are based on the same framework while U-NSGA-III and MOEA/D

are both based on the constant front development. The pre-benchmarks demonstrate that

utilisation of similar mechanisms result in no performance gains within the co-evolutionary

approach, The results for those variants are not reported in this work. Therefore, 22 variants

in total are evaluated, but only the most significant findings are discussed in this thesis.
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5.1.2 Hyper-parameters setting and benchmarking

Similarly, to the MLSGA-hybrid approach, the individual-level reproduction mechanisms are

directly copied from the original algorithms and the same setting of corresponding hyper-

parameters as in previous tests is used. Exact values of those parameters can be found in

Appendix E.

The MLSGA-specific hyper-parameters remains the same as in previous benchmarks, as de-

tailed in Table 5.1. Furthermore, the testing follows the same number of runs, total fitness

evaluations and utilised performance indicators or statistical analysis, in order to maintain

fair comparison.

Table 5.1: Hyper-parameters utilised in the cMLSGA for benchmarking.

Parameter Value

Population Size 1000

Crossover rate 1

Mutation rate 0.08

Number of collectives 8

Collective reproduction delay 10

5.1.3 Computational complexity and constraint handling

Computational cost of the cMLSGA remains the same as for the MLSGA-hybrid. However,

in this case two types of individual reproduction are introduced, which are sharing the same

complexity as the original algorithms, denoted here as C1 and C2. Therefore, the overall

computational complexity of one generation is bounded by C1, C2 or O(mN2) whichever is

higher.

The constraint handling strategy remains unchanged.

5.1.4 Extending the test set

In order to rigorously evaluate the generality of developed methodology, the utilised test set

has to be as diverse, in regard to the problems’ characteristic, as possible. According to that,

the test set is further extended with nine two-objectives WFG functions [141]. Resulting

in 60 two-objective problems in total, with 28 constrained and 32 unconstrained cases. All

benchmarking problems are divided here into twelve categories, according to the dominative

characteristic and the presence of constraints, as summarised in Table 5.2.



96 Chapter 5 Co-evolutionary approach for the MLSGA

Table 5.2: Summary of the utilised test set for benchmarking of the cMLSGA, with sepa-
ration into distinct categories according to the main characteristic of a given problem.

Category Problem d Additional properties

Unconstrained

I. Simple

ZDT1 30 Convex

ZDT2 30 Concave

ZDT3 30 Discontinuous

ZDT4 10 Multimodal, Convex

ZDT6 10 Multimodal, Biased, Concave

II. Convex

UF1 30 Complex PS

UF2 30 Complex PS

UF3 30 Complex PS

III. Concave

UF4 30 Complex PS

WFG4 22 Multimodal

WFG5 22 Deceptive

WFG6 22 Non-separable

WFG7 22 Biased

WFG8 22 Biased, Non-separable

WFG9 22 Biased, Non-separable, Deceptive

IV. Linear/Mixed

UF7 30 Complex PS, Linear

WFG1 22 Biased, Mixed

WFG3 22 Non-separable, Degenerated, Linear

V. Discontinuous

UF5 30 Linear, Distinct points, Complex PS

UF6 30 Complex PS

WFG2 22 Convex, Non-Separable

MOP4 10 Discontinuous

VI. Imbalanced

MOP1 10 Convex

MOP2 10 Convex

MOP3 10 Concave

MOP5 10 Convex

IMB1 10 Convex

IMB2 10 Linear

IMB3 10 Concave

IMB7 10 Convex, Non-separable

IMB8 10 Linear, Non-separable

IMB9 10 Concave, Non-separable

Constrained

VII. Discontinuous

CF1 10 Linear, Complex PS, Distinct points

CF2 10 Convex, Complex PS

CF3 10 Concave, Complex PS

VIII. Continuous

CF4 10 Linear, Complex PS

CF5 10 Linear, Complex PS

CF6 10 Mixed, Complex PS

CF7 10 Mixed, Complex PS
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Table 5.2: Summary of the utilised test set for benchmarking of the cMLSGA (continued)

Category Problem d Additional properties

IX. Imbalanced

IMB11 10 Convex

IMB12 10 Linear

IMB13 10 Concave

X. Diversity-hard

DAS-CMOP1(5) 30 Concave, Discontinuous

DAS-CMOP2(5) 30 Mixed, Continuous

DAS-CMOP3(5) 30 Linear, Discontinuous, Multimodal

DAS-CMOP4(5) 30 Concave, Discontinuous

DAS-CMOP5(5) 30 Mixed, Discontinuous

DAS-CMOP6(5) 30 Distinct points, Degenerated

XI. Feasibility-

hard

DAS-CMOP1(6) 30 Concave, Discontinuous

DAS-CMOP2(6) 30 Mixed, Continuous

DAS-CMOP3(6) 30 Linear, Discontinuous, Multimodal

DAS-CMOP4(6) 30 Concave, Discontinuous

DAS-CMOP5(6)) 30 Mixed, Discontinuous

DAS-CMOP6(6) 30 Distinct points, Degenerated

XII. Convergence-

hard

DAS-CMOP1(7) 30 Concave, Discontinuous

DAS-CMOP2(7) 30 Mixed, Continuous

DAS-CMOP3(7)) 30 Linear, Discontinuous, Multimodal

DAS-CMOP4(7) 30 Concave, Discontinuous

DAS-CMOP5(7) 30 Mixed, Discontinuous

DAS-CMOP6(7) 30 Distinct points, Degenerated

d denotes the number of decision variables.

5.2 Comparison to the hybrid variant and implemented algo-

rithms

In order to verify if the cMLSGA is able to successfully combine the advantages of both

implemented algorithms, leading to a more general approach, as well as the high diver-

sity shown by previous versions, the performance of cMLSGA variants is compared to the

original algorithms. Out of 28 developed variants, 3 cases are selected as representatives

due to following reasons: cMLSGA IBEA BCE as the case where the highest improvement

in average over the implemented algorithms is shown; cMLSGA MOEA/D-MSF HEIA , as the

combination of the best specialist-solver, MOEA/D-MSF, with the best currently existing

general methodology, HEIA, resulting in the highest generality from among all tested vari-

ants; and cMLSGA MTS MOEA/D , which is the combination of two convergence-based algo-

rithms, specialist-solver, MOEA/D, with a local search based method, MTS, as the model

case for showing the risk of incompatibility between implemented mechanisms. The results

according to both performance indicators are presented in Table 5.3 for cMLSGA IBEA BCE

, in Table 5.4 for cMLSGA MOEA/D-MSF HEIA and in Table 5.5 for cMLSGA MTS MOEA/D

. The best variant in each group is in bold and results of the cMLSGA are highlighted: in
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green if cMLSGA is better than both of the implemented algorithms; in yellow if cMLSGA

is better than one of them; and in red if it is worse than both of the methodologies.

Table 5.3: The average IGD and HV scores of the cMLSGA IBEA BCE compared to the
implemented algorithms

IGD HV
Cat. Case

cMLSGA IBEA BCE cMLSGA IBEA BCE

ZDT1 7.45E-04 1.48E-03 3.27E-02 0.91638 0.91570 0.89683

ZDT2 7.35E-04 2.45E-03 1.09E-01 0.83305 0.83265 0.75229

ZDT3 8.85E-04 6.84E-03 1.58E-02 1.18970 1.18880 1.17395

ZDT4 1.60E-03 6.26E-01 2.35E+0 0.91572 0.60542 0.00000

I

ZDT6 2.15E-03 3.05E-03 2.49E-03 0.75610 0.75639 0.75620

UF1 2.14E-02 9.70E-02 7.26E-02 0.90235 0.85355 0.85855

UF2 2.42E-02 4.25E-02 3.91E-02 0.89605 0.87601 0.89058II

UF3 1.01E-01 2.25E-01 1.48E-01 0.85258 0.70082 0.85755

UF4 4.94E-02 5.40E-02 5.91E-02 0.80240 0.79986 0.79210

WFG4 3.00E-02 2.45E-02 8.50E-02 0.56737 0.57061 0.54136

WFG5 6.52E-02 6.84E-02 6.76E-02 0.54747 0.54321 0.54446

WFG6 5.34E-02 6.15E-02 4.80E-02 0.55725 0.55247 0.55889

WFG7 1.79E-02 1.46E-02 2.00E-02 0.57361 0.57441 0.57188

WFG8 1.11E-01 1.18E-01 1.04E-01 0.53088 0.53072 0.53196

III

WFG9 3.17E-02 8.56E-02 6.75E-02 0.55521 0.53294 0.54001

UF7 1.37E-02 2.75E-01 3.18E-02 0.86194 0.67920 0.84339

WFG1 1.03E+0 5.78E-01 1.25E+0 0.41956 0.57345 0.36617IV

WFG3 2.70E-02 1.80E-02 3.63E-02 0.72093 0.72393 0.71137

UF5 3.17E-01 3.75E-01 1.47E+0 0.59333 0.57950 0.07095

UF6 1.12E-01 2.18E-01 5.09E-01 0.71427 0.61143 0.49510

WFG2 1.16E-02 2.07E-02 4.61E-02 0.75807 0.76118 0.74217
V

MOP4 3.03E-01 2.99E-01 2.62E-01 0.76362 0.74233 0.79537

MOP1 1.83E-01 1.86E-01 1.84E-01 0.84482 0.84260 0.84404

MOP2 3.71E-01 3.55E-01 3.33E-01 0.73532 0.74724 0.75213

MOP3 4.09E-01 4.08E-01 4.84E-01 0.74999 0.74919 0.69886

MOP5 2.74E-01 2.36E-01 2.96E-01 0.78560 0.80898 0.73506

IMB1 2.11E-01 3.37E-01 2.23E-01 0.84770 0.76956 0.84315

IMB2 1.84E-01 2.24E-01 1.97E-01 0.73357 0.68093 0.71625

IMB3 2.54E-01 2.97E-01 2.66E-01 0.66016 0.53266 0.62487

IMB7 4.50E-03 3.15E-03 2.31E-02 0.91487 0.91529 0.90752

IMB8 4.33E-03 3.45E-03 4.39E-02 0.87317 0.87349 0.85675

VI

IMB9 3.81E-03 5.53E-03 1.41E-01 0.80203 0.80238 0.73702

CF1 4.58E-03 1.52E-01 1.20E-02 0.86708 0.73259 0.86423

CF2 7.52E-03 6.08E-02 2.01E-02 0.89599 0.83738 0.89007VII

CF3 1.98E-01 6.02E-01 5.63E-01 0.68204 0.45756 0.40027

CF4 4.38E-02 3.09E-01 9.65E-02 0.79853 0.62764 0.77658

CF5 1.06E-01 4.71E-01 5.59E-01 0.72568 0.50870 0.43336

CF6 5.30E-02 1.41E-01 9.38E-02 0.86700 0.81273 0.83949
VIII

CF7 1.55E-01 2.55E+0 4.43E-01 0.78466 0.37303 0.57368

IMB11 9.59E-02 1.69E-01 9.83E-02 0.84317 0.80606 0.84090

IMB12 6.01E-02 2.52E-01 5.88E-02 0.76028 0.65527 0.76208IX

IMB13 6.62E-02 2.96E-01 6.48E-02 0.67945 0.55772 0.68069

DAS CMOP1(5) 1.04E-01 4.17E-01 4.03E-01 0.72380 0.45716 0.43082

DAS CMOP2(5) 5.42E-02 3.46E-01 3.54E-01 0.87928 0.63960 0.62808

DAS CMOP3(5) 1.67E-01 4.84E-01 5.36E-01 0.75555 0.61519 0.48258

DAS CMOP4(5) 8.17E-01 9.29E-01 1.88E+01 0.30318 0.30629 0.00000

DAS CMOP5(5) 1.13E+00 9.02E-01 2.05E+01 0.24288 0.38613 0.00000

X

DAS CMOP6(5) 1.09E+00 1.19E+00 2.05E+01 0.19313 0.16450 0.00000
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Table 5.3: The average IGD and HV scores of the cMLSGA IBEA BCE compared to the
implemented algorithms (continued)

IGD HV
Cat. Case

cMLSGA IBEA BCE cMLSGA IBEA BCE

DAS CMOP1(6) 6.35E-01 7.96E-01 7.49E-01 0.88482 0.55666 0.52396

DAS CMOP2(6) 6.50E-01 8.33E-01 8.13E-01 0.93940 0.71409 0.69836

DAS CMOP3(6) 6.33E-01 7.00E-01 7.00E-01 0.89873 0.70911 0.73329

DAS CMOP4(6) 1.33E+13 5.33E+13 1.00E+14 0.35899 0.29262 0.00000

DAS CMOP5(6) 4.00E+13 7.33E+13 1.00E+14 0.34421 0.21398 0.00000

XI

DAS CMOP6(6) 2.67E+13 6.67E+13 1.00E+14 0.30961 0.19123 0.00000

DAS CMOP1(7) 2.33E-01 6.13E-01 6.07E-01 0.71547 0.30351 0.28520

DAS CMOP2(7) 3.48E-02 3.56E-01 8.08E-01 0.90529 0.65082 0.30789

DAS CMOP3(7) 1.90E-01 2.93E-01 7.05E-01 0.70016 0.64477 0.36318

DAS CMOP4(7) 1.17E+00 1.19E+00 2.00E+01 0.12651 0.13428 0.00000

DAS CMOP5(7) 1.31E+00 1.26E+00 1.93E+01 0.18589 0.21248 0.00000

XII

DAS CMOP6(7) 1.24E+00 1.60E+00 1.82E+01 0.13717 0.08671 0.00000

The best variant in each group is in bold. Results of the cMLSGA are highlighted: in green, if

cMLSGA is better than both of the implemented algorithms; in yellow, if cMLSGA is better than

one of them; and in red, if it is worse than both of the algorithms.

Table 5.4: The average IGD and HV scores of cMLSGA MOEA/D-MSF HEIA compared
to the implemented algorithms

IGD HV

Cat. Case
cMLSGA

MOEA/D-

MSF
HEIA cMLSGA

MOEA/D-

MSF
HEIA

ZDT1 4.81E-04 7.26E-04 6.74E-04 0.91648 0.91621 0.91643

ZDT2 4.34E-04 7.13E-04 6.76E-04 0.83314 0.83296 0.83301

ZDT3 5.28E-04 1.84E-03 8.05E-04 1.18979 1.18906 1.18976

ZDT4 4.65E-04 7.28E-04 6.57E-04 0.91649 0.91612 0.91644

I

ZDT6 4.33E-04 7.99E-04 5.28E-04 0.75711 0.75696 0.75710

UF1 1.89E-02 4.32E-03 1.62E-03 0.90785 0.91301 0.91597

UF2 1.40E-02 1.05E-02 3.15E-03 0.90855 0.90987 0.91544II

UF3 7.23E-02 2.66E-02 2.37E-02 0.88339 0.89955 0.90493

UF4 4.17E-02 6.63E-02 3.52E-02 0.80741 0.78548 0.81081

WFG4 8.52E-03 8.62E-02 3.21E-03 0.57795 0.55025 0.57981

WFG5 6.34E-02 6.57E-02 6.35E-02 0.55025 0.54748 0.54985

WFG6 3.01E-02 1.02E-01 3.92E-02 0.56786 0.53709 0.56398

WFG7 3.98E-03 1.47E-02 2.50E-03 0.57970 0.57482 0.58046

WFG8 8.02E-02 8.99E-02 7.06E-02 0.54610 0.53890 0.54762

III

WFG9 1.77E-02 1.05E-01 7.83E-02 0.56122 0.52576 0.53674

UF7 1.41E-02 8.55E-03 1.81E-03 0.86814 0.86754 0.87403

WFG1 7.27E-01 1.14E+0 3.16E-01 0.52646 0.38100 0.66579IV

WFG3 7.56E-03 1.27E-02 2.99E-03 0.73018 0.72817 0.73210

UF5 2.93E-01 4.61E-01 1.90E-01 0.63600 0.54374 0.70573

UF6 8.56E-02 1.67E-01 1.32E-01 0.75881 0.71955 0.70494

WFG2 4.45E-03 1.52E-02 1.80E-03 0.76362 0.75897 0.76452
V

MOP4 2.26E-01 2.32E-02 2.81E-01 0.80538 0.87123 0.78028
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Table 5.4: The average IGD and HV scores of cMLSGA MOEA/D-MSF HEIA compared
to the implemented algorithms (continued)

IGD HV

Cat. Case
cMLSGA

MOEA/D-

MSF
HEIA cMLSGA

MOEA/D-

MSF
HEIA

MOP1 1.79E-01 1.72E-02 1.82E-01 0.84711 0.91069 0.84523

MOP2 2.40E-01 1.42E-02 3.41E-01 0.77050 0.82866 0.75270

MOP3 4.27E-01 2.01E-02 4.72E-01 0.73437 0.79751 0.70537

MOP5 2.04E-01 1.48E-02 2.55E-01 0.83087 0.91067 0.78768

IMB1 2.21E-02 6.22E-03 9.67E-03 0.90905 0.91453 0.91336

IMB2 1.19E-01 3.86E-02 1.35E-01 0.78364 0.85944 0.76757

IMB3 2.39E-01 1.08E-02 2.84E-01 0.65354 0.79939 0.56865

IMB7 9.72E-04 1.52E-03 7.26E-04 0.91625 0.91589 0.91637

IMB8 9.01E-04 9.42E-04 7.12E-04 0.87458 0.87440 0.87468

VI

IMB9 5.30E-04 2.67E-03 7.20E-04 0.80332 0.80241 0.80316

CF1 1.62E-03 1.73E-01 3.51E-04 0.86815 0.77201 0.86862

CF2 4.13E-04 1.24E-03 7.98E-04 0.90261 0.89100 0.88885VII

CF3 1.11E-01 2.20E-01 1.72E-01 0.70583 0.66571 0.68887

CF4 1.49E-02 1.41E-01 8.23E-03 0.82634 0.71796 0.82509

CF5 7.33E-02 2.12E-01 9.34E-02 0.75611 0.64077 0.72727

CF6 3.92E-02 1.38E-01 3.61E-02 0.87193 0.83261 0.86652
VIII

CF7 8.97E-02 3.25E+0 1.25E-01 0.81267 0.48507 0.77747

IMB11 7.84E-02 4.79E-02 9.31E-02 0.85975 0.90106 0.84804

IMB12 1.81E-02 9.20E-04 1.33E-03 0.86214 0.87456 0.87433IX

IMB13 1.02E-02 2.99E-02 1.23E-02 0.84119 0.82414 0.80209

DAS CMOP1(5) 3.52E-02 3.29E-02 3.40E-01 0.79153 0.79417 0.48040

DAS CMOP2(5) 3.66E-02 3.30E-02 3.31E-01 0.89464 0.89653 0.65248

DAS CMOP3(5) 9.03E-02 6.12E-02 2.58E-01 0.81793 0.83660 0.72256

DAS CMOP4(5) 7.17E-01 4.62E+00 1.16E+00 0.35384 0.00000 0.19335

DAS CMOP5(5) 1.01E+00 4.88E+00 9.79E-01 0.32504 0.00000 0.35876

X

DAS CMOP6(5) 7.59E-01 4.79E+00 1.25E+00 0.39999 0.00000 0.21723

DAS CMOP1(6) 6.35E-01 6.39E-01 6.39E-01 0.88485 0.88486 0.88545

DAS CMOP2(6) 6.51E-01 6.56E-01 6.54E-01 0.93947 0.93955 0.94001

DAS CMOP3(6) 6.13E-01 6.14E-01 7.06E-01 0.92374 0.92365 0.83408

DAS CMOP4(6) 4.00E+13 1.00E+14 4.67E+13 0.32820 0.00000 0.29532

DAS CMOP5(6) 2.00E+13 1.00E+14 3.33E+13 0.53235 0.00000 0.41944

XI

DAS CMOP6(6) 2.67E+13 1.00E+14 7.33E+13 0.35028 0.00000 0.17495

DAS CMOP1(7) 2.38E-01 1.46E-01 5.62E-01 0.76396 0.78035 0.34326

DAS CMOP2(7) 3.54E-02 3.28E-02 5.94E-01 0.90513 0.90588 0.47925

DAS CMOP3(7) 1.90E-01 2.34E-02 7.90E-01 0.71247 0.88098 0.33638

DAS CMOP4(7) 1.87E+00 4.52E+00 1.93E+00 0.00266 0.00000 0.00267

DAS CMOP5(7) 2.13E+00 4.47E+00 2.13E+00 0.00280 0.00000 0.00286

XII

DAS CMOP6(7) 1.99E+00 4.58E+00 2.07E+00 0.01013 0.00000 0.00262

The best variant in each group is in bold. Results of the cMLSGA are highlighted: in green, if

cMLSGA is better than both of the implemented algorithms; in yellow, if cMLSGA is better than

one of them; and in red, if it is worse than both of the algorithms.
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Table 5.5: The average IGD and HV scores of cMLSGA MTS MOEA/D compared to the
implemented algorithms

IGD HV
Cat. Case

cMLSGA MTS MOEA/D cMLSGA MTS MOEA/D

ZDT1 1.49E-02 1.50E-02 6.95E-04 0.90642 0.90648 0.91629

ZDT2 2.70E-02 2.66E-02 6.39E-04 0.80511 0.80495 0.83302

ZDT3 8.45E-03 8.63E-03 1.72E-03 1.17946 1.17933 1.18955

ZDT4 1.74E-02 6.45E-02 6.43E-04 0.90160 0.86694 0.91640

I

ZDT6 2.02E-02 5.11E-02 5.75E-04 0.74401 0.71960 0.75700

UF1 1.76E-03 1.83E-03 2.16E-03 0.91457 0.91454 0.91420

UF2 1.60E-03 1.59E-03 8.27E-03 0.91472 0.91493 0.91020II

UF3 4.17E-02 4.29E-02 2.40E-02 0.85481 0.85081 0.89004

UF4 2.93E-02 2.93E-02 6.43E-02 0.80657 0.80700 0.78802

WFG4 2.11E-02 1.99E-02 2.54E-02 0.56038 0.56016 0.56962

WFG5 7.18E-02 7.09E-02 6.75E-02 0.54069 0.54193 0.54441

WFG6 4.01E-02 4.15E-02 1.04E-01 0.55727 0.55495 0.53650

WFG7 2.22E-02 2.49E-02 3.14E-03 0.56348 0.56375 0.57989

WFG8 1.02E-01 1.03E-01 6.90E-02 0.52721 0.52668 0.54799

III

WFG9 6.86E-02 7.31E-02 1.70E-02 0.53540 0.53391 0.56120

UF7 3.05E-02 3.21E-02 3.22E-03 0.84069 0.83744 0.87110

WFG1 1.06E+0 1.08E+0 1.07E+0 0.33444 0.33176 0.41342IV

WFG3 1.39E-01 1.39E-01 4.02E-03 0.66027 0.66103 0.73139

UF5 1.13E-01 1.14E-01 3.90E-01 0.78097 0.77529 0.58409

UF6 6.42E-02 6.33E-02 1.66E-01 0.75534 0.75062 0.72652

WFG2 1.28E-01 1.37E-01 5.86E-03 0.68146 0.67696 0.76335
V

MOP4 7.78E-02 6.61E-02 2.64E-01 0.86325 0.86189 0.79243

MOP1 1.34E-01 1.33E-01 1.80E-01 0.86360 0.86414 0.84632

MOP2 1.98E-01 1.77E-01 3.41E-01 0.77042 0.77422 0.75083

MOP3 1.57E-01 1.42E-01 4.86E-01 0.73701 0.74107 0.69644

MOP5 9.03E-02 8.61E-02 2.56E-01 0.84970 0.85370 0.78177

IMB1 3.77E-02 3.88E-02 9.51E-02 0.89906 0.89865 0.88632

IMB2 5.06E-02 5.54E-02 1.16E-01 0.84835 0.84624 0.83062

IMB3 9.00E-02 8.17E-02 2.23E-01 0.77281 0.77416 0.75966

IMB7 9.15E-03 1.52E-02 7.93E-04 0.91268 0.91014 0.91629

IMB8 1.31E-02 2.16E-02 6.48E-04 0.86912 0.86549 0.87469

VI

IMB9 1.96E-02 2.83E-02 7.70E-04 0.79528 0.79129 0.80334

CF1 2.00E-02 2.21E-02 2.14E-01 0.85298 0.85014 0.69322

CF2 1.18E-03 1.05E-03 9.46E-04 0.90085 0.90133 0.89050VII

CF3 1.07E-01 1.17E-01 1.76E-01 0.72171 0.70842 0.69100

CF4 6.10E-03 5.70E-03 1.50E-01 0.82673 0.82711 0.71699

CF5 2.29E-02 2.34E-02 2.19E-01 0.80637 0.80805 0.66101

CF6 5.47E-03 5.45E-03 1.33E-01 0.89715 0.89969 0.83604
VIII

CF7 2.10E-02 2.46E-02 1.28E+0 0.87248 0.86858 0.62259

IMB11 1.06E-02 1.04E-01 9.99E-04 0.83442 0.83154 0.91626

IMB12 7.52E-02 7.89E-02 6.28E-04 0.74653 0.74401 0.87473IX

IMB13 9.40E-02 9.71E-02 9.54E-04 0.66510 0.65753 0.83291

DAS CMOP1(5) 8.21E-02 7.82E-02 3.15E-02 0.68022 0.69055 0.79310

DAS CMOP2(5) 7.92E-02 8.12E-02 3.22E-02 0.82154 0.82072 0.89663

DAS CMOP3(5) 1.21E-01 1.18E-01 1.30E-01 0.79135 0.79662 0.77847

DAS CMOP4(5) 7.48E-01 7.61E-01 4.50E+00 0.30650 0.30629 0.11013

DAS CMOP5(5) 6.77E-01 7.44E-01 5.53E+00 0.42840 0.40439 0.00062

X

DAS CMOP6(5) 7.43E-01 7.54E-01 5.57E+00 0.36687 0.37311 0.00018
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Table 5.5: The average IGD and HV scores of cMLSGA MTS MOEA/D compared to the
implemented algorithms (continued)

IGD HV
Cat. Case

cMLSGA MTS MOEA/D cMLSGA MTS MOEA/D

DAS CMOP1(6) 5.99E-01 6.00E-01 6.40E-01 0.79520 0.79697 0.88555

DAS CMOP2(6) 6.63E-01 6.67E-01 6.56E-01 0.87287 0.87585 0.94014

DAS CMOP3(6) 6.10E-01 6.15E-01 6.14E-01 0.84304 0.84654 0.92450

DAS CMOP4(6) 1.00E-01 1.17E-01 9.33E+13 0.46347 0.48105 0.04359

DAS CMOP5(6) 1.16E-01 1.10E-01 8.67E+13 0.53289 0.54365 0.12385

XI

DAS CMOP6(6) 1.54E-01 1.53E-01 1.00E+14 0.49608 0.48583 0.00000

DAS CMOP1(7) 5.41E-01 5.37E-01 1.43E-01 0.37856 0.38254 0.78147

DAS CMOP2(7) 6.94E-01 6.53E-01 3.22E-02 0.44382 0.46265 0.90650

DAS CMOP3(7) 6.65E-01 5.90E-01 2.22E-02 0.42600 0.46383 0.88203

DAS CMOP4(7) 1.64E+00 1.47E+00 6.65E+00 0.03964 0.06115 0.00279

DAS CMOP5(7) 1.45E+00 1.45E+00 4.95E+00 0.12796 0.12944 0.15718

XII

DAS CMOP6(7) 1.40E+00 1.28E+00 6.94E+00 0.10746 0.14639 0.00000

The best variant in each group is in bold. Results of the cMLSGA are highlighted: in green, if

cMLSGA is better than both of the implemented algorithms; in yellow, if cMLSGA is better than

one of them; and in red, if it is worse than both of the algorithms.

Comparing the presented cMLSGA variants against the original algorithms, it can be seen

that the highest improvement is exhibited by the cMLSGAIBEA BCE, Table 5.3. In this

case the performance is improved for 45 out of 60 problems according to the IGD indica-

tor, and on 39 cases for HV, whereas it is only worse on 2 cases for both indicators. For

the most general variant, cMLSGA MOEA/D-MSF HEIA, Table 5.4, the better performance is

achieved on 25 and 24 cases for the IGD and HV respectively, and it is worse than both

methodologies on 6 and 7 cases correspondingly. For the last variant, cMLSGAMTS MOEA/D

, Table 5.5, better results are obtained only on 18 and 14 cases according to the IGD and

HV respectively, but worse on 8 and 12 cases. Therefore, it can be seen that the cMLSGA

is able to successfully combine distinct search strategies of two methodologies, leading to

a better final performance than implementing algorithms, or at least not worse than them

on average. However, the final performance is strongly dependent on the types of imple-

mented algorithms. In the case where two methodologies with strong diversity mechanisms

are implemented, such as indicator-based IBEA and dominance-based BCE, then cMLSGA

is able to successfully combine both methodologies leading to high gains due to better con-

vergence and diversity. Reduced performance of other two presented variants, which combine

strong convergence-based mechanisms, may be caused by the inability of MLSGA to prop-

erly maintain their search pattern during the collective elimination and reproduction steps,

as discussed in the previous chapter. In the case of MTS and MOEA/D based variants, the

performance of combined algorithms strongly resembles the results of MTS, especially for the

IGD indicator. This is due to the fact that the local searches utilised within MTS “dominate”

the search. The local searches require a substantial number of iterations per generation, and

thus not much computational effort is left for the secondary mechanisms, such as MLSGA

and MOEA/D. According to that, if a method is combined with a significantly stronger

convergence-first methodology, such as MTS, the weaker strategy will have negligible impact
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on the search. Therefore, the potential gains are due to dispersed search, which leads to

more uniform results, rather than utilisation of multiple individual-reproduction strategies.

Finally, in the case where the specialist convergence-based methodology is combined with a

general diversity-based one, the cMLSGA is able to maintain distinct searches for both of

them and to maintain their advantages. This indicates, that the cMLSGA provides better

results if two methodologies with contrasting mechanisms are combined, rather than when

one method is outperforming the other. Therefore, the success in combining methodologies is

subject to how similar the methods are. Unsurprisingly, it is very unlikely that the resulting

strategy will outperform specialist-solver on its preferred cases or improve the effectiveness

on problems where at least one of the implemented algorithms achieve a near-perfect results,

e.g. IGD lower than 1 ∗ 10−2 on UF1-3 cases for MOEA/D-MSF and HEIA. This indicate

that these mechanisms are well adjusted to those problems and any changes within them will

reduce their effectiveness. After all, making the search less focused, by implementation of

additional mechanisms that are created to enhance the overall diversity, will lead to worse

overall performance, especially if the algorithm is already able to obtain excellent results.

For those cases, even more specialist mechanisms are required for higher gains rather than a

general search methodology.

Examining the results for distinct categories of the problems it can be seen that the cMLSGA

exhibits high performance on functions requiring a high diversity. It operates significantly

better on cases with discontinuous search spaces, categories V, VII and VIII, rather than

continuous problems for both sets of objectives; and on diversity- and feasibility-hard func-

tions, categories X and XI. On these problems the cMLSGA IBEA BCE is better on 21 and

19 out of 23 cases for IGD and HV indicators respectively and worse only in 1 for IGD only;

for cMLSGA MOEA/D-MSF HEIA it is better on 13 cases for both indicators and worse in 2

cases only for the HV indicator. Similar principle can be observed on imbalanced problems

categories VI and IX, but in this case it does not applies to cMLSGA MOEA/D-MSF HEIA , as

MOEA/D-MSF is specialist-solver for this kind of problems, which is confirmed by the low

IGD values of MOEA/D based algorithms, especially in comparison to the other methods.

The lower impact on the performance of the continuous functions is caused by the additional

region searches provided by cMLSGA which are not necessary as the convergence is more

important for these problems.

However, in order to fully investigate the impact of co-evolutionary approach on the generality,

the developed cMLSGA variants have to be compared with corresponding MLSGA-hybrids.

Similarly, to the previous case the cMLSGAIBEA BCE and cMLSGA MOEA/D-MSF HEIA are

selected for that purpose. cMLSGAMTS MOEA/D is discarded, due to strong bias towards the

MTS strategy, thus providing no insight in the matter. The results are presented in Table

5.7 for cMLSGAIBEA BCE and in Table 5.6 for cMLSGA MOEA/D-MSF HEIA . Similarly, to

previously presented results, the best variant in each group is in bold and Results of the

cMLSGA are highlighted according to the same rules: green if cMLSGA is better than both

of the corresponding hybrid variants; in yellow if cMLSGA is better than one of them; and

in red if it is worse than both of the algorithms.
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Table 5.6: The average IGD and HV scores of cMLSGA MOEA/D-MSF HEIA compared
to the corresponding MLSGA variants

IGD HV

MLSGA MLSGA
Cat. Case

cMLSGA MOEA/D-

MSF
HEIA

cMLSGA MOEA/D-

MSF
HEIA

ZDT1 4.81E-04 2.10E-03 4.40E-04 0.91648 0.91547 0.91650

ZDT2 4.34E-04 3.86E-03 4.31E-04 0.83314 0.83166 0.83317

ZDT3 5.28E-04 6.62E-02 5.17E-04 1.18979 1.09604 1.18980

ZDT4 4.65E-04 1.21E+00 4.94E-04 0.91649 0.30717 0.91647

I

ZDT6 4.33E-04 6.51E-03 4.52E-04 0.75711 0.75475 0.75711

UF1 1.89E-02 3.73E-02 1.52E-02 0.90785 0.89149 0.91050

UF2 1.40E-02 2.60E-02 1.14E-02 0.90855 0.90037 0.91132II

UF3 7.23E-02 1.31E-01 5.25E-02 0.88339 0.86490 0.88641

UF4 4.17E-02 7.16E-02 4.34E-02 0.80741 0.78430 0.80703

WFG4 8.52E-03 8.80E-02 1.04E-02 0.57795 0.54128 0.57701

WFG5 6.34E-02 6.72E-02 6.36E-02 0.55025 0.54553 0.54972

WFG6 3.01E-02 1.04E-01 2.63E-02 0.56786 0.53534 0.56957

WFG7 3.98E-03 4.97E-02 5.04E-03 0.57970 0.55894 0.57917

WFG8 8.02E-02 1.70E-01 9.41E-02 0.54610 0.50707 0.53811

III

WFG9 1.77E-02 4.26E-02 1.79E-02 0.56122 0.54995 0.56110

UF7 1.41E-02 2.42E-02 8.42E-03 0.86814 0.85822 0.87127

WFG1 7.27E-01 1.26E+00 8.88E-01 0.52646 0.36203 0.47343IV

WFG3 7.56E-03 4.62E-02 9.83E-03 0.73018 0.71108 0.72920

UF5 2.93E-01 6.45E-01 2.33E-01 0.63600 0.44456 0.69318

UF6 8.56E-02 4.04E-01 7.25E-02 0.75881 0.60583 0.76839

WFG2 4.45E-03 7.87E-02 5.71E-03 0.76362 0.73169 0.76293
V

MOP4 2.26E-01 6.01E-02 2.24E-01 0.80538 0.85250 0.80629

MOP1 1.79E-01 8.90E-02 1.78E-01 0.84711 0.88199 0.84786

MOP2 2.40E-01 1.92E-01 2.03E-01 0.77050 0.76884 0.77853

MOP3 4.27E-01 2.68E-01 4.16E-01 0.73437 0.71240 0.74328

MOP5 2.04E-01 6.67E-02 1.88E-01 0.83087 0.88720 0.83233

IMB1 2.21E-02 3.76E-02 2.28E-02 0.90905 0.90356 0.90877

IMB2 1.19E-01 7.21E-02 1.65E-01 0.78364 0.84472 0.73065

IMB3 2.39E-01 6.01E-02 2.94E-01 0.65354 0.78041 0.53764

IMB7 9.72E-04 1.22E-02 1.29E-03 0.91625 0.91164 0.91612

IMB8 9.01E-04 1.30E-02 1.16E-03 0.87458 0.86946 0.87448

VI

IMB9 5.30E-04 2.60E-02 7.58E-04 0.80332 0.79246 0.80318

CF1 1.62E-03 4.98E-03 2.76E-03 0.86815 0.86589 0.86773

CF2 4.13E-04 5.62E-03 3.76E-03 0.90261 0.89953 0.90269VII

CF3 1.11E-01 3.84E-01 9.27E-02 0.70583 0.60089 0.74682

CF4 1.49E-02 3.54E-02 1.45E-02 0.82634 0.80858 0.82656

CF5 7.33E-02 1.67E-01 5.27E-02 0.75611 0.65903 0.78437

CF6 3.92E-02 3.27E-02 4.80E-02 0.87193 0.88549 0.86365
VIII

CF7 8.97E-02 1.85E-01 8.08E-02 0.81267 0.72185 0.83173

IMB11 7.84E-02 7.56E-02 9.40E-02 0.85975 0.87231 0.84612

IMB12 1.81E-02 4.40E-02 5.86E-02 0.86214 0.82644 0.76173IX

IMB13 1.02E-02 7.38E-02 6.52E-02 0.84119 0.71385 0.68021

DAS CMOP1(5) 3.52E-02 3.92E-02 4.75E-02 0.79153 0.79733 0.77627

DAS CMOP2(5) 3.66E-02 3.72E-02 7.94E-02 0.89464 0.89490 0.85825

DAS CMOP3(5) 9.03E-02 5.02E-02 7.94E-02 0.81793 0.84389 0.81990

DAS CMOP4(5) 7.17E-01 4.10E+00 8.44E-01 0.35384 0.00041 0.29489

DAS CMOP5(5) 1.01E+00 3.72E+00 9.64E-01 0.32504 0.00434 0.33122

X

DAS CMOP6(5) 7.59E-01 4.09E+00 8.48E-01 0.39999 0.01427 0.35096
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Table 5.6: The average IGD and HV scores of cMLSGA MOEA/D-MSF HEIA compared
to the corresponding MLSGA variants (continued)

IGD HV

MLSGA MLSGA
Cat. Case

cMLSGA MOEA/D-

MSF
HEIA

cMLSGA MOEA/D-

MSF
HEIA

DAS CMOP1(6) 6.35E-01 6.29E-01 6.35E-01 0.88485 0.88401 0.88484

DAS CMOP2(6) 6.51E-01 6.48E-01 6.51E-01 0.93947 0.93879 0.93948

DAS CMOP3(6) 6.13E-01 6.11E-01 6.28E-01 0.92374 0.92205 0.90834

DAS CMOP4(6) 4.00E+13 1.00E+14 1.33E+13 0.32820 0.00000 0.48247

DAS CMOP5(6) 2.00E+13 1.00E+14 2.67E+13 0.53235 0.00000 0.50688

XI

DAS CMOP6(6) 2.67E+13 9.33E+13 2.67E+13 0.35028 0.05943 0.35880

DAS CMOP1(7) 2.38E-01 1.53E-01 5.72E-01 0.76396 0.77841 0.32827

DAS CMOP2(7) 3.54E-02 3.69E-02 5.22E-01 0.90513 0.90439 0.53218

DAS CMOP3(7) 1.90E-01 3.43E-02 6.73E-01 0.71247 0.87744 0.38772

DAS CMOP4(7) 1.87E+00 3.65E+00 1.88E+00 0.00266 0.00405 0.00562

DAS CMOP5(7) 2.13E+00 3.50E+00 2.08E+00 0.00280 0.01722 0.01349

XII

DAS CMOP6(7) 1.99E+00 3.43E+00 2.04E+00 0.01013 0.00020 0.00575

The best variant in each group is in bold. Results of the cMLSGA are highlighted: in green, if

cMLSGA is better than both of the implemented algorithms; in yellow, if cMLSGA is better than

one of them; and in red, if it is worse than both of the algorithms.

Table 5.7: The average IGD and HV scores of cMLSGA IBEA BCE compared to the
corresponding MLSGA variants

IGD HV

MLSGA MLSGACat. Case
cMLSGA

IBEA BCE
cMLSGA

IBEA BCE

ZDT1 7.45E-04 4.23E-04 1.85E-02 0.91638 0.91650 0.90596

ZDT2 7.35E-04 4.20E-04 1.61E-01 0.83305 0.83316 0.71085

ZDT3 8.85E-04 5.31E-04 6.20E-02 1.18970 1.18978 1.10333

ZDT4 1.60E-03 1.29E-03 2.18E+01 0.91572 0.91490 0.00000

I

ZDT6 2.15E-03 1.76E-03 2.34E-02 0.75610 0.75582 0.74902

UF1 2.14E-02 2.68E-02 8.35E-02 0.90235 0.89354 0.86041

UF2 2.42E-02 1.89E-02 4.57E-02 0.89605 0.89856 0.88702II

UF3 1.01E-01 1.38E-01 2.35E-01 0.85258 0.73605 0.82537

UF4 4.94E-02 5.58E-02 6.36E-02 0.80240 0.80153 0.78584

WFG4 3.00E-02 2.58E-02 9.04E-02 0.56737 0.56963 0.53838

WFG5 6.52E-02 6.40E-02 6.84E-02 0.54747 0.54877 0.54408

WFG6 5.34E-02 5.26E-02 6.47E-02 0.55725 0.55821 0.54981

WFG7 1.79E-02 1.48E-02 4.16E-02 0.57361 0.57429 0.56170

WFG8 1.11E-01 1.06E-01 1.57E-01 0.53088 0.53281 0.50893

III

WFG9 3.17E-02 2.71E-02 3.93E-02 0.55521 0.55717 0.55048

UF7 1.37E-02 2.36E-02 9.22E-02 0.86194 0.85879 0.81115

WFG1 1.03E+00 9.77E-01 1.26E+00 0.41956 0.43486 0.36311IV

WFG3 2.70E-02 2.33E-02 5.10E-02 0.72093 0.72229 0.70894

UF5 3.17E-01 2.38E-01 1.68E+00 0.59333 0.65637 0.03826

UF6 1.12E-01 6.09E-02 4.96E-01 0.71427 0.77382 0.49649

WFG2 1.16E-02 1.10E-02 7.68E-02 0.75807 0.75665 0.72572
V

MOP4 3.03E-01 2.62E-01 2.30E-01 0.76362 0.79130 0.80036
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Table 5.7: The average IGD and HV scores of cMLSGA IBEA BCE compared to the
corresponding MLSGA variants (continued)

IGD HV

MLSGA MLSGACat. Case
cMLSGA

IBEA BCE
cMLSGA

IBEA BCE

MOP1 1.83E-01 1.82E-01 1.84E-01 0.84482 0.84618 0.84415

MOP2 3.71E-01 3.55E-01 3.26E-01 0.73532 0.74987 0.75299

MOP3 4.09E-01 4.09E-01 4.66E-01 0.74999 0.74999 0.70705

MOP5 2.74E-01 2.20E-01 2.91E-01 0.78560 0.82433 0.76377

IMB1 2.11E-01 2.17E-01 2.21E-01 0.84770 0.84553 0.84378

IMB2 1.84E-01 1.64E-01 1.96E-01 0.73357 0.79904 0.72184

IMB3 2.54E-01 2.60E-01 2.46E-01 0.66016 0.65853 0.68427

IMB7 4.50E-03 1.22E-03 1.42E-01 0.91487 0.91615 0.85287

IMB8 4.33E-03 1.62E-03 2.19E-01 0.87317 0.87429 0.76823

VI

IMB9 3.81E-03 5.76E-04 4.11E-01 0.80203 0.80340 0.57700

CF1 4.58E-03 3.36E-02 1.66E-02 0.86708 0.83133 0.86263

CF2 7.52E-03 1.41E-02 1.15E-02 0.89599 0.88803 0.89572VII

CF3 1.98E-01 1.35E-01 5.90E-01 0.68204 0.71412 0.39782

CF4 4.38E-02 4.64E-02 6.21E-02 0.79853 0.79157 0.79578

CF5 1.06E-01 1.10E-01 3.06E-01 0.72568 0.73214 0.55742

CF6 5.30E-02 8.50E-02 6.21E-02 0.86700 0.84685 0.84730
VIII

CF7 1.55E-01 1.30E-01 3.93E-01 0.78466 0.80366 0.59798

IMB11 9.59E-02 1.26E-01 1.24E-01 0.84317 0.82073 0.81618

IMB12 6.01E-02 1.15E-01 7.07E-02 0.76028 0.72108 0.74990IX

IMB13 6.62E-02 1.35E-01 9.51E-02 0.67945 0.62224 0.66042

DAS CMOP1(5) 1.04E-01 2.93E-01 3.69E-01 0.72380 0.49878 0.44898

DAS CMOP2(5) 5.42E-02 2.69E-01 3.19E-01 0.87928 0.69356 0.64737

DAS CMOP3(5) 1.67E-01 3.73E-01 3.56E-01 0.75555 0.69200 0.60317

DAS CMOP4(5) 8.17E-01 5.26E-01 1.39E+01 0.30318 0.44712 0.00000

DAS CMOP5(5) 1.13E+00 6.05E-01 1.39E+01 0.24288 0.49548 0.00000

X

DAS CMOP6(5) 1.09E+00 6.37E-01 1.29E+01 0.19313 0.42770 0.00000

DAS CMOP1(6) 6.35E-01 7.19E-01 7.43E-01 0.88482 0.63547 0.55531

DAS CMOP2(6) 6.50E-01 7.62E-01 7.85E-01 0.93940 0.76739 0.71643

DAS CMOP3(6) 6.33E-01 7.46E-01 7.18E-01 0.89873 0.75389 0.78947

DAS CMOP4(6) 1.33E+13 2.61E-01 1.00E+14 0.35899 0.59663 0.00000

DAS CMOP5(6) 4.00E+13 2.21E-01 1.00E+14 0.34421 0.62578 0.00000

XI

DAS CMOP6(6) 2.67E+13 1.33E+13 1.00E+14 0.30961 0.44050 0.00000

DAS CMOP1(7) 2.33E-01 5.30E-01 5.94E-01 0.71547 0.36785 0.29884

DAS CMOP2(7) 3.48E-02 2.55E-01 3.64E-01 0.90529 0.71071 0.61015

DAS CMOP3(7) 1.90E-01 2.31E-01 6.99E-01 0.70016 0.68399 0.36955

DAS CMOP4(7) 1.17E+00 6.68E-01 1.15E+01 0.12651 0.34021 0.00000

DAS CMOP5(7) 1.31E+00 9.24E-01 1.10E+01 0.18589 0.34486 0.00000

XII

DAS CMOP6(7) 1.24E+00 9.72E-01 1.22E+01 0.13717 0.26472 0.00000

The best variant in each group is in bold. Results of the cMLSGA are highlighted: in green, if

cMLSGA is better than both of the implemented algorithms; in yellow, if cMLSGA is better than

one of them; and in red, if it is worse than both of the algorithms.

From the presented results it can be seen that cMLSGA MOEA/D-MSF HEIA is better than the

corresponding MLSGA variants on 27 cases for the IGD and on 24 cases for the HV, whereas it

only exhibits worse performance on only 7 and 6 cases, respectively. The cMLSGA IBEA BCE

outperforms both MLSGA hybrids on the 22 test problems for the IGD indicator and 24

problems for the HV indicator. For both indicators it has a lower performance on 2 cases

only. This demonstrates that the cMLSGA approach increases the generality of the search
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over the original MLSGA, similarly when comparing to the implemented algorithms. While

the cMLSGA generally outperforms the MLSGA, this is usually not the case for some of

the test problems where a higher diversity of the search is preferred, such as the imbalanced

and constrained cases, categories VI-XI. MLSGA is developed to improve the diversity of the

search and therefore these problems are highly suited to its mechanisms. Furthermore, the

results indicate that the cMLSGA is often hindered by worse of the implemented algorithms,

e.g. cMLSGA IBEA BCE on DAS CMOP4-6, where IBEA is having good results and BCE

is unable to find any valid solutions. Therefore, co-evolutionary approach leads to a higher

generality of the performance across all problems, but it is unlikely to outperform a specialist-

solver, diversity-based in that case, on its preferred problem, as there is no-free-lunch after.

5.3 General-solver approach

In this chapter the co-evolutionary-based variant of the MLSGA, denoted as cMLSGA, was

proposed in order to enhance generality across different type of problems. Presented results

show that the cMLSGA is able to successfully combine the advantages of both implemented

methodologies, while maintaining the “diversity-first, convergence-second” behaviour seen in

the previous iterations of MLSGA. Therefore, leading to a more general approach with a

strong focus on the diversity. In most of tested cases, the performance of cMLSGA is better,

or at least in between the two utilised methodologies, especially on the diversity-demanding

problems such as discontinuous, constrained and bias functions. This indicates that the

proposed methodology while providing a more general performance is usually limited by the

worst of the implemented strategies. Therefore, the cMLSGA is highly unlikely to outperform

the specialist-solvers on their favoured cases, or the problems where a strong convergence is

needed. However, this behaviour was expected from the general-solver type of algorithm.

As the performance of the cMLSGA is bounded by the implemented algorithms a question

could be raised, how to select the best combination of algorithms in practice. Unfortunately,

currently there is no practical mean to assign the algorithms to sub-populations in the way

that would be most suited for a given problem in the cases with limited knowledge about

the search space. Here, the combination of HEIA and MOEA/D-MSF is suggested, as these

methodologies show the most “general” behaviour, due to utilisation of two complimentary

strategies: strong convergence of MOEA/D-MSF; and a high diversity/generality of HEIA.

Obviously, it is still possible, that the performance of resulting cMLSGA will be low on a

particular problem. Nevertheless, this applies to any existing methodology, but it is here sug-

gested that by combination of two distinct search patters and utilisation of the diversity-first

approach, cMLSGA's chances of success are significantly higher than other current state-of-

the-art algorithms on cases where the solver has to be chosen in the uninformative process.

However, in order to further validate these claims and finally validate the cMLSGA's per-

formance as the diversity-oriented general-solver, it has to be comprehensively compared

with the top-performing algorithms taken from the current state-of-the-art, including the

simulations on practical problems.
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to the practical problems and

comparison with the current

state-of-the-art

In this chapter, the “diversity-first” general-solver approach of the MLSGA is validated and it

is evaluated if that approach is beneficial for the optimisation of practical problems. Firstly,

the MLSGA's performance is compared with the state-of-the-art algorithms on the bench-

marking set utilised in previous chapter, to find the best general-solver genetic algorithm. In

the next step, the test set is expanded by functions with 3+ objective in order to evaluate if

the previous findings apply to the cases with more than two objectives. Finally, the MLSGA

and top performing algorithms from the current state-of-the-art are applied to three selected

practical problems.

6.1 Rules and parameters

Similarly, to the previous chapters, the simulations are performed over 30 separate runs, with

300,000 function evaluations for each run, and both IGD and HV are used as the performance

indicators. Furthermore, due to the fact that simulated algorithms utilise different population

sizes, all Pareto optimal fronts are limited to 600 individuals, for the purposes of IGD and

HV calculation, in order to assure the fairness of comparison.

Two MLSGA approaches, MLSGA-hybrid and cMLSGA, are compared with eight current

state-of-the-art algorithms: U-NSGA-III [34], MOEA/D [35], MOEA/D-MSF and PSF [83],

MTS [93], IBEA [121], BCE [103] and HEIA [36], which are chosen due to reasons detailed in

Chapter 4. Those are utilised as is, if the code was provided or recreated based on the original

publications and their principles of working can be found in the corresponding literature.

However, for all algorithms, where the constraint handling was not originally implemented,

such as MOEA/D, the same strategy as in the MLSGA is applied, which is described in

Chapter 3. For the comparison, the MLSGA HEIA and cMLSGA MOEA/D-MSF HEIA variants

109
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are selected as hybrid and co-evolutionary variant of the MLSGA respectively, due to highest

focus on generality and diversity of the search as discussed in Chapters 4 and 5

The MLSGA-hybrid and cMLSGA are using the same parameters as in Chapters 4 and 5

respectively, whereas other algorithms utilises the same setting of hyper-parameters as in the

original publications. Corresponding values of these parameters for each tested algorithm

can be found in Appendix E.

6.2 Rankings on the multi-objective test sets

6.2.1 Two-objective problems

Performances of selected MLSGA-hybrid and cMLSGA variants are compared with the cur-

rent state-of-the-art on 60 two-objective cases. The same test set as for evaluation of the

cMLSGA in Chapter 5 is utilised. It is summarised in Table 5.2. The comparison is pre-

sented in Table 6.1 in the form of average ranking, according to the IGD and HV indicators

for each category of problem. In addition, the average ranks across all tested problems and

the standard deviations of ranks for each algorithm are provided as well to further evaluate

the generality of each algorithm.

From presented ranking it can be seen that the best solver on average is cMLSGA, 3.60/3.82

for the IGD/HV metrics; the MLSGA-hybrid comes second with 4.33/4.15 for the IGD/HV

indicators; whereas HEIA is third with 4.40/4.58 respectively. Higher differences in the HV

scores indicates that the cMLSGA is more likely to promote a high diversity than HEIA but

is less likely to do so than MLSGA-hybrid. In addition cMLSGA is shown to be more general

than both of them, as it has a lower deviation in performance with smaller standard deviations

of its positions in the rankings, 1.57/1.58 for the IGD/HV compared to the MLSGA's and

HEIA's, 1.93/1.98 and 2.59/2.59 respectively. The differences in robustness are illustrated in

Fig. 6.1, where the occurrence of each rank is presented for the MLSGA-hybrid, cMLSGA

and HEIA algorithms. All three algorithms are often the top performers, rank 1 and 2,

with HEIA and MLSGA-hybrid being the first more regularly, 11 times for the IGD and 10

for the HV for HEIA algorithm, and 8/5 for the MLSGA-hybrid, compared to 4/7 for the

cMLSGA. However, when HEIA and MLSGA-hybrids show low performance on a problem

they performs very poorly with rank 8 eight times for both indicators for HEIA, and 1/2 for

MLSGA-hybrid; rank 9 one time for both algorithms according to HV and once according

to IGD for MLSGA-hybrid; and rank 10 two times for the IGD and one time for the HV for

HEIA only. Whereas the lowest rank for cMLSGA is 7 and it has a high occurrence of the 3rd,

4th and 5th positions. This demonstrates that the cMLSGA is the best general-solver and it

further proves a higher specialisation of the MLSGA-hybrid in comparison to the cMLSGA.
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Table 6.1: Ranking of the 10 state-of-the-art genetic algorithms according to the average performance on distinct categories of two-objective problems
according to the IGD/HV indicators.

Category
U-NSGA-

III
MOEA/D

MOEA/D-
PSF

MOEA/D-
MSF

BCE IBEA MTS HEIA cMLSGA MLSGA

I 5.60/3.60 4.00/4.80 5.60/6.00 7.60/8.20 9.40/9.60 8.00/7.80 8.40/8.40 3.40/3.60 1.60/1.80 1.40/1.20
II 8.00/8.33 3.00/3.67 4.67/4.33 3.33/4.00 9.00/8.33 10.0/10.0 2.67/4.00 1.33/1.00 7.00/6.67 6.00/4.67
III 3.43/3.71 5.43/5.57 8.43/8.14 6.29/6.14 7.43/7.14 7.86/7.71 6.43/8.00 2.86/2.43 2.71/2.29 4.14/3.86
IV 3.67/3.67 3.67/4.00 6.67/6.67 5.67/5.67 9.00/8.67 7.00/7.00 8.67/9.67 1.00/1.00 4.67/4.33 5.00/4.33
V 4.75/6.25 6.50/5.25 6.00/6.00 5.75/5.00 8.75/8.75 8.00/7.75 3.50/4.25 4.25/5.00 4.00/3.75 3.50/3.00
VI 5.90/4.90 5.60/5.50 3.10/3.20 2.40/2.60 8.90/9.00 8.50/8.40 5.10/5.40 5.40/5.80 4.60/4.80 5.50/5.40
VII 7.00/4.33 6.33/7.33 7.00/6.67 5.67/7.00 7.33/7.33 9.00/9.00 4.67/3.67 2.67/5.33 1.67/2.67 3.67/1.67
VIII 5.25/4.50 7.75/7.00 8.25/8.00 7.00/7.75 7.25/7.50 9.50/9.75 1.00/1.00 3.00/4.00 3.25/2.75 2.75/2.75
IX 8.33/8.00 1.00/1.33 3.67/3.00 2.67/2.67 6.67/6.33 10.0/10.0 8.67/9.00 4.00/4.67 3.67/3.33 6.33/6.67
X 4.33/4.67 5.67/5.50 5.50/5.92 4.33/4.33 9.83/9.75 7.00/6.33 3.83/4.00 6.67/6.17 3.67/4.00 4.17/4.33
XI 5.00/4.67 6.58/4.25 6.58/6.25 5.92/5.75 8.58/9.08 7.67/7.50 2.67/4.67 6.00/4.50 2.50/4.17 3.50/4.17
XII 4.17/4.33 5.00/3.67 5.33/6.08 4.67/3.83 9.67/9.42 4.33/4.17 4.67/4.83 7.00/7.67 4.33/5.00 5.83/6.00

Overall 5.22/4.85 5.28/4.94 5.76/5.78 4.98/5.04 8.61/8.58 7.87/7.72 4.95/5.55 4.42/4.58 3.60/3.82 4.33/4.15
std 2.59/2.68 2.95/2.75 2.68/2.78 2.67/2.86 1.47/1.55 2.35/2.44 3.14/3.04 2.59/2.59 1.57/1.58 1.93/1.98
The best algorithm in each category is highlighted in green, the second and third best solvers are highlighted in orange and red, respectively.
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Comparing distinct categories of problems, it can be observed that cMLSGA and MLSGA-

hybrids are achieving a significantly better performance on simple, concave and discontinuous

cases without constraints, and constrained problems, categories I, III, V, VII, X and XI,

respectively. Furthermore, a high performance can be observed on constrained functions with

continuous characteristics, category VIII, but with a clear domination of the MTS algorithm,

rank 1 on every problem of this type, indicating that it is specialist-solver for those cases. This

further supports previous findings by showing a high focus on diversity of the MLSGA-based

methodologies. For imbalanced problems, categories VI and IX, the highest performance is

achieved by MOEA/D based solvers, further indicating that decomposition is preferred on

those type of problems.

Comparing cMLSGA and MLSGA-hybrid, it can be seen that the cMLSGA is usually ex-

hibiting a better performance on the problems where HEIA is showing a low effectiveness,

categories VI, VII, X, XI and XII. Here it is suggested that it is due to implementation of a

second search strategy, which helps to maintain a high performance on more kind of cases,

whereas MLSGA-hybrid is strongly bounded by a single evolutionary algorithm, and thus its

performance on a particular problem.

Figure 6.1: Occurrence of ranks for HEIA, cMLSGA and MLSGA-hybrid algorithms on
two-objectives benchmarking problems.
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6.2.2 Problems with 3+ objectives

In order to operate on problems with more than 2 objectives, the original MLS-U fitness

separation strategy has to be modified. Here a simple extension of the MLS-U strategy is

proposed, where M + 1 collective types are utilised for M -objective problem:

1. In Type-1 assign {f1, . . . , fM} to collective and individual-level

2. In Type-i, where {i = 2, . . . ,M + 1}, assign {f1, . . . , fM} to individual-level and {fi−1}
to collective-level

Therefore, the first type of collectives contains all objectives on both levels of selection, and

the rest of types contains a distinct objective on the collective-level, and all objectives on

the individual-level. Exemplar fitness assignments to each level of selection for 3 and 5

objectives cases are presented in Table 6.2. For both number of objectives, the MLSGA U-

NSGA-III and MLSGA MOEA/D-MSF U-NSGA-III are used as hybrid and co-evolutionary variant

respectively, due to the low performance of HEIA on problems with more than two-objective.

The hyper-parameters for MLSGA-hybrid and cMLSGA remains as presented in Chapter 4

and 5 respectively. Interestingly, 8 collectives are preferred for 5 objectives, despite of having

less than 2 groups of each type, according to conducted pre-benchmarks. It is most likely

caused by the fact that higher numbers of collectives require more individuals in population

in order to remain effective, as discussed previously in Chapter 4. For the state-of-the-art

algorithms, 1000 population size is utilised as it is providing a better performance. The rest

of parameters remains the same as in previous sections.

In order to operate on more than two-objectives, the test set is extended by 40 three- and

18 five-objective functions. These problems, are divided into categories, following the same

rules as for the two-objective cases, as summarised in Table 6.3. All presented problems have

three objectives, with distinction that the scalable functions that are used in both 3- and

5-objective benchmarks are in bold.

Table 6.2: Fitness functions used on each level of selection, depending on the collective
type, for optimisation of 3- and 5-objective problems.

Type of collective Collective-level Individual-level

3 objectives

1 f1(x)
f1(x), f2(x) and f3(x)2 f2(x)

3 f3(x)

5 objectives

1 f1(x)

f1(x), f2(x), f3(x), f4(x) and f5(x)
2 f2(x)
3 f3(x)
4 f4(x)
5 f5(x)
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Table 6.3: Summary of the utilised test set with 3+ objectives

Category Problem d Additional properties

Unconstrained

I. Concave

DTLZ2 M+9
DTLZ3 M+9 Multimodal
DTLZ4 M+9 Biased
DTLZ5 M+9 Degenerated
DTLZ6 M+9 Degenerated, Biased

UF8 30 Complex PS
UF10 30 Complex PS

WFG4 2M+18 Multimodal
WFG5 2M+18 Deceptive
WFG6 2M+18 Non-separable
WFG7 2M+18 Biased
WFG8 2M+18 Biased, Non-separable
WFG9 2M+18 Biased, Non-separable, Deceptive

IV. Linear/Mixed
DTLZ1 M+4 Linear, Multimodal
WFG1 2M+18 Biased, Mixed
WFG3 2M+18 Non-separable, Degenerated, Linear

V. Discontinuous
DTLZ7 M+19 Mixed, Multimodal

UF9 30 Complex PS
WFG2 2M+18 Convex, Non-Separable

VI. Imbalanced

MOP6 10 Linear
MOP7 10 Concave
IMB4 10 Linear
IMB5 10 Concave
IMB6 10 Linear
IMB10 10 Linear

Constrained

VII. Discontinuous

DTLZ8 10M Mixed, Degenerated, Biased
DTLZ9 10M Concave, Degenerated

CF8 10 Concave, Degenerated, Complex PS
CF9 10 Concave, Complex PS
CF10 10 Concave, Complex PS

IX. Imbalanced IMB14 10 Linear

X. Diversity-hard
DAS-CMOP7(5) 30 Linear, Degenerated, Discontinuous
DAS-CMOP8(5) 30 Concave, Discontinuous
DAS-CMOP9(5) 30 Concave, Discontinuous, Biased

XI. Feasibility-hard
DAS-CMOP7(6) 30 Linear, Degenerated, Discontinuous
DAS-CMOP8(6) 30 Concave, Discontinuous
DAS-CMOP9(6) 30 Concave, Discontinuous, Biased

XII. Convergence-hard
DAS-CMOP7(7) 30 Linear, Degenerated, Discontinuous
DAS-CMOP8(7) 30 Concave, Discontinuous
DAS-CMOP9(7) 30 Concave, Discontinuous, Biased

d denotes the number of decision variables. The scalable problems are in bold. M denotes
the number of objectives in the scalable problems.

The results are presented in the form of an average ranging on each category of the problem,

according to the IGD and HV indicators, in Table 6.4 for 3 objectives functions and in Table

6.5 for 5 objectives.
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Table 6.4: Ranking of the 10 state-of-the-art genetic algorithms according to the average performance on distinct categories of three-objective problems
according to the IGD/HV indicators.

Category
U-NSGA-

III
MOEA/D

MOEA/D-
MSF

MOEA/D-
PSF

BCE IBEA MTS HEIA cMLSGA MLSGA

I 3.69/4.15 4.23/3.54 5.54/6.46 7.00/6.92 7.77/8.23 6.69/4.92 8.00/8.54 4.38/3.69 2.92/3.15 4.77/5.38
IV 2.67/2.33 4.00/5.00 5.33/5.00 6.33/7.33 10.00/9.67 4.00/5.33 8.33/9.33 3.33/1.33 4.67/4.00 6.33/5.67
V 3.00/2.33 8.00/5.33 5.33/5.33 7.33/6.33 4.33/7.67 7.67/8.33 5.67/9.00 5.00/4.33 3.67/2.33 5.00/4.00
VI 6.50/7.17 4.17/4.83 1.17/1.33 2.17/2.33 7.33/6.67 9.83/9.83 6.83/7.33 5.50/5.00 5.00/4.50 6.50/6.00
VII 5.00/4.20 5.80/5.70 5.60/6.10 4.80/6.00 6.20/6.90 7.20/7.00 3.80/3.70 7.80/6.40 3.60/3.40 5.20/5.60
IX 5.00/5.00 1.00/3.00 2.00/1.00 4.00/2.00 6.00/8.00 9.00/9.00 10.00/10.00 3.00/4.00 7.00/6.00 8.00/7.00
X 5.33/6.67 9.00/7.00 6.33/7.83 6.00/6.67 10.00/9.50 4.33/4.33 3.33/5.00 5.67/3.67 2.00/1.67 3.00/2.67
XI 1.00/4.33 6.67/6.33 8.33/8.17 8.33/8.17 8.33/8.17 5.83/5.67 7.50/7.50 4.00/3.00 3.00/2.33 2.00/1.33
XII 3.67/4.00 9.33/8.17 5.67/7.33 5.33/7.17 9.33/8.67 5.33/5.33 6.00/6.33 4.00/3.33 2.67/1.67 3.67/3.00

Overall 4.100/4.550 5.525/5.050 5.050/5.613 5.800/6.075 7.700/8.013 6.813/6.350 6.663/7.375 4.950/4.025 3.525/3.175 4.875/4.775
std 2.311/2.291 3.060/2.576 3.211/3.038 2.697/2.619 2.339/1.892 2.669/2.886 3.127/2.602 2.397/2.454 1.565/1.579 2.064/2.454

The best algorithm in each category is highlighted in green, the second and third best solvers are highlighted in orange and red, respectively.

Table 6.5: Ranking of the 10 state-of-the-art genetic algorithms according to the average performance on distinct categories of five-objective problem
according to the IGD/HV indicators.

Category
U-NSGA-

III
MOEA/D

MOEA/D-
MSF

MOEA/D-
PSF

BCE IBEA MTS HEIA cMLSGA MLSGA

I 2.64/4.50 7.36/4.36 5.27/6.00 7.18/6.64 6.09/7.59 4.00/2.91 8.73/7.95 4.18/4.23 4.45/4.95 5.09/5.86
II 5.00/3.33 3.67/4.00 3.67/5.33 6.33/7.67 7.00/9.33 7.00/4.33 5.33/6.00 3.67/3.33 6.33/5.33 7.00/6.33
III 2.50/3.00 10.00/3.00 5.00/8.00 9.00/9.50 4.00/5.00 5.50/5.00 7.00/9.00 3.50/4.00 4.50/3.50 4.00/5.00
V 5.50/4.75 5.50/6.00 7.50/7.75 5.50/7.25 7.00/4.25 4.00/4.00 7.00/6.25 6.50/5.75 3.00/3.75 3.50/5.25

Overall 3.333/4.167 6.833/4.333 5.222/6.306 7.056/7.194 6.111/7.222 4.667/3.500 7.778/7.556 4.278/4.222 4.611/4.722 5.111/5.778
std 2.494/2.068 2.986/2.309 2.954/2.883 2.297/2.902 2.580/2.155 2.848/2.432 1.959/2.437 2.578/2.663 2.189/2.083 2.378/2.155

The best algorithm in each category is highlighted in green, the second and third best solvers are highlighted in orange and red, respectively.
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From the presented data it can be seen that a similar behaviour can be observed for three-

objective problems, Table 6.4, as for the cases with only two-objectives. The best general-

solver is the cMLSGA, whereas U-NSGA-III comes second and the HEIA is third. The

IGD rankings are 3.525, 4.100, 4.950 for these algorithms correspondingly, while according

to the HV average ranks are: 3.175, 4.550 and 4.025. Similarly, to the two-objective cases,

the cMLSGA also shows the lowest standard deviations, further proving its high general-

ity. Comparing the occurrence of each rank for U-NSGA-III, cMLSGA and MLSGA-hybrid,

illustrated in Fig. 6.2, it can be seen that cMLSGA is again more likely to avoid a poor per-

formance. In this case, the cMLSGA is more likely to be top performer according to the HV,

but it less likely to exhibit the highest performance according to the IGD metric, as it is often

outperformed by U-NSGA-III. Furthermore, the cMLSGA is significantly more likely to be

third, 13 times for both IGD and HV compared to 8 and 4 times for U-NSGA-III for the HV

and IGD, respectively. In the contrast, U-NSGA-III is significantly more likely to perform

poorly, as in the worst case scenario it is 10th for the IGD and 9th for the HV, whereas for the

cMLSGA the lowest position is 7th with both indicators. Furthermore, U-NSGA-III is more

likely than cMLSGA to achieve ranks 6 and 7. Interestingly, both algorithms are more likely

to be in the middle positions 2nd to 5th, showing the distribution that is reflecting a general

performance. This indicates the high generality and universality of both solutions as they are

often outperformed by the specialist-solvers on their preferred cases. For the MLSGA-hybrid

Figure 6.2: Occurrence of ranks for U-NSGA-III, cMLSGA and MLSGA-hybrid algorithms
on three-objective benchmarking problems
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it can be seen that it is more likely to perform poorly than both cMLSGA and U-NSGA-III,

positions 7th to 10th. This indicates that the MLS-based strategy utilised in MLSGA is less

effective with more than two-objectives.

Similarly, to the previous tests, a high performance of the MLS-based algorithms, especially

the cMLSGA, can be observed for the diversity-hard problems, such as discontinuous and

constrained problems, categories III-V, VII, X and XI. Therefore, showing a high focus of that

methodology on the diversity. Lower performance on categories VI and IX, is explained by

the imbalanced structure of those problems, which is favouring the forced problem decompo-

sition, such as mechanisms used in the MOEA/D-based algorithms, as discussed previously.

Interestingly, the cMLSGA is outperforming other solutions on unconstrained cases with 3

objectives and a concave geometry, category I. Similar principle was observed for the two-

objective problems. This is indicating a higher demand for the diversity on biased problems

with concave Pareto optimal front geometries and a lower adjustment of the current state-

of-the-art for this kind of cases. Similarly, a high performance of the cMLSGA is shown

on the convergence-hard constrained problems, category XII, which indicates that the three-

objective functions of that kind, require more diversity in comparison to their two-objective

counterparts.

cMLSGA is outperforming the hybrid variant on each category of problems on average. It is

here suggested that this is caused by a higher complexity of the problems with more than two

objectives. On those cases, most of the algorithms are not able to accurately approximate the

whole Pareto optimal front and the MLS-based strategy is less effective on them, as indicated

before. Therefore, utilising multiple search strategies is more beneficial than enhancing the

diversity alone, in order to be able to converge on more regions of the objective space.

Lowered performance of the MLSGA methodology on the cases with increasing number of

objectives is further shown with five-objective problems, as presented in Table 6.5. The

cMLSGA is 4th and MLSGA is 5th, while U-NSGA-III and IBEA are showing the most

general-approach. However, in this case a limited set of problems is utilised, with 18 functions

only, where majority of them, 16 out of 18, does not contain any constraints, and only 4 cases

are discontinuous. Furthermore, all simulated problems came from two test sets only, DTLZ

and WFG, and thus the diversity of problem's characteristics is limited. According to that,

it is possible that the utilised 5-objective test set is biased towards certain characteristics and

algorithms. According to that, it is not possible to draw any overarching conclusions about

the best general type solver for the five-objective cases or the lowered performance of the

MLS-based algorithms on them. This is supported by a high performance of the MLSGA-

hybrid and cMLSGA on all from the available five-objective constrained problems, category

V, where cMLSGA comes first in average and MLSGA-hybrid is third.

The lowered performance on the five-objective cases can potentially indicate the limitations

in scalability of the MLSGA approach. With increasing number of objectives, due to utilised

split in fitness function, either: more collectives have to be implemented, resulting in lowered

effectiveness due to small sub-populations; or the fitness separation have to be modified, so
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more than one objective is used during the collective-level fitness calculation, but in this case

the region based search will be strongly hindered. However, the problem with scalability to

a higher number of objectives is shared by all GAs not only MLSGA, as indicated in [144].

6.3 Optimisation of the engineering problems

Two engineering cases, taken from the literature, are used in this section: optimisation of

the spatial arrangement of leisure boats (3DSA) [145] as the two-objective highly constrained

case with a large number of variables, 3 constraints and 68 variables respectively; and the

structural design of a composite stiffened plate [146], two cases with 2 (CLPT2) and 3 objec-

tives (CLPT3) respectively, in order to verify the performance on unconstrained cases with

different number of objectives. The test set is summarised in Table 6.6, with full description

provided in Appendix F.

Similarly, to the previous benchmarks, 600 population size is used for all algorithms except of

the cMLSGA and MLSGA-hybrid, where 1000 individuals are included. Those values have

been selected as the best for corresponding algorithms after the series of pre-benchmarks.

Rest of the operational parameters are kept constant from previous tests and can be found

in Appendix E. As for the practical problems the true Pareto optimal front is not known the

reference front, for the purposes of IGD and HV calculations, is obtained by non-dominated

selection of all the Pareto optimal fronts achieved by every algorithm across all runs. However,

this strategy can result in inaccurate IGD values, as the final front can be biased toward

certain regions and it is not uniformly spread, therefore a stronger emphasis should be put

on the HV metric in order to provide more accurate comparison.

Table 6.6: Summary of the utilised test set.

Case Objectives Variables Constraints

3DSA 2 68 3
CLPT2 2 6 0
CLPT3 3 6 0

6.3.1 Verification of performance

Performance comparison of selected genetic algorithms is presented in Table 6.7 in the form

of ranking according to the IGD and HV metrics. For each algorithm, the average values are

presented with min, max and standard deviation given in brackets in italics. Furthermore,

the results for cMLSGA and MLSGA-hybrid are highlighted in green and blue, respectively.

However, as certain runs on the 3DSA problem do not provide any feasible solutions, only

the runs where at least one valid solution is achieved are included in both tables. This issue

is addressed separately later in this section.
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Table 6.7: Ranking of genetic algorithms on the practical problems according to the average
HV/IGD metrics.

Problem
HV IGDRank

3DSA CLPT2 CLPT3 3DSA CLPT2 CLPT3

cMLSGA cMLSGA cMLSGA cMLSGA cMLSGA cMLSGA
0.75577[+] 0.84595[+] 0.86162 9.66E-2 8.66E-1[+] 3.72E+0
{0.68430; {0.84580; {0.86126; {5.44E-2; {6.54E-1; {3.43E+0;
0.78542; 0.84626; 0.86371; 1.81E-1; 9.93E-1; 3.96E+0;

1

0.02600} 0.00019} 0.00078} 3.73E-2} 1.47E-1} 1.33E-1}
MLSGA MLSGA MLSGA MLSGA MLSGA MLSGA

0.75336[+] 0.84584 0.86155[+] 9.90E-2 9.58E-1[+] 3.81E+0[+]
{0.68411; {0.84581; {0.86126; {1.83E-2; {6.59E-1; {3.41E+0;
0.81625; 0.84617; 0.86372; 2.31E-1; 9.86E-1; 4.20E+0;

2

0.02500} 0.00006} 0.00070} 4.41E-2} 5.62E-2} 1.86E-1}
U-NSGA-III HEIA HEIA HEIA HEIA HEIA

0.75119 0.84583[+] 0.86104[+] 1.01E-1 1.15E+0[+] 4.10E+0[+]
{0.51047; {0.84582; {0.86085; {1.10E-2; {1.00E+0; {3.79E+0;
0.84152; 0.84584; 0.86343; 2.57E-1; 1.18E+0; 4.48E+0;

3

0.07536} 0.00000} 0.00045} 5.71E-2} 2.89E-2} 1.62E-1}
HEIA BCE U-NSGA-III U-NSGA-III BCE U-NSGA-III

0.75082[+] 0.84574[+] 0.86059[+] 1.06E-1[+] 1.29E+0[+] 5.29E+0[+]
{0.61978; {0.84573; {0.86047; {8.28E-3; {1.13E+0; {5.04E+0;
0.82944; 0.84577; 0.86066; 3.26E-1; 1.33E+0; 5.72E+0;

4

0.04618} 0.00001} 0.00005} 8.06E-2} 4.75E-2} 1.56E-1}
MOEA/D-

MSF
MOEA/D-

MSF
MOEA/D

MOEA/D-
PSF

U-NSGA-III BCE

0.67597 0.84569[+] 0.85876[+] 2.36E-1 1.57E+0[+] 6.51E+0
{0.65040; {0.84566; {0.85858; {2.17E-1; {1.52E+0; {5.90E+0;
0.70689; 0.84571; 0.85909; 2.48E-1; 1.63E+0; 7.20E+0;

5

0.01461} 0.00002} 0.00011} 8.70E-3} 2.57E-2} 2.77E-1}
MOEA/D-

PSF
U-NSGA-III

MOEA/D-
MSF

MOEA/D-
MSF

MOEA/D-
MSF

MOEA/D

0.66761[+] 0.84566[+] 0.85819 2.37E-1[+] 2.55E+0[+] 1.84E+1
{0.64449; {0.84564; {0.85799; {2.21E-1; {2.50E+0; {1.72E+1;
0.70895; 0.84568; 0.85836; 2.50E-1; 2.67E+0; 1.90E+1;

6

0.01481} 0.00001} 0.00009} 7.71E-3} 6.65E-2} 4.10E-1}
BCE MOEA/D BCE BCE MOEA/D

MOEA/D-
MSF

0.60314 0.84549 0.85835 2.57E-1 5.51E+0[+] 2.09E+1[+]
{0.39843; {0.84547; {0.85752; {1.81E-1; {5.49E+0; {2.04E+1;
0.68525; 0.84549; 0.85879; 4.74E-1; 5.57E+0; 2.12E+1;

7

0.08016} 0.00000} 0.00028} 7.15E-2} 1.75E-2} 1.68E-1}
MOEA/D

MOEA/D-
PSF

MOEA/D-
PSF

MOEA/D
MOEA/D-

PSF
MOEA/D-

PSF
0.55676[+] 0.84545[+] 0.85580[+] 2.99E-1[+] 5.83E+0[+] 7.80E+1[+]
{0.38878; {0.84540; {0.85555; {2.16E-1; {5.66E+0; {4.62E+1;
0.65666; 0.84548; 0.85630; 4.74E-1; 6.03E+0; 8.57E+1;

8

0.08673} 0.00003} 0.00019} 8.07E-2} 9.93E-2} 6.22E+0}
MTS MTS MTS MTS IBEA IBEA
0 0.83886[+] 0.84833[+] inf 3.53E+1[+] 1.33E+2

{0.00000; {0.83640; {0.84044; {inf; {1.15E+1; {1.68E+1;
0.00000; 0.84104; 0.85179; inf; 3.15E+2; 4.25E+2;

9

0.00000} 0.00114} 0.00248} 0.00E+0} 6.36E+1} 1.22E+2}
IBEA IBEA IBEA IBEA MTS MTS

0 0.82854 0.84218 inf 5.25E+1 1.97E+2
{0.00000; {0.81107; {0.83710; {inf; {2.22E+1; {7.90E+1;
0.00000; 0.83347; 0.84864; inf; 9.87E+1; 3.02E+2;

10

0.00000} 0.00436} 0.00316} 0.00E+0} 2.02E+1} 5.77E+1}
For each algorithm the average values are presented with min, max and standard deviation given in
brackets in italics. Results from the cMLSGA and MLSGA-hybrid are highlighted in green and blue,

respectively. [+] indicates if the results are significantly different to the next lower rank.
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Table 6.8: Robustness of finding feasible solutions on the 3DSA engineering problem.

Robustness
Amount PercentageAlgorithm

(/30) (%)

cMLSGA 30 100
MLSGA 29 96.67

U-NSGA-III 29 96.67
HEIA 29 96.67
BCE 29 96.67

MOEA/D-MSF 27 90.00
MOEA/D-PSF 27 90.00

MOEA/D 26 86.67
MTS 0 0
IBEA 0 0

Results from the cMLSGA and
MLSGA-hybrid are highlighted in green and

blue, respectively.

From the table it can be seen that the best algorithm on all cases is cMLSGA; the second

best is MLSGA-hybrid; the third in overall is HEIA, with rank 3 on the CLPT2 and CLPT3

and rank 4 on the 3DSA for the HV indicator, and rank 3 on all cases for the IGD; and the

U-NSGA-III is fourth on average, as it is 3rd on 3DSA, 4th on CLPT3 and 6th on CLPT2

according to the HV, and 4th on 3DSA and CLPT3, and 5th on CLPT2 according to the IGD.

Bad performance is shown by the MOEA/D based algorithms, mostly ranks 5-8, and the

worst solvers for these problems are MTS and IBEA. Therefore, it can be observed that three

genetic algorithms with a higher emphasis on the generality of the search, MLSGA, HEIA and

U-NSGA-III respectively, are outperforming the specialised-solvers, such as MOEA/D and

MTS, on all cases, except for the CLPT2 problem where MOEA/D-MSF, MOEA/D-PSF and

BCE have better diversity than U-NSGA-III. CLPT2 is the simplest of all problems, which

is potentially explaining why the convergence in this scenario is becoming more important.

Interestingly, all of the general-solvers exhibit similar performance on the highly constrained

3DSA problem, which has a large quantity of variables, while being significantly better than

the specialist-solvers. This indicates that the specialist-solvers are unable to effectively solve

more complex and constrained problems.

No feasible solutions are found within some runs of the highly constrained 3DSA problem.

The robustness of each algorithm in finding feasible solutions on this case is presented in Table

6.8 as the number of times that an algorithm has found at least one feasible solution with the

overall percentage out of 30 runs. Results for the cMLSGA and MLSGA are highlighted in

green and blue, respectively. It can be seen that no algorithm except of the cMLSGA is able

to achieve 100% robustness. Furthermore, robustness of the specialist-solvers is lower than of

the more general ones. MOEA/D has found feasible solutions in 26 out of 30 cases, MOEA/D-

PSF and MOEA/D-MSF in 27/30 cases, while HEIA, U-NSGA-III and MLSGA-hybrid have

found feasible solutions in 29 out of 30 cases. Therefore, it can be seen that general-solvers

are not only able to provide more accurate and diverse results, but also are having a higher
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(a) cMLSGA (b) MLSGA (c) HEIA

(d) U-NSGA-III (e) MOEA/D (f) MOEA/D-MSF

(g) MTS (h) IBEA (i) BCE

Figure 6.3: Achieved Pareto optimal fronts on the 3DSA case

robustness on highly constrained cases. This is essential for the real-world applications, as

often only a single optimisation run is conducted, due to cost and time limitations. That

issue could be reduced by predefining the feasible solutions as the starting population instead

of utilising fully random methods. However, in this case it has been decided not to follow this

approach, as it might promote certain algorithms that are not focused on the search space

exploration, thus reducing the potential for revolutionary designs as leading to final solutions

being close to predefined points. Furthermore, in many real-world cases this adjustment is

not possible, due to the lack of knowledge about where the feasible solutions are located.

The effectiveness of different GAs is further investigated by comparison of the achieved Pareto

optimal fronts. Fronts achieved by each of the benchmarked algorithms are illustrated for the

3DSA problem in Fig. 6.3, CLPT2 case in Fig 6.4 and CLPT3 in Fig. 6.5. The representative

Pareto optimal front is selected using a HV value closest to the average HV. The results for

MOEA/D-PSF are not included due to a high resemblance to the Pareto optimal fronts

achieved by MOEA/D-MSF. From the graphs, Figs 6.4 and 6.5, it can be observed that for
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(a) cMLSGA (b) MLSGA (c) HEIA

(d) U-NSGA-III (e) MOEA/D (f) MOEA/D-MSF

(g) MTS (h) IBEA (i) BCE

Figure 6.4: Achieved Pareto optimal fronts on the CLPT2 case

the CLPT2 and CLPT3 all algorithms, except of MTS and IBEA, are able to find a wide

spread set of points, including the boundary regions. However, it can be seen that in the

cases of MOEA/D and MOEA/D-MSF, only a few solutions have been found in the boundary

regions, whereas most points are located in the central regions of the objective space. All

of the presented general genetic algorithms have a far greater uniformity due to a stronger

emphasis on the diversity. For the 3DSA case, Fig. 6.3, it can be seen that cMLSGA,

MLSGA, U-NSGA-III and HEIA are able to achieve a diverse set of points, while MOEA/D-

MSF, MOEA/D and BCE are finding only a few random solutions. This further supports

the previous findings that the specialist-solvers are unable to solve complex, constrained

real-world cases, as are failing to provide a sufficient diversity.

Investigating the Pareto optimal fronts obtained by the tested algorithms on practical cases,

some resemblance to the true fronts of the artificial benchmarking functions can be observed.

This is illustrated in Fig. 6.6 for CLPT2 and in Fig. 6.7 for CLPT3. Pareto optimal

front of the CLPT2, Fig. 6.6, is discontinuous and convex, showing similarities to ZDT1,

ZDT4 [30], UF1-3 [31] and MOP1-2, 5 [32]. However, with exception that these benchmarking
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(a) cMLSGA (b) MLSGA (c) HEIA

(d) U-NSGA-III (e) MOEA/D (f) MOEA/D-MSF

(g) MTS (h) IBEA (i) BCE

Figure 6.5: Achieved Pareto optimal fronts on the CLPT3 case

problems are continuous and with a lower bias towards the central regions of the Pareto

optimal front. Furthermore, CLPT2 introduces an unique form of multimodality, which

is not seen in the artificial problems, due to utilisation of step function. In this case the

number of utilised stiffeners can be either 2,3,4,5,6,7 or 8, leading to seven separate local

optima as illustrated in Fig. 6.8. For CLPT3, Fig. 6.7, the closest problem is DTLZ8 [40],

which also contains two parts of the front: linear, degenerated front; and a planar one.

However, according to presented results a strong bias towards the linear part of the front

can be observed in CLPT3, but this characteristic does not occur in DTLZ8. Furthermore,

in the DTLZ8 the degenerated front is due to inclusion of constraints, while in the CLPT3

there is no constraints. Regarding the 3DSA problem, 3 constraints are used, while the

benchmarking functions are using maximum 2 at max; and more variables are utilised, 68
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(a) CLPT2 (b) ZDT1, ZDT4, UF1-3, MOP1-2 and
MOP5

Figure 6.6: Resemblance of the Pareto optimal fronts obtained on the CLPT2 problem
with selected benchmarking functions.

(a) CLPT3 (b) DTLZ8

Figure 6.7: Resemblance of the Pareto optimal fronts obtained on the CLPT3 problem
with DLZ8 function.

comparing to typical 10-30. Furthermore, obtained Pareto optimal fronts on the 3DSA case,

shows that neither algorithm was able to reach the true Pareto optimal front. Therefore,

it is indicating a significant complexity of this problem's search space in comparison to the

artificial constrained problems, where most algorithms with a strong focus on the diversity

have been able to properly approximate the final front.
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Figure 6.8: The Local optima of the CLPT2 problem

6.4 Diversity and generality in the current state-of-the-art

In this chapter the current state-of-the-art is evaluated on over 100 benchmarking problems

and 3 practical cases. This is used to define: preferred problem-types for each method-

ology; the best general-solver genetic algorithm; and if the diversity and generality of the

methodology has any impact on the practical applications. It has been found that the

best general-solver methodologies are cMLSGA, HEIA and U-NSGA-III, whereas MTS and

MOEA/D-based methodologies have more specialist approach. For MTS, the constrained

and discontinuous problems are preferred; for MOEA/D the highest performance is observed

for the continuous and imbalanced problems. For the general-solvers the preferred areas of

applications also can be observed: biased, discontinuous and diversity-hard constrained prob-

lems for the cMLSGA and U-NSGA-III; continuous and unconstrained problems for HEIA;

whereas BCE and IBEA algorithms performs poorly on most of the tested problems.

Testing on practical problems have shown that general-solver genetic algorithms are preferred

for all tested cases, whereas specialist-solvers struggles to find a wide range of solutions, even

on theoretically “preferred” problems. Therefore, it is likely that those problems possess more

than one dominant characteristic, or they may be defined differently to the benchmarking

sets. These findings are further supported by similar results obtained by other researchers

while evaluating multiple GAs on the engineering problems [62,146,147].
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7.1 Discussion

The results show that the high diversity of MLSGA is achieved via a unique sub-regional

search. It is developed by using different fitness definitions on each level of selection and an

additional selection pressure resulting from the collective reproduction. Both mechanisms are

necessary to maintain this unique behaviour. The collective-level creates virtual boundaries,

by strongly penalizing the solutions in certain regions and pushing individuals into the pre-

ferred ones, where each collective has a different favoured region. As the collectives are elimi-

nated unless they maintain the diversity designated by the fitness definitions, even if those are

more converged on the Pareto optimal front, this leads to the promotion of diversity over con-

vergence. Furthermore, due to high independence of collectives they are able to more easily

move around the “gaps” in the objective space created by the constraints or the imbalanced

regions on them. Therefore, the search is less likely to get “stuck” in unfavourable regions,

similarly to other sub-population-based approaches with high independence of groups [46,47],

leading to a better overall diversity of the results, and thus a higher performance on those

problems. According to this, it is suggested that MLSGA is moving from the “convergence-

first” to the “diversity-first” approach. In other methodologies with structured populations,

such as island-model [46], social-model [148–150] and spatial-distance [151, 152] based algo-

rithms, the sub-populations have a persistent character and the genetic information exchange

is encouraged in the form of co-operation or competition between groups, showing certain

similarities with the competitive-based approach utilised within the MLSGA. However, in

those algorithms, the between-group mechanisms are based on the same principles as the

individual reproduction, as no fitness separation is used, thereby no additional evolutionary

pressure into different regions is developed that would induce a higher diversity. Further-

more, as indicated in [109] those methodologies usually require a hyper-parameter tuning to

operate effectively on diverse types of problems, unlike the MLSGA.

In decomposition-based methodologies, such as MOEA/D [35], MOEA/D-MSF [83] and

MOEA/D-PSF [83], the diversity is obtained by breaking down the optimised problem into

a set of separate search spaces, each assigned with a distinct sub-population, via predefined

weight vector. Therefore, diversity is dictated by that weight vector, and thus is highly

127
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dependent on its quality, as indicated by other researchers [47, 79–82]. Ideally, it should re-

semble the true Pareto optimal front as closely as possible and be uniformly spread. This

is demonstrated in Section 6.2 by a high performance of the MOEA/D based algorithms

on continuous and imbalanced cases. It is due to those algorithms being initially tested

only on those cases, as further shown by their low performance on other kinds of problems.

Therefore, the results contribute towards considering them as specialist-solvers and it is sug-

gested that the continuous problems are preferred cases for the MOEA/D based algorithms,

while the imbalanced problems favour decomposition of the problem. In the MLSGA all

individuals operate on the same space, and no hyper-parameter tuning is required for the

algorithm to operate effectively, as the diversity is obtained via competition between col-

lectives rather than forced by the predefined weight vector. Furthermore, the MLSGA is

more capable of avoiding the infeasible regions in constrained and discontinuous problems

in comparison to decomposition-based methods. This claim is supported by high gains in

performance of the MOEA/D-based variants of MLSGA over the implemented algorithms on

those cases. Whereas, the MOEA/D based algorithms struggle to operate in non-continuous

search spaces. In MOEA/D the weights are defined in straight lines which may pass through

the regions without feasible solutions, leading to an inefficient search.

According to the conducted tests on over 100 test problems and 3 practical cases, detailed in

Chapter 6, there is a correlation between the average performance on the artificial problems

and the effectiveness on engineering cases, as detailed in Table 7.1. It can be seen that

cMLSGA is the best on average on two- and three-objective artificial problems and it is

the best algorithm for the engineering cases as well, while HEIA [36] and U-NSGA-III [43]

usually come second or third on both types of problems. This shows a high usefulness of

genetic algorithms with a more general performance. Therefore, by testing across 100 test

problems, it was possible to gain a good performance on the real cases. Yet, only 2 of the

current state-of-the-art algorithms, NSGA-II and MOEA/D, were tested on that scale, as

shown in Section 2.3. However, most of those benchmarks are coming from other authors

whom are benchmarking against those algorithms, 94 for NSGA-II and 52 problems for

MOEA/D. Therefore, the results from those studies were not impacting the development

of those algorithms. The high generality of the cMLSGA is due to utilisation of multiple

search strategies in the co-evolutionary approach as discussed in Chapter 5. Similar principle

applies to HEIA, where Simulated Binary Crossover (SBX) is combined with the Differential

Evolution based crossover (DE) with Immune Algorithm based re-population of different sub-

groups [36], leading to a higher generality. Interestingly, BCE [103] shows poor performance

on artificial benchmarking, but has a good performance on real problems, further supporting

the importance of more general approach. Lowered performance on engineering problems in

comparison to other general-solvers is due to the choice of evolutionary algorithms utilised

in BCE. It is combination of the indicator-based strategy, similar to IBEA [121], and the

decomposition-based strategy, similar to MOEA/D [35], and both are performing badly on

the engineering problems. The high generality of U-NSGA-III is due to the fact that the

search is not highly constrained, unlike in the decomposition-based methods. In MOEA/D

each individual is hard bounded to the particular weight-vector, which dictates its convergence
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Table 7.1: The average rankings on two- and three-objective cases compared to the average
performance on engineering cases.

Position
Benchmarking problems

Engineering problems
Two-objectives Three-objective

1 cMLSGA cMLSGA cMLSGA

2 HEIA U-NSGA-III HEIA

3 U-NSGA-III HEIA U-NSGA-III

4 MOEA/D-MSF MOEA/D BCE

5 MOEA/D MOEA/D-MSF MOEA/D-MSF

6 MTS MOEA/D-PSF MOEA/D

7 MOEA/D-PSF IBEA MOEA/D-PSF

8 IBEA MTS MTS

9 BCE BCE IBEA

and diversity, thus the region of exploration, while in U-NSGA-III the individuals have more

freedom of exploration.

The results presented in Chapter 6 show that high diversity is also needed for successful

engineering applications. In that case, MLSGA HEIA is outperforming the standard HEIA,

despite using the same reproduction mechanisms. This is especially noticeable on the 3D

spatial arrangement of leisure boats (3DSA), where MLSGA-hybrid is obtaining significantly

better results, whereas the difference in performance is not as distinct while solving the

structural design of composite stiffened plates (CLPT2). It is because the 3DSA case contains

multiple constraints, resulting in high quantities of infeasible regions and discontinuities of

the search space, and thus a higher complexity. Furthermore, it is indicated in Chapter 6

that CLPT3 case is biased towards the linear part of the front. This is explaining the low

performance of convergence-based solvers on CLPT3 and 3DSA cases, as it is known that

these characteristics require a higher diversity of the search [29,44].

Interestingly the results indicate that there may be no correlation between performance on

distinct categories of artificial problems and engineering cases of similar type. According to

the presented data, in Chapter 6: MTS should obtain high performance on 3D spatial ar-

rangement of leisure boats case (3DSA), as it is highly effective on constrained benchmarking

cases; MOEA/D-based algorithms should provide good results on unconstrained and imbal-

anced problems such as structural design of composite stiffened plates (CLPT2 and CLPT3);

while HEIA should struggle on highly constrained problems, but it is not valid according

to the presented results. It is suggested that the typical distinction used in artificial bench-

marks, such as constrained/unconstrained, continuous/discontinuous or imbalanced/biased;

do not reflect the complexity of the real-world problems. Therefore, it is likely that these

cases possess more than one dominant characteristic or those may be defined differently to the

benchmarking sets, leading to a higher complexity of the real-world cases and thus require-

ment for a better diversity. This may partly explain a low performance of the specialist-solver

GAs on the engineering problems. Development of specialist-solvers is based on assumption

that benchmarking functions are representative of the practical problems; or at least a similar

real-problems to them exists, and thus an improvement of the performance on these cases will
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lead to better results on the latter. The lack of correlation between the engineering and sim-

ilar artificial problems indicates that this assumption is not valid. However, the limited data

provided in this thesis, one constrained and two unconstrained cases with no details regard-

ing the characteristics of optimised engineering cases, does not allow to draw any overarching

conclusions in this regard.

Therefore, the discussed data supports the hypothesis that the general-solver, diversity ori-

ented genetic algorithms are preferred for the optimisation of real-world problems. It is

suggested that it is due to: their higher chances of success on problems with different char-

acteristics than the benchmarking problems; need for a high diversity of the search on more

complex cases, especially with discontinuous spaces and multiple constraints; and the lack of

needing a prior adjustment to the characteristics of optimised problems, which are usually

not known in advance.

7.2 Limitations

Despite the discussed findings, the presented work has several limitations due to chosen

scope of work, time constraints and limitations of the currently available literature and the

state-of-the-art.

Firstly, this thesis shows that the high diversity and generality is preferred for the engineering

applications, but it is not known if one of them is more important or if both are of the

same significance. Therefore, here it is suggested that both should be considered while

developing new genetic algorithms. However, if one of them is more essential, this knowledge

would allow to further focus a future development, leading to even better methodologies.

This understanding is restrained by two aspects: quality of the benchmarking functions

and quality of developed performance indicators. As discussed in Section 2.3, most of the

diversity-hard test problems, such as DAS-CMOP [44] or CF [31], are developed by the same

groups of researchers, or have similar fitness functions definitions, as their non-diversity-hard

counterparts. Therefore, those may promote certain solutions rather than a higher diversity

of the search by itself. In this thesis, two quality indicators are selected: IGD, with a stronger

focus on uniformity and convergence of solutions and HV, with a stronger focus on spread and

diversity of points; from among over 100 indicators developed [139]. However, all indicators

focus on the quality of the final solutions, rather than the search in overall. Therefore, those

indicators may answer if the final solutions are converged/well-spread/uniform, but do not

provide much information if the methodology has a higher focus on diversity of the search

rather than convergence.

Secondly, it is not known how the findings of this thesis apply to problems outside of en-

gineering. On one hand, cases such as dynamic problems, are shown to require a high

convergence over diversity [104]. This applies even for constrained functions, which usually

require a higher diversity, as presented and discussed in Appendix C. On the other hand,

it is shown that many scientific problems from biology and chemistry, have discontinuous
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search spaces [153–156], and thus these may require even higher diversity. Furthermore, it is

indicated that for some of them, due to associated measurement error, convergence on the

global optimum is not as important [155].

Thirdly, it is indicated that tested practical problems may have multiple main characteristics

or that these may be different from the benchmarking problems. However, it is not known

what those characteristics are; if those are different than for the artificial cases; and if the

engineering problems have any of them in common.

7.3 Future work

Due to discussed findings and limitations of this thesis the following approaches are suggested

for consideration in the future:

� Investigating the characteristics of engineering problems. This should be done by math-

ematical analysis and full landscape analysis of the problems, including ruggedness and

shape of the fitness landscape; number of local optima; time to reach a local optimum;

the distance between different optima and to the global optimum; the number and lo-

calisation of the infeasible regions; and mapping between search and objective spaces;

in a similar manner to [44,157,158]. This will allow to group the engineering problems

in an analogous manner to the classification used in Chapter 5, and thus to design

new benchmarking problems more accurately, which would resemble the practical cases

to more extent. It is suggested that, if the benchmarking problems would represent

the practical cases more accurately, there would be no need to test algorithms on 100

problems to develop novel search mechanisms, which would be effective for solving the

practical problems.

� Testing the genetic algorithms on a wider range of practical problems, not only from

engineering. This will allow defining, which course of development is preferred for a

particular branch of science or industry, similarly to the diversity/generality for engi-

neering cases and convergence for dynamic problems, as discussed before. It should be

followed by an investigation of the characteristics of those problems, leading to a higher

applicability of new genetic algorithms to the real-world problems.

� Development of a new metric and a new set of test problems created specifically to

evaluate the diversity or modifying the currently existing ones to serve that purpose.

This would allow to better define the “diversity-first” algorithms, and to evaluate if the

diversity or convergence is more preferred in practical applications. The metric should

be a measurement of the overall diversity of the search, not only of the final solutions.

It is suggested that the coverage of the fitness landscape or the search space can be

used for that purpose. Potential solution could be a combinatorial metric based on

the sparseness indicator from the Novelty Search algorithms [113,114], to evaluate the

diversity across search space; and the NSGA-II's crowding-distance [34], for evaluation
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of the objective space. For new test sets, it is suggested that the findings from previous

two points can be used to better tailor “diversity-hard” problems.

7.4 Concluding Remarks

The current state-of-the-art is dominated by specialist-solver genetic algorithms with a strong

emphasis on high convergence. However, those approaches are rarely applied to the real-world

problems, but a more general solutions are used. This thesis investigates if the methodology

with high diversity and generality of the search is preferred for the practical optimisation,

due to a high complexity of those cases.

To investigate this hypothesis Multi-Level Selection Genetic Algorithm is extended to develop

the “diversity-first” general-solver algorithm. This is performed in three main steps: first

it is investigated if the collective-level mechanisms and the fitness separation of MLSGA

can be used to promote a higher diversity; then the hybrid-approach is proposed, where

reproduction mechanisms from the current state-of-the-art are implemented into MLSGA in

order to improve the overall performance while retaining the diversity in each collective; and

finally, multiple reproduction mechanisms are combined in the co-evolutionary approach for

a higher generality of the search, leading to the cMLSGA variant.

It is found that the proposed cMLSGA algorithm is outperforming the current state-of-the-

art on all tested practical problems. Furthermore it is shown that the currently promoted

“convergence-first” specialist-solvers such as MTS [93], MOEA/D [35], MOEA/D-MSF [83]

and MOEA/D-PSF [83] are less suitable for the practical problems than other methodologies

with a higher diversity and generality, such as HEIA [36], BCE [103] and U-NSGA-III [43].

It is concluded that proposed algorithm was successful in developing the “diversity-first”

general-solver approach by utilisation of the additional level of selection and split in the

fitness function, and that the high generality and diversity of the search strategy is needed

for successful real-world applications. Therefore, a higher emphasis should be given on the

development of such methodologies. Furthermore, the development of new algorithms should

be followed by testing on a wide range of artificial and practical problems in order to maximise

the chance of success on the practical problems.
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1.  Applications using genetic algorithms

There is a large literature pertaining to applications 
and developments of evolutionary algorithms. Coello 
Coello [1] has collected 10 714 references relating to 
genetic algorithms and a google scholar search of the 
term ‘genetic algorithm’ for 2017 supplied 37 600 
examples using or developing these algorithms. These 
references cover a wide range of areas related to finding 
optimal solutions to complex problems across a wide 
range of different types of search space. A recent 
review by Zhou et  al [2] lists 50 major applications 
for evolutionary algorithms. This is augmented 
by recent high profile examples that utilise these 
algorithms from a number of different fields of study, 

including architecture, bioinformatics, computational 
science, evolutionary theory, environmental science 
and materials engineering ([3–14]). The problems 
being solved are becoming more complex and 
therefore promising methods for the improvement 
of genetic algorithms should be further explored and 
documented. This research investigates the adoption 
of multi-level selection, a popular explanation for the 
mechanisms of evolution, as a potential inspiration to 
improve evolutionary computation.

1.1.  Evolutionary inspiration
Evolutionary algorithms were originally proposed by 
Turing [15] and were first developed by Holland ([16] 
and [17]) to study evolution through simulations. The 
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usages of genetic algorithms quickly expanded due to 
their ability to search large and complex spaces, with 
a corresponding increase in the number of available 
algorithms. Since these initial attempts, there has 
been limited success in improving genetic algorithm 
performance using evolutionary inspired methods. A 
recent benchmarking of top algorithms in the CEC’09, 
[18], show no biologically or evolutionary inspired 
mechanics and a recent review of the state-of-the-art 
in biomimetics does not list evolution in the top 100 
topics [19]. However, other algorithms have benefited 
from developments that more closely mimic the 
original concepts that inspired them, such as the ant 
colony optimisation developed by Zhang [20].

In parallel with the improved performance in 
genetic algorithms, there have been developments 
in evolution theory, which have led to a larger range 
of mechanisms available to explain how organisms 
evolve; many researchers now believe that some of 
these mechanisms are necessary for biological evo
lution. These proposed mechanisms are missing from 
the genetic algorithm and the authors believe they 
should be used to re-inspire it; if they are critical to 
evolution then they should provide benefits to algo-
rithm development. Amongst the newer evolutionary 
theories is the multi-level selection theory, originally 
proposed by Sober and Wilson [21], with the idea that 
evolution does not occur at only one level but is actu-
ally occurring at different levels of a hierarchical struc-
ture. An example of a hierarchical structure is shown 
in figure 1 where evolution at multiple levels is shown 
using collectives, larger units, which contain a num-
ber of individuals, smaller units; darker shading of the 
individuals or the collectives is used to illustrate higher 
fitness. As the generations progress the collectives may 
continue, and possibly reproduce, or be eliminated, 
depending on their ability to survive. Within the sur-
viving collectives, the individuals also reproduce or are 
eliminated, based on their fitness. The strongest indi-
viduals generally have more offspring and this leads 
to an increase in average fitness. Whilst the authors 
believe the process makes intuitive sense, and there is 
a growing body of evidence to support the idea that it 
increases evolutionary speed, the theory of multi-level 
selection is not without controversy. There are many 
arguments for other mechanisms through which evo
lution might occur, such as Dawkin’s popular selfish 
gene theory [22] which emphasises a gene-centric level 
of evolution, or Sterelny and Kitcher [23] which ques-
tions whether there must be a uniquely correct iden-
tification of the level at which selection is occurring. 
The authors believe multi-level selection provides the 
most promising inspiration for improvements to the 
genetic algorithm, allowing a collective mechanism to 
be put in parallel with current individual mechanisms 
and allowing more flexibility in the manner in which 
the fitness function can be interpreted. Initial research 
by the authors investigating one variant of multi-level 
selection shows promise [24] and can be used to solve 

practical problems [25] but further investigation 
into the inspiration behind these mechanisms needs 
exploring. This paper therefore documents the behav-
iour of different variants of this algorithm to provide 
specific solvers for different problem types when using 
the multi-level selection genetic algorithm (MLSGA) 
methodology. These will exploit the unique reproduc-
tion mechanisms at each level of MLSGA and the split 
in the fitness function.

1.2.  Multi-level selection theory
Natural selection encourages individuals to adapt to 
the environment developing traits that increase their 
chance of survival; it is therefore common to consider 
adaptions at the individual level, for example, giraffes 
with longer necks can reach leaves on trees that others 
cannot. Multi-level selection proposes that it is rare 
for a population to compete as individuals without 
some kind of beneficial interaction; often a number of 
individuals will group together with the aim of helping 
each other. This can be in the form of a number of 
organisms grouping into a tribe or pack but it can also 
be at a lower level where a number of organelles create 
a hybrid form. An argument is often made to support 
the statement that there are characteristics that have 
developed which cannot be explained satisfactorily 
at the individual level, for instance altruism; which 
is a trait that does not benefit the individual and, by 
definition, actually results in a cost to itself. Sober and 
Wilson [21] suggested that evolution of altruists can 
be observed at a level higher than the individual by 
watching the development of colonies.

Multi-level selection is an outcome of three deter-
minants based around those proposed by Lewontin 
[26], which holds that evolution occurs when:

	1.	�Different individuals in a population have 
physical variations.

	2.	�Different individuals have different rates of 
survival due to different fitness.

	3.	�There is a correlation between parents and 
offspring so that fitness is heritable.

Natural selection occurs if there are variations in 
characteristics of individuals and some offspring are 
considered to be fitter than others. Individuals with 
these different characteristics can be defined as a ‘unit 
of selection’. Individuals are encouraged to adapt 
over time to the environment developing traits that 
increase their chance of survival. This causes evolution 
as weaker members of the population are lost and the 
stronger members, on average, survive. Gradually the 
make-up of the population will change over successive 
generations to favour the stronger characteristics. A 
species can be described based on a hierarchical organ-
isation, which is normally viewed as a nested hierarchy, 
with one level being enclosed within another. A nested 
hierarchical organisation is presented in figure 1 which 
forms the basis of the MLSGA. McShea [27, 28] pro-
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poses an interactionist approach indicating that selec-
tion at a higher level will occur when individuals at a 
lower level perform fitness-affecting interactions with 
each other, a physical connection is not required, and 
this is supported by Sober and Wilson [21] in their 
theory of multi-level selection. The new algorithm 
is developed by creating a hierarchical organisation, 
including collective level reproduction. However, since 
classical genetic algorithms already utilise selection of 
individuals based on their adaption to their environ
ment it is therefore possible to utilise a standard 
genetic algorithms as the reproduction method at the 
individual level.

In addition to the collective level reproduction 
mechanism the new algorithm relies on a change to the 
way fitness is defined. Amongst the theories for multi-
level selection, there are two main strands, multi-level 
selection 1 and 2 (MLS1 and MLS2) which are depend-
ent on how fitness is defined on the individual and 
collective levels. For multi-level selection 1 the fitness 
is defined the same way at each level, the aggregate of 

the individuals. For multi-level selection 2 the fitness is 
defined differently at each level. For multi-level selec-
tion to occur there are a number of important con-
cepts defined in table 1 including the unit evolution 
is working on at each hierarchical level, the character 
or abilities of a unit used to determine the fitness, the 
fitness used to judge survival for each unit and finally 
the implications of these factors on the heritability of 
the unit. Both of these theories have proponents and a 
large background of literature with which to support 
these views. For a larger and more in-depth review the 
authors recommend the excellent text by Okasha [29] 
outlining the history, theory and gaps in multi-level 

selection research.

1.3.  Comparison to the state-of-the-art
In reviewing algorithms specifically pertaining to 
multi-level selection there are already a few attempts to 
use the process as inspiration to improve evolutionary 
algorithms, but these fail to replicate the key aspects 
of this theory and the resulting performance is poor. 

Figure 1.  Nested hierarchical collective reproduction.

Table 1.  Important concepts of multi-level selection.

Individual level Collective level

Hierarchical 

unit

Number of individuals in each  

collective

Number of collectives composed of individuals

Character The qualities shown by the individual 

which can affect its fitness e.g. speed 

from body type

Collective characters are the qualities of the collective that can affect its 

fitness and can be the average or total character of individuals (aggregate, 

MLS1), e.g. the aggregate speed of each individual, or different from  

individual’s character (emergent, MLS2) with independent qualities, e.g. the 

ability to communicate abstract concepts

Fitness Individual fitness measured directly on 

individuals

Collective fitness measured the same as the individual (aggregate, MLS1) or 

differently to individual’s (emergent, MLS2).

Heritability Individuals with higher fitness  

produce more offspring with characters 

correlated to the parent individuals

Collectives with higher fitness leave more collectives with characters  

correlated to the parent collectives.

Bioinspir. Biomim. 13 (2018) 056007
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Lenaerts et  al [30] were the first to use multi-level 
selection and they study a biological model based 
on multi-level selection. It shows the importance of 
variation between groups as selection at group level 
occurs only when there is enough variation. However, 
the mechanics to generate selection at different 
levels are prescribed based on interactions between 
individuals, as opposed to fitness. Akbari et al [31] and 
[32] looked at multilevel selection including selection 
at different levels. However, they do not present group, 
collective, mechanisms such as characters, fitness and 
heritability, necessary for multilevel selection. The 
algorithm relies on a number of complex mechanisms 
to replicate the sub-problem generation and individual 
replacement. Finally, Wu and Banzhaf [33] focused on 
selections using any hierarchical model. However, in 
multilevel selection, selection at one level influences 
the selection at the adjacent levels and the concepts of 
multi-level selection, such as units of selection at all 
levels and the products induced by selections between 
levels, are not obviously applied. The authors feel 
that these efforts miss the key aspects of multi-level 
selection in that they are orientated around complex 
prescriptive mechanisms, forcing the selection to occur 
rather than letting it emerge as part of the process. As 
these mechanisms do not replicate the key aspects 
of multi-level selection the authors provide a novel 
evolutionary algorithm, supported by the fact that the 
results provide an improved performance compared 
to those previously documented.

Furthermore, multiple different methodologies in 
the current state of the art show similarities to the idea 
of a collective and fitness split, such as sub-population 
approach and problem decomposition. In Niching 
algorithms, such as NSGA-II [34] and U-NSGA-III 
[35], Co-evolutionary algorithms, for example BCE 
[36] and HEIA [37] and Island model algorithms pro-
posed by [38] the population is divided into groups 
with often different operations performed on each 
sub-population. However, between these groups, 
only one level of selection is used with no competition 
between sub-groups and split in the fitness function, 
unlike MLSGA. The decomposition-based methods 
as MOEA/D [39], MOEA/D-M2M [40], CS-NSGA-
II [41] DMOEA-DD [42], LiuLi [43], RVEA [44] and 
K-RVEA [45] operate by partitioning the entire objec-
tive space into subspaces, dividing the problem into 
a number of separate subproblems each with its own 
subpopulation. This is done by using a set of uniformly 
spread reference points, or weight vectors, and scalari-
zation functions. However, the effectiveness of these 
methods decreases for discontinuous problems as sub-
populations can be assigned to regions where feasible 
solutions do not exist. A priori knowledge about the 
objective and search spaces are therefore required to 
adjust the mechanisms. In MLSGA, the sub-regional 
search is created using different fitness definitions, 
instead of forced decomposition, and therefore all 
individuals operate on the same region.

Introduction of selection at multiple levels pro-
vides the inspiration for the development of a new 
algorithm for optimisation, multi-level selection 
genetic algorithm (MLSGA), adding multi-level con-
cepts to the classic genetic algorithm. Current genetic 
algorithms consider the evolution of its individuals at 
a single level similar to the manner in which Holland 
[16] first developed the algorithm. It is proposed here 
that if multi-level selection speeds the process of evo
lution then its addition will elicit an increase in perfor-
mance in the genetic algorithm, speeding up the rate 
at which higher fitness solutions will be found. This 
evolutionary inspiration has been used by the authors 
to develop an algorithm, multi-level selection genetic 
algorithm but there are a number of different variants 
of multi-level selection theory and these are explored 
on single- and multi-objective problems to categorize 
any differences in behaviour.

2.  Methodology

Outlined are the mechanisms that are used, inspired 
by the concept of multi-level selection, and the 
methodology used, showing the adaptations from the 
classic genetic algorithm. This is documented for the 
two variants of multi-level selection theory to show the 
differences in performance, the unified theory and also 
to the commonly used NSGA-II algorithm and also to 
the commonly used NSGA-II algorithm and MOEA/D 
developed by Zhang and Li [39]. NSGA-II was created 
by Deb et  al [34] and is the most commonly used 
genetic algorithm but is also selected to represent a 
niching algorithm. The specific method selected is the 
2011 updated version which shows similar results on 2 
objective functions to the more mature U-NSGA-III. 
MOEA/D developed by Zhang and Li [39], represents 
sub-region search algorithms, and is the highest 
performing genetic algorithm for unconstrained 
test functions, for multi-objective problems. In these 
cases the hyperparameters are taken from the CEC’09 
benchmarking with no additional tuning [18].

2.1.  Multi-level selection genetic algorithm 
(MLSGA)
The genetic algorithm starts with a randomly generated 
population of individuals each of which represents 
a set of variables representing the search space for 
an optimisation problem. This population is then 
evaluated against a fitness function. Once the variables 
for each individual have been assessed, and the fitness 
determined, a new generation can be created from 
the current parent generation. Whatever the specific 
selection methodology chosen the process involves 
finding the fittest individuals within a population to 
mate and produce a child generation. These children 
are produced by the process of crossover where the 
chromosome of the parents is split. The chromosomes 
are then combined forming a new offspring different 
to the parent generation. Further diversity is found 
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through mutation of the chromosome, where random 
changes are made normally based on a probability 
value, which is chosen to be low. Once this process 
has been repeated for the whole population a new 
population is then ready for the process to be repeated. 
Over successive generations, the average fitness of the 
population will become lower until either the optimal 
value or the limit of the number of generations 
is reached. This replicates a simplified process of 
evolution first developed to simulate the process but 
since then many adaptions and improvements have 
been made.

The multi-level selection genetic algorithm is simi-
lar to previous genetic algorithms except that it utilises 
the key concepts from table 1, defining fitness and her-
itability, through reproduction mechanisms, at differ-
ent hierarchical units, individuals and collectives. The 
main addition is therefore the collective, which con-
tains a number of individuals and has a fitness depend-
ent on the character of those individuals.

	1.	�Initialisation—a population of individuals is 
created at random.

	2.	�Classification—sorted into collectives of the 
most similar individuals, in this case using a 
support vector machine (SVM). The quality 
of the result is dependent on a good spread of 
results between the collectives where SVM is 
used over clustering algorithms to allow the user 
control over the size of the collectives.

	3.	�Individual reproduction—As the algorithm 
progresses the individuals inside each of the 
collectives are treated in the same manner as 

for the standard genetic algorithm so that the 
process of selection and mating continues as 
normal.

	4.	�Collective reproduction—the difference is that 
the collectives themselves have a fitness and 
elitism process where the least fit are eliminated 
and the fittest reproduce. Hyperparameter 
tuning is performed which shows that the results 
are relatively insensitive to the new parameters. 
Large or small numbers of collectives are shown 
to provide poor performance with 6 giving the 
best performance for these problems and 4 or 
8 collectives giving similar but worse results. 
In this case 2 collectives are eliminated and 2 
are created from the old surviving collectives 
with the individuals being populated from the 
fittest 4 collectives, where the number of new 
individuals in the offspring collective is equal 
to the number of individuals in the eliminated 
one. Individuals are generated by replicating 
the best individuals, according to the collective 
fitness function, equally from the remaining 
collectives. As an example in the case where 
there are 6 collectives and 2 are eliminated then 
if there are 40 individuals in the first eliminated 
collective and 60 in the second then the best 10 
individuals from the remaining 4 collectives are 
replicated and added to the first new collective 
and the next 15 best are then taken from the 
remaining 4 collectives and are added to the 
second new collective.

	5.	�Termination—The algorithm terminates, in 
these cases after a given number of generations.

Table 2.  Multi-level selection algorithm methodologies.

Step Parameter Value

1. Initialisation Type Random

Encoding Real values

Pop. Size 600

2. Classification Method SVM

Number of collectives 6

3. Individual reproduction

Fitness evaluation Type MLS1 or MLS2 individual fitness

Selection Type Roulette wheel

Mating Crossover type Real variable SBX

Crossover rate 0.7

Mutation type Polynomial mutation

Mutation Rate 0.08

Elitism Rate 0.1

4. Collective reproduction

Fitness evaluation Type MLS1 or MLS2 collective fitness

Elimination Number of eliminated collectives 2

Replacement Number of new collectives 2

5. Termination Criterion Reaching 500 generations
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This process, with the specific details used in this 

paper for each stage, are documented in table 2.

2.1.1.  MLS1
The two types of multi-level selection differ in the 
manner in which the fitness function is represented. In 
MLS1 the fitness of the collectives is the aggregate of 
the sum of the individuals and is illustrated using the 
ZDT1 function where f1(x) is,

f1(x) = x1,� (1)

and f2(x), is,

f2(x) = 1 +
9

n − 1

n∑

i=1

xi


1 −

√
x1

1 + 9
n−1

∑n
i=1 xi


 ,

� (2)

where variables are in the range 0 � xi � 1, n is the 
number of variables. The first objective function is 
arbitrarily taken as f1(x) and the second, remaining, 
objective function is f2(x). This means that the same 
fitness function can be used to determine the selection 
in the collectives as well as the individuals. The fitness 
function for the MLS1 individuals and collectives is,

Fitness =
f1(x) + f2(x)

2
.� (3)

2.1.2.  MLS2
The MLS2 theory states that the fitness for the 
collectives is different to the fitness for the individuals. 
Therefore, this variant only allows the use of multi-
objective optimisation problems or the generation 
of an abstract objective for single objective problems. 

For the cases chosen here, the fitness function has been 
split into two with one of the objectives forming the 
fitness for the individuals,

Individual Fitness = f1(x),� (4)

and the other forming the fitness function for the 
collective,

Collective Fitness = f2(x).� (5)

The effect of reversing this order is also investi-
gated to determine whether it affects the results of the 
optimisation and is designated MLS2R, i.e. in equa-
tions (4) and (5) individual fitness is assigned to be f2 
and collective fitness f1.

2.1.3.  MLS-U
Contradicting the need to define MLS1 or MLS2, 
Sterelny and Kitcher [23] indicate that a single 
mechanism for selection does not need to be defined 
at each level. United Multi-Level Selection (MLS-U) 
is introduced, inspired by this definition, exhibiting 
characteristics of both MLS types. In MLS-U all MLS 
variants are used in parallel where some collectives 
only utilise MLS1, MLS2 or MLS2R, maintaining an 
equal number of collectives of each type.

2.1.4.  Computational complexity of one generation
The computational cost of the MLSGA is determined 
by three operations: the PF selection, individual 
reproduction and collective reproduction. The 
PF selection identifies nondominated individuals 
from 1.5N members at most, aggregate of external 
population of maximum size equal to the overall 

Table 3.  ZDT test Functions.

Problem Objective functions Comments

ZDT1 [47] f1(x) = x1
; 

f2(x) = g(x)

[
1 −

√
x1

g(x)

]
Convex,

g(x) = 1 + 9
∑n

i=2 xi

n−1
continuous

ZDT2 [47] f1(x) = x1; f2(x) = g(x)

[
1 −

[
x1

g(x)

]2
]

Nonconvex,

g(x) = 1 + 9
∑n

i=2 xi

n−1
continuous

ZDT3 [47] f1(x) = x1 Convex

f2(x) = g(x)

[
1 −

√
x1

g(x) − x1
g(x) sin(10x1)

]
Disconnected

g(x) = 1 + 9
∑n

i=2 xi

n−1

ZDT4 [47] f1(x) = x1, f2(x) = g(x)

[
1 −

√
x1

g(x)

]
Convex,

g(x) = 1 + 10(n − 1) +
∑n

i=2 [x
2
i − 10 cos(4xi)] large search space

ZDT6 [47] f1(x) = x1 − exp(−4x1) sin
6(6x1) Nonconvex

f2(x) = g(x)

[
1 −

[
x1

g(x)

]2
]

Non-uniformly

g(x) = 1 + 9
[∑n

i=2 xi

n−1

]0.25 spaced

Bioinspir. Biomim. 13 (2018) 056007



7

A J Sobey and P A Grudniewski﻿

population size N and current collective of maximum 
size of 0.5 N, requires O(m(1.5 N)2) comparisons 
using fast nondominated sorting approach, where 
m is the number of objectives [34]. In individual 
reproduction the full replacement of old generation 
with elitims take place which require O(N2) at most, as 
only one of the objectives is considered. For collective 
reproduction, the fitness evaluation step requires O(N) 
computations, as is calculated as the average of single 
fitnesses of the individuals and collective replacement 
of O((0.5N)2) complexity at most, due to maximum 
size of the collective.

To summarize, the overall computational com-
pexlity of one generation of MLSGA is bounded by 
O(mN2).

3.  Characterisation of multi-level selection 
variants

The results of genetic algorithms developed using 
the two strands of multi-level selection, MLS1 and 
MLS2, are compared to each other for the different 
test functions from Ziztler et al [46], shown in table 3, 
on 30 separate runs. These are popular in testing 
genetic algorithms due to the wide range of near 
optimal points which are difficult to find, and which 

the classical genetic algorithms cannot solve. Whilst 
there are more complex functions available, these are 
not selected at this stage, as it is difficult to identify 
differences between variants on these problems. 
Furthermore, these problems have clear differences 
in complexity for both fitness functions, where f2 is 
harder, making it easier to investigate the differences 
between MLS2, MLS2R and MLS1. For each of 
these functions the number of variables used is 30, 
except in the case of ZDT4 where 10 are used. The 
variable bounds are [0, 1] for all cases except in ZDT4 
where these are: x1 = [0, 1], x2..10 = [−5, 5]. The 
stopping criterion is when a value of 300 000 function 
evaluations, generations multiplied by population 
size, is reached. If the optimal result is not found at this 
stage then the best fitness to this point is used as the 
minimum fitness value. To demonstrate the accuracy 
of each algorithm results show the minimum, the 
maximum and the average optimal results found over 
the all the runs. The robustness of the algorithm is 
investigated to determine the percentage of runs over 

which the algorithm found the optimal result.

3.1.  Weighted average optimisation—evolutionary 
speed
A weighted average optimization is used to 
demonstrate the algorithm working for single 
objective problems. MLS2 and MLS1 become the same 
for a true single objective problem, f1 = f2, however, 
in the weighted average case two objectives still exist 
and so MLS2 can still be examined, even though it 
still splits the function into two components but is 
trying to find the solution illustrated in equation (3), 
conversely MLS1 considers all problems as a weighted 
average. The results are shown in table 4 with the best 
performing algorithm shaded for each category other 

than the standard deviation.
The results show that the MLS1 function rapidly 

finds the solution to all of these problems, except for 
ZDT4; in the case of the ZDT4 function a close to 
best value is found. A similar performance is seen for 
the MLS2R function but with a slightly greater varia-
tion in the solutions for the more complex functions, 
ZDT3-6, finding the best solution 43% of the time for 
the ZDT3 function and 77% for the ZDT6 function. 
The MLS2 variant performs extremely poorly for most 
of the functions only finding the best solution for the 
ZDT2 function and in this case only 30% of the time. 
The unified variant, MLS-U, exhibits a similar per-
formance to the MLS1 and MLS2R variants and out-
performs MLS2, in terms of the final accuracy of the 
Pareto front. However, the results take considerably 
more generations to form than for the other variants, 
especially MLS1. The results demonstrate the manner 
in which the MLS1 algorithm dives towards the Pareto 
front reaching it quickly, in single objective optim
isation or scenarios where the optimal value is not of 
so much interest and the near optimal is required the 
MLS1, with a low generation cut off, would provide 

Table 4.  Comparison of multi-level selection algorithms for 
weighted average optimisation.

Test 

function

Fitness

Convergence  

(Generations)Max. Min. Mean

Standard  

deviation

MLS1

ZDT1 0.375 0.375 0.375 0 49

ZDT2 0.500 0.500 0.500 0 34

ZDT3 0.039 0.039 0.039 0 100

ZDT4 0.375 0.375 0.375 1.90 × 10−06 500

ZDT6 0.500 0.500 0.500 0 145

MLS2

ZDT1 0.500 0.584 0.508 0.017 500

ZDT2 0.500 0.558 0.505 0.013 412

ZDT3 0.500 0.583 0.506 0.016 500

ZDT4 3.38 32.8 16.7 7.58 500

ZDT6 0.516 0.601 0.567 0.025 500

MLS2R

ZDT1 0.375 0.375 0.375 0 169

ZDT2 0.500 0.500 0.500 0 57

ZDT3 0.039 0.039 0.039 1.00 × 10−06 368

ZDT4 0.375 0.375 0.375 1.19 × 10−04 500

ZDT6 0.500 0.501 0.500 4.11 × 10−04 377

MLS-U

ZDT1 0.378 0.393 0.388 2.84 × 10−03 500

ZDT2 0.500 0.500 0.500 0 299

ZDT3 0.039 0.039 0.039 0 465

ZDT4 0.375 0.375 0.375 4.70 × 10−05 500

ZDT6 0.500 0.501 0.500 4.33 × 10−04 479
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an excellent solution in few generations. For the MLS2 
the choice of function for the individual and collec-
tive is important in determining the performance with 
one variant finding the Pareto front rapidly and the 
other struggling to find any optimal solutions. Com-
putationally the new algorithm is rapid and the only 
extra computational effort over a standard genetic 

algorithm is the generation and elimination of the  
collectives.

3.2.  Multi-objective optimisation—evolutionary 
diversity
The speed and accuracy with which the optimal point is 
found is interesting and useful for a subset of problems. 

Figure 2.  Pareto front comparison at 50 generations ZDT1 function.

Figure 3.  Pareto front comparison at 100 generations ZDT1 function.

Figure 4.  Pareto front comparison at 50 generations ZDT6 function.
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However, the benefits of evolutionary algorithms lie 
in their ability to assess multi-objective cases where 
a spread of optimal points is required. Whilst these 
fronts are useful they can be difficult to generate, as 
the algorithm must be accurate while ensuring an even 
spread of results to ensure that sharp variations in the 
front are found. The algorithm is adapted from the 
weighted-average results by storing the 400 best values 
in the Pareto front the objective functions are evaluated 
in the same way and only the objectives against which 
they are judged are changed, i.e. the spread of results 
is now evaluated unlike in the previous section. In 
this case, the 3 algorithms, including the 4 variants of 
MLSGA, are used to generate a Pareto front for the 
previously defined functions. The results for ZDT1-
4 and 6 are found and are illustrated for the MLSGA 
variants at 50 and 100 generations for the ZDT1 case at 
50 generations, figure 2, and 100 generations, figure 3, 
to demonstrate the difference in performance. This is 
shown again for the more complex ZDT6 function in 
figure 4, for 50 generations, figure 5, 100 generations, 
and figure 6, 250 generations. Blue diamonds represent 
MLS1, red squares represent MLS2, green triangles 
represent MLS2R and purple circles represent MLS-U.

The Pareto front evolution shows a large differ-
ence between the algorithms at the early generations. 
However, by the time 100 generations have been com-
pleted then the algorithms have all found, or are close 
to finding the Pareto front. Figure 3 demonstrates the 
speed with which the Pareto front is found. In this case, 
the MLS2R algorithm finds the front rapidly with a 
good spread of results. The MLS2 algorithm finds a 
few points on the top left hand part of the front, but 
is unable to provide a greater diversity of points. The 
MLS1 algorithm finds some points along the front rap-
idly and is the first to reach it but struggles to diversify 
these with extra points along this front. The MLS-U 
shows the worst speed for reaching the front, and 
never reaches it in over the 30 runs. This is because the 
MLS-U variant uses 3 different methods simultane-
ously where each has approximately only a third of the 
overall population. In this case, the evolutionary pres
sure is not as concentrated as when only a single vari-
ant is used and results in slower progression.

The process is repeated for the more complex 
ZDT6 functions where all of the algorithms are slower 
to find the front, shown in figures 4–6. The MLSGA 
variants find the front with the MLS2 and MLS2R 

Figure 5.  Pareto front comparison at 100 generations ZDT6 function, where the MLS-U results are not visible due to poor 
convergence.

Figure 6.  Pareto front comparison at 250 generations ZDT6 function.
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finding a good spread of results. The MLS2 in this case 
is able to find the front more rapidly than the MLS2R. 
The MLS1 algorithm finds some on the front but many 
of the points are a considerable distance from the 
front. The MLS-U results show a slower progression to 
form the Pareto front to the extent that the results for  
figure 5 are not visible as they are out of range, resulting 
from a change in axes from figure 4 to figure 5. Figure 6 
shows the results after 250 generations where MLS-U 
has not found the front due to the lower evolutionary 
pressure exhibited by this variant.

Table 5 illustrates the IGD values for the differ-
ent algorithms with the best results in bold, MLS-U is 
ignored because of its poor performance. The MLS2R 
algorithm provides slightly better results in almost 
all cases except for the ZDT6 function, where MLS2 
provides better results. This raises a question about 
how the collective and individual functions should be 
defined. It appears that the collective level mechanism 
is much weaker than that of the individual. Improve-
ments to the collective level mechanism should result 

in a considerable increase in performance.
Table 6 presents the best results from MLS2, the best 

performing variant, using the best result from MLS2 

or MLS2R, making the assumption that the correct 
algorithm is selected. These results show an increase in 
performance for MLSGA over the most popularly used 
GA, NSGA-II, and the top algorithm on unconstrained 
functions, MOEA/D. This is despite the fact that the 
algorithm uses a simple mechanism at the individual 
level and shows the potential for this method. In one 
case the MOEA/D algorithm has a better mean perfor-
mance that MLSGA, but NSGA-II never shows better 

performance.

4.  Evolutionary performance

Amongst the theories for multi-level selection, there 
are two main strands, multi-level selection 1 and 2 
(MLS1 and MLS2) which are dependent on how fitness 
is defined on the individual and collective levels. For 
multi-level selection 1 the fitness is defined the same 
way at each level, the aggregate of the individuals, 
which results in deep specialisation of individuals, and 
greater evolutionary pressure thus increasing the rate 
of evolution. For multi-level selection 2 each level has 
different ‘goals’, which results in competition between 
individuals and collectives, and leads to increased 
diversity of population as a compromise between 
the two goals is found. Importantly separate groups, 
across the whole environment, can have different 
fitness definitions at each level, similar to species where 
each becomes specialised, developing different traits. 
According to Okasha [29], multi-level selection is 
proposed to enhance the specialization of different sub-
groups, and this correlates with the results found here.

Table 6.  Comparison of MLSGA with the state-of-the-art.

Test  

function

IGD

Max. Min. Mean Std. deviation

MLSGA

ZDT1 0.003 90 0.004 03 0.003 95 3.80 × 10−05

ZDT2 0.003 89 0.004 03 0.003 96 3.00 × 10−05

ZDT3 0.004 77 0.005 61 0.004 99 1.40 × 10−04

ZDT4 0.003 88 0.004 14 0.004 01 6.70 × 10−05

ZDT6 0.003 13 0.003 34 0.003 20 5.10 × 10−05

NSGA-II

ZDT1 0.004 07 0.004 25 0.004 16 5.30 × 10−05

ZDT2 0.004 01 0.004 20 0.004 09 4.80 × 10−05

ZDT3 0.004 88 0.005 21 0.005 10 8.60 × 10−05

ZDT4 0.004 09 0.255 00 0.057 30 7.70 × 10−02

ZDT6 0.003 40 0.003 61 0.003 51 5.00 × 10−05

MOEA/D

ZDT1 0.004 07 0.004 22 0.004 14 3.20 × 10−05

ZDT2 0.004 06 0.004 17 0.004 10 2.90 × 10−05

ZDT3 0.004 85 0.005 03 0.005 00 4.10 × 10−05

ZDT4 0.004 09 0.004 15 0.004 13 1.50 × 10−05

ZDT6 0.003 35 0.003 45 0.003 37 2.20 × 10−05

Table 5.  Comparison of multi-level selection algorithms for multi-
objective optimisation.

Test  

function

IGD

Max. Min. Mean

Std.  

deviation

MLS1

ZDT1 0.115 00 0.180 00 0.160 00 1.6 × 10−02

ZDT2 0.118 00 0.251 00 0.158 00 3.1 × 10−02

ZDT3 0.029 00 0.081 00 0.051 00 1.3 × 10−02

ZDT4 0.029 00 0.153 00 0.098 00 3.6 × 10−02

ZDT6 0.137 00 0.468 00 0.294 00 1.0 × 10−01

MLS2

ZDT1 0.840 00 0.881 00 0.846 00 1.2 × 10−02

ZDT2 0.609 00 0.725 00 0.619 00 2.4 × 10−02

ZDT3 0.820 00 0.962 00 0.835 00 3.4 × 10−02

ZDT4 9.8 62.3 34.4 13.4

ZDT6 0.003 13 0.003 34 0.003 20 5.10 × 10−05

MLS2R

ZDT1 0.003 90 0.004 03 0.003 95 3.80 × 10−05

ZDT2 0.003 89 0.004 03 0.003 96 3.00 × 10−05

ZDT3 0.004 77 0.005 61 0.004 99 1.40 × 10−04

ZDT4 0.003 88 0.004 14 0.004 01 6.70 × 10−05

ZDT6 0.003 16 0.003 97 0.003 40 2.60 × 10−04

MLS-U

ZDT1 0.005 67 0.027 70 0.015 85 5.28 × 10−03

ZDT2 0.004 05 0.394 42 0.146 10 1.08 × 10−01

ZDT3 0.029 03 0.174 26 0.078 54 4.92 × 10−02

ZDT4 0.004 43 0.061 26 0.007 76 1.00 × 10−02

ZDT6 0.003 97 0.101 47 0.055 35 3.98 × 10−02
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The results show that the introduction of MLS1 
or MLS2 provides an increase in performance over 
the classic genetic algorithm with respect to both 
optimisation and generation of the Pareto front. This 
provides some promising behaviour on some simple 
test functions when judged against that of its contem-
poraries, as an example NSGA-II and MOEA/D. The 
MLS2R algorithm outperforms the other algorithms 
in the generation of Pareto fronts on the simple test 
functions proposed. The Pareto front itself is found 
rapidly but, more importantly, the diversity is high 
whereby the Pareto front has a good spread of results. 
This is in contrast to the MLS1 code, which searches 
one specific zone to a high degree but does not develop 
any front, it finds a close-to-optimal location rapidly 
but there is a lack of spread of results. MLS1 shows the 
best performance on single objective problems. Whilst 
on the multi-objective problems the MLS1 code can 
outperform the MLS2 in rapidly finding near optimal 
results the performance is not that much faster than the 
MLS2R and the absolute optimum is never found. The 
MLS2R performs strongly in both tasks with a wide 
spread of different optimal areas investigated show-
ing a wide diversity. Interestingly the MLS2 algorithm 
outperforms the MLS2R algorithm for the ZDT6 
function, in contrast to the weighted fitness results. 
The difference between MLS2 and MLS2R results are 
caused by the fact that individual selection is more effi-
cient than collective selection, and the f2 functions are 
more complex than the f1 functions in most of the test 
problems, this is reversed in the ZDT6 function. The 
authors suggest that the individual level should have 
the more complex function assigned to it. MLS-U is 
outperformed only by the best variants, MLS2R for 
the ZDT1-4 functions and MLS2 for ZDT6, and shows 
better results than the remaining variants. This sensi-
tivity can be removed by utilisation of a unified MLS-U 
approach. MLS-U, despite a decrease in performance 
in comparison to the best variants, does not require 
extensive a priori knowledge about the optimised 
problem and eliminates the necessity of performing 
the optimisation process repeatedly in order to find the 
best possible solutions, in the case when close-to-the-
best result is sufficient. However, in many real world 
cases the complexity of the problem will be well under-
stood, through domain knowledge or simple compu-
tational tests, meaning that the most powerful variant 
can be selected. Improvements to the novel collective 
level reproduction mechanism will further reduce this 
sensitivity and reduce the hyperparameters associated 
with MLSGA.

Whilst the authors propose the MLSGA method 
they are surprised at the increase in robustness, diver-
sity and evolutionary speed generated from the simple 
process of considering the fitness at multiple levels. 
The optimal fitness is found rapidly and the average 
fitness of the populations is high, making it suitable 
for finding Pareto fronts. The authors hesitate to draw 
overarching conclusions into evolutionary theory 

based on a biologically inspired algorithm however, it 
is interesting to note the increase in speed with which 
the generations find higher fitness solutions due to the 
increased evolutionary pressure. Furthermore, there 
are considerable differences in behaviour between the 
MLS1, MLS2 and MLS2R algorithms and the resultant 
differences in fitness. The MLS1 seems to find the opti-
mal value correctly but lacks the diversity of children 
seen in the MLS2 algorithm. In this case, the MLS1 
has a concentrated search in which there are two lay-
ers to remove individuals that are unfit. In MLS2 this 
phenomenon is weaker but still provides a concen-
trated search towards the individual’s objective func-
tion, many of the poor solutions are removed at each 
generation pushing the search quickly towards the 
Pareto front but using the collectives to retain some 
diversity; on finding the Pareto front the search then 
rapidly spreads out increasing the range of solutions. 
This also differs from other currently high performing, 
computationally inspired, algorithms that first aim 
to create a diverse set of solutions that push towards 
the optimal front, with the potential to perform well 
on discontinuous fronts. While it may be shown that 
multi-level selection is not the process by which evo
lution should be considered, the emergent change in 
the optimisation process is interesting and beneficial.

The test functions that have been selected are sim-
ple and the early results on the ZDT6 function already 
show that the MLSGA algorithm is starting to strug-
gle to find the optimal solution with the more complex 
functions. This set is used to allow an easy comparison 
in performance but the ZDT1-4 functions have a spe-
cial structure, with f1 being only determined by a single 
decision variable, while all other decision variables are 
zero for all Pareto optimal solutions. Further iterations 
of the algorithm will move away from evolutionary 
inspiration and utilise more complex individual and 
collective reproduction methods to improve perfor-
mance based on the findings here and this will include 
determining the sensitivity of performance to the vari-
ous hyper-parameters. Algorithms such as NSGA-II 
and MOEA/D are shown to outperform the original 
GA, currently used at the individual level, by a con-
siderable margin, it is proposed that their inclusion 
at the individual level will increase performance. The 
effectiveness of the new collective reproduction will 
also be explored using simple search functions, such 
as hill climb, and evolutionary algorithm mechanisms, 
such as MTS, to boost the effectiveness of the collective 
search.

5.  Conclusions

There are a number of evolutionary mechanisms 
proposed in recent years, which have not been 
explored in genetic algorithms. One of these, multi-
level selection, has been used to inspire a new genetic 
algorithm but the different variants of this theory have 
not been compared. Interestingly the two variants of 
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the algorithm, MLS1 and MLS2 show considerable 
differences in behaviour instigated by the definitions of 
fitness. The algorithm performs well on the simple ZDT 
functions with the MLS2 finding a wide diversity of 
results along the front and the MLS1 algorithm rapidly 
finding the weighted fitness optimum, demonstrating 
excellent single-objective performance. These 
different variants allow the MLSGA methodology to 
have different behaviour for different sets of problems, 
allowing strong performance on multi-objective and 

single objective problems.
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A B S T R A C T

The Multi-Level Selection Genetic Algorithm (MLSGA) is shown to increase the performance of a simple Genetic
Algorithm. It is unique among evolutionary algorithms as its sub-populations use separate selection and repro-
duction mechanisms to generate offspring sub-populations, called collectives in this approach, to increase the
selection pressure, and uses a split in the fitness function to maintain the diversity of the search. Currently how
these novel mechanisms interact with different reproduction mechanisms, except for the one originally tested at
the individual level is not known. This paper therefore creates three different variants of MLSGA and explores
their behaviour, to see if the diversity and selection pressure benefits are retained with more complex individual
selection mechanisms. These hybrid methods are tested using the CEC′09 competition, as it is the widest current
benchmark of bi-objective problems, which is updated to reflect the current state-of-the-art. Guidance is given
on the new mechanisms that are required to link MLSGA with the different individual level mechanisms and
the hyperparameter tuning which results in optimal performance. The results show that the hybrid approach
increases the performance of the proposed algorithms across all the problems except for MOEA/D on uncon-
strained problems. This shows the generality of the mechanisms across a range of Genetic Algorithms, which
leads to a performance increase from the MLSGA collective level mechanism and split in the fitness function. It
is shown that the collective level mechanism changes the behaviour from the methods selected at the individual
level, promoting diversity first instead of convergence, and focuses the search on different regions, making it a
particularly strong choice for problems with discontinuous Pareto fronts. This results in the best general solver
for the updated bi-objective CEC′09 problem sets.

1. Multi-level Selection Genetic Algorithm

Multi-level Selection Genetic Algorithm (MLSGA) is a genetic algo-
rithm incorporating advanced evolutionary concepts. It is inspired by
Multi-Level Selection Theory which is used to describe evolution, with
these concepts originally being based on selection in ant colonies [1].
Multi-Level Selection Theory states that evolutionary selection can
be considered at more than one level, for example the probability
of survival for a wolf is determined as dependent on its own abil-
ities but also that of its pack. Based on these ideas, MLSGA intro-
duces a collective level that groups individuals, which has similarities
to sub-populations in other algorithms. However, separate reproduc-
tion and elimination mechanisms are introduced at the collective level,
which provide additional selection pressure, in contrast to typical sub-
population approaches that use reproduction mechanisms only at the
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individual level. Multi-level selection theory defines two ways in which
the fitness can be defined at the collective level: MLS1, where the fitness
of the collectives is simply the aggregate of the individuals, and MLS2,
where the collective fitness is based on a separate, emergent, property
rather than the summation of the fitnesses of the individuals inside of
it. MLS2 therefore has different reproduction mechanisms operating on
different parts of the fitness function; the behaviours of these variants
are explored in Ref. [2]. Inside each collective individuals are treated in
the same manner as the populations in the standard Genetic Algorithm
and there is no ability to share the information between the sub-groups.
The algorithm provides additional evolutionary pressure through the
increase in the number of reproduction mechanisms, one at collective
level and one at individual level, but unlike in other algorithms where
multiple mechanisms are utilised [3], diversity is not lost due to the
separation of the fitness functions.
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MLSGA has previously been tested by incorporating a simple GA
mechanism at the individual level which is based on the original Hol-
land GA but includes elitism [4]. The previous studies show interesting
behaviour including an increase in overall evolutionary pressure and in
diversity through the dispersion of the search, achieved through spe-
cialisation of the collectives each to different regions of the objective
space. This emerges “naturally” rather than being forced by decomposi-
tion or other mechanisms that require heavy tuning for each new prob-
lem. However, the previous implementation lacks leading performance
on the test functions which are taken from the 2009 Congress of Evo-
lutionary Computation (CEC′09) [5]. Based on the previous results it
is proposed that MLSGA’s performance may be improved by implemen-
tation of stronger mechanisms at the individual level. Combinations
of different methodologies and hybrid approaches have already been
shown to be effective when dealing with complicated MOPs at least in
part, because they can maintain the advantages of both approaches [6].
However, it is also possible that the stronger individual level mecha-
nisms will dominate, making the collective level reproduction mecha-
nisms redundant, or that the introduced mechanisms will not be com-
patible and decrease the performance. This is considered to be likely as
more recent Genetic Algorithm mechanisms are further from the evolu-
tionary roots of the original algorithm and more complex than the one
used previously in Ref. [4]. In addition, some modifications to the orig-
inal method are necessary in order to incorporate stronger mechanisms
at the individual level and it is important to see how these modifications
affect the performance of the algorithm. In addition, MLSGA utilises a
“diversity first, convergence second” approach, which is uncommon for
GAs, and it is proposed that it can be used with other algorithms to
retain the diversity of their searches, but this needs investigating.

In this paper the individual selection mechanism in MLSGA is
replaced by current state-of-the-art algorithms: NSGA-II [7], MTS [8]
or MOEA/D [9], selected as the leading Genetic Algorithm mecha-
nisms and representing three different types of mechanism: niching,
distributed search and hierarchical. Three hybrid variants are devel-
oped and benchmarked on an updated version of the CEC’ 09 compar-
ison which provides complex bi-objective test instances on a range of
different evolutionary algorithms. Bi-objective problems are selected to
reduce the complexity allowing easier visualisation of the behaviour of
the algorithms. Additional mechanisms are developed in order to make
the selected individual mechanisms compatible with MLSGA and a com-
prehensive hyper-parameter tuning is performed in order to adjust the
existing collective-level mechanisms to the state-of-the-art algorithms,
with guidance provided for the optimal parameters.

This paper is organised as follows: section 2 presents a literature
review of GAs utilising sub-populations; section 3 introduces MLSGA
mechanisms in detail and the principles of the conducted benchmark;
section 4 benchmarks the MLSGA hybrids against the updated CEC ’09
competition; section 5 presents a discussion of experimental results and
observed behaviours, followed by conclusions in section 6.

2. Current sub-population mechanisms

Reviewing the current literature, a number of genetic algorithm
methodologies show similarities to the idea of a collective; for examples
those that utilise sub-population mechanisms including niching, hier-
archical, co-evolution and island algorithms [6], in addition to some
previous approaches inspired by multi-level selection.

Niching algorithms such as NSGA-II [7] and U-NSGA-III [10] utilise
sorting mechanisms, which rank the whole population, depending on
the non-dominance level or other indicators such as IBEA [11]. How-
ever, different sub-groups are not allowed to cooperate or compete as in
MLSGA, and no separate mechanisms are applied to these groups. The
Island model mechanism proposed by Ref. [12] separates the popula-
tion into sub-groups and cooperation is introduced by allowing migra-
tion of the individuals between neighbouring groups but only in a sin-
gle direction; only one level of selection is used between sub-groups

with no competition between them. In hierarchical algorithms such as
MOEA/D [9], MOEA/D-M2M [13], CS-NSGA-II [14] DMOEA-DD [15]
and LiuLi [16] sub-groups operate separately on different sub-regions of
the search space, but with no additional selection mechanisms between
sub-groups. These decomposition mechanisms implement a number of
additional parameters, which are far from trivial to determine, but the
effects on the performance of the algorithm are substantial. Therefore,
these methods usually require a priori knowledge about the objective
space and an additional issue is that they cannot usually find points in
negative regions. Additionally, in discontinuous problems, large regions
can exist without feasible solutions and the use of standard decompo-
sition methods leads to a waste of computational power resulting in
poorer final solutions. In MLSGA, the sub-regional search is created
using different fitness definitions, instead of decomposition, therefore
all individuals operate on the same region. Furthermore, fewer param-
eters are used, making it simpler to use and requiring less tuning to a
specific problem.

Despite many of the hierarchical algorithms showing poor perfor-
mance on constrained problems DMOEA-DD [15] and LiuLi [16] stand
out as they show top performance on these problems in the CEC′09
benchmarking. It was hoped to incorporate these algorithms in this
study but the authors find that the literature does not give sufficient
information to replicate these codes to a standard that provides the
results documented in CEC′09 [17] and the codes provided online do
not compile, making their integration with MLSGA impossible.

In the co-evolution mechanisms the population is divided into
groups with different operations performed on each sub-population,
which is inspired by the idea that two or more species in nature can
have a reciprocal evolutionary relationship which increases the rate
of evolution; two of the more successful examples are BCE [18] and
HEIA [19]. In these algorithms the groups are allowed to exchange
individuals and cooperation between groups is introduced. However,
the selection process occurs only at the individual level without addi-
tional mechanisms or competition at the group level, unlike in MLSGA.
In addition, in MLSGA the same mechanisms are applied to each group
and each individual, and only the fitness function definitions change in
the process.

In addition to the sub-population based mechanisms there are
already approaches inspired by Multi-Level Selection Theory but they
ignore key aspects of the theory and do not demonstrate an improve-
ment over current methods [20] were the first to use multi-level selec-
tion by studying a biological model and altruism. It shows the impor-
tance of variation between groups as selection at group level occurs
only when there is enough variation. However, in this approach, the
groups are destroyed and recreated after each generation where the best
individuals are strongly preferred in this process, resulting in limited
diversity. MLSGA removes collectives much less regularly, retaining a
wider diversity of search. Furthermore, no fitness split is introduced
and the selection of individuals is based on interactions between indi-
viduals and groups as opposed to their fitness [21,22] looked at multi-
level selection including selection at different levels and three addi-
tional cooperative mechanisms are introduced. Importantly the collec-
tive fitness definition and additional selection levels are implemented
in a manner that strongly favours the best solutions and therefore leads
to the loss of many good solutions and a reduction in the overall gene
pool. Finally [23], focus on selection using a hierarchical model. In the
proposed mechanisms selection at one level influences the selection at
the adjacent levels and a single selection process is used at different lev-
els without the distinct separation of the fitness values. Therefore, no
separate units of selection are introduced at all levels, which is a basic
concept of the multi-level selection theory.

In summary, the authors feel that these efforts miss the key aspects
of multi-level selection in that they are orientated around complex pre-
scriptive mechanisms, forcing the selection to occur rather than let-
ting it emerge as part of the process. None of the multi-level selec-
tion algorithms demonstrates an increase in performance through the
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incorporation of the additional level and fail to mimic key concepts
in the multi-level selection theory. The traditional GAs utilising sub-
populations have only one level of selection and no split in the fitness
functions, lacking separate reproduction mechanisms at each level that
makes MLSGA unique.

3. Methodology

Outlined is a brief review of the MLSGA mechanisms inspired by the concept of multi-
level selection, the methodology to integrate different GAs for the so-called hybrid forms
and an outline of the benchmarking procedure.

3.1. MLSGA-hybrid

In this work three different genetic algorithms are chosen for testing at the individual
level resulting in three distinct hybrids: MLSGA-NSGA-II, MLSGA-MOEA/D and MLSGA-
MTS, selected for the following reasons:

1. NSGA-II [7] as a general solver and most commonly utilised algorithm with better
performance on bi-objective problems than NSGA-III [24];

2. MOEA/D [9] as the best GA for unconstrained problems according to the CEC′09
comparison [17];

3. MTS [8] as the best available algorithm for constrained problems and representing
distributed search algorithms.

The resulting algorithm works as follows with a more detailed description of the
MLSGA mechanisms specific for hybridisation below:

Inputs:

• Multi-objective problem;
• Np: Population size;
• Nc: Number of collectives;
• MLSGA specific parameters;
• NSGA-II, MTS or MOEA002FD specific parameters;
• Stopping criterion;

Output: External Population (EP)

Step 1) Initialisation:
Step 1.1) Set EP = NULL.
Step 1.2) Randomly generate an initial population P of Np individuals, xj,…,xNp.

Step 2) Classification:
Step 2.1) Classify the individuals in the initial population P into Nc collectives,
Ci,…,CNc, so that each contains a separate population Pi,…,PNc. Classification is
based on the decision variable space using a Support Vector Machine (SVM).
Step 2.2) Assign the fitness definitions from types {MLS1, MLS2, MLS2R - explained
in detail below} to each collective so that there is a uniform spread of collectives
using each type.
Step 2.3) In the case of the MOEA/D hybrid: Assign the nearest weight vectors 𝜆i
to each individual in each corresponding collective.

Step 3) Individual level operations:
For i = 1, …, Nc do
Step 3.1) Individual level GA’s operations: Perform the reproduction, improve-
ment and update steps from NSGA-II [7], MTS [8] or MOEA/D [9], subject to the
hybrid variant, over the collective’s entire population Pi, documented in the corre-
sponding literature.
Step 3.2) Update External Population:
For j=1, …, |Pi| do

Remove from the EP all solutions dominated by xij (the individual j, from popula-
tion i). Add individual xij to EP if no solutions from EP dominate xij.

Step 4) Collective level operations:
Step 4.1) Calculate collective fitness:
For i=1, …, Nc do

Calculate the fitness of the collective Ci as the average of the fitnesses of population
Pi based on the fitness definition assigned to that collective.

Step 4.2) Collective elimination:
Find the collective Ci with the worst fitness value, and store the index of that col-
lective, z.

Store the size of the eliminated collective |Pz| as the variable s.
In the case of the MOEA/D hybrid: Store the weight vectors of population {𝜆 j, …,
𝜆 size(Pz)} Pz as the matrix 𝛬 z.
Erase the collective Cz with population Pz.

Step 4.3) Collective reproduction:
For i=1, …, Nc do

if (i != z)
Copy the best s/(Nc - 1) individuals, according to the fitness definition of the
eliminated collective Cz, from population Pi to Pz.
then
In the case of the MOEA/D hybrid: assign the weight vector 𝜆z randomly to popu-
lation Pz.

Step 5) Termination: If the stopping criteria is met, stop and give EP as output.
Otherwise, return to Step 3).

Table 1
Fitness functions assignment for different MLS types.

Fitness definition type MLS2 MLS2R MLS1

Collective level f2(x) f1(x) f1(x) + f2(x)
Individual level both f1(x) and f2(x)

A key element to retaining diversity is the split in the fitness function introduced in
Step 4, where separate fitness values for the collectives are calculated and utilised. Three
types of collectives are introduced, replicating the MLS1 and MLS2 definitions from Multi
Level Selection Theory [25] as shown in Table 1, where MLS2R is the reverse of MLS2.
In MLS2, the collective fitness function is based on the first objective of the function,
f1(x), and is calculated as the average of the first objective function of the individuals
inside; MLS2R is based on the average of the second objective f2(x) and in MLS1 it is the
sum of both objectives. A strategy where each collective has a different fitness function
definition, called MLS-U, is also introduced in Ref. [2] and is shown to greatly increase
the diversity of the search and is the mechanism used within this research as it shows
the best performance. As MLS1 is an aggregation of both objectives normalization has to
be utilised in cases where the objectives are disparately scaled, to increase the solution
uniformness. Due to the nature of the selected benchmarking functions, no objective
normalization is necessary and is therefore not implemented. However, for cases where
it is required the objective normalization strategy taken from Ref. [9] defined in Eq. (1),
is recommended:

fi =
fi − z∗i

znad
i − z∗i

(1)

where z∗ = (z∗1 ,… , z∗m) is the reference point, i.e. z∗i = min fi(x) ∣ x ∈ 𝜔, znad =
(znad

1 ,… , znad
m )T is the nadir point, i.e. znad

i = max fi(x) ∣ x ∈ 𝜔, 𝜔is the search space, and
m is the number of objectives, assuming a minimisation problem.

In the Classification Step a supervised learning classification method, SVM, is used
to assign collective labels to each individual in the initial population, based on the dis-
tances between them in the decision variable space. In this paper the multi-class classifi-
cation SVM with C parameter, called C-SVC, and linear function is used. The utilised code
has been taken from LIBSVM open library [26] and the original SVM-train parameters
have been used. The user predefines the number of label types, and thus the number of
collectives. However, the number of individuals in each collective depends only on the
classification method and the distribution of the initial population, and therefore is dif-
ferent in each collective. Only the minimum of 10 individuals and maximum half of the
overall population size, is predefined in order to avoid empty, small or big collectives
as it has been shown in pre-benchmarks to decrease the overall performance. Organising
the collectives with the most similar individuals has been shown to be beneficial over
random initiation after testing using three different classification variants: SVM, k-means
clustering and random assignment. Clustering and SVM exhibit similar performances but
the SVM is chosen due to its lower calculation time and higher robustness.

In the case of the MLSGA-MOEA/D hybrid a set of weight vectors of the size of the
population is randomly generated. These weight vectors are randomly assigned to the
individuals in increasing order, starting from the vector with the smallest value for the
first objective. The individuals in the first collective are assigned first, followed by the
next collectives until every individual in all the collectives have values assigned to them.
In development of the hybrid algorithms it is shown that maintaining the closest neigh-
bourhoods of weight vectors inside of each collective has been shown to be beneficial over
a completely random assignment. Calculation and pre-assignment of the best weight vec-
tors to each individual, despite demonstrating the lowest starting fitness, has been shown
to have no statistically significant impact on the final performance, while increasing the
calculation cost.

Inside each collective NSGA-II, MOEA/D or MTS specific operations are applied to
the individuals at each generation, in the same manner as in the original documentation
with no further modifications. NSGA-II, MOEA/D and MTS are multi-objective GAs, and
require both objective functions to work. In the hybrid approach both f1 and f2 objective
functions are utilised at the individual level. Therefore, no fitness function separation is
introduced at this level, unlike in the original MLSGA [4].

For the collective elimination, in Step 4.2, the collective with the worst collective
fitness value is eliminated and all of the individuals inside are erased. This collective
is repopulated in Step 4.3 by copying the best individuals, according to the eliminated
collective fitness definition, from all of the remaining collectives. This is done in order to
maximise the fitness of the offspring collective. Importantly some information is inherited
from the eliminated collective: the size of the population in the collective, in order to
maintain constant population size; the collective type; and in the case of MOEA/D the
weight vector of the eliminated population. Therefore, no randomness or variation is
introduced in these steps.

MLSGA is not a cooperative based GA, rather competitive based one, as there is
no direct information transfer between the levels of selection or between sub-groups,
such as migration, colonization or regrouping [18,22]. There is only one step in which
different sub-groups are able to “communicate” with each other, Step 4.3, where the best
individuals are selected in order to recreate the eliminated collectives, however there is
no effect on the parent collectives. In between the different levels of selection the only
information passed is the fitness of the individuals, necessary to calculate the collective
fitness in Step 4.1.
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3.2. Computational complexity and constraint handling

The computational cost of the MLSGA-hybrids is determined by two operations:
individual reproduction, taken from the embedded algorithms, and the MLSGA collec-
tive operations. In this case the individual reproduction has the same complexity as the
embedded algorithm, denoted as C, and the collective operations requires O(mN2) com-
parisons at most as detailed in Ref. [2]. Therefore, the overall computational complexity
of one generation of the MLSGA-hybrids is bounded by O(mN2) or C whichever is larger.

In this work the complexity of the utilised algorithms is O(mN2) in the case of NSGA-
II, O(mNT) in case of MOEA/D, where T is number of solutions in the neighbourhood
and is typically 0.2N, or O(mN2) in case of MTS. Therefore, the complexity of all pro-
posed hybrids is O(mN2), which is the same or not significantly higher when compared to
the original algorithms and the similar computational times exhibited by the algorithms
support this.

When constraints are present the constraint-domination principle is adopted for all
the MLSGA-hybrid algorithms, taken from NSGA-II [7] and NSGA-III [27], and defined
as:

An individual x1 is said to dominate another individual x2, if: 1) x1 is feasible and x2
is infeasible or, 2) both x1 and x2 are infeasible, and x1 has a smaller constraint violation
(CV) value or, 3) both x1 and x2 are feasible, and x1 dominates x2 with the standard
fitness domination principle.

This applies whenever two individuals are compared. However, no direct constraint
handling is introduced on the collective-level and therefore, the fitness of the collective is
not affected by the infeasibility of individuals inside of it. By implementing the constraint
violation penalty at only one level, the individual-level, the diversity of the search can to
be maintained avoiding premature convergence of the collectives.

3.3. Benchmarking

Bi-objective problems are selected as a first step as they allow a problem where the
behaviour is simple to interpret and study while providing enough complexity to repli-
cate a number of real world problems. The CEC′09 [5] benchmarking test set is selected
to illustrate the results due to the number of algorithms compared and range of different
problem types, including a substantial set of constrained problems. The unconstrained
results are updated to include HEIA and BCE to ensure the results reflect more recent
developments and to compare the proposed methodology with similar approaches. NSGA-
II has also been improved since the CEC′09 competition, therefore the new results have
been run and the tables have been updated to reflect this. NSGA-II is preferred over
NSGA-III [24] or U-NSGA-III [10] in this comparison as it has been shown to exhibit
better performance on bi-objective problems. Results for MOEA/D on the constrained
problems are not included in the original CEC′09 benchmark and so it is benchmarked
on these problems and the tables are updated. The newer variants of MOEA/D, such as
MOEA/D-M2M [13], MOEA/D-DD [28], MOEA/D-PSF or MSF [29], MOEA/D-2TCHMFI
[30], MOEA/D-MTCH [24] are not included as on average these algorithms do not show
a higher performance than MOEA/D for the selected bi-objective problems. Similarly, the
results of other algorithms from the current state of the art, such as GrEA [31] and HypE
[32], are not added to the comparison as these algorithms have been shown to be out-
performed by MOEA/D and NSGA-II on two-objective functions. Tests on the ZDT test
set [33], which is highly unimodal, and WFG test set [34], which shows a bias towards
certain regions of the objective space, non-separability of the input variables and differ-
ent modality, have also been conducted. There are no statistically significant changes in
comparative performance between MTS, NSGAII, MOEA/D and the hybrid algorithms, for
the ZDT cases, and high similarity of behaviour in comparison to the CEC′09 test set for

the WFG test instances. Therefore, only the CEC′09 functions have been included, as they
provide a clearer illustration of the comparative performance. The CEC ′09 competition
[5] used 14 different constrained and unconstrained functions. The unconstrained func-
tions, UF1-UF7, have 30 variables each and the constrained functions, CF1-CF7, have 10
variables each with CF1-5 having 1 constraint and CF6-7 having 2 constraints. The tests
are performed following the CEC′09 comparison rules [5] where each function is eval-
uated over 30 separate runs and the average of these results is compared; the stopping
criterion is 300,000 function evaluations for each run; and the performance is evaluated
based on the Inverted Generational Distance (IGD) values calculated using only the 100
best, evenly-spread, individuals taken from each run. IGD is the performance measure
function of the Pareto Front, which shows the average distance between all points in the
true Pareto Front and the closest solution from the achieved set and is calculated in Eq.
(2);

IGD(A,P∗) =
∑

𝜈∈P∗ d(𝜈,A)
|P∗| (2)

where P∗ is a set of uniformly distributed points along the true Pareto Front, in the
objective space, A is the approximate set to the Pareto Front being evaluated and d(𝜈,
A) is the minimum Euclidean distance between point 𝜈 and the points in A. The IGD
metric is the preferred method to calculate the diversity and accuracy of the Pareto front,
as it allows comparison to the results in CEC′09. The Hyper Volume (HV) metric would
provide a more accurate assessment of diversity but there is less available data for a
comparison and so the results are not included.

Different MLSGA parameters: population size, number of collectives, steps between
collective reproduction and number of eliminated collectives have been parametrically
evaluated. The parameters that give the best performance across all of the problems are
presented in this work. During the development of the hybrids the optimal number of col-
lectives is shown to be dependent on the overall population size; with a higher population
count more collectives should be introduced. In the case of 800 or more individuals then
8 collectives are preferred, and for smaller sizes 6 collectives are implemented. Using
too few collectives limits the spread of the search and therefore the final diversity of
the solutions. When too many collectives are used the same areas of the search space
are re-evaluated by different groups, decreasing the efficiency of the search. However,
minor changes away from the optimal number of collectives do not have a significant
effect on the final performance. This results in six collectives being used with the MTS
hybrid, using a lower population of 225, and two collectives of each type, MLS1, MSL2
and MLS2R. In the case of eight, used in NSGA-II and MOEA/D which use a high pop-
ulation size of 1800, there are 3 MLS2 collectives, 3 MLS2R collectives and 2 MLS1
collectives.

The overall population sizes are bigger than those commonly used in the litera-
ture as the collectives must maintain a reasonable population size for the individual
level mechanisms to be effective. As MTS utilises multiple local searches for each indi-
vidual, and thus requires a significantly higher number of iterations per generation,
a lower population size is used compared to the MOEA/D and NSGA-II hybrids, and
the collective reproduction steps have to occur more frequently. The number of elim-
inated collectives, 1, is the optimal value for all mechanisms and all problems. The
number of steps between collective reproduction, 1 every 10 generations for NSGA-
II and MOEA/D and 1 every generation for MTS, are shown to be problem indepen-
dent and these values are used are the optimal values for all problems. However, the
number of steps between collective reproduction should be balanced in order to max-
imise the added evolutionary pressure by the collective-level and should be adjusted
for different types of mechanism. The NSGA-II and MOEA/D mechanisms are depen-
dent on developing and maintaining a uniform Pareto front so the frequency of the

Table 2
MLSGA hybrid parameters utilised for benchmarking.

Step Parameter Value

MLSGA-MTS MLSGA-NSGA-II MLSGA-MEOAD

1. Initialisation Type Random
Encoding Real values
Pop. Size 225 1800

2. Classification Method SVM
No. Collectives 6 8
Collective size limits min 10 individuals and max 1/6 of overall population size

3. Individual level operations
Fitness Evaluation Type Both f 1 and f 2 Both f 1 and f 2 based on Chebycheff

Scalarizing Function [9]
Selection Type n/a Binary tournament with crowding

distance and non-dominated ranking
Tournament

Mating Crossover type n/a Real variable SBX Differential evolution crossover
Crossover rate 1
Mutation type 3 local search methods Polynomial
Mutation rate 0.08

4. Collective level operations
Fitness evaluation Type MLS1, MLS2, MLS2R, depending on the collective
Elimination Number of elim.

collectives
1 every generation 1 every 10 generations

5. Termination Criterion 300000 function evaluations
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Fig. 1. Pareto front of NSGA-II and MLSGA-NSGA-II on the CF2.

elimination and reproduction step has to be reduced compared to MTS. Otherwise, the
individual-level mechanisms do not have enough iterations to properly develop the front.
This leads to premature elimination of potentially good solutions which significantly
reduces the diversity of the final solutions and the final performance. Parameters used
by each hybrid are detailed in Table 2 and remain constant over all the runs for dif-
ferent functions. The parameters at the individual level are retained from the original
sources but some small performance gains might be possible by adjusting these val-
ues.

4. Performance benchmarking

The constrained function results are simulated for the hybrid algo-
rithms and the Pareto Fronts are compared to those generated by
running the individual level algorithms separately. These are illus-
trated for the CF2 with NSGA-II in Fig. 1, MOEA/D in Fig. 2 and
MTS in Fig. 3, and for the CF5 illustrated in Figs. 4–6 for NSGA-II,
MOEA/D and MTS respectively. CF2 and CF5 are chosen as they pro-
vide results representative of the worst and the best cases for hybrid
algorithms on the constrained problem set. The Pareto Fronts for the
figures have been randomly chosen from the 5 runs with the lowest
IGD value.

For the CF2 the resulting Pareto Fronts are close to the best possi-
ble for all of the hybrids, with an even spread of points. The MLSGA-
MOEA/D hybrid shows higher diversity and accuracy of points com-

Fig. 2. Pareto front of MOEA/D and MLSGA-MOEA/D on the CF2.

Fig. 3. Pareto front of MTS and MLSGA-MTS on the CF2.

pared to MOEA/D which is not able to reach the front. In the case of
NSGA-II and MTS, the MLSGA hybrids show similar performance to the
individual level algorithms where the resulting points cover the entire
length of the Pareto Front and it is difficult to visually determine which
has the better performance.

In the worst-case scenario, CF5, both MLSGA-MTS and MLSGA-
NSGA-II hybrids have a similar performance to the original algorithms
in terms of accuracy but with a more even spread of points. For
MOEA/D the points are concentrated mostly on one region of the
Pareto Front and the hybrid shows a wider diversity, covering the
entire length of the Pareto Front. However, the accuracy of these
points is poor with fewer of the hybrid points lying on the true Pareto
Front.

The process is repeated for the unconstrained problems, UF1-7. UF2
is shown in Fig. 7 for NSGA-II, Fig. 8 for MOEA/D and Fig. 9 for
MTS, and UF5 is shown in Figs. 10–12 for NSGA-II, MOEA/D and MTS
respectively. These figures are chosen as they illustrate the worst and
the best results for the unconstrained test set, similarly to the previous
cases.

For the unconstrained problems, the results vary more between
the different hybrids and the individual level algorithms. The MLSGA-
NSGA-II hybrid has similar performance to NSGA-II, and it is hard

Fig. 4. Pareto front of NSGA-II and MLSGA-NSGA-II on the CF5.
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Fig. 5. Pareto front of MOEA/D and MLSGA-MOEA/D on the CF5.

to distinguish visually which variant is better for both presented
functions. For MLSGA-MTS and MTS algorithms, similar results are
obtained on UF2 function but MTS exhibits better performance on
UF5 in terms of diversity and accuracy. The MLSGA-MOEA/D is
outperformed by MOEA/D in both presented cases.

The results of the three hybrids, MLSGA-NSGA-II, MLSGA-MOEA/D
and MLSGA-MTS are also compared to the original algorithms based
on the average IGD values and presented for constrained test cases in
Table 3 for CF1-7, and for UF1-7, in Table 4. In both tables the better
results between the hybrid and the individual level algorithm are high-
lighted in blue and are in bold font. The minimum, maximum and stan-
dard deviation over 30 runs are given in the brackets for each MLSGA
variant. Additionally, the Wilcoxon’s rank sum test was conducted to
assess the statistical significance of the differences between the results
obtained by MLSGA hybrids and the original algorithms with a signif-
icance level of 𝛼=0.05. Results for the original algorithms are taken
from the CEC′09 benchmarking [17]. As MLSGA-NSGA-II is based on
an updated version of NSGA-II, not on the version from the CEC′09
ranking, the updated results for this algorithm are included in Tables 3
and 4. As the results for MOEA/D on the constrained functions have
not been presented in CEC′09, these are simulated and included in

Fig. 6. Pareto front of MTS and MLSGA-MTS on the CF5.

Fig. 7. Pareto front of NSGA-II and MLSGA-NSGA-II on the UF2.

Table 3.
The constrained results show that implementation of collective level

mechanisms improves the performance of GAs in general, for NSGA-II
improvements are shown on 6 out of 7 cases. The MLSGA-MTS also
shows improvements over the original algorithm on 6 out of 7 cases
but with statistical significance on 4 of the functions. For MOEA/D
the MLSGA mechanisms leads to improvements in the performance in
all cases. For the unconstrained cases better results can be observed
for MLSGA-NSGA-II in comparison to NSGA-II for all the presented
functions, with statistical significance for 5 out of 7. In the case of
MLSGA-MTS hybrid the improvement has been shown on all the func-
tions except for UF4 and UF5, though this is not statistically signifi-
cant for the UF6. Implementation of the MLSGA mechanisms decreases
the performance of MOEA/D on all problems of this type. This is
most likely caused by the collective-level operations which are not
adjusted for the MOEA/D specific mechanisms, such as the weight
vectors and neighbourhoods of solutions. In this case the weight vec-
tors of the eliminated solutions are not taken into account during
the collective reproduction step when the offspring collective is cre-
ated. Therefore, the weights are randomly assigned to the new solu-
tions, which results in lower overall fitness at the individual-level.
The mechanisms were not fully adjusted as the assignment of the best

Fig. 8. Pareto front of MOEA/D and MLSGA-MOEA/D on the UF2.
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Fig. 9. Pareto front of MTS and MLSGA-MTS on the UF2.

individuals to each weight vector during every collective reproduction
would require a significant number of comparisons and therefore would
result in drastically higher computational costs over the original algo-
rithm.

To highlight the performance of the MLSGA approach the MLSGA-
MTS variant is compared to the updated CEC′09 competition rankings.
This is despite the fact that it is not the strongest performing hybrid
on every problem and a priori knowledge of the problem could lead
to stronger performance by matching the MLSGA hybrid to a given
problem. These are presented for constrained test cases in Table 5
for CF1-7, and for unconstrained functions, UF1-7, in Table 6. In the
tables, the results of the hybrid are in bold and highlighted in light
blue colour and the results for the original MTS are highlighted in
dark blue. Additionally, the results for the two other hybrid methods
the MOEA/D + TCH variant of BCE [18] and HEIA [19] are included
in bold, as they are hybrid methodologies that show leading perfor-
mance.

In the updated CEC’09, rankings the MLSGA-MTS hybrid would be
placed in the top 3 algorithms for constrained functions for 6 out of
7 cases, showing the best performance for CF6. For the unconstrained
problems, the presented hybrid would be in the top 3 algorithm for
5 out of 7 cases, and the best performing for two problems, UF1 and

Fig. 10. Pareto front of NSGA-II and MLSGA-NSGA-II on the UF5.

Fig. 11. Pareto front of MOEA/D and MLSGA-MOEA/D on the UF5.

UF2. Interestingly, for the UF7 function, the MLSGA-MTS hybrid is out-
performed by most of the updated CEC ′09 competitors. In this case,
the performance of the hybrid is strongly affected by poor performance
of the original MTS algorithm. The proposed methodology would have
been placed 2ndover the constrained test sets, and 2nd place on the
unconstrained functions, leading to the best general performance.

5. Understanding MLSGA mechanisms and limitations

It is shown that the MLSGA hybrids perform better than the individ-
ual level algorithms; NSGA-II and MTS in all cases and MOEA/D for the
constrained problems. The results demonstrate a capability to improve
the performance of a wider range of GAs than that shown in Ref. [4]
and that the split in the fitness function is robust to the selection of a
number of GAs at the individual level. However, it is also shown for the
first time that the performance of all algorithms is not improved across
all problem types.

The results show that as long as the levels are different there can be
more than one objective per level allowing for some overlap between
elements at each level. For example, in these cases objective 1 can be
used as part of the individual level and the collective level without
impairing performance. These results indicate promise for extension

Fig. 12. Pareto front of MTS and MLSGA-MTS on the UF5.
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Table 3
Comparison of MLSGA hybrids and original algorithms on CEC’09 two-objective constrained
problems CF1-7.

Table 4
Comparison of MLSGA hybrids and original algorithms on CEC’09 two-objective unconstrained
problems UF1-7.

to many-objectives problems as concerns that each objective would
require its own level is dismissed. This concern would have led to a
large number of levels, potentially one per objective, and an extensive
tree of corresponding collectives of collectives. Expansion in the num-
ber of collectives required would necessitate an exponential increase

in individual population sizes to allow for a large enough number
of higher level collectives. However, additional investigations will be
required into how best to adjust the fitness function at each level for
these problems.
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Table 5
Updated CEC ‘09 ranking on the two-objective constrained CF1-7 problems including MLSGA-MTS
hybrid.

The authors suggest that the increase in performance is due a com-
bination of the use of novel reproduction mechanisms between sub-
populations, collectives, and the split in the fitness function. In MLSGA,
the individual-level operations lead to exploration and exploitation of
both objective and variable spaces, in a similar manner to the orig-
inal algorithms. The collective-level creates artificial boundaries, by
strongly penalizing solutions in certain regions and pushing the indi-
viduals in to the preferred ones. Splitting the population, either in
the form of separate fronts [7], decomposition [9] or direct subpop-
ulation approaches [15], has been shown to be beneficial in other
algorithms. This is because it decreases the chances of premature con-
vergence for the whole population at a local optima and leads to an
increase in the overall diversity of the final solutions. The MLSGA mech-
anisms enhance the ability to explore different parts of the objective
space even further, by introducing an additional selection pressure.
The hybrid algorithms demonstrate an increase in performance over
the original variants on the constrained problems as the diversity is
more crucial on this type of problem. The split in fitness function and
independence of collectives allows them to more easily move around
“gaps” in the objective space created by the constraints; for the uncon-
strained problems this diversity is less essential. This claim is supported
by the high gains in performance of the MLSGA-MOEA/D hybrid on
constrained problems, as the original MOEA/D struggled to operate in
non-continuous search spaces as the weights are defined in straight
lines which may pass through these regions, leading to an inefficient
search.

In the hybrid approach, the addition of MLS-U, defining differ-
ent fitnesses from MLS1, MLS2 and MLS2R in each collective, leads
to a “specialisation” of collectives, where each collective type cre-
ates a selection pressure into a different direction, and thus leads to
exploration of different regions of the objective space. This is illus-
trated in Fig. 13, where the different collective types are shown to
be exploring different parts of the Pareto Front. MLS1 focuses on the

“middle” regions of the Pareto Front, as individuals with the lowest
value of the average of both fitness functions are promoted, due to
its fitness definition. MLS2 and MLS2R exploit the peripheral regions
of the Pareto Front and in these cases the collective reproduction
mechanisms promote extreme solutions, as only one fitness function
is considered. Furthermore, the proposed methodology is able to search
negative regions of the objective space, unlike decomposition meth-
ods, as it can avoid the regions without feasible solutions where the
decomposition methods has been proven ineffective, such as in dis-
continuous problems. This is exhibited by high performance on the
constrained problems, and non-continuous functions such as UF5 and
UF6.

The MSLGA mechanisms do not increase the performance for all
of the algorithms on all cases. In the unconstrained functions, the
MOEA/D hybrid performs worse than the original. The authors sug-
gest that this reduction in performance is caused by the collective
reproduction mechanisms, which do not properly maintain a number
of the parameters that the original MOEA/D utilises, such as the weight
vectors and neighbourhood of solutions. It might also be that such
a specialist solver’s performance is also degraded by the addition of
the MLSGA mechanism, which improves the generality of the algo-
rithm; there is no free lunch after all. In the MLSGA-MOEA/D hybrid
the newly created collective inherits the weight vector of the elimi-
nated collective during the collective reproduction step. However, the
solutions copied from the remaining collectives are not subject to this
weight vector as the specific weights are assigned to the individuals ran-
domly. This means that the best weight vector is not assigned to each
new solution. The neighbourhood of solutions in the hybrid approach
is recreated in the offspring collective, based only on the weight val-
ues. Therefore, the new neighbourhood does not reflect the relation-
ship between the two neighbour solutions in both the objective and
decision variable spaces. This lowers the overall fitness of the individu-
als in the new collective and thus decreases the performance compared
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Table 6
Updated CEC‘09 ranking on the two-objective unconstrained UF1-7 problems including MLSGA-MTS
hybrid.

to the original MOEA/D. In addition, the NSGA-II and MOEA/D algo-
rithms rely on a constant front to generate the optimal results, which
the current simple collective reproduction mechanisms do not account
for. Development of improvements to the collective level mechanisms,
bespoke to the algorithm used at the individual level, may provide a
further increase in performance. For NSGA-II and MOEA/D, this will
promote the constant front generation and will consider the original
algorithms specific mechanisms, such as weight and neighbourhoods in
MOEA/D.

MLSGA-MTS provides strong performance across all of the problem
sets, providing the best general performance. Its only poor performance,
12th in the updated CEC′09 rankings, is on UF7. It is difficult to deter-
mine the reasons for the poor performance but UF7 is a continuous
linear non-uniform problem with a strong bias towards the right side

of the Pareto Front. MTS and MLSGA do not have as strong diver-
sity preservation metrics as other leading algorithms, and this poten-
tially causes problems in regions where there is such a strong bias
towards points in one area, a limitation to the MLSGA-MTS approach. In
comparison to the other hybrid approaches, BCE [18] and HEIA [19],
the MLSGA-MTS exhibits better performance in 4 out of 7 functions.
Unfortunately, the algorithms cannot be compared on the constrained
functions due to lack of benchmarks of BCE and HEIA on these prob-
lems.

The authors believe that MLSGA mechanisms can be successfully
utilised on various GAs to improve the performance, not only those
presented in this work. Guidance is provided on how to tune the algo-
rithm for these different hybrids, and the result is that many of the new
parameters require little adjusting.
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Fig. 13. Pareto Front of MLS1, MLS2 and MLS2R fitness definition types from
MLSGA-NSGA-II algorithm on the CF1 problem.

6. Conclusions

This paper investigates the performance of implementing different
mechanisms at the individual level of Multi-Level Selection Genetic
Algorithm (MLSGA). This leads to a better understanding of how the
split in the fitness function and collective level reproduction mech-
anisms interact with a range of individual level mechanisms. Utili-
sation of MLSGA to create hybrid algorithms is shown to be benefi-
cial in a number of cases. Hyperparameter tuning is performed which
shows that the results are relatively insensitive to the new parameters,
or that these parameters are easy to select. The MLSGA mechanisms
improve the overall performance and provide a different behaviour
to the typical “convergence first, diversity second” approach, which
leads to the hybrids demonstrating particularly strong performance on
discontinuous problems. The hybrid genetic algorithms, MLSGA-MTS
and MLSGA-NSGA-II, show increased performance on the CEC′09 con-
strained and unconstrained problems over their original implementa-
tions but MLSGA-MOEA/D only exhibits this improvement on the con-
strained problems. The best hybrid is MLSGA-MTS, which performs the
best on a number of the CEC′09 benchmarking test problems and on
the updated rankings places 2nd on the constrained test sets and 2nd
on the unconstrained functions, leading to the best general performance
across all the problems.
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lems. To ensure that these developed mechanisms are capable of solving a
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ited to unconstrained problems with predominantly continuous characteris-
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tant than the discontinuous nature of the search and objective spaces. The best
performing algorithm overall is MOEA/D, and VP is the best re-initialisation
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1 Dynamic optimisation problems

Many real-world problems have characteristics which change over time. Ex-
amples include forecasting of financial markets and stocks to increase profits
in automated stock market investors [Bagheri et al., 2014]; forecasting, control
systems and pattern recognition in traffic management to determine the scale
of the traffic on the road and reduce the waiting time [Wismans et al., 2014];
climate controlling systems for crop growing greenhouses [Zhang, 2008] and
LNG storage tank terminal design to reduce the cost of transporting LNG
[Effendy et al., 2017]. This is increasing the interest in optimisation of Dy-
namic Single-Objective Problems [Branke, 2002] (DSOP) and Dynamic Multi-
Objective Problems [Helbig and Engelbrecht, 2015,Li et al., 2011,Farina et al.,
2004] (DMOP), via Genetic Algorithms (GA).

In order to identify the mechanisms with the strongest performance on
these types of problems there are a growing number of dynamic test sets
such as: FDA [Farina et al., 2004], JY [Jiang and Yang, 2017], UDF [Biswas
et al., 2014], DSW [Mehnen et al., 2006], HE [Helbig and Engelbrecht, 2014]
and ZJZ [Zhou et al., 2007]. These are used to replicate the most significant
characteristics from different types of real-world problems. Current Dynamic
Multi-Objective Problems exhibit various dynamic characteristics: search and
objective space geometry changes, Pareto Optimal Front (POF) and Set (POS)
curvature changes and shifts, discontinuities, modalities, periodicities, ran-
domness of changes or predictabilities and variable-linkages [Helbig and En-
gelbrecht, 2014] but all of the presented benchmarking sets are limited to un-
constrained problems and are focused on solutions with continuous Pareto
Optimal Fronts. Conducting benchmarking on a limited range of problem
types can lead to overdevelopment of mechanisms with a strong bias towards
these problems, which reduces their efficiency across the entire set of prob-
lems. Taking dynamic optimisation as an example, then since most of the cur-
rent benchmarks utilise continuous characteristics there are difficulties when
selecting the best solver for a constrained problem. It is also possible that the
mechanism development is biased towards these problems and it is likely
that these problems will require different mechanisms in the same way that
static problems tend to have solvers specialised either for constrained or un-
constrained problems [Zhang and Suganthan, 2009]. Testing on a wider set
of problems is more likely to highlight potential improvements to the mech-
anisms and understanding the limitations of each mechanism is essential if
they are to be utilised effectively in real-life applications.

Therefore, this paper introduces a novel constrained dynamic test set to
improve the knowledge related to Genetic Algorithm performance on dy-
namic problems with the aim of broadening the benchmarking possibilities
for the current state-of-the-art. A set of 15 constrained dynamic multi-objective
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problems are developed and 6 Genetic Algorithms are selected for their top
performance on dynamic or constrained/discontinuous problems: NSGA-
II [Deb et al., 2002], MOEA/D [Zhang and Li, 2007], MLSGA-MTS [Grud-
niewski and Sobey, 2018], MTS [Tseng and Chen, 2009], HEIA [Lin et al.,
2016] and BCE [Li et al., 2016], and their performance is compared on these
problems. This performance is also tested in combination with different re-
initialisation mechanisms, as these mechanisms make a considerable improve-
ment to Genetic Algorithm performance on dynamic problems.

This paper is organised as follows: section 2 presents a literature review
of different Genetic Algorithms and dynamic optimisation specific mecha-
nisms; section 3 introduces a new set of constrained dynamic (CDF) multi-
objective problems along with a review of currently existing sets; section 4
presents a brief overview of the Genetic Algorithms and the re-initialisation
mechanisms used in the benchmarking; section 5 shows the results followed
by conclusions in section 6.

2 Increasing the diversity of the population for dynamic optimisation

In dynamic multi-objective problems, the diversity of solutions has to be
maintained over the generations in order to achieve a complete set of re-
sults, the same as for static problems. However, the diversity of the gene pool
must also be maintained through different time steps, meaning that diversity
must be retained after convergence has occurred, unlike in static problems.
To solve this problem a number of novel re-initialisation methodologies are
proposed as additions to the current Genetic Algorithms, to improve per-
formance on these dynamic problems [Nguyen et al., 2012]. These methods
generally enhance the diversity of the population whenever an environmen-
tal change occurs, without significant impact on the computational cost of the
whole algorithm. Three major classes are found in the current state-of-the-art:
niching and other diversity preservation schemes [Goh and Tan, 2009], par-
tial replacement of the population or hypermutation [Deb et al., 2007] and
guided re-initialisation [Zhou et al., 2007].

In niching and other diversity preservation schemes the internal algo-
rithm mechanisms are used in order to regain the diversity of the popula-
tion after the environment changes. An example is dCOEA [Goh and Tan,
2009] where a separate competitive process occurs when a dynamic change is
detected, without the need to re-evaluate the whole population. Despite the
positive impact on the final performance, the mechanisms from this method-
ology group often cannot be utilised outside of specific algorithms in which
they were introduced and therefore the number of applications is limited.
In addition, they show poor performance on problems with discontinuous
search or objective spaces and cases where the environmental change is sig-
nificant.

A second type of preservation scheme is hypermutation where a fraction
of the set of potential solutions is modified by mutating the current individu-
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als, or by replacing them with randomly generated new ones when an en-
vironmental change is detected. This method is implemented in the most
commonly used Genetic Algorithm, NSGA-II [Deb et al., 2002], where the
resulting algorithm is designated DNSGA-II [Deb et al., 2007], and is suc-
cessfully tested on the FDA2 test function. However, the algorithm with the
updated dynamic element is not compared to the original variant and there-
fore it is hard to determine how much benefit is gained from the hypermuta-
tion mechanism [Deb et al., 2007]. Various benchmarks show that DNSGA-II
struggles on more complex cases, and is outperformed by other algorithms,
such as MOEA/D and dCOEA [Jiang and Yang, 2017, Biswas et al., 2014], in-
dicating that hypermutation does not sufficiently maintain diversity over the
time changes.

Re-initialisation methods are the final class of preservation scheme. Four
main variants have been described by Zhou et. al. [Zhou et al., 2007]:

1. random, where the new population is initiated arbitrarily;
2. prediction-based, where the movement of the Pareto Optimal Set or Front

is predicted, based on historical information, and the new population is
sampled around the predicted location using Gaussian noise;

3. variation-based, where new points are created by varying the solution in
the last time window with a predicted Gaussian noise, therefore only the
information from the last time window is used, without the need to store
the historical data;

4. the mixed method, variance and prediction (VP), where the variation method
is applied to half of the population, and the prediction method to the rest.

In an initial benchmarking exercise the random variant is shown to be
highly inefficient, as the algorithm needs to restart at every time change,
the prediction-based method is shown to outperform the variation-based ap-
proach but the variance and prediction method shows the top performance
as it can maintain benefits from both of these methods. However, all of the
variants are benchmarked on a limited test set, ZJZ [Zhou et al., 2007] and
FDA [Farina et al., 2004], and are only combined with a single algorithm,
DMEA/PRI [Zhou et al., 2007], and therefore further testing is required to
test the pervasiveness of these conclusions. The prediction-based methods
are also investigated by Biswas et. al. [Biswas et al., 2014] and a new strat-
egy is introduced that relies on Controlled Extrapolation with a Pareto Op-
timal Front based on a distance approach (CER-POF). In this method, the
positions of the parent solutions are evaluated based on the Pareto Optimal
Front distances, instead of the Pareto Optimal Set distances as in Zhou et.
al. [Zhou et al., 2007], and the offspring points are sampled using Gaus-
sian noise or a hyperbolic function, with equal probability. The proposed
CER-POF method, combined with MOEA/D, is shown to outperform the
prediction-based re-initialisation strategy presented by Zhou [Zhou et al.,
2007], and the hypermutation-based DNSGA-II algorithm [Deb et al., 2007].
However, it is not compared to MOEA/D without re-initialisation, in com-
bination with the VP method or to the Pareto Optimal Set based prediction
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introduced by Zhou [Zhou et al., 2007], which limits the generality of the con-
clusions. In addition, the prediction-based re-initialisation methods assume
that the change of the Pareto Optimal Set or Pareto Optimal Front follow spe-
cific patterns, which can be found and exploited to predict the next time step.
The performance of these methods on problems where a pattern does not ex-
ist or cannot be found easily, has not been properly evaluated despite it being
the case for many real-world applications.

The re-initialisation methods have shown to increase the effectiveness
of Genetic Algorithms on Dynamic Multi-Objective Problems without sig-
nificant impact on the computational cost. These mechanisms outperform
the hypermutation-based algorithms and exhibit comparable performance to
niching-based approaches. Three re-initialisation schemes: CER-POF, VP and
CER-POS, are selected as the most promising mechanisms for dynamic prob-
lems due to their combination of high performance and flexibility, where the
Controlled Extrapolation with a Pareto Optimal Set based distance approach
(CER-POS) [Biswas et al., 2014] is introduced in order to determine the im-
portance of different nearest-distance definitions on dynamic problems.

3 A test set for constrained dynamic problems

To increase the range of dynamic problems this paper develops a set of 15
novel two-objective Constrained Dynamic Functions (CDF)1, which reflect
the constrained and discontinuous problem types found in many applica-
tions. These modify the Constrained Functions (CF) developed for the CEC
09 multiobjective competition [Zhang et al., 2009] according to the dynamic
function framework proposed by Biswas et.al [Biswas et al., 2014], as it al-
lows straightforward modification of static functions into dynamic problems.
Only two-objective problems are considered as these allow a simpler inter-
pretation of the results, without issues of scaling, while providing enough
complexity to resemble a number of real-world problems, such as [Bagheri
et al., 2014, Wismans et al., 2014, Zhang, 2008, Effendy et al., 2017].

3.1 General summary of dynamic problems

According to Farina et.al [Farina et al., 2004] 4 types of dynamics can be dis-
tinguished: type I, where changes are made to the Pareto Optimal Set only;
type III, where the Pareto Optimal Front is dynamic; type II, where both
the Pareto Optimal Set and the Front are subject to environmental changes
and type IV, where only the objective function or constraints are altered, but
both the Pareto Optimal Front and the Set remain static. Part of developing a
new set of constrained problems is determining to what extent the constraint
should be time dependant in relation to the Pareto Optimal Front and the Set,
three cases are considered:

1 These functions are available in C++ at: https://www.bitbucket.org/Pag1c18
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a) A static constraint where no time dependency is introduced. However, de-
spite the constraint itself being static the effect of the constraint, and the re-
sulting regions where there are no feasible solutions, are not constant due
to the time dependency of the search and objective spaces. Therefore, the
Pareto Optimal Front and Set change with respect to the resulting gaps.

b) A dynamic constraint where the time dependency is bonded to the dy-
namic change of the optimisation problems Pareto Optimal Front and Set.
In this case, the applied constraints follow the dynamic change in the pat-
tern of the optimisation problem as the same time-dependency is applied
to both of them. Therefore, the resulting gaps in both the Pareto Optimal
Set and Pareto Optimal Front do not change.

c) A dynamic constraint where the dynamic change is independent from the
change in the optimisation problem. In this case, the constraint is subject
to different dynamic changes than those applied to both the Pareto Op-
timal Set and Pareto Optimal Front, or they remain static. Therefore, the
resulting gaps on both the search and objective spaces shift independently
every time step, making the problem harder to solve.

Table 1: Summary of the Constrained Dynamic Test set

Name
Type of

dynamic
problem

Type of
constraint Continuity Type of POF/POS

change Constraints

CDF1 I Dynamic Continuous Curvature change 2 variable
constriants

CDF2 I Static Continuous Curvature change;
horizontal shift

1 variable
constraint

CDF3 I Dynamic Discontinuous Curvature change 1 variable
constraint

CDF4 I Static Discontinuous Vertical shift 1 objective
constraint

CDF5 II Dynamic Continuous Diagonal shift 1 variable
constraint

CDF6 II Static Continuous Diagonal shift 2 variable
constriants

CDF7 II Dynamic Discontinuous Curvature change;
diagonal shift

1 objective
constraint

CDF8 II Static Discontinuous Curvature change 1 objective
constraint

CDF9 III Dynamic Continuous Curvature change;
diagonal shift

2 variable
constriants

CDF10 III Static Continuous Curvature change 1 variable
constraint

CDF11 III Dynamic Discontinuous Horizontal shift 1 variable
constraint

CDF12 III Static Discontinuous Curvature change;
angular shift

1 objective
constraint

CDF13 II Static Discontinuous Random curvature
change or shift

1 objective
constraint

CDF14 IV Dynamic Discontinuous Continuity change 1 objective
constraint

CDF15 IV Dynamic Discontinuous Discontinuity shift 1 objective
constraint
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3.2 Test instances

In this paper, the CDF test set is developed to ensure a range of different prob-
lem types by considering all 3 cases, with changes to the location of the Pareto
Optimal Set or Front, changes to the geometries of the search and objective
space and dynamic or static constraints introduced to the variables and ob-
jectives. Due to the quantity of potential combinations for these parameters,
orthogonal design is used to develop 12 representative functions as described
in Table 1; this is performed according to the types of dynamic problems and
constraints, changes in Pareto Optimal Front and Pareto Optimal Set, and the
continuity of both Pareto Optimal Front and Pareto Optimal Set. This gener-
ates a set of problems including at least one of each of the type I-III problems
with different Pareto Optimal Front and Pareto Optimal Set geometries. Ad-
ditionally, one problem with a random dynamic change is introduced, as the
random element greatly increases the complexity of a problem as the change
cannot be predicted; and two problems of type IV are added in order to inves-
tigate the different types of time-dependency in constraints with static vari-
able and objective spaces. All of the functions are to be minimised and have
10 decision variables.

CDF1: is generated by combining the UDF2 problem with two variable
constraints; the resulting function is a Type I problem. This combination al-
lows investigation of the behaviour of algorithms on continuous objective
spaces in dynamic Pareto Optimal Set environments. However, as the con-
straint is also dynamic relative to the change in sin(t) the infeasible regions
are not observed over time, which reduces the overall complexity of the prob-
lem. The problem is described on eq. 1 with the Pareto Optimal Front illus-
trated in Fig. 1.

f1 = x1 + 2
|J1|

∑

j∈J1
(xix

yj
1 )2

f2 = (1− x1)2 + 2
|J2|

∑

j∈J2
(xix

yj
1 )2

yj = 0.5(1 +
3(j−2)
n−2

) + |G(t)|, j = 2, . . . , n

x ∈ [0, 1]× [−1, 2]n−1

g1(x, t) =

{
x2 − x(0.5∗2+|G(t)|)−sign(k1)

√
|k1|

1

k1 = 0.5(1− x1)− (1− x1)2

g2(x, t) =




x4 − x

(0.5∗(2+ 3∗(4−2)
n−2

)+|G(t)|)−sign(k2)
√
|k2|

1

k2 = 0.25
√
1− x1 − 0.5(1− x1)

POF :

{
f2 = (1− f1)2
0 ≤ f1 ≤ 1

(1)

CDF2: introduces a vertical shift of the Pareto Optimal Set into the CF4; the
resulting problem is Type I. In comparison to CDF1, the introduced constraint
is static and limits the obtainable Pareto Optimal Front values on the right-
hand side of objective space. The complexity is due to the high multimodality
with an uneven distribution of points across the Pareto Optimal Front. The
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problem is described in eq. 2 with the Pareto Optimal Front illustrated in Fig.
2.

f1 = x1 +
∑

j∈J1
wj(yj)

f2 = 1x1 +
∑

j∈J2
wj(yj)

yj = xjsin(6πx1 +
(jπ
n

), j = 2, . . . , n

w2(z) =

{
|z| if z < 1.5(1− 0.5

√
2)

0.125 + (z − 1)2 otherwise
wj(z) = (z −G(t))2, j = 3, . . . , n

x ∈ [0, 1]× [−2, 2]n−1

g(x, t) =

{
a

1+e4|a|

a = x2 − sin(6πx1 + 2π
n
)0.5x1 + 0.25

POF :





f2 =





1− f1 if 0 ≤ f1 ≤ 0.5

−0.5f1 + 0.75 else if f1 ≤ 0.75

1− f1 + 0.125 else if f1 ≤ 1

0 ≤ f1 ≤ 1

(2)

CDF3: is a combination of the UDF3 with a simple dynamic, variable con-
straint. The resulting function is a type I problem, but unlike CDF1 and CDF2,
a high discontinuity of both objective and search spaces can be observed and
CDF3 requires a higher diversity of the search. The problem is described in
eq. 3 with the Pareto Optimal Front illustrated in Fig. 3.

f1 = x1 + h+ 2
|J1|

∑

j∈J1
(xix

yj
1 )2

f2 = 1− x1 + h+ 2
|J2|

∑

j∈J2
(xix

yj
1 )2

h = ( 0.5
N

+ ε)|sin(2Nπx1)|
yj = 0.5(2 +

3(j−2)
n−2

) + |G(t)|, j = 2, . . . , n

x ∈ [0, 1]× [−1, 1]n−1

N = 10; ε = 0.1

g(x, t) =
{
x2 − x(1+|G(t)|)

1

POF :





f1 = i
2N

f2 = 1− i
2N

for i = 0, 1, . . . , 2N

(3)

Fig. 1: Pareto Optimal
Front for CDF1 over the
first 11 times steps

Fig. 2: Pareto Optimal
Front for CDF2 over the
first 11 times steps

Fig. 3: Pareto Optimal
Front for CDF3 over the
first 11 times steps
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CDF4: is generated by combining the objective constraint from CF1 with a
UDF2 dynamic shift; the resulting function is a Type I problem. The complex-
ity of the problem is higher than of CDF3, due to the utilisation of the static
constraint where the relative position of the infeasible region changes every
time step. The problem is described in eq. 4 with the Pareto Optimal Front
illustrated in Fig. 4.

f1 = x1 + 2
|J1|

∑

j∈J1
(xix

yj
1 )2

f2 = 1− x21 + 2
|J2|

∑

j∈J2
(xix

yj
1 )2

yj = 0.5(1 +
3(j−2)
n−2

) + |G(t)|, j = 2, . . . , n

x ∈ [0, 1]× [−2, 2]n−1

g(x, t) = f1 + f2 − |sin(Nπ(f1 − f2 + 1))| − 1
N = 10

POF ∗ :

{
f2 = 1− f21
0 ≤ f1 ≤ 1

(4)

CDF5: the CF5 is combined with the UDF1 constraint resulting in CDF5,
which is a type II problem with a dynamic constraint. A diagonal shift in
both the Pareto Optimal Set and Front is introduced, and infeasibility is not
dependant on time. The high complexity of this problem is the result of the
high multimodality and an uneven distribution of points across the Pareto
Optimal Front, which is similar to CDF2. The problem is described in eq. 5
with the Pareto Optimal Front illustrated in Fig. 5.

f1 = x1 + |G(t)|+
∑

j∈J1
wj(yj)

f2 = 1x1 + |G(t)|+
∑

j∈J2
wj(yj)

yj =

{
xj0.8x1cos(6πx1 + jπ

n
)−G(t), j ∈ J1

xj0.8x1sin(6πx1 + jπ
n
)−G(t), j ∈ J2

w2(z) =

{
|z| if z < 1.5(1− 0.5

√
2)

0.125 + (z − 1)2 otherwise
wj(z) = 2z2 − cos(4πz) + 1, j = 3, . . . , n

x ∈ [0, 1]× [−2, 2]n−1

g(x, t) = x2 − 0.8x1sin(6πx1 + 2π
n
)0.5x1 + 0.25−G(t)

POF :





f1 = y1 + |G(t)|; f2 = y2 + |G(t)|

y2 =





1− y1 if 0 ≤ y1 ≤ 0.5

−0.5y1 + 0.75 else if y1 ≤ 0.75

1− y1 + 0.125 else if y1 ≤ 1

0 ≤ y1 ≤ 1

(5)
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Fig. 4: Pareto Optimal
Front for CDF4 over the
first 11 times steps

Fig. 5: Pareto Optimal
Front for CDF5 over the
first 11 times steps

Fig. 6: Pareto Optimal
Front for CDF6 over the
first 11 times steps

CDF6: the UDF1 is combined with the CF6 constraint resulting in a type II
problem. This problem is similar to the CDF5 in terms of the changes in both
Pareto Optimal Set and Front. Two constraints are incorporated, compared to
one in the CDF5 and the utilised objective function is easier to solve due to
the higher uniformity of the Pareto Optimal Front. The problem is described
in eq. 6 with the Pareto Optimal Front illustrated in Fig. 6.

f1 = x1 + |G(t)|+
∑

j∈J1
(yj)

2

f2 = (1x1)2 + |G(t)|+
∑

j∈J2
(yj)

2

yj =





xj0.8x1sin(6πx1 + jπ
n
), j = 2, 4

xj0.8x1cos(6πx1 + jπ
n
)− |G(t)|, j ∈ J1

xj0.8x1sin(6πx1 + jπ
n
)− |G(t)|, j ∈ J2 − {2, 4}

x ∈ [0, 1]× [−2, 2]n−1

g1(x, t) =

{
x2 − |G(t)| − 0.8x1sin(6πx1 + 2π

n
)sign(k1)

√
|k1|

k1 = 0.5(1− x1)− (1− x1)2

g2(x, t) =

{
x4 − |G(t)| − 0.8x1sin(6πx1 + 4π

n
)sign(k2)

√
|k2|

k2 = 0.25
√
1− x1 − 0.5(1− x1)

POF :





f1 = y1 + |G(t)|; f2 = y2 + |G(t)|

y2 =





(1− y1)2 if 0 ≤ y1 ≤ 0.5

0.5(1− y1) else if y1 ≤ 0.75

0.25
√
1− y1 else if y1 ≤ 1

0 ≤ y1 ≤ 1

(6)

CDF7: is generated by combining the CF1 with a UDF2 dynamic shift; the
resulting function is a Type II problem. This combination allows investigation
of the behaviour of algorithms on highly discontinuous spaces in dynamic
Pareto Optimal Set and Front environments. However, as the constraint is
also dynamic then changes in the infeasible regions are not observed over
time, which reduces the overall complexity of the problem. The problem is
described in eq. 7 with the Pareto Optimal Front illustrated in Fig. 7. This
function allows an investigation into the performance of algorithms based on
a diagonal shift in the Pareto Optimal Front and vertical shift with curvature
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change of the Pareto Optimal Set on a highly discontinuous space, without
relative changes to the positions of the infeasible regions over time.

f1 = x1 + |G(t)|+ 2
|J1|

∑

j∈J1
(xj − xyj1 −G(t))2

f2 = 1x1 + |G(t)|+ 2
|J2|

∑

j∈J2
(xj − xyj1 −G(t))2

yj = 0.5(1 +
3(j−2)
n−2

), j = 2, . . . , n

x ∈ [0, 1]× [−2, 2]n−1

g(x, t) = f1 + f22|G(t)| − |sin[Nπ(f1 − f2 + 1)]| − 1
N = 10

POF : points: ( i
2N

+ |G(t)|, 1− i
2N

+ |G(t)|), i = 0, 1, . . . , 2N

(7)

CDF8: the UDF5 is combined with the CF3 constraint to form CDF4. This
problem has a similar Pareto Optimal Front pattern to CDF4. However, an an-
gular shift of the Pareto Optimal Set with a curvature change is included and
this function introduces a constraint in a more continuous objective space.
In addition, the objective function is less complex but a larger search space
is utilised. The problem is described in eq. 8 with the Pareto Optimal Front
illustrated in Fig. 8.

f1 = x1 + 2
|J1|

∑

j∈J1
(xj − xyj1 )2

f2 = 1M(t)(x1)H(t) + 2
|J2|

∑

j∈J2
(xj − xyj1 )2

yj = 0.5(2 +
3(j−2)
n−2

), j = 2, . . . , n

x ∈ [0, 1]× [−1, 2]n−1

g(x, t) =
√
f1 + f2 − sin[2π(

√
f1 − f2 + 1)]− 1

POF ∗ : f2 = 1M(t)(f1)H(t), 0 ≤ f1 ≤ 1

(8)

CDF9: is a modified CDF6 function, with the dynamic change removed
from the Pareto Optimal set and instead added to the constraints. This results
in a Type III problem, with a significant curvature change in the Pareto Op-

Fig. 7: Pareto Optimal
Front for CDF7 over the
first 11 times steps

Fig. 8: Pareto Optimal
Front for CDF8 over the
first 11 times steps

Fig. 9: Pareto Optimal
Front for CDF9 over the
first 11 times steps
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timal front. The problem is described in eq. 9 with the Pareto Optimal Front
illustrated in Fig. 9.

f1 = x1 + |G(t)|+
∑

j∈J1
(yj)

2

f2 = [1(M(t)x1)H(t)]2 + |G(t)|+
∑

j∈J2
(yj)

2

yj =

{
xj0.8x1cos(6πx1 + jπ

n
), j ∈ J1

xj0.8x1sin(6πx1 + jπ
n
), j ∈ J2 − {2, 4}

x ∈ [0, 1]× [−2, 2]n−1

g1(x, t) =

{
x2 − |G(t)| − 0.8x1sin(6πx1 + 2π

n
)sign(k1)

√
|k1|

k1 = 0.5[1(M(t)x1)H(t)]− [1(M(t)x1)H(t)]2

g2(x, t) =

{
x4 − |G(t)| − 0.8x1sin(6πx1 + 4π

n
)sign(k2)

√
|k2|

k2 = 0.25
√

1(M(t)x1)H(t) − 0.5[1(M(t)x1)H(t)]

POF :





f1 = y1 + |G(t)|; f2 = y2 + |G(t)|

y2 =





[1z]2 if 0 ≤ z ≤ 0.5

0.5[1− z] else if z ≤ 0.75

0.25
√
1z else if z ≤ 1

z = (M(t)y1)H(t)

0 ≤ y1 ≤ 1

(9)

CDF10: is generated by adding curvature variation of the Pareto Optimal
Front to the CF7; the resulting function is a Type III problem. Due to the util-
isation of the static constraint the time complexity of the problem is higher
than for CDF9, but the complexity overall is lower. The problem is described
in eq. 10 with the Pareto Optimal Front illustrated in Fig. 10;

f1 = x1 +
∑

j∈J1
(wj(yj))

2

f2 = (1− x1)H(t) +
∑

j∈J2
(wj(yj))

2

yj =

{
xjcos(6πx1 + jπ

n
), j ∈ J1

xjsin(6πx1 + jπ
n
), j ∈ J2

w2(z) = w4(z) = z2

wj(z) = 2z2 − cos(4πz) + 1, j = 3, . . . , n
x ∈ [0, 1]× [−2, 2]n−1

g(x, t) = x2 − 0.8x1sin(6πx1 + 2π
n
)0.5x1 + 0.25−G(t)

POF :





f2 =





(1− f1)H(t) if 0 ≤ f1 ≤ 0.5

(1− f1)H(t) − (1− f1)2 + 0.5 ∗ (1− f1) else if f1 ≤ 0.75

(1− f1)H(t)(1− f1)2 + 0.25 ∗ √1− f1 else if f1 ≤ 1

0 ≤ f1 ≤ 1

(10)
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CDF11: is a modified CDF3 function, with the dynamic change removed
from the Pareto Optimal set, but added to the constraints. This results in a
Type III problem, with a vertical change of the Pareto Optimal front rather
than changes in the curvature. The problem is described in eq. 11 with the
Pareto Optimal Front illustrated in Fig. 11.

f1 = x1 + |G(t)|+ h+
∑

j∈J1
wj(yj)

f2 = 1x1 + |G(t)|+ h+
∑

j∈J2
wj(yj)

h = ( 0.5
N

+ ε)|sin(2Nπx1 +G(t)π)|

yj =

{
xj0.8x1cos(6πx1 + jπ

n
), j ∈ J1

xj0.8x1sin(6πx1 + jπ
n
), j ∈ J2

w2(z) =

{
|z| if z < 1.5(1− 0.5

√
2)

0.125 + (z − 1)2 otherwise
wj(z) = 2z2 − cos(4πz) + 1, j = 3, . . . , n

x ∈ [0, 1]× [−1, 1]n−1

N = 10; ε = 0.1
g(x, t) = x2 − 0.8x1sin(6πx1 + 2π

n
)0.5x1 + 0.25

POF :





f1 =
i−G(t)

2N

f2 =





1− f1 if 0 ≤ f1 ≤ 0.5

−0.5f1 + 0.75 else if f1 ≤ 0.75

1− f1 + 0.125 else if f1 ≤ 1

for i = 0, 1, . . . , 2N

(11)

CDF12: introduces angular shift and curvature variations of the Pareto
Optimal Front into the CF2. A static objective constraint is introduced and
the resulting function is a Type III problem, as no environmental change is
applied to the Pareto Optimal Set. This function allows the behaviour in the
constrained and dynamic Pareto Optimal Front environments to be evalu-

Fig. 10: Pareto Optimal
Front for CDF10 over
the first 11 times steps

Fig. 11: Pareto Optimal
Front for CDF11 over
the first 11 times steps

Fig. 12: Pareto Optimal
Front for CDF12 over
the first 11 times steps
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Fig. 13: Pareto Optimal
Front for CDF13 over
the first 11 times steps

Fig. 14: Pareto Optimal
Front for CDF14 over
the first 11 times steps

Fig. 15: Pareto Optimal
Front for CDF15 over
the first 11 times steps

ated. The problem is described in eq. 12 with the Pareto Optimal Front illus-
trated in Fig. 12.

f1 = x1 + 2
|J1|

∑

j∈J1
y2j

f2 = 1(x1)H(t) + 2
|J2|

∑

j∈J2
y2j

yj =

{
xj0.8x1cos(6πx1 + jπ

n
), j ∈ J1

xj0.8x1sin(6πx1 + jπ
n
), j ∈ J2

x ∈ [0, 1]× [−1, 1]n−1

g(x, t) =

{
a

1+e4|a|

a =
√
f1 + f2 − sin[2π(

√
f1 − f2 + 1)]− 1

POF ∗ : f2 = 1(f1)H(t), 0 ≤ f1 ≤ 1

(12)

CDF13: the UDF8 is combined with the CF4 constraint resulting in the
CDF13. This problem is type II, and uses the same objective function as CDF9.
However, the constraint is dynamic as a random change is introduced. The
random element greatly increases the complexity of the problem as the change
cannot be predicted. The problem is described in eq. 13 with the Pareto Opti-
mal Front illustrated in Fig. 13.

In CDF13, several types of dynamic changes are incorporated, in a similar
manner to UDF8, but only one of them is employed at a time; during the
environmental change one of t1 to t5 is selected randomly and is increased
by 1.

f1 = x1 + |G(t3)|+ 2
|J1|

∑

j∈J1
y2j

f2 = 1M(t4)(x1)H(t5) + |G(t3)|+ 2
|J2|

∑

j∈J2
y2j

yj = xjsin(6πx1 +
(j+K(t1))π

n
)G(t2), j = 2, . . . , n

x ∈ [0, 1]× [−2, 2]n−1

g(x, t) =

{
w + f2 − sin[2π(w − f2 + 1)]− 1

w =M(t4)(f1)H(t5)

POF ∗ :

{
f2 = 1M(t4)(f1 − |G(t3)|)H(t5) + |G(t3)|,
0 + |G(t3)| ≤ f1 ≤ 1 + |G(t3)|

(13)
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CDF14: introduces a time-dependent constraint into the static CF1. The
additional constraint is independent of the change in objective function and
the result is a Type IV problem. The time-dependency of the constraint changes
the geometry of the Pareto Optimal Front and the Set over time from distinct
points, through to disconnected fronts and finally to a continuous set. This
means that retaining the diversity of solutions over time steps is essential,
especially when the sizes of the infeasible regions are decreasing. Due to this
the boundary ranges are lowered, in order to decrease the complexity. The
problem is described in eq. 14 with the Pareto Optimal Front illustrated in
Fig. 14.

f1 = x1 + 2
|J1|

∑

j∈J1
(xj − xyj1 )2

f2 = 1x1 + 2
|J2|

∑

j∈J2
(xj − xyj1 )2

yj = 0.5(1 +
3(j−2)
n−2

), j = 2, . . . , n

x ∈ [0, 1]n

g(x, t) = f1 + f2 − |sin[Nπ(f1 − f2 + 1)]| − 1 + |G(t)|
N = 10

POF ∗ : f2 = 1− f1, 0 ≤ f1 ≤ 1

(14)

CDF15: is Type IV, similar to CDF14, as the time-dependent constraint is
introduced into the CF3, without any direct environmental changes in ob-
jective or variable spaces. However, in this case the position of the infeasible
regions is shifting in both the search and objective spaces, instead of changing
the size of them. The problem is described in eq. 15 with the Pareto Optimal
Front illustrated in Fig. 15.

f1 = x1 + 2
|J1|

∑

j∈J1
y2j

f2 = 1x21 + 2
|J2|

∑

j∈J2
y2j

yj = xj − sin(6πx1 + jπ
n
), j = 2, . . . , n

x ∈ [0, 1]× [−2, 2]n−1

g(x, t) = f21 + f2sin[2π(f21 − f2 + 1) +G(t)]− 1

POF ∗ : f2 = 1− f21 , 0 ≤ f1 ≤ 1

(15)

4 Methodology

4.1 Selection of mechanisms and unconstrained test problems

The performances of different Genetic Algorithms are evaluated in combi-
nation with different re-initialization methods over the developed test in-
stances, CDF1-15. Furthermore, eighteen bi-objective unconstrained functions
are used to evaluate the differences in behaviour of the utilised solvers be-
tween the constrained and unconstrained problems. The unconstrained func-
tions are UDF1-9 [Biswas et al., 2014], except for UDF7 as it is a three-objective
problem, JY1-8 [Jiang and Yang, 2017], except JY4 as the parameters given
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in [Jiang and Yang, 2017] do not reflect the problem description and the pro-
vided Pareto Optimal Front, and FDA1-3 [Farina et al., 2004]. The selected
set provides a range of problems including all types of dynamics, I-IV, differ-
ent kinds of Pareto Optimal Front and Set changes, varying Pareto Optimal
Front and Set geometries, and problem characteristics: modalities, biases and
variable-linkages.

Six different Genetic Algorithms are selected for the benchmarking due
to their high performance: MOEA/D, as the best algorithm for static and dy-
namic unconstrained problem types [Zhang and Suganthan, 2009, ?]; NSGA-
II [Deb et al., 2002] as the most commonly utilised Genetic Algorithm with
high performance on static constrained and unconstrained problems; MTS
[Tseng and Chen, 2009] due to the high performance on constrained and un-
constrained static problems while also representing a Genetic Algorithm with
no crossover, it has a high potential for dynamic problems as it demonstrates
rapid convergence but is currently untested on these problems; BCE [Li et al.,
2016] and HEIA [Lin et al., 2016] as examples of the current state-of-the-
art of static Genetic Algorithms, with top performance on static problems
and a higher emphasis on diversity; and the MLSGA-MTS hybrid [Grud-
niewski and Sobey, 2018], in MLS1 configuration, which shows the best gen-
eral performance on static problems where the addition of the MLS1 mecha-
nisms have been shown to increase the convergence speed [Sobey and Grud-
niewski, 2018], essential in dynamic optimisation. Each of the six selected
algorithms, MOEA/D, NSGA-II, MTS, BCE, HEIA and MLSGA-MTS, are
combined with the 3 different re-initialisation methodologies: VP, CER-POS
and CER-POF, and compared to results without any re-initialisation mecha-
nisms. DEMO [Farina et al., 2004], DMEA/PRI [Zhou et al., 2007] and DQ-
MOO/AR [Hatzakis and Wallace, 2006], are not selected as they are shown
to be outperformed by MOEA/D [Biswas et al., 2014]. DNSGA-II [Deb et al.,
2007] is also not included as it is outperformed by other methods and not
compatible with the selected re-initialisation mechanisms. dCOEA [Goh and
Tan, 2009] is not selected as it performs poorly on discontinuous search and
objective spaces, while showing similar performance on other problems to
MOEA/D [Biswas et al., 2014]. Only Genetic Algorithms are considered, in-
stead of the other Evolutionary Algorithms, as the principle of this paper is
not to find the best solver for each kind of problem, but rather to evaluate
the impact of implementing constraints into dynamic problems on Genetic
Algorithms.

In addition, two constraint-handling approaches are tested against each
other in order to minimise the potential bias of a single technique towards a
certain Genetic Algorithm or re-initialisation methodology: the dominance-
based [Deb et al., 2002] and the adaptive penalty-based [Azzouz et al., 2018]
constraint-handling methods are selected as the most commonly utilised tech-
niques.
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4.2 Benchmarking parameters

The benchmarks are conducted using two different combinations of dynamic
settings, the time change, T , and ns. T denotes the time-window when the
problem remains static, as the number of generations; ns denotes the severity
of change. The first set of benchmarks represents a harsh dynamic environ-
ment with both values taken to be 5. In the second set of benchmarks, devel-
oped to demonstrate optimisation in a less harsh dynamic condition, both of
the parameters are set equal to 10. These two tests are conducted in order to
eliminate the selection of certain parameters which promote the performance
of certain algorithms or mechanisms, especially the importance of diversity
and convergence rate. However, the results show similar trends in both cases,
and therefore only the results for T and ns equal to 5 are documented with the
values set to 10 documented in the supplementary material. The performance
is evaluated based on the Inverted Generational Distance (IGD) [Bosman and
Thierens, 2003] and Hyper Volume (HV) [While et al., 2012].

In most benchmarks a relatively small population is used, around 200-
500. However, as the presented constrained functions are more challenging,
larger population sizes may be required to prevent the algorithm from getting
stuck in an infeasible region of the search space and premature convergence.
Therefore, two population sizes of 300 and 1000 are evaluated to avoid the
situation where the population size is the limiting factor for the algorithm,
i.e. it is not enough to develop the necessary diversity of solutions. However,
the population size does not affect the trends in the results, equally reducing
the overall performance of each algorithm meaning no mechanism is unfairly
penalised. Therefore, the results for the 300 population sizes are attached as
a data supplement but are not documented in the paper.

In most benchmarks of Genetic Algorithms on dynamic problems, the ter-
mination criterion utilised is the number of generations and the time change
occurs after T generations [Jiang and Yang, 2017, Biswas et al., 2014]. How-
ever, the number of objective function evaluations conducted at each gen-
eration is not uniform across different methodologies. For NSGA-II it is the
population size and for MOEA/D it is the number of new offspring, which
is significantly lower than the parent population size, usually 0.1 of the over-
all population size. For the MTS and MLSGA-MTS algorithms the number
of evaluations is a multiple of the population size, ranging from 5x to 50x,
as multiple local searches are used. Comparing the performance of these al-
gorithms using the number of generations gives a wide range of different
function calls and does not provide a fair benchmark. Furthermore, the total
number of generations is irrelevant in most cases, as the calculation time per
generation is normally relatively small in comparison to the objective func-
tion evaluation. Therefore, the selected stopping criterion is the number of fit-
ness function evaluations and the time change occurs after a certain number
of evaluations. The total number of fitness function evaluations for T and ns
equal to 5 and 10 are therefore 300,000 and 600,000 respectively, which allows
6 cycles of the UDF and CDF [Biswas et al., 2014], and 3 cycles of the JY [Jiang
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and Yang, 2017] and FDA [Farina et al., 2004]. The time change occurs after
population size ×T iterations and is equal to 5000 iterations in the case of T
equal to 5 and 10,000 iterations in the second case. All cases are evaluated
over 30 independent runs. In order to show the importance of a proper ter-
mination condition, a separate test is conducted with the commonly utilised
generations termination condition, with 300 generations as the limit. The re-
sults show that MTS outperforms all of the other algorithms on almost all of
the selected functions and MOEA/D performs poorly due to the dispropor-
tionate number of fitness evaluations per generation. Therefore, the data for
the generation termination condition is not included but attached as supple-
mentary material to allow comparison to the previous literature. Even though
this issue is widely known in static MOPs, the previous dynamic benchmarks
have not addressed it [Jiang and Yang, 2017, Biswas et al., 2014] and fitness
evaluations limits have not been mentioned or obviously implemented. The
obtained results show that future dynamic benchmarking exercises should
use fitness evaluation limits, to allow a fair comparison of algorithms across
different exercises.

5 Performance Benchmarking

A summary of the top performing algorithms and re-initialization mecha-
nisms is presented in this section for T and ns equal to 5, using 1000 indi-
viduals in the population. Pre-benchmarking simulations show that the dy-
namic parameters only have a minor impact on the comparative performance
of the utilised algorithms and re-initialisation strategies. In the conducted
benchmarks the adaptive penalty-based constraint-handling approach leads
to significantly better results in comparison to the second technique. How-
ever, there is no significant differences in comparative performance of the
selected Genetic Algorithms and re-initialisation mechanisms between those
constraint-handling techniques. The only exception is that HEIA shows stronger
performance with the dominance-based strategy and therefore all of the re-
sults shown are from the domination-based approach. The detailed data, with
minimum, maximum and average values of the IGD and HV, along with stan-
dard deviations and calculation times are added as supplementary material.

The most dominant factor in determining the performance on the dy-
namic problems is the selection of the Genetic Algorithm. Despite this, the
results indicate that in most cases the selection of the re-initialization method
can have a significant impact on the final performance. Only in a few, seem-
ingly random, cases is the performance of the Genetic Algorithm indepen-
dent of these re-initialisation methods. Interestingly, the impact of the re-
initialisation strategy is not uniform across different Genetic Algorithms and
problems, i.e. on the same problem the VP variant can exhibit the best per-
formance for MTS but for BCE with VP shows the worst performance. There-
fore, selection of the best strategy is difficult and further work needs to be
performed to determine how this selection can be made in advance. These



Title Suppressed Due to Excessive Length 19

results are summarised in section 5.1 for the re-initialisation methods and in
section 5.2 for the different algorithms to understand the final performance.

5.1 Re-initialisation

In order to compare the different re-initialization methods, the average rank,
according to the IGD and HV metrics, of each mechanism is calculated on
problems with the same characteristics and presented in Table 2 for T and
ns equal to 5. In most cases, the VP re-initialisation outperforms the other
methodologies tested and has the lowest rank in total across all of the prob-
lem types, despite the lack of uptake for this method outside of the original
paper [Zhou et al., 2007]. The high performance of the VP method is due to
the inclusion of the variance module, which is not based on pattern predic-
tion but on random Gaussian noise. The prediction-based strategies utilize
historical information from the Pareto Optimal Set at previous generations to
approximate the position of the final Pareto Optimal Set in the next time step.
Therefore, these methods are inefficient on problems where the Pareto Op-
timal Set remains static, such as type III problems: FDA2, UDF3, UDF6 and
CDF9-12, and the problems where the pattern for how the objectives change
cannot be predicted, such as the random change problems: UDF8, UDF9 and
CDF13. This is supported by the higher performance of the variant with no
re-initialisation over other methods. Industrial applications are often unpre-
dictable, or extremely complex, and so the separation in performance of these
mechanisms is likely to be even greater. Furthermore, in the vast majority of
cases there is a significant difference between the ranked results according
to Wilcoxons rank sum test with a confidence level of α = 0.05, especially
comparing VP to other methods, showing its superiority.

The results show the importance of the selection of an appropriate re-
initialisation mechanism. Importantly, the effect on performance of different
strategies is not uniform across the Multi-Objective Evolutionary Algorithms.
For example, on the two top performing Genetic Algorithm methodologies,
MTS works best with the VP method, but usually there is no statistical sig-
nificance between the 4 used re-initialisation mechanisms for this methodol-
ogy, whereas MOEA/D is more likely to show higher performance without
any re-initialisation method. In the case of MOEA/D the authors suggest that
this is caused by the MOEA/D specific mechanisms such as weight-vectors
and neighbourhoods of solutions. In the re-initialisation step these features
are not taken into consideration when the new population is created and
the parent solutions are selected. Therefore, the overall efficiency is limited
and re-initialisation mechanisms specific to MOEA/D might be necessary.
This is similar to the performance of MOEA/D with the MLSGA mecha-
nisms [Grudniewski and Sobey, 2018], and it seems the MOEA/D mecha-
nisms are more difficult to blend with additional elements.

Despite the importance of the re-initialisation method, the choice of ap-
propriate method is often neglected in the dynamic Genetic Algorithm lit-
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Table 2: The average ranks of each re-initialisation method for the 1000 pop-
ulation size with iterations termination criterion and T and ns equal to 5

None CER-POS CER-POF VP
Overall 2.83/ 3.07 2.47/ 2.29 2.74/ 2.49 1.95/ 2.15
Type I 3.02/ 3.43 2.38/ 2.07 2.62/ 2.52 1.98/ 1.98
TypeII 3.09/ 3.39 2.31/ 2.18 2.81/ 2.43 1.79/ 2.00

Type III 2.13/ 2.28 2.81/ 2.69 2.74/ 2.63 2.31/ 2.41
Type IV 3.17/ 3.08 2.33/ 2.33 2.58/ 2.25 1.92/ 2.33

UDF 2.79/ 3.21 2.46/ 2.31 2.81/ 2.40 1.94/ 2.08
CDF 2.78/ 3.06 2.40/ 2.07 2.72/ 2.51 2.10/ 2.37

The best mechanism in each category is highlighted in green.
The second best is highlighted in yellow.

erature and in most cases the re-initialization method is chosen arbitrarily
and not compared to the other variants [Biswas et al., 2014] or not utilized at
all [Jiang and Yang, 2017]. Therefore, benchmarking of novel re-initialization
mechanisms with other variants, on the same algorithm methodologies, and
with the algorithm without any diversity preservation mechanisms is neces-
sary, to ensure that new re-initialisation methods provide benefits over the
current methods.

5.2 Genetic Algorithm methodologies

In order to investigate the performance of the different algorithms, the aver-
age ranks according to the IGD and HV indicators are calculated across all
of the dynamic problem types and presented in Table 3 for T and ns equal
to 5. There are significant differences between the ranked results according
to Wilcoxons rank sum test with a confidence level of α = 0.05 in most of
the presented cases. The performances of the Genetic Algorithm mechanisms
are less consistent across the utilised problems than for the re-initialisation
methods, and it is not easy to choose a single best method. According to
the average ranks, the best overall performer is MOEA/D, while MTS and
HEIA come second and third respectively. However, MOEA/D is less effec-
tive when the Pareto Optimal Set remains static, demonstrated by compar-
atively poor performance on Type III problems. This is caused by the static
weight vectors, where the previous best point according to one weight is no
longer the most suitable one after the time change. Therefore, it is likely that
the points with the best values may be eliminated quickly, as their vectors are
not properly assigned. This problem could be solved by reassignment of each
weight after the time changes occur. MTS does not have these disadvantages
and is less susceptible to the time changes due to the utilisation of multiple lo-
cal searches that maintains both the convergence and diversity of the search;
this results in a lack of significant differences between the implemented re-
initialisation methods. High performance of these high convergence-based
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Table 3: The average ranks of each Genetic Algorithm for the 1000 population
size with iterations termination criterion and T and ns equal to 5

MOEA/D MTS NSGA-II MLSGA BCE HEIA
Overall 2.45/ 2.31 2.71/ 4.97 5.10/ 2.70 3.16/ 4.70 4.58/ 2.92 2.99/ 3.39
Type I 2.25/ 2.43 2.89/ 4.89 4.82/ 2.50 3.11/ 4.82 4.64/ 3.04 3.29/ 3.32
TypeII 1.97/ 1.75 2.88/ 5.15 5.15/ 2.87 3.45/ 4.48 4.37/ 3.15 3.18/ 3.60

Type III 3.22/ 3.08 2.33/ 4.89 5.28/ 2.28 2.86/ 5.03 4.72/ 2.61 2.58/ 3.11
Type IV 2.63/ 2.13 2.88/ 4.25 4.88/ 4.63 2.88/ 4.50 5.38/ 1.38 2.38/ 4.13

UDF 2.59/ 2.13 2.56/ 4.91 5.16/ 2.63 3.88/ 4.44 3.91/ 2.91 2.91/ 4.00
CDF 2.37/ 2.32 3.05/ 4.63 4.77/ 3.05 2.93/ 5.55 5.57/ 2.28 2.32/ 3.17

The best algorithm in each category is highlighted: in yellow according to IGD; in blue for
HV; and green with both metrics.

solvers, such as MOEA/D, further supports the findings that Dynamic Multi-
Objective Problems requires high convergence of the search over diversity,
unlike many static problems, which was originally suggested in [Biswas et al.,
2014].

The HEIA and MOEA/D exhibit the best overall performance for the con-
strained results. The high performance of MOEA/D on these problems is in-
teresting as previous research shows poor results on the static constrained
problems [Zhang and Suganthan, 2009], and MOEA/D is outperformed by
MLSGA-MTS, MTS and NSGA-II [Grudniewski and Sobey, 2018]. Further-
more, for most of the tested algorithms there is no significant difference in
comparative performance on the CDFs than on the UDFs, on which the de-
veloped set is based. This unexpected behaviour indicates that, for dynamic
problems, the fast convergence of MOEA/D is more important than the abil-
ity to discover discontinuous search and objective spaces, characteristics where
the MOEA/D mechanisms perform poorly. Therefore, the constrained dy-
namic problems act similarly to the unconstrained cases. These findings fur-
ther indicate that high convergence rate is essential when dealing with Dy-
namic Multi-Objective Problems.

5.3 Performance of the different algorithms on the Constrained Functions
over time

In order to investigate the behaviour on the developed constrained set, the
IGD values obtained by the benchmarked algorithms are tracked during a
single run, period t = 0 to t = 11.8. This is illustrated in Fig. 17 for CDF4 and
in Fig. 16 for CDF10, as problems where the behaviour is representative of
these rest of the set. In all cases the VP re-initialisation is used, and only the
results for MTS, MOEA/D and NSGA-II are shown as the two best and the
worst performing algorithm respectively. The figures for the other developed
problems, as well as for the HV metric, are attached as supplementary data.
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Fig. 16: IGD(t) values obtained by the
MOEA/D, MTS and NSGA-II on the
CDF10 case.

Fig. 17: IGD(t) values obtained by the
MOEA/D, MTS and NSGA-II on the
CDF4 case.

There is a considerable difference in performance between the top algo-
rithms for a problem and the next best performer. Fig. 16 shows that MTS is
able to accurately approximate the true Pareto Optimal Front at every time
step for the CDF10 problem, resulting in stable IGD values. NSGA-II is not
able to properly converge on the Pareto Optimal Front whereas MOEA/D is
unable to find all of the regions of the Pareto Optimal Front on the highly
discontinuous search space; this is especially clear after the shift of the con-
straints. This behaviour of MOEA/D is expected as a similar principle is
shown on constrained static problems and is due to the low performance
on the Type I problems, as discussed previously. However, a different be-
haviour is exhibited on the CDF4 function, Fig. 17. In this case MOEA/D out-
performs MTS, showing lower IGD values that remain stable at every time
step, indicating that the true Pareto Optimal Front has been found, whereas
the performance of NSGA-II remains the worst. This is most likely caused by
a higher uniformity and continuity of the CDF4 problem in comparison to
the CDF10. According to that CDF10 case requires a higher diversity of the
search, which MOEA/D is unable to provide, unlike the MTS. The low per-
formance of NSGA-II on both problems, and the effectiveness of MOEA/D,
even over MTS on some cases, is contrasting to the trends shown on static
problems. This indicates that the dynamicity is the dominant characteristic of
the Dynamic Multi-Objective Problems, even over the level of discontinuities
in the search spaces.

6 Conclusions

Dynamic optimisation has many applications. However, the current bench-
marking problems are limited to unconstrained problems, which may bene-
fit certain types of Genetic Algorithms. In this paper the range of dynamic
test problems is expanded by proposing a set of constrained test functions. A
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number of combinations of current state-of-the-art algorithms and re-initialization
methods are then benchmarked to determine the most effective methods for
solving constrained dynamic optimisation problems. Overall MOEA/D shows
the best performance on both the new constrained and traditional uncon-
strained test sets. The Variation and Prediction re-initialisation strategy per-
forms the best on most problems but in some cases no significant improve-
ment is shown over no re-initialization. Importantly, the performance of the
algorithms on the constrained and unconstrained problems is similar, show-
ing that the dynamic characteristic is dominating these problems. The follow-
ing recommendations are made:

– The importance of dynamic behaviour dominates the non-continuous char-
acteristic of the constrained problems, as there is no significant difference
in the comparative performance of the tested algorithms between the con-
strained and unconstrained cases. The results show that Genetic Algo-
rithms with strong convergence profiles are best at solving these prob-
lems.

– In most cases the obtained solutions are far from the true Pareto Optimal
Front. As the highly dynamic problems are dominated by convergence,
this puts the Genetic Algorithms at a disadvantage over other methods.
Therefore, there is a need for dynamic specific methodologies with high
convergence and low diversity.

– The prevalence of the predictable dynamic test problems leads to mecha-
nisms that do well on these problems. However, in most applications the
dynamic changes are unpredictable, which makes them more difficult to
solve and more random elements should be included in future test sets to
develop more realistic mechanisms.
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Abstract
In post-amputation rehabilitation, a common goal is to return to ambulation using a prosthetic limb, suspended by a cus-
tomised socket. Prosthetic socket design aims to optimise load transfer between the residual limb and mechanical limb, by 
customisation to the user. This is a time-consuming process, and with the increase in people requiring these prosthetics, it 
is vital that these personalised devices can be produced rapidly while maintaining excellent fit, to maximise function and 
comfort. Prosthetic sockets are designed by capturing the residual limb’s shape and applying a series of geometrical modifi-
cations, called rectifications. Expert knowledge is required to achieve a comfortable fit in this iterative process. A variety of 
rectifications can be made, grouped into established strategies [e.g. in transtibial sockets: patellar tendon bearing (PTB) and 
total surface bearing (TSB)], creating a complex design space. To date, adoption of advanced engineering solutions to sup-
port fitting has been limited. One method is numerical optimisation, which allows the designer a number of likely candidate 
solutions to start the design process. Numerical optimisation is commonly used in many industries but not prevalent in the 
design of prosthetic sockets. This paper therefore presents candidate shape optimisation methods which might benefit the 
prosthetist and the limb user, by blending the state of the art from prosthetic mechanical design, surrogate modelling and 
evolutionary computation. The result of the analysis is a series of prosthetic socket designs that preferentially load and unload 
the pressure tolerant and intolerant regions of the residual limb. This spectrum is bounded by the general forms of the PTB 
and TSB designs, with a series of variations in between that represent a compromise between these accepted approaches. 
This results in a difference in pressure of up to 31 kPa over the fibula head and 14 kPa over the residuum tip. The presented 
methods would allow a trained prosthetist to rapidly assess these likely candidates and then to make final detailed modifica-
tions and fine-tuning. Importantly, insights gained about the design should be seen as a compliment, not a replacement, for 
the prosthetist’s skill and experience. We propose instead that this method might reduce the time spent on the early stages of 
socket design and allow prosthetists to focus on the most skilled and creative tasks of fine-tuning the design, in face-to-face 
consultation with their client.
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1 � Requirement of automation in design 
of prosthetics

Approximately 40 million people globally require access 
to prosthetic or orthotic services (Eklund and Sexton 
2017). Prosthesis–human interface design aims to max-
imise comfort and functionality for people with ampu-
tations, towards ambulatory rehabilitation. This is com-
monly provided through a prosthetic socket, which is 
designed through geometric modifications to the captured 
shape of the residual limb, known as rectifications, to cre-
ate a desired pattern of load transfer. This is currently an 
iterative process performed by a highly skilled prosthetist, 
who manages the residuum’s changing size, shape, soft 
tissue healing and biomechanical adaptation. Indeed, due 
to these factors, the development of a definitive socket 
takes a considerable period of time. Prosthetic limb users 
require lifelong access to prosthetics services, and in the 
UK the annual cost of prosthesis provision and care is 
over £2800 per patient (Kerr et al. 2014). This includes 
the replacement of prosthetic limb components typically 
every 2 to 5 years. Skilled prosthetists take many years to 
train to a high standard, and often prosthetic users develop 
relationships with their preferred clinician to maintain 
socket comfort. However, there are limited numbers of 
these highly skilled individuals and practice efficien-
cies are required in the face of growing clinical demand. 
Researchers have considered mechanisms for employing 
quantitative prediction in the socket design process (Goh 
et al. 2005; Colombo et al. 2013), although at present these 
work to a single design target for a single individual and 
have not entered conventional clinical use.

In Part 1 of this study (Steer et al. 2019), a kriging-
based surrogate model was generated for a parametric FE 
model of a population-based transtibial residual limb and 
accompanying total surface bearing (TSB) socket design. 
This enabled the prediction of biomechanical relation-
ships between the residual limb morphology and prosthetic 
socket design, while reducing the computational cost of 
each new prediction by six orders of magnitudes (1.6 ms 
vs. 30 min). The simplified total surface bearing socket 
design was defined parametrically from the limb’s neutral 
shape, by reducing the cross-sectional area along its length 
with three points at the proximal, mid and distal regions of 
the socket. However, within a clinical setting, the socket 
design process is substantially more nuanced. There are 
several different design philosophies, all with different 
intended residual limb load transfer mechanisms. The clas-
sic patella tendon bearing (PTB) socket design was devel-
oped in 1957 and is still commonly used in-clinic today 
(Radcliffe 1962). This socket design aims to apply pres-
sure over load-tolerant areas of the limb such as the patella 

tendon, and off-load pressure-sensitive regions such as the 
anterior tibia, fibula head and residuum tip. Other sock-
ets include the Kondylen-Bettung Münster (KBM) which 
provides supracondylar suspension in addition to features 
consistent with the patella tendon bearing design (Kuhn 
1966), and hydrostatic sockets (Murdoch 1964) such as 
the PCAST system (Lee et al. 2000; Goh et al. 2003; Goh 
et al. 2004; Laing et al. 2017; Laing et al. 2018) which 
uses a pressurised fluid as a medium to form the shape of 
the socket with the aim of achieving minimal residuum 
surface pressure gradients with less manual intervention. 
More recently, total surface bearing sockets, which were 
proposed in 1987, are used to generate near-total contact in 
between the residual limb and the socket (Staats and Lundt 
1987). In theory, this should maximise the contact area 
between the residual limb and prosthetic socket and the 
uniformity of pressure across the surface of the residual 
limb, thereby minimising potentially harmful pressure gra-
dients (Hachisuka et al. 1998).

Despite the fundamental differences in the load distri-
bution between these socket designs, they can potentially 
all deliver satisfactory outcomes for prosthesis users. There 
is substantial research into quantifying the biomechanical 
differences between these socket designs, which is compre-
hensively reviewed by Safari and Meier in (2015). Their 
systematic review concluded that ‘the included studies only 
had low to moderate methodological rigour’, thus demon-
strating the difficulties in defining biomechanical guidelines 
for the highly dynamic environment of the residual limb—
prosthetic socket system, or selection of the preferred socket 
type for a particular individual or situation. One possible 
reason for the difficulty in establishing the definitive guide-
lines of these different socket types is that they are defined 
primarily by design intent, rather than quantitative rules. 
This effect has been illustrated for a simple total surface 
bearing socket using parametric FEA (Steer et al. 2019), 
and it is almost certain the within-type variability would be 
increased for more complex designs. We propose that there 
is a large potential to enhance the evidence base behind this 
clinical challenge, allowing prosthetists to develop, critique 
and share their own expertise and decision-making, making 
more effective use of their valuable design and consulta-
tion time. A key and relatively unexplored possibility is to 
apply automated search algorithms to explore designs prior 
to optimisation for the individual.

Optimisation algorithms are common in many areas of 
engineering. They are used as concept design methods, 
providing an initial product which engineers can use as a 
starting point and to increase the proportion of their time 
spent on creatively solving complex problems. In addition, 
they provide a visualisation for how these changes will affect 
the final product’s performance, allowing a greater under-
standing of the design space which can be put to use in the 
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more detailed stages of the process. A choice of potential 
candidate designs can be provided to the decision maker, 
which weight the objectives differently, for example put-
ting more load on one region of a structure and removing it 
from another, and therefore give a range of performances. 
This requires algorithms capable of multi-objective optimi-
sation that provide a rapid convergence on the global opti-
mum while retaining a high diversity of the search, to ensure 
that the entire search space is investigated and that the focus 
is not upon local optima. Many methodologies have been 
developed, and state-of-the-art research focuses on improve-
ments in diversity or convergence.

This paper employs optimisation algorithms to generate 
personalised ‘candidate’ prosthetic socket designs for the 
first time. This is applied to the transtibial case, which is 
the most common major lower limb amputation and where 
most clinical success has been achieved with associated 
CAD/CAM socket design and fabrication tools. Different 
design problems require different optimisation processes. 
The aim is therefore to determine appropriate methods for 
the automated application of candidate socket rectifications, 
collating the state of the art in biomechanical analysis of 
prosthesis–limb interfaces, surrogate modelling and optimi-
sation. Genetic Algorithms are chosen due to their ability to 
effectively search large and complex design spaces, which 
is the problem presented by the continually variable distri-
bution of possible limb–socket shape rectifications. These 
methods rely on thousands of function calls, and using FE 
models would not be feasible beyond single cases due to 
the time required for each simulation. However, by leverag-
ing the speed increases of the surrogate model (Steer et al. 
2019), it becomes technically feasible to perform automated 
socket optimisation based upon structural analysis of the 
limb–prosthesis system. This provides the motivation for 
the current study, to perform a first-of-kind, subject-specific, 
multi-objective design optimisation of the prosthetic socket 
using the previously reported surrogate model. The result 
will be a series of personalised ‘candidate’ transtibial pros-
thetic socket designs, to which the prosthetist would add 
local modifications based upon their knowledge and con-
ventional patient consultation. Finally, equipped with these 
results, a prosthetist would then further refine these concepts 

to achieve a desired pattern of prosthesis–limb load transfer, 
by using these designs to augment their experience-based 
decision-making.

2 � Optimisation of transtibial prosthetic 
sockets

2.1 � Population‑based surrogate model

A detailed description of the population-based surrogate 
model is found in Part 1 of this paper (Steer et al. 2019). In 
short, a generic residual limb was generated by producing a 
volume mesh from an MRI scan and imposing radial basis 
function mesh morphing to apply parametric variation in 
residuum length and profile (conical to bulbous) obtained 
from principal modes of variation from a population of 
3D surface scans. These were varied by ± 1 � (standard 
deviation) about the mean length and profile in the statisti-
cal shape model (SSM). Furthermore, internal parametric 
variation of the relative tibia length (i.e. distal soft tissue 
coverage) from − 15% to + 30% of the tibia length from the 
MRI scan, and soft tissue material properties between stiff, 
flaccid muscle and contracted muscle (Palevski et al. 2006; 
Portnoy et al. 2009; Hoyt et al. 2008) were applied. The 
soft tissue was assigned a neo-Hookean material to cap-
ture the nonlinear behaviour of the soft tissue. The present 
surrogate model implementation investigates the effects of 
socket design variation for four synthetic ‘virtual’ people 
sequentially by selecting exemplar values for the model’s 
residuum variability parameters (Table 1, Fig. 1). These 
cases were chosen as being close to the models’ population 
extremes while remaining within the bounding box of the 
sampling plan, to avoid extrapolating beyond the surrogate. 
These meshes were imported into the finite element solver 
(ABAQUS 6.14, Dassault Systèmes, Vèlizy-Villacoublay, 
France). The socket was donned under displacement control 
and loaded uniaxially to 400 N to simulate a two-leg stance. 
The resultant pressure and soft tissue strain outputs from 
75 simulations were used to construct a kriging surrogate 
model for each virtual person, enabling a function call to be 
made in ~ 2 ms.

Table 1   Parameters of the 
four cases extracted from the 
parametric residual limb model

Soft tissue initial modulus corresponds to the initial stiffness of the applied neo-Hookean hyperelastic 
material model

Virtual 
person

Residuum length, v
1

Residuum profile, v
2

Tibia length, v
3

Soft tissue 
initial modu-
lus, v

4

A − 0.8� (Short) − 0.8� (Bulbous) + 20% (Long) 40 kPa (Soft)
B − 0.8� (Short) + 0.8� (Conical) − 5% (Short) 50 kPa (Stiff)
C + 0.8� (Long) − 0.8� (Bulbous) + 20% (Long) 40 kPa (Soft)
D ∓0.8� (Long) + 0.8� (Conical) − 5% (Short) 50 kPa (Stiff)
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2.2 � Parametric socket design

In the preceding work (Steer et al. 2019), a simplified, three-
parameter total surface bearing socket design was used. This 
model enabled control of the socket press fit by reducing its 
cross-sectional area through a B-spline function with proxi-
mal, mid and distal control points. The three variables were 
constrained between − 1% and 3% by cross-sectional area 

reduction. The present study’s socket design was extended 
to include the localised rectifications observed in patella ten-
don bearing sockets. Control points were generated over the 
fibula head, patella tendon and either side of the tibial crest 
(Fig. 2). These localised rectifications were applied using 
the same radial basis function mesh morphing algorithm 
detailed above, by radially displacing the control points 
between 0 and 6 mm.

Fig. 1   Sagittal sections through equivalent residuum FE models for the four virtual people. Blue indicates the liner, red the soft tissue, and grey 
the bones. The prosthetic socket is not shown

Fig. 2   Rectification maps of the patella tendon bearing socket design 
at the maximum values of patella tendon bar (PTB), fibula head (FH) 
relief and tibial crest (TC) rectifications. The figure demonstrates the 

resulting socket shape change once the control nodes have been dis-
placed and explains the convention directions of each rectification 
type (FH vs. PT and TC)
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2.3 � Optimisation via genetic algorithms

Genetic algorithms (GA) are population-based multi-objec-
tive solvers inspired by the principles of Darwinian evo-
lution (Goldberg and Holland 1988). In a simple Genetic 
Algorithm, a set of potential solutions, called individuals, 
reproduce via an evolutionary-like process. Each individual 
contains set of decision variables, called chromosomes, with 
an initial population with variables that are usually assigned 
randomly. The fitness of each individual can be evaluated 
according to some predefined objectives. After this step 
individuals are then chosen for reproduction, and according 
to the principles of natural selection, the fitter individuals 
have significantly higher chances of reproducing than those 
with a low fitness. Offspring are generated from the selected 
parents using crossover and mutation processes. During 
crossover, the chromosomes of the offspring are produced 
by mixing the genes of the parents, providing convergence 
and diversity. In the mutation step, the offspring’s genes 
have a small chance to be randomly modified, improving 
the population diversity. Finally, the old population becomes 
extinct and is replaced by the new generation, with the new 
generation being fitter, on average, than the parent genera-
tion. This process continues until the predefined termination 
condition is met, often specified as a maximum number of 
objective functions calls or total calculation time.

Many competing genetic algorithms have been developed, 
each introducing novel mechanisms to increase the conver-
gence rates and diversity of the search. In the current state 
of the art of Gas, there is particular emphasis on specialist 
solvers. According to the ‘no free lunch’ theorem (Wolpert 
and Macready 1997), a specialist solver exhibits high per-
formance on a narrow set of problems but its performance 
will rapidly decline when outside of this set. Therefore, a 
suitable methodology has to be selected with respect to the 
particular problem’s characteristics in order to avoid poor 
performance. The optimisation problem characteristics and 
their difficulty are defined by the topology of the search and 
objective spaces, number of local optima and the applied 
constraints. If the problem characteristics are not known, 
then more than one GA methodology should be applied 
as their performance can differ drastically. This will pro-
vide more reliable results and allow an evaluation of the 
problem’s difficulty and its dominant characteristics (Wang 
et al. 2018). In the case presented in this paper, no knowl-
edge about the characteristic of the problem is available a 
priori, except that no constraints are used. However, this is 
not sufficient to choose a single properly adjusted optimiser. 
Therefore, five different Genetic Algorithms are compared: 
NSGA-II as the most commonly utilised Genetic Algorithm 
which retains a high diversity of search and has had much 
success in the applied literature (Deb et al. 2002); MOEA/D 
as the most proficient algorithm for unconstrained problems 

(Zhang and Li 2007); MTS as an aggregation of a Genetic 
Algorithm and a local-search method which provides 
improved convergence (Tseng and Chen 2007); cMLSGA 
and HEIA as the general-type GAs that exhibit high per-
formance across wide range of problem types and therefore 
higher robustness (Lin et al. 2016; Grudniewski and Sobey 
2019). HEIA is more dominant in scenarios where conver-
gence is more important and cMLSGA provides a higher 
diversity of search. The detailed principles of working and 
parameter settings of each methodology can be found in their 
respective publications.1 All the tests were performed over 
30 separate runs, with 50,000 fitness function evaluations 
as a termination criterion. Multiple runs must be performed 
in order to assure the robustness of the method and the best 
likelihood of identifying the true Pareto Front. Different 
population sizes were tested and 600 individuals were uti-
lised as the best for NSGA-II, MTS, MOEA/D and HEIA, 
while cMLSGA utilised 1800 as it requires significantly 
higher population sizes (Grudniewski and Sobey 2018).

The socket design process presented in our prior work 
(Steer et al. 2019) can be framed as a formal engineer-
ing design optimisation problem. In this case the indi-
vidual socket rectifications function as design parameters 
across a multi-dimensional input space, and the resultant 
pressure and soft tissue strain fields are formulated as the 
objective functions. The locations across the limb for the 
objective functions were selected because they are known 
to be load-intolerant (Radcliffe 1962). It was predicted that 
the introduction of a peripheral press fit around the main 
body of the residuum will allow load transfer through the 
longitudinal shear forces and thus reduce the residuum tip 
pressure, at the expense of pressure concentrations over the 
bony prominences of the tibial tuberosity and fibula head. 
Four state variables were defined: the pressure over the 
residuum tip ( f

1
 ), the tibial tuberosity ( f

2
 ), the fibula head 

( f
3
 ) and the soft tissue strain around the distal tibia ( f

4
 ). 

These model outputs can be described as competing fitness 
functions, indicating proximal and distal loading, defined as 
FF1 = f

1
+ f

4
 and FF2 = f

2
+ f

3
 . These were evaluated using 

the surrogate model developed previously (Steer et al. 2019) 
for the four synthetic people defined in Table 1.

One of the issues with multi-objective optimisation is the 
comparison of the results obtained by different methods. The 
visual comparison is limited, only providing useful informa-
tion when the performance of two solvers differs drastically. 
Otherwise, the points will overlap making objective com-
parison near impossible. Therefore, multiple quality indica-
tors have been developed (Li and Yao 2018). Most of them 
are able to indicate the performance in both convergence and 

1  Source codes for all methodologies can be found at: https​://bitbu​
cket.org/Pag1c​18/cmlsg​a.
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diversity of the solutions. However, each of them has certain 
drawbacks or biases and it is common practice to utilise 
more than one indicator (Li and Yao 2018). In this paper 
the inverted generational distance (IGD) and hypervolume 
(HV) were chosen as indicators. IGD measures the average 
Euclidean distance between each point in a real Pareto Opti-
mal Front (POF) and the closest solution in the obtained set. 
Lower values indicate better convergence and uniformity of 
the points and are calculated according to Eq. 1:

where P* is a set of uniformly distributed points along the 
true PF, A is the approximate set to the POF, which is being 
evaluated and d(ν, A) is the minimum Euclidean distance 
between the point ν and points in A.

However, this IGD shows poor performance in deter-
mining the diversity of a population when the Pareto Front 
population is small. HV is calculated as the volume of an 
objective space between a predefined reference point and 
the obtained solutions where higher values are preferred 
(Li and Yao 2018). This indicator has a stronger focus on 
the diversity and boundary points. Most indicators require 
a predefined reference Pareto Optimal Front that illustrates 
the ideal set of solutions. However, in cases where the opti-
mal answer is not known the utilisation of these indicators 
can be problematic. A solution is to calculate a reference 
Pareto Optimal Front using the non-dominated selection of 
Pareto Optimal Fronts achieved by every algorithm when 
performing multiple runs, or performing a few test runs with 
significantly higher numbers of iterations than that utilised 
for comparison (Wang et al. 2018). In this paper both are 
applied, and a combined non-dominated front obtained by 
brute force from all 6 Genetic Algorithms after 300,000 fit-
ness function evaluations was used to determine the success 
of the algorithm.

3 � Results

A single Genetic Algorithm run with a maximum of 50,000 
function calls was computed in approximately 30 min, where 
Fig. 3a shows the individuals evaluated over this lifetime 
and the final Pareto Front. Comparing the different genetic 
algorithms, it was observed that the shape of the Pareto Opti-
mal Fronts remains consistent. Therefore, visual compari-
son only shows that all of the methodologies exhibit similar 
performance and it is not possible to unanimously choose 
the best methodology (Fig. 3b). The bias between Fitness 
Functions FF1 and FF2 along the normalised Pareto Optimal 
Front is visualised in Fig. 3c. The reason the no-bias point is 
not in the middle of the front is due to the longer ‘tail’ when 

(1)IGD(A,P
∗
) =

∑
�∈P∗ d(�,A)

�P∗�
,

minimisation is biased towards FF2 (minimising proximal 
bony prominence loading), compared with bias towards FF1 
(minimising distal tip loading). It was also observed that 
while the minima of FF1 for all individuals plateaued at just 
below 20 (unitless), the minima of FF2 were different for 
all of the virtual people (Fig. 3d). The minima of the short, 
conical limb of person B and the long, bulbous limb of per-
son C plateaued at FF2 = 55 kPa and 40 kPa, respectively.

From visualisation of the sockets at either end of the 
Pareto Front, as well as the neutral case, consistencies in 
design emerged across the four people (Fig. 4). When the 
optimiser was biased towards FF1 (minimising tip load-
ing), designs of higher press fit which off-loaded the resid-
uum tip emerged from the Genetic Algorithm. For person 
B (Fig. 4b) and person D (Fig. 4d), pressure hotspots were 
generated where there was little soft tissue coverage over 
the proximal bony prominences. When the model was 
biased towards FF2, sockets with higher fibula head relief 
evolved in order to off-load over this region.

Trends in the designs can be observed between the 
competing fitness functions by visualising how the opti-
mal socket designs change along the Pareto Optimal Front 
(Fig. 5). Across all virtual people, the patella tendon bar 
variable converged at the constraint maximum of 6 mm for 
almost all of the points along the Pareto Optimal Front. 
The exception was in Person D, with the longest and thin-
nest residual limb. When the optimiser was biased towards 
FF1, a few designs evolved with the patella tendon bar 
rectification at the 0 mm lower limit. This was offset by 
removal of the fibula head relief to ensure that the pressure 
over the residuum tip is still minimised. A clear trend for 
all virtual people was in the mid reduction in the socket, 
where the press fit decreases along the Pareto Optimal 
Front from FF1 (with the aim of minimising the distal 
loading) to FF2 (with the aim of minimising the proximal 
loading). By reducing the press fit, the pressure over the 
bony prominences and the peripheral shear both decreased, 
resulting in an increase in distal tip pressure and soft tis-
sue strain.

The performance of different methodologies was evalu-
ated using the proposed indicators, IGD and HV and pre-
sented in the form of rankings with average values and 
standard deviations (Table 3). In this case the algorithms 
all performed in the same manner for IGD and HV. HEIA 
and cMLSGA were the best performing algorithms and 
MOEA/D and MTS performed the worst. However, the rel-
atively similar performances of all five algorithms indicate 
that the complexity of the presented cases is low. The final 
Pareto Front was continuous and there were no constraints, 
which led to convergence-dominated HEIA having the best 
performance, over cMLSGA and NSGA-II. MOEA/D and 
MTS perform less well. However, this may be due to a lack 
of hyperparameter tuning to the particular problem. These 
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two algorithms are dependent on a number of parameters 
which must be optimised for each problem, and in the pre-
sent work the authors used default values described in the 
algorithms’ original papers. The MOEA/D and MTS algo-
rithms may perform better once tuned, now that a priori 
knowledge has been developed, but the present results indi-
cate the caution with which these algorithms should be used.

In order to better understand the complexity of the 
problem and to check whether the best possible set of 
solutions has been found, a set of 5 runs with 300,000 
total iterations was conducted on each virtual person, 
utilising HEIA. In this case hardly any difference was 
observed between 50,000 and 300,000 iterations. Fig-
ure 6a shows some very slightly higher uniformity and 
diversity of the points in the high FF1 bias region with 
300,000 iterations. When comparing the performance 
over the number of generations in Fig. 6b, virtually no 
improvement in performance can be seen after 50,000 
generations and the highest performance gain occurred 
before 25,000 iterations. The low possible performance 
increase beyond 50,000 iterations in this case would not 

justify conducting optimisation of this problem with 
higher values, unless the virtual person is suspected to 
benefit from an extreme reduction in pressure over the 
residuum tip and the soft tissue strain around the distal 
tibia (FF1 bias).

4 � Discussion

This study aimed to explore a range of potential concepts 
for transtibial socket design using FE modelling, surro-
gate modelling and GA-based optimisation techniques, to 
provide a quantitatively informed starting point for the 
prosthetist when designing a bespoke prosthetic socket.

Exploring the parametric socket design space dem-
onstrates that biomechanical objective functions are in 
competition and illustrates the challenges associated with 
defining the ‘best’ socket design solution. As explored in 
our previous work (Steer et al. 2019), by increasing the 
socket press fit, particularly in the mid-section, an increase 
in longitudinal shear around the main body of the residual 

Fig. 3   Analysis of the Pareto 
fronts from the multi-objective 
optimisation. a Individuals from 
a single run of the HEIA opti-
misation for Person A, with all 
individuals plotted in blue and 
Pareto front in red. b Compari-
son of the generated PFs for the 
six different GAs tested on Per-
son A. c Bias along the Pareto 
front between the two fitness 
functions, with ‘no bias’ defined 
as the minimum distance from 
the origin to the normalised 
Pareto Optimal Front, with blue 
indicating bias towards FF1 and 
red towards FF2. d Comparison 
of the Pareto Fronts for the four 
different People when using 
HEIA
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limb was predicted. This resulted in a pressure reduction 
at the residuum tip coupled to a reduction in the internal 
strain around the distal tibia. By oversizing the socket (i.e. 
negative press fit), these peripheral shear forces were not 

Fig. 4   Optimal socket designs and corresponding predicted pressure 
maps for the four different virtual people at the two ends of the POF, 
i.e. biased towards minimising distal tip loading (top) and minimising 
proximal bony prominence loading (bottom), and the design with no 
bias (centre)

◂

Fig. 5   Comparison of how the socket design variables (see Table  2) changed between the four cases along the Pareto Optimal Front. Blue 
denotes a bias towards FF1 (distal loading), while red denotes bias towards FF2 (proximal loading)
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generated, thereby increasing the distal pressure and soft 
tissue strain. These represent the competing fitness func-
tions inherent in prosthetic socket design.

Introduction of the patella tendon bar and tibial crest 
rectifications provided an alternative method of off-load-
ing the residuum tip beyond a uniform press fit. Fibula 
head relief is predicted to be effective in reducing the high 

pressure that was observed over this bony prominence for 
the total surface bearing socket designs, thus reiterating 
the importance of localised shape change beyond applying 
gross scaling to the limb shape (Goh et al. 2003).

The sockets that emerged from the Genetic Algorithm 
exhibited features of both total surface bearing (TSB) and 
patella tendon bearing (PTB) manual socket design phi-
losophies. One consistent feature along the Pareto Front 
for all virtual people was the patella tendon bar rectifica-
tion variable, which saturated at its maximum limit. This is 
because no optimisation cost was associated with applying 
pressure over this region, which the Genetic Algorithm 
exploited to off-load the high-cost residuum tip region. 
This effect is observed clinically for the patella tendon 
bearing socket where prosthetists produce a marked recti-
fication over the patella tendon to leverage its load bearing 
capacity. Although load tolerant, there clearly would be 
a load threshold for injury at the patella tendon, so with 
enhanced spatial data of load tolerance across these key 

Table 2   Parameters and limits of the parametric socket design

Socket rectification variable 
name

Lower bound Upper bound

Proximal press fit − 2% +  6%
Mid press fit − 2% + 6%
Distal press fit − 2% + 6%
Patella tendon bar 0 mm 6 mm
Fibula head relief 0 mm 6 mm
Tibial crest 0 mm 6 mm

Table 3   Ranking of different 
genetic algorithms using HV 
and IGD as the performance 
indicators

*indicates if the results are significantly different to the next lowest rank, using the Wilcoxon’s rank sum 
with a 0.05 confidence

Rank 1 2 3 4 5

IGD
 Algorithm HEIA* cMLSGA* NSGA-II* MOEA/D* MTS
 Average 0.029349 0.057565 0.1384 0.281601 0.590279
 (S.D.) 0.001741 0.001553 0.139218 0.158822 0.049102

HV
 Algorithm HEIA* cMLSGA NSGA-II* MOEA/D MTS
 Average 0.174846 0.174475 0.174461 0.174094 0.168158
 (S.D.) 0.000027 0.000039 0.000288 0.000214 0.000464

Fig. 6   a The comparison of 
Pareto Fronts from Virtual 
Person 1, achieved using 
HEIA over 50,000 iterations 
(‘achieved’) and 300,000 
iterations (‘real’). b The perfor-
mance of HEIA over 300,000 
iterations on Person 1. 0 is the 
starting population, and 1 is the 
best attainable set of solutions, 
based on the IGD values, and 
the red line indicates the num-
ber of function calls utilised in 
this study
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residuum locations (Bramley et al. 2019) an additional 
constraint of maximal patellar tendon pressure could be 
included in the optimisation problem.

Along the Pareto Front of the best solutions, trends 
were predicted as the bias of the optimised socket varied 
between the two fitness functions. When fitness function 
1 was dominant and the Genetic Algorithm aimed to mini-
mise pressure and soft tissue strain at the residuum tip, 
sockets with high levels of mid-height press fit emerged 
from the model. Conversely, when fitness function 2 was 
dominant and the Genetic Algorithm aimed to minimise 
pressure over the proximal bony prominences, the global 
press fit was reduced and local relief over the fibula head 
was increased. The sockets which minimised residuum 
tip pressure (FF1-biased) exhibited characteristics asso-
ciated with a total surface bearing socket design, while the 
patella tendon bearing rectifications were dominant when 
minimising pressure over bony prominences (FF2-biased). 
While it is difficult to validate these findings from the cur-
rent literature, a systematic review of transtibial prosthetic 
socket designs by Safari and Meier concluded that TSB 
sockets exhibited improved weight-bearing, greater sus-
pension and reduced pistoning, which may be, in part, 
due to the increased peripheral shear from the TSB socket 
(Safari and Meier 2015). However, extensive experimental 
data collection is required to validate such a hypothesis.

Differences in the Pareto Front were observed between 
the virtual people. While the minimum value of fitness 
function 1 was consistent across the cases at just below 
20, the minima of fitness function 2 varied substantially. 
This result was to be expected based upon the results of 
the population model where residuum morphology, in par-
ticular the residuum profile, had a substantial effect on the 
pressure over the bony prominences.

A range of genetic algorithms proved effective in per-
forming multi-objective design optimisation of the socket 
by handling the complex task of simulating the interplay 
between rectifications on the competing objective func-
tions of the residual limb across the presented design 
space. In this case the performance of all methodologies 
was comparable and it could be concluded that the utilisa-
tion of several GAs was unnecessary. However, in this case 
the problem is rather simple to optimise, as 50,000 fitness 
function calls are sufficient to provide good approximation 
of the best Pareto Front, and in some cases 20,000 was 
adequate. The problem has continuous search and objec-
tive spaces which further indicates its simplicity (Wolde-
senbet et al. 2009). However, as the importance of utilis-
ing multiple methodologies has been shown by previous 
researchers (Wang et al. 2018), it is strongly advised here 
to follow this procedure as good practice until the design 
space for transtibial prosthetic sockets is better understood. 
In the future, as more variables and objectives are added 

to the search space, it is expected that the topology of the 
design space will change and therefore provide an increas-
ing challenge to resolve the optimal points and require 
review of the required GA parameters and convergence 
limits.

The presented multi-objective design optimisation pro-
vides an early demonstration of how the speed increases 
achieved by surrogate techniques enable the socket design 
process to be framed as an engineering design problem. 
There are several potential improvements that could be 
implemented within this process. One such approach may be 
a dual-level solver where the solver starts with no data, runs 
a full simulation on a limited population of designs, creates 
a surrogate from these designs and evaluates the fitness of 
a substantially larger group across the surrogate. The elite 
individuals, the fittest individuals in the population which 
are often defined as the top 10%, would be retained for the 
next generation and the process repeated. This approach 
would enable the GA to ignore regions which are clearly 
sub-optimal, and instead prioritise expensive FE analyses 
in regions where the minima of the fitness function is more 
likely to be found. As an alternative approach, to prevent 
overfitting, the surrogate might be used to generate initial 
generations, and more expensive FE analyses used at the 
end to select a preferred design from the options along the 
Pareto Front.

5 � Limitations

User satisfaction with the socket is ultimately a subjective 
measure dependent upon a range of human factors such as 
comfort, pain thresholds and proprioception arising from 
a firm, functional prosthesis-skeletal coupling. This means 
that the predictions of pressure, shear stress and soft tissue 
strain are not directly related to comfort (Mak et al. 2001). 
Furthermore, the model would not account for local tissue 
sensitivities associated with neuromata and soft tissue inju-
ries which could only be identified in limb assessment by 
the prosthetist. This process might therefore be enhanced by 
surveying functional and user-reported outcome measures 
across a population of socket designs.

No direct experimental validation of the underlying rela-
tionships between socket design and load transfer predicted 
by the model in this study has been performed, and such 
validation evidence must be obtained prior to any clinical 
evaluation. Pressure and shear sensors (Laszczak et al. 2015) 
and laboratory-based residuum-socket simulators (McGrath 
et al. 2017) measure the interaction between the residual 
limb and socket and could be used to reinforce the find-
ings of this study. As the model uses invented residual limb 
shapes with thousands of socket designs, it is clearly infea-
sible to perform experimental validation upon any more than 
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a limited subset of data points in this model. However, in 
future, a limited number of key socket designs should be 
tested to validate its conclusions. Furthermore, the popu-
lation-based surrogate model only characterises a simpli-
fied representation of the variability which exists across the 
population. As discussed previously (Steer et al. 2019), a 
practical application of these tools requires further data to 
construct the surrogate model, for example variation in fem-
oral or patella geometry, bone and liner material properties, 
as well as dynamic load cases. Some confidence is provided 
by corroboration with literature reports of pressure predic-
tions across the limb between 30 and 100 kPa during gait for 
TSB sockets (Al-Fakih et al. 2013; Beil et al. 2002; Beil and 
Street 2004; Dumbleton et al. 2009) and 25–320 kPa for PTB 
(Dumbleton et al. 2009; Zhang et al. 1998; Dou et al. 2006), 
which is consistent with the range of predicted pressures for 
the FF1-biased sockets in this study.

As the study is an initial investigation into the methods 
and potential it forms the basis for further investigations 
that provide a more complex design. In increasing this 
complexity a number of elements will change. First, the 
Kriging model itself will become more complex providing 
some challenges in the use of this model which must be 
investigated. Second, the design space will change and this 
will provide a different set of optimisation challenges. In 
both instances the methods used will need to be evaluated 
carefully. In the case of more complex design spaces, other 
surrogates might become more appropriate, such as Deep 
Reinforcement learners. These are subject to a disadvantage 
of requiring more input data. For the optimisation, it is likely 
that the space will become more discontinuous (Sobey et al. 
2019), similar to other more complex applications, and this 
will require algorithms with stronger diversity (Wang et al. 
2018): NSGA-II and cMLSGA. There is also likely to be a 
greater separation between specialist, which will have even 
further reduced performance compared to the general solv-
ers: NSGA-II, cMLSGA and HEIA.

6 � Clinical applications

Attempting to use simulations to inform clinical decision-
making requires extreme caution, especially when applied 
to devices which depend upon personalised design to ensure 
comfort and functional efficacy, as comfort and propriocep-
tion are difficult to quantify. Crucially, in prosthetic limb 
design we would argue that these techniques should not be 
used in isolation, or substituted for human-facing clinical 
practice. The expert prosthetist must retain control over 
socket design, and the presented optimisation approach could 
be used to provide a ‘first-guess’ rectification map. The pros-
thetist would then modify this candidate design according 
to their own clinical reasoning which combines palpation, 

user feedback and re-evaluation. Other technologies such as 
real-time pressure measurements and predictions from the 
previously reported PCA-kriging model (Steer et al. 2019) 
incorporated with their skill and experience could provide a 
technology-enhanced limb assessment. This approach will 
help the community to test the key translational research 
question in this field: can the clinical application of FEA 
support the prosthetist’s evidence base and enable delivery 
of comfortable, highly functional prosthetic limbs to users 
in a more timely and efficient manner?

7 � Conclusion

This paper provides a first assessment of the use of multi-
objective optimisation in the design of prosthetic sockets. 
The experiential judgement and skill-based process of pros-
thetic socket design is framed as a multi-objective engineer-
ing design problem. This is achieved by developing paramet-
ric models of the residual limb informed by statistical shape 
modelling techniques and the prosthetic socket incorporating 
both total surface bearing and patella tendon bearing rectifi-
cations, which allow the underlying biomechanical relation-
ships between the residual limb and prosthetic socket to be 
predicted. In line with experimental data to allow detailed 
biomechanical validation, the developed methods show 
substantial potential to be used as part of a more informed 
socket design process, and provide clinicians with support 
for selecting from the range of candidate design approaches. 
The resulting designs correspond with the general forms of 
the two most popular designs: patella tendon bearing and 
total surface bearing sockets, at the extremes with a series 
of variations that result in designs that are a compromise 
between both in the centre. This results in a difference in 
pressure of up to 31 kPa over the fibula head and 14 kPa 
over the residuum tip.
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Appendix E List of utilised

parameters for genetic algorithms

For the ease of reproducibility, the parameters are presented as in the C++ code used for

simulations1.

/*GA parameters - MOEA/D*/

const float MOEAD niche multi = 0.1; //multiplier of the neighbour size (* pop size)

const float MOEAD limit multi = 0.01; //multiplier of the number of solutions replaced(*

pop size)

const float MOEAD mating chance = 0.9; //probability chance for mating

const int MOEAD new sol multi = 5; //How many new individuals are generated each gen-

eration = pop size/MOEAD new sol multi

const int MOEAD evol operation type = 1; //Define type of evol. operations; 1 - DE cross.

and poly. mut.; 2 - LL cross. and mut.

const std::string MOEAD weight generator “Uniform” ; //Define how the MOEA/D generate

weight vectors; “File” - get from file in /Input/MOEADWeight; “Sobol” - generated by Sobol

- not implemented properly; “Uniform” - uniform method from MSF/PSF and mine

const std::string MOEAD weight assign “Pop” ; //Define how the weight vectors are assigned

to the population - in case of MLS; “Pop” -Assigned to population before the collective split;

“Col” - Assigned to separately to each collective; “Sep” - Each collective have separate weight

vector from 0. to 1. (i.e. each covers the whole search space)

/*GA parameters - MTS*/

const int MTS LocalSearch test amount = 5; //How many times each local search is tested

each generation

const int MTS LocalSearch amount = 45; //How many local searches are made each gener-

ation

1The code of MLSGA is made available online at https://bitbucket.org/Pag1c18/cmlsga
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const float MTS foreground multp = 0.125; //Size of the foreground (* Population size)

const int MTS MPL1 = 9; //Bonus 1

const int MTS MPL2 = 2; //Bound 2

/*GA parameters - BCE*/

const int BCE PC capacity = 600; //maximum size of the PC population

const short BCE mode = 2; //setting variation in the NPC and PC evolution; 1: SBX

crossover, 2: DE /*GA parameters - HEIA*/

const float HEIA crossover prob = 0.5; //Crossover probability for HEIA (between SBX and

DE)

/*Additional GA parameters*/

const unsigned short Di c = 20; //Distribution index for SBX crossover

const unsigned short Di m = 20; //Distribution index for polynomial mutation

const float mut prob min = 0.08; //Mutation probability

const float cross prob min = 1; //Crossover probability

const int Pop size = 600; //Population size for all algorithms except of MLSGA and MTS

const int Pop size MTS = 100; //Population size

/*MLSGA parameters*/

const std::vector<std::vector<std::string>> GA mode ”HEIA”, ”MEOADMSF” ; //Used

evolutionary algorithms for cMLSGA

const std::vector<std::vector<std::string>> GA mode ”HEIA”; //Used evolutionary algo-

rithms for MLSGA-hybrid

const unsigned short MLSGA n col = 8; //Numbers of collectives

const unsigned short MLSGA n col elim = 1; //Number of collectives eliminated

const unsigned short MLSGA col elim limit = 10; //Define how many generations have to

pass before collective elimination occurs

const unsigned short MLSGA n MLS = 7; //Index of the MLS type used: 7 - MLS-U; 1 -

MLS1; 2 - MLS2R; 3 - MLS2
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Appendix F Description of utilised

engineering problems

3D spatial arrangement of leisure boats

The leisure boatbuilding industry is a competitive market and therefore it is essential to

minimise the cost of overall production by utilising as much space as possible. Due to the

curved shape of the boats and smaller sizes of leisure boats, this is a complex task with

additional problems such as requiring as much space as possible for customer used rooms and

as much space as necessary for practical rooms, such as the engine. The case shows a nice

“toy problem” to determine methods with the best chance of success on larger vessels.

The first objective of the optimisation is therefore to minimise the wasted volume space in

the hull defined as:

f1 = (Vh − Vc)/Vh, (1)

where, Vh, is the volume of the hull calculated based on the lines plan of the motor yacht

which has the parameters given in the Table F.1 representing typical values for a motor yacht

and Vc is the sum of all of the volumes of all of the cabins.

Figure F.1: The 3D cabin geometry and the cabin face
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Table F.1: Motor yacht particulars.

Parameter Value

Length 24.8m
Beam 6.9m

Draught 1.955m
Displacement 152.8t

LCB 8.673m

The overall design is split into a number of building blocks, each representing a different

cabin. Therefore, each block is optimised semi-separately and then fit into overall design.

Each cabin can be defined as two location parameters (x, y), the length L and a number of

the offset w points on each side of the cabin, as presented in fig. F.1. Therefore, the total

number of variables is defined as:

d = nc ∗ (3 + nw ∗ 2), (2)

Where, nc, is the number of cabins and nw, is the number of offsets on each side. There

is a balance between the number of offsets, the accuracy and the computational time. Too

many offsets increase the complexity with no increase in accuracy but too few will give a

poor utilisation volume. In this case the number of offsets is equal to 7 and 4 cabins are

optimised, which results in 68 decision variables.

Due to the different masses of each cabin, which change during the optimisation process as

they change size, the trimming of the boat becomes an issue and needs to be optimised.

Therefore, the second objective function is defined as the normalised distance between the

longitudinal centre of buoyancy (LCB) and longitudinal centre of gravity (LCG) as given in

eq. 3, which should be minimised,

f2 = (LCB − LCG)/LCB. (3)

The LCG is calculated by summing the mass moments of each cabin and dividing by the

total mass of all the cabins, while LCB is derived from the boat lines plan and the design

water line. As the cabins are optimised separately, three constraints are added to ensure that

the cabins form a valid formation. Firstly, the cabins are not allowed to overlap, and the first

constraint is defined as:

c1 = min





xi + li ≤ xj
xi − lj ≥ xj
yi +max(wi0, wi1 . . . wnw−1) ≤ yj
yi −max(wi0, wi1 . . . wnw−1) ≥ yj

(4)
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Secondly, all cabins must be within the yacht hull’s boundaries. As the hull shape is defined

by a lines plan, the calculation of the maximum allowable breadth is composed of three steps

corresponding to interpolations in the (x, z), (y, z) and (x, y) planes, respectively.

Thirdly, all of the cabins volume has to be within a 20% margin of the predefined standard

sizes. The given limit is a simplifying assumption and the standard sizes are derived from

linear regression of 39 similar vessels. This ensures that the cabins are realistically sized.

Structural design of composite stiffened plates

Composite materials are often selected due to their high strength/weight ratio and ability to

design the properties to a given parameters. They are the main materials used for composite

leisure boat hulls under 130ft with all of the internal structure also normally made from

these materials. These structures can be simplified to a flat plated grillage, with a simple

analytical model developed to be accurate to FEA, an accurate modelling method common

in structural design, within 5% [146]. The representation of the stiffened plates is given in

fig. F.2. In order to minimise the mass of the plate, and thus the cost, while maintaining

sufficient structural strength it is essential to choose the number of the stiffeners and their

geometrical parameters correctly.

The typical design parameters are the number of transverse and longitudinal stiffeners; stiff-

ener heights; stiffener widths; thickness of the stiffener crown; thickness of the stiffener web;

and overall thickness of the plate. These parameters are taken from [159] and are detailed

with respectable lower and upper boundaries in Table F.2 and represented in fig. F.3. All

parameters are given in millimetres.

In order to simplify the problem only rectangular stiffeners are considered (a = e), the amount

of longitudinal and transverse stiffeners is assumed to be the same to simplify the problem

and the stiffeners are evenly spread across the whole plate. The size of the plate is predefined

and equal to 3810mm in both length and breadth and the uniform pressure of 137 kPa is

Figure F.2: 8by8
stiffened plate.

Figure F.3: Cross
section of a stiffener.
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Table F.2: Design parameters of the stiffener

Parameter Variable Lower boundary Upper boundary

Number of stiffeners Ns 2 8

Width of crown a 150 300

Crown thickness b 5 20

Web thickness c 5 20

Height d 150 300

Base width e 150 300

Plate thickness f 5 20

Table F.3: Fitness function assignment for the stiffener optimisation

CLPT2 CLPT3

f1 mass

f2 stress

f3 w/o deflection

applied to the structure. The material is carbon/epoxy composite for which the properties

can be found in [146].

In the presented problem, three objectives are considered: overall mass of the structure, total

stress in the outer layer of the stiffener and deflection. All objectives are to be minimised and

are calculated using a modified Navier grillage model with Classical Laminate Plate Theory

(CLPT2) implemented as described in detail in [146]. In the second case, the problem is

simplified and only the mass and stress are set as objectives and the deflection is neglected.

The respective objectives for each case are presented in Table F.3
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Appendix G Additional figures

Enlarged heat maps from Chapter 3

Figure G.1: The heat map of the MLS1 variant of MLSGA on ZDT1 problem.
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Figure G.2: The heat map of the MLS2 variant of MLSGA on ZDT1 problem.

Figure G.3: The heat map of the MLS2R variant of MLSGA on ZDT1 problem.
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Figure G.4: The heat map of the single population GA on ZDT1 problem.

Figure G.5: The heat map of the sub-population GA on ZDT1 problem.
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Figure G.6: The heat map of the MLS1 variant of MLSGA on ZDT6 problem.

Figure G.7: The heat map of the MLS2 variant of MLSGA on ZDT6 problem.
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Figure G.8: The heat map of the MLS2R variant of MLSGA on ZDT6 problem.

Figure G.9: The heat map of the single population GA on ZDT6 problem.
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Figure G.10: The heat map of the sub-population GA on ZDT6 problem.

Figure G.11: The heat map of the MLS1 variant of MLSGA on CF2 problem.
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Figure G.12: The heat map of the MLS2 variant of MLSGA on CF2 problem.

Figure G.13: The heat map of the MLS2R variant of MLSGA on CF2 problem.



216 Chapter 7 Conclusions

Figure G.14: The heat map of the single population GA on CF2 problem.

Figure G.15: The heat map of the sub-population GA on CF2 problem.
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Figure G.16: The heat map of the MLS1 variant of MLSGA on UF3 problem.

Figure G.17: The heat map of the MLS2 variant of MLSGA on UF3 problem.
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Figure G.18: The heat map of the MLS2R variant of MLSGA on UF3 problem.

Figure G.19: The heat map of the single population GA on UF3 problem.
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Figure G.20: The heat map of the sub-population GA on UF3 problem.

Figure G.21: The heat map of the MLS1 variant of MLSGA on CF2 problem.
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Figure G.22: The heat map of the MLS2 variant of MLSGA on CF2 problem.

Figure G.23: The heat map of the MLS2R variant of MLSGA on CF2 problem.
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Figure G.24: The heat map of the MLSU variant of MLSGA on CF2 problem.

Figure G.25: The heat map of the MLS1 variant of MLSGA on UF4 problem.
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Figure G.26: The heat map of the MLS2 variant of MLSGA on UF4 problem.

Figure G.27: The heat map of the MLS2R variant of MLSGA on UF4 problem.
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Figure G.28: The heat map of the MLSU variant of MLSGA on UF4 problem.
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Enlarged heat maps from Chapter 4

Figure G.29: The heat map of the MLS1 type of collective in MLSGA U-NSGA-III algo-
rithm on UF2 problem.

Figure G.30: The heat map of the MLS2 type of collective in MLSGA U-NSGA-III algo-
rithm on UF2 problem.
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Figure G.31: The heat map of the MLS2R type of collective in MLSGA U-NSGA-III algo-
rithm on UF2 problem.

Figure G.32: The heat map of the original U-NSGA-III algorithm on UF2 problem.
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Figure G.33: The heat map of the MLS1 type of collective in MLSGA MOEA/D algorithm
on CF2 problem.

Figure G.34: The heat map of the MLS2 type of collective in MLSGA MOEA/D algorithm
on CF2 problem.
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Figure G.35: The heat map of the MLS2R type of collective in MLSGA MOEA/D algo-
rithm on CF2 problem.

Figure G.36: The heat map of the original MOEA/D algorithm on CF2 problem.
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