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Improving the applicability of genetic algorithms to real problems

by Przemyslaw Andrzej Grudniewski

The current state-of-the-art of genetic algorithms is dominated by high-performing specialist-
solvers with fast convergence. These algorithms require prior knowledge about the charac-
teristics of the optimised problem to operate effectively, although such information is not
available in most real cases. Most of these algorithms are only tested on a narrow range of
similar benchmarking problems with lower complexity than the real cases. This leads to the
promotion of high-performing strategies for these cases, but which might prove to be ineffec-
tive on practical applications. This hypothesis is supported by a low uptake of the current
specialist /convergence algorithms on real-world cases; NSGA-II remains the most popular
algorithm despite being developed in 2002. It is suggested that this is due to its uniformly
good performance across a wide range of problems with distinct characteristics, indicating

high generality, and a high diversity retention across iterations.

To assess if increasing the generality and diversity of the search improves the performance on
real problems, the Multi-Level Selection Genetic Algorithm (MLSGA) is extended to develop
a “diversity-first” general-solver genetic algorithm. It is selected as it shows high promise
for the diversity-oriented methodology. Firstly, the reasons behind why it exhibits high di-
versity are investigated, as it is shown that the collective-level mechanisms create additional
evolutionary pressure, while the fitness separation approach leads to collectives targeting dif-
ferent regions of the search space. This creates unique region-based search which leads to
retention of higher diversity of solutions between generations. Secondly, as the MLSGA is
exhibiting a poor convergence, the algorithm is combined with the current state-of-the-art
algorithms in the hybrid approach (MLSGA-hybrid) to offset this problem. MLSGA-hybrid
focuses on increasing the convergence of the search, over the original MLSGA algorithm,
while retaining its emphasis on the diversity. The results demonstrate that this improvement
leads to top performance on a range of problems. This is particularly the case on constrained
problems indicating that the diversity has been retained. Thirdly, the co-evolutionary vari-
ant is introduced and tested (¢cMLSGA), which combines multiple evolutionary algorithms
to improve the generality of the method. To validate the performance of the “diversity-first”
general-solver approach, the algorithm is tested on 100 benchmarking problems and compared
with top algorithms from the current state-of-the-art. It is shown that cMLSGA is the best
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general-solver, due to the most robust performance across the evaluated cases, while main-
taining a higher focus on problems where elevated diversity of the search is preferred, such as
discontinuous, constrained and biased cases. Finally, the cMLSGA approach is benchmarked
on 3 engineering cases with a wide range of diverse characteristics and compared with other
leading genetic algorithms. It is shown that the convergence-oriented solvers are ineffective
for real-world applications due to higher complexity of practical problems, whereas perfor-
mance of specialist-solvers is low due differences between real-world cases and benchmarking
functions they are adjusted to. According to that, the “diversity-first” genetic algorithms
with a high generality are preferred and there should be more focus on algorithms with these

characteristics in the future.
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Chapter 1 Introduction

1.1 Background

It is predicted that the development of Artificial Intelligence will have a significant impact
on the global economy, resulting in an increase of the global GDP by over US$ 13 trillion
in the next 10 years [2]. An important subfield of the artificial intelligence are genetic al-
gorithms which are inspired by Darwinian theory of evolution [3]. Up to 2017, Coello [4]
has collected over 10000 references relating to the genetic algorithms’ development showing
a wide interest in this field. Genetic Algorithms (GA) have found applications over a diverse
range of industrial and scientific fields, due to their ability to accurately approximate the set
of solutions on multimodal problems with multi-objectives and large search spaces. Exam-
ples include: medical and biological data classification for Parkinson, diabetes and cancer
sicknesses diagnosis [5,6]; adjustment of beam-angle in radiotherapy [7]; DNA sequencing [8]
machine learning and artificial intelligence for intelligent stock trading and market forecast-
ing [9]; control systems for greenhouse gases and fuel consumption reduction [10]; design of
engineering artefacts, such as space satellite antenna [1];training of neural network for feature
selection [11]; and job shop scheduling [12]. Utilisation of genetic algorithms often leads to
unusual, but more effective solutions that do not follow the field-related experience, with

example in Fig. 1.1, further showing their usefulness.

One of the first ideas of utilisation of evolutionary-like mechanisms into the computational
field come as early as 1950s [13]. This was followed by first developments of GAs in the 1960s
to study evolution [14-17], before their rapid development in the 1980s and 90s, as they were

found to be successful global optimisers [18-25].

In the current state-of-the-art three main branches of algorithms can be recognised: nich-
ing methods [26]; the decomposition methods [27]; and hybrid and co-evolutionary ap-
proaches [28,29]. Most of the algorithms from both groups promote, a “convergence-first
diversity-second” approach. The main search mechanisms focus on the convergence, achiev-
ing the global optimum, while the exploration of the different regions of the search space,
diversity, is achieved by secondary mechanisms. The performance of such an approach has
been successfully demonstrated on many multi-objective problems with gradually increasing

complexity [30-33].
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FIGURE 1.1: The 2006 NASA ST5 spacecraft antenna [1]

However, the uptake of genetic algorithms into scientific and engineering applications does
not utilise the state-of-the-art solutions from evolutionary computation. The most commonly
applied genetic algorithm is NSGA-II developed in 2002 [34] with 14,800 results in the Google
Scholar ! and 30785 citations. The MOEA /D developed in 2007 [35] comes second with 3,250
results in the Google Scholar and 4161 citations?. The modern algorithms are significantly
less often applied: HEIA (2016) [36] with 81 results in Google Scholar and 69 citations;
MOEA /D-MSF (2018) [32] with 2 results and 27 citations; MTS (2007) with 69 results and
40 citations; NSGA-III (2014) [37] with 1500 results and 1792 citations; despite the fact that
those algorithms has been shown to outperform both NSGA-II and MOEA/D in multiple
comparative benchmarks and competitions [32,33,36-39]. It is possible that this is simply
due to a certain lag between an academic science and real-world applications, but it is also
possible that the benchmarking problems in the evolutionary computation literature do not
represent real-world optimisation, leading to genetic algorithms that perform well on these

problems, but ineffective in practical applications.

Many of practical problems contains multiple constraints, resulting in discontinuities of the
search space, and thus the complexity of their characteristics is significantly higher than of
commonly utilised benchmarking sets, making the choice of suitable genetic algorithm non-
trivial. Therefore, it is suggested that real-world problems may require a higher diversity and
generality of the search, than the current state-of-the-art is providing, and thus this possibility
should be explored. It is supported by a high popularity of NSGA-II algorithm. NSGA-II,
despite not being the top performer in evolutionary computation problems, is showing a
uniform performance across wide range of cases with diverse characteristics where is able
to provide a high diversity of obtained solutions [32-34,36,40-44]. Therefore, indicating its
high generality and diversity focus in comparison to the rest of alternatives in the genetic

algorithms field.

LAll Google Scholar searches have been conducted on 03.01.2020 with the term “Name_of-the.GA applica-
tion” for the 2017-2019 range.
2 As for 03.01.2020, according to Google Scholar



Chapter 1 Introduction 3

A potential candidate for the diversity-oriented methodology is Multi-Level Selection Genetic
Algorithm (MLSGA) originally proposed by [45]. It has been shown that this approach
utilises a unique sub-population-based search strategy resulting in additional evolutionary
pressure, which in result encourages the exploration of a particular region of the search
space [45]. In total, three Multi-Level Selection (MLS) strategies have been introduced, each
with a different preferred region. It is suggested that this strategy can be further modified
to simultaneously target multiple regions of the search space leading to a higher overall
diversity of exploration in result. This is supported by other research on sub-population-
based approaches, as a valid strategy of improving the diversity [46,47]. However, unlike
other sub-population-based methods, which usually utilise a decomposition of the search
space, MLSGA does not require extensive hyper-parameter tuning to operate. Sensitivity to
hyper-parameters is disadvantageous for real-world applications, due to complexity of those
problems and not knowing the location of the global optimum, making the tuning process
expensive or even impossible. Furthermore, it is suggested that the generality of MLSGA can
be improved by utilisation of co-evolutionary approach, where different sub-populations will
use distinct evolutionary algorithm. By utilising a range of search strategies with different
areas of applications there is a lower chance that the overall methodology will be ineffective

on a particular problem, and thus increasing its robustness.

1.2 Aim and objectives

The aim of the project is to investigate whether genetic algorithm designed for high diversity
of the search and a high generality over a wide set of evolutionary computation problems will
improve its performance on the real-world problems. This aim will be met through a number

of objectives:

e Literature review of the state-of-the-art genetic algorithms and currently utilised bench-

marking sets with emphasis on trends in development, their strengths and the flaws.

e Understanding the principles of working of the previously developed Multi-Level Selec-
tion Genetic Algorithm:

— Investigating if the diversity increase from the MLSGA can be retained, while
improving its convergence through implementation of the current state-of-the-art

mechanisms.
— Investigating if the generality of the search can be enhanced through co-evolutionary
approach.
e Validation of the applicability of the developed methodology:
— Demonstrating the effectiveness on diverse, with various dominant characteristics,
set of benchmarking functions and selected real-world problems.

— Comparison to the current state-of-the-art.
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1.3 Research novelty

Main novelty of this study is to demonstrate the importance of diversity and generality as
opposed to convergence by development and understanding of the genetic algorithm with
these properties. That knowledge will be used to suggest why the uptake of modern genetic
algorithms in real-world applications is slow and to propose improvements to the existing

methodologies to make them more suited for the needs of industry.

1.4 Outline of the study

The reminder of this work is organised as follows. The state-of-the-art literature on genetic
algorithms and the benchmarking test functions is reviewed and discussed in Chapter 2. In
Chapter 3 the principles of working of Multi-Level Selection Genetic Algorithm and its high
potential for diversity-oriented methodology are investigated. Chapter 4 presents extension
of the original methodology with the current state-of-the-art mechanisms in order to im-
prove its convergence while maintaining a high diversity of solutions, resulting in the hybrid
methodology. The co-evolutionary approach is introduced in Chapter 5, where multiple evo-
lutionary algorithms are combined within the MLSGA, in order to maximise the generality.
The performance of the MLSGA is validated and compared with the current state-of-the-art
on a range of real cases in Chapter 6. This thesis is concluded, with discussion including the

indication of potential limitations and the future work in Chapter 7.

1.5 List of publications

P.A. Grudniewski* and A. J. Sobey, “Multi-Level Selection Genetic Algorithm applied to
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Sebastian, pp. 1613-1620, 2017.1

U. Mutlu*, P. A. Grudniewski, A. J. Sobey and J. I. R. Blake, “Selecting an Optimisation
Methodology in the Context of Structural Design for Leisure Boats”, RINA International
Conference on Design and Construction of Super & Mega Yachts 2017, 2017.

A. J. Sobey* and P.A. Grudniewski, “Re-inspiring the genetic algorithm with multi-level selec-
tion theory: multi-level selection genetic algorithm (MLSGA)”, Bioinspiration and Biomimet-
ics, vol. 13, no. 5, pp. 1-13, 2018."

P. A. Grudniewski* and A. J. Sobey, “Behaviour of Multi-Level Selection Genetic Algorithm
(MLSGA) using different individual-level selection mechanisms”, Swarm and FEvolutionary
Computation, vol. 44, no. September 2018, pp. 852-862, 2018.!

* Main author
1 .
Peer-reviewed
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Chapter 2 Literature review

2.1 Genetic algorithms

2.1.1 The history of genetic algorithms

In 1950 Turing proposed the idea of evolutionary-based machine learning, where machines
could self-develop and form unique responses after being injected with knowledge and ideas
[13]. However, the first numerical testing of evolutionary computing was conducted over a
decade later, in 1963, by Barricelli [15]. The primary subject was to evaluate if the evo-
lutionary improvement can be directed to the selected problem and thus produce a desired
performance. According to results the individuals at more advanced stage of evolution were
of a higher quality than the more primitive ones, due to better abilities in performing neces-
sary tasks and a higher survivability rate. Therefore, Barricelli was the first one to conclude

that evolutionary-like mechanisms may lead to overall improvement of individuals.

The first theoretical view of evolutionary inspired genetic algorithms was presented by Hol-
land in 1960s [14,16,17]. Later, Holland proved by mathematical analysis that evolutionary
reproduction leads to the improvement of population's average quality on a generation-to-
generation basis [48]. Thus, further confirming the Barricelli's work. Holland's work led to
a growth of the interest in improvement of the genetic algorithms mechanisms and furtherly
followed by development of new methodologies. However, the first implementations of evo-
lutionary algorithms for single-objective problems solving in engineering were conducted in
late 1960s towards early 1970s by Rechenberg [49] and Schwefel [50], leading to development

of evolutionary algorithms branch known as Evolution Strategies (ES).

In 1972 Bosworth et. al introduced the theory of elitism for single-objective cases, as the
procedure to improve convergence of solutions by retaining the best individuals between
generations [51]. In 1975 De Jong introduced crowding, as the first technique for maintaining
the population diversity [52] across the search spaces with single objective. Crowding assumes
that individuals in less densely populated regions have higher chance of survival, leading to the
expansion into diverse regions of the search space. Both elitism and crowding are successfully
utilised in many genetic algorithms that followed their work. They remain useful even in the

current state-of-the-art.



8 Chapter 2 Literature review

Schaffer introduced in 1985 the Vector Evaluated Genetic Algorithm (VEGA) for single-
and multi-objective problems, where individuals are grouped based on the best values of
each objective, and the parents, for the reproduction process, are selected randomly from
these groups [18]. Additionally, the Pareto-optimality concept is introduced for the first
time as a form of elitism. In each generation, the offspring population is compared with
their parents, and the non-dominated solutions from both groups are selected, which leads
to a better convergence as the result. Due to that the VEGA was first GA able to find the
Pareto optimal front during a single run, and thus the first multi-objective genetic algorithm.
However, due to basing the parents’ selection on a single objective only, a strong bias toward
extreme values of the objective space could be observed. In this case the individuals with the
lowest values of each objective were strongly preferred, and thus there was no incentive for

individuals to obtain more “average” values.

In 1989 Goldberg proposed a methodology that become a foundation for the current state-
of-the-art niching methods [19]. The Pareto ranking approach, based on Pareto's dominance
principle [26], is introduced for the first time for the multi-objective cases, where the pop-
ulation is classified into several sub-groups, based on the individual's dominance relations.
The best, non-dominated, points are assigned to the first rank and have a highest chance
of being selected. Then, from among remaining individuals the non-dominated solutions are
assigned to the second rank. The process repeats until every individual has a rank assigned.
Introducing the Pareto ranking allowed removal of the bias towards extreme regions of the
search space, occurring in the VEGA, and thus increase overall convergence. The concept of
Pareto ranking for multi-objective problems is extended by Fonseca and Fleming to develop
the Multi-Objective Genetic Algorithm (MOGA) [20], and further improved to promote con-
vergence by Srinivas and Deb in the Non-dominated Sorting Genetic Algorithm (NSGA) [21].
However, the key breakthrough for the NSGA algorithm was development of the crowding
estimator, called fitness sharing by Deb and Goldberg in 1991 [22]. This method expanded De
Jong's crowding idea to stronger promote the individuals in a less population-dense regions
of the objective space with a lower number of iterations needed to achieve it. However, the
significant increase in computational complexity introduced by non-dominated sorting and
fitness sharing, and the sensitivity to utilised hyper-parameters limits its usability in practical
applications. The concepts of non-dominated sorting, ranking and niching for multi-objective
problems have been further studied and followed [23-25,53-56], and the niching algorithms

become the most used branch of the current state-of-the-art genetic algorithms [34, 37].

In Strength Pareto Evolutionary Algorithm (SPEA) introduced in 1999 by Zitzler and Thiele
for the multi-objective problems, the front is stored externally, outside of the main population,
for the first time [25]. It is used to evaluate the fitness values of the individuals instead of the
domination relations inside of the population, unlike the NSGA. The fitness is proportional
to the number of points, from the external front, which dominate the individual and the
number of individuals dominated by those external points. This approach was introduced to
reduce the overall complexity of the algorithm; by eliminating the necessity to compare all

individuals with each other to check the dominance relations separately for each rank; and
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to achieve a better convergence rate. The biggest drawback of this methodology is that the
fitness of individuals is based only on the points from the external archive. Therefore, many
individuals can potentially have the same rank even if they dominate each other. This resulted
in a highly random and ineffective search, and often leading to premature convergence. This
issue has been addressed in the SPEA-II [54], where the fitness of individuals is based not only
on the relation to the external front, but also on the quality of points that either dominate
or are dominated by it. However, the resulting methodology has comparable performance to

the NSGA, but with a higher computational complexity.

The idea of a crowding-based selection strategy has been extended by Corne et. al in the
multi-objective Pareto Envelope-based Selection Algorithm (PESA) [55] and an improved
version of its PESA-II [56], developed for a better convergence and diversity. In both al-
gorithms, the objective space is divided into a number of hyper-boxes, and the fitness of a
non-dominated individual is dependent only on the amount of points sharing the box with
it. As the points in less crowded areas are always chosen, it is the first methodology that
strongly promotes diversity by full integration of the selection mechanisms with the diversity
maintenance. Despite the low computational complexity, both PESA and PESA-II are overly

sensitive to a number of utilised hyper-parameters reducing its usefulness.

In 1994 Srinivas and Patnaik proposed the Adaptive Genetic Algorithm (AGA), addressing
issues with low performance on multimodal, multi-objective problems shown by previously
developed methodologies [57]. In this approach, the probabilities of crossover and mutation
operations are changing over generations, in order to avoid premature convergence on local
optima. Therefore, AGA was the first self-adaptive genetic algorithm. In 1996 this concept
is further extended, by Hinterding et. al to develop the Self-Adaptive Genetic Algorithm
(SAGA), where the population size adaptation is added, leading to elevated performance on
multimodal, multi-objective problems in comparison to AGA [58]. However, the biggest draw-
backs of the adaptive-based methodologies are high computational complexity of self-adaptive
mechanisms and significant hyper-parameters of those. That is due to the requirement for
tuning the algorithm to the shape of search and objective spaces in advance. Therefore, the

usability of the adaptive methodologies in real-world is limited.

A different approach to promoting diversity of the search has been proposed by Whitley
et. al in the Island Model Genetic Algorithm (IMGA) [46] designed for single-objective
problems. In IMGA, the population is divided into the sub-populations, called islands. Each
island operates in parallel on the same search space, where individuals are allowed to migrate
between groups. As the populations operate semi-independently, they have a higher chance
of exploring different regions of search space [46] leading to a better diversity in overall, while
the between-groups migration minimises the chance of premature convergence for a single
group. The concept of sub-populations is successfully implemented in many single- and multi-
objective GA methodologies [59] and has become the foundation for modern decomposition
and hierarchical-based algorithms. However, due to the lack of additional diversification
mechanisms between the groups in the IMGA, the groups often evaluate the same regions

of the search space, especially on more complex problems, leading to an ineffective search.
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Furthermore, similarly to adaptive methods the sensitivity to a number of hyper-parameters

can be observed.

Similar concepts have been implemented in the micro-GA (MGA) [60] and an adaptive version
of its AMGA [61], both designed for multi-objective environments. However, instead of
running multiple populations in parallel, a serial approach is utilised, where a single small
population is used in a series of runs. After each run, the obtained solutions are stored in the
external archive and then used for population initialisation of the next run. These methods
were initially developed to reduce the computational time for the practical applications by
minimising population sizes and as an approach to maximise the convergence. However, due

to strong emphasis on convergence, a low diversity in the final solutions can be observed.

From the presented methods, a high interest in the niching approach can be observed. Most
of these methods were developed to improve the convergence of solutions or to lower the
computational complexity while maintaining a similar convergence: MOGA, NSGA, SPEA,
SPEA-II, PESA-II, AGA, SAGA, MGA, AMGA. With only a few attempts to develop a
better diversity preservation mechanism: NSGA, PESA, IMGA. Furthermore, in all of the
presented methodologies, except PESA, diversity is maintained by secondary mechanisms
resulting in a “convergence-first diversity-second” approach, which is prevalent in the current

state-of-the-art.

Here the modern methods are considered to be from NSGA-II [34]. NSGA-II is selected
due to a substantial improvement in efficiency and effectiveness of this methodology, in com-
parison to the previously developed algorithms; as well as its high competitiveness with the
current state-of-the-art; and utilisation in a wide range of real-world applications. The lead-
ing methodologies are considered to form 3 categories: niching; decomposition-based; and
co-evolutionary and hybrid methods. These will be discussed in the following sections. Only

the highest performing multi-objective algorithms are reviewed, as illustrated in Fig. 2.1.
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FIGURE 2.1: Development tree of genetic algorithms. The colours represent different ap-
proaches in the GAs development.

2.1.2 Niching genetic algorithms

In the current state-of-the-art, niching approach is dominated by improved Non-dominated

Sorting Genetic Algorithm (NSGA-II) [34] and the next iteration of it, NSGA-III [37]. In
the NSGA-IT algorithm, similarly to the original NSGA [21], the population is sorted into
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several ranks. Individuals in less dominated fronts are assigned a lower rank, and there-
fore are more likely to be selected for reproduction with prioritisation of individuals in less
crowded regions. The principles of this methodology are illustrated in Fig 2.2. The main
improvements over the NSGA are the implementation of the Fast Non-Dominated Sorting
Approach, allowing the reduction in an overall computational complexity; and improving the
crowded-comparison operator to enhance diversity. In the original NSGA each solution was
compared with every other solution in order to find the dominance-relations separately for
each rank, which required O(M N?3) comparisons in the worst case scenario, where M is the
number of objectives and N is the population size. In NSGA-II, the dominance calcula-
tion is performed only once for all ranks, allowing reduction of complexity to O(MN?). In
the NSGA, the density of solutions is calculated by using a predefined sharing parameter,
which determines the Euclidean range in which two solutions are additively sharing each
other fitness. In the NSGA-II the distance between closest solutions is calculated instead, as
illustrated in Fig 2.2. This change allows to remove the sharing value, due to its sensitivity
to predefined hyper-parameter, and the reduction of the computational complexity of the
crowding-distance calculation from O(MN?) to O(M NlogN). Furthermore, the diversity
is strongly promoted by implementation of the crowded-comparison operator into selection
procedure, where the individuals in a less crowded areas are always selected from among the
same rank. Despite, often being outperformed by more recent methods, the NSGA-II remains
the most widely utilised GA and has been successfully applied to diverse branches of science
and industry [12,62-69]. The interest can be explained by the fact that NSGA-II shows good
performance across the range of multi-objective problems, such as: unconstrained [30,41,70],
constrained and with complex Pareto optimal sets [31]; indicating a general-solver approach..
Furthermore, multiple modifications to it have been proposed in order to adjust its perfor-
mance to the other types, such as dynamic [71], imbalanced [33], large scale [72] and bi-level
problems [73].

However, the NSGA-II is ineffective on cases with more than two objectives, due to low
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selection pressure towards Pareto optimal front and thus a low convergence, in comparison to
other methods. The improvements in this aspect have been proposed by Deb and Jain in 2014,
resulting in the NSGA-III [37]. Instead of the crowding distance for diversity preservation, a
number of the predefined reference points are used, similarly to many decomposition methods
[35]. Where the points are used to predict the position of the final front. It is assumed that
the ideal solutions will be located on the vectors drawn from these reference points, to the
predefined ideal point. This is usually (O)M for the minimisation problem, where M is the
number of objectives. During the reproduction step, the closest individual to each vector is
chosen from non-dominated rank, to form a new population. According to the benchmarks,
the NSGA-III outperforms the other state-of-the-art algorithms on a range of test instances
up to 15 objectives [37,43,74,75] or at least exhibit comparable performance. However, due
to utilisation of predefined reference points, the performance of NSGA-III is sensitive to the
quality of those points. The positions of reference points have to be adjusted regarding to the
shape and geometry of the Pareto optimal front and potential discontinuities in it, similarly
to many decomposition methods [32,47]. Furthermore, due to the small amount of reference
points utilised, resulting in small population sizes as the number of individuals is equal to the
number of the reference points. Due to that, this methodology is ineffective on one- and two-
objective problems. In 2015 the U-NSGA-III is proposed which combines mechanisms from
NSGA-II and NSGA-III in order to solve that issue. In this method individuals are selected,
based not only on the distance to the reference point, but also on their crowding distance
like in the NSGA-II. Furthermore, higher population sizes are allowed due to utilisation of
crowding distance as a parameter. Proposed changes lead to performance similar to NSGA-II
on one and two-objective problems, but with slightly lowered effectiveness on cases with more
objectives in comparison to the NSGA-III. Therefore, U-NSGA-III was successful in unifying
the effectiveness of both NSGA-II and NSGA-III, resulting in more universal methodology.

However, the sensitivity to reference points has not been addressed in this case.

A similar approach to NSGA-II is utilised in Genetic Algorithm with Multiple ParEto sets
(GAME) [76] and an improved self-adaptive version of it (aGAME) [77]. In GAME the
population is classified into several Pareto fronts depending on their ranks, and crowding
distance mechanisms are used for the diversity preservation. However, in contradiction to
NSGA-II, the selection process is less biased towards low-rank individuals. In GAME the rank
is used to calculate fitness, instead of being key element of the selection process. Resulting
methodology is shown to outperform algorithms such as DMOEA-DD, LiuLi and MTS on
multi-objective constrained CF problems [76]. However, the algorithm's behaviour varies on
diverse kinds of search spaces due to utilisation of statistically tuned priority parameters
for the fitness calculation, resulting in a sensitivity to these parameters. Partial solutions to
those problems have been proposed in the self-adaptive version of it, aGAME [77], where those
parameters are being automatically adjusted to the search basing on the quality of current
population. However, the aGAME introduces additional set of hyper-parameters to manage
its self-adaptiveness. Therefore, as the performance evaluation is limited to only 7 constrained
function, with no data on other types of problems given. As there is no comparison with the

current state-of-the art and no indication of potentially the best hyper-parameters for other
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kind of problems the generality of both GAME and aGAME is low. According to that, it is
likely that the high performance of GAME on constrained problems is due to being adjusted

to these cases rather than a better diversity in comparison to other methods.

2.1.3 Decomposition based methods

Unlike the niching methods, which are based on the Pareto-dominance principle, the decomposition-
based algorithms operate by splitting the objective or search space into number of subspaces

and evaluating each of them separately. This approach originates from the modification to
NSGA-IT where cone separation of the search space is implemented (CS-NSGA-II), as the
mean of improving the efficiency of the genetic algorithms in parallel computing [27]. How-

ever, the peak interest in those methods originates in Multi-Objective Evolutionary Algorithm
Based on Decomposition (MOEA /D) presented by Zhang and Li in 2007 [35]. It was due to
significantly higher performance on unconstrained problems such as UF [31], ZDT [30] and
DTLZ [40] sets in comparison to other leading methods.

In MOEA /D the multi-objective problem is decomposed into a predefined set of sub-problems,
by assigning a distinct weight vector to each individual, and utilising scalarisation method for
the fitness calculation. Therefore, each sub-problem has exactly one individual assigned. In
the original work three scalarisation methods were proposed: Weighted Sum [78], T'chebycheff
(TCH) [78] and penalty-based boundary intersection (PBI) [35]; with Tchebycheff approach
proven superior in the performance testing. The vectors remain constants during a single
run and the individuals can reproduce only within the same sub-problem or its neighbour-
hood. The neighbourhood is defined as predefined amount of sub-problems that have the
closest weigh vectors based on the Euclidean distances, as illustrated in Fig. 2.3. During
the reproduction step the offspring replaces predefined number of worse individuals in the
parents'sub-problem or its neighbourhood. Finally, the Pareto optimal front is composed by

non-dominated solutions originating from each sub-problem.

Over past decades the range of improvements to different mechanisms of MOEA/D has
been proposed: weight generation [79,80], decomposition [32,70,81,82], Scalarising functions
[83,84], selection [39, 85], reproduction [86,87] and mutation [88]. In 2016 Trivedi reviewed
over 50 different improvements and variants of MOEA /D [47]. However, due to the lack of
comprehensive benchmarks between each variant and compatibility tests of distinct improved
mechanisms, it is not trivial to choose unquestionably the best methodology. Furthermore,
most of them are tested on selected problems with a narrow range of characteristics leading
to the family of specialist methodologies, where each member can be used on different kind
of problems. From the benchmarks on WFG [41], MOP [32] and UF [31] it can be concluded
that the best variants of MOEA/D for two- and three-objective unconstrained cases are
MOEA /D-PSF and MOEA/D-MSF [83]. However, as no data is provided on constrained,
discontinuous and 44 objective cases it is not possible to conclude them as the best variants
of MOEA/D in overall.
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The MOEA/D based methods have been shown to outperform niching and other decom-
position methods on unconstrained and dynamic functions, by promoting convergence over
diversity [32,47]. The decomposition removes the necessity of using any diversity maintain-
ing mechanisms, as each sub-problem seek different regions of the search space leading to a
stronger focus on convergence. However, due to utilisation of the vector approach based on
reference points, low effectiveness can be observed on constrained and discontinuous problems,
where gaps on the search and objective spaces can be observed. As it cannot be predicted
where the infeasibilities occur, the weight vectors tend to guide the search straight through
them, resulting in individuals being stuck on the boundaries of those regions. Thereby result-
ing in inefficient search. Furthermore, it has been shown that the relationship of the shape
and structure between the grid of reference points and the Pareto optimal front can have
significant impact on the final performance [32,47]. In the ideal case, the shape of the grid
should be identical to that of global optimum. According to that, those methods usually
require prior knowledge about the characteristic of the space in order to adjust the vectors in
advance. That knowledge is usually not available on a real-world scientific and engineering

cases, which may limit its potential application to real-world problems.

In 2014, the Multi-objective to simple Multi-objective decomposition method (M2M) for
MOEA/D framework was proposed in order to balance convergence and diversity [32]. In
the MOEA /D-M2M, instead of decomposing the problem into a set of one-objective sub-
problems, each with a separate individual assigned to them, the split of the objective space
into a set of sub-regions, of the same dimensions, via predefined direction vectors is imple-
mented. Therefore, each sub-population operates on a different sub-region for which the
boundaries are defined by the direction vectors. This methodology can achieve better per-
formance than other state-of-the-art algorithms on imbalanced problems [32], [33], but it is
outperformed by other methods on biased and unconstrained cases [83] indicating its special-
isation. As the decomposition by predefined vectors is applied, similarly to other MOEA /D-
based methods, the mechanisms are subject to hyper-parameter tuning, further limiting its
generality. Furthermore, as no information is provided on behaviour of this strategy on
constrained and highly discontinuous problems and as mostly cases with continuous charac-
teristics have been used for testing, it is not possible to conclude if the high performance of
M2M on imbalanced problems is due higher diversity of the search than other methodologies

or rather due to implementation of mechanisms tailored to them.

A different way of decomposition was utilised in LiuLi [89] and DMOEA-DD [90] algorithms.
In them, the decomposition is applied to the search space instead of the objective space,
resulting in higher overall convergence and a better performance on constrained cases [89].
In LiuLi each sub-region has a separate sub-population, called class, assigned to it instead
of single individual. Each sub-region has an external archive assigned to it in order to
store achieved non-dominated points and thus preserve elite individuals. In the reproduction
step, first parent is chosen randomly from among the class, whereas a second one is chosen
from its corresponding archive, leading to better convergence. Dynamical Multi-Objective

Evolutionary Algorithm with Domain Decomposition technique (DMOEA-DD) [90] combines:
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FIGURE 2.3: The principles of working of MOEA /D methodology.

principles of the minimal free energy in thermodynamics for the fitness calculation from its
predecessor DMOEA [91], based on the Simulated Annealing [92]; the decomposition of the
search space similar to LiuLi; and the crowding distance from the NSGA-II [34].

The effectiveness of both algorithms has been tested on the set of multi-objectives constrained
and unconstrained problems with complex POS [31]. According to the final ranking [42], Li-
ulii [89] and DMOEA-DD are the best genetic algorithms for constrained cases, while being
outperformed only by MOEA /D [35] and MTS [93] on the unconstrained problems. However,
both algorithms have been evaluated only on the CEC test set [31], with no indication of
performance for other types of problems or any following studies. In the presented results,
high variation between best and worst performance on different runs can be observed, im-
plying high randomness of the algorithm's behaviour, as at least few independent runs are
needed to provide reliable result. Furthermore, both algorithms have non-uniform perfor-
mance across all tested problems, despite high similarity between them. In addition, due
to utilisation of decomposition, a high sensitivity to the hyper-parameters can be observed.
According to that, it is not possible to predict the behaviour on other kinds of problems, or
even theoretically similar cases, which limits their generality. Furthermore, as those methods
has not been evaluated outside of the original publications, it is possible that they are highly

ineffective on problems other than the CEC set on which they were originally tested .

2.1.4 Hybrid and Co-Evolutionary approaches

Different approach is to combine multiple search strategies, which have distinct advantages
and areas of application, via hybridisation or co-evolution. The hybridisation is defined as

combining search, update or reproduction mechanisms from different methodologies, whereas

'In addition the code of LiuLi and DMOEA-DD is not available online and the publications do not provide
enough details to replicate the results
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co-evolution is defined as evolving multiple sub-populations simultaneously, potentially each
by distinct reproduction mechanisms, with the data exchange introduced between them [29].
According to this definition, each sub-population-based algorithm could be potentially con-
sidered as co-evolutionary, even most decomposition methods, which is not accurate. There-
fore, in this work these definitions are extended and the hybrid methods are defined as
methodologies that utilise distinct mechanisms on the same population in serial way, while
co-evolutionary methods combine distinct evolutionary algorithms that operate in parallel on
different sub-populations. The simplifications of hybrid and co-evolutionary approaches are

shown in Fig. 2.4 and Fig. 2.5 respectively.

Hybrid GAs often incorporate other non-GA evolutionary computation approaches, such as
Particle Swarm Optimisation (PSO) [94] or Differential Evolution (DE) [86], in order to
adjust the algorithm to characteristics of the search space or to improve the convergence.
Examples of adjusting the algorithm include NSGA-II-DE and MOEA /D-DE where typical
SBX-crossover is replaced with the DE-based mechanism in order to significantly improve the
performance on problems with complicated POS [86]; or the Quantum-inspired GA (QGA)
for more effective optimisation of the multi-objective flow shop scheduling [95]. Different ap-
proach is utilised in memetic genetic algorithms, where local search methods are incorporated
to enhance the convergence rate. One of the first GAs of that type has been proposed by
Ishibuchi and Murata in 1998 to increase the convergence on practical problems [96]. Other
notable memetic GAs are Multiple Trajectory Search (MTS) [93] and Local Search NSGA-II
(NSGA-II-LS) [97]. In MTS four different local-search methods are implemented instead of
a single one. Each of them has distinct performance on different structures of the search
surfaces, which mitigates the risk of using a single search mechanism. NSGA-II-LS has been
shown to increase convergence over the original NSGA-IT on unconstrained problems during

the CEC'09 competition [31,42]. MTS was the second-best algorithm across unconstrained
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and constrained functions on the same test set. However, robustness of both algorithms
is low across the sequence of runs, therefore multiple runs are needed in order to obtain
representative results. Furthermore, implemented search methods may be ineffective on the
problems with other characteristics than those to which search method was adjusted to. This
is possible even if multiple search strategies are utilised. Therefore, in ideal scenario the
search strategy should be adjusted in advance to the characteristics of the optimised problem
to maximise the performance. According to that, hybrid approach should be considered as
a method to specialise the algorithm to specific problem or to increase overall convergence;

rather than a mean to improve its generality or diversity.

The co-evolutionary approach was introduced by Potter and De Jong in 1994 [28]. The
co-evolutionary methods are usually split into two groups, cooperative [28] and competi-
tive [98], depending on the form of the data exchange between the groups. In the com-
petitive approach, groups compete with each other to form offspring sub-populations [99]
or the entire population [36]. In the process, fitter sub-populations have higher chances of
mating and producing offspring, and the less-fit sub-populations are encouraged to counter
the better ones by quicker adaptation via “arms race” [100]. In the cooperative approach,
the individuals are separated into distinct species, e.g. by decomposition of a problem into
sub-problems along the search space [28], and they have to collaborate by sharing the genetic
information in order to form valid solutions. Originally all groups operated on the same
objective space [101], but in more modern methods decomposition is introduced in order to
improve convergence [99,102]. The most significant co-evolutionary algorithms in the cur-
rent state-of-the-art are: competitive-cooperative CO-Evolutionary Algorithm (COEA) [99],
Hybrid Evolutionary Immune Algorithm (HEIA) [36] and Bi-Criterion Evolution algorithm
(BCE) [103] due to high performance in comparison to other co-evolutionary methods and
high generality of the search. In COEA the problem is decomposed into a set of single-
objective problems, where each of them is evaluated by one sub-population. Furthermore,
two selection procedures are introduced: competition, where the individuals contest for a
place in each group; and cooperation, where distinct species collaborate to create a valid so-
lution. Therefore, cooperation is used to promote convergence, while competition maintains
the diversity of gene-pool. The resulting methodology exhibit higher convergence rates than
other methods, as shown on the dynamic problems [104]. However, due to decomposition
of the search space and solving each variable individually, low performance on discontinuous
and irregular problems is observed with poor diversity of the results due to lack of additional
diversity preservation mechanisms. Furthermore, COEA has not been tested on constrained
and highly discontinuous problems, such as MOP [32], IMB [33] and DAS_CMOP [44], but

due to discussed drawbacks a low performance on those cases is expected.

In HETA, two distinct crossover methods, SBX and DE, are used independently on differ-
ent sub-populations instead of the problem decomposition. After each generation, the best
individuals are moved to the external archive and sub-populations are recreated with the Im-
mune Algorithm based cloning process. Performance of this method has been evaluated on a

wide range of unconstrained problems with mostly continuous geometries, such as WFG [41],
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UF [31], DTLZ [40] and ZDT [30]. The results show comparable performance to the state-
of-the-art on all tested cases. However, HEIA is showing significantly better performance on
discontinuous cases, such as ZDT3 and UF5-6, and better spread of points along the true
Pareto optimal front on all cases, indicating its high focus on diversity of the search. Further-
more, obtained performance is uniform across different test cases indicating high generality
of the search strategy. In the BCE instead of implementing different crossover strategies, two
distinct fitness indicators are utilised for selection and reproduction: Pareto-based criterion
(PC) for convergence and Non-Pareto-based (NPC) for diversity. In PC standard Pareto
dominance rule is applied; in NPC the selection is based on the Hyper-volumes [105]. In the
performance testing over diverse set of unconstrained problems WFG [41], UF [31], DTLZ [40]
and ZDT [30] it has been shown that different search methodologies can be utilised for both
criteria. Improvement in the performance over implemented algorithms, MOEA /D and IBEA
in this case [103], was observed on average, but not in every tested case. Therefore, the results
indicate that combining multiple search strategies under a single methodology leads to better
generality in overall. However, both HEIA and BCE are tested only on a limited set of prob-
lems, therefore more research has to be conducted regarding the potential of co-evolutionary

approach for the general-solver GA.

2.1.5 Methodologies inspired by Multi-Level Selection theories

Another approach to improve the convergence of genetic algorithms is utilised in methodolo-
gies inspired by Multi-Level Selection (MLS) theories [106,107]. These sub-population-based
algorithms implement an additional group-selection level, where different sub-populations
compete with each other for the reproduction in analogous manner to individuals. This

generates an additional evolutionary pressure leading to higher convergence rates.

Lenaerts et. al were the first to implement multi-level selection into GAs, by introducing the
group selection model [108]. In Multi-Level Evolutionary Algorithm (MLEA), individuals are
distributed from the shared pool into isolated sub-populations. In the selection process, first
parent is selected from all individuals and its mate is chosen from the same group. As fitter
individuals have higher chances of being selected, the groups with “more fit” individuals
grow bigger in the process. After a specified number of generations, individuals from all
groups are moved to the shared pool, and sub-populations are recreated. This promotes
better individuals and results in higher convergence rates. However, no distinct fitness value
is assigned to the higher level, and no direct sub-population selection method is implemented.
Therefore, this methodology does not introduce an additional selection pressure, but is based
on a strong elitism approach, missing the key aspects of the MLS. Due to that and lack
of diversity-preservation mechanisms, it is likely that MLEA will exhibit low performance
on multi-objective and multimodal problems, which is typical for elitist approaches due to

premature convergence [109].
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Akbari et. al introduced the colonization-inspired mechanism for interaction between groups
of individuals [110,111]. The between-group dynamics is proposed in which single sub-
population is selected based on its fitness and then is used for generation of two offspring.
First offspring replaces the parent population, when the second one has a chance to replace
other groups, basing on its fitness and fitness of other groups. The resulting algorithm is
efficient on single-objective problems, but no tests on multi-objective instances are provided.
The biggest drawback of this mechanism is that the fitness of whole group is based only
on the quality of the best individual within it. Therefore, the collective fitness definition
and the additional selection levels are implemented in the manner that strongly favours best
solutions and therefore leads to loss of many good solutions and thus reduction of the gene
pool's diversity. This results in the strong elitism approach which has similar disadvantages
as MLEA.

Finally, Wu and Banzhaf presented the hierarchical cooperative evolutionary algorithm based
on the multi-level selection [112]. However, in this case the hierarchy is introduced in order
to select potential candidates that may cooperatively form a valid solution, similarly to
cooperation-based co-evolutionary algorithms, rather than developing an additional evolu-
tionary pressure. Therefore, no separate units of selection are introduced at all levels, even

though it is a basic concept of the multi-level selection theory.

All of the algorithms presented in this section are ignoring the key aspects of the theory and
do not demonstrate any improvement over current methods. In none of the presented mech-
anisms, including non-MLS based methodologies, the fitness separation, with an additional
collective-based selection pressure, is introduced. Furthermore, in none of those algorithms
the potential of an additional evolutionary pressure for a higher diversity is explored, as these

focus only on the convergence improvement.

2.1.6 Novelty search

A shift towards diversity-oriented optimisation has been introduced in novelty search algo-
rithms. This methodology has been firstly introduced by Lehman and Stanley in 2008 [113]
basing on the NeuroEvolution of Augmenting Topologies (NEAT) method developed by Stan-
ley and Miikkulainen in 2002 [114] for optimisation of topologies of the neural networks. This
was followed by a number of publications that explored the importance of novelty search and
furtherly developed this method, led mostly by Lehman and Stanley [115-120].

The base principles of working of the novelty search algorithms show resemblance to SPEA
[25], SPEA-II [54] and PESA [55] algorithms, where a separate fitness function is introduced
to evaluate the quality of individuals, instead of the Pareto dominance principle, but without
decomposition of the problem. However, unlike the SPEA, SPEA-II and PESA where the
fitness is based on the value of objectives or mutual dominance/non-dominance relations
between individuals, a separate factor, called sparseness, is introduced. According to this

indicator, the individuals in less populated regions are preferred and thus strongly promoted,
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leading to a higher diversity of offspring. However, unlike other diversity-inducing indicators,
such as the Deb's crowding distance [22,34], the diversity along the search space is measured

and all previously found individuals are considered instead of the current population only.

The novelty search has been shown to be effective on complex deceptive methods where a
higher diversity of the search is preferred [113,115-117]. However, due to discarding the
impact of the objective’s values in the fitness function, a significantly lower convergence can
be observed [119]. This issue has been addressed in 2011 by Mouret [119]. A second fitness
value, based on the values of objectives, is introduced, leading to the novelty-based multi-
objective algorithm. This methodology has been shown to maintain better balance between

convergence and diversity, while strongly promoting the diversity.

However, the biggest disadvantage of novelty search algorithms is in the sparseness indicator
used to evaluate diversity. As it is based on the values across the search space, its effectiveness
drops exponentially with higher number of variables, due to necessity of evaluating multi-
dimensional spaces; and in many kinds of problems the diversity of points on the search space
do not translate to better exploration of the objective space or a higher diversity across it,
such as biased, imbalanced or discontinuous problems [32,33]. Therefore, higher diversity of
results is not guaranteed. Furthermore, sparseness indicator introduces a number of hyper-
parameters, which potentially have to be adjusted to the characteristics of optimised problem,
leading to similar issues as in decomposition-based methods; and due to calculation based on
all previously find individuals its computational effectiveness is getting exponentially lower
with higher number of iterations required to solve the problem reducing its usability for more

complex cases.

2.1.7 Diversity in genetic algorithms

In the presented algorithms, strong focus on the convergence-based methodologies can be
observed, while the diversity is often maintained by secondary mechanisms, leading to the
“convergence-first, diversity-second” approach. In the niching methods, the crowding dis-
tance promotes a wide spread of points on the objective space, but more converged solutions
are still preferred even if resulting in lowered diversity of the search. In decomposition-based
methods, the solutions are selected according to the convergence on predefined weight-vectors,
while the co-evolutionary and hybrid methods are developed to usually increase generality

and convergence of the search rather than diversity.

Despite the fact that the “convergence-first, diversity-second” methodologies are showing low
performance on the diversity-demanding functions [32,33,121-124], not much work is done
for development of methodologies which would strongly promotes diversity over convergence,
“diversity-first, convergence-second” methods. Furthermore, there is no literature that would
definitively show that strong convergence is preferred over the diversity while applied to the

real-world problems. This indicates a gap in the field of genetic algorithms.
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However, the development of genetic algorithms is strongly dictated by established bench-
marking functions, as those provide the easiest measurement of the comparative performance.
Therefore, it is possible that these functions may be biased towards certain characteristics
and thus promote convergence-oriented algorithms. The influence of available benchmarking

functions on the genetic algorithms’ development is investigated in the following section.

2.2 Test functions and benchmarking

In order to verify the performance of developed methodologies, a number of artificial bench-
marking functions have been created. This allowed to operate on problems for which the
calculation time is computationally feasible; and for which the final solutions and character-
istics of the search area are known in advance, leading to better understanding of the testing
algorithm. The complexity of those problems is gradually increasing, but remain significantly
lower than most of the practical problems, especially regarding the geometry of the search
space and biases towards certain regions; amount of local and global optima; size and shape

of the infeasible regions across the search space; and interactions between variables.

Most of the benchmarking problems possess one dominant characteristic such as: imbalanced
search space [32,33]; time dependent Pareto optimal sets and fronts [104, 125, 126]; com-
plex Pareto optimal sets [31]; large quantity of variables [127], defined as 500+ variables, as
usually 10-50 are utilised; bi-level [128]; sequence-dependent [129]; constrained [74] and un-
constrained [70]. However, as large scale, bi-level and sequence dependent problems, usually
are significantly more complex and requires specialist mechanisms in order to effectively solve
them, those are not reviewed nor utilised in this work. The most commonly utilised bench-
marking functions are reviewed in this section, as summarised in Table 2.1 for unconstrained
functions; in Table 2.2 for constrained cases; in Table 2.3 for imbalanced; and in Table 2.4
for unconstrained dynamic problems. Extensive review of all other functions developed up
to 2006 can be found in [70]. In addition to the main characteristic, those functions can be
described by a number of additional properties, which describe the geometry or complexity

of the search space. Those are defined as follows:

Definition 2.4 Convex, concave, linear or mixed: describes the shape of final Pareto optimal

front, where in mixed type the shape is a combination of other types.

Definition 2.5 The discontinuous problem contains one or more infeasible regions on the

objective space.

Definition 2.6 The degenerate problem contains Pareto optimal front that is of a lower

dimension than the objective space in which it is embedded.

Definition 2.7 The biased problems have significant variation in mapping from the Pareto
optimal set to the Pareto optimal front. Therefore, some regions on the objective space are

preferred.
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Definition 2.8 The multimodal problems contain multiple local optima.

Definition 2.9 The deceptive problems are a special case of multimodal problems, where the
geometry of the search space favours deceptive local optimum. Therefore, global optimum is

localised in the unlikely to find region.

Definition 2.9 The non-separable problem cannot be decomposed into many separated sub-
problems that can be solved independently, i.e. variables cannot be optimised independently

of one another.

Definition 2.10 The scalable problem can be adjusted to potentially any number of objec-

tives.

Definition 2.11 The variable-linkage problem contains at least one set of variables which

numerical values are strongly correlated to each other.

2.2.1 Unconstrained and constrained problems

The first comprehensive set of unconstrained functions is Zitzler-Deb-Thiele (ZDT) set de-
veloped in 2000 [30]. A total of six two-objective functions have been presented, including
different geometries of the Pareto Fronts, biases and multimodality, as detailed in Table 2.1.
However, in all introduced problems, except ZDT6, the first objective function is solely based
on a single variable, and, except of ZDT4, Pareto optimal set is for the boundary values
of remaining variables with identical parameter value for each of them. As Pareto optimal
front consists of almost identical points differentiated only by a value of the first variable,
the complexity of the problems is low. Therefore, low diversity of the search is required, as
after finding a single point on the global optimum, the Pareto optimal front can be easily

expanded by limiting the exploration to the first variable.

The ZDT set has been extended in 2001 by the DTLZ test suite [40]. In this case a total
of nine fully scalable test functions are proposed, introducing additional geometries and
characteristics of the problems, such as linear, mixed and degenerated fronts, as detailed in
Table 2.1. This test suite has similar disadvantages as the ZDT test suite: small parameter
domains; global optima which are on the boundaries or centre of the search range and which
have identical parameter values for almost every dimension. However, despite these flaws
DTLZ remains one of the most popular sets for the multi-objective benchmarking due to its
scalability in comparison to the UF test set [31] and the simplicity in defining the true Pareto

optimal fronts in comparison to WFG set [41].

In order to mitigate mentioned issues of the DTLZ set, the WFG test problem toolkit has been
proposed in 2005 [41]. This toolkit allows to freely create scalable problems with different
Pareto optimal front geometries and characteristics of the search space including biases,
deceptions, uni/multimodality, degeneration of the Pareto optimal front and non-separability

of objectives. In addition, nine exemplar functions are introduced to highlight the possibilities
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TABLE 2.1: Summary of the state-of-the-art unconstrained multi-objective test problems

Name ‘ Objectives ‘ Variables‘ Problem characteristics
Zitzler-Deb-Thiele set [30]

ZDT1 2 30 Convex

ZDT2 2 30 Concave, Biased

ZDT3 2 30 Discontinuous

ZDT4 2 10 Convex, Multimodal

ZDT5 2 10 Convex, Multimodal, Binary
ZDTé6 2 10 Concave, Multimodal

Deb-Thiele-Laumanns-Zitzler set [40]

DTLZ1 M M-+4 Linear, Multimodal

DTLZ2 M M+9 Concave

DTLZ3 M M+9 Concave, Multimodal

DTLZ4 M M+9 Concave, Biased

DTLZ5 M M+9 Concave, Degenerated

DTLZ6 M M+9 Concave, Degenerated, Biased

DTLZ7 M M+19 Mixed, Discontinuous, Multimodal

Walking Fish Group set [41]

WFG1 M 2M—+18 Mixed, Biased

WFG2 M 2M+18 Convex, Discontinuous, Non-Separable

WFG3 M 2M+18 Linear, Non-separable, Degenerated

WFG4 M 2M—+18 Concave, Multimodal

WFG5H M 2M—+18 Concave, Deceptive

WFG6 M 2M+18 Concave, Non-separable

WFGT7 M 2M+18 Concave, Biased

WFGS8 M 2M+18 Concave, Biased, Non-separable

WFG9 M 2M+18 Concave, Biased, Non-separable, Deceptive

Unconstrained Function set [31]
UF1 2 30 Convex, Complex Pareto optimal set
UF2 2 30 Convex, Deceptive, Complex Pareto optimal set
UF3 2 30 Convex, Complex Pareto optimal set
UF4 2 30 Concave, Complex Pareto optimal set
UF5 2 30 Linear, Distinct points, Complex Pareto optimal set
UF6 9 30 Linear, Discontinuous, Deceptive, Complex Pareto
optimal set

UF7 2 30 Linear, Complex Pareto optimal set
UF8 3 30 Concave, Complex Pareto optimal set
UF9 3 30 Discontinuous, Complex Pareto optimal set
UF10 3 30 Concave, Complex Pareto optimal set

M denotes the number of objectives in scalable problems.

of the toolkit, as detailed in Table 2.1. Due to that, WFG remains the most comprehensive

toolkit for multi-objective problems. However, unlike other test sets the final Pareto optimal

fronts are not easily computable and have to be obtained from the authors 2; or to be solved

in advance e.g. by running a separate optimisation procedure; limiting its usability.

In 2009 during the Congress of Evolutionary Computation (CEC), [31] presented the test suite

that focuses on a more complex Pareto optimal sets, regarding their geometry and structure,

and relations to the Pareto optimal front and in-between variables. Total of twelve two-, three-

and five-objective unconstrained functions (UF) with various complexity and geometries of

2The fronts are not made available online by the authors and are available only from the secondary sources.
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TABLE 2.2: Summary of the state-of-the-art constrained multi-objective test problems

Name [ Objectives [ Variables[ Problem characteristics

Constrained Functions set [31]

CF1 9 10 Linear, Distinct points, D.lscontlnuous, Complex Pareto
optimal set
CF2 2 10 Convex, Discontinuous, Complex Pareto optimal set
CF3 2 10 Concave, Discontinuous, Complex Pareto optimal set
CF4 2 10 Linear, Complex Pareto optimal set
CF5 2 10 Linear, Deceptive, Complex Pareto optimal set
CFe6 2 10 Mixed, Complex Pareto optimal set
CF7 2 10 Mixed, Deceptive, Complex Pareto optimal set
CF8 3 10 Concave, Discontinuous, ].)egenelrated7 Complex Pareto
optimal set
CF9 3 10 Concave, Discontinuous, Complex Pareto optimal set
CF10 3 10 Concave, Discontinuous, Complex Pareto optimal set
Deb-Thiele-Laumanns-Zitzler set [40]
DTLZS8 M 10M Mixed, Discontinuous, Degenerated, Biased
DTLZ9 M 10M Concave, Discontinuous, Degenerated
Imbalanced set [33]

IMB11 2 10 Convex, Imbalanced

IMB12 2 10 Linear, Imbalanced

IMB13 2 10 Concave, Imbalanced

IMB14 3 10 Linear, Imbalanced

Difficulty Adjustable and Scalable Constrained Multi-Objective Optimization
Problems set [44]

DAS-CMOP1 2 30 Concave, Discontinuous
DAS-CMOP2 2 30 Mixed, Continuous
DAS-CMOP3 2 30 Linear, Discontinuous, Multimodal
DAS-CMOP4 2 30 Concave, Discontinuous
DAS-CMOP5 2 30 Mixed, Discontinuous
DAS-CMOP6 2 30 Distinct points, Degenerated
DAS-CMOPT 3 30 Linear, Discontinuous
DAS-CMOPS8 3 30 Concave, Discontinuous, Multimodal
DAS-CMOP9 3 30 Concave, Discontinuous

M denotes the number of objectives in scalable problems.

the Pareto optimal set and front has been introduced as detailed in Table 2.1. Importantly,
unlike the ZDT set, the objective functions depend on a number of variables and the Pareto
optimal set is achieved for non-extreme values of them. This set has been used for the most
comprehensive benchmark of the GAs on constrained and unconstrained functions [42] up-
to-date. Furthermore, unlike the WFG set this test focuses on the complexity of the Pareto
optimal sets rather than Pareto optimal fronts therefore is considered as an alternative to it

rather than replacement.

A separate kind of problems are constrained cases where additional conditions must be met
by potential solutions in order to consider them feasible. The introduction of constraints
leads to occurrence of gaps in the search and objective spaces, as no achievable points exist
in those regions. This is illustrated in Fig. 2.6. Due to that, constrained problems require
higher diversity of the search in order to avoid infeasible areas and to find the global op-

timum on highly discontinued spaces. Despite that and the fact that most of real-world
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FIGURE 2.6: Infeasible regions and obtainable Pareto optimal fronts on the constrained
objective space.

problems contains multiple constraints, less emphasis is given in development and utilisation
of this kind of test cases. The most commonly utilised is the constrained functions set (CF)
developed in 2009 for the GA competition during the Congress of Evolutionary Computa-
tion [31]. In the CF set, total of 10 cases with up to 2 constraints and up to 3 objectives
are implemented. Importantly, objective functions are based on the UF set, and thus those
contains similar problem characteristics, as detailed in Table 2.2. Similar principle applies
to the DTLZ set [40] where 2 scalable cases with up to 2 constraints are included; and for
4 two-objective cases with up to 2 constraints that can be found in the Imbalanced problem
set [33]. Therefore, those may be biased towards similar search strategies as their uncon-
strained counterparts resulting in lowered diversity of available test sets. Furthermore, only
16 constrained cases in total have been introduced in most commonly utilised sets, including
imbalanced functions, comparing to the 49 unconstrained problems, showing an imbalance
in the problems'development. Only recently, in 2019, this issue has been addressed by DAS-
CMORP test suite [44] where 9 test problems with scalable difficulty are introduced. Their
difficulty can be adjusted according to 3 parameters: feasibility, convergence and diversity
allowing to define on which of these parameters the tested genetic algorithms is focusing on.
Therefore, making it easier to understand the principles of working. However, the objective

functions are based on the UF and DTLZ sets and thus similar biases may be expected.

2.2.2 Imbalanced functions

Imbalanced problems refer to MOPs where the global optimum consists of multiple parts
with varying difficulty to find. Therefore, the Pareto optimal front consists of “easy” and
“hard” to find parts, where the “easy-to-find” parts can effectively prevent finding the values
of variables that are essential in discovering the other, more difficult, regions. In the various

benchmarks [32,33], it has been shown that those problems may require additional diversity
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TABLE 2.3: Summary of the state-of-the-art imbalanced multi-objective test problems

Name ‘ Objectives ‘ Variables‘ Problem characteristics
Multi-Objective Problem set [32]

MOP1 2 10 Convex

MOP2 2 10 Convex

MOP3 2 10 Concave

MOP4 2 10 Mixed, Discontinuous

MOPS5 2 10 Convex

MOP6 3 10 Linear

MOPT7 3 10 Concave
Imbalanced set [33]

IMB1 2 10 Convex

IMB2 2 10 Linear

IMB3 2 10 Concave

IMB4 3 10 Linear

IMB5 3 10 Concave

IMB6 3 10 Linear

IMB7 2 10 Convex, Non-separable

IMBS8 2 10 Linear, Non-separable

IMB9 2 10 Concave, Non-separable

IMB10 3 10 Linear

enhancing mechanisms, as the typical convergence-first methods fails to maintain necessary
diversity due to higher complexity of the search spaces. However, there is no data available
regarding if the imbalance is part of many real-world problems, but it is possible due to highly

constrained environment of those.

It is relatively new branch of benchmarking functions and only two test sets have been
developed, MOP [32] and IMB [33]. Both test sets are summarised in Table 2.3. In MOP
suite five two-objective and two three-objective unconstrained problems are included, with
various geometries of Pareto optimal front, but without indication of potential modality or
variable linkage. For all presented functions, the extreme regions of the Pareto optimal front
are preferred, and the simulations shows that most of the algorithms fails to find the points
in-between. In the IMB set total of fourteen two- and three-objective functions is included,
from which four include constraints. In this case three types of imbalance are introduced:
bias; different variable linkages in each region; and constraint isolation where the favoured

Pareto optimal front is localised in the infeasible region.

However, both sets are based on ZDT [30] and DTLZ [40] functions, thus they share similar
disadvantages, and all introduced problems, except of MOP4, have continuous structures of
the Pareto optimal set and front. Furthermore, in all cases the position of favoured and
unfavoured regions is dependent on the value of the first variable, deriving the difficulty of
the problem to maintaining high diversity of this variable. Therefore, this set is promoting
the methods that artificially separate the population and decompose the problem, such as
MOEA/D. According to that, the currently developed imbalanced problems may require a

higher diversity of the search in theory, but with such a bias towards decomposition methods
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and specific structure of Pareto optimal sets and fronts, those cannot be considered as impar-
tial for defining the diversity capabilities of tested algorithms. In most of real problems the
shape and characteristic of the Pareto optimal front are not know, therefore it is not trivial

to hyper-tune the decomposition method to them.

2.2.3 Dynamic problems

In dynamic problems, the geometry and characteristics of the search and objective spaces
changes over time. As the problem remain static in between the time steps, it is possible to
consider it as set of sub-problems that have to be optimised in series. The major challenge
with DMOPs is to find the Pareto optimal front of the current sub-problem in the lowest
possible function calls or generations before the environmental change occurs. Therefore, the
convergence rate is a crucial aspect of successful DMOP solver, and the diversity of the search
is less important [130]. This is shown by a significantly higher performance of the algorithms
with high convergence rates, such as MOEA /D or COEA, on these problems [104]. Dynamic
functions can be classified into four distinct types based on the dynamics of the objective

and decision-variable spaces [131]:

I. Only the Pareto optimal set changes over time
II. Both Pareto optimal set and front are dynamic
III. Only the Pareto optimal front changes over time

IV. Both Pareto optimal set and front are static, although the assigned constraints or

objective functions can change over time.

The first comprehensive DMOP benchmarking set was FDA set introduced by Farina et.
al [131]. FDA set is based on based on ZDT and DTLZ functions and contains problems of
I-IIT type with various complexity of the change, as detailed in Table 2.4. This set has been
widely used in multiple competitive benchmarks [99] indicating its usefulness. However, the
FDA set has limited complexity as all included problems are unimodal and have continuous
Pareto fronts geometries. Furthermore, due to being based on ZDT and DTLZ functions it

shares the same disadvantages as those sets.

The UDF test set was developed in 2014 in order to introduce a higher challenge [130]. This
set is based on the UF functions, and thus contains a wider range of problem's characteristics
than FDA cases, including multimodality, discontinuity, and non-separability. Similar types
of the dynamic change to FDA set are introduced, with the randomness of Pareto optimal
front change being introduced for the first time, as detailed in Table 2.4. Randomness of
change allows to test the effectiveness in more unpredictable environments. Usually the
time changes in artificial problems follow a specific pattern that can be exploited, making

the problem easier to solve with front-prediction based methods [132]. Importantly, the
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TABLE 2.4: Summary of the state-of-the-art unconstrained dynamic multi-objective test
problems
Name Variation/Shift Geometry of Tvpe

Pareto optimal set [ Pareto optimal front the front yp
Unconstrained Dynamic Functions set [130]
UDF1 Vertical shift Diagonal shift Continuous II
UDF2 Curvat}lre ch‘fmge; Diagonal shift Continuous 11
vertical shift
UDF3 No change Diagonal shift Disconnected III
UDF4 Horizontal shift Angular shift; curvature variation Continuous II
UDF5 Curvat}lre Chz.mge; Angular shift; curvature variation Continuous 11
vertical shift
UDFé6 No change Diagonal shift; angular shift Distinct points 11T
UDF7 No Change Radial shift Continuous 11T
UDFS8 Rand9m vertlce.ﬂ or Random .dlagonal shift; ran(?lor.n Contintous I
horizontal shift angular shift or curvature variation
UDF9 Random cur.vature. Random .dlagonal shift; ran(.lor.n Continuous i
change or vertical shift angular shift or curvature variation
Jiang-Yang set [104]
JY1 Vertical shift No Change Continuous I
JY2 Curvature change Angular shift; curvature variation Continuous II
JY3 Curvature change Angular shift; curvature variation Continuous 1T
JY4 No change Discontinuity shift Discontinuous 111
JY5 No change Angular shift; curvature variation Continuous II1
JY6 Vertical shift No Change Continuous I
JY7 Vertical shift Angular shift; curvature variation Continuous 11
JY8 No change Angular shift; curvature variation Continuous 111
Farina-Deb-Amato set [131]
FDA1 Vertical shift No Change Continuous I
FDA2 No change Angular shift; curvature variation Continuous III
FDA3 Vertical shift Vertical shift Continuous II

All problems are two-objectives except of UDF7, which is three-objective.

randomness of time change is common in practical problems [104,132]. Unfortunately, this
test set contains only the functions of Type II and I1I, and only a single discontinuous problem.
Therefore, it may promote methods that are adjusted to this kind of change and which prefer

continuous search spaces.

The most comprehensive DMOP benchmarking set is JY suite developed in 2017 [104]. This
test set not only contains all characteristics of problems implemented in previously discussed
sets, but also introduces mixed Pareto optimal front geometry; time-varying multimodality;
and novel problem with a mixed type of change. In the mixed type, the environmental
change varies between types I-III over time. That approach, similarly to the randomness
introduced in the UDF set, allows to track and analyse the performance in more unpredictable
environment and to resemble practical problems more closely. Importantly it is the only set
that point the similarities of each function to real-world cases and which is not based on

previously developed static problems.
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2.2.4 Bias of the benchmarking problems

Multiple benchmarking functions have been developed to evaluate the performance of GA
methodologies over a range of problems with distinctive characteristics. It can be observed
that most of the cases are based on the same frameworks, ZDT or UF; or have similar
definition of objectives and thus similar search spaces; or those are developed by the same
groups of researchers. This is illustrated in Fig. 2.7. Importantly, most of the presented sets
are co-developed by the same authors whom developed two of the most popular methodologies
NSGA-II and MOEA/D. Deb, author of NSGA-II [34], co-developed ZDT, DTLZ, DAS-
CMOP, IMB and FDA sets, while Zhang, author of MOEA /D [35], took part in development
of UF, CF, MOP and DAS-CMOP test problems. This may indicate a development-bias
towards those top-performing genetic algorithms, which is supported by high performance of
MOEA/D, NSGA-II and NSGA-III on those problems.

Most of the sets are limited to continuous and unconstrained characteristics, despite the
facts that many, if not most, optimisation problems have various constraints resulting in
discontinuities along the search and objective spaces. Furthermore, discontinuous cases are
considered to be significantly more complex to solve [133]. From the 74 discussed static

problems, only 22 are discontinuous, and 25 have at least one constraint.

Evaluating the performance and comparing the novel methodologies over a limited range of
similar problems may lead to over-development of genetic algorithms that have a strong bias

towards certain characteristics, and which are able to effectively solve only those functions.

—— Similar objective functions

= = =The same researcher/group
@ Unconstrained set

@ Constrained set

@ Dynamicset

FI1GURE 2.7: Relations tree between developed Multi-Objective Problems.
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Only recently, it has been noticed that currently existing test sets are promoting strategies
focusing predominantly on the convergence and are neglecting the importance of the diversity

preservation [32,33].

Despite described issues with developed artificial test sets, resulting in narrowed range of
available characteristics and complexities of the problem, most of the developed GA method-
ologies are tested only on a few arbitrary-chosen problems instead of all of them. This is
detailed in Table 2.5. As it can be observed only NSGA-II and MOEA/D are tested on all
presented test sets, except of MOEA/D on MOP, while most of algorithms are tested on
2-4 sets only. Furthermore, higher emphasis is put on unconstrained problems rather than
constrained and imbalanced problems, as indicated previously. According to that, most of
developed genetic algorithms can be considered as specialist-solvers. However, due to dif-
ferences between artificial and practical problems, especially regarding their complexity, the
question is raised if those specialist-solvers, which are tested on a limited set of problems

with narrow range of characteristics, will achieve correct results on real problems.

According to discussed issues, a higher emphasis is needed on the development of general-
solver genetic algorithms to produce good quality results on a wide range of problems. Pro-
moting a consistent performance across the cases with divergent characteristics, will allow to

maximise the chance of success on real problems as there is no free lunch.



TABLE 2.5: Summary of the literature on the benchmarking sets used to test genetic algorithms.

Test set
Algorithm Unconstrained Constrained Imbalanced
ZDT | DTLZ | WFG | UF CF | DTLZ | IMB | DAS-CMOP MOP | IMB
NSGA-II [34, 36] [36,40,43] [36,41] [36,42]
NSGA-III [43,103] [37,43,103,134] [37,103] [103,134]
U-NSGA-IIT [43] [43,134] [134] I
GAME |
aGAME |
MOEA/D (36,12, 103, 131] T | B8 | M|
MOEA /D-DE 88
MOEA /D-M2M 83
MOEA /D-PSF 83
MOEA /D-MSF 83
LiuLi 42
DMOEA-DD 42
COEA
HEIA
BCE
MTS

(43

MOIADT 2InjeIAIT g 193dery)
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2.3 Summary of the literature review

In the literature review chapter, the work conducted on multi-objective problems optimisation
using genetic algorithms was reviewed. The history and current trends in genetic algorithms
development as well as multi objective benchmarking test suites utilised to verify their per-
formance and understand their principles of working were discussed. From this review, the

following issues about the current state-of-the-art of genetic algorithms can be highlighted:

e The field is dominated by methodologies promoting convergence over diversity, called
“convergence-first diversity-second” GAs, which demonstrate low performance on the

diversity-demanding functions [32].

¢ In many methods, the diversity is maintained by decomposition of the problem or
introduction of a diversity evaluating metric, requiring hyper-tuning in advance and
extensive knowledge about the characteristic of the search space to work effectively [47].

That information is usually not available for most of real-world applications.

e The commonly utilised benchmarking sets promote specialist approaches. Algorithms

are tested on a limited range of problems with similar characteristics.

According to that, two gaps in the genetic algorithms’ development can be identified: low
interest in the diversity-oriented methodologies; and low emphasis on the generality of search
strategies. Furthermore, it is yet to be investigated if the specialist/convergence or the
general /diversity approach is preferred for real-world applications. However, due to high
popularity of NSGA-II, general-solver GA, in engineering and scientific applications and a
low uptake of newer methods, it is suggested that the general/diversity approach is preferred

for real-world applications

Possible approach is utilisation of a sub-population strategy, where each group is exploring
different regions of the search and objective spaces, resulting in improved diversity. Ideally
this methodology should not utilise decomposition or other mechanisms that require extensive
hyper-tuning towards the problem's characteristic, to increase its usability for the real-world
applications. Another approach could be utilisation of the co-evolution in order to improve
the generality of the search. In this case the risk that a single search strategy will be ineffective
with the characteristic of a given problem is mitigated. This can be particularly useful for

the real cases where the search and objective spaces are not well understood.






Chapter 3 Development of
MLSGA

The early version of MLSGA has been developed and initially benchmarked by Paksuttipol
and Sobey for solving weighted single-objective problems [135]. However, low performance
on multi-objective cases could be observed, due to incorrectly coded collective reproduction
mechanisms. Sobey and Grudniewski [45], show that the collective-level selection and re-
production mechanisms are generating additional evolutionary pressure leading to extended
diversity of the results. In this chapter the principles behind this phenomenon are further
investigated. It is evaluated if this additional selection pressure can be directed into different
regions of the objective space by using divergent fitness functions definitions on each level
of selection. It is possible that by combining several types of fitness assignment in separate
sub-populations, the methodology with disperse region-based search may be achieved leading
to even better overall diversity of the search. Importantly, due to utilisation of simple split
in the fitness function, rather than forced decomposition of the objective space, no extensive
tuning to the characteristic of search space will be needed, unlike weighted approaches or
other decomposition-based methods. Therefore, utilisation of such a method will be poten-

tially better for practical applications.

3.1 Levels of Selection

MLSGA is based on the multi-level selection theory, which was re-inspired by Wilson and
Sober in 1989 [106] and further reviewed by Okasha in 2006 [107]. It is not implied here
that the MLS theory is true explanation of evolutionary processes, as the biological evolu-
tion is complex topics, and many divergent theories have been proposed with an attempt
to describe it [136,137]. However, this theory provides a promising inspiration for new GA
methodology, as it provides a simpler way of breaking the problem into subsets and to in-
crease the evolutionary pressure. The collective-level mechanisms can be put in parallel with
currently existing individual-level evolutionary algorithms leading to more flexibility in the
fitness function interpretation and potentially a discovery of new solutions with a higher

diversity.

35
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In typical GAs, only one level, called individual-level, is considered. The individuals are
chosen for reproduction from among themselves and even if a grouping is introduced, those
groups are not subjects for a separate selection procedure. MLS theory proposes the idea that
evolution may occur separately at distinct levels of a hierarchical structure, which is normally
viewed as nested hierarchy with one level being enclosed within another. For example, in
the basic two-level organisation, the individuals form collectives in order to pass some of
their survival responsibilities, such as food gathering or danger elimination, to the whole
group, increasing their chances of survival. Inside each collective, every individual maintains
its personal fitness and the natural selection between them still occurs. Additionally, each
collective has a separate fitness value that describes the quality of individuals inside, according
to their usefulness for the group. Therefore, different collectives, similarly to the individuals,
may compete with each other, e.g. for food sources or occupied space, where better groups
survive and further reproduce, whilst less fit sub-populations go extinct. In this model,
individuals need to not only improve themselves, to maximise their chances for reproduction,

but also maintain the survivability of whole collective.

According to Okasha the levels-of-selection problem is a consequence of three factors [107]:

e The natural selection, according to which fitter individuals produce more offspring than

others, which drives the evolution.

e The adaptation of species to the environment in order to increase their chances of
survival, such as development of thick furs by polar-regions animals; fangs or claws by

predators; or camouflage-like colours of skin.

e The hierarchical organisation mentioned before

According to that, two types of multi-level selection (MLS) have been proposed, determining
the way of fitness calculation [107]. In the first type (MLS1), survival of all levels of selections
depend on the same evolutionary factor. Collectives and individuals have the same “goals”
and focus on improvement of the same parameters. Therefore, the fitness of the group is an
aggregate of the individuals inside of it. In the second type (MLS2), the fitness, and thus
the selection, is different on each level. The success of whole group depends on different
factors than the success of individuals inside. Due to that, the individuals are forced to
simultaneously develop properties needed for their own well-being and those necessary for
survival of the, even if these are contradictory. This generates an emergent property to
selection on each level, leading to competition between them and a higher diversification of

individuals.

Basing on those definitions three variants of multi-level selection are here introduced: MLST,
MLS2 and MLS2R. Fitness function definitions used in each MLS type are shown in the Table
3.1, where fi(z) and fo(z) are first and second fitness function of the optimised problem

respectively.
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TABLE 3.1: Fitness functions used on each level of selection in two-objective optimisation,
depending on the MLS type

| MLS1 [ MLS2 | MLS2R

Individual-level | LEERE [ () [ fy(a)
Collective-level W fa(x) fi(z)

3.2 Methodology of the MLSGA

3.2.1 Description of mechanisms

In this section the MLSGA mechanisms inspired by the concept of multi-level selection are
outlined. The algorithm works as follows with a more detailed description of the MLSGA

mechanisms provided below !:

Inputs:

Multi-objective problem;

Np: Population size;
e Nc: Number of collectives;

e Ne: Number of eliminated collectives;

Fitness function definitions for each level;

Stopping criterion;

Output: External non-dominated Population (EP)

Step 1) Initialisation:
Step 1.1) Set EP = NULL.
Step 1.2) Randomly generate the initial population P of N, individuals {x;,...,znp}.

Step 2) Classification:

Step 2.1) Classify the individuals from the initial population P into N, collectives,
{Ci,...,Cn¢}, so each of them contains a separate population {P;, ..., Py.}. Clas-

sification is based on the search space.

Step 3) Individual-level operations:

'The code of MLSGA, and all subsequent implementations of it, is made available online at
https://bitbucket.org/Paglcl8/cmlsga
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For i=1,...,N. do

Step 3.1) Individual-level GA’s operations: Perform the selection, crossover and
mutation procedures with elitism. Selection is based on the fitness function defi-

nition from the individual-level.
Step 3.2) Update External Population:
For j=1,...,|F] do
Remove from the EP all solutions dominated by x;; (the individual j, from popu-

lation 7). Add individual z;; to the EP if no solutions from EP dominate z;;.
Step 4) Collective-level operations:

Step 4.1) Calculate collective's fitness:
For i=1,...,N. do
Calculate the fitness of collective C; as an average fitness of population P; based

on the collective-level fitness definition.
Step 4.2) Collective elimination:

Find collective C; with the worst fitness value, and store the index of that collective,

z.
Store the size of eliminated collective |P;| as variable s.
Erase sub-population P, of eliminated collective C,.
Step 4.3) Collective reproduction:
For +=1,...,N. do
if (i !'= 2)
Copy the best ﬁ individuals, according to the collective-level fitness definition,

from population P; to P,.

Step 5) Termination: If the stopping criteria are met, stop and give EP as an output.

Otherwise, return to Step 3).

In step 1 the initial population is created. Each individual has every variable assigned ran-

domly according to the search space boundaries for the given problem.

During the Classification, Step 2, the supervised learning classification method is used to
assign the collective labels to each individual in the initial population, basing on the distances
between them in the decision variable space. In this work the multi-class classification SVM
with C parameter, called C-SVC, and with a linear function is used. The utilised code has
been taken from LIBSVM open library [138] and the training parameters have been left the
same as in the publication. In this method the user predefines a number of label types, and
thus the number of collectives, rather than size of each group. This means that, the number
of individuals in each collective is highly likely to be divergent. Due to that, the minimum
size of 10 individuals and the maximum size of half of the overall population is predefined

in order to avoid empty, small or too big collectives as it has been shown in pre-benchmarks
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to negatively impact the overall performance. Organising the collectives with most similar
individuals inside has been shown to be more beneficial over the random initiation after
testing using three different classification variants: SVM, k-means clustering and random
assignment. Clustering and SVM exhibit similar performances, but the SVM is chosen due
to its lower calculation time and a higher robustness. The classification according to the
decision variables, instead of the objectives, is utilised in order to retain diversity of solutions

inside the collectives.

Inside each collective evolutionary operations are applied to the individuals in the same
manner as in typical GA, Step 3. However, with distinction that in this case only a single
fitness value is utilised, according to individual-level fitness definitions, as described previously
in this Chapter. Therefore, case is treated as a single objective, and concepts such as Pareto-
dominance are not needed. In step 3.2 the non-dominated solutions from all collectives are
stored in an external population. However, the external population is used as a storage only

and is not used for any calculations or the fitness evaluations.

During the collective elimination, Step 4.2, the collective with the worst collective fitness
is eliminated and all of the individuals inside are erased. This collective is repopulated in
Step 4.3 by copying the best individuals, according to the collective fitness definition, from
all of the remaining collectives. This is done in order to maximise the fitness of offspring
collectives. Importantly the size of the collective remains the same and this procedure has
no effect on parent collectives. Therefore, Step 4.3 is the only step where collectives are
able to “communicate” with each other. In between the various levels of selection, the only
information passed is the fitness of the individuals, necessary to calculate the collective fitness
in Step 4.1.

The algorithm continues in loops from Step 3, unless the termination criterion is met. Here
the maximum number of fitness evaluations is utilised, which is the most common approach

in the state-of-the-art literature.

3.2.2 Hyper-parameters setting and benchmarking

At the current stage, simple mechanisms are implemented to easily study the impact of
proposed strategy without the interference of more complex methods. Therefore, in order
to operate on real values, the simulated binary crossover (SBX) [23] and the polynomial
mutation [53] are used. Initial operating parameters are based on the best practice in current
state-of-the-art. These are listed in Table 3.2.

The benchmarking of GAs on test problems is performed over 30 separate runs with 300,000
function evaluations for each run, following the CEC'09 regulations [31]. Adaptation of best-

practice standards will allow reproducibility and continuity of the benchmarking process.

Most of the developed performance metrics are able to signify both convergence and diversity

of the solutions simultaneously, but each of them has certain limitations as indicated in [139].
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TABLE 3.2: Initial GA mechanisms and hyper-parameters used within the MLSGA

Step Parameter Value
Type Random
T . Real values
1. Initialisation Encoding 16 decimals
Pop. Size 800
Method SVM

No. Collectives 8
min 10 individuals
max 1/2 of pop. size

2. Classification

Collective size limits

3. Individual-level operations

Fitness Evaluation Type According to Table 3.1
Selection Type Roulette wheel
Crossover type Real variable SBX
. Crossover rate 1
Mating Mutation type Polynomial
Mutation rate 0.08
Elitism Rate 0.1
4. Collective-level operations
Fitness Evaluation Type According to Table 3.1
Elimination No. eliminated collectives 1 every generation
5. Termination ‘ Criterion ‘ 300,000 fitness evaluations

In this thesis the Inverted Generational Distance (IGD) [140] and Hyper Volume (HV) [25] are
selected as the most widely used metrics in the current state-of-the-art. Both have different
emphasis on the quality of solutions regarding the convergence/diversity, where IGD promotes

convergence and HV the diversity.

IGD measures the average Euclidean distance between each point in a true Pareto optimal

front and the closest solution from the achieved set and is calculated according to eq. 3.1.

2, d(v, A)

IGD(A, P*) = GPIT (3.1)

where P* is a set of uniformly distributed points along the true Pareto Front in the objective
space, A is the approximate set to the Pareto Front being evaluated and d(v, A) is the

minimum Euclidean distance between the point v and points in A.

Lower scores for this metric indicate a higher convergence and uniformity of the points, where
the ideal value is 0. However, IGD is overly sensitive to the predefined reference set, which
ideally should be as big as possible and with perfectly uniform spread of points in order to

avoid bias toward certain regions.
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HYV is a measure of the objective space's volume between a predefined reference point and
the obtained solutions and is calculated here according to [141], which provides the fastest
and most widely used method for HV calculation. This indicator is to be maximised and has
a stronger focus on diversity and edge points, but with slight bias towards the knee points
and concave regions. As the results are highly dependable on the predefined reference point,
usually it is not possible to compare results coming from different publications, as there is
no standard procedure to define this point. Additionally, there is not a “best” value for HV
indicator, and thus it cannot be used to define the quality of obtained Pareto optimal front by
itself but rather is used to compare the performance of different algorithms. HV metric value
of 0 indicates that all of the points obtained from the front are dominated by the reference

point or that no feasible solutions have been found.

In this thesis, 1,000,000 uniformly spread reference points are generated as the true Pareto
optimal front, for the purposes of IGD calculation. The reference point for HV is defined as
(1.1 % 21,...,1.1 % z,,) where z; is the maximum value of the i-th objective of the reference

front, and M is the number of objectives.

In all conducted performance comparisons, the average values of the metrics across all runs
are utilised and presented in the main part of this work. The more detailed data, includ-
ing min and max values and standard deviations are attached as supplementary material.
Wherever applicable, the Wilcoxon’s rank sum test was conducted to assess the statistical
significance of the differences between obtained results with the confidence level of o = 0.05.
The representative graphs are selected according to the closest-to-the-average values of IGD,

unless stated otherwise.

3.2.3 Computational complexity and constraint handling

The computational cost of one generation of MLSGA algorithm is determined by the most
complex of three main operations: the non-dominated sorting of the fronts; individual re-
production step; or the offspring collective generation. The front selection utilises the fast
non-dominated sorting approach from NSGA-II [34] and therefore is bounded by O(mN?),
where m is the number of objectives and N is the size of evaluated population. For the
individual reproduction step, as the full replacement of old generation with elitism takes
place, only O(N?) computations are needed at most. Only one of the objectives is considered
in the process, therefore m is discarded. For the offspring collective generation, the fitness
evaluation requires O(IN) computations at most, as the average of single valued fitness of the
individuals inside is calculated. The actual collective replacement takes O(N?) complexity

at most, as the best values have to be found.

Therefore, the overall computational complexity of MLSGA is bounded by the non-dominated
sorting that requires O(mN?) calculations at most, which is not higher than most of the solu-
tions in the current state-of-the-art. The complexity of NSGA-IT, NSGA-III, MTS is O(mN?);
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in case of MOEA/D it is O(mNT), where T is number of solutions in the neighbourhood
and is typically 0.2N; and O(N?) in case of BCE and HEIA.

For the constraint handling the constraint-domination principle taken from NSGA-II is adopted,
which can be defined as follows [34]:

Definition 3.1 an individual z; is said to dominate another individual xo, if: z1 is feasible
and x» is infeasible or both z1 and x5 are infeasible, and 1 has a smaller constraint violation
(CV) value or both z; and zy are feasible, and x; dominates zo with the standard fitness

domination principle.

This is applied during the selection process whenever two individuals are compared in the
constrained problems optimisation. However, at this stage no direct constraint handling
is introduced on the collective-level. As the overall fitness of a collective is not affected
by infeasibility of the individuals inside of it, collectives can maintain a higher diversity of

solutions inside of them.

3.3 Early-stage benchmarks

The effectiveness of developed genetic algorithm is tested over selected two-objective functions
with various characteristics. At this stage only problems with two objectives are considered,
as they allow to study cases where the behaviour is simple to interpret, while providing

enough complexity to replicate a number of real-world problems.

According to that, MLSGA is benchmarked on the unconstrained ZDT1-6 problems [30],
where there is a strong imbalance between the complexity of both objective functions; and
unconstrained /constrained cases with a higher complexity of the Pareto optimal sets [31],
UF1-7 and CF1-7 functions. In this case only the graphical representation of results is
presented, as considered to provide more insight into behaviour of different MLS variants

than the performance indicators.

3.3.1 Unconstrained ZDT problems with simple characteristics

In order to investigate the differences in behaviour between MLSGA variants, the preferred
areas of search for each of them are illustrated using plots of the achieved Pareto optimal
fronts and the heat maps. The fronts for the ZDT1 test instance are shown in Fig. 3.1.
The fronts for the more complex ZDT6 function are illustrated in Fig. 3.2. Heat maps
are illustrated in Fig. 3.3 and 3.4 for ZDT1 and ZDT6 problems, respectively. Those two
functions are chosen as they illustrate the biggest contrast in behaviour between variants. In
addition, the plots for “simple GAs”, with sub-population and single population variant, are
included to investigate the impact of the population splitting on the final performance and

to demonstrate the performance improvement introduced by MLS mechanisms. Simple GA
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utilises the same selection, reproduction and elitism mechanisms as MLSGA, but without the

fitness separation or the collective reproduction.

Heat maps illustrate distribution of the search on the objective space. For that purpose,
the concentration of individuals inside each region is calculated by considering all evaluated
individuals during a single run. On the maps, the brighter areas, indicates a higher density
of individuals, and thus higher focus of the search, with peak shown by green colour; whereas
dark areas represents a low concentration of individuals and thus search. The maps are

presented for the comparative purposes, with enlarged graphs attached in Appendix G.

For ZDT1, Pareto optimal fronts in Fig. 3.1 and heat maps in Fig. 3.3, it can be seen
that MLS2R is the only variant with a wide area of search and a good coverage near the
real front, range of 0-0.65 according to first objective. The search is initially focused on the
“left” region of Pareto optimal front, but then it spreads towards lower values of the second
objective. MLS1 focuses its search on the central areas with more average fitness, region with
0.3-0.35 values of the first objective. Due to that, its Pareto optimal front is more limited,
range of 0.1-0.5 according to first objective. MLS2 stops on the left side of the front and
is unable to move further. Comparing the MLSGA variants to the simple GAs, with and
without sub-populations, it can be seen that simple GAs obtains comparable results to the
MLS1 variant, with a strong bias towards central regions of the objective space. Similarity
between those variants was expected as in all of them the selection is based on the averages
of both objectives. However, comparing heat maps for those algorithms it can be seen that
search pattern of a simple GAs is more dispersed, range of 0.2-0.45 according to the first

objective, showing higher focus of MLS1 strategy.

For ZDT6 the Pareto optimal fronts, Fig. 3.2, of all variants are similar, but MLS2 has a
significantly better convergence. Comparing the heat maps Fig. 3.4 it can be seen that all
MLSGA variants are avoiding central regions of the objective space. This behaviour is caused
by the bias towards extreme regions of the objective space, points (0,1) and (1,0), introduced
in ZDT6 problem. Similarly, to the previous case, preferred regions of each MLS variant can
be observed. In MLS2 the left side of the objective space is explored more often, while in
MLS2R the search is shifted towards the right side. MLS1 shows similar search pattern to
MLS2R, but with a lowered convergence. Similarly, to ZDT1 function, the single population
GA is showing a similar, but more dispersed, search pattern to the MLS1 variant of MLSGA.
Interestingly, sub-population GA is showing similar behaviour to the single-population variant

and MLS1, but with a better convergence of points on true Pareto optimal front.

The contrast in behaviour between MLS2 and MLS2R on ZDT1 shows the importance of
choosing appropriate fitness function for each level. It is caused by the nature of ZDT 1-4
functions, where first fitness function is simple and is based on a single variable only; and
most of the complexity comes from the second objective. This statement is supported by the
fact that performance of both MLS2 and MLS2R variants is similar on the ZDT6 function,

where both fitness functions have approximately the same level of complexity, but with slight
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bias towards the first objective, which could explain the better performance of MLS2 and a

lowered convergence of MLS1.

3.3.2 Constrained and unconstrained functions with complex Pareto opti-
mal sets

In order to investigate in more details, the differences in behaviour between different MLS
variants, the tests are repeated on a more complex unconstrained and constrained problems,
UF and CF, respectively. Similarly, to the previous case the preferred areas of search are
illustrated in the form of obtained Pareto optimal fronts and the heat maps, which are
compared to the results obtained by simple GAs. In this case only CF2 and UF3 problems

are shown and discussed, as the cases with most divergent behaviour between MLS variants.
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FI1GURE 3.4: The heat maps of different MLS and simple GA variants on ZDT6 problem.

For CF2 test instance, the obtained fronts are shown in Fig. 3.5, and the heat maps are
illustrated in Fig. 3.6. The corresponding graphs for UF3 problem are shown in Fig. 3.7 and
in Fig. 3.8 respectively.

For CF2 problem it can be observed that all variants are able to converge on the final Pareto
optimal front, but neither of them is able to provide a high diversity of the final solutions.
However, it can be seen that each MLS variant concentrate the search in different regions
of the objective space. MLS2 shifts toward the right side of the true Pareto optimal front,
around 0.9 value of the first objective; MLS2R focuses on the left, around value of 0.1;
while MLS1 focuses on the area “in between”, around value of 0.2 in this case. Similarly, to
the ZDT cases, single population simple GA exhibit a similar search pattern to the MLSI,

but with more dispersed search. This indicates that implementation of the collective-level
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GA variants on CF2 problem.
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FI1GURE 3.6: The heat maps of different MLS and simple GA variants on CF2 problem.

selection with fitness separation can potentially direct the search towards different regions of

the objective space.

However, this behaviour is not observed for all of the tested problems. One example is UF3.
From the presented graphs, with the Pareto optimal fronts shown in Fig. 3.7 and the heat
maps in Fig. 3.8, it can be seen that all MLS variants and the simple GAs focus on the same,
central, area. A similar principle can be observed for UF6, CF5 and CF7, with corresponding
graphs provided in supplementary data. However, in all those cases a poor convergence and
a low diversity of the final points is observed. All of these problems are deceptive and have
a similar definition of the objectives. Therefore, lack of difference between MLS variants is
most likely to be caused by the difficulty of these problems and implementation of ineffective
individual-level mechanisms in the current version of MLSGA. Simple search-strategies are

more likely to converge on an ”easy-to-find” deceptive, local optimum rather than the global



50 Chapter 3 Development of MLSGA

X Found POF X Found POF
0.9+ e True POF 0.9+ e True POF

0 T T T T T T T T T 1 O T T T T T T T T T 1
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Objective 1 Objective 1
(A) MLS1 (B) MLS2
1+ 1+
X Found POF X Found POF
0.9+ o True POF 0.9 e True POF

O T T T T T T T T T 1 O T T T T T T T T T 1
0 01 02 03 04 05 06 0.7 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Objective 1 Objective 1
(c) MLS2R (D) Single population GA

X Found POF
® True POF

WXX

>§<>&(XXX XX

0 T T T T T T T T T 1

0 01 02 03 04 05 06 07 08 09 1
Objective 1

(E) Sub-population GA

F1GURE 3.7: Comparison of the Pareto optimal fronts achieved by different MLS and simple
GA variants on UF3 problem.



Chapter 3 Development of MLSGA 51

Objecte Object

(A) MLS1 (B) MLS2

(E) Sub-population GA

F1GURE 3.8: The heat maps of different MLS and simple GA variants on UF3 problem.

one [109]. However, as this behaviour is seen only on 4 out of 14 tested functions, simulations
with stronger individual-level mechanisms have to be conducted in order to validate if this
unusual behaviour is due to limitations of those mechanisms or the MLSGA methodology in

overall.

Interestingly, in all tested CF and UF cases the sub-population variant of a simple GA was
able to achieve a higher diversity of the final results than other tested algorithms. It is caused
by utilisation of sub-population approach without information sharing between the groups.
In MLS approach, the eliminated collectives are re-populated by the remaining groups, and
thus all groups are likely to reach the same local optimum. Whereas in sub-population simple

GA, all groups are fully independent, therefore those are more likely to diversify.
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3.4 Combining the MLS strategies

United Multi-Level Selection (MLS-U) variant is introduced to determine if the combination
of MLS mechanisms can be used to increase the diversity of the simple genetic algorithm. In
MLS-U all three MLS variants are used in parallel where some collectives are being subject
to MLSI1 type fitness definitions; others to MLS2 type; and remaining groups to MLS2R. The
following modification to the overall MLSGA methodology, presented previously in Section
3.2.1, is introduced:

e Add Step 2.2) stating: Assign the fitness definitions from types {MLS1, MLS2,
MLS2R} to each collective in the following order: MLS1 — MLS2 — MLS2R —
MLS1 —

All hyper-parameters, GA mechanisms, constraint handling and complexity remains the same.
The only exception is frequency of the collective elimination, which is decreased to 1 every 5
generation, in order to allow higher differentiation of collectives. Importantly, in conducted
pre-benchmarks this change resulted in lowered performance of previously tested MLSGA

variants but is preferred with the new variant.

The resulting methodology is benchmarked on the same functions; ZDT1-6, UF1-7 and CF1-
7. The performance of MLS-U is compared to the MLS1, MLS2 and MLS2R variants and is
presented in Table 3.4 according to HV metric and in Table 3.3 for the IGD values.

From the presented results, MLS-U shows significantly better performance than other variants
on most of the tested functions, 14 out of 19 according to the IGD metric and 15 out of 19
for the HV. It can be concluded that combination of different variants has led to an increase
in the diversity of obtained points and the convergence toward more regions of true Pareto
optimal front on most of the tested cases. Furthermore, the MLS-U is never outperformed
by all of the other variants. However, as for most of the tested problems the values of both
indicators are far from ideal, it can be predicted that MLS-U was not been able to achieve

the true Pareto optimal front on those cases.

The impact on the performance by MLS-U is further verified via comparison of the Pareto
optimal fronts achieved by each MLS variant. This is followed by examination of the heat
maps generated by each of them in order to better understand the behaviour of MLS-U. The
corresponding Pareto optimal fronts are illustrated in Fig. 3.9 for UF2 and in Fig. 3.10 for
UF4. Those functions are chosen as representatives of a divergent impact of MLS-U variant

on the final performance.

For CF2 it can be seen that, similarly to other MLSGA variants, MLS-U fails to discover
all areas of the true Pareto optimal front. It can be seen that MLS-U is mostly covering
the regions where at least one of other types, MLS1, MLS2 or MLS2R, is achieving a good

convergence; but is unable to discover any new areas where all variants are under-performing.
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TABLE 3.3: The comparison of MLS-U performance to the other MLS variants according to
average IGD results

Problem Variant
MLS1 ‘ MLS2 ‘ MLS2R ‘ MLS-U

ZDT1 1.17E-01 9.93E-01 1.55E-01 3.17E-02 [+]
ZDT2 7.41E-04 1.89E+0 4.19E-04 9.60E-02 [+][-]
ZDT3 1.15E-01 8.94E-01 4.23E-01 7.76E-03 [+]
ZDT4 7.61E-02 2.81E401 5.32E-02 2.76E-02 [+]
ZDTé6 1.63E-01 3.03E-03 7.58E-02 1.74E-02 [+][-]
UF1 1.87E-01 2.75E-01 1.34E-01 9.58E-02 [+]
UF2 1.36E-01 1.32E-01 8.12E-02 6.03E-02 [+]
UF3 2.95E-01 2.78E-01 2.69E-01 1.47E-01 [+]
UF4 9.30E-02 1.14E-01 1.53E-01 1.48E-01 []

UF5 5.11E-01 8.41E-01 8.96E-01 7.70E-01 [+][]
UF6 3.49E-01 4.64E-01 3.15E-01 2.12E-01 [+]
UF7 4.34E-01 3.86E-01 5.18E-01 2.17E-01 [+]
CF1 9.28E-02 9.35E-02 9.38E-02 7.80E-02 [+]
CF2 2.08E-01 2.83E-01 1.77E-01 9.77E-02 [+]
CF3 1.86E-01 6.50E-01 2.56E-01 1.90E-01 [+]
CF4 3.05E-01 3.57E-01 2.08E-01 1.04E-01 [+]
CF5 4.46E-01 4.63E-01 3.21E-01 2.03E-01 [+]
CFé6 2.48E-01 2.38E-01 2.34E-01 8.10E-02 [+]
CF7 3.43E-01 4.39E-01 3.96E-01 1.93E-01 [+]

[+] and [-] indicates if the results of MLS-U are significantly better or worse than

the next worse/better variant, respectively. The results of MLS-U are highlighted:

i green if it is best variant; in orange if it is outperformed by only one of other
variants; and in red if it is exhibiting the worst performance

In the case of CF2 function, neither variant is able to discover the left part of the right Pareto
optimal front, range of 0.5-0.8 according to the first objective. It indicates that MLS-U variant
may be able to successfully combine the advantages of each type of fitness separation, but is
unable to reach beyond their scope, resulting in exploration of more regions simultaneously,
and thus a significant increase in diversity, rather than flat improvement in performance or
convergence. This was expected, as MLS-U do not provide any new diversity preservation

mechanisms but is a simple combination of other developed variants.

Interestingly, on some cases the MLS-U is showing a lower quality of solutions than at least
one other MLSGA variant, according to Tables 3.4 and 3.3. In the case of UF4, Fig. 3.10
MLS-U is able to discover more points in extreme parts of the Pareto optimal front, near
points (0,1) and (1,0), but with a lowered convergence in other regions. MLS-U combines
different variants; therefore, it is logical that reducing the quantity of “good” collectives,
MLS1 and MLS2 in this case, will result in worse final solutions, especially if the performance
of different “modules” is highly contrasting. Similar observation was made for the other GAs
that combines multiple divergent methodologies such as BCE [103] or HEIA [36].
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TABLE 3.4: The comparison of MLS-U performance to the other MLS variants according to
average HV results

Problem Variant
MLS1 MLS2 MLS2R MLS-U
ZDT1 0.8302 0.3774 0.8224 0.9068[+]
ZDT2 0.8318 0.0004 0.8331 0.8048[+]]-]
ZDT3 1.0897 0.5209 0.7100 1.1861[+]
ZDT4 0.8480 0.0000 0.8943 0.9036[+]
ZDT6 0.7005 0.7547 0.7215 0.7499[+]
UF1 0.7544 0.7125 0.7863 0.8434[+]
UF2 0.8050 0.8067 0.8272 0.8731[+]
UF3 0.6247 0.6211 0.6205 0.7176[+]
UF4 0.7827 0.7659 0.7144 0.7674[-]
UF5 0.4332 0.2906 0.2535 0.3628[+][-]
UF6 0.5550 0.4889 0.5543 0.6592[+]
UF7 0.5634 0.5675 0.5213 0.7019[+]
CF1 0.7811 0.7949 0.7781 0.8344[+]
CF2 0.7523 0.7404 0.7557 0.8430[+]
CF3 0.5518 0.4415 0.4648 0.6357[+]
CF4 0.6261 0.5706 0.6287 0.7495[+]
CF5 0.5397 0.4940 0.5241 0.6108[+]
CF6 0.7245 0.7407 0.7331 0.8298[+]
CF7 0.6198 0.6044 0.6049 0.7364[+]

[+] and [-] indicates if the results of MLS-U are significantly better or worse than

the next worse/better variant, respectively. The results of MLS-U are highlighted:

in green if it is best variant; in orange if it is outperformed by only one of other
variants; and in red if it is exhibiting the worst performance

In order to verify if the MLS-U variant is able to concentrate the search on divergent regions
of objective space, rather than initially finding different parts of the true Pareto optimal front
and then concentrating the search on single one of them, like MLS1, MLS2 and MLS2R, the
heat maps are evaluated to find the preferred areas of search. Those are illustrated in Fig.
3.11 for CF2 case and in Fig. 3.12 for UF4.

From the heat maps it can be concluded that MLS-U is able to uniformly spread the concen-
tration of the search into different regions of the true Pareto optimal front. In case of CF2,
Fig. 3.11, 3 regions of interest are clearly visible for the MLS-U and 2 regions in case of UF4,
Fig. 3.12. Comparing to the heat maps for MLS1, MLS2 and MLS2R, it can be seen that
those regions corresponds to the search patterns of other variants. This may indicate that the
most left region is achieved by the MLS2R-type collectives, centre by the MLS1-type and the
right side by the MLS2-type groups. From the presented data it can be concluded that MLS-
U variant of the MLSGA is showing a high potential for the dispersed, region-based search,
as the divergent evolutionary pressures resulting from different collective-types, MLS1, MLS2

and MLS2R, can be maintained under a single methodology.
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F1GURE 3.9: Comparison of the Pareto optimal fronts achieved by different MLS variants
on the CF2 problem.

3.5 Understanding mechanisms of the MLSGA

MLSGA combines multiple search mechanisms, such as sub-population based approach, col-
lective reproduction and fitness separation. It is essential to investigate the impact of each

of them on the final behaviour in order to fully understand the principles of working of the
MLSGA.

Firstly, MLSGA is compared to the weight-vector based simple GAs with and without sub-
populations in order to investigate if MLSGA's sub-region search is similar to simple de-
composition methods and if the performance improvement is obtained. In the weight-vector

variant without sub-populations, each individual has weights assigned to both objective func-

tions based on the uniformly spread linear weight-vector V' = {v; = (0,1),...,v; = (f;ll, 1-—
i=1),...,vp = (1,0)} where n is the number of individuals. In the sub-population version

three types of sub-groups are introduced, with following weight-vectors {v; = (0.001,0.999), vy =
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F1GURE 3.10: Comparison of the Pareto optimal fronts achieved by different MLS variants
on the UF4 problem.

(0.5,0.5),v3 = (0.999,0.001)}. The types assignment to each group follows the same rules
as in MLSGA, but sub-populations are not allowed to exchange any information regarding
their objectives or variables during the optimisation process. Therefore, every individual in
each group has the same weight-vector and mating is restricted to among the individuals of

a particular group.

The proposed GA methodologies are simulated, and the average results are compared with
the performance of MLS-U variant of MLSGA. Those are presented in Table 3.5 for the IGD
indicator and in Table 3.6 for HV.

From the presented data it can be seen that MLS-U variant of MLSGA has the best overall
performance on most of the tested problems, 12 out of 19 cases for the IGD; and 15 out of
19 cases for the HV; while the single population variant of weight-vector GA always comes
last. This is showing the superiority of proposed solution, especially regarding the diversity

of achieved solutions due to significantly better HV metrics. Furthermore, in most cases
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FIGURE 3.12: The heat maps of different MLS variants on the UF4 problem.

where MLSGA is outperformed by other variants, there is no statistical significance between
results, such as UF3, UF4, CF4 and CF5 cases for the IGD indicator, Table 3.5, and UF3
and CF2 for the HV metric, Table 3.6.
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The better performance of the sub-population variant over the single-population one, indi-
cates that splitting the population by itself leads to a better performance. Similar principle
has been observed for non-weight-vector variants of simple GA, as discussed in Section 3.3
and in the literature [46]. However, as MLS-U is better than both sub-population approaches,
this indicates that split in population is not the main reason for the increased performance
and diversity of MLSGA. The low performance of single-population weight-vector method,
shows that additional mechanisms, such as neighbourhoods of similar weights, should be ap-
plied in order to effectively find the best solutions for each weight, as demonstrated by the
MOEA/D algorithm [35].

Applying weights to each sub-population separately is shown to yield better results than
the single population approach, leading to a comparable performance with MLSGA on some
cases. This phenomenon is investigated further, by comparison of the Pareto optimal fronts
achieved by MLSGA and the weight-vector GA with sub-populations. These are illustrated in
Fig. 3.13 for UF2 and in Fig. 3.14 for CF2. UF2 and CF2 are selected as the representatives
for better and worse performance of MLS-U in comparison to the sub-population weight-

vector GA, respectively.

On CF2 problem, Fig. 3.14 the weight-vector approach finds more regions of the true Pareto

TABLE 3.5: The performance of MLS-U compared to the weight-vector variants of simple
GA, according to the average IGD metric

Problem MLS-U Weight-vector GA wi?;ﬁﬁiiﬁﬂiﬁ“&
ZDT1 3.17E-02 [+] 1.43E-01 7.18E-02 [+]
ZDT2 9.60E-02 [1] 6.09E-01 6.09E-01
ZDT3 7.76E-03 [+ 1.21B-01 3.06E-02 [
ZDT4 2.76E-02 |1 1.15E-01 7.07E-02 [+
ZDT6 1.74E-02 [+] T41E-01 3.60E-02 [+
UF1 9.58E-02 2.50E-01 1.09E-01 [+
UF2 6.03E-02 [+ 121501 743E-02 [4]
UF3 1.47E-01 [+ 2.77E-01 1.42E-01
UF4 1.48E-01 1.60E-01 1.34E-01
UF5 770E-01 8 88E-01[+] 7.63E-01
UF6 2.12E-01 [+ 3.64E-01 T47E-01 [+
UF7 5. 17E-01 [+ 4.29E-01 3.27E-01 [+
CF1 7.80E-02 [1] 9.19E-02 8.99E-02
CF2 9.77E-02 2.74E-01 7.38E-02 [4]
CF3 1.90E-01 451E-01 2.15E-01
CF4 1.04E-01 [1] 2.29E-01 9.64F-02
CF5 2.03E-01 [+ 3.62E-01 1.92E-01
CF6 8.10E-02 [+ 2.55E-01 1.70E-01 [+]
CF7 1.93E-01 [+] 3.16E-01 9.87E-02 [+]

The best algorithm for each problem is highlighted in green, the second best is highlighted
in orange. [+] indicates if the results are significantly better than the next worse variant.
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TABLE 3.6: The performance of MLS-U compared to the weight-vector variants of simple
GA, according to the average HV metric

Problem MLS-U Weight-vector GA wselilgb};tpi?fzrtlgf'lglA
ZDT1 0.9068 [+] 0.8246 0.8466 [+]
ZDT2 0.8048 [+] 0.5000 0.5000
ZDT3 1.1861 1.0476 1.1812 [+]
ZDT4 0.9036 [+ 0.8363 0.8529
ZDTé6 0.7499 [+ 0.7075 0.7434 [+]
UF1 0.8434 0.7192 0.8375 [+]
UF2 0.8731 [+] 0.8123 0.8511[+]
UF3 0.7176 [+] 0.6210 0.7224
UF4 0.7676 0.7318 0.7666 [+]
UF5 0.3628 [+ 0.2420 0.3379 [+
UF6 0.6592 |+ 0.5335 0.6891 |+
UF7 0.7019 [+ 0.5733 0.6450 [+]
CF1 0.8344 [+ 0.7833 0.8099
CF2 0.8430 [+ 0.7329 0.8526
CF3 0.6357 [+ 0.4369 0.6231 [+]
CF4 0.7495 0.6309 0.7455 [+
CF5 0.6108 0.5410 0.6042 [+
CF6 0.8298[+] 0.7301 0.8029 [+]
CF7 0.7364[+] 0.6574 0.8122 [+]

The best algorithm for each problem is highlighted in green, the second best is highlighted
in orange. [+] indicates if the results are significantly better than the next worse variant.

optimal front in comparison to MLSGA, localised on the “left part” of the front. The po-
tential explanation for this phenomenon is that in developed weight-vector variant the sub-
populations are fully independent. Therefore, the groups may freely explore different regions
of the objective space even if they share the same weights, resulting in more optima found on
highly multimodal problems, such as CF2. Whereas in MLSGA the collectives of the same
type strongly promote similar individuals due to utilised collective-reproduction mechanisms

and thus are more likely to converge on the same optimum as discussed previously.

However, comparing the UF2 case, Fig. 3.13, it can be observed that MLSGA is able to
retain a higher diversity on more continuous problems. The potential explanation for this
phenomenon is that in the weight-vector approach each individual in a sub-population will
try to converge on the same point, as solutions are sharing the same weights. In MLSGA,
the collectives can retain a higher diversity of solutions, as long as the average of them is
following the values promoted by the collective-level reproduction mechanisms. Therefore,
in MLSGA the diversity of each group is not penalised as strongly as in the weight-vector
approach. Furthermore, in the collectives of MLS2 and MLS2R type the diversity is addi-
tionally encouraged as both levels of selection have different evolutionary goals. It could be
suggested that the weight-vector based method may include more than 3 types of groups,
which will lead to a higher diversification of sub-populations. However, the same principle
can be applied to the MLSGA, as potentially unlimited number of divergent fitness definitions

can be used on each level of selection. Furthermore, each additional weight presumes that
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FI1GURE 3.13: Comparison of the Pareto optimal fronts achieved by different MLS-U variants
and the sub-population weight-vector GA on the UF2 problem

there are feasible solutions in the regions promoted by that weight. That approach usually
requires the extensive knowledge about optimised problem, which is highly problematic for
the practical applications as discussed in Chapter 2. This further shows the usefulness of
MLS-based methodology.

Secondly, in order to investigate the impact of the fitness separation on each level, the ad-
ditional variants of MLS-U where the separation is performed only on a single level are
introduced. In MLS-U1 variant the influence of divergent individual-level definitions on the
region-based search is examined, while for MLS-U2 it is the importance of the collective-
level. Corresponding fitness function definitions for each level of selection are presented in
Table 3.7. Similarly, to MLS-U, only three types of collectives are introduced, and the same

hyper-parameters are used for all simulations.
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The Pareto optimal fronts obtained by both variants are compared to the results achieved

by MLS-U. These are illustrated for UF2 function in Fig. 3.13 and in Fig. 3.14 for CF2
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FI1GURE 3.14: Comparison of the Pareto optimal fronts achieved by different MLS-U variants
and the sub-population weight-vector GA on the CF2 problem

TABLE 3.7: Fitness functions used on each level of selection, depending on the collective
type, for MLS-U1 and MLS-U2 variants

Type of collective ‘ 1 ‘ 2 ‘ 3
MLS-U1
Individual-level M ‘ Ji(z) fa()
Collective-level W
MLS-U2
Individual-level W
Collective-level M ‘ fi(z) ‘ fa(x)
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For both cases it can be seen that for MLS-U1l variant the final Pareto optimal front is
narrowed to the central regions of the objective space in comparison to the original MLS-U.
It indicates that limiting the fitness separation to the individual-level, strongly narrows the
final diversity. Therefore, even if the individual reproduction is promoting the extreme regions
of the objective space, by using a single objective, the collective-level mechanisms will quickly
eliminate the groups that derive from the preferred “average” values. The opposite can be
observed for MLS-U2. In the MLS-U2 variant a stronger shift towards “left” and “right” side
of the true Pareto optimal front can be observed in comparison to the MLS-U. It indicates
that the evolutionary pressure is directed towards the regions with more extreme values of
both objectives. Therefore, by utilisation of an average of both objectives for the individual
reproduction, the individual-level search is in weaker opposition to the evolutionary pressure
developed by the collective-level. This proves that the region-based search of MLSGA is
achieved by implementing different fitness definitions on the collective-level. However, the
individual-level can be adjusted to promote the extreme regions of the objective space, as
in MLS-U2, or more central regions, as in MLS-U, depending on utilised definitions of the

fitness functions.

3.6 Multi-level selection theory applied to a genetic algorithm

In this chapter the potential of the fitness separation and collective-level mechanisms for a
diversity promoting methodology have been investigated. For that purpose, three divergent
MLS types with different fitness definitions on each level of selection are proposed: MLS1,
MLS2 and MLS2R. The results show that each of proposed variants is focusing its search
on a particular region of the objective space, MLS1 on the centre, while MLS2 and MLS2R
on the right and left side, respectively. Therefore, it is proven that the additional evolution-
ary pressure developed by MLSGA can be successfully targeted into various regions of the

objective space.

In the next step the MLS-U variant of MLSGA is proposed in order to combine advantages
of each MLS type. Presented results show that the distinct search strategy of each MLS
type is maintained under the combined variant, leading to a more dispersed search and thus
increase in diversity. It is concluded that this behaviour is due to distinct types of collectives
strongly promoting certain values of the objectives in its members, and thus limiting free
exploration in other directions. Therefore, MLS1-type collectives push for the average values
of both objectives, the central region of Pareto optimal front; MLS2 collectives focuses on
minimising the second objective and thus right-hand-side areas; and the groups with MLS2R
fitness definitions are promoting the first objective and the left region respectively. This

indicates a high potential of MLSGA methodology for the region-based search strategy.

The mechanisms used in MLSGA show some similarities in design to the sub-population
and weight-vector approaches. However, according to the conducted benchmarks, MLSGA is

outperforming simple sub-population and weight-vector approaches, especially regarding the
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diversity of obtained solutions. Furthermore, unlike the weight-vector approaches, MLSGA
do not fully restrain the free exploration of the objective space by individuals. The collective-
level mechanisms only promote certain regions of the objective space, but the individual-level
search is not hard-bounded by them, and thus the individuals may retain a higher diversity

inside each group.

However, on more complex problems, such as UF and CF sets, the MLSGA is unable to
properly approximate the true Pareto optimal front. On most of those cases, MLSGA is
able to successfully discover different regions of the Pareto optimal front, but obtained re-
sults are often limited to a narrow set of solutions or a poor convergence is observed. It is
suggested that this phenomenon is due to utilisation of simple individual-level mechanisms,
which are unable to provide a sufficient evolutionary pressure. Furthermore, with currently
implemented mechanisms the individuals in the same collective do not have any incentive to
diversify among themselves, as each of them is sharing the same goals. Therefore, the MLS
mechanisms are able to increase the diversity of the search globally, on the objective space,

but are unable to maintain it locally, inside of each collective.

According to that, stronger individual-level reproduction strategies with proper diversity
preservation mechanisms have to be implemented into MLSGA, in order to fully evaluate the
potential of this approach. This will potentially lead to the methodology, where the collective-
level promotes a global diversity, through the discovery of different regions of the objective
space, while the individual-level mechanisms are used to obtain a diverse front of solutions
inside each group with a proper convergence. However, it is yet to be investigated if the
behaviour exhibited by the current version of MLSGA will be maintained with those stronger
mechanisms, as this phenomenon may be subject to currently implemented individual-level

mechanisms only.






Chapter 4 Hybridising the
MLSGA

In this chapter it is investigated if the diversity focus and region-based search shown by
the MLSGA will be retained with stronger individual-level mechanisms. For that purpose,
selected methodologies, taken from the current state-of-the-art, will be implemented into
individual-level of the MLSGA.. Performance of developed variants will be validated on bench-
marking test sets and then compared with implemented algorithms and previous version of
the MLSGA. In an ideal outcome, resulting methodology will strongly promote overall di-
versity by the collective-level mechanisms, while individual-level mechanisms will maintain

convergence and diversity inside each sub-population.

4.1 Methodology of the MLSGA-hybrid

4.1.1 Description of mechanisms

In this study, eight different GAs are chosen as potential individual-level reproduction mecha-
nism for the MLSGA, leading to development of eight distinct hybrid variants of the MLSGA.

Following algorithms are selected from the state-of-the-art due to given reasons:

1. U-NSGA-III [43] as a general-solver GA and the combined variant of the most commonly
utilised algorithm for two-objective problems: NSGA-II [34]; and an improved version
of it for 3+ objective cases: NSGA-III [37];

2. MOEA/D [35] as the best GA for unconstrained and continuous problems according to
the CEC’09 comparison [42];

3. MOEA/D-MSF and MOEA/D-PSF [83] as updated versions of the MOEA/D with

better performance on a number of test cases.

4. MTS [93] as the best available algorithm for constrained problems and representing

distributed search algorithms.

5. IBEA [121] as the most commonly utilised indicator-based GA.
65
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6. BCE [103] and HEIA [36] as the most highly performing co-evolutionary approaches.

Resulting algorithm, denoted as MLSGA-hybrid, works as follows with the changes, in com-

parison to the previous version of the MLSGA, given in red text colour:

Inputs:

e Multi-objective problem;

e Np: Population size;

e Nc: Number of collectives;

e Fc: Frequency of collective elimination;

e Fitness function definitions for each level;

e Individual-level specific parameters e.g. from MOEA /D;

e Stopping criterion;

Output: External non-dominated Population (EP)

Step 1) Initialisation:

Step 1.1) Set EP = NULL.

Step 1.2) Randomly generate the initial population P of N, individuals {z;,...,znp}.
Step 2) Classification:

Step 2.1) Classify the individuals from the initial population P into N, collectives,
{Ci,...,Cn¢}, so that each contains a separate population {F;, ..., Py.}. Classi-

fication is based on the search space.

Step 2.2) Assign fitness definitions from types {MLS1, MLS2, MLS2R} to each col-
lective in following order M LS1 — M LS2 — M LS2R — MLS1...etc..

Step 2.3) Perform the individual-level assignment specific to implemented algorithm
separately for each collective, as documented in corresponding literature. For
example, in case of MOEA /D hybrid, assign the nearest weight vectors \; to each

individual.
Step 3) Individual-level operations:

For i=1,...,N. do

Step 3.1) Individual-level GA’s operations: Perform the reproduction, improve-
ment and update steps over the sub-population P;; subject to the hybrid variant

e.g. MOEA/D, as documented in corresponding literature.
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Step 3.2) Update External Population:
For j=1,...,|P]| do
Remove from the EP all solutions dominated by z;; (the individual j, from pop-

ulation ). Add individual z;; to the EP if no solutions from the EP dominate
it.

Step 4) Collective-level operations:

Step 4.1) Calculate collective's fitness:
For i=1,...,N. do
Calculate fitness of the collective C};, as the average fitness of the population P;

based on the collective-level fitness definition.
Step 4.2) Collective elimination:

Find the collective C; with the worst fitness value and store the index of that

collective, z.
Store the size of the eliminated collective |P,| as the variable s.

Erase the sub-population P, of the eliminated collective C,.
Step 4.3) Collective reproduction:
For i=1,...,N. do
if (@ !'= 2

Copy the best (Til) individuals, according to the collective-level fitness definition,
from population P; to P,.

then
Copy all individual-level parameters, specific to the implemented algorithms from

eliminated collective C, to the new collective, e.g. In the case of the MOEA/D

hybrid: assign the weight vector A, randomly to population P,.

Step 5) Termination: If the stopping criteria are met, stop and give EP as an output.

Otherwise, return to Step 3).

It can be seen that general methodology of the MLSGA-hybrid is not significantly differ-
ent than of the MLSGA. The only difference is the change in individual-level mechanisms,
whereas classification and collective-reproduction mechanisms remains unmodified. Imple-
mented individual-level mechanisms are recreated from the literature or utilised as is, if the
code was provided, without any significant modifications. Detailed principles of working for

them can be found in corresponding literature.

However, it has to be considered that some of implemented algorithms includes hard-coded
individual-assigned parameters, such as weight vectors in MOEA /D. Therefore, in the sub-
population based MLSGA methodology a following strategy is proposed: all parameters are
defined before classification step, for the initial population as whole, but these are assigned

to the individuals after the classification step; where individuals in the first collective are
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TABLE 4.1: Fitness functions definitions on each level of selection for MLSGA-hybrid

Type of collective MLS1 | MLS2 | MLS2R
Individual-level fi(z) and fa(x)
Collective-level M ‘ fi(x) ‘ fa(zx)

assigned first, followed by the assignment for the next collectives until every individual has
values assigned to it. Inside each collective the assignment is performed randomly. This
strategy leads to a higher diversification of sub-populations, as each of them potentially
contains different parameters. Pre-tests regarding MOEA /D have shown that if each sub-
population has the same weight-vectors, this leads to overlapping of collectives and to highly

ineffective search in the process.

Importantly as implemented individual-level mechanisms requires all objectives to operate
effectively, the fitness separation introduced in the original MLS-U strategy cannot be utilised.
Instead, the strategy similar to the MLS-U2 variant, proposed in a previous chapter, is
implemented; where both objectives are always available on the individual-level, as shown
in Table 4.1. In previous chapter it has been shown that there is no significant difference
between the performance of MLS-U2 and MLS-U, with only change that the MLS-U2 variant

leads to a higher diversification of collectives.

4.1.2 Hyper-parameter setting and benchmarking

Implemented individual-level reproduction mechanisms remain unchanged in comparison to
the original algorithms. Therefore, the operational parameters related to those mechanisms
are directly copied from the corresponding literature, and are detailed in Appendix E. The
same parameters are used when simulating original algorithms for the purpose of comparative
benchmarks, including population sizes. It is possible that the performance of MLSGA-hybrid
could be higher after careful hyper-tuning of those, but the principles of this study is not to

find the best setting for each individual-level mechanism.

Different MLSGA parameters: population size, number of collectives, steps between collective
reproduction and number of eliminated collectives have been parametrically evaluated and
the description of hyper-parameter tuning can be found in the section 4.4 of this chapter.
Therefore, only the parameters that give the best performance across all of the problems
are used to perform presented simulations. Those parameters are detailed in Table 4.2 and
remain constant over all the runs for all tested functions. The distinction between parameter
values used MTS and other hybrids can be observed, and to those used by the standard
MLSGA. It is due to the fact that most of the algorithms are dependent on developing and
maintaining uniform Pareto front each generation. Therefore, the collectives must maintain
a high number of individuals for the individual-level mechanisms to be effective; resulting

in bigger population sizes in overall. Additionally, frequency of the collective elimination
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TABLE 4.2: Hyper-parameters utilised in the MLSGA-hybrids for benchmarking.

Parameter ‘ MTS ‘ Others
Population size 225 [ 1000
Crossover rate 1
Mutation rate 0.08

Number of collectives 6 8
Collective reproduction delay 1 10

has to be lowered to occur once every 10 generations. Otherwise, the collectives do not
have enough iterations to properly develop the fronts, leading to a premature elimination of
potentially good sub-populations. In contrast to other methodologies, MTS utilises multiple
local searches for each individual, requiring a significantly higher number of iterations per
generation. That results in a requirement for smaller populations. In this case, the collective
reproduction may occur more often, as the search strategy is not dependent on a front

propagation.

Similarly, to the previous chapter, the tests are performed over 30 separate runs, with 300,000
function evaluations for each run; and both IGD and HV are used as the performance indi-
cators. The comparative performance is assessed via average IGD and HV values across all
runs, and only this data is presented in the main part of this thesis. Additionally, wherever
applicable, the Wilcoxon’s rank sum test was conducted in order to assess the statistical

significance between the results with a confidence level of o = 0.05.

4.1.3 Computational complexity and constraint handling

In this case the computational cost of the MLSGA-hybrid is determined by two operations:
individual-level reproduction, taken from the embedded algorithm and thus with the same
complexity, denoted here as C, and the collective reproduction of MLSGA, which requires
O(mN?) comparisons. Therefore, the overall computational complexity of one generation of
MLSGA-hybrid is bounded by C, or O(mN?) whichever is higher.

The constraint handling strategy remains the same as in the previous version of the MLSGA.
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4.2 Improvement over the MLSGA and comparison to the

implemented algorithms

The performance is evaluated over 14 different problems: 7 unconstrained functions, UF1-
UF7, and 7 constrained cases, CF1-7. Tests on ZDT1-6 functions have been conducted as
well, but those are not included in the main part of this thesis, due to no significant differences
in comparative performance on those problems. This phenomenon is caused by the relative
simplicity of the ZDT set.

The average IGD and HV scores achieved by the MLSGA-hybrids are calculated for each
tested problem and compared with the scores obtained by the standard MLSGA and im-
plemented algorithms. The results are presented in Table4.3 for CF1-7 cases, and in Table
4.4 for UF1-7 problems. MTS, MOEA/D-PSF and MOEA/D-MSF, and the correspond-
ing MLSGA-hybrids, are not included in the comparison as their performance shows similar
trends to MOEA /D and MLSGA MLSGA_MOEA/D comparative performance.

The constrained results, Table 4.3, show that the MLSGA-hybrids are significantly outper-
forming implemented algorithms on most of the cases. It is 6 out of 7 cases for U-NSGA-III
based variant, 5 cases for the BCE hybrid and all cases for the IBEA one, according to both
metrics, and in 5 and 7 cases for MOEA /D according to the IGD and HV, respectively. In-
terestingly, HEIA is better than MLSGA _HEIA , on 4 out of 7 cases according to the IGD
indicator, but only on one of them according to the HV metric. Furthermore, the performance
of HEIA is not significantly better on CF6 problem. Similar principle can be observed for the
MLSGA_MOEA/D in comparison to MOEA /D. The better performance of the MLSGA-hybrid
according to the HV metric, in comparison to IGD-based results, indicates a stronger focus

on the diversity of the search rather than convergence.

It can be noticed that the MLSGA leads to a worse performance on CF1 problem with
most of the implemented algorithms. However, it can be explained by a geometry of the
objective and search spaces in CF1 function. In this case the spaces consist of a number
of straight lines, which are uniformly spread, rather than a proper discontinuity. Therefore,
the difficulty of this problem can be derived to finding at least one point in each region, and
then properly converge on them separately, and thus it is suggested that a high convergence
rather than diversity is needed. On the most of other cases, where the MLSGA-hybrids are
being outperformed according to the IGD metric, such as CF2 for HEIA and MOEA /D, and
CF4 for HEIA, it is most likely due to outstanding performance of the original algorithms,
i.e. IGD values lower than 1E-02. Therefore, this indicates that the MLSGA mechanisms

leads to lowered convergence in overall.



TABLE 4.3: The performance of different MLSGA-hybrid variants on CF test set, in comparison to the corresponding implemented algorithms and

simple MLSGA according to the IGD and HV metrics

Case MLSGA U-NSGA-III MOEA/D BCE HEIA IBEA

Original Hybrid | Original Hybrid | Original Hybrid | Original Hybrid | Original Hybrid | Original
IGD

CF1 7.801E-02 2.211E-02 2.140E-01 1.663E-02 2.755E-03 | 1.522E-01

CF2 || 9.774E-02 2.567E-02 || 4.503E-03 | 3.762E-03 | 6.083E-02

CF3 || 1.899E-01 2.633E-01 || 2.093E-01 | 5.900E-01 | | | 1.718E-01 || 6.019E-01

CF4 || 1.042E-01 7.288E-02 1.495E-01 9.654B-02 | 3.089E-01

CF5 || 2.026E-01 1.812E-01 2.190E-01 5.591E-01 [ 9.337E-02 || 4.707E-01

CF6 || 8.102E-02 5.332E-02 1.332E-01 9.383E-02 I 1.407E-01

CF7 || 1.933E-01 2.099E-01 1.275E+0 4431E-01 | 1.248E-01 || 2.553E+0

CF1 0.8344 0.6932 I

CF2 0.8130 " 0.8901 ||

CF3 0.6357 |

CF4 0.7495

CF5 0.6108

CF6 0.8298

CF7 0.7364

Better results between the hybrid and the individual-level algorithm are highlighted in blue, if the results are statistically better, and in green otherwise. The
MLSGA-hybrid variants outperformed by simple MLSGA are in bold.
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TABLE 4.4: The performance of different MLSGA-hybrid variants on UF test set, in comparison to the corresponding implemented algorithms and

simple MLSGA according to the IGD and HV metrics

Case MLSGA U-NSGA-III MOEA/D BCE HEIA IBEA

Original Hybrid | Original Hybrid | Original Hybrid | Original Hybrid | Original Hybrid | Original
IGD

UF1 9.583E-02 6.162E-02 3.595E-02 8.349E-02 1.521E-02 I 9.698E-02

UF2 6.031E-02 1.755E-02 1.466E-02 4.569E-02 1.143E-02 I 4.254E-02

UF3 1.475E-01 1.008E-01 1.054E-01 2.352E-01 5.255E-02 I 2.249E-01

UF4 || 1.476E-01 || 4.326E-02 7.7426-02 6.361E-02 1.342E-02 | 5.585E-02 |

UF5 7.700E-01 2.299E-01 6.875E-01 1.677E40 2.331E-01 I 3.745E-01

UF6 || 2.117E-01 8.950E-02 || 1.960E-01 | | 5.089E-01 || | 1.321E-01 || 2.184E-01

UF7 || 2.172E-01 2.819E-02 || 1.858E-02 [ 9.223E-02 | | 8.423E-03 | | 2.750E-01

UF1 0.8434 0.8796 0.8829 I

UF2 0.8731 0.9034 0.9044 |

UF3 0.7176 |

UF4 0.7676 I

UF5 0.3628 I

UFG || 0.0502 | o5 | |

UF7T {07019 [ os2 | [ osms | |

Better results between the hybrid and the individual-level algorithm are highlighted in blue, if the results are statistically better, and in green otherwise. The
MLSGA-hybrid variants outperformed by simple MLSGA are in bold.
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However, the results for unconstrained problems, Table 4.4, are less favourable for MLSGA-
hybrids. Corresponding MLSGA-hybrids are outperformed by MOEA /D on all cases, BCE
and HETA on 5 out of 7 and U-NSGA-III on two of them, according to both utilised indicators.
This shows that the MLSGA-hybrid is not suited for continuous and unconstrained problems,
due to requirement of a high convergence rate rather than diversity on them. This is further
supported by a high performance of the MLSGA-hybrids on discontinuous UF6 problem,
where only MLSGA _MOEA/D is outperformed by its corresponding algorithm. From the
presented data it can be seen that for many unconstrained cases the original algorithms have
been able to accurately approximate true Pareto optimal front, i.e. IGD values lower than
1E-02. That further supports the statement that MLSGA mechanisms leads to a decreased
convergence, as indicated previously. Logically, implementing additional mechanisms to a
highly specialist-solver will lead to a decreased performance, as the additional diversity is not

needed, so the computational effort is wasted.

Surprisingly, despite utilisation of a stronger individual-level mechanisms, the MLSGA-hybrids
are exhibiting a worse performance than original MLSGA on some of the tested problems.
However, on all of those cases the implemented algorithm is achieving a poor quality of results
as well, e.g. MOEA /D and BCE on CF7 problem and BCE on UF5 case. Therefore, it is in-
dicating that MLSGA-hybrid is bounded by the performance of implemented individual-level
mechanisms. It was expected, as performance of the MLSGA-hybrids is dependent on their
ability to properly converge on a global optimum. If the individual-level search strategies
do not provide a sufficient convergence, then the MLSGA-based algorithms will not be able
to further improve it, due to lack of such mechanisms. A similar principle has been shown

previously while evaluating standard MLSGA.

According to that it is shown that the MLSGA is preferred on cases where a higher diversity is
essential, such as constrained and discontinuous problems, but leads to a lowered convergence
on more continuous cases. However, more tests on a wider set of functions is required in order

to further validate this statement.

4.2.1 Extending the benchmarking set by high diversity demanding func-

tions

In order to further investigate the impact of MLSGA mechanisms on the diversity of obtained
solutions, the benchmarking test set is extended by imbalanced and biased functions. Follow-
ing the state-of-the-art literature, 14 functions in total are added to the utilised set, with 11
unconstrained cases, MOP1-5, IMB1-3, IMB7-9 and with 3 constrained imbalanced functions,
IMB11-13. Importantly all of these problems, except of MOP4 have continuous search and
objectives spaces, which may have impact on the final performance, as it was indicated pre-
viously that discontinuous spaces are preferred by the MLSGA. Therefore, due to that, and
reasons discussed previously in the literature review, Chapter 2, those may promote certain

solutions rather than a higher diversity, as originally suggested in the literature [32,33].
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Furthermore, a set of difficulty adjustable and constrained problems is added in order to
tailor functions with desired characteristics [44]. Following the guidelines in [44], the design
parameters are set to: (0.5,0,0) for diversity-hard problems; (0,0.5,0) for feasibility-hard; and
(0,0,0.5) for convergence hard cases; these are denoted as DAS-CMOP1-6(5), DAS-CMOP1-
6(6) and DAS-CMOP1-9(7) respectively.

Results are simulated and the average IGD and HV values achieved by the MLSGA-hybrids
are compared to the scores of the corresponding algorithms. These are presented in Table
4.5 for MOP and IMB problems; and for DAS-CMOP cases in Table 4.6 for the IGD indi-
cator, and in Table 4.7 for HV. Similarly, to the previous benchmarks, the results for MTS,
MOEA /D-PSF and MOEA /D-MSF, and corresponding MLSGA-hybrids, are not included as
those show similar trends to MOEA /D and the MLSGA_MOEA/D comparative performance.

Original MLSGA is not included due to inferior performance of this strategy on those cases.

From presented data, Table 4.5 it can be seen that the MLSGA-hybrids are outperforming
corresponding algorithms on most of the biased MOP problems, or at least achieve a compara-
ble performance, whereas they are ineffective on the most of imbalanced IMB cases, especially
IMB7-13. This indicates that MLSGA's diversity enhancing strategy is effective on biased
cases, such as MOP and ZDT; discontinuous and constrained cases, as shown previously; but

other kind of diversity preservation is needed for IMB problems.

However, as it has been suggested in the literature review, Chapter 2, those functions may
require problem decomposition techniques or a specific reproduction mechanism, rather than
a dispersed search. IMB7-9 cases introduce the variable-linkage, therefore adjustments to
crossover and mutation strategies are preferred, as suggested in [33,86], whereas in IMB11-13
the constraint isolation is introduced, and thus a different constraint handling strategy have
to be utilised, as suggested in [33,142]. Therefore, the only cases in the IMB set where a
dispersed search is preferred are IMB1-3 problems due to introduced bias towards favoured
regions of the Pareto optimal front. On those cases the MLSGA mechanisms lead to a better
performance for most of the compared algorithms. That is here supported by an outstanding
performance of MOEA/D on all IMB problems, especially IMB7-13 as the IGD values are
lower than 1E-03, and a high performance of all tested algorithms on IMB7-13 cases; which
shows that the diversity enhancement was not needed and thus indicating a relative simplicity
of this set. According to this it is suggested that MLSGA do not provide reliable benefits
for a highly imbalanced problems, due to a specific structure of these functions. MLSGA
may encourage exploration of different regions of objective space, which is beneficial on cases
with discontinuous or biased objective spaces, but do not help to maintain a high diversity

of variables which is needed for the imbalanced problems such as IMB7-13.



TABLE 4.5:

The performance of different MLSGA-hybrid variants on MOP and IMB test sets, in comparison to the corresponding implemented

algorithms according to the IGD and HV metrics

Case

U-NSGA-III

MOEA/D

BCE

HEIA

IBEA

Hybrid | Original

Hybrid | Original

Hybrid | Original

Hybrid

| Original

Hybrid | Original

IGD

MOP1
MOP2
MOP3
MOP4
MOP5
IMB1
IMB2
IMB3
IMB7

1.810E-01

4.301E-01
2.999E-01

1.837E-01

I
3.411E-01
4.858E-01

2.708E-01

1.901E-01

3.066E-01

8.157E-02

1.571E-01

1.278E-01

1.964E-01

2.406E-01

1.626E-03

IMBS8

9.050E-04

IMB9

IMB11
IMB12

1.001E-03

1.105E-01

8.124E-02

IMB13

8.735E-02

2.993E-01
7.121E-03
8.088E-03
9.185E-03
4.858E-02
2.900E-02

6.310E-02

1.841E-01
3.333E-01
4.842E-01
2.624E-01
2.959E-01
2.231E-01

2.278E-02

1.820E-01
3.411E-01
4.717TE-01
2.813E-01
2.550E-01

1.971E-01

1.649E-01

2.657E-01
1.858E-01
2.456E-01
4.109E-01
1.240E-01
7.072E-02
9.513E-02

2.942E-01
1.285E-03
1.156E-03
7.580E-04

5.863E-02
6.518E-02

5.760E-04
9.311E-02

1.865E-01
3.553E-01

2.990E-01
2.357E-01
3.375E-01
2.244E-01
2.974E-01
3.146E-03
3.445E-03

1.693E-01
2.519E-01
2.956E-01

HV

MOP1

MOP2
MOP3
MOP4
MOP5
IMB1
IMB2
IMB3
IMB7

0.8442

0.7508
0.6964

0.7908

0.7317

0.8876

0.8626

0.7834

0.7084

0.9160

IMBS8

0.8746

IMB9 0.8032
IMB11 0.8324
IMB12 0.7487
IMB13 0.6682

Better results between the hybrids and corresponding individual-level algorithm are highlighted in blue, if the results are statistically better,

0.5214
0.9138
0.8716
0.7997
0.9031
0.8640

0.7464

0.8479

0.9088

0.7162

0.7306

0.8529
0.7682
0.5770
0.8162
0.7499
0.6604

and in green otherwise.

0.5376
0.9161
0.8745

0.8461
0.7617
0.6802

0.8426
0.7472
0.7492
0.7423
0.8090
0.7696
0.6809
0.5327
0.9153
0.8735
0.8024
0.8061
0.6553
0.5577
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Positive impact of the MLSGA mechanisms on the diversity is shown on the DAS-CMOP
test set, Tables 4.6 and 4.7. It can be seen that the MLSGA-hybrids have significantly better
performance than corresponding original algorithms on most of the tested diversity- and
feasibility-hard problems, but they are outperformed on many convergence-hard cases. In
case of the U-NSGA-III-based variant, it is better than implemented algorithm in 11 and 9
cases out of 12 according to the IGD and HV indicators respectively for the diversity- and
feasibility-hard problems, but worse in 5 out of 6 cases for the convergence-hard functions.
For the HEIA-based variant, it is 11 out of 12 cases, for both indicators; and 3 out of 6 cases
for the IGD and 4 out of 6 for the HV indicator correspondingly. For IBEA, and BCE an
improvement is observed for all cases but one, DAS-CMOP3(6), even the convergence-hard
problems. However, due to lack of the significant differences on most of the convergence-hard
cases between the corresponding MLSGA-hybrids and IBEA and BCE algorithms, it is here
suggested that this is caused by a high randomness of the search within these methodologies
on the DAS-CMOP(7) cases, leading to a low performance. Opposite can be observed for the
MOEA /D based algorithms, where the MLSGA search strategy leads to a worse performance
on most of tested cases, similarly to the previous benchmarks. According to presented results,
such as the lowered performance of the U-NSGA-III and HEIA variants on convergence-
hard problems, but significantly better on the diversity- and feasibility-hard cases, the high
potential of MLSGA for the diversity-oriented methodology is proven.

Regarding a low performance of the MLSGA MOEA/D , MLSGA _MOEA/D-PSF , MLSGA _MOEA /D-
MSF and MLSGA _MTS it is here suggested that it is due to incompatibility of the MLSGA's
collective-level mechanisms with implemented individual-level strategies. Performance of
MOEA/D is highly dependent on the quality of predefined weight-vectors, as indicated
in [32,47]. In the MLSGA MOEA/D hybrid a newly created collective inherits the weight
vectors of the eliminated collective, during the collective reproduction step. However, the
assignment of solutions to each vector is random and thus is not subject to the value of this
weight vector. Therefore, the individuals do not have the best possible weight vector assigned
to them. Furthermore, the neighbourhood of solutions is being recreated basing only on the
vector's values, rather than actual “quality” of individuals. Therefore, the new neighbour-
hood does not accurately reflect the relationship between two neighbour individuals. This
lowers an overall fitness of individuals in the new collective, and thus leads to a decreased

performance.



according to the IGD metric

TABLE 4.6: The performance of different MLSGA-hybrid variants on DAS-CMOP test set, in comparison to the corresponding implemented algorithms

Case U-NSGA-III MOEA /D BCE HEIA IBEA

Hybrid | Original Hybrid | Original Hybrid | Original Hybrid | Original Hybrid | Original
DAS-CMOP1(5) 3.685E-01 3.409E-02 | 3.153E-02 3.686E-01 4.030E-01 3.398E-01 4.169E-01
DAS-CMOP2(5) 3.276E-01 3.466E-02 | 3.216E-02 3.540E-01 3.315E-01 3.465E-01
DAS-CMOP3(5) 3.557E-01 1.297E-01 5.362E-01 2.576E-01 4.835E-01
DAS-CMOP4(5) 6.273E-01 5.123E+00 1.877E4-01 1.158E4-00 9.292E-01
DAS-CMOP5(5) 6.540E-01 5.534E+00 2.047E+401 || 1.037E+400 9.024E-01
DAS-CMOP6(5) 6.415E-01 5.711E+00| 5.569E-+00 2.053E+4-01 1.249E4-00 1.190E4-00
DAS-CMOP1(6) 7.650E-01 6.321E-01 | 6.403E-01 7.429E-01 7.494E-01 6.347E-01 | 6.393E-01 7.958E-01
DAS-CMOP2(6) 8.040E-01 6.509E-01 | 6.556E-01 7.852E-01 8.125E-01 6.513E-01 | 6.541E-01 7.619E-01 | 8.331E-01
DAS-CMOP3(6) 7.055E-01 | 6.330E-01 6.147E-01 | 6.144E-01 7.175E-01 6.998E-01 7.063E-01 7.457E-01
DAS-CMOP4(6) 2.749E-01 8.000E+13 | 9.333E+13 || 1.000E+14 1.000E+414 || 6.667TE+12| 4.667TE+13 5.333E+13
DAS-CMOP5(6) 2.338E-01 1.000E+14 | 8.667E+13 || 1.000E+14 | 1.000E+14 || 1.333E+13| 3.333E+413 7.333E+13
DAS-CMOPG6(6) 2.601E-01 1.000E+14 | 1.000E+14|| 1.000E+14 1.000E+14 || 2.667E+13| 7.333E+13 6.667TE+13
DAS-CMOP1(7) 5.764E-01 | 5.821E-01 1.464E-01 | 1.435E-01 5.940E-01 6.074E-01 5.709E-01 5.297E-01 | 6.126E-01
DAS-CMOP2(7) 5.658E-01 3.476E-02 3.643E-01 8.075E-01 6.172E-01 3.557E-01
DAS-CMOP3(7) 6.988E-01 | 6.715E-01 2.586E-02 6.990E-01 7.046E-01 7.896E-01 2.311E-01 | 2.928E-01
DAS-CMOPA4(7) 1.365E+00 6.651E+00|| 1.153E+401 2.000E+401 || 1.903E+00| 1.935E+00 || 6.678E-01 | 1.189E-00
DAS-CMOP5(7) 1.558E+00 5.622E+00 1.100E+-01 1.927E4-01 || 2.131E4-00| 2.131E400 || 9.242E-01 | 1.262E+400
DAS-CMOP6(7) 1.429E+00 7.044E400 | 6.944E400|| 1.223E401 1.819E4-01 || 2.026E+400| 2.070E+400 || 9.717E-01 | 1.602E+00

Better results between the hybrids and corresponding individual-level algorithm are highlighted in b

otherwise.

ue, if the results are statistically better, and in green
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TABLE 4.7: The performance of different MLSGA-hybrid variants on DAS-CMOP test set, in comparison to the corresponding implemented algorithms

according to the HV metric

Case U-NSGA-III MOEA/D BCE HEIA IBEA
Hybrid | Original Hybrid | Original Hybrid | Original Hybrid | Original Hybrid | Original
DAS-CMOP1(5) 0.4544 0.7931 0.4308 0.4804 0.4572
DAS-CMOP2(5) 0.6515 0.8964 0.6281 0.6525 0.6396

DAS-CMOP3(5)

0.6412

DAS-CMOP4(5)

0.3658

DAS-CMOP5(5)

0.4862

DAS-CMOP6(5)

0.4410

DAS-CMOP1(6)

0.7785
0.0006

0

0.5567

DAS-CMOP2(6)

0.8846

0.7232

DAS-CMOP3(6)

0.9394

0.7139

0.9237

DAS-CMOP4(6)

0.5613

DAS-CMOP5(6)

I
0.6015 |

DAS-CMOP6(6)

DAS-CMOP1(7)

0.5493 |
0.3125

DAS-CMOP2(7)

0.4909

DAS-CMOP3(7)

0.3693

DAS-CMOP4(7)

0.0851

DAS-CMOP5(7)

0.1141

I
I
I
I
I
I
I
I
I
| 0.0436 |
I
I
I
I
I
I
I

DAS-CMOP6(7)

0.1154

Better results between the hybrids and corresponding individual-level algorithm are highlighted in blue, if the results are statistically better, and in green

otherwise.

0.4826

0.7226

0.1933

I
| 0.3186
I

0.3293

0.3079

0.4571

0.3364

0.0027
0.0028

I
| 0.0026 |

0.6152
0.3063
0.3861
0.1645
0.5567
0.7141
0.7091
0.2926
0.2140
0.1912
0.3035
0.6508
0.6448
0.1343
0.2125
0.0867

32
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MTS utilises multiple local search methods in order to evolve each individual. Therefore, the
fitness calculations per generations are significantly higher than in other GAs. This results
in a lowered number of total generations. As an example, in the conducted benchmarks
MTS lasted 7 generations in average with 300,000 iterations, while other algorithms reach at
least 300 generations during that time. According to that, the collective-level mechanisms
are not able to contribute to the search pattern in a reasonable part, thus explaining a low
performance of the MLSGA _MTS . These issues could be solved by adjusting the collective-
level mechanisms, to be bespoke to the algorithm utilised on the individual-level, so the
characteristic of the implemented algorithms would be considered by them. However, it is
not a principle of this thesis to develop a perfectly adjusted solution for each of tested search

strategies.

4.3 Evaluating the impact of MLS

In previous sections it has been shown that implementation of stronger individual-level mech-
anisms leads to a significantly better performance in comparison to standard MLSGA. Fur-
thermore, the MLSGA-hybrids are usually outperforming the implemented algorithms on
most of tested cases, especially problems that require high diversity of the search. However,
it is yet to be investigated if this behaviour is result of the region-based search, which is
retained from the original MLSGA, or it is due to utilisation of sub-population approach or

other new phenomena.

For this purpose, the combined search areas for each type of collective are visualised in the
form of heat maps and compared with similar data obtained by simulating the implemented
algorithm separately. These are presented in Fig. 4.1 for MLSGA _U-NSGA-I1T on UF2 problem,
and in Fig. 4.2 for MLSGA_MOEA/D on CF2 case.

For both MLSGA-hybrids, for each type of collective a favoured region can be observed. For
the U-NSGA-III based variant, Fig. 4.1, it is central-left region of the objective space for
MLS1 and MLS2R types, range 0 to 0.5 of the Objective 1; and right-hand side of the Pareto
optimal front for the MLS2-type, range 0.5-1.3. Interestingly, MLS1 and MLS2R preferred re-
gions are similar, but it is caused by the bias towards the left-hand side of the Pareto optimal
front introduced in UF2 problem. This is further supported by similar behaviour shown by
U-NSGA-III, where the poor convergence can be observed in range 0.6-1. The differentiation
between collectives is even more noticeable for MLSGA_MOEA/D on CF2 problem, Fig. 4.2.
In this case MLS2 and MLS2R focuses on the right- and left-hand side of the Pareto optimal
front, ranges 0.6-1 and 0-0.4 correspondingly; and the most uniform search can be observed
for MLS1, but with a stronger focus towards the central region, range 0.1-0.4 of the Objective
1. According to that, it is shown that the region-based search strategy exhibited by stan-
dard MLSGA is maintained with stronger individual-level mechanisms. Interestingly in both

presented cases, each type of collective is able to maintain a wide range of solutions instead
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(A) MLS1-type (B) MLS2-type
(¢) MLS2R-type (D) U-NSGA-III
FIGURE 4.1: The heat maps of different collective types in the MLSGA_U-NSGA-III algo-
rithm compared to the U-NSGA-III search pattern on UF2 problems.
(A) MLS1-type (B) MLS2-type
(¢) MLS2R-type (p) MOEA/D

FIGURE 4.2: The heat maps of different collective types in the MLSGA_MOEA/D algorithm
compared to the MOEA /D search pattern on CF2 problems.
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FIGURE 4.3: Combined Pareto optimal front of the MLSGA _U-NSGA-IIT on UF2 problem.

of concentrating only on the “preferred” areas. This indicates that the MLSGA's collective-
level mechanisms are not harshly punishing the diversity inside each group. Therefore, each
sub-group is simply a local instance of the implemented algorithm with a bias toward certain
regions of the objective space, but without strong limitations in a free exploration. That

explains a high performance of the MLSGA based algorithms.

Comparing to the original algorithms, U-NSGA-III in Fig. 4.1 and MOEA/D in Fig. 4.2, it
can be seen that both MOEA /D and U-NSGA-III are developing a more uniform search than
the MLSGA. This is due to utilisation of a search strategy that is based on the prevalence
of a single front of non-dominated solutions. In the MLSGA, multiple fronts are maintained,
and the final Pareto optimal front is a combination of them as illustrated in Fig. 4.3. In this
case it can be observed that the final Pareto optimal front is combination of region 0-0.1 of
the MLS2R-type collective, and regions 0.1-0.55 and 0.55-1 for the MLS1 and MLS2-types
of collectives respectively, according to the first objective. High independence of collectives
allows them to move around the infeasible “gaps” more easily in the objective space created
by the constraints or the areas with discontinuities. Furthermore, due to utilisation of the
collective elimination and reproduction mechanism, collectives are less likely to permanently
get stuck on the boundaries of infeasible regions. This claim is supported by high gains
in performance shown by the MOEA/D based hybrids on constrained and discontinuous
problems. MOEA/D's search strategy is ineffective on non-continuous spaces as utilised
weights are defined in straight lines. Therefore, these lines may pass through the infeasible
regions, forcing the algorithm to look for valid solutions in these regions and thus leading to

an inefficient search.



TABLE 4.8: Performance comparison of the sub-population and single-population variants of different algorithms taken from the current state-of-the-art,

according to the IGD metric.

Case

U-NSGA-III

MOEA,/D

HEIA

MTS

Sub-pop | Original

Sub-pop | Original

Sub-pop

| Original

Sub-pop [ Original

UF1
UF2
UF3

6.162E-02

1.406E-02

1.755E-02
1.084E-01

UF4
UF5
UF6
UF7
CF1
CF2
CF3
CF4
CF5
CF6
CF7

MOP1

4.564E-02

2.299E-01
8.959E-02
2.819E-02
2.567E-02
2.633E-01
7.288E-02
1.812E-01
5.332E-02
2.099E-01
1.836E-01

MOP2

MOP3
MOP4
MOP5

3.635E-01

4.301E-01
2.999E-01

2.004E-01

1.008E-02
8.167E-02
7.376E-02
8.873E-01

9.913E-03
I
2.327E-03

| 1822101 |
|

1.698E-02
1.175E-02
6.937E-02
4.441E-02
2.754E-01

1.661E-01 |
9.234E-03
2.140E-01 2.946E-03

4.621E-03

1.755E-01

1.495E-01 1.496E-02

2.190E-01

1.332E-01 4.923E-02
1.275E4-00
| 1.832E-01

3.411E-01
4.858E-01
2.643E-01
2.559E-01

1.321E-01

9.337E-02
1.248E-01

3.411E-01
4.717E-01

1.718E-01

2.420E-03
2.348E-03
4.294E-02
2.939E-02
1.138E-01
6.470E-02
3.213E-02
2.461E-02
1.308E-03
1.782E-01
5.829E-03
5.110E-02
6.005E-03
3.815E-02
1.347E-01
1.767E-01
1.492E-01

2.813E-01

7.737E-02

2.550E-01

1.064E-01

Better results between the sub-population and single-population variants are highlighted in blue, if the results are significantly

better, and in green otherwise. A wvalue is in bold if the sub-population variant is significantly worse than corresponding

MLSGA-hybrid.

G8
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Finally, the effect of population separation on the final performance is investigated. It has
been indicated by other researchers that population separation by itself may provide certain
benefits on the discontinuous problems [46]. For that purpose, sub-population variants of the
implemented algorithms are developed for the purpose of this thesis and evaluated. They
are prepared following the MLSGA's methodology, but with exclusion of the collective-level
mechanisms i.e. without steps 2.2 and 4 in the MLSGA-hybrid pseudo-code. Developed
variants are simulated over the same test cases, and the results are compared to the original
algorithms. Those are presented according to the IGD indicator in Table 4.8 for CF, UF and
MOP problems. The results according to the HV indicator; with IMB and DAS-CMOP test
sets; and for the MOEA /D-PSF, MOEA /D-MSF, BCE and MTS are not included in the

main part of this thesis, but similar trends to the presented data can be observed.

From the presented data, some similar trends to the MLSGA-hybrids, regarding the impact
on performance, can be observed. It can be seen that the sub-population approach leads to
a worse performance on average on unconstrained UF cases; and a better effectiveness on
constrained CF, discontinuous UF6 and biased MOP cases. Therefore, it supports the state-
ment that the sub-population approach is beneficial on diversity demanding functions, but
less preferred on convergence-hard problems. That partly explains the elevated performance
of the MLSGA based algorithms on those problems. On constrained and discontinuous prob-
lems, each sub-population decreases the chance of premature convergence on the infeasible
regions. On continuous and constrained cases those sub-populations are often evaluating
the same regions, lowering the efficiency of the search. Comparing the results of the sub-
population variants to corresponding MLSGA-hybrids it can be seen that the sub-population
variants of the U-NSGA-IIT and HEIA algorithms are achieving a significantly worse per-
formance than corresponding MLSGA-hybrids on each tested case. Therefore, it is shown
that additional mechanisms, such as the collective-level reproduction and fitness separation,
are required to obtain a higher diversity of the results. Similar principle has been observed
previously with standard MLSGA. The low performance of MLSGA-hybrids against the cor-
responding sub-population variants of MOEA /D, MOEA /D-MSF, MOEA /D-PSF and MTS,
further indicates the incompatibility of collective-level mechanisms with these methodologies,
as discussed previously in this chapter. Furthermore, significantly lower performance of the
MTS sub-population variant, in comparison to the single-population one, indicates that di-
viding population is highly disadvantageous for this algorithm, as multiple sub-populations

are evaluating the same regions.

4.4 Investigating the sensitivity to hyper-parameters

It has been suggested in the literature review that a high sensitivity to the hyper-parameters
may lead to a lowered usefulness to real-world applications, due to lack of practical pos-
sibility to tweak them in advance. Therefore, in order to fully evaluate the usability of
developed algorithm, the sensitivity to hyper-parameters must be investigated. Importantly,

it is very unlikely that algorithm will be insensitive to all of them, as even population sizes
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TABLE 4.9: The min, max and step values for each tested hyper-parameter of the MLSGA
algorithm

Parameter | Population size ‘ Number of collectives ‘ Collective elimination

Min. 400 4 2
Max. 1800 10 20
Step 100 1 2

or mutation/crossover rates have a significant impact on the obtained results. However, the
parameter-sensitive mechanisms do not decrease the value of the methodology, as long as the
best possible setting of those exists and if this setting is universal for all potential problem;
or if the clear guide for their set-up is defined that does not need prior knowledge about the
optimised case. Along the sensitivity testing, a minor hyper-parameter tuning is conducted
to approximate the best set of parameters for the benchmarked problems. Simple generate-
evaluate brute-force method based on the Design of Experiment (DOE) approach has been
chosen, It is considered sufficient for the principles of this work and preferred over more com-
plex automatic and iterative methods such as: IRace, ParamILS or SMAC [143]. It is not
principle of this thesis to produce the best possible results for a narrow range of problems,
but to evaluate generality on a wide range of problems and investigate the search strategy
of the MLSGA. Extensive hyper-parameter tuning to a narrow selection of benchmarking

problems, would limit that generality.

Following the chosen method, a series of benchmarks is conducted with different values of
the population size, number of collective and frequency of collectives’ elimination. Impor-
tantly the parameters are evaluated separately, and the rest of them remains constant, due
to computational limitations. The setting of constant values is defined based on the per-
formed pre-benchmarks. Due to computational limitation only U-NSGA-III, HEIA, BCE
and MOEA /D are simulated, and the DAS-CMOP, IMB and ZDT test sets are not included.
Furthermore, due to huge differences in principles of working of MTS in comparison to other
utilised algorithms, this methodology is not included in the main part of hyper-tuning but
is discussed separately at the end of this section. Maximum and minimum values, and the
steps used for the hyper-parameter tuning are summarised in Table 4.9. Tuning process is
following the same rules as in the previous sections. Due to high quantity of data, only the

summary is presented according to the following steps:

1. The results for each function are normalised based on the best and worst value obtained
from among all tested hyper-parameters. Every problem is normalised separately. Ac-

cording to that, 1 means the best possible value and 0 the worst on a given case.
2. Then, the average value and the standard deviation is calculated for all algorithms and

functions for a given value of hyper-parameter. Those values are presented on graphs.

Firstly, the impact of population-sizes on the MLSGA performance is evaluated and the

results are illustrated with the IGD indicator in Fig. 4.4. The number of collectives is set to
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4, 6 and 8, whereas the collective elimination occurs once every ten generations. From the
presented graphs it can be seen that the population sizes do not have significant impact on
the performance within a wide range, but the larger population sizes are preferred. For 4
collectives, the performance is approximately stable within 600-1800 range, but a visible peak
can be observed for 600 individuals. For 6 and 8 collectives, slightly bigger populations are
preferred, and the stable zone is within 700-1800 range, with the peak for 1000 individuals for
6 collectives, and a range of 800-1800 for 8 collectives, with the peak in 1000. A significantly
lower effectiveness can be observed with small sizes of the population for all presented cases.
However, by comparing the data, it can be seen that for a lower number of collectives less
individual are required in order to maintain effective search. This indicates that setting the
population sizes too low will lead to tiny collectives, which are unable to properly develop
the front and thus maintain a high quality search. In contrast, high population sizes result
in enormous collectives that would require too many fitness evaluations in order to properly
converge. Furthermore, higher population sizes limit the total number of generations that GA
may achieve. Therefore, there is less time for the collective reproduction mechanisms. This
principle is supported by the current state-of-the-art where population sizes are usually in
range 100-600 in order to maximise the convergence rates. Bigger populations lead to lowered
convergence, which is usually obtained on generation-to-generation basis [60]. Whereas, too

small population sizes do not provide enough individuals to maintain a high diversity [74].

In the next step, the impact of the number of collectives is evaluated, with the calculated
results presented in Fig. 4.5 according to the IGD indicator. The population size is constant
and equal to 1000, whereas the collective elimination occurs once every 10 generations. From
the chart it can be seen that the number of collectives does not have significant impact on the
final performance within the range 6-9, with a peak for 8 collectives. Indicating the insen-
sitivity to this parameter when minor changes are applied. Significantly lower performance
with 4,5 and 10 collectives is due to synergy between population sizes and the number of
collectives as discussed before; thus 1000 individuals is too much for 4 and 5 collectives but is
not sufficient for 10 groups. Therefore, to find the best setting of those values, the top results
for different numbers of collectives, each with a preferred population size, are compared and
presented in Fig. 4.6. From the data it can be seen that the best results are obtained for
8 collectives and 1000 individuals, with comparable performance is achieved for 6, 7 and 9
collectives. It is indicating that at least 2 collectives of each type, and preferably 3 are needed
for more effective search. With fewer collectives, there is not enough sub-populations of the
same type to provide high quality solutions during the re-population process; whereas with
more collectives, too many sub-populations are evaluating the same regions. Therefore, lead-
ing to an inefficient search. Surprisingly 8 collectives are preferred, instead of 9, which would
seem more natural choice, as there is equal number of collectives of each type. The potential
reason for this is that with higher numbers of collectives more individuals are needed in order

to perform effective search, as discussed before.

According to that, it is here suggested that 8 collectives and 1000 populations have to be

utilised. However, if the optimisation has to be performed with less fitness evaluations e.g.
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FI1GURE 4.4: Comparison of the IGD values obtained by the 4, 6 and 8 collective versions
of the MLSGA with different population sizes.

due to computational limitation, it is suggested that 6 collectives with 800 individuals should
be utilised, or even 4 collectives with 600 individuals in more extreme cases. However, it
has to be kept in mind that the overall performance will be lowered. According to that it
is concluded that one of the MLSGA disadvantages is requirement for larger populations,
as most of the state-of-the-art algorithms, needs 100-600 individuals to operate effectively.
However, it was expected from an algorithm that focuses on a good spread of obtained

solutions rather than the fast convergence.

Finally, the impact of the collective elimination frequency is evaluated for 8 collectives and
1000 individuals. The results for the IGD indicator are presented in Fig. 4.7. It can be
observed that elimination should occur after 10 generations, the best result, but a similar
performance is maintained within 8-16 range. The reason for this behaviour is that most of

the implemented GAs rely on a constant front propagation, as discussed before. Therefore, if
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F1GURE 4.6: Comparison of the IGD values obtained by the MLSGA algorithm with different
number of collectives, using the best population sizes.

the collective elimination occurs too often, the front cannot be properly generated leading to
elimination of potentially good solutions and thus a random search. Whereas if the frequency
is too low the collective-level mechanisms do not have a significant impact on the search.
According to the presented data it is concluded that the MLSGA is not sensitive to introduced
hyper-parameters. Furthermore, the best values for each of them have been provided, which

with a high confidence can be used for all problems.

4.5 Diversity-first, convergence-second

In this chapter it has been investigated if the region-based search shown by the standard

MLSGA is maintained with stronger individual-level mechanisms. For that purpose, eight
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different algorithms taken from the current state-of-the-art have been used to replace the

individual reproduction mechanisms within the MLSGA, resulting in the hybrid approach.

The presented results have shown that the MLSGA-hybrids are strongly outperforming the
original MLSGA on almost all of the tested cases. Furthermore, the improvement over most of
the implemented algorithms can be observed, especially on cases where “convergence-first”
based approaches are ineffective, such as constrained, biased and discontinuous problems.
In proposed hybrid approach, the stronger individual-level reproduction leads to a better
exploitation of both objective and variable spaces; and to a higher diversity preservation
inside each group, as the collectives are local versions of the original algorithms. Furthermore,
similarly to the standard MLSGA, the collective-level mechanisms strongly penalize certain
regions of the objective space for each group, while the fitness separation leads to each group
having a different favoured region. That leads to better spread of the sub-populations and
thus a higher global diversity. According to that it is concluded that the unique region-based
search of the MLSGA is retained in the hybrid approach.

It is here suggested that the high performance on cases where a high diversity is needed is
the result of three factors: sub-population approach that decreases the chances of premature
convergence on a local optima or infeasible regions, as typical behaviour for the algorithms
with distinct sub-populations [46]; collective reproduction that introduces the additional
selection pressure and removes the groups that are stuck in “bad” regions; and the fitness
separation that diversify the collectives and thus enhance the ability to explore different parts
of the objective space. Therefore, MLSGA is able to move around “gaps” more easily in the
objective space and thus maintain a higher diversity. This claim is supported by high gains
in performance shown by the MLSGA-MOEA /D hybrid on constrained problems. Original
MOEA /D struggled to operate in non-continuous search spaces due to defining the weights in
straight lines, which potentially may pass through infeasible regions, leading to an inefficient

search.
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However, the performance of MLSGA-hybrids is often lower than implemented algorithms
on continuous and unconstrained problems, especially for the MOEA /D and MTS based
variants. It is due to the fact that these problems require a high convergence of the search
rather than diversity. Therefore, implementation of additional diversity-preservation mech-
anisms is disadvantageous and leads to lowered convergence, as there is no free lunch after
all. Furthermore, the low performance of MOEA /D and MTS based hybrids is due to incom-
patibility of the utilised mechanisms, as discussed before. In the MTS, due to high demand
for the fitness evaluation of the individual-level, the collective elimination do not occur a
sufficiently number of times in order to provide any benefits; whereas utilisation of multiple
sub-populations leads to exploration of the same regions repeatedly, leading to an inefficient
search. In the MOEA /D based variant, the weigh-vectors used for the individual-level search
are forcing exploitation of different regions than the collective-level mechanisms. Due to that,
the individuals are not malleable to the evolutionary pressure propagated by collectives, and
thus potentially “good” solutions are often eliminated. This indicates that MLSGA is moving
from the “convergence-first” approach to the “diversity-first, convergence-second”, as even
the more converged individuals are eliminated unless they follow the additional evolutionary
pressure developed by the collective. This is further supported by a high performance on the

diversity-demanding problems and a low effectiveness on the others.

Importantly, as the MLSGA-hybrid is utilising individual-level mechanisms taken from an-
other algorithms, it is still highly bounded by the effectiveness of implemented methodology.
As shown here by low performance of the MLSGA-hybrids on cases where the implemented
algorithm is also achieving poor results. Therefore, the collective-level mechanism may pro-
vide a better global diversity, but if the individuals are not able to properly converge on the
Pareto optimal front, or to maintain in-group diversity, the overall performance will remain
low. According to that, it is concluded that, despite not showing a sensitivity to the hyper-
parameters, the suggested approach do not provide any benefits regarding the generality of
methodology, and thus its usefulness will remain low on the cases with limited knowledge

about the problem's characteristics.






Chapter 5 Co-evolutionary
approach for the MLSGA

In this chapter it is investigated if the generality of the MLSGA can be improved, by im-
plementation of multiple distinct search strategies on the individual-level of the MLSGA,
in parallel using different sub-populations, in a comparable manner to the co-evolutionary
approaches. Therefore, improving its capability as the general-solver type algorithm. This
will potentially lead to an increase in the overall robustness of the methodology also, as there
is a lower chance that multiple search strategies will be ineffective on a particular problem.
Simultaneously, MLSGA's group-level mechanisms will maintain the information exchange,
regarding potential candidate solutions, between groups and will lead to a better overall

diversity, as shown in the previous chapters.

5.1 Methodology

5.1.1 cMLSGA

The co-evolutionary based variant of MLSGA, denoted as cMLSGA, works as detailed below,
with the changes regarding to the MLSGA-hybrid given in red text colour. Furthermore,
simplified flowchart of the proposed methodology is presented for the illustrative purposes
in Fig. 5.1, where darker circles indicate fitter individuals whereas darker yellow rectangles
indicate a higher fitness of the collective. Only two collectives are shown for the illustrative
purposes of using two distinct evolutionary algorithms. In the cMLSGA multiple collectives

of each type are used.

Inputs:

Multi-objective problem;

Np: Population size;

Nc: Number of collectives;

Fc: Frequency of collective elimination;

91
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Fitness function definitions for each level;

Evolutionary algorithm 1 (EA1) e.g. MTS;

Evolutionary algorithm 2 (EA2) e.g. MOEA /D;

Individual-level specific parameters for EA1 and EA2;

Stopping criterion;
Output: External non-dominated Population (EP)

Step 1) Initialisation:

Step 1.1) Set EP = NULL.
Step 1.2) Randomly generate the initial population P of N, individuals {z;,...,znp}.

Step 2) Classification:

Step 2.1) Classify the individuals from the initial population P into N, collectives,
{Ci,...,Cn¢}, so that each contains a separate population {P;, ..., Py.}. Classi-

fication is based on the decision variable space.
Step 2.2) Assign the EA1 to first N./2 collectives and EA2 to the rest.

Step 2.3) Assign the fitness definitions from MLS types {MLS1, MLS2, MLS2R} to
each collective in the following order M LS1 — M LS2 — MLS2R — MLS1...etc..

Step 2.4) Perform the individual-level assignment specific to the implemented algo-
rithm, separately for each collective, according to assigned evolutionary algorithm.

Step 3) Individual-level operations:

For +=1,...,N. do
Step 3.1) Individual-level GA's operations: Perform the reproduction, improve-
ment and update steps over the sub-population P; according to assigned strategy
{either EA1 or EA2}
Step 3.2) Update the external population:
For j=1,...,|P| do
Remove from the EP all solutions dominated by x;; (the individual j, from popu-
lation ). Add the individual z;; to the EP if no solutions from EP dominate the
Tij
Step 4) Collective-level operations:
Step 4.1) Calculate collective's fitness:
For i=1,...,N. do

Calculate fitness of the collective C; as an average fitness of the population P;

based on the collective-level fitness definition.
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Step 4.2) Collective elimination:

Find the collective C; with the worst fitness value, and store the index of that

collective, z.
Store the size of the eliminated collective |P,| as the variable s.
Erase the sub-population P, from the eliminated collective C..
Step 4.3) Collective reproduction:
For +=1,...,N. do
if (i !'= 2
Copy the best (Til) individuals, according to the collective-level fitness definition,

from population P; to P,.
then

Copy all individual-level parameters, specific to the assigned evolutionary algo-
rithm, from the eliminated collective C, to new collective, e.g. In the case of

MOEA/D strategy: assign the weight vector A, randomly to population P,.

Step 5) Termination: If the stopping criteria are met, stop and give EP as an output.

Otherwise, return to Step 3).

It can be seen that general methodology of the cMLSGA is not significantly different to the
MLSGA or MLSGA-hybrid. Only practical differences are in the individual-level reproduc-
tion mechanisms, where different strategies are applied to each distinct collective in parallel,
Steps 2.2-2.4. In this case, first half of the collectives utilise the selected “Evolutionary Al-
gorithm 17 (EA1) subroutine, and the others “Evolutionary Algorithm 2” (EA2). The type
of evolution is assigned randomly to collectives during the classification step and does not
change over the run. At any given time, half of the collectives are using EA1 and the other
half use EA2. Therefore, it is recommended that the number of collectives should be even,
in order to maintain even spread of search and to avoid the bias towards a single strategy.
The individuals in each sub-population evolve separately using the assigned strategy. After
a predefined number of generations, the collective with the worst fitness value is eliminated,
with all of the individuals inside of it, and is repopulated by copying the best individuals
from among rest of the collectives. After the collective reproduction step offspring collec-
tive inherits the individual reproduction methodology from the eliminated collective. It is
demonstrated further in Fig. 5.1, where the left collective retains MTS strategy, when the
right ones continues to use MOEA /D. Therefore, cMLSGA utilises the multi-level approach
to generate a distinct competitive co-evolutionary approach, but this occurs via elimination
and repopulation of one group by other sub-populations, rather than migration of the indi-
viduals [103]; competition in each group [99]; or recreation of all groups [36]. In addition,
unlike in other co-evolutionary GAs, the sub-populations are not allowed to exchange in-
formation every generation but are doing so only during the collective reproduction steps.
This will potentially lead to a high diversity of the search and a lack of bias towards spe-
cific problem types. Furthermore, the same rules as in MLSGA-hybrid are applied regarding
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F1GURE 5.1: Simplified flowchart of the cMLSGA methodology.

the hard-coded individual-assigned parameters such as weight vectors in MOEA/D. In this
chapter, a variety of reproduction mechanisms are replicated from the original papers and
combined within the MLSGA methodology. A total of eight algorithms taken from the
current state-of-the-art are utilised: U-NSGA-III [34], MOEA/D [35], MOEA/D-MSF and
MOEA/D-PSF [83], MTS [93], IBEA [121], BCE [103] and HEIA [36]. These GAs are the
same as in Chapter 4 and are selected due to the same reasons. Furthermore, all combina-
tions of utilised mechanisms are evaluated. However, the combinations between U-NSGA-III,
MOEA /D-TCH, MOEA /D-PSF and MOEA /D-MSF have been discarded. This is because all
of the MOEA /D variants are based on the same framework while U-NSGA-III and MOEA /D
are both based on the constant front development. The pre-benchmarks demonstrate that
utilisation of similar mechanisms result in no performance gains within the co-evolutionary
approach, The results for those variants are not reported in this work. Therefore, 22 variants

in total are evaluated, but only the most significant findings are discussed in this thesis.
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5.1.2 Hyper-parameters setting and benchmarking

Similarly, to the MLSGA-hybrid approach, the individual-level reproduction mechanisms are
directly copied from the original algorithms and the same setting of corresponding hyper-
parameters as in previous tests is used. Exact values of those parameters can be found in

Appendix E.

The MLSGA-specific hyper-parameters remains the same as in previous benchmarks, as de-
tailed in Table 5.1. Furthermore, the testing follows the same number of runs, total fitness
evaluations and utilised performance indicators or statistical analysis, in order to maintain

fair comparison.

TABLE 5.1: Hyper-parameters utilised in the cMLSGA for benchmarking.

Parameter [ Value
Population Size 1000
Crossover rate 1
Mutation rate 0.08

Number of collectives 8
Collective reproduction delay 10

5.1.3 Computational complexity and constraint handling

Computational cost of the cMLSGA remains the same as for the MLSGA-hybrid. However,
in this case two types of individual reproduction are introduced, which are sharing the same
complexity as the original algorithms, denoted here as C7 and C5. Therefore, the overall
computational complexity of one generation is bounded by C, Cy or O(mN?) whichever is

higher.

The constraint handling strategy remains unchanged.

5.1.4 Extending the test set

In order to rigorously evaluate the generality of developed methodology, the utilised test set
has to be as diverse, in regard to the problems’ characteristic, as possible. According to that,
the test set is further extended with nine two-objectives WFG functions [141]. Resulting
in 60 two-objective problems in total, with 28 constrained and 32 unconstrained cases. All
benchmarking problems are divided here into twelve categories, according to the dominative

characteristic and the presence of constraints, as summarised in Table 5.2.



96

Chapter 5 Co-evolutionary approach for the MLSGA

TABLE 5.2: Summary of the utilised test set for benchmarking of the cMLSGA, with sepa-
ration into distinct categories according to the main characteristic of a given problem.

Category Problem L d l Additional properties
Unconstrained
ZDT1 30 Convex
ZDT2 30 Concave
I. Simple ZDT3 30 Discontinuous
ZDT4 10 Multimodal, Convex
ZDT6 10 Multimodal, Biased, Concave
UF1 30 Complex PS
II. Convex UF2 30 Complex PS
UF3 30 Complex PS
UF4 30 Complex PS
WFG4 22 Multimodal
WFGH 22 Deceptive
III. Concave WFG6 22 Non-separable
WFG7 22 Biased
WFG8 22 Biased, Non-separable
WFG9 22 Biased, Non-separable, Deceptive
UF7 30 Complex PS; Linear
IV. Linear/Mixed WFG1 22 Biased, Mixed
WFG3 22| Non-separable, Degenerated, Linear
UF5 30| Linear, Distinct points, Complex PS
. . UF6 30 Complex PS
V. Discontinuous
WFG2 22 Convex, Non-Separable
MOP4 10 Discontinuous
MOP1 10 Convex
MOP2 10 Convex
MOP3 10 Concave
MOP5 10 Convex
VI. Imbalanced MBI 10 Convex
IMB2 10 Linear
IMB3 10 Concave
IMB7 10 Convex, Non-separable
IMB8 10 Linear, Non-separable
IMB9 10 Concave, Non-separable
Constrained
CF1 10| Linear, Complex PS, Distinct points
VII. Discontinuous CF2 10 Convex, Complex PS
CF3 10 Concave, Complex PS
CF4 10 Linear, Complex PS
VIII. Continuous CF5 10 Linear, Complex PS
CF6 10 Mixed, Complex PS
CF7 10 Mixed, Complex PS
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TABLE 5.2: Summary of the utilised test set for benchmarking of the cMLSGA (continued)

Category L Problem L d L Additional properties
IMB11 10 Convex
IX. Imbalanced IMB12 10 Linear
IMB13 10 Concave
DAS-CMOP1(5) | 30 Concave, Discontinuous
DAS-CMOP2(5) | 30 Mixed, Continuous
. . DAS-CMOP3(5) | 30| Linear, Discontinuous, Multimodal
X. Diversity-hard : -
DAS-CMOP4(5) | 30 Concave, Discontinuous
DAS-CMOP5(5) | 30 Mixed, Discontinuous
DAS-CMOP6(5) | 30 Distinct points, Degenerated
DAS-CMOP1(6) | 30 Concave, Discontinuous
DAS-CMOP2(6) | 30 Mixed, Continuous
XI. Feasibility- DAS-CMOP3(6) | 30| Linear, Discontinuous, Multimodal
hard DAS-CMOP4(6) | 30 Concave, Discontinuous
DAS-CMOP5(6)) | 30 Mixed, Discontinuous
DAS-CMOP6(6) | 30 Distinct points, Degenerated
DAS-CMOP1(7) | 30 Concave, Discontinuous
DAS-CMOP2(7) | 30 Mixed, Continuous
XII. Convergence- | DAS-CMOP3(7)) | 30| Linear, Discontinuous, Multimodal
hard DAS-CMOP4(7) | 30 Concave, Discontinuous
DAS-CMOP5(7) | 30 Mixed, Discontinuous
DAS-CMOP6(7) | 30 Distinct points, Degenerated

d denotes the number of decision variables.

5.2 Comparison to the hybrid variant and implemented algo-

rithms

In order to verify if the cMLSGA 1is able to successfully combine the advantages of both
implemented algorithms, leading to a more general approach, as well as the high diver-
sity shown by previous versions, the performance of cMLSGA variants is compared to the
original algorithms. Out of 28 developed variants, 3 cases are selected as representatives
due to following reasons: ¢cMLSGA_IBEA_BCE as the case where the highest improvement
in average over the implemented algorithms is shown; cMLSGA_MOEA/D-MSF_HEIA , as the
combination of the best specialist-solver, MOEA /D-MSF, with the best currently existing
general methodology, HEIA, resulting in the highest generality from among all tested vari-
ants; and cMLSGA _MTS_MOEA/D , which is the combination of two convergence-based algo-
rithms, specialist-solver, MOEA /D, with a local search based method, MTS, as the model
case for showing the risk of incompatibility between implemented mechanisms. The results
according to both performance indicators are presented in Table 5.3 for cMLSGA _IBEA _BCE
, in Table 5.4 for cMLSGA _MOEA/D-MSF_HEIA and in Table 5.5 for cMLSGA_MTS_MOEA/D
. The best variant in each group is in bold and results of the cMLSGA are highlighted: in
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green if c MLSGA is better than both of the implemented algorithms; in yellow if cMLSGA

is better than one of them; and in red if it is worse than both of the methodologies.

TABLE 5.3: The average IGD and HV scores of the cMLSGA IBEA _BCE compared to the
implemented algorithms

IGD HV
Cat. Case cMLSGA| IBEA | BCE || cMLSGA| IBEA | BCE
ZDT1 7.45E-04 | 1.48E-03 | 3.27E-02 || 0.91638 | 0.91570 | 0.89683

ZDT2 7.35E-04 | 2.45E-03 | 1.09E-01 || 0.83305 | 0.83265 | 0.75229

I ZDT3 8.85E-04 6.84E-03 1.58E-02 1.18970 1.18880 1.17395
ZDT4 1.60E-03 6.26E-01 2.35E40 0.91572 0.60542 0.00000

ZDT6 2.15E-03 | 3.05E-03 | 2.49E-03 || 0.75610 | 0.75639 | 0.75620

UF1 2.14E-02 | 9.70E-02 | 7.26E-02 || 0.90285 | 0.85355 | 0.85855

11 UF2 2.42E-02 | 425E-02 | 3.91E02 || 0.89605 | 0.87601 | 0.89058
UF3 1.01E-01 2.25E-01 1.48E-01 0.85258 0.70082 0.85755

UF4 4.94B-02 | 5.40E-02 | 5.01E-02 || 0.80240 | 0.79986 | 0.79210

WFG4 3.00E-02 | 2.45E-02 | 8.50E-02 || 0.56737 | 0.57061 | 0.54136

WFG5 6.52E-02 6.84E-02 6.76E-02 0.54747 0.54321 0.54446

111 WFG6 5.34E-02 6.15E-02 4.80E-02 0.55725 0.55247 0.55889
WFGT 1.79E-02 | 1.46E-02 | 2.00E-02 || 0.57361 | 0.57441 | 0.57188

WFG8 1.11E-01 | L.IS8E-01 | 1.04E-01 || 0.53088 | 0.53072 | 0.53196

WFGY 3.17B-02 | 8.56E-02 | 6.75E-02 || 0.55521 | 0.53204 | 0.54001

UF7 1.37E-02 2.75E-01 3.18E-02 0.86194 0.67920 0.84339

v WFGL 1.03E+0 | 5.78E-01 | 125E+0 || 0.41956 | 0.57345 | 0.36617
WFG3 2.70E-02 | 1.80B-02 | 3.63E-02 || 0.72093 | 0.72393 | 0.71137

UF5 3.17B-01 | 3.75E-01 | 147E+0 || 0.59333 | 0.57950 | 0.07095

UF6 1.12E-01 2.18E-01 5.09E-01 0.71427 0.61143 0.49510

v WFG2 1.16E-02 | 2.07E-02 | 461E-02 || 0.75807 | 0.76118 | 0.74217
MOP4 3.03E-01 | 2.99E-01 | 2.62B-01 || 0.76362 | 0.74233 | 0.79537

MOP1 1.83E-01 1.86E-01 1.84E-01 0.84482 0.84260 0.84404

MOP?2 3.71E-01 | 3.55E-01 | 3.33E-01 || 0.73532 | 0.74724 | 0.75213

MOP3 4.09B-01 | 4.08E-01 | 4.84E-0L || 0.74999 | 0.74919 | 0.69886

MOP5 2.74E-01 | 2.36E-01 | 2.96E-01 || 0.78560 | 0.80898 | 0.73506

VI IMB1 2.11E-01 | 3.37E-01 | 2.23E-01 || 0.84770 | 0.76956 | 0.84315
IMB2 1.84E-01 | 224E-01 | 1.07E-01 || 0.78357 | 0.68093 | 0.71625

IMB3 2.54E-01 | 2.07E-01 | 2.66E-01 || 0.66016 | 0.53266 | 0.62487

IMB7 4.50E-03 3.15E-03 2.31E-02 0.91487 0.91529 0.90752

IMBS 4.33E-03 | 3.45B-03 | 430E02 || 087317 | 0.87349 | 0.85675

IMB9 3.81E-03 | 5.53E-03 | L4IE-0L || 0.80203 | 0.80238 | 0.73702

CF1 4.58B-03 | 1.52E-01 | 1.20E-02 || 0.86708 | 0.73259 | 0.86423

VII CF2 7.52E-03 6.08E-02 2.01E-02 0.89599 0.83738 0.89007
CF3 1.98E-01 | 6.02E-01 | 5.63E-0L || 0.68204 | 0.45756 | 0.40027

CF4 4.38B-02 | 3.09E-01 | 0.65E-02 || 0.79853 | 0.62764 | 0.77658

VI CF5 1.06E-01 | 471E-01 | 5.59E-01 || 0.72568 | 0.50870 | 0.43336
CF6 5.30E-02 1.41E-01 9.38E-02 0.86700 0.81273 0.83949

CF7 1.55E-01 | 255E+0 | 4.43E-01 || 0.78466 | 0.37303 | 0.57368

IMBI1 9.50B-02 | 1.69E-01 | 0.83E-02 || 0.84317 | 0.80606 | 0.84090

IX IMB12 6.01E-02 2.52E-01 5.88E-02 0.76028 0.65527 0.76208
IMB13 6.62E-02 2.96E-01 6.48E-02 0.67945 0.55772 0.68069
DAS_CMOPL(5) || 1.04E-01 | 4.17E-01 | 4.03E-01 || 0.72380 | 0.45716 | 0.43082
DAS_CMOP2(5) || 5.42E-02 | 3.46E-01 | 3.54E-01 || 0.87928 | 0.63960 | 0.62808

« | DAS.CMOP3(5) || 1.67E-01 | 4.84E-01 | 536E-0L || 0.75555 | 0.61519 | 0.48258
DAS_CMOP4(5) || 8.17E-01 9.29E-01 1.88E+01 0.30318 0.30629 0.00000
DAS_CMOP5(5) || 1.13E+00 | 9.02E-01 | 2.05E+01 || 0.24288 | 0.38613 | 0.00000
DAS_CMOPG6(5) || 1.09E+00| 1.19E+00 | 2.05E+01 || 0.19818 | 0.16450 | 0.00000
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TABLE 5.3: The average IGD and HV scores of the cMLSGA_IBEA_BCE compared to the
implemented algorithms (continued)

IGD HV
cMLSGAL IBEA L BCE cMLSGAL IBEA L BCE

6.35E-01 7.96E-01 7.49E-01 0.88482 0.55666 0.52396
6.50E-01 8.33E-01 8.13E-01 0.93940 0.71409 0.69836
6.33E-01 7.00E-01 7.00E-01 0.89873 0.70911 0.73329

Cat. Case

DAS_CMOP1(6
DAS_CMOP2(6
DAS_CMOP3(6

DAS_CMOPA4(7 1.17E400| 1.19E+00 2.00E+01 0.12651 0.13428 0.00000
DAS_CMOP5(7 1.31E4+00 | 1.26E4-00| 1.93E+401 0.18589 0.21248 0.00000
DAS_CMOP6(7) || 1.24E400| 1.60E+00 | 1.82E+01 0.13717 0.08671 0.00000
The best variant in each group is in bold. Results of the cMLSGA are highlighted: in green, if
cMLSGA is better than both of the implemented algorithms; in yellow, if cMLSGA is better than

one of them; and in red, if it is worse than both of the algorithms.

)
)
XI )
DAS_CMOP4(6) || 1.38E4+13| 5.33E+13 | 1.00E+14 0.35899 0.29262 0.00000
DAS_CMOP5(6) || 4.00E413| 7.33E+13 | 1.00E+14 0.34421 0.21398 0.00000
DAS_CMOP6(6) || 2.67TE4+13| 6.67TE+13 | 1.00E+14 0.30961 0.19123 0.00000
) || 2.33E-01 6.13E-01 6.07E-01 0.71547 0.30351 0.28520
DAS_CMOP2(7) || 3.48E-02 3.56E-01 8.08E-01 0.90529 0.65082 0.30789
XII DAS_CMOP3(7) || 1.90E-01 2.93E-01 7.05E-01 0.70016 0.64477 0.36318
)
)

(
(
(
(
(
(
DAS_CMOP1(7
(
(
(
(
(

TABLE 5.4: The average IGD and HV scores of cMLSGA_MOEA /D-MSF_HEIA compared
to the implemented algorithms

IGD HV
Cat. Case eMLsga | MOEA/D-1 ppia || emisca| MOEA/D-1 ppia
MSF MSF

ZDT1 4.81E-04 | 7.26E04 | 6.74E04 || 0.91648 | 091621 0.91643

ZDT2 4.34E-04 | 7.13E.04 | 6.76E04 || 0.83314 | 0.83296 0.83301

I ZDT3 5.28E-04 | 1.84E-03 | 8.05E-04 || 1.18979 | 1.18906 1.18976
ZDT4 4.65B-04 | 728504 | 657E04 || 0.91649 | 0.91612 0.91644

ZDT6 4.33E-04 | 7.09E.04 | 528E-04 || 0.75711 | 0.75696 0.75710
UF1 1.89E02 | 4.32E03 | 1.62E-03 || 0.90785 091301 | 0.91597
I UF2 1.40E-02 | 1.05E-02 | 3.15E-03 || 0.90855 0.90987 | 0.91544
UF3 7.23E02 | 2.66B-02 | 2.37E-02 || 0.88339 0.89955 | 0.90493
UF4 417E-02 | 6.63E-02 | 3.52E-02 || 0.80741 0.78548 | 0.81081
WFG4 852E-03 | 862602 | 3.21E-03 || 0.57795 055025 | 0.57981

WFG5 6.34E-02 | 657602 | 6.358.02 || 0.55025 | 054748 0.54985

111 WFG6 3.01E-02 | 102E01 | 3.92E02 || 0.56786 | 0.53709 0.56398
WEGT 3.98E-03 | 1.47B-02 | 2.50E-03 || 0.57970 057482 | 0.58046
WFG8 8.02E-02 | 899E-02 | 7.06E-02 || 0.54610 053890 | 0.54762

WFG9 1.77E-02 | 1.05E01 | 7.83E-02 || 0.56122 | 0.52576 0.53674
UF7 1.41E-02 | 8.55E.03 | 1.81E-03 || 0.86814 0.86754 | 0.87403
v WFG1 7.27E01 | 1.14E+0 | 3.16E-01 || 0.52646 0.38100 | 0.66579
WFG3 7.56E-03 | 127E-02 | 2.99E-03 || 0.73018 0.72817 | 0.73210
UF5 293E-01 | 461501 | 1.90E-01 || 0.63600 054374 | 0.70573

v UF6 8.56E-02 | 167601 | 1.32E.01 || 0.75881 | 0.71955 0.70494
WFG2 445E-03 | 152E02 | 1.80E-03 || 0.76362 0.75807 | 0.76452

MOP4 2.26E-01 | 2.32E-02 | 2.81E-01 || 080538 | 0.87123 | 0.78028
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TABLE 5.4: The average IGD and HV scores of cMLSGA_MOEA /D-MSF_HEIA compared
to the implemented algorithms (continued)

IGD HV

Cat. Case MOEA /D- MOEA /D-
cMLSGA | — = HEIA cMLSGA| 1 HEIA
MOP1 1.79E-01 | 1.72E-02 | 1.82E-01 0.84711 0.91069 0.84523
MOP2 2.40E-01 | 1.42E-02 | 3.41E-01 0.77050 0.82866 0.75270
MOP3 4.27E-01 | 2.01E-02 | 4.72E-01 0.73437 0.79751 0.70537
MOP5 2.04E-01 | 1.48E-02 | 2.55E-01 0.83087 0.91067 0.78768
IMB1 2.21E-02 | 6.22E-03 | 9.67E-03 0.90905 0.91453 0.91336
Vi IMB2 1.19E-01 | 3.86E-02 | 1.35E-01 0.78364 0.85944 0.76757
IMB3 2.39E-01 | 1.08E-02 | 2.84E-01 0.65354 0.79939 0.56865
IMB7 9.72E-04 | 152E-03 | 7.26E-04 || 0.91625 0.91589 0.91637
IMBS8 9.01E-04 | 9.42E-04 | 7.12E-04 || 0.87458 0.87440 0.87468
IMB9 5.30E-04 | 2.67E-03 | 7.20E-04 || 0.80332 0.80241 0.80316
CF1 1.62E-03 1.73E-01 | 3.51E-04 || 0.86815 0.77201 0.86862
VII CF2 4.13E-04 | 124E-03 | 7.98E-04 || 0.90261 0.89100 0.88885
CF3 1.11E-01 | 2.20E-01 1.72E-01 || 0.70583 0.66571 0.68887
CF4 1.49E-02 1.41E-01 | 8.23E-03 || 0.82634 0.71796 0.82509
VI CF5 7.33E-02 | 2.12E-01 | 9.34E-02 || 0.75611 0.64077 0.72727
CF6 3.92E-02 1.38E-01 | 3.61E-02 || 0.87193 0.83261 0.86652
CF7 8.97E-02 | 3.25E+0 1.25E-01 || 0.81267 0.48507 0.77747
IMB11 7.84E-02 | 4.79E-02 | 9.31E-02 0.85975 0.90106 0.84804
IX IMB12 1.81E-02 | 9.20E-04 | 1.33E-03 0.86214 0.87456 0.87433
IMB13 1.02E-02 | 2.99E-02 1.23E-02 || 0.84119 0.82414 0.80209
DAS_CMOP1(5) || 3.52E-02 | 3.29E-02 | 3.40E-01 0.79153 0.79417 0.48040
DAS_CMOP2(5) || 3.66E-02 | 3.30E-02 | 3.31E-01 0.89464 0.89653 0.65248
« | DAS-CMOP3(5) || 9.03E-02 | 6.12E-02 | 2.58E-01 0.81793 0.83660 0.72256
DAS_CMOPA(5) || 7.17E-01 | 4.62E+00 | 1.16E+00 || 0.35384 0.00000 0.19335
DAS_CMOP5(5) || 1.01E4+00 | 4.88E+00 | 9.79E-01 || 0.32504 0.00000 0.35876
DAS_CMOP6(5) || 7.59E-01 | 4.79E+00 | 1.25E+00 || 0.39999 0.00000 0.21723
DAS_CMOP1(6) || 6.35E-01 | 6.39E-01 | 6.39E-01 0.88485 0.88486 0.88545
DAS_CMOP2(6) || 6.51E-01 | 6.56E-01 | 6.54E-01 0.93947 0.93955 0.94001
x1 | DAS.CMOP3(6) [| 6.18E-01 | 6.14E-01 7.06E-01 || 0.92374 0.92365 0.83408
DAS_CMOPA4(6) || 4.00E+13| 1.00E+14 | 4.67E+13 || 0.32820 0.00000 0.29532
DAS_CMOP5(6) || 2.00E4+13| 1.00E+14 | 3.33E+13 || 0.53235 0.00000 0.41944
DAS_CMOP6(6) || 2.67E+13| 1.00E+14 | 7.33E+13 || 0.35028 0.00000 0.17495
DAS_CMOPL(7) || 2.38E-01 | 1.46E-01 | 5.62E-01 0.76396 0.78035 0.34326
DAS_CMOP2(7) || 3.54E-02 | 3.28E-02 | 5.94E-01 0.90513 0.90588 0.47925
x11 | DAS-CMOP3(7) || 190E-01 [ 2.34E-02 [ 7.90E-01 0.71247 0.88098 0.33638
DAS_CMOPA4(7) || 1.87E+00| 4.52E+00 | 1.93E+00 || 0.00266 0.00000 0.00267
DAS_CMOP5(7) || 2.13E400 | 4.47E+00 | 2.13E+400|| 0.00280 0.00000 0.00286
DAS_CMOP6(7) || 1.99E+00| 4.58E+00 | 2.07E+00 || 0.01013 0.00000 0.00262

The best variant in each group is in bold. Results of the cMLSGA are highlighted: in green, if
cMLSGA is better than both of the implemented algorithms; in yellow, if cMLSGA is better than

one of them; and in red, if it is worse than both of the algorithms.
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TABLE 5.5: The average IGD and HV scores of cMLSGA MTS_ MOEA /D compared to the

implemented algorithms

IGD HV

Cat. Case cMLSGA| MTS | MOEA/D|| cMLSGA| MTS | MOEA/D

ZDT1 1.49E-02 | 1.50E-02 | 6.95E-04 || 0.00642 | 090648 | 0.91629

ZDT2 2.70B-02 | 2.66E02 | 6.39E-04 || 0.80511 | 0.80495 | 0.83302

I ZDT3 8.45E-03 | 8.63E-03 | 1.72E03 || 1.17946 | 1.17933 | 1.18955

ZDT4 1.74B-02 | 6.45E.02 | 6.43E-04 || 0.90160 | 0.86694 | 0.91640

ZDT6 2.02E-02 | 5.11E-02 | 5.75E-04 || 0.74401 | 0.71960 | 0.75700

UF1 1.76E-03 | 1.83E-03 | 2.16E-03 || 0.91457 | 001454 | 0.91420

i UF2 1.60E-03 | 1.59E-03 | 8.27E-03 || 091472 | 0.91493 | 0.91020

UF3 417802 | 420E02 | 2.40B-02 || 0.85481 | 0.85081 | 0.89004

UF4 2.038-02 | 2.93E-02 | 6.43E-02 || 0.80657 | 0.80700 | 0.78802

WFG4 2.11E-02 | 1.99E-02 | 2.54E02 || 056038 | 0.56016 | 0.56962

WFG5 7.188-02 | 7.09E02 | 6.75E-02 || 0.54069 | 054193 | 0.54441

I WFG6 4.01E-02 | 415E02 | 1.04E01 || 0.55727 | 0.55495 | 0.53650

WFGT? 2.29E-02 | 2.49E-02 | 3.14E-03 || 0.56348 | 0.56375 | 0.57989

WFGS 1.02E-01 | 1.03E-01 | 6.90E-02 || 052721 | 0.52668 | 0.54799

WFG9 6.86E-02 | 7.31E-02 | 1.70E-02 || 0.53540 | 0.53391 | 0.56120

UF7 3.05E-02 | 321E02 | 3.22E-03 || 0.84069 | 0.83744 | 0.87110

v WFG1 1.06E+0 | 1.0SE+0 | LO7E+0 || 0.33444 | 0.33176 | 0.41342

WFG3 1.39E-01 | 1.39E-01 | 4.02E-03 || 0.66027 | 0.66103 | 0.73139

UF5 1.18E-01 | 1.14E-01 | 3.90E-01 || 0.78097 | 0.77520 | 0.58409

v UF6 6.42E-02 | 6.33E-02 | 1.66E.01 || 0.75534 | 0.75062 | 0.72652

WFG2 1.98E8-01 | 1.37E-01 | 5.86E-03 || 0.68146 | 0.67696 | 0.76335

MOP4 7.78E-02 | 6.61E-02 | 2.64E01 || 0.86325 | 0.86180 | 0.79243

MOP1 1.34E.01 | 1.33E-01 | 1.80E-01 || 0.86360 | 086414 | 0.84632

MOP2 1.98B-01 | 1.77E-01 | 3.41E-01 || 077042 | 0.77422 | 0.75083

MOP3 1.57E-01 | 1.42E-01 | 4.86E-01 || 0.73701 | 0.74107 | 0.69644

MOP5 9.03E-02 | 8.61E-02 | 256E-01 | 0.84970 | 0.85370 | 0.78177

IMB1 3.77TE-02 | 3.88E-02 | 9.51E-02 || 0.89906 | 0.89865 | 0.88632

Vi IMB2 5.06E-02 | 554E-02 | 1.16E-01 || 0.84835 | 0.84624 | 0.83062

IMB3 9.00E-02 | 8.17E-02 | 2.23E01 || 0.77281 | 0.77416 | 0.75966

IMB7 9.15E-03 | 1.52E02 | 7.93E-04 || 0.91268 | 091014 | 0.91629

IMBS 1.31E-02 | 2.16E-02 | 6.48E-04 || 0.86912 | 0.86549 | 0.87469

IMB9 1.96E-02 | 2.83E-02 | 7.70E-04 || 0.79528 | 0.79129 | 0.80334

CF1 2.00B-02 | 2.21E02 | 2.14E-01 || 0.85298 | 0.85014 | 0.69322

VII CF2 1.18E-03 | 1.05E-03 | 9.46E-04 || 0.90085 | 0.90133 | 0.89050

CF3 1.07E-01 | 1.17E-01 | 1.76E-01 || 0.72171 | 0.70842 | 0.69100

CF4 6.10E-03 | 5.70E-03 | 1.50E01 || 0.82673 | 0.82711 | 0.71699

viI CF5 2.29E-02 | 2.34E02 | 2.19E01 || 0.80637 | 0.80805 | 0.66101

CF6 5.47E-03 | 5.45E-03 | 1.33E-01 || 0.89715 | 0.89969 | 0.83604

CF7 2.10E-02 | 246E-02 | 1.285+0 || 0.87248 | 0.86858 | 0.62259

IMB11 1.06E-02 | 1.04E-01 | 9.99E-04 || 0.83442 | 083154 | 0.91626

IX IMB12 7.52E-02 | 7.80E02 | 6.28E-04 || 0.74653 | 0.74401 | 0.87473

IMB13 9.40E-02 | 9.71E02 | 9.54E-04 || 0.66510 | 0.65753 | 0.83291

DAS_CMOPL(5) || 8.21E-02 | 7.82E02 | 3.15E-02 || 0.68022 | 0.69055 | 0.79310

DAS_CMOP2(5) || 7.92E-02 | 8.12E02 | 3.22E-02 || 0.82154 | 082072 | 0.89663

« | DASCMOP3(5) || 1.21E-01 [ 1.18E-01 | L30E-0L || 0.79135 | 0.79662 | 0.77847

DAS_CMOPA(5) || 7.48E-01 | 7.61E01 | 4.50E+00 || 0.30650 | 0.30629 | 0.11013

DAS_CMOP5(5) || 6.77E-01 | 7.44E-01 | 553E+00 || 0.42840 | 040439 | 0.00062

DAS_CMOP6(5) || 7.43E-01 | 7.54E-01 | 5.57E+00 || 0.36687 | 0.37311 | 0.00018
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TABLE 5.5: The average IGD and HV scores of cMLSGA_MTS_MOEA /D compared to the
implemented algorithms (continued)

IGD HV

t.
Ca Case cMLSGA| MTS | MOEA/D|| cMLSGA| MTS | MOEA/D

DAS_CMOP1(6) || 5.99E-01 6.00E-01 6.40E-01 0.79520 0.79697 0.88555
DAS_CMOP2(6) 6.63E-01 6.67E-01 6.56E-01 0.87287 0.87585 0.94014
X1 DAS_.CMOP3(6) || 6.10E-01 6.15E-01 6.14E-01 0.84304 0.84654 0.92450
DAS_.CMOP4(6) || 1.00E-01 1.17E-01 9.33E+4+13 0.46347 0.48105 0.04359
DAS_CMOP5(6) 1.16E-01 1.10E-01 | 8.67E+13 0.53289 0.54365 0.12385
DAS_CMOP6(6) 1.54E-01 1.53E-01 | 1.00E+14 0.49608 0.48583 0.00000
DAS_CMOP1(7) 5.41E-01 5.37E-01 1.43E-01 0.37856 0.38254 0.78147
DAS_CMOP2(7) 6.94E-01 6.53E-01 3.22E-02 0.44382 0.46265 0.90650
XTI DAS_CMOP3(7) 6.65E-01 5.90E-01 2.22E-02 0.42600 0.46383 0.88203
DAS_CMOP4(7) || 1.64E+00 | 1.47E400| 6.65E+00 0.03964 0.06115 0.00279
DAS_CMOP5(7) || 1.45E400| 1.45E+00 | 4.95E+00 0.12796 0.12944 0.15718
(

DAS_CMOP6(7) || 1.40E4+00 | 1.28E400| 6.94E+00 0.10746 0.14639 0.00000
The best variant in each group is in bold. Results of the cMLSGA are highlighted: in green, if
cMLSGA is better than both of the implemented algorithms; in yellow, if cMLSGA 1is better than

one of them; and in red, if it is worse than both of the algorithms.

Comparing the presented cMLSGA variants against the original algorithms, it can be seen
that the highest improvement is exhibited by the cMLSGAIBEA_BCE, Table 5.3. In this
case the performance is improved for 45 out of 60 problems according to the IGD indica-
tor, and on 39 cases for HV, whereas it is only worse on 2 cases for both indicators. For
the most general variant, cMLSGA _MOEA/D-MSF_HEIA, Table 5.4, the better performance is
achieved on 25 and 24 cases for the IGD and HV respectively, and it is worse than both
methodologies on 6 and 7 cases correspondingly. For the last variant, cMLSGAMTS_MOEA /D
, Table 5.5, better results are obtained only on 18 and 14 cases according to the IGD and
HYV respectively, but worse on 8 and 12 cases. Therefore, it can be seen that the cMLSGA
is able to successfully combine distinct search strategies of two methodologies, leading to
a better final performance than implementing algorithms, or at least not worse than them
on average. However, the final performance is strongly dependent on the types of imple-
mented algorithms. In the case where two methodologies with strong diversity mechanisms
are implemented, such as indicator-based IBEA and dominance-based BCE, then cMLSGA
is able to successfully combine both methodologies leading to high gains due to better con-
vergence and diversity. Reduced performance of other two presented variants, which combine
strong convergence-based mechanisms, may be caused by the inability of MLSGA to prop-
erly maintain their search pattern during the collective elimination and reproduction steps,
as discussed in the previous chapter. In the case of MTS and MOEA /D based variants, the
performance of combined algorithms strongly resembles the results of MTS, especially for the
IGD indicator. This is due to the fact that the local searches utilised within MTS “dominate”
the search. The local searches require a substantial number of iterations per generation, and
thus not much computational effort is left for the secondary mechanisms, such as MLSGA
and MOEA/D. According to that, if a method is combined with a significantly stronger

convergence-first methodology, such as MTS, the weaker strategy will have negligible impact
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on the search. Therefore, the potential gains are due to dispersed search, which leads to
more uniform results, rather than utilisation of multiple individual-reproduction strategies.
Finally, in the case where the specialist convergence-based methodology is combined with a
general diversity-based one, the cMLSGA is able to maintain distinct searches for both of
them and to maintain their advantages. This indicates, that the cMLSGA provides better
results if two methodologies with contrasting mechanisms are combined, rather than when
one method is outperforming the other. Therefore, the success in combining methodologies is
subject to how similar the methods are. Unsurprisingly, it is very unlikely that the resulting
strategy will outperform specialist-solver on its preferred cases or improve the effectiveness
on problems where at least one of the implemented algorithms achieve a near-perfect results,
e.g. IGD lower than 1 %1072 on UF1-3 cases for MOEA/D-MSF and HEIA. This indicate
that these mechanisms are well adjusted to those problems and any changes within them will
reduce their effectiveness. After all, making the search less focused, by implementation of
additional mechanisms that are created to enhance the overall diversity, will lead to worse
overall performance, especially if the algorithm is already able to obtain excellent results.
For those cases, even more specialist mechanisms are required for higher gains rather than a

general search methodology.

Examining the results for distinct categories of the problems it can be seen that the cMLSGA
exhibits high performance on functions requiring a high diversity. It operates significantly
better on cases with discontinuous search spaces, categories V, VII and VIII, rather than
continuous problems for both sets of objectives; and on diversity- and feasibility-hard func-
tions, categories X and XI. On these problems the cMLSGA IBEA_BCE is better on 21 and
19 out of 23 cases for IGD and HV indicators respectively and worse only in 1 for IGD only;
for cMLSGA _MOEA/D-MSF_HEIA it is better on 13 cases for both indicators and worse in 2
cases only for the HV indicator. Similar principle can be observed on imbalanced problems
categories VI and IX, but in this case it does not applies to cMLSGA _MOEA/D-MSF_HEIA , as
MOEA /D-MSF is specialist-solver for this kind of problems, which is confirmed by the low
IGD values of MOEA /D based algorithms, especially in comparison to the other methods.
The lower impact on the performance of the continuous functions is caused by the additional
region searches provided by ¢cMLSGA which are not necessary as the convergence is more

important for these problems.

However, in order to fully investigate the impact of co-evolutionary approach on the generality,
the developed cMLSGA variants have to be compared with corresponding MLSGA-hybrids.
Similarly, to the previous case the cMLSGAIBEA_ BCE and cMLSGA _MOEA/D-MSF_HEIA are
selected for that purpose. cMLSGAMTS_MOEA/D is discarded, due to strong bias towards the
MTS strategy, thus providing no insight in the matter. The results are presented in Table
5.7 for cMLSGAIBEA BCE and in Table 5.6 for cMLSGA _MOEA/D-MSF_HEIA . Similarly, to
previously presented results, the best variant in each group is in bold and Results of the
cMLSGA are highlighted according to the same rules: green if cMLSGA is better than both
of the corresponding hybrid variants; in yellow if cMLSGA is better than one of them; and

in red if it is worse than both of the algorithms.
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TABLE 5.6: The average IGD and HV scores of cMLSGA_MOEA /D-MSF_HEIA compared
to the corresponding MLSGA variants

IGD HV
MLSGA MLSGA
Cat. Case
cMLSGA | MOEA /D- cMLSGA| MOEA /D-
HEIA HEIA
MSF MSF
ZDT1 4.81E-04 2.10E-03 4.40E-04 0.91648 0.91547 0.91650
ZDT2 4.34E-04 3.86E-03 4.31E-04 0.83314 0.83166 0.83317
I ZDT3 5.28E-04 6.62E-02 5.17E-04 1.18979 1.09604 1.18980
ZDT4 4.65E-04 1.21E400 4.94E-04 0.91649 0.30717 0.91647
ZDT6 4.33E-04 6.51E-03 4.52E-04 0.75711 0.75475 0.75711
UF1 1.89E-02 3.73E-02 1.52E-02 0.90785 0.89149 0.91050
II UF2 1.40E-02 2.60E-02 1.14E-02 0.90855 0.90037 0.91132
UF3 7.23E-02 1.31E-01 5.25E-02 0.88339 0.86490 0.88641
UF4 4.17E-02 7.16E-02 4.34E-02 0.80741 0.78430 0.80703
WFG4 8.52E-03 8.80E-02 1.04E-02 0.57795 0.54128 0.57701
WFG5 6.34E-02 6.72E-02 6.36E-02 0.55025 0.54553 0.54972
ITI WFG6 3.01E-02 1.04E-01 2.63E-02 0.56786 0.53534 0.56957
WEGT 3.98E-03 4.97E-02 5.04E-03 0.57970 0.55894 0.57917
WEFGS 8.02E-02 1.70E-01 9.41E-02 0.54610 0.50707 0.53811
WFG9 1.77E-02 4.26E-02 1.79E-02 0.56122 0.54995 0.56110
UFT7 1.41E-02 2.42E-02 8.42E-03 0.86814 0.85822 0.87127
v WFG1 7.27E-01 1.26E+00 8.88E-01 0.52646 0.36203 0.47343
WFG3 7.56E-03 4.62E-02 9.83E-03 0.73018 0.71108 0.72920
UF5 2.93E-01 6.45E-01 2.33E-01 0.63600 0.44456 0.69318
v UF6 8.56E-02 4.04E-01 7.25E-02 0.75881 0.60583 0.76839
WFG2 4.45E-03 7.87E-02 5.71E-03 0.76362 0.73169 0.76293
MOP4 2.26E-01 6.01E-02 2.24E-01 0.80538 0.85250 0.80629
MOP1 1.79E-01 8.90E-02 1.78E-01 0.84711 0.88199 0.84786
MOP2 2.40E-01 1.92E-01 2.03E-01 0.77050 0.76884 0.77853
MOP3 4.27E-01 2.68E-01 4.16E-01 0.73437 0.71240 0.74328
MOP5 2.04E-01 6.67E-02 1.88E-01 0.83087 0.88720 0.83233
VI IMB1 2.21E-02 3.76E-02 2.28E-02 0.90905 0.90356 0.90877
IMB2 1.19E-01 7.21E-02 1.65E-01 0.78364 0.84472 0.73065
IMB3 2.39E-01 6.01E-02 2.94E-01 0.65354 0.78041 0.53764
IMB7 9.72E-04 1.22E-02 1.29E-03 0.91625 0.91164 0.91612
IMBS 9.01E-04 1.30E-02 1.16E-03 0.87458 0.86946 0.87448
IMB9 5.30E-04 2.60E-02 7.58E-04 0.80332 0.79246 0.80318
CF1 1.62E-03 4.98E-03 2.76E-03 0.86815 0.86589 0.86773
VII CF2 4.13E-04 5.62E-03 3.76E-03 0.90261 0.89953 0.90269
CF3 1.11E-01 3.84E-01 9.27E-02 0.70583 0.60089 0.74682
CF4 1.49E-02 3.54E-02 1.45E-02 0.82634 0.80858 0.82656
VIII CF5 7.33E-02 1.67E-01 5.27E-02 0.75611 0.65903 0.78437
CF6 3.92E-02 3.27E-02 4.80E-02 0.87193 0.88549 0.86365
CF7 8.97E-02 1.85E-01 8.08E-02 0.81267 0.72185 0.83173
IMB11 7.84E-02 7.56E-02 9.40E-02 0.85975 0.87231 0.84612
IX IMB12 1.81E-02 4.40E-02 5.86E-02 0.86214 0.82644 0.76173
IMB13 1.02E-02 7.38E-02 6.52E-02 0.84119 0.71385 0.68021
DAS_CMOP1(5) || 3.52E-02 3.92E-02 4.75E-02 0.79153 0.79733 0.77627
DAS_CMOP2(5) || 3.66E-02 3.72E-02 7.94E-02 0.89464 0.89490 0.85825
x DAS_CMOP3(5) 9.03E-02 5.02E-02 7.94E-02 0.81793 0.84389 0.81990
DAS_CMOPA4(5) || 7.17E-01 4.10E4-00 8.44E-01 0.35384 0.00041 0.29489
DAS_CMOP5(5) || 1.01E+00 3.72E4-00 9.64E-01 0.32504 0.00434 0.33122
DAS_CMOP6(5) || 7.59E-01 4.09E4-00 8.48E-01 0.39999 0.01427 0.35096
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TABLE 5.6: The average IGD and HV scores of cMLSGA_MOEA /D-MSF_HEIA compared
to the corresponding MLSGA variants (continued)

IGD HV
MLSGA MLSGA
Cat. Case MLSGA | MOEA /D MLSGA| MOEA,/D
¢ | mEIA || € "| HEIA
MSF MSF

DAS_CMOP1(6
DAS_CMOP2(6

6.35E-01 6.29E-01 6.35E-01 0.88485 0.88401 0.88484
6.51E-01 6.48E-01 6.51E-01 0.93947 0.93879 0.93948

(6)
(6)

X1 DAS_CMOP3(6) 6.13E-01 6.11E-01 6.28E-01 0.92374 0.92205 0.90834
DAS_CMOP4(6) || 4.00E+13 1.00E+14 1.33E4-13| 0.32820 0.00000 0.48247
DAS_.CMOP5(6) || 2.00E+13| 1.00E+14 2.67TE+13 0.53235 0.00000 0.50688
DAS_CMOP6(6) || 2.67E+13 9.33E+13 2.67E+13|| 0.35028 0.05943 0.35880
DAS_.CMOP1(7) 2.38E-01 1.53E-01 5.72E-01 0.76396 0.77841 0.32827
DAS_.CMOP2(7) || 3.54E-02 3.69E-02 5.22E-01 0.90513 0.90439 0.53218

XTI DAS_CMOP3(7) 1.90E-01 3.43E-02 6.73E-01 0.71247 0.87744 0.38772
DAS_CMOPA4(7) || 1.87E4+00| 3.65E400 1.88E+00 0.00266 0.00405 0.00562
DAS_CMOP5(7) || 2.13E400 3.50E+-00 2.08E4-00|| 0.00280 0.01722 0.01349
DAS_CMOP6(7) || 1.99E400| 3.43E+400 2.04E4-00 0.01013 0.00020 0.00575

The best variant in each group is in bold. Results of the cMLSGA are highlighted: in green, if
cMLSGA is better than both of the implemented algorithms; in yellow, if cMLSGA 1is better than

one of them; and in red, if it is worse than both of the algorithms.

TABLE 5.7: The average IGD and HV scores of cMLSGA_IBEA_BCE compared to the
corresponding MLSGA variants

IGD HV
Cat. Case MLSGA MLSGA CMLSGA MLSGA
IBEA | BCE IBEA | BCE
7ZDT1 7.45E-04 | 4.23E-04 | 1.85E-02 0.91638 0.91650 0.90596
7ZDT?2 7.35B-04 | 4.20E-04 | 1.61E-01 0.83305 0.83316 0.71085
I 7ZDT3 8.856-04 | 5.31E-04 | 6.20E-02 1.18970 1.18978 1.10333
ZDT4 1.60E-03 | 1.29E-03 | 2.18E+01 || 0.91572 0.91490 0.00000
7ZDT6 2.15B-03 | 1.76E-03 | 2.34E-02 0.75610 0.75582 0.74902
UF1 2.14E-02 | 2.68E-02 8.35E-02 0.90235 0.89354 0.86041
II UF2 2.42E-02 | 1.89E-02 | 4.57E-02 0.89605 0.89856 0.88702
UF3 1.01E-01 | 1.38E-01 2.35E-01 0.85258 0.73605 0.82537
UF4 4.94E-02 | 5.58E-02 6.36E-02 0.80240 0.80153 0.78584
WFG4 3.00E-02 | 2.58E-02 | 9.04E-02 0.56737 0.56963 0.53838
WFG5 6.52E-02 | 6.40E-02 | 6.84E-02 0.54747 0.54877 0.54408
III WFG6 5.34B-02 | 5.26E-02 | 6.47E-02 0.55725 0.55821 0.54981
WFG7 1.79E-02 | 1.48E-02 | 4.16E-02 0.57361 0.57429 0.56170
WFGS 1.11E-01 1.06E-01 1.57E-01 0.53088 0.53281 0.50893
WFG9 3.17E-02 | 2.71E-02 | 3.93E-02 0.55521 0.55717 0.55048
UF7 1.37E-02 | 2.36E-02 9.22E-02 0.86194 0.85879 0.81115
v WFG1 1.03E4+00 | 9.77E-01 | 1.26E+00 0.41956 0.43486 0.36311
WFG3 2.70E-02 | 2.33E-02 | 5.10E-02 0.72093 0.72229 0.70894
UF5 3.17B-01 | 2.38E-01 | 1.68E+00 0.59333 0.65637 0.03826
v UF6 1.12E-01 | 6.09E-02 | 4.96E-01 0.71427 0.77382 0.49649
WFG2 1.16E-02 | 1.10E-02 | 7.68E-02 0.75807 0.75665 0.72572
MOP4 3.03E-01 2.62E-01 | 2.30E-01 0.76362 0.79130 0.80036
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TABLE 5.7: The average IGD and HV scores of cMLSGA_IBEA _BCE compared to the
corresponding MLSGA variants (continued)

IGD HV

Cat. Case MLSGA MLSGA
eMLSGA ——5FA [ BCE eMLSGA ——5FaA [ BCE
MOP1 1.83E-01 | 1.82E-01 | 1.84E-01 || 0.84482 | 0.84618 | 0.84415
MOP2 3.71E-01 | 3.55E-01 | 3.26E-01 || 0.73532 0.74987 | 0.75299
MOP3 409E-01 | 4.09E-01 | 4.66E-01 | 0.74999 | 0.74999 | 0.70705
MOP5 2.74E-01 | 2.20E-01 | 2.91E-01 || 0.78560 | 0.82433 | 0.76377
vI IMB1 2.11E-01 | 2.17E-01 | 221E-01 | 0.84770 | 0.84553 0.84378
IMB2 1.84E-01 | 1.64E-01 | 1.96B-01 || 0.73357 | 0.79904 | 0.72184
IMB3 2.54E-01 | 2.60E-01 | 2.46E-01 || 0.66016 0.65853 | 0.68427
IMB7 450E-03 | 1.22E-03 | 1.42E-01 || 091487 | 0.91615 | 0.85287
IMBS 433E-03 | 1.62E-03 | 2.19E-01 || 0.87317 | 0.87429 | 0.76823
IMB9 381E-03 | 5.76E-04 | 4.11E-01 | 0.80203 | 0.80340 | 0.57700
CF1 4.58E-03 | 3.36E-02 | 1.66E-02 || 0.86708 | 0.83133 0.86263
VII CF2 7.52E-03 | 1.41E-02 | 1.15E-02 | 0.89599 | 0.88803 0.89572
CF3 1.98E-01 | 1.35E-01 | 5.00E-01 || 0.68204 | 0.71412 | 0.39782
CF4 4.38E-02 | 464E02 | 6.21E-02 || 0.79853 | 0.79157 0.79578
VI CF5 1.06E-01 | 1.10E-01 | 3.06E-01 || 0.72568 | 0.73214 | 0.55742
CF6 5.30E-02 | 8.50E-02 | 6.21E-02 || 0.86700 | 0.84685 0.84730
CF7 1.55E-01 | 1.30E-01 | 3.93E-01 || 0.78466 | 0.80366 | 0.59798
IMB11 9.59E-02 | 1.26E-01 | 1.24E-01 | 0.84317 | 0.82073 0.81618
IX IMB12 6.01E-02 | 1.15E-01 | 7.07E-02 || 0.76028 | 0.72108 0.74990
IMB13 6.62E-02 | 1.35E-01 | 951E-02 || 0.67945 0.62224 0.66042
DAS_.CMOP1(5) || 1.04E-01 | 2.93E-01 | 3.69E-01 || 0.72380 | 0.49878 0.44898
DAS_.CMOP2(5) || 5.42B-02 | 2.69E-01 | 3.19E-01 || 0.87928 | 0.69356 0.64737
« | DAS-CMOP3(5) || 1.67E-01 [ 3.73E-0L | 356E-01 || 0.75555 0.69200 0.60317
DAS_CMOP4(5) || 8.17E-01 | 5.26E-01 | 1.39E+01 || 0.30318 | 0.44712 | 0.00000
DAS_CMOP5(5) || 1.13E4+00 | 6.05E-01 | 1.39E+01 || 0.24288 | 0.49548 | 0.00000
DAS_.CMOP6(5) || 1.09E+00 | 6.37E-01 | 1.29E+01 || 0.19313 | 0.42770 | 0.00000
DAS_.CMOP1(6) || 6.35B-01 | 7.19E-01 | 7.43E-01 || 0.88482 0.63547 0.55531
DAS_.CMOP2(6) || 6.50B-01 | 7.62E-01 | 7.85E-01 || 0.93940 | 0.76739 0.71643
«1 | DAS.CMOP3(6) || 6.33E-01 | T74GE-01 | 7.18E-01 || 0.89878 | 0.75389 0.78947
DAS_CMOP4(6) || 1.33E+13 | 2.61E-01 | 1.00E+14 || 0.35899 | 0.59663 | 0.00000
DAS_CMOP5(6) || 4.00E+13 | 2.21E-01 | 1.00E+14 || 0.34421 0.62578 | 0.00000
DAS_CMOP6(6) || 2.67E+13 | 1.33E+13 | 1.00E+14 || 0.30961 0.44050 | 0.00000
DAS_CMOP1(7) || 2.33B-01 | 5.30E-01 | 5.94E-01 || 0.71547 | 0.36785 0.29884
DAS_CMOP2(7) || 3.48E-02 | 2.55E-01 | 3.64E-01 || 0.90529 | 0.71071 0.61015
<11 | DAS.CMOP3(7) || 1.90E-01 | 231E-0L | G.99E-0l || 0.70016 | 0.6839 0.36955
DAS_CMOPA(7) || 1.17E4+00 | 6.68E-01 | 1.15E+01 || 0.12651 0.34021 | 0.00000
DAS_CMOP5(7) || 1.31E4+00 | 9.24E-01 | 1.10E+01 || 0.18589 | 0.34486 | 0.00000
DAS_CMOP6(7) || 1.24E+00 | 9.72E-01 | 1.22E+01 || 0.13717 | 0.26472 | 0.00000

The best variant in each group is in bold. Results of the cMLSGA are highlighted: in green, if
cMLSGA 1is better than both of the implemented algorithms; in yellow, if cMLSGA is better than

one of them; and in red, if it is worse than both of the algorithms.

From the presented results it can be seen that cMLSGA_MOEA /D-MSF_HEIA is better than the
corresponding MLSGA variants on 27 cases for the IGD and on 24 cases for the HV, whereas it
only exhibits worse performance on only 7 and 6 cases, respectively. The cMLSGA IBEA_BCE
outperforms both MLSGA hybrids on the 22 test problems for the IGD indicator and 24
problems for the HV indicator. For both indicators it has a lower performance on 2 cases

only. This demonstrates that the cMLSGA approach increases the generality of the search
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over the original MLSGA, similarly when comparing to the implemented algorithms. While
the cMLSGA generally outperforms the MLSGA, this is usually not the case for some of
the test problems where a higher diversity of the search is preferred, such as the imbalanced
and constrained cases, categories VI-XI. MLSGA is developed to improve the diversity of the
search and therefore these problems are highly suited to its mechanisms. Furthermore, the
results indicate that the cMLSGA is often hindered by worse of the implemented algorithms,
e.g. cMLSGA_IBEA BCE on DAS_CMOP4-6, where IBEA is having good results and BCE
is unable to find any valid solutions. Therefore, co-evolutionary approach leads to a higher
generality of the performance across all problems, but it is unlikely to outperform a specialist-

solver, diversity-based in that case, on its preferred problem, as there is no-free-lunch after.

5.3 General-solver approach

In this chapter the co-evolutionary-based variant of the MLSGA, denoted as cMLSGA, was
proposed in order to enhance generality across different type of problems. Presented results
show that the c MLSGA is able to successfully combine the advantages of both implemented
methodologies, while maintaining the “diversity-first, convergence-second” behaviour seen in
the previous iterations of MLSGA. Therefore, leading to a more general approach with a
strong focus on the diversity. In most of tested cases, the performance of cMLSGA is better,
or at least in between the two utilised methodologies, especially on the diversity-demanding
problems such as discontinuous, constrained and bias functions. This indicates that the
proposed methodology while providing a more general performance is usually limited by the
worst of the implemented strategies. Therefore, the cMLSGA is highly unlikely to outperform
the specialist-solvers on their favoured cases, or the problems where a strong convergence is

needed. However, this behaviour was expected from the general-solver type of algorithm.

As the performance of the cMLSGA is bounded by the implemented algorithms a question
could be raised, how to select the best combination of algorithms in practice. Unfortunately,
currently there is no practical mean to assign the algorithms to sub-populations in the way
that would be most suited for a given problem in the cases with limited knowledge about
the search space. Here, the combination of HEIA and MOEA /D-MSF is suggested, as these
methodologies show the most “general” behaviour, due to utilisation of two complimentary
strategies: strong convergence of MOEA /D-MSF; and a high diversity/generality of HEIA.
Obviously, it is still possible, that the performance of resulting cMLSGA will be low on a
particular problem. Nevertheless, this applies to any existing methodology, but it is here sug-
gested that by combination of two distinct search patters and utilisation of the diversity-first
approach, cMLSGA's chances of success are significantly higher than other current state-of-
the-art algorithms on cases where the solver has to be chosen in the uninformative process.
However, in order to further validate these claims and finally validate the cMLSGA's per-
formance as the diversity-oriented general-solver, it has to be comprehensively compared
with the top-performing algorithms taken from the current state-of-the-art, including the

simulations on practical problems.






Chapter 6 Applying the MLSGA
to the practical problems and

comparison with the current
state-of-the-art

In this chapter, the “diversity-first” general-solver approach of the MLSGA is validated and it
is evaluated if that approach is beneficial for the optimisation of practical problems. Firstly,
the MLSGA's performance is compared with the state-of-the-art algorithms on the bench-
marking set utilised in previous chapter, to find the best general-solver genetic algorithm. In
the next step, the test set is expanded by functions with 3+ objective in order to evaluate if
the previous findings apply to the cases with more than two objectives. Finally, the MLSGA
and top performing algorithms from the current state-of-the-art are applied to three selected

practical problems.

6.1 Rules and parameters

Similarly, to the previous chapters, the simulations are performed over 30 separate runs, with
300,000 function evaluations for each run, and both IGD and HV are used as the performance
indicators. Furthermore, due to the fact that simulated algorithms utilise different population
sizes, all Pareto optimal fronts are limited to 600 individuals, for the purposes of IGD and

HYV calculation, in order to assure the fairness of comparison.

Two MLSGA approaches, MLSGA-hybrid and cMLSGA, are compared with eight current
state-of-the-art algorithms: U-NSGA-III [34], MOEA/D [35], MOEA /D-MSF and PSF [83],
MTS [93], IBEA [121], BCE [103] and HEIA [36], which are chosen due to reasons detailed in
Chapter 4. Those are utilised as is, if the code was provided or recreated based on the original
publications and their principles of working can be found in the corresponding literature.
However, for all algorithms, where the constraint handling was not originally implemented,
such as MOEA/D, the same strategy as in the MLSGA is applied, which is described in
Chapter 3. For the comparison, the MLSGA_HEIA and cMLSGA_MOEA/D-MSF_HEIA variants
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are selected as hybrid and co-evolutionary variant of the MLSGA respectively, due to highest

focus on generality and diversity of the search as discussed in Chapters 4 and 5

The MLSGA-hybrid and cMLSGA are using the same parameters as in Chapters 4 and 5
respectively, whereas other algorithms utilises the same setting of hyper-parameters as in the
original publications. Corresponding values of these parameters for each tested algorithm

can be found in Appendix E.

6.2 Rankings on the multi-objective test sets

6.2.1 Two-objective problems

Performances of selected MLSGA-hybrid and cMLSGA variants are compared with the cur-
rent state-of-the-art on 60 two-objective cases. The same test set as for evaluation of the
cMLSGA in Chapter 5 is utilised. It is summarised in Table 5.2. The comparison is pre-
sented in Table 6.1 in the form of average ranking, according to the IGD and HV indicators
for each category of problem. In addition, the average ranks across all tested problems and
the standard deviations of ranks for each algorithm are provided as well to further evaluate

the generality of each algorithm.

From presented ranking it can be seen that the best solver on average is cMLSGA, 3.60/3.82
for the IGD/HV metrics; the MLSGA-hybrid comes second with 4.33/4.15 for the IGD/HV
indicators; whereas HEIA is third with 4.40/4.58 respectively. Higher differences in the HV
scores indicates that the cMLSGA is more likely to promote a high diversity than HETA but
is less likely to do so than MLSGA-hybrid. In addition cMLSGA is shown to be more general
than both of them, as it has a lower deviation in performance with smaller standard deviations
of its positions in the rankings, 1.57/1.58 for the IGD/HV compared to the MLSGA's and
HEIA's, 1.93/1.98 and 2.59/2.59 respectively. The differences in robustness are illustrated in
Fig. 6.1, where the occurrence of each rank is presented for the MLSGA-hybrid, cMLSGA
and HETA algorithms. All three algorithms are often the top performers, rank 1 and 2,
with HEIA and MLSGA-hybrid being the first more regularly, 11 times for the IGD and 10
for the HV for HEIA algorithm, and 8/5 for the MLSGA-hybrid, compared to 4/7 for the
c¢cMLSGA. However, when HEIA and MLSGA-hybrids show low performance on a problem
they performs very poorly with rank 8 eight times for both indicators for HEIA, and 1/2 for
MLSGA-hybrid; rank 9 one time for both algorithms according to HV and once according
to IGD for MLSGA-hybrid; and rank 10 two times for the IGD and one time for the HV for
HEIA only. Whereas the lowest rank for cMLSGA is 7 and it has a high occurrence of the 37,
4% and 5" positions. This demonstrates that the cMLSGA is the best general-solver and it
further proves a higher specialisation of the MLSGA-hybrid in comparison to the cMLSGA.



TABLE 6.1: Ranking of the 10 state-of-the-art genetic algorithms according to the average performance on distinct categories of two-objective problems
according to the IGD/HV indicators.

Category U'l\ﬁIGA' MOEA/D M%}é%/ D- M(K/[Esl;/ D- BCE IBEA MTS HEIA cMLSGA| MLSGA
I 5.60/3.60 4.00/4.80 5.60/6.00 7.60/8.20 | 9.40/9.60 | 8.00/7.80 | 8.40/8.40 | 3.40/3.60 | 1.60/1.80 | 1.40/1.20
1T 8.00/8.33 3.00/3.67 4.67/4.33 3.33/4.00 | 9.00/8.33 | 10.0/10.0 | 2.67/4.00 | 1.33/1.00 | 7.00/6.67 | 6.00/4.67

111 3.43/3.71 5.43/5.57 8.43/8.14 6.29/6.14 | 7.43/7.14 | 7.86/7.71 | 6.43/8.00 | 2.86/2.43 | 2.71/2.29 | 4.14/3.86
v 3.67/3.67 3.67/4.00 6.67/6.67 5.67/5.67 | 9.00/8.67 | 7.00/7.00 | 8.67/9.67 | 1.00/1.00 | 4.67/4.33 | 5.00/4.33
v 4.75/6.25 6.50/5.25 6.00/6.00 5.75/5.00 | 8.75/8.75 | 8.00/7.75 | 3.50/4.25 | 4.25/5.00 | 4.00/3.75 | 3.50/3.00
VI 5.90/4.90 5.60/5.50 3.10/3.20 2.40/2.60 | 8.90/9.00 | 8.50/8.40 | 5.10/5.40 | 5.40/5.80 | 4.60/4.80 | 5.50/5.40
VII 7.00/4.33 6.33/7.33 7.00/6.67 5.67/7.00 | 7.33/7.33 | 9.00/9.00 | 4.67/3.67 | 2.67/5.33 | 1.67/2.67 | 3.67/1.67
VIII 5.25/4.50 7.75/7.00 8.25/8.00 7.00/7.75 | 7.25/7.50 | 9.50/9.75 | 1.00/1.00 | 3.00/4.00 | 3.25/2.75 | 2.75/2.75
X 8.33/8.00 1.00/1.33 3.67/3.00 2.67/2.67 | 6.67/6.33 | 10.0/10.0 | 8.67/9.00 | 4.00/4.67 | 3.67/3.33 | 6.33/6.67
X 4.33/4.67 5.67/5.50 5.50,/5.92 4.33/4.33 | 9.83/9.75 | 7.00/6.33 | 3.83/4.00 | 6.67/6.17 | 3.67/4.00 | 4.17/4.33
X1 5.00/4.67 6.58/4.25 6.58/6.25 5.92/5.75 | 8.58/9.08 | 7.67/7.50 | 2.67/4.67 | 6.00/4.50 | 2.50/4.17 | 3.50/4.17
XI1T 4.17/4.33 5.00/3.67 5.33/6.08 4.67/3.83 | 9.67/9.42 | 4.33/4.17 | 4.67/4.83 | 7.00/7.67 | 4.33/5.00 | 5.83/6.00

Overall 5.22/4.85 5.28/4.94 5.76/5.78 4.98/5.04 [ 8.61/8.58 | 7.87/7.72 | 4.95/5.55 | 4.42/4.58 | 3.60/3.82 | 4.33/4.15

std 2.59/2.68 2.95/2.75 2.68/2.78 2.67/2.86 | 1.47/1.55 | 2.35/2.44 | 3.14/3.04 | 2.59/2.59 | 1.57/1.58 | 1.93/1.98

The best algorithm in each category is highlighted in green, the second and third best solvers are highlighted in orange and red, respectively.
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Comparing distinct categories of problems, it can be observed that cMLSGA and MLSGA-
hybrids are achieving a significantly better performance on simple, concave and discontinuous
cases without constraints, and constrained problems, categories I, III, V, VII, X and XI,
respectively. Furthermore, a high performance can be observed on constrained functions with
continuous characteristics, category VIII, but with a clear domination of the MTS algorithm,
rank 1 on every problem of this type, indicating that it is specialist-solver for those cases. This
further supports previous findings by showing a high focus on diversity of the MLSGA-based
methodologies. For imbalanced problems, categories VI and IX, the highest performance is
achieved by MOEA /D based solvers, further indicating that decomposition is preferred on
those type of problems.

Comparing cMLSGA and MLSGA-hybrid, it can be seen that the cMLSGA is usually ex-
hibiting a better performance on the problems where HEIA is showing a low effectiveness,
categories VI, VII, X, XI and XII. Here it is suggested that it is due to implementation of a
second search strategy, which helps to maintain a high performance on more kind of cases,
whereas MLSGA-hybrid is strongly bounded by a single evolutionary algorithm, and thus its

performance on a particular problem.
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FI1GURE 6.1: Occurrence of ranks for HEIA, cMLSGA and MLSGA-hybrid algorithms on
two-objectives benchmarking problems.
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6.2.2 Problems with 3+ objectives

In order to operate on problems with more than 2 objectives, the original MLS-U fitness
separation strategy has to be modified. Here a simple extension of the MLS-U strategy is
proposed, where M + 1 collective types are utilised for M-objective problem:

1. In Type-1 assign {f1,..., far} to collective and individual-level

2. In Type-i, where {i = 2,..., M + 1}, assign {f1,..., far} to individual-level and {f;_1}

to collective-level

Therefore, the first type of collectives contains all objectives on both levels of selection, and
the rest of types contains a distinct objective on the collective-level, and all objectives on
the individual-level. Exemplar fitness assignments to each level of selection for 3 and 5
objectives cases are presented in Table 6.2. For both number of objectives, the MLSGA _U-
NSGA-IIT and MLSGA_MOEA /D-MSF_U-NSGA-III are used as hybrid and co-evolutionary variant
respectively, due to the low performance of HEIA on problems with more than two-objective.
The hyper-parameters for MLSGA-hybrid and cMLSGA remains as presented in Chapter 4
and 5 respectively. Interestingly, 8 collectives are preferred for 5 objectives, despite of having
less than 2 groups of each type, according to conducted pre-benchmarks. It is most likely
caused by the fact that higher numbers of collectives require more individuals in population
in order to remain effective, as discussed previously in Chapter 4. For the state-of-the-art
algorithms, 1000 population size is utilised as it is providing a better performance. The rest

of parameters remains the same as in previous sections.

In order to operate on more than two-objectives, the test set is extended by 40 three- and
18 five-objective functions. These problems, are divided into categories, following the same
rules as for the two-objective cases, as summarised in Table 6.3. All presented problems have
three objectives, with distinction that the scalable functions that are used in both 3- and

5-objective benchmarks are in bold.

TABLE 6.2: Fitness functions used on each level of selection, depending on the collective
type, for optimisation of 3- and 5-objective problems.

Type of collective | Collective-level | Individual-level

3 objectives

1 fi(z)

2 f2(x) fi(z), f2(x) and f3(z)

3 f3(2)
5 objectives

1 fi(z)

2 fa(z)

3 f3(z) f1(@), f2(2), f3(), fa(z) and f5(x)

4 fa(z)

5 f5(x)
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TABLE 6.3: Summary of the utilised test set with 3+ objectives

Category ‘ Problem ‘ d ‘ Additional properties
Unconstrained
DTLZ2 M+9
DTLZ3 M+9 Multimodal
DTLZ4 M-+9 Biased
DTLZ5 M+9 Degenerated
DTLZ6 M+9 Degenerated, Biased
UF8 30 Complex PS
I. Concave UF10 30 Complex PS
WFG4 2M+18 Multimodal
WFG5H 2M+18 Deceptive
WFG6 2M+18 Non-separable
WFEFGT 2M+18 Biased
WFGS8 2M+18 Biased, Non-separable
WFG9 2M+18 Biased, Non-separable, Deceptive
DTLZ1 M-+4 Linear, Multimodal
IV. Linear/Mixed WFG1 2M+18 Biased, Mixed
WFG3 2M+18 Non-separable, Degenerated, Linear
DTLZ7 M+19 Mixed, Multimodal
V. Discontinuous UF9 30 Complex PS
WFG2 2M+18 Convex, Non-Separable
MOP6 10 Linear
MOPT7 10 Concave
IMB4 10 Linear
VI. Imbalanced MBS 10 Concave
IMB6 10 Linear
IMB10 10 Linear
Constrained
DTLZS8 10M Mixed, Degenerated, Biased
DTLZ9 10M Concave, Degenerated
VII. Discontinuous CF8 10 Concave, Degenerated, Complex PS
CF9 10 Concave, Complex PS
CF10 10 Concave, Complex PS
IX. Imbalanced IMB14 10 Linear
DAS-CMOP7(5) 30 Linear, Degenerated, Discontinuous
X. Diversity-hard DAS-CMOPS(5) 30 Concave, Discontinuous
DAS-CMOP9(5) 30 Concave, Discontinuous, Biased
DAS-CMOP7(6) 30 Linear, Degenerated, Discontinuous
XI. Feasibility-hard DAS-CMOPS(6) 30 Concave, Discontinuous
DAS-CMOP9(6) 30 Concave, Discontinuous, Biased
DAS-CMOPT7(7) 30 Linear, Degenerated, Discontinuous
XII. Convergence-hard | DAS-CMOPS8(7) 30 Concave, Discontinuous
DAS-CMOP9(7) 30 Concave, Discontinuous, Biased

d denotes the number of decision variables.

The scalable problems are in bold. M denotes

the number of objectives in the scalable problems.

The results are presented in the form of an average ranging on each category of the problem,

according to the IGD and HV indicators, in Table 6.4 for 3 objectives functions and in Table

6.5 for 5 objectives.



TABLE 6.4: Ranking of the 10 state-of-the-art genetic algorithms according to the average performance on distinct categories of three-objective problems

according to the IGD/HV indicators.

Category U'I\EIG A- MOEA/D MCK/}ES’;/ D- M%]Z%/ D- BCE IBEA MTS HEIA cMLSGA | MLSGA
I 3.69/4.15 4.23/3.54 5.54/6.46 7.00/6.92 7.77/8.23 6.69/4.92 8.00/8.54 4.38/3.69 2.92/3.15 4.77/5.38
v 2.67/2.33 4.00/5.00 5.33/5.00 6.33/7.33 10.00/9.67 | 4.00/5.33 8.33/9.33 3.33/1.33 4.67/4.00 6.33/5.67
v 3.00/2.33 8.00/5.33 5.33/5.33 7.33/6.33 4.33/7.67 7.67/8.33 5.67/9.00 5.00/4.33 3.67/2.33 5.00/4.00
VI 6.50/7.17 4.17/4.83 1.17/1.33 2.17/2.33 7.33/6.67 9.83/9.83 6.83/7.33 5.50/5.00 5.00/4.50 6.50/6.00
VII 5.00/4.20 5.80/5.70 5.60/6.10 4.80/6.00 6.20/6.90 7.20/7.00 3.80/3.70 7.80/6.40 3.60/3.40 5.20/5.60
IX 5.00/5.00 1.00/3.00 2.00/1.00 4.00/2.00 6.00/8.00 9.00/9.00 | 10.00/10.00| 3.00/4.00 7.00/6.00 8.00/7.00
X 5.33/6.67 9.00/7.00 6.33/7.83 6.00/6.67 10.00/9.50 | 4.33/4.33 3.33/5.00 5.67/3.67 2.00/1.67 3.00/2.67
XI 1.00/4.33 6.67/6.33 8.33/8.17 8.33/8.17 8.33/8.17 5.83/5.67 7.50/7.50 4.00/3.00 3.00/2.33 2.00/1.33
XII 3.67/4.00 9.33/8.17 5.67/7.33 5.33/7.17 9.33/8.67 5.33/5.33 6.00/6.33 4.00/3.33 2.67/1.67 3.67/3.00
Overall | 4.100/4.550 | 5.525/5.050 | 5.050/5.613 | 5.800/6.075 | 7.700/8.013] 6.813/6.350| 6.663/7.375 | 4.950/4.025 | 3.525/3.175| 4.875/4.775
std 2.311/2.291 | 3.060/2.576 | 3.211/3.038 | 2.697/2.619 | 2.339/1.892| 2.669/2.886| 3.127/2.602| 2.397/2.454 | 1.565/1.579 | 2.064/2.454

The best algorithm in each category is highlighted in green, the second and third best solvers are highlighted in orange and red, respectively.

TABLE 6.5: Ranking of the 10 state-of-the-art genetic algorithms according to the average performance on distinct categories of five-objective problem
according to the IGD/HV indicators.

U-NSGA- MOEA/D-| MOEA/D-

Category I MOEA/D MSF PSF BCE IBEA MTS HEIA | cMLSGA | MLSGA

I 2.64/4.50 7.36/4.36 5.27/6.00 7.18/6.64 | 6.09/7.59 | 4.00/2.91 | 8.73/7.95 | 4.18/423 | 4.45/4.95 | 5.09/5.86

1] 5.00/3.33 3.67/4.00 3.67/5.33 6.33/7.67 | 7.00/9.33 | 7.00/4.33 | 5.33/6.00 | 3.67/3.33 | 6.33/5.33 | 7.00/6.33

111 2.50/3.00 | 10.00/3.00 | 5.00/8.00 9.00/9.50 | 4.00/5.00 | 5.50/5.00 | 7.00/9.00 | 3.50/4.00 | 4.50/3.50 | 4.00/5.00

v 5.50/4.75 5.50,/6.00 7.50/7.75 5.50/7.25 | 7.00/4.25 | 4.00/4.00 | 7.00/6.25 | 6.50/5.75 | 3.00/3.75 | 3.50/5.25
Overall | 3.333/4.167 | 6.833/4.333 | 5.222/6.306 | 7.056/7.194 | 6.111/7.222| 4.667/3.500 7.778/7.556 | 4.278/4.222| 4.611/4.722 | 5.111/5.778
std 2.494/2.068 | 2.986/2.309 | 2.954/2.883 | 2.297/2.902 | 2.580/2.155 | 2.848/2.432| 1.959/2.437| 2.578/2.663 | 2.189/2.083| 2.378/2.155

The best algorithm in each category is highlighted in green, the second and third best solvers are highlighted in orange and red, respectively.
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From the presented data it can be seen that a similar behaviour can be observed for three-
objective problems, Table 6.4, as for the cases with only two-objectives. The best general-
solver is the cMLSGA, whereas U-NSGA-III comes second and the HEIA is third. The
IGD rankings are 3.525, 4.100, 4.950 for these algorithms correspondingly, while according
to the HV average ranks are: 3.175, 4.550 and 4.025. Similarly, to the two-objective cases,
the cMLSGA also shows the lowest standard deviations, further proving its high general-
ity. Comparing the occurrence of each rank for U-NSGA-III, cMLSGA and MLSGA-hybrid,
illustrated in Fig. 6.2, it can be seen that cMLSGA is again more likely to avoid a poor per-
formance. In this case, the cMLSGA is more likely to be top performer according to the HV,
but it less likely to exhibit the highest performance according to the IGD metric, as it is often
outperformed by U-NSGA-III. Furthermore, the cMLSGA is significantly more likely to be
third, 13 times for both IGD and HV compared to 8 and 4 times for U-NSGA-III for the HV
and IGD, respectively. In the contrast, U-NSGA-III is significantly more likely to perform
poorly, as in the worst case scenario it is 10" for the IGD and 9*" for the HV, whereas for the
c¢MLSGA the lowest position is 7% with both indicators. Furthermore, U-NSGA-III is more
likely than cMLSGA to achieve ranks 6 and 7. Interestingly, both algorithms are more likely
to be in the middle positions 2"? to 5", showing the distribution that is reflecting a general
performance. This indicates the high generality and universality of both solutions as they are

often outperformed by the specialist-solvers on their preferred cases. For the MLSGA-hybrid

13 -
12 4 B cMLSGA

114 B VILSGA
0. B U-NSGA-III

Occurence of rank

123456789101 2345678 910
HV IGD

FIGURE 6.2: Occurrence of ranks for U-NSGA-III, cMLSGA and MLSGA-hybrid algorithms
on three-objective benchmarking problems
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it can be seen that it is more likely to perform poorly than both cMLSGA and U-NSGA-III,
positions 7" to 10*. This indicates that the MLS-based strategy utilised in MLSGA is less

effective with more than two-objectives.

Similarly, to the previous tests, a high performance of the MLS-based algorithms, especially
the cMLSGA, can be observed for the diversity-hard problems, such as discontinuous and
constrained problems, categories I1I-V, VII, X and XI. Therefore, showing a high focus of that
methodology on the diversity. Lower performance on categories VI and IX, is explained by
the imbalanced structure of those problems, which is favouring the forced problem decompo-
sition, such as mechanisms used in the MOEA /D-based algorithms, as discussed previously.
Interestingly, the cMLSGA is outperforming other solutions on unconstrained cases with 3
objectives and a concave geometry, category 1. Similar principle was observed for the two-
objective problems. This is indicating a higher demand for the diversity on biased problems
with concave Pareto optimal front geometries and a lower adjustment of the current state-
of-the-art for this kind of cases. Similarly, a high performance of the cMLSGA is shown
on the convergence-hard constrained problems, category XII, which indicates that the three-
objective functions of that kind, require more diversity in comparison to their two-objective

counterparts.

cMLSGA is outperforming the hybrid variant on each category of problems on average. It is
here suggested that this is caused by a higher complexity of the problems with more than two
objectives. On those cases, most of the algorithms are not able to accurately approximate the
whole Pareto optimal front and the MLS-based strategy is less effective on them, as indicated
before. Therefore, utilising multiple search strategies is more beneficial than enhancing the

diversity alone, in order to be able to converge on more regions of the objective space.

Lowered performance of the MLSGA methodology on the cases with increasing number of
objectives is further shown with five-objective problems, as presented in Table 6.5. The
cMLSGA is 4*" and MLSGA is 5", while U-NSGA-III and IBEA are showing the most
general-approach. However, in this case a limited set of problems is utilised, with 18 functions
only, where majority of them, 16 out of 18, does not contain any constraints, and only 4 cases
are discontinuous. Furthermore, all simulated problems came from two test sets only, DTLZ
and WFG, and thus the diversity of problem's characteristics is limited. According to that,
it is possible that the utilised 5-objective test set is biased towards certain characteristics and
algorithms. According to that, it is not possible to draw any overarching conclusions about
the best general type solver for the five-objective cases or the lowered performance of the
MLS-based algorithms on them. This is supported by a high performance of the MLSGA-
hybrid and cMLSGA on all from the available five-objective constrained problems, category
V, where cMLSGA comes first in average and MLSGA-hybrid is third.

The lowered performance on the five-objective cases can potentially indicate the limitations
in scalability of the MLSGA approach. With increasing number of objectives, due to utilised
split in fitness function, either: more collectives have to be implemented, resulting in lowered

effectiveness due to small sub-populations; or the fitness separation have to be modified, so



Chapter 6 Applying the MLSGA to the practical problems and comparison with the current
118 state-of-the-art

more than one objective is used during the collective-level fitness calculation, but in this case
the region based search will be strongly hindered. However, the problem with scalability to
a higher number of objectives is shared by all GAs not only MLSGA, as indicated in [144].

6.3 Optimisation of the engineering problems

Two engineering cases, taken from the literature, are used in this section: optimisation of
the spatial arrangement of leisure boats (3DSA) [145] as the two-objective highly constrained
case with a large number of variables, 3 constraints and 68 variables respectively; and the
structural design of a composite stiffened plate [146], two cases with 2 (CLPT2) and 3 objec-
tives (CLPT3) respectively, in order to verify the performance on unconstrained cases with
different number of objectives. The test set is summarised in Table 6.6, with full description

provided in Appendix F.

Similarly, to the previous benchmarks, 600 population size is used for all algorithms except of
the cMLSGA and MLSGA-hybrid, where 1000 individuals are included. Those values have
been selected as the best for corresponding algorithms after the series of pre-benchmarks.
Rest of the operational parameters are kept constant from previous tests and can be found
in Appendix E. As for the practical problems the true Pareto optimal front is not known the
reference front, for the purposes of IGD and HV calculations, is obtained by non-dominated
selection of all the Pareto optimal fronts achieved by every algorithm across all runs. However,
this strategy can result in inaccurate IGD values, as the final front can be biased toward
certain regions and it is not uniformly spread, therefore a stronger emphasis should be put

on the HV metric in order to provide more accurate comparison.

TABLE 6.6: Summary of the utilised test set.

Case \ Objectives \ Variables Constraints

3DSA 2 68 3
CLPT2 2 6 0
CLPT3 3 6 0

6.3.1 Verification of performance

Performance comparison of selected genetic algorithms is presented in Table 6.7 in the form
of ranking according to the IGD and HV metrics. For each algorithm, the average values are
presented with min, max and standard deviation given in brackets in italics. Furthermore,
the results for cMLSGA and MLSGA-hybrid are highlighted in green and blue, respectively.
However, as certain runs on the 3DSA problem do not provide any feasible solutions, only
the runs where at least one valid solution is achieved are included in both tables. This issue

is addressed separately later in this section.
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TABLE 6.7: Ranking of genetic algorithms on the practical problems according to the average
HV/IGD metrics.

Problem
Rank HV IGD
3DSA CLPT2 [ CLPT3 3DSA CLPT2 [ CLPT3
cMLSGA cMLSGA cMLSGA cMLSGA cMLSGA cMLSGA
0.75577[+] 0.84595[+] 0.86162 9.66E-2 8.66E-1[+] 3.72E+0
1 {0.68430; {0.84580; {0.86126; {5.44E-2; {6.54E-1; {3.43E+-0;
0.78542; 0.84626; 0.86371; 1.81E-1; 9.93E-1; 3.96E+-0;
0.02600} 0.00019} 0.00078} 3.73E-2} 1.47E-1} 1.33E-1}
MLSGA MLSGA MLSGA MLSGA MLSGA MLSGA
0.75336[+] 0.84584 0.86155[+] 9.90E-2 9.58E-1[+] 3.81E+0[+]
2 {0.68411; {0.84581; {0.86126; {1.83E-2; {6.59E-1; {3.41E+0;
0.81625; 0.84617; 0.86372; 2.31E-1; 9.86E-1; 4.20E+-0;
0.02500} 0.00006} 0.00070} 4.41E-2} 5.62E-2} 1.86E-1}
U-NSGA-III HEITA HEIA HEIA HEIA HEIA
0.75119 0.84583[+] 0.86104[+] 1.01E-1 1.15E+0[+] 4.10E+0[+]
3 {0.51047; {0.84582; {0.86085; {1.10E-2; {1.00E+-0; {3.79E+-0;
0.84152; 0.84584; 0.86343; 2.57E-1; 1.18E+0; 4.48E+0;
0.07536} 0.00000} 0.00045} 5.71E-2} 2.89E-2} 1.62E-1}
HETA BCE U-NSGA-III U-NSGA-III BCE U-NSGA-IIT
0.75082[+] 0.84574[+] 0.86059[+] 1.06E-1[+] 1.29E40[+] 5.29E+0[+]
4 {0.61978; {0.84573; {0.86047; {8.28E-3; {1.13E+-0; {5.04E+-0;
0.82944; 0.84577; 0.86066; 3.26E-1; 1.33E+0; 5.72E+0;
0.04618} 0.00001} 0.00005} 8.06E-2} 4.75E-2} 1.56E-1}
MOEA/D- MOEA/D- MOEA/D-
MSF MSF MOEA/D PSF U-NSGA-III BCE
0.67597 0.84569]+] 0.85876[+] 2.36E-1 1.57E+0[+] 6.51E+0
5 {0.65040; {0.84566; {0.85858; {2.17E-1; {1.52E4-0; {5.90E+-0;
0.70689; 0.84571; 0.85909; 2.48E-1; 1.63E+0; 7.20E+0;
0.01461} 0.00002} 0.00011} 8.70E-3} 2.57E-2} 2.77E-1}
MOEA/D- MOEA/D- MOEA/D- MOEA/D-
PSF U-NSGA-III MSF MSF MSF MOEA/D
0.66761[+] 0.84566[+] 0.85819 2.37E-1[+] 2.55E+0[+] 1.84E+1
6 {0.64449; {0.84564; {0.85799; {2.21E-1; {2.50E+-0; {1.72E+1;
0.70895; 0.84568; 0.85836; 2.50E-1; 2.67E+0; 1.90E+1;
0.01481} 0.00001} 0.00009} 7.71E-3} 6.65E-2} 4.10E-1}
BCE MOEA/D BCE BCE MOEA/D MONI?SAF/D_
0.60314 0.84549 0.85835 2.57E-1 5.51E+0[+] 2.09E+1[+]
7 {0.39843; {0.84547; {0.85752; {1.81E-1; {5.49E+-0; {2.04E+1;
0.68525; 0.84549; 0.85879; 4.74E-1; 5.57E+0; 2.12E+1;
0.08016} 0.00000} 0.00028} 7.15E-2} 1.75E-2} 1.68E-1}
MOEA/D- MOEA/D- MOEA/D- MOEA/D-
MOEA/D PSF PSF MOEA/D PSF PSF
0.55676[+] 0.84545[+] 0.85580[+] 2.99E-1[+] 5.83E+0[+] 7.80E+1[+]
8 {0.38878; {0.84540; {0.85555; {2.16E-1; {5.66E+0; {4.62E+1;
0.65666; 0.84548; 0.85630; 4.74E-1; 6.03E4-0; 8.5TE+1;
0.08673} 0.00003} 0.00019} 8.07E-2} 9.93E-2} 6.22E+0}
MTS MTS MTS MTS IBEA IBEA
0 0.83886(+] 0.84833[+] inf 3.53E+1[+] 1.33E+2
9 £0.00000; {0.83640; {0.84044; {inf; {1.15E+1; {1.68E+1;
0.00000; 0.84104; 0.85179; inf; 3.15E+2; 4.25E+2;
0.00000} 0.00114} 0.00248} 0.00E+0} 6.36E+1} 1.22E+42}
IBEA IBEA IBEA IBEA MTS MTS
0 0.82854 0.84218 inf 5.25E+1 1.97E+2
10 {0.00000; {0.81107; {0.83710; {inf; {2.22E+1; {7.90E+1;
0.00000; 0.83347; 0.84864; inf; 9.87TE+1; 3.02E+2;
0.00000} 0.00436} 0.00316} 0.00E+0} 2.02E+1} 5.7TE+1}

For each algorithm the average values are presented with min, maz and standard deviation given in
brackets in italics. Results from the cMLSGA and MLSGA-hybrid are highlighted in green and blue,
respectively. [+] indicates if the results are significantly different to the next lower rank.
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TABLE 6.8: Robustness of finding feasible solutions on the 3DSA engineering problem.

Robustness
Algorithm Amount | Percentage
(/30) (%)
cMLSGA 30 100
MLSGA 29 96.67
U-NSGA-III 29 96.67
HEIA 29 96.67
BCE 29 96.67
MOEA /D-MSF 27 90.00
MOEA /D-PSF 27 90.00
MOEA/D 26 86.67
MTS 0 0
IBEA 0 0

Results from the cMLSGA and
MLSGA-hybrid are highlighted in green and
blue, respectively.

From the table it can be seen that the best algorithm on all cases is cMLSGA; the second
best is MLSGA-hybrid; the third in overall is HETA, with rank 3 on the CLPT2 and CLPT3
and rank 4 on the 3DSA for the HV indicator, and rank 3 on all cases for the IGD; and the
U-NSGA-III is fourth on average, as it is 3" on 3DSA, 4** on CLPT3 and 6! on CLPT2
according to the HV, and 4** on 3DSA and CLPT3, and 5" on CLPT?2 according to the IGD.
Bad performance is shown by the MOEA/D based algorithms, mostly ranks 5-8, and the
worst solvers for these problems are MTS and IBEA. Therefore, it can be observed that three
genetic algorithms with a higher emphasis on the generality of the search, MLSGA, HEIA and
U-NSGA-IIT respectively, are outperforming the specialised-solvers, such as MOEA /D and
MTS, on all cases, except for the CLPT2 problem where MOEA /D-MSF, MOEA /D-PSF and
BCE have better diversity than U-NSGA-III. CLPT?2 is the simplest of all problems, which
is potentially explaining why the convergence in this scenario is becoming more important.
Interestingly, all of the general-solvers exhibit similar performance on the highly constrained
3DSA problem, which has a large quantity of variables, while being significantly better than
the specialist-solvers. This indicates that the specialist-solvers are unable to effectively solve

more complex and constrained problems.

No feasible solutions are found within some runs of the highly constrained 3DSA problem.
The robustness of each algorithm in finding feasible solutions on this case is presented in Table
6.8 as the number of times that an algorithm has found at least one feasible solution with the
overall percentage out of 30 runs. Results for the cMLSGA and MLSGA are highlighted in
green and blue, respectively. It can be seen that no algorithm except of the cMLSGA is able
to achieve 100% robustness. Furthermore, robustness of the specialist-solvers is lower than of
the more general ones. MOEA /D has found feasible solutions in 26 out of 30 cases, MOEA /D-
PSF and MOEA /D-MSF in 27/30 cases, while HEIA, U-NSGA-IIT and MLSGA-hybrid have
found feasible solutions in 29 out of 30 cases. Therefore, it can be seen that general-solvers

are not only able to provide more accurate and diverse results, but also are having a higher
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FIGURE 6.3: Achieved Pareto optimal fronts on the 3DSA case

robustness on highly constrained cases. This is essential for the real-world applications, as
often only a single optimisation run is conducted, due to cost and time limitations. That
issue could be reduced by predefining the feasible solutions as the starting population instead
of utilising fully random methods. However, in this case it has been decided not to follow this
approach, as it might promote certain algorithms that are not focused on the search space
exploration, thus reducing the potential for revolutionary designs as leading to final solutions
being close to predefined points. Furthermore, in many real-world cases this adjustment is

not possible, due to the lack of knowledge about where the feasible solutions are located.

The effectiveness of different GAs is further investigated by comparison of the achieved Pareto
optimal fronts. Fronts achieved by each of the benchmarked algorithms are illustrated for the
3DSA problem in Fig. 6.3, CLPT?2 case in Fig 6.4 and CLPT3 in Fig. 6.5. The representative
Pareto optimal front is selected using a HV value closest to the average HV. The results for
MOEA/D-PSF are not included due to a high resemblance to the Pareto optimal fronts
achieved by MOEA /D-MSF. From the graphs, Figs 6.4 and 6.5, it can be observed that for
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FIGURE 6.4: Achieved Pareto optimal fronts on the CLPT2 case

the CLPT2 and CLPT3 all algorithms, except of MTS and IBEA, are able to find a wide
spread set of points, including the boundary regions. However, it can be seen that in the
cases of MOEA /D and MOEA /D-MSF, only a few solutions have been found in the boundary
regions, whereas most points are located in the central regions of the objective space. All
of the presented general genetic algorithms have a far greater uniformity due to a stronger
emphasis on the diversity. For the 3DSA case, Fig. 6.3, it can be seen that cMLSGA,
MLSGA, U-NSGA-IIT and HEIA are able to achieve a diverse set of points, while MOEA /D-
MSF, MOEA/D and BCE are finding only a few random solutions. This further supports
the previous findings that the specialist-solvers are unable to solve complex, constrained

real-world cases, as are failing to provide a sufficient diversity.

Investigating the Pareto optimal fronts obtained by the tested algorithms on practical cases,
some resemblance to the true fronts of the artificial benchmarking functions can be observed.
This is illustrated in Fig. 6.6 for CLPT2 and in Fig. 6.7 for CLPT3. Pareto optimal
front of the CLPT2, Fig. 6.6, is discontinuous and convex, showing similarities to ZDT1,
ZDT4 [30], UF1-3 [31] and MOP1-2, 5 [32]. However, with exception that these benchmarking
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FIGURE 6.5: Achieved Pareto optimal fronts on the CLPT3 case

problems are continuous and with a lower bias towards the central regions of the Pareto
optimal front. Furthermore, CLPT2 introduces an unique form of multimodality, which
is not seen in the artificial problems, due to utilisation of step function. In this case the
number of utilised stiffeners can be either 2,3,4,5,6,7 or 8, leading to seven separate local
optima as illustrated in Fig. 6.8. For CLPT3, Fig. 6.7, the closest problem is DTLZ8 [40],
which also contains two parts of the front: linear, degenerated front; and a planar one.
However, according to presented results a strong bias towards the linear part of the front
can be observed in CLPT3, but this characteristic does not occur in DTLZS8. Furthermore,
in the DTLZ8 the degenerated front is due to inclusion of constraints, while in the CLPT3
there is no constraints. Regarding the 3DSA problem, 3 constraints are used, while the

benchmarking functions are using maximum 2 at max; and more variables are utilised, 68
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FIGURE 6.6: Resemblance of the Pareto optimal fronts obtained on the CLPT2 problem
with selected benchmarking functions.

(B) DTLZ8

FIGURE 6.7: Resemblance of the Pareto optimal fronts obtained on the CLPT3 problem
with DLZ8 function.

comparing to typical 10-30. Furthermore, obtained Pareto optimal fronts on the 3DSA case,

shows that neither algorithm was able to reach the true Pareto optimal front. Therefore,

it is indicating a significant complexity of this problem's search space in comparison to the

artificial constrained problems, where most algorithms with a strong focus on the diversity

have been able to properly approximate the final front.
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FIGURE 6.8: The Local optima of the CLPT2 problem

6.4 Diversity and generality in the current state-of-the-art

In this chapter the current state-of-the-art is evaluated on over 100 benchmarking problems
and 3 practical cases. This is used to define: preferred problem-types for each method-
ology; the best general-solver genetic algorithm; and if the diversity and generality of the
methodology has any impact on the practical applications. It has been found that the
best general-solver methodologies are cMLSGA, HETA and U-NSGA-III, whereas MTS and
MOEA /D-based methodologies have more specialist approach. For MTS, the constrained
and discontinuous problems are preferred; for MOEA /D the highest performance is observed
for the continuous and imbalanced problems. For the general-solvers the preferred areas of
applications also can be observed: biased, discontinuous and diversity-hard constrained prob-
lems for the cMLSGA and U-NSGA-III; continuous and unconstrained problems for HEIA;
whereas BCE and IBEA algorithms performs poorly on most of the tested problems.

Testing on practical problems have shown that general-solver genetic algorithms are preferred
for all tested cases, whereas specialist-solvers struggles to find a wide range of solutions, even
on theoretically “preferred” problems. Therefore, it is likely that those problems possess more
than one dominant characteristic, or they may be defined differently to the benchmarking
sets. These findings are further supported by similar results obtained by other researchers

while evaluating multiple GAs on the engineering problems [62, 146, 147].
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7.1 Discussion

The results show that the high diversity of MLSGA is achieved via a unique sub-regional
search. It is developed by using different fitness definitions on each level of selection and an
additional selection pressure resulting from the collective reproduction. Both mechanisms are
necessary to maintain this unique behaviour. The collective-level creates virtual boundaries,
by strongly penalizing the solutions in certain regions and pushing individuals into the pre-
ferred ones, where each collective has a different favoured region. As the collectives are elimi-
nated unless they maintain the diversity designated by the fitness definitions, even if those are
more converged on the Pareto optimal front, this leads to the promotion of diversity over con-
vergence. Furthermore, due to high independence of collectives they are able to more easily
move around the “gaps” in the objective space created by the constraints or the imbalanced
regions on them. Therefore, the search is less likely to get “stuck” in unfavourable regions,
similarly to other sub-population-based approaches with high independence of groups [46,47],
leading to a better overall diversity of the results, and thus a higher performance on those
problems. According to this, it is suggested that MLSGA is moving from the “convergence-
first” to the “diversity-first” approach. In other methodologies with structured populations,
such as island-model [46], social-model [148-150] and spatial-distance [151,152] based algo-
rithms, the sub-populations have a persistent character and the genetic information exchange
is encouraged in the form of co-operation or competition between groups, showing certain
similarities with the competitive-based approach utilised within the MLSGA. However, in
those algorithms, the between-group mechanisms are based on the same principles as the
individual reproduction, as no fitness separation is used, thereby no additional evolutionary
pressure into different regions is developed that would induce a higher diversity. Further-
more, as indicated in [109] those methodologies usually require a hyper-parameter tuning to

operate effectively on diverse types of problems, unlike the MLSGA.

In decomposition-based methodologies, such as MOEA/D [35], MOEA/D-MSF [83] and
MOEA /D-PSF [83], the diversity is obtained by breaking down the optimised problem into
a set of separate search spaces, each assigned with a distinct sub-population, via predefined

weight vector. Therefore, diversity is dictated by that weight vector, and thus is highly

127
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dependent on its quality, as indicated by other researchers [47,79-82]. Ideally, it should re-
semble the true Pareto optimal front as closely as possible and be uniformly spread. This
is demonstrated in Section 6.2 by a high performance of the MOEA/D based algorithms
on continuous and imbalanced cases. It is due to those algorithms being initially tested
only on those cases, as further shown by their low performance on other kinds of problems.
Therefore, the results contribute towards considering them as specialist-solvers and it is sug-
gested that the continuous problems are preferred cases for the MOEA /D based algorithms,
while the imbalanced problems favour decomposition of the problem. In the MLSGA all
individuals operate on the same space, and no hyper-parameter tuning is required for the
algorithm to operate effectively, as the diversity is obtained via competition between col-
lectives rather than forced by the predefined weight vector. Furthermore, the MLSGA is
more capable of avoiding the infeasible regions in constrained and discontinuous problems
in comparison to decomposition-based methods. This claim is supported by high gains in
performance of the MOEA /D-based variants of MLSGA over the implemented algorithms on
those cases. Whereas, the MOEA /D based algorithms struggle to operate in non-continuous
search spaces. In MOEA /D the weights are defined in straight lines which may pass through

the regions without feasible solutions, leading to an inefficient search.

According to the conducted tests on over 100 test problems and 3 practical cases, detailed in
Chapter 6, there is a correlation between the average performance on the artificial problems
and the effectiveness on engineering cases, as detailed in Table 7.1. It can be seen that
cMLSGA is the best on average on two- and three-objective artificial problems and it is
the best algorithm for the engineering cases as well, while HEIA [36] and U-NSGA-III [43]
usually come second or third on both types of problems. This shows a high usefulness of
genetic algorithms with a more general performance. Therefore, by testing across 100 test
problems, it was possible to gain a good performance on the real cases. Yet, only 2 of the
current state-of-the-art algorithms, NSGA-II and MOEA /D, were tested on that scale, as
shown in Section 2.3. However, most of those benchmarks are coming from other authors
whom are benchmarking against those algorithms, 94 for NSGA-II and 52 problems for
MOEA/D. Therefore, the results from those studies were not impacting the development
of those algorithms. The high generality of the cMLSGA is due to utilisation of multiple
search strategies in the co-evolutionary approach as discussed in Chapter 5. Similar principle
applies to HEIA, where Simulated Binary Crossover (SBX) is combined with the Differential
Evolution based crossover (DE) with Immune Algorithm based re-population of different sub-
groups [36], leading to a higher generality. Interestingly, BCE [103] shows poor performance
on artificial benchmarking, but has a good performance on real problems, further supporting
the importance of more general approach. Lowered performance on engineering problems in
comparison to other general-solvers is due to the choice of evolutionary algorithms utilised
in BCE. It is combination of the indicator-based strategy, similar to IBEA [121], and the
decomposition-based strategy, similar to MOEA /D [35], and both are performing badly on
the engineering problems. The high generality of U-NSGA-III is due to the fact that the
search is not highly constrained, unlike in the decomposition-based methods. In MOEA /D

each individual is hard bounded to the particular weight-vector, which dictates its convergence
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TABLE 7.1: The average rankings on two- and three-objective cases compared to the average
performance on engineering cases.

re Benchmarking problems . .
Position Two-objectives ’%‘lrll)ree-ob jective Engineering problems

1 cMLSGA cMLSGA cMLSGA

2 HEIA U-NSGA-III HEIA

3 U-NSGA-III HEIA U-NSGA-III

4 MOEA/D-MSF MOEA/D BCE

5 MOEA/D MOEA/D-MSF MOEA/D-MSF

6 MTS MOEA/D-PSF MOEA/D

7 MOEA /D-PSF IBEA MOEA /D-PSF

8 IBEA MTS MTS

9 BCE BCE IBEA

and diversity, thus the region of exploration, while in U-NSGA-IIT the individuals have more

freedom of exploration.

The results presented in Chapter 6 show that high diversity is also needed for successful
engineering applications. In that case, MLSGA _HEIA is outperforming the standard HEIA,
despite using the same reproduction mechanisms. This is especially noticeable on the 3D
spatial arrangement of leisure boats (3DSA), where MLSGA-hybrid is obtaining significantly
better results, whereas the difference in performance is not as distinct while solving the
structural design of composite stiffened plates (CLPT2). It is because the 3DSA case contains
multiple constraints, resulting in high quantities of infeasible regions and discontinuities of
the search space, and thus a higher complexity. Furthermore, it is indicated in Chapter 6
that CLPT3 case is biased towards the linear part of the front. This is explaining the low
performance of convergence-based solvers on CLPT3 and 3DSA cases, as it is known that

these characteristics require a higher diversity of the search [29,44].

Interestingly the results indicate that there may be no correlation between performance on
distinct categories of artificial problems and engineering cases of similar type. According to
the presented data, in Chapter 6: MTS should obtain high performance on 3D spatial ar-
rangement of leisure boats case (3DSA), as it is highly effective on constrained benchmarking
cases; MOEA /D-based algorithms should provide good results on unconstrained and imbal-
anced problems such as structural design of composite stiffened plates (CLPT2 and CLPT3);
while HEIA should struggle on highly constrained problems, but it is not valid according
to the presented results. It is suggested that the typical distinction used in artificial bench-
marks, such as constrained/unconstrained, continuous/discontinuous or imbalanced /biased;
do not reflect the complexity of the real-world problems. Therefore, it is likely that these
cases possess more than one dominant characteristic or those may be defined differently to the
benchmarking sets, leading to a higher complexity of the real-world cases and thus require-
ment for a better diversity. This may partly explain a low performance of the specialist-solver
GAs on the engineering problems. Development of specialist-solvers is based on assumption
that benchmarking functions are representative of the practical problems; or at least a similar

real-problems to them exists, and thus an improvement of the performance on these cases will
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lead to better results on the latter. The lack of correlation between the engineering and sim-
ilar artificial problems indicates that this assumption is not valid. However, the limited data
provided in this thesis, one constrained and two unconstrained cases with no details regard-
ing the characteristics of optimised engineering cases, does not allow to draw any overarching

conclusions in this regard.

Therefore, the discussed data supports the hypothesis that the general-solver, diversity ori-
ented genetic algorithms are preferred for the optimisation of real-world problems. It is
suggested that it is due to: their higher chances of success on problems with different char-
acteristics than the benchmarking problems; need for a high diversity of the search on more
complex cases, especially with discontinuous spaces and multiple constraints; and the lack of
needing a prior adjustment to the characteristics of optimised problems, which are usually

not known in advance.

7.2 Limitations

Despite the discussed findings, the presented work has several limitations due to chosen
scope of work, time constraints and limitations of the currently available literature and the

state-of-the-art.

Firstly, this thesis shows that the high diversity and generality is preferred for the engineering
applications, but it is not known if one of them is more important or if both are of the
same significance. Therefore, here it is suggested that both should be considered while
developing new genetic algorithms. However, if one of them is more essential, this knowledge
would allow to further focus a future development, leading to even better methodologies.
This understanding is restrained by two aspects: quality of the benchmarking functions
and quality of developed performance indicators. As discussed in Section 2.3, most of the
diversity-hard test problems, such as DAS-CMOP [44] or CF [31], are developed by the same
groups of researchers, or have similar fitness functions definitions, as their non-diversity-hard
counterparts. Therefore, those may promote certain solutions rather than a higher diversity
of the search by itself. In this thesis, two quality indicators are selected: IGD, with a stronger
focus on uniformity and convergence of solutions and HV, with a stronger focus on spread and
diversity of points; from among over 100 indicators developed [139]. However, all indicators
focus on the quality of the final solutions, rather than the search in overall. Therefore, those
indicators may answer if the final solutions are converged/well-spread/uniform, but do not
provide much information if the methodology has a higher focus on diversity of the search

rather than convergence.

Secondly, it is not known how the findings of this thesis apply to problems outside of en-
gineering. On one hand, cases such as dynamic problems, are shown to require a high
convergence over diversity [104]. This applies even for constrained functions, which usually
require a higher diversity, as presented and discussed in Appendix C. On the other hand,

it is shown that many scientific problems from biology and chemistry, have discontinuous
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search spaces [153—-156], and thus these may require even higher diversity. Furthermore, it is
indicated that for some of them, due to associated measurement error, convergence on the

global optimum is not as important [155].

Thirdly, it is indicated that tested practical problems may have multiple main characteristics
or that these may be different from the benchmarking problems. However, it is not known
what those characteristics are; if those are different than for the artificial cases; and if the

engineering problems have any of them in common.

7.3 Future work

Due to discussed findings and limitations of this thesis the following approaches are suggested

for consideration in the future:

o Investigating the characteristics of engineering problems. This should be done by math-
ematical analysis and full landscape analysis of the problems, including ruggedness and
shape of the fitness landscape; number of local optima; time to reach a local optimum;
the distance between different optima and to the global optimum; the number and lo-
calisation of the infeasible regions; and mapping between search and objective spaces;
in a similar manner to [44,157,158]. This will allow to group the engineering problems
in an analogous manner to the classification used in Chapter 5, and thus to design
new benchmarking problems more accurately, which would resemble the practical cases
to more extent. It is suggested that, if the benchmarking problems would represent
the practical cases more accurately, there would be no need to test algorithms on 100
problems to develop novel search mechanisms, which would be effective for solving the

practical problems.

e Testing the genetic algorithms on a wider range of practical problems, not only from
engineering. This will allow defining, which course of development is preferred for a
particular branch of science or industry, similarly to the diversity/generality for engi-
neering cases and convergence for dynamic problems, as discussed before. It should be
followed by an investigation of the characteristics of those problems, leading to a higher

applicability of new genetic algorithms to the real-world problems.

e Development of a new metric and a new set of test problems created specifically to
evaluate the diversity or modifying the currently existing ones to serve that purpose.
This would allow to better define the “diversity-first” algorithms, and to evaluate if the
diversity or convergence is more preferred in practical applications. The metric should
be a measurement of the overall diversity of the search, not only of the final solutions.
It is suggested that the coverage of the fitness landscape or the search space can be
used for that purpose. Potential solution could be a combinatorial metric based on
the sparseness indicator from the Novelty Search algorithms [113,114], to evaluate the

diversity across search space; and the NSGA-II's crowding-distance [34], for evaluation
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of the objective space. For new test sets, it is suggested that the findings from previous

two points can be used to better tailor “diversity-hard” problems.

7.4 Concluding Remarks

The current state-of-the-art is dominated by specialist-solver genetic algorithms with a strong
emphasis on high convergence. However, those approaches are rarely applied to the real-world
problems, but a more general solutions are used. This thesis investigates if the methodology
with high diversity and generality of the search is preferred for the practical optimisation,

due to a high complexity of those cases.

To investigate this hypothesis Multi-Level Selection Genetic Algorithm is extended to develop
the “diversity-first” general-solver algorithm. This is performed in three main steps: first
it is investigated if the collective-level mechanisms and the fitness separation of MLSGA
can be used to promote a higher diversity; then the hybrid-approach is proposed, where
reproduction mechanisms from the current state-of-the-art are implemented into MLSGA in
order to improve the overall performance while retaining the diversity in each collective; and
finally, multiple reproduction mechanisms are combined in the co-evolutionary approach for

a higher generality of the search, leading to the cMLSGA variant.

It is found that the proposed cMLSGA algorithm is outperforming the current state-of-the-
art on all tested practical problems. Furthermore it is shown that the currently promoted
“convergence-first” specialist-solvers such as MTS [93], MOEA/D [35], MOEA/D-MSF [83]
and MOEA /D-PSF [83] are less suitable for the practical problems than other methodologies
with a higher diversity and generality, such as HEIA [36], BCE [103] and U-NSGA-III [43].
It is concluded that proposed algorithm was successful in developing the “diversity-first”
general-solver approach by utilisation of the additional level of selection and split in the
fitness function, and that the high generality and diversity of the search strategy is needed
for successful real-world applications. Therefore, a higher emphasis should be given on the
development of such methodologies. Furthermore, the development of new algorithms should
be followed by testing on a wide range of artificial and practical problems in order to maximise

the chance of success on the practical problems.
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Abstract

Genetic algorithms are integral to a range of applications. They utilise Darwin’s theory of evolution

to find optimal solutions in large complex spaces such as engineering, to visualise the design space,
artificial intelligence, for pattern classification, and financial modelling, improving predictions. Since
the original genetic algorithm was developed, new theories have been proposed which are believed to

be integral to the evolution of biological systems. However, genetic algorithm development has focused
on mathematical or computational methods as the basis for improvements to the mechanisms, moving
itaway from its original evolutionary inspiration. There is a possibility that the new evolutionary
mechanisms are vital to explain how biological systems developed but they are not being incorporated
into the genetic algorithm; it is proposed that their inclusion may provide improved performance or
interesting feedback to evolutionary theory. Multi-level selection is one example of an evolutionary
theory that has not been successfully implemented into the genetic algorithm and these mechanisms
are explored in this paper. The resulting multi-level selection genetic algorithm (MLSGA) is unique in
that it has different reproduction mechanisms at each level and splits the fitness function between these
mechanisms. There are two variants of this theory and these are compared with each other alongside
aunified approach. This paper documents the behaviour of the two variants, which show a difference

in behaviour especially in terms of the diversity of the population found between each generation. The
multi-level selection 1 variant moves rapidly towards the optimal front but with a low diversity amongst
its children. The multi-level selection 2 variant shows a slightly slower evolution speed but with a greater

diversity of children. The unified selection exhibits a mixed behaviour between the original variants.
The different performance of these variants can be utilised to provide specific solvers for different
problem types when using the MLSGA methodology.

1. Applications using genetic algorithms

There is a large literature pertaining to applications
and developments of evolutionary algorithms. Coello
Coello [1] has collected 10714 references relating to
genetic algorithms and a google scholar search of the
term ‘genetic algorithm’ for 2017 supplied 37600
examples using or developing these algorithms. These
references cover a wide range of areas related to finding
optimal solutions to complex problems across a wide
range of different types of search space. A recent
review by Zhou et al [2] lists 50 major applications
for evolutionary algorithms. This is augmented
by recent high profile examples that utilise these
algorithms from a number of different fields of study,

including architecture, bioinformatics, computational
science, evolutionary theory, environmental science
and materials engineering ([3—14]). The problems
being solved are becoming more complex and
therefore promising methods for the improvement
of genetic algorithms should be further explored and
documented. This research investigates the adoption
of multi-level selection, a popular explanation for the
mechanisms of evolution, as a potential inspiration to
improve evolutionary computation.

1.1. Evolutionaryinspiration

Evolutionary algorithms were originally proposed by
Turing [15] and were first developed by Holland ([16]
and [17]) to study evolution through simulations. The

© 2018 IOP Publishing Ltd
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usages of genetic algorithms quickly expanded due to
their ability to search large and complex spaces, with
a corresponding increase in the number of available
algorithms. Since these initial attempts, there has
been limited success in improving genetic algorithm
performance using evolutionary inspired methods. A
recent benchmarking of top algorithms in the CEC’09,
[18], show no biologically or evolutionary inspired
mechanics and a recent review of the state-of-the-art
in biomimetics does not list evolution in the top 100
topics [19]. However, other algorithms have benefited
from developments that more closely mimic the
original concepts that inspired them, such as the ant
colony optimisation developed by Zhang [20].

In parallel with the improved performance in
genetic algorithms, there have been developments
in evolution theory, which have led to a larger range
of mechanisms available to explain how organisms
evolve; many researchers now believe that some of
these mechanisms are necessary for biological evo-
lution. These proposed mechanisms are missing from
the genetic algorithm and the authors believe they
should be used to re-inspire it; if they are critical to
evolution then they should provide benefits to algo-
rithm development. Amongst the newer evolutionary
theories is the multi-level selection theory, originally
proposed by Sober and Wilson [21], with the idea that
evolution does not occur at only one level but is actu-
ally occurring at different levels of a hierarchical struc-
ture. An example of a hierarchical structure is shown
in figure 1 where evolution at multiple levels is shown
using collectives, larger units, which contain a num-
ber of individuals, smaller units; darker shading of the
individuals or the collectives is used to illustrate higher
fitness. As the generations progress the collectives may
continue, and possibly reproduce, or be eliminated,
depending on their ability to survive. Within the sur-
viving collectives, the individuals also reproduce or are
eliminated, based on their fitness. The strongest indi-
viduals generally have more offspring and this leads
to an increase in average fitness. Whilst the authors
believe the process makes intuitive sense, and there is
a growing body of evidence to support the idea that it
increases evolutionary speed, the theory of multi-level
selection is not without controversy. There are many
arguments for other mechanisms through which evo-
lution might occur, such as Dawkin’s popular selfish
gene theory [22] which emphasises a gene-centriclevel
of evolution, or Sterelny and Kitcher [23] which ques-
tions whether there must be a uniquely correct iden-
tification of the level at which selection is occurring.
The authors believe multi-level selection provides the
most promising inspiration for improvements to the
genetic algorithm, allowing a collective mechanism to
be put in parallel with current individual mechanisms
and allowing more flexibility in the manner in which
the fitness function can be interpreted. Initial research
by the authors investigating one variant of multi-level
selection shows promise [24] and can be used to solve
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practical problems [25] but further investigation
into the inspiration behind these mechanisms needs
exploring. This paper therefore documents the behav-
iour of different variants of this algorithm to provide
specific solvers for different problem types when using
the multi-level selection genetic algorithm (MLSGA)
methodology. These will exploit the unique reproduc-
tion mechanisms at each level of MLSGA and the split
in the fitness function.

1.2. Multi-level selection theory
Natural selection encourages individuals to adapt to
the environment developing traits that increase their
chance of survival; it is therefore common to consider
adaptions at the individual level, for example, giraffes
with longer necks can reach leaves on trees that others
cannot. Multi-level selection proposes that it is rare
for a population to compete as individuals without
some kind of beneficial interaction; often a number of
individuals will group together with the aim of helping
each other. This can be in the form of a number of
organisms grouping into a tribe or pack but it can also
be at a lower level where a number of organelles create
a hybrid form. An argument is often made to support
the statement that there are characteristics that have
developed which cannot be explained satisfactorily
at the individual level, for instance altruism; which
is a trait that does not benefit the individual and, by
definition, actually results in a cost to itself. Sober and
Wilson [21] suggested that evolution of altruists can
be observed at a level higher than the individual by
watching the development of colonies.

Multi-level selection is an outcome of three deter-
minants based around those proposed by Lewontin
[26], which holds that evolution occurs when:

1. Different individuals in a population have
physical variations.

2. Different individuals have different rates of
survival due to different fitness.

3. Thereis a correlation between parents and
offspring so that fitness is heritable.

Natural selection occurs if there are variations in
characteristics of individuals and some offspring are
considered to be fitter than others. Individuals with
these different characteristics can be defined as a “unit
of selection’. Individuals are encouraged to adapt
over time to the environment developing traits that
increase their chance of survival. This causes evolution
as weaker members of the population are lost and the
stronger members, on average, survive. Gradually the
make-up of the population will change over successive
generations to favour the stronger characteristics. A
species can be described based on a hierarchical organ-
isation, which is normally viewed as a nested hierarchy,
with one level being enclosed within another. A nested
hierarchical organisation is presented in figure 1 which
forms the basis of the MLSGA. McShea [27, 28] pro-
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Generation 1

Generation 2

Figure 1. Nested hierarchical collective reproduction.

Table 1. Important concepts of multi-level selection.

Individual level

Collective level

Hierarchical ~ Number of individuals in each Number of collectives composed of individuals
unit collective
Character The qualities shown by the individual ~ Collective characters are the qualities of the collective that can affect its
which can affect its fitness e.g. speed fitness and can be the average or total character of individuals (aggregate,
from body type MLS1), e.g. the aggregate speed of each individual, or different from
individual’s character (emergent, MLS2) with independent qualities, e.g. the
ability to communicate abstract concepts
Fitness Individual fitness measured directly on  Collective fitness measured the same as the individual (aggregate, MLS1) or
individuals differently to individual’s (emergent, MLS2).
Heritability ~ Individuals with higher fitness Collectives with higher fitness leave more collectives with characters

produce more offspring with characters correlated to the parent collectives.

correlated to the parent individuals

poses an interactionist approach indicating that selec-
tion at a higher level will occur when individuals at a
lower level perform fitness-affecting interactions with
each other, a physical connection is not required, and
this is supported by Sober and Wilson [21] in their
theory of multi-level selection. The new algorithm
is developed by creating a hierarchical organisation,
including collective level reproduction. However, since
classical genetic algorithms already utilise selection of
individuals based on their adaption to their environ-
ment it is therefore possible to utilise a standard
genetic algorithms as the reproduction method at the
individual level.

In addition to the collective level reproduction
mechanism the new algorithm relies on a change to the
way fitness is defined. Amongst the theories for multi-
level selection, there are two main strands, multi-level
selection 1 and 2 (MLS1 and MLS2) which are depend-
ent on how fitness is defined on the individual and
collective levels. For multi-level selection 1 the fitness
is defined the same way at each level, the aggregate of

the individuals. For multi-level selection 2 the fitness is
defined differently at each level. For multi-level selec-
tion to occur there are a number of important con-
cepts defined in table 1 including the unit evolution
is working on at each hierarchical level, the character
or abilities of a unit used to determine the fitness, the
fitness used to judge survival for each unit and finally
the implications of these factors on the heritability of
the unit. Both of these theories have proponents and a
large background of literature with which to support
these views. For a larger and more in-depth review the
authors recommend the excellent text by Okasha [29]
outlining the history, theory and gaps in multi-level

selection research.

1.3. Comparison to the state-of-the-art

In reviewing algorithms specifically pertaining to
multi-level selection there are already a few attempts to
use the process as inspiration to improve evolutionary
algorithms, but these fail to replicate the key aspects
of this theory and the resulting performance is poor.

3
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Lenaerts et al [30] were the first to use multi-level
selection and they study a biological model based
on multi-level selection. It shows the importance of
variation between groups as selection at group level
occurs only when there is enough variation. However,
the mechanics to generate selection at different
levels are prescribed based on interactions between
individuals, as opposed to fitness. Akbari eral [31] and
[32] looked at multilevel selection including selection
at different levels. However, they do not present group,
collective, mechanisms such as characters, fitness and
heritability, necessary for multilevel selection. The
algorithm relies on a number of complex mechanisms
toreplicate the sub-problem generation and individual
replacement. Finally, Wu and Banzhaf [33] focused on
selections using any hierarchical model. However, in
multilevel selection, selection at one level influences
the selection at the adjacent levels and the concepts of
multi-level selection, such as units of selection at all
levels and the products induced by selections between
levels, are not obviously applied. The authors feel
that these efforts miss the key aspects of multi-level
selection in that they are orientated around complex
prescriptive mechanisms, forcing the selection to occur
rather than letting it emerge as part of the process. As
these mechanisms do not replicate the key aspects
of multi-level selection the authors provide a novel
evolutionary algorithm, supported by the fact that the
results provide an improved performance compared
to those previously documented.

Furthermore, multiple different methodologies in
the current state of the art show similarities to the idea
of a collective and fitness split, such as sub-population
approach and problem decomposition. In Niching
algorithms, such as NSGA-II [34] and U-NSGA-III
[35], Co-evolutionary algorithms, for example BCE
[36] and HEIA [37] and Island model algorithms pro-
posed by [38] the population is divided into groups
with often different operations performed on each
sub-population. However, between these groups,
only one level of selection is used with no competition
between sub-groups and split in the fitness function,
unlike MLSGA. The decomposition-based methods
as MOEA/D [39], MOEA/D-M2M [40], CS-NSGA-
11 [41] DMOEA-DD [42], LiuLi [43], RVEA [44] and
K-RVEA [45] operate by partitioning the entire objec-
tive space into subspaces, dividing the problem into
a number of separate subproblems each with its own
subpopulation. This is done by using a set of uniformly
spread reference points, or weight vectors, and scalari-
zation functions. However, the effectiveness of these
methods decreases for discontinuous problems as sub-
populations can be assigned to regions where feasible
solutions do not exist. A priori knowledge about the
objective and search spaces are therefore required to
adjust the mechanisms. In MLSGA, the sub-regional
search is created using different fitness definitions,
instead of forced decomposition, and therefore all
individuals operate on the same region.

AJSobeyand P A Grudniewski

Introduction of selection at multiple levels pro-
vides the inspiration for the development of a new
algorithm for optimisation, multi-level selection
genetic algorithm (MLSGA), adding multi-level con-
cepts to the classic genetic algorithm. Current genetic
algorithms consider the evolution of its individuals at
a single level similar to the manner in which Holland
[16] first developed the algorithm. It is proposed here
that if multi-level selection speeds the process of evo-
lution then its addition will elicit an increase in perfor-
mance in the genetic algorithm, speeding up the rate
at which higher fitness solutions will be found. This
evolutionary inspiration has been used by the authors
to develop an algorithm, multi-level selection genetic
algorithm but there are a number of different variants
of multi-level selection theory and these are explored
on single- and multi-objective problems to categorize
any differences in behaviour.

2. Methodology

Outlined are the mechanisms that are used, inspired
by the concept of multi-level selection, and the
methodology used, showing the adaptations from the
classic genetic algorithm. This is documented for the
two variants of multi-level selection theory to show the
differences in performance, the unified theory and also
to the commonly used NSGA-II algorithm and also to
the commonly used NSGA-II algorithm and MOEA/D
developed by Zhang and Li [39]. NSGA-II was created
by Deb et al [34] and is the most commonly used
genetic algorithm but is also selected to represent a
niching algorithm. The specific method selected is the
2011 updated version which shows similar results on 2
objective functions to the more mature U-NSGA-III.
MOEA/D developed by Zhang and Li [39], represents
sub-region search algorithms, and is the highest
performing genetic algorithm for unconstrained
test functions, for multi-objective problems. In these
cases the hyperparameters are taken from the CEC’09
benchmarking with no additional tuning [ 18].

2.1. Multi-level selection genetic algorithm
(MLSGA)

Thegeneticalgorithm starts witharandomly generated
population of individuals each of which represents
a set of variables representing the search space for
an optimisation problem. This population is then
evaluated against a fitness function. Once the variables
for each individual have been assessed, and the fitness
determined, a new generation can be created from
the current parent generation. Whatever the specific
selection methodology chosen the process involves
finding the fittest individuals within a population to
mate and produce a child generation. These children
are produced by the process of crossover where the
chromosome of the parents is split. The chromosomes
are then combined forming a new offspring different
to the parent generation. Further diversity is found
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Table 2. Multi-level selection algorithm methodologies.

Step Parameter Value

1. Initialisation Type Random
Encoding Real values
Pop. Size 600

2. Classification Method SVM
Number of collectives 6

3. Individual reproduction

Fitness evaluation Type MLS1 or MLS2 individual fitness
Selection Type Roulette wheel
Mating Crossover type Real variable SBX
Crossover rate 0.7
Mutation type Polynomial mutation
Mutation Rate 0.08
Elitism Rate 0.1
4. Collective reproduction
Fitness evaluation Type MLSI or MLS2 collective fitness

Elimination Number of eliminated collectives 2
Replacement Number of new collectives 2
5. Termination Criterion Reaching 500 generations

through mutation of the chromosome, where random
changes are made normally based on a probability
value, which is chosen to be low. Once this process
has been repeated for the whole population a new
population is then ready for the process to be repeated.
Over successive generations, the average fitness of the
population will become lower until either the optimal
value or the limit of the number of generations
is reached. This replicates a simplified process of
evolution first developed to simulate the process but
since then many adaptions and improvements have
been made.

The multi-level selection genetic algorithm is simi-
lar to previous genetic algorithms except that it utilises
the key concepts from table 1, defining fitness and her-
itability, through reproduction mechanisms, at differ-
ent hierarchical units, individuals and collectives. The
main addition is therefore the collective, which con-
tains a number of individuals and has a fitness depend-
ent on the character of those individuals.

1. Initialisation—a population of individuals is
created at random.

2. Classification—sorted into collectives of the
most similar individuals, in this case using a
support vector machine (SVM). The quality
of the result is dependent on a good spread of
results between the collectives where SVM is
used over clustering algorithms to allow the user
control over the size of the collectives.

3. Individual reproduction—As the algorithm
progresses the individuals inside each of the
collectives are treated in the same manner as

for the standard genetic algorithm so that the
process of selection and mating continues as
normal.

. Collective reproduction—the difference is that

the collectives themselves have a fitness and
elitism process where the least fit are eliminated
and the fittest reproduce. Hyperparameter
tuning is performed which shows that the results
are relatively insensitive to the new parameters.
Large or small numbers of collectives are shown
to provide poor performance with 6 giving the
best performance for these problems and 4 or

8 collectives giving similar but worse results.

In this case 2 collectives are eliminated and 2
are created from the old surviving collectives
with the individuals being populated from the
fittest 4 collectives, where the number of new
individuals in the offspring collective is equal
to the number of individuals in the eliminated
one. Individuals are generated by replicating
the best individuals, according to the collective
fitness function, equally from the remaining
collectives. As an example in the case where
there are 6 collectives and 2 are eliminated then
if there are 40 individuals in the first eliminated
collective and 60 in the second then the best 10
individuals from the remaining 4 collectives are
replicated and added to the first new collective
and the next 15 best are then taken from the
remaining 4 collectives and are added to the
second new collective.

. Termination—The algorithm terminates, in

these cases after a given number of generations.
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Table 3. ZDT test Functions.

Problem Objective functions Comments
Convex,
201 (47 ) = 5 =509 1/ |
i, ti
g(x) =1+9==4 continuous
o 12 Nonconvex,
ZDT2 [47] filx) = x5 fo(x) = g(x) |1 - L«i)]
— iy % ti
g(x) = 1 4+ 9Z==2™ continuous
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) Disconnected
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g(x) =1+10(n—1) + >}, [x? — 10 cos(4x;)] large search space
ZDTé6 [47] fi(x) = x; — exp(—4x;) sin®(6x;) Nonconvex
o 12 Non-uniformly
£ =g |1- [25]
spaced

_ POHREN
g(x) = 1+9[ S

This process, with the specific details used in this

paper for each stage, are documented in table 2.

2.1.1. MLS1

The two types of multi-level selection differ in the
manner in which the fitness function is represented. In
MLS1 the fitness of the collectives is the aggregate of
the sum of the individuals and is illustrated using the
ZDT1 function where f;(x) is,

filx) = x1, (1)
and f>(x), 1s,

9 z X1
flx) =1+ doxifr- [——],
n—1:3 I+ i=yos
(2)

where variables are in the range 0 < x; < 1, n is the
number of variables. The first objective function is
arbitrarily taken as fi(x) and the second, remaining,
objective function is f,(x). This means that the same
fitness function can be used to determine the selection
in the collectives as well as the individuals. The fitness
function for the MLS1 individuals and collectives s,
i) + ) .

Fitness = ————~.
2

2.1.2. MLS2

The MLS2 theory states that the fitness for the
collectives is different to the fitness for the individuals.
Therefore, this variant only allows the use of multi-
objective optimisation problems or the generation
of an abstract objective for single objective problems.

For the cases chosen here, the fitness function has been
split into two with one of the objectives forming the
fitness for the individuals,

Individual Fitness = f; (x), (4)

and the other forming the fitness function for the
collective,

Collective Fitness = f,(x). (5)

The effect of reversing this order is also investi-
gated to determine whether it affects the results of the
optimisation and is designated MLS2R, i.e. in equa-
tions (4) and (5) individual fitness is assigned to be f,
and collective fitness f;.

2.1.3. MLS-U

Contradicting the need to define MLS1 or MLS2,
Sterelny and Kitcher [23] indicate that a single
mechanism for selection does not need to be defined
at each level. United Multi-Level Selection (MLS-U)
is introduced, inspired by this definition, exhibiting
characteristics of both MLS types. In MLS-U all MLS
variants are used in parallel where some collectives
only utilise MLS1, MLS2 or MLS2R, maintaining an
equal number of collectives of each type.

2.1.4. Computational complexity of one generation

The computational cost of the MLSGA is determined
by three operations: the PF selection, individual
reproduction and collective reproduction. The
PF selection identifies nondominated individuals
from 1.5N members at most, aggregate of external
population of maximum size equal to the overall

6
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Table4. Comparison of multi-level selection algorithms for
weighted average optimisation.

Fitness

Test Standard
function Max. Min. Mean deviation

Convergence
(Generations)

MLS1

ZDT1 0.375 0.375 0375 0 49
ZDT2 0.500 0.500 0.500 O 34
ZDT3 0.039 0.039 0.039 0 100
ZDT4 0.375 0.375 0.375 1.90 x 10°% 500
ZDT6 0.500 0.500 0.500 O 145
MLS2

ZDT1 0.500 0.584 0.508 0.017 500
ZDT2 0.500 0.558 0.505 0.013 412
ZDT3 0.500 0.583 0.506 0.016 500
ZDT4 338 328 167 7.58 500
ZDTe6 0.516 0.601 0.567 0.025 500
MLS2R

ZDT1 0.375 0.375 0.375 0 169
ZDT2 0.500 0.500 0.500 O 57

ZDT3  0.039 0.039 0.039 1.00 x 10-% 368
ZDT4 0375 0375 0.375 1.19 x 10-% 500
ZDT6 0500 0.501 0.500 4.11 x 10~ 377

MLS-U

ZDT1 0.378 0.393 0.388 2.84 x 1079 500
ZDT2 0.500 0.500 0.500 0 299
ZDT3 0.039 0.039 0.039 0 465
7ZDT4 0.375 0.375 0.375 4.70 x 10°% 500
ZDT6 0.500 0.501 0.500 433 x 10~ 479

population size N and current collective of maximum
size of 0.5 N, requires O(m(1.5 N)?) comparisons
using fast nondominated sorting approach, where
m is the number of objectives [34]. In individual
reproduction the full replacement of old generation
with elitims take place which require O(N?) at most, as
only one of the objectives is considered. For collective
reproduction, the fitness evaluation step requires O(N)
computations, as is calculated as the average of single
fitnesses of the individuals and collective replacement
of O((0.5N)?) complexity at most, due to maximum
size of the collective.

To summarize, the overall computational com-
pexlity of one generation of MLSGA is bounded by
O(mN?).

3. Characterisation of multi-level selection
variants

The results of genetic algorithms developed using
the two strands of multi-level selection, MLS1 and
MLS2, are compared to each other for the different
test functions from Ziztler et al [46], shown in table 3,
on 30 separate runs. These are popular in testing
genetic algorithms due to the wide range of near
optimal points which are difficult to find, and which

AJSobeyand P A Grudniewski

the classical genetic algorithms cannot solve. Whilst
there are more complex functions available, these are
not selected at this stage, as it is difficult to identify
differences between variants on these problems.
Furthermore, these problems have clear differences
in complexity for both fitness functions, where f, is
harder, making it easier to investigate the differences
between MLS2, MLS2R and MLSI1. For each of
these functions the number of variables used is 30,
except in the case of ZDT4 where 10 are used. The
variable bounds are [0, 1] for all cases except in ZDT4
where these are: x; =[0,1],x,.10 = [-5,5 The
stopping criterion is when a value of 300000 function
evaluations, generations multiplied by population
size, is reached. If the optimal result is not found at this
stage then the best fitness to this point is used as the
minimum fitness value. To demonstrate the accuracy
of each algorithm results show the minimum, the
maximum and the average optimal results found over
the all the runs. The robustness of the algorithm is
investigated to determine the percentage of runs over

which the algorithm found the optimal result.

3.1. Weighted average optimisation—evolutionary
speed

A weighted average optimization is used to
demonstrate the algorithm working for single
objective problems. MLS2 and MLS1 become the same
for a true single objective problem, f; = f,, however,
in the weighted average case two objectives still exist
and so MLS2 can still be examined, even though it
still splits the function into two components but is
trying to find the solution illustrated in equation (3),
conversely MLS1 considers all problems as a weighted
average. The results are shown in table 4 with the best
performing algorithm shaded for each category other

than the standard deviation.

The results show that the MLSI1 function rapidly
finds the solution to all of these problems, except for
ZDT4; in the case of the ZDT4 function a close to
best value is found. A similar performance is seen for
the MLS2R function but with a slightly greater varia-
tion in the solutions for the more complex functions,
ZDT3-6, finding the best solution 43% of the time for
the ZDT3 function and 77% for the ZDT6 function.
The MLS2 variant performs extremely poorly for most
of the functions only finding the best solution for the
ZDT2 function and in this case only 30% of the time.
The unified variant, MLS-U, exhibits a similar per-
formance to the MLS1 and MLS2R variants and out-
performs MLS2, in terms of the final accuracy of the
Pareto front. However, the results take considerably
more generations to form than for the other variants,
especially MLS1. The results demonstrate the manner
in which the MLS1 algorithm dives towards the Pareto
front reaching it quickly, in single objective optim-
isation or scenarios where the optimal value is not of
so much interest and the near optimal is required the
MLS1, with a low generation cut off, would provide
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Figure4. Pareto front comparison at 50 generations ZDT6 function.

an excellent solution in few generations. For the MLS2
the choice of function for the individual and collec-
tive is important in determining the performance with
one variant finding the Pareto front rapidly and the
other struggling to find any optimal solutions. Com-
putationally the new algorithm is rapid and the only
extra computational effort over a standard genetic

algorithm is the generation and elimination of the
collectives.

3.2. Multi-objective optimisation—evolutionary
diversity

The speed and accuracy with which the optimal pointis
found isinteresting and useful for a subset of problems.
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However, the benefits of evolutionary algorithms lie
in their ability to assess multi-objective cases where
a spread of optimal points is required. Whilst these
fronts are useful they can be difficult to generate, as
the algorithm must be accurate while ensuring an even
spread of results to ensure that sharp variations in the
front are found. The algorithm is adapted from the
weighted-average results by storing the 400 best values
in the Pareto front the objective functions are evaluated
in the same way and only the objectives against which
they are judged are changed, i.e. the spread of results
is now evaluated unlike in the previous section. In
this case, the 3 algorithms, including the 4 variants of
MLSGA, are used to generate a Pareto front for the
previously defined functions. The results for ZDT1-
4 and 6 are found and are illustrated for the MLSGA
variants at 50 and 100 generations for the ZDT1 case at
50 generations, figure 2, and 100 generations, figure 3,
to demonstrate the difference in performance. This is
shown again for the more complex ZDT6 function in
figure 4, for 50 generations, figure 5, 100 generations,
and figure 6,250 generations. Blue diamonds represent
MLS], red squares represent MLS2, green triangles
represent MLS2R and purple circles represent MLS-U.

The Pareto front evolution shows a large differ-
ence between the algorithms at the early generations.
However, by the time 100 generations have been com-
pleted then the algorithms have all found, or are close
to finding the Pareto front. Figure 3 demonstrates the
speed with which the Pareto front is found. In this case,
the MLS2R algorithm finds the front rapidly with a
good spread of results. The MLS2 algorithm finds a
few points on the top left hand part of the front, but
is unable to provide a greater diversity of points. The
MLS1 algorithm finds some points along the front rap-
idly and is the first to reach it but struggles to diversify
these with extra points along this front. The MLS-U
shows the worst speed for reaching the front, and
never reaches it in over the 30 runs. This is because the
MLS-U variant uses 3 different methods simultane-
ously where each has approximately only a third of the
overall population. In this case, the evolutionary pres-
sure is not as concentrated as when only a single vari-
antis used and results in slower progression.

The process is repeated for the more complex
ZDT6 functions where all of the algorithms are slower
to find the front, shown in figures 4-6. The MLSGA
variants find the front with the MLS2 and MLS2R
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Table 5. Comparison of multi-level selection algorithms for multi-
objective optimisation.

IGD
Test Std.
function = Max. Min. Mean deviation
MLS1
ZDT1 0.11500 0.18000 0.16000 1.6 x 10792
ZDT2 0.11800 0.25100 0.15800 3.1 x 1079
ZDT3 0.02900 0.08100 0.05100 1.3 x 1079
ZDT4 0.02900 0.15300 0.098 00 3.6 x 1072
ZDT6 0.13700 0.468 00 0.29400 1.0 x 10791
MLS2
ZDT1 0.84000 0.88100 0.846 00 1.2 x 10792
ZDT2 0.60900 0.72500 0.61900 2.4 x 10792
ZDT3 0.82000 0.96200 0.83500 3.4 x 1072
ZDT4 9.8 62.3 34.4 13.4
ZDT6 0.00313 0.003 34 0.00320 5.10 x 1079
MLS2R
ZDT1 0.00390 0.00403 0.003 95 3.80 x 1079
ZDT2 0.00389 0.00403 0.003 96 3.00 x 1079
ZDT3 0.00477 0.00561 0.00499 1.40 x 107%
ZDT4 0.003 88 0.00414 0.00401 6.70 x 1079
ZDT6 0.00316 0.00397 0.00340 2.60 x 10~
MLS-U
ZDT1 0.00567 0.02770 0.01585 5.28 x 1079
ZDT2 0.00405 0.394 42 0.14610 1.08 x 109!
ZDT3 0.02903 0.17426 0.078 54 4.92 x 107
ZDT4 0.00443 0.06126 0.00776 1.00 x 1092
ZDT6 0.00397 0.10147 0.05535 3.98 x 10792

finding a good spread of results. The MLS2 in this case
is able to find the front more rapidly than the MLS2R.
The MLS1 algorithm finds some on the front but many
of the points are a considerable distance from the
front. The MLS-U results show a slower progression to
form the Pareto front to the extent that the results for
figure 5 are not visible as they are out of range, resulting
from a change in axes from figure 4 to figure 5. Figure 6
shows the results after 250 generations where MLS-U
has not found the front due to the lower evolutionary
pressure exhibited by this variant.

Table 5 illustrates the IGD values for the differ-
ent algorithms with the best results in bold, MLS-U is
ignored because of its poor performance. The MLS2R
algorithm provides slightly better results in almost
all cases except for the ZDT6 function, where MLS2
provides better results. This raises a question about
how the collective and individual functions should be
defined. It appears that the collective level mechanism
is much weaker than that of the individual. Improve-
ments to the collective level mechanism should result
in a considerable increase in performance.

Table 6 presents the best results from MLS2, the best
performing variant, using the best result from MLS2

AJSobeyand P A Grudniewski

Table 6. Comparison of MLSGA with the state-of-the-art.

IGD
Test
function  Max. Min. Mean Std. deviation
MLSGA
ZDT1 0.00390 0.00403 0.003 95 3.80 x 1079
ZDT2 0.003 89 0.00403 0.003 96 3.00 x 1079
ZDT3 0.00477 0.00561 0.00499 1.40 x 10~%
ZDT4 0.003 88 0.00414 0.00401 6.70 x 1079
ZDT6 0.00313 0.003 34 0.00320 5.10 x 1079
NSGA-II
ZDT1 0.00407 0.004 25 0.004 16 5.30 x 1079
ZDT2 0.00401 0.004 20 0.004 09 4.80 x 1079
ZDT3 0.004 88 0.00521 0.00510 8.60 x 10~%
ZDT4 0.00409 0.25500 0.057 30 7.70 x 10792
ZDT6 0.00340 0.00361 0.00351 5.00 x 1079
MOEA/D
ZDT1 0.00407 0.00422 0.004 14 3.20 x 1079
ZDT2 0.004 06 0.00417 0.004 10 2.90 x 1079
ZDT3 0.004 85 0.00503 0.00500 410 x 1079
ZDT4 0.00409 0.004 15 0.00413 1.50 x 10~%
ZDT6 0.00335 0.00345 0.00337 220 x 107%

or MLS2R, making the assumption that the correct
algorithm is selected. These results show an increase in
performance for MLSGA over the most popularly used
GA,NSGA-II, and the top algorithm on unconstrained
functions, MOEA/D. This is despite the fact that the
algorithm uses a simple mechanism at the individual
level and shows the potential for this method. In one
case the MOEA/D algorithm has a better mean perfor-
mance that MLSGA, but NSGA-II never shows better

performance.
4. Evolutionary performance

Amongst the theories for multi-level selection, there
are two main strands, multi-level selection 1 and 2
(MLS1 and MLS2) which are dependent on how fitness
is defined on the individual and collective levels. For
multi-level selection 1 the fitness is defined the same
way at each level, the aggregate of the individuals,
which results in deep specialisation of individuals, and
greater evolutionary pressure thus increasing the rate
of evolution. For multi-level selection 2 each level has
different ‘goals’, which results in competition between
individuals and collectives, and leads to increased
diversity of population as a compromise between
the two goals is found. Importantly separate groups,
across the whole environment, can have different
fitness definitions at each level, similar to species where
each becomes specialised, developing different traits.
According to Okasha [29], multi-level selection is
proposed to enhance the specialization of different sub-
groups, and this correlates with the results found here.
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The results show that the introduction of MLS1
or MLS2 provides an increase in performance over
the classic genetic algorithm with respect to both
optimisation and generation of the Pareto front. This
provides some promising behaviour on some simple
test functions when judged against that of its contem-
poraries, as an example NSGA-II and MOEA/D. The
MLS2R algorithm outperforms the other algorithms
in the generation of Pareto fronts on the simple test
functions proposed. The Pareto front itself is found
rapidly but, more importantly, the diversity is high
whereby the Pareto front has a good spread of results.
This is in contrast to the MLS1 code, which searches
one specific zone to a high degree but does not develop
any front, it finds a close-to-optimal location rapidly
but there is a lack of spread of results. MLS1 shows the
best performance on single objective problems. Whilst
on the multi-objective problems the MLS1 code can
outperform the MLS2 in rapidly finding near optimal
results the performance is not that much faster than the
MLS2R and the absolute optimum is never found. The
MLS2R performs strongly in both tasks with a wide
spread of different optimal areas investigated show-
ing a wide diversity. Interestingly the MLS2 algorithm
outperforms the MLS2R algorithm for the ZDT6
function, in contrast to the weighted fitness results.
The difference between MLS2 and MLS2R results are
caused by the fact that individual selection is more effi-
cient than collective selection, and the f, functions are
more complex than the f; functions in most of the test
problems, this is reversed in the ZDT6 function. The
authors suggest that the individual level should have
the more complex function assigned to it. MLS-U is
outperformed only by the best variants, MLS2R for
the ZDT1-4 functions and MLS2 for ZDT6, and shows
better results than the remaining variants. This sensi-
tivity can be removed by utilisation of a unified MLS-U
approach. MLS-U, despite a decrease in performance
in comparison to the best variants, does not require
extensive a priori knowledge about the optimised
problem and eliminates the necessity of performing
the optimisation process repeatedly in order to find the
best possible solutions, in the case when close-to-the-
best result is sufficient. However, in many real world
cases the complexity of the problem will be well under-
stood, through domain knowledge or simple compu-
tational tests, meaning that the most powerful variant
can be selected. Improvements to the novel collective
level reproduction mechanism will further reduce this
sensitivity and reduce the hyperparameters associated
with MLSGA.

Whilst the authors propose the MLSGA method
they are surprised at the increase in robustness, diver-
sity and evolutionary speed generated from the simple
process of considering the fitness at multiple levels.
The optimal fitness is found rapidly and the average
fitness of the populations is high, making it suitable
for finding Pareto fronts. The authors hesitate to draw
overarching conclusions into evolutionary theory
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based on a biologically inspired algorithm however, it
is interesting to note the increase in speed with which
the generations find higher fitness solutions due to the
increased evolutionary pressure. Furthermore, there
are considerable differences in behaviour between the
MLS1,MLS2 and MLS2R algorithms and the resultant
differences in fitness. The MLS1 seems to find the opti-
mal value correctly but lacks the diversity of children
seen in the MLS2 algorithm. In this case, the MLS1
has a concentrated search in which there are two lay-
ers to remove individuals that are unfit. In MLS2 this
phenomenon is weaker but still provides a concen-
trated search towards the individual’s objective func-
tion, many of the poor solutions are removed at each
generation pushing the search quickly towards the
Pareto front but using the collectives to retain some
diversity; on finding the Pareto front the search then
rapidly spreads out increasing the range of solutions.
This also differs from other currently high performing,
computationally inspired, algorithms that first aim
to create a diverse set of solutions that push towards
the optimal front, with the potential to perform well
on discontinuous fronts. While it may be shown that
multi-level selection is not the process by which evo-
lution should be considered, the emergent change in
the optimisation process is interesting and beneficial.

The test functions that have been selected are sim-
ple and the early results on the ZDT6 function already
show that the MLSGA algorithm is starting to strug-
gle to find the optimal solution with the more complex
functions. This set is used to allow an easy comparison
in performance but the ZDT1-4 functions have a spe-
cial structure, with f; being only determined by a single
decision variable, while all other decision variables are
zero for all Pareto optimal solutions. Further iterations
of the algorithm will move away from evolutionary
inspiration and utilise more complex individual and
collective reproduction methods to improve perfor-
mance based on the findings here and this will include
determining the sensitivity of performance to the vari-
ous hyper-parameters. Algorithms such as NSGA-II
and MOEA/D are shown to outperform the original
GA, currently used at the individual level, by a con-
siderable margin, it is proposed that their inclusion
at the individual level will increase performance. The
effectiveness of the new collective reproduction will
also be explored using simple search functions, such
as hill climb, and evolutionary algorithm mechanisms,
such as MTS, to boost the effectiveness of the collective
search.

5. Conclusions

There are a number of evolutionary mechanisms
proposed in recent years, which have not been
explored in genetic algorithms. One of these, multi-
level selection, has been used to inspire a new genetic
algorithm but the different variants of this theory have
not been compared. Interestingly the two variants of
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the algorithm, MLS1 and MLS2 show considerable
differencesin behaviour instigated by the definitions of
fitness. Thealgorithm performswell on thesimpleZDT
functions with the MLS2 finding a wide diversity of
results along the front and the MLS1 algorithm rapidly
finding the weighted fitness optimum, demonstrating
excellent  single-objective  performance. These
different variants allow the MLSGA methodology to
have different behaviour for different sets of problems,
allowing strong performance on multi-objective and

single objective problems.
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ABSTRACT

The Multi-Level Selection Genetic Algorithm (MLSGA) is shown to increase the performance of a simple Genetic
Algorithm. It is unique among evolutionary algorithms as its sub-populations use separate selection and repro-
duction mechanisms to generate offspring sub-populations, called collectives in this approach, to increase the
selection pressure, and uses a split in the fitness function to maintain the diversity of the search. Currently how
these novel mechanisms interact with different reproduction mechanisms, except for the one originally tested at
the individual level is not known. This paper therefore creates three different variants of MLSGA and explores
their behaviour, to see if the diversity and selection pressure benefits are retained with more complex individual
selection mechanisms. These hybrid methods are tested using the CEC’' 09 competition, as it is the widest current
benchmark of bi-objective problems, which is updated to reflect the current state-of-the-art. Guidance is given
on the new mechanisms that are required to link MLSGA with the different individual level mechanisms and
the hyperparameter tuning which results in optimal performance. The results show that the hybrid approach
increases the performance of the proposed algorithms across all the problems except for MOEA/D on uncon-
strained problems. This shows the generality of the mechanisms across a range of Genetic Algorithms, which
leads to a performance increase from the MLSGA collective level mechanism and split in the fitness function. It
is shown that the collective level mechanism changes the behaviour from the methods selected at the individual
level, promoting diversity first instead of convergence, and focuses the search on different regions, making it a
particularly strong choice for problems with discontinuous Pareto fronts. This results in the best general solver
for the updated bi-objective CEC’'09 problem sets.

1. Multi-level Selection Genetic Algorithm

Multi-level Selection Genetic Algorithm (MLSGA) is a genetic algo-
rithm incorporating advanced evolutionary concepts. It is inspired by
Multi-Level Selection Theory which is used to describe evolution, with
these concepts originally being based on selection in ant colonies [1].
Multi-Level Selection Theory states that evolutionary selection can
be considered at more than one level, for example the probability
of survival for a wolf is determined as dependent on its own abil-
ities but also that of its pack. Based on these ideas, MLSGA intro-
duces a collective level that groups individuals, which has similarities
to sub-populations in other algorithms. However, separate reproduc-
tion and elimination mechanisms are introduced at the collective level,
which provide additional selection pressure, in contrast to typical sub-
population approaches that use reproduction mechanisms only at the

* This research was supported by Lloyd’s Register Foundation.
* Corresponding author.

individual level. Multi-level selection theory defines two ways in which
the fitness can be defined at the collective level: MLS1, where the fitness
of the collectives is simply the aggregate of the individuals, and MLS2,
where the collective fitness is based on a separate, emergent, property
rather than the summation of the fitnesses of the individuals inside of
it. MLS2 therefore has different reproduction mechanisms operating on
different parts of the fitness function; the behaviours of these variants
are explored in Ref. [2]. Inside each collective individuals are treated in
the same manner as the populations in the standard Genetic Algorithm
and there is no ability to share the information between the sub-groups.
The algorithm provides additional evolutionary pressure through the
increase in the number of reproduction mechanisms, one at collective
level and one at individual level, but unlike in other algorithms where
multiple mechanisms are utilised [3], diversity is not lost due to the
separation of the fitness functions.
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MLSGA has previously been tested by incorporating a simple GA
mechanism at the individual level which is based on the original Hol-
land GA but includes elitism [4]. The previous studies show interesting
behaviour including an increase in overall evolutionary pressure and in
diversity through the dispersion of the search, achieved through spe-
cialisation of the collectives each to different regions of the objective
space. This emerges “naturally” rather than being forced by decomposi-
tion or other mechanisms that require heavy tuning for each new prob-
lem. However, the previous implementation lacks leading performance
on the test functions which are taken from the 2009 Congress of Evo-
lutionary Computation (CEC’09) [5]. Based on the previous results it
is proposed that MLSGA’s performance may be improved by implemen-
tation of stronger mechanisms at the individual level. Combinations
of different methodologies and hybrid approaches have already been
shown to be effective when dealing with complicated MOPs at least in
part, because they can maintain the advantages of both approaches [6].
However, it is also possible that the stronger individual level mecha-
nisms will dominate, making the collective level reproduction mecha-
nisms redundant, or that the introduced mechanisms will not be com-
patible and decrease the performance. This is considered to be likely as
more recent Genetic Algorithm mechanisms are further from the evolu-
tionary roots of the original algorithm and more complex than the one
used previously in Ref. [4]. In addition, some modifications to the orig-
inal method are necessary in order to incorporate stronger mechanisms
at the individual level and it is important to see how these modifications
affect the performance of the algorithm. In addition, MLSGA utilises a
“diversity first, convergence second” approach, which is uncommon for
GAs, and it is proposed that it can be used with other algorithms to
retain the diversity of their searches, but this needs investigating.

In this paper the individual selection mechanism in MLSGA is
replaced by current state-of-the-art algorithms: NSGA-II [7], MTS [8]
or MOEA/D [9], selected as the leading Genetic Algorithm mecha-
nisms and representing three different types of mechanism: niching,
distributed search and hierarchical. Three hybrid variants are devel-
oped and benchmarked on an updated version of the CEC’ 09 compar-
ison which provides complex bi-objective test instances on a range of
different evolutionary algorithms. Bi-objective problems are selected to
reduce the complexity allowing easier visualisation of the behaviour of
the algorithms. Additional mechanisms are developed in order to make
the selected individual mechanisms compatible with MLSGA and a com-
prehensive hyper-parameter tuning is performed in order to adjust the
existing collective-level mechanisms to the state-of-the-art algorithms,
with guidance provided for the optimal parameters.

This paper is organised as follows: section 2 presents a literature
review of GAs utilising sub-populations; section 3 introduces MLSGA
mechanisms in detail and the principles of the conducted benchmark;
section 4 benchmarks the MLSGA hybrids against the updated CEC "09
competition; section 5 presents a discussion of experimental results and
observed behaviours, followed by conclusions in section 6.

2. Current sub-population mechanisms

Reviewing the current literature, a number of genetic algorithm
methodologies show similarities to the idea of a collective; for examples
those that utilise sub-population mechanisms including niching, hier-
archical, co-evolution and island algorithms [6], in addition to some
previous approaches inspired by multi-level selection.

Niching algorithms such as NSGA-II [7] and U-NSGA-III [10] utilise
sorting mechanisms, which rank the whole population, depending on
the non-dominance level or other indicators such as IBEA [11]. How-
ever, different sub-groups are not allowed to cooperate or compete as in
MLSGA, and no separate mechanisms are applied to these groups. The
Island model mechanism proposed by Ref. [12] separates the popula-
tion into sub-groups and cooperation is introduced by allowing migra-
tion of the individuals between neighbouring groups but only in a sin-
gle direction; only one level of selection is used between sub-groups
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with no competition between them. In hierarchical algorithms such as
MOEA/D [9], MOEA/D-M2M [13], CS-NSGA-II [14] DMOEA-DD [15]
and LiuLi [16] sub-groups operate separately on different sub-regions of
the search space, but with no additional selection mechanisms between
sub-groups. These decomposition mechanisms implement a number of
additional parameters, which are far from trivial to determine, but the
effects on the performance of the algorithm are substantial. Therefore,
these methods usually require a priori knowledge about the objective
space and an additional issue is that they cannot usually find points in
negative regions. Additionally, in discontinuous problems, large regions
can exist without feasible solutions and the use of standard decompo-
sition methods leads to a waste of computational power resulting in
poorer final solutions. In MLSGA, the sub-regional search is created
using different fitness definitions, instead of decomposition, therefore
all individuals operate on the same region. Furthermore, fewer param-
eters are used, making it simpler to use and requiring less tuning to a
specific problem.

Despite many of the hierarchical algorithms showing poor perfor-
mance on constrained problems DMOEA-DD [15] and LiuLi [16] stand
out as they show top performance on these problems in the CEC'09
benchmarking. It was hoped to incorporate these algorithms in this
study but the authors find that the literature does not give sufficient
information to replicate these codes to a standard that provides the
results documented in CEC’09 [17] and the codes provided online do
not compile, making their integration with MLSGA impossible.

In the co-evolution mechanisms the population is divided into
groups with different operations performed on each sub-population,
which is inspired by the idea that two or more species in nature can
have a reciprocal evolutionary relationship which increases the rate
of evolution; two of the more successful examples are BCE [18] and
HEIA [19]. In these algorithms the groups are allowed to exchange
individuals and cooperation between groups is introduced. However,
the selection process occurs only at the individual level without addi-
tional mechanisms or competition at the group level, unlike in MLSGA.
In addition, in MLSGA the same mechanisms are applied to each group
and each individual, and only the fitness function definitions change in
the process.

In addition to the sub-population based mechanisms there are
already approaches inspired by Multi-Level Selection Theory but they
ignore key aspects of the theory and do not demonstrate an improve-
ment over current methods [20] were the first to use multi-level selec-
tion by studying a biological model and altruism. It shows the impor-
tance of variation between groups as selection at group level occurs
only when there is enough variation. However, in this approach, the
groups are destroyed and recreated after each generation where the best
individuals are strongly preferred in this process, resulting in limited
diversity. MLSGA removes collectives much less regularly, retaining a
wider diversity of search. Furthermore, no fitness split is introduced
and the selection of individuals is based on interactions between indi-
viduals and groups as opposed to their fitness [21,22] looked at multi-
level selection including selection at different levels and three addi-
tional cooperative mechanisms are introduced. Importantly the collec-
tive fitness definition and additional selection levels are implemented
in a manner that strongly favours the best solutions and therefore leads
to the loss of many good solutions and a reduction in the overall gene
pool. Finally [23], focus on selection using a hierarchical model. In the
proposed mechanisms selection at one level influences the selection at
the adjacent levels and a single selection process is used at different lev-
els without the distinct separation of the fitness values. Therefore, no
separate units of selection are introduced at all levels, which is a basic
concept of the multi-level selection theory.

In summary, the authors feel that these efforts miss the key aspects
of multi-level selection in that they are orientated around complex pre-
scriptive mechanisms, forcing the selection to occur rather than let-
ting it emerge as part of the process. None of the multi-level selec-
tion algorithms demonstrates an increase in performance through the
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incorporation of the additional level and fail to mimic key concepts
in the multi-level selection theory. The traditional GAs utilising sub-
populations have only one level of selection and no split in the fitness
functions, lacking separate reproduction mechanisms at each level that
makes MLSGA unique.

3. Methodology

Outlined is a brief review of the MLSGA mechanisms inspired by the concept of multi-
level selection, the methodology to integrate different GAs for the so-called hybrid forms
and an outline of the benchmarking procedure.

3.1. MLSGA-hybrid

In this work three different genetic algorithms are chosen for testing at the individual
level resulting in three distinct hybrids: MLSGA-NSGA-II, MLSGA-MOEA/D and MLSGA-
MTS, selected for the following reasons:

1. NSGA-II [7] as a general solver and most commonly utilised algorithm with better
performance on bi-objective problems than NSGA-III [24];

2. MOEA/D [9] as the best GA for unconstrained problems according to the CEC’'09
comparison [17];

3. MTS [8] as the best available algorithm for constrained problems and representing
distributed search algorithms.

The resulting algorithm works as follows with a more detailed description of the
MLSGA mechanisms specific for hybridisation below:
Inputs:

Multi-objective problem;

Np: Population size;

Nc: Number of collectives;

MLSGA specific parameters;

NSGA-II, MTS or MOEAOO2FD specific parameters;
Stopping criterion;

e & o o o o

Output: External Population (EP)

Step 1) Initialisation:
Step 1.1) Set EP = NULL.
Step 1.2) Randomly generate an initial population P of Np individuals, xj, ...,xNp.
Step 2) Classification:
Step 2.1) Classify the individuals in the initial population P into Nc collectives,
Ci,...,CNc, so that each contains a separate population Pi,...,PNc. Classification is
based on the decision variable space using a Support Vector Machine (SVM).
Step 2.2) Assign the fitness definitions from types {MLS1, MLS2, MLS2R - explained
in detail below} to each collective so that there is a uniform spread of collectives
using each type.
Step 2.3) In the case of the MOEA/D hybrid: Assign the nearest weight vectors Ai
to each individual in each corresponding collective.
Step 3) Individual level operations:
Fori=1,...,Ncdo
Step 3.1) Individual level GA’s operations: Perform the reproduction, improve-
ment and update steps from NSGA-II [7], MTS [8] or MOEA/D [9], subject to the
hybrid variant, over the collective’s entire population Pi, documented in the corre-
sponding literature.
Step 3.2) Update External Population:
For j=1, ..., |Pi| do
Remove from the EP all solutions dominated by xij (the individual j, from popula-
tion 7). Add individual xij to EP if no solutions from EP dominate xij.
Step 4) Collective level operations:
Step 4.1) Calculate collective fitness:
Fori=1, ..., Ncdo
Calculate the fitness of the collective Ci as the average of the fitnesses of population
Pi based on the fitness definition assigned to that collective.
Step 4.2) Collective elimination:
Find the collective Ci with the worst fitness value, and store the index of that col-
lective, z.
Store the size of the eliminated collective |Pz| as the variable s.
In the case of the MOEA/D hybrid: Store the weight vectors of population {4 ], ...,
4 size(Pz)} Pz as the matrix A z.
Erase the collective Cz with population Pz.
Step 4.3) Collective reproduction:
Fori=1, ..., Ncdo
if(i!=2)
Copy the best s/(Nc - 1) individuals, according to the fitness definition of the
eliminated collective Cz, from population Pi to Pz.
then
In the case of the MOEA/D hybrid: assign the weight vector Az randomly to popu-
lation Pz.
Step 5) Termination: If the stopping criteria is met, stop and give EP as output.
Otherwise, return to Step 3).
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Table 1

Fitness functions assignment for different MLS types.
Fitness definition type MLS2 MLS2R MLS1
Collective level f2(x) f1(x) f1(x) + f2(x)

Individual level both f1(x) and f2(x)

A key element to retaining diversity is the split in the fitness function introduced in
Step 4, where separate fitness values for the collectives are calculated and utilised. Three
types of collectives are introduced, replicating the MLS1 and MLS2 definitions from Multi
Level Selection Theory [25] as shown in Table 1, where MLS2R is the reverse of MLS2.
In MLS2, the collective fitness function is based on the first objective of the function,
f1(x), and is calculated as the average of the first objective function of the individuals
inside; MLS2R is based on the average of the second objective f2(x) and in MLS1 it is the
sum of both objectives. A strategy where each collective has a different fitness function
definition, called MLS-U, is also introduced in Ref. [2] and is shown to greatly increase
the diversity of the search and is the mechanism used within this research as it shows
the best performance. As MLS1 is an aggregation of both objectives normalization has to
be utilised in cases where the objectives are disparately scaled, to increase the solution
uniformness. Due to the nature of the selected benchmarking functions, no objective
normalization is necessary and is therefore not implemented. However, for cases where
it is required the objective normalization strategy taken from Ref. [9] defined in Eq. (1),
is recommended:

@

where z*=(z],...,2;) is the reference point, i.e. zr = minf,(x) | x € w, 2" =
(z’l‘“d, ,z"m“d)T is the nadir point, i.e. z;“‘d = max f;(x) | x € , wis the search space, and
m is the number of objectives, assuming a minimisation problem.

In the Classification Step a supervised learning classification method, SVM, is used
to assign collective labels to each individual in the initial population, based on the dis-
tances between them in the decision variable space. In this paper the multi-class classifi-
cation SVM with C parameter, called C-SVC, and linear function is used. The utilised code
has been taken from LIBSVM open library [26] and the original SVM-train parameters
have been used. The user predefines the number of label types, and thus the number of
collectives. However, the number of individuals in each collective depends only on the
classification method and the distribution of the initial population, and therefore is dif-
ferent in each collective. Only the minimum of 10 individuals and maximum half of the
overall population size, is predefined in order to avoid empty, small or big collectives
as it has been shown in pre-benchmarks to decrease the overall performance. Organising
the collectives with the most similar individuals has been shown to be beneficial over
random initiation after testing using three different classification variants: SVM, k-means
clustering and random assignment. Clustering and SVM exhibit similar performances but
the SVM is chosen due to its lower calculation time and higher robustness.

In the case of the MLSGA-MOEA/D hybrid a set of weight vectors of the size of the
population is randomly generated. These weight vectors are randomly assigned to the
individuals in increasing order, starting from the vector with the smallest value for the
first objective. The individuals in the first collective are assigned first, followed by the
next collectives until every individual in all the collectives have values assigned to them.
In development of the hybrid algorithms it is shown that maintaining the closest neigh-
bourhoods of weight vectors inside of each collective has been shown to be beneficial over
a completely random assignment. Calculation and pre-assignment of the best weight vec-
tors to each individual, despite demonstrating the lowest starting fitness, has been shown
to have no statistically significant impact on the final performance, while increasing the
calculation cost.

Inside each collective NSGA-II, MOEA/D or MTS specific operations are applied to
the individuals at each generation, in the same manner as in the original documentation
with no further modifications. NSGA-II, MOEA/D and MTS are multi-objective GAs, and
require both objective functions to work. In the hybrid approach both f1 and 2 objective
functions are utilised at the individual level. Therefore, no fitness function separation is
introduced at this level, unlike in the original MLSGA [4].

For the collective elimination, in Step 4.2, the collective with the worst collective
fitness value is eliminated and all of the individuals inside are erased. This collective
is repopulated in Step 4.3 by copying the best individuals, according to the eliminated
collective fitness definition, from all of the remaining collectives. This is done in order to
maximise the fitness of the offspring collective. Importantly some information is inherited
from the eliminated collective: the size of the population in the collective, in order to
maintain constant population size; the collective type; and in the case of MOEA/D the
weight vector of the eliminated population. Therefore, no randomness or variation is
introduced in these steps.

MLSGA is not a cooperative based GA, rather competitive based one, as there is
no direct information transfer between the levels of selection or between sub-groups,
such as migration, colonization or regrouping [18,22]. There is only one step in which
different sub-groups are able to “communicate” with each other, Step 4.3, where the best
individuals are selected in order to recreate the eliminated collectives, however there is
no effect on the parent collectives. In between the different levels of selection the only
information passed is the fitness of the individuals, necessary to calculate the collective
fitness in Step 4.1.
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3.2. Computational complexity and constraint handling

The computational cost of the MLSGA-hybrids is determined by two operations:
individual reproduction, taken from the embedded algorithms, and the MLSGA collec-
tive operations. In this case the individual reproduction has the same complexity as the
embedded algorithm, denoted as C, and the collective operations requires O(mN?) com-
parisons at most as detailed in Ref. [2]. Therefore, the overall computational complexity
of one generation of the MLSGA-hybrids is bounded by O(mN?) or C whichever is larger.

In this work the complexity of the utilised algorithms is O(mN?) in the case of NSGA-
II, O(mNT) in case of MOEA/D, where T is number of solutions in the neighbourhood
and is typically 0.2N, or O(mN?) in case of MTS. Therefore, the complexity of all pro-
posed hybrids is O(mN2), which is the same or not significantly higher when compared to
the original algorithms and the similar computational times exhibited by the algorithms
support this.

When constraints are present the constraint-domination principle is adopted for all
the MLSGA-hybrid algorithms, taken from NSGA-II [7] and NSGA-III [27], and defined
as:

An individual x; is said to dominate another individual x,, if: 1) x; is feasible and x,
is infeasible or, 2) both x; and x, are infeasible, and x; has a smaller constraint violation
(CV) value or, 3) both x; and x, are feasible, and x; dominates x, with the standard
fitness domination principle.

This applies whenever two individuals are compared. However, no direct constraint
handling is introduced on the collective-level and therefore, the fitness of the collective is
not affected by the infeasibility of individuals inside of it. By implementing the constraint
violation penalty at only one level, the individual-level, the diversity of the search can to
be maintained avoiding premature convergence of the collectives.

3.3. Benchmarking

Bi-objective problems are selected as a first step as they allow a problem where the
behaviour is simple to interpret and study while providing enough complexity to repli-
cate a number of real world problems. The CEC’'09 [5] benchmarking test set is selected
to illustrate the results due to the number of algorithms compared and range of different
problem types, including a substantial set of constrained problems. The unconstrained
results are updated to include HEIA and BCE to ensure the results reflect more recent
developments and to compare the proposed methodology with similar approaches. NSGA-
11 has also been improved since the CEC'09 competition, therefore the new results have
been run and the tables have been updated to reflect this. NSGA-II is preferred over
NSGA-III [24] or U-NSGA-III [10] in this comparison as it has been shown to exhibit
better performance on bi-objective problems. Results for MOEA/D on the constrained
problems are not included in the original CEC’'09 benchmark and so it is benchmarked
on these problems and the tables are updated. The newer variants of MOEA/D, such as
MOEA/D-M2M [13], MOEA/D-DD [28], MOEA/D-PSF or MSF [29], MOEA/D-2TCHMFI
[30], MOEA/D-MTCH [24] are not included as on average these algorithms do not show
a higher performance than MOEA/D for the selected bi-objective problems. Similarly, the
results of other algorithms from the current state of the art, such as GrEA [31] and HypE
[32], are not added to the comparison as these algorithms have been shown to be out-
performed by MOEA/D and NSGA-II on two-objective functions. Tests on the ZDT test
set [33], which is highly unimodal, and WFG test set [34], which shows a bias towards
certain regions of the objective space, non-separability of the input variables and differ-
ent modality, have also been conducted. There are no statistically significant changes in
comparative performance between MTS, NSGAII, MOEA/D and the hybrid algorithms, for
the ZDT cases, and high similarity of behaviour in comparison to the CEC'09 test set for
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the WFG test instances. Therefore, only the CEC’'09 functions have been included, as they
provide a clearer illustration of the comparative performance. The CEC '09 competition
[5] used 14 different constrained and unconstrained functions. The unconstrained func-
tions, UF1-UF7, have 30 variables each and the constrained functions, CF1-CF7, have 10
variables each with CF1-5 having 1 constraint and CF6-7 having 2 constraints. The tests
are performed following the CEC’09 comparison rules [5] where each function is eval-
uated over 30 separate runs and the average of these results is compared; the stopping
criterion is 300,000 function evaluations for each run; and the performance is evaluated
based on the Inverted Generational Distance (IGD) values calculated using only the 100
best, evenly-spread, individuals taken from each run. IGD is the performance measure
function of the Pareto Front, which shows the average distance between all points in the
true Pareto Front and the closest solution from the achieved set and is calculated in Eq.
(2);

e dv, 4)

IGD(A,P*) = T

(2)

where P* is a set of uniformly distributed points along the true Pareto Front, in the
objective space, A is the approximate set to the Pareto Front being evaluated and d(v,
A) is the minimum Euclidean distance between point v and the points in A. The IGD
metric is the preferred method to calculate the diversity and accuracy of the Pareto front,
as it allows comparison to the results in CEC’'09. The Hyper Volume (HV) metric would
provide a more accurate assessment of diversity but there is less available data for a
comparison and so the results are not included.

Different MLSGA parameters: population size, number of collectives, steps between
collective reproduction and number of eliminated collectives have been parametrically
evaluated. The parameters that give the best performance across all of the problems are
presented in this work. During the development of the hybrids the optimal number of col-
lectives is shown to be dependent on the overall population size; with a higher population
count more collectives should be introduced. In the case of 800 or more individuals then
8 collectives are preferred, and for smaller sizes 6 collectives are implemented. Using
too few collectives limits the spread of the search and therefore the final diversity of
the solutions. When too many collectives are used the same areas of the search space
are re-evaluated by different groups, decreasing the efficiency of the search. However,
minor changes away from the optimal number of collectives do not have a significant
effect on the final performance. This results in six collectives being used with the MTS
hybrid, using a lower population of 225, and two collectives of each type, MLS1, MSL2
and MLS2R. In the case of eight, used in NSGA-II and MOEA/D which use a high pop-
ulation size of 1800, there are 3 MLS2 collectives, 3 MLS2R collectives and 2 MLS1
collectives.

The overall population sizes are bigger than those commonly used in the litera-
ture as the collectives must maintain a reasonable population size for the individual
level mechanisms to be effective. As MTS utilises multiple local searches for each indi-
vidual, and thus requires a significantly higher number of iterations per generation,
a lower population size is used compared to the MOEA/D and NSGA-II hybrids, and
the collective reproduction steps have to occur more frequently. The number of elim-
inated collectives, 1, is the optimal value for all mechanisms and all problems. The
number of steps between collective reproduction, 1 every 10 generations for NSGA-
II and MOEA/D and 1 every generation for MTS, are shown to be problem indepen-
dent and these values are used are the optimal values for all problems. However, the
number of steps between collective reproduction should be balanced in order to max-
imise the added evolutionary pressure by the collective-level and should be adjusted
for different types of mechanism. The NSGA-II and MOEA/D mechanisms are depen-
dent on developing and maintaining a uniform Pareto front so the frequency of the

Table 2
MLSGA hybrid parameters utilised for benchmarking.
Step Parameter Value
MLSGA-MTS MLSGA-NSGA-II MLSGA-MEOAD
1. Initialisation Type Random
Encoding Real values
Pop. Size 225 1800
2. Classification Method SVM
No. Collectives 6 8

Collective size limits
3. Individual level operations

Fitness Evaluation Type Bothf1andf2
Selection Type n/a
Mating Crossover type n/a

Crossover rate
Mutation type
Mutation rate

3 local search methods

4. Collective level operations

min 10 individuals and max 1/6 of overall population size

Both f 1 and f 2 based on Chebycheff
Scalarizing Function [9]
Binary tournament with crowding Tournament
distance and non-dominated ranking
Real variable SBX
1
Polynomial
0.08

Differential evolution crossover

1 every 10 generations

Fitness evaluation Type MLS1, MLS2, MLS2R, depending on the collective
Elimination Number of elim. 1 every generation

collectives
5. Termination Criterion 300000 function evaluations
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Fig. 1. Pareto front of NSGA-II and MLSGA-NSGA-II on the CF2.

elimination and reproduction step has to be reduced compared to MTS. Otherwise, the
individual-level mechanisms do not have enough iterations to properly develop the front.
This leads to premature elimination of potentially good solutions which significantly
reduces the diversity of the final solutions and the final performance. Parameters used
by each hybrid are detailed in Table 2 and remain constant over all the runs for dif-
ferent functions. The parameters at the individual level are retained from the original
sources but some small performance gains might be possible by adjusting these val-
ues.

4. Performance benchmarking

The constrained function results are simulated for the hybrid algo-
rithms and the Pareto Fronts are compared to those generated by
running the individual level algorithms separately. These are illus-
trated for the CF2 with NSGA-II in Fig. 1, MOEA/D in Fig. 2 and
MTS in Fig. 3, and for the CF5 illustrated in Figs. 4-6 for NSGA-II,
MOEA/D and MTS respectively. CF2 and CF5 are chosen as they pro-
vide results representative of the worst and the best cases for hybrid
algorithms on the constrained problem set. The Pareto Fronts for the
figures have been randomly chosen from the 5 runs with the lowest
IGD value.

For the CF2 the resulting Pareto Fronts are close to the best possi-
ble for all of the hybrids, with an even spread of points. The MLSGA-
MOEA/D hybrid shows higher diversity and accuracy of points com-
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Fig. 2. Pareto front of MOEA/D and MLSGA-MOEA/D on the CF2.
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Fig. 3. Pareto front of MTS and MLSGA-MTS on the CF2.

pared to MOEA/D which is not able to reach the front. In the case of
NSGA-II and MTS, the MLSGA hybrids show similar performance to the
individual level algorithms where the resulting points cover the entire
length of the Pareto Front and it is difficult to visually determine which
has the better performance.

In the worst-case scenario, CF5, both MLSGA-MTS and MLSGA-
NSGA-II hybrids have a similar performance to the original algorithms
in terms of accuracy but with a more even spread of points. For
MOEA/D the points are concentrated mostly on one region of the
Pareto Front and the hybrid shows a wider diversity, covering the
entire length of the Pareto Front. However, the accuracy of these
points is poor with fewer of the hybrid points lying on the true Pareto
Front.

The process is repeated for the unconstrained problems, UF1-7. UF2
is shown in Fig. 7 for NSGA-II, Fig. 8 for MOEA/D and Fig. 9 for
MTS, and UF5 is shown in Figs. 10-12 for NSGA-II, MOEA/D and MTS
respectively. These figures are chosen as they illustrate the worst and
the best results for the unconstrained test set, similarly to the previous
cases.

For the unconstrained problems, the results vary more between
the different hybrids and the individual level algorithms. The MLSGA-
NSGA-II hybrid has similar performance to NSGA-II, and it is hard
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Fig. 4. Pareto front of NSGA-II and MLSGA-NSGA-II on the CF5.
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to distinguish visually which variant is better for both presented
functions. For MLSGA-MTS and MTS algorithms, similar results are
obtained on UF2 function but MTS exhibits better performance on
UF5 in terms of diversity and accuracy. The MLSGA-MOEA/D is
outperformed by MOEA/D in both presented cases.

The results of the three hybrids, MLSGA-NSGA-II, MLSGA-MOEA/D
and MLSGA-MTS are also compared to the original algorithms based
on the average IGD values and presented for constrained test cases in
Table 3 for CF1-7, and for UF1-7, in Table 4. In both tables the better
results between the hybrid and the individual level algorithm are high-
lighted in blue and are in bold font. The minimum, maximum and stan-
dard deviation over 30 runs are given in the brackets for each MLSGA
variant. Additionally, the Wilcoxon’s rank sum test was conducted to
assess the statistical significance of the differences between the results
obtained by MLSGA hybrids and the original algorithms with a signif-
icance level of @ =0.05. Results for the original algorithms are taken
from the CEC’09 benchmarking [17]. As MLSGA-NSGA-II is based on
an updated version of NSGA-II, not on the version from the CEC’09
ranking, the updated results for this algorithm are included in Tables 3
and 4. As the results for MOEA/D on the constrained functions have
not been presented in CEC'09, these are simulated and included in
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Fig. 6. Pareto front of MTS and MLSGA-MTS on the CF5.
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Table 3.

The constrained results show that implementation of collective level
mechanisms improves the performance of GAs in general, for NSGA-II
improvements are shown on 6 out of 7 cases. The MLSGA-MTS also
shows improvements over the original algorithm on 6 out of 7 cases
but with statistical significance on 4 of the functions. For MOEA/D
the MLSGA mechanisms leads to improvements in the performance in
all cases. For the unconstrained cases better results can be observed
for MLSGA-NSGA-II in comparison to NSGA-II for all the presented
functions, with statistical significance for 5 out of 7. In the case of
MLSGA-MTS hybrid the improvement has been shown on all the func-
tions except for UF4 and UF5, though this is not statistically signifi-
cant for the UF6. Implementation of the MLSGA mechanisms decreases
the performance of MOEA/D on all problems of this type. This is
most likely caused by the collective-level operations which are not
adjusted for the MOEA/D specific mechanisms, such as the weight
vectors and neighbourhoods of solutions. In this case the weight vec-
tors of the eliminated solutions are not taken into account during
the collective reproduction step when the offspring collective is cre-
ated. Therefore, the weights are randomly assigned to the new solu-
tions, which results in lower overall fitness at the individual-level.
The mechanisms were not fully adjusted as the assignment of the best
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Fig. 8. Pareto front of MOEA/D and MLSGA-MOEA/D on the UF2.
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individuals to each weight vector during every collective reproduction
would require a significant number of comparisons and therefore would
result in drastically higher computational costs over the original algo-
rithm.

To highlight the performance of the MLSGA approach the MLSGA-
MTS variant is compared to the updated CEC'09 competition rankings.
This is despite the fact that it is not the strongest performing hybrid
on every problem and a priori knowledge of the problem could lead
to stronger performance by matching the MLSGA hybrid to a given
problem. These are presented for constrained test cases in Table 5
for CF1-7, and for unconstrained functions, UF1-7, in Table 6. In the
tables, the results of the hybrid are in bold and highlighted in light
blue colour and the results for the original MTS are highlighted in
dark blue. Additionally, the results for the two other hybrid methods
the MOEA/D + TCH variant of BCE [18] and HEIA [19] are included
in bold, as they are hybrid methodologies that show leading perfor-
mance.

In the updated CEC’09, rankings the MLSGA-MTS hybrid would be
placed in the top 3 algorithms for constrained functions for 6 out of
7 cases, showing the best performance for CF6. For the unconstrained
problems, the presented hybrid would be in the top 3 algorithm for
5 out of 7 cases, and the best performing for two problems, UF1 and
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Fig. 10. Pareto front of NSGA-II and MLSGA-NSGA-II on the UF5.
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UF2. Interestingly, for the UF7 function, the MLSGA-MTS hybrid is out-
performed by most of the updated CEC 09 competitors. In this case,
the performance of the hybrid is strongly affected by poor performance
of the original MTS algorithm. The proposed methodology would have
been placed 2"over the constrained test sets, and 2nd place on the
unconstrained functions, leading to the best general performance.

5. Understanding MLSGA mechanisms and limitations

It is shown that the MLSGA hybrids perform better than the individ-
ual level algorithms; NSGA-II and MTS in all cases and MOEA/D for the
constrained problems. The results demonstrate a capability to improve
the performance of a wider range of GAs than that shown in Ref. [4]
and that the split in the fitness function is robust to the selection of a
number of GAs at the individual level. However, it is also shown for the
first time that the performance of all algorithms is not improved across
all problem types.

The results show that as long as the levels are different there can be
more than one objective per level allowing for some overlap between
elements at each level. For example, in these cases objective 1 can be
used as part of the individual level and the collective level without
impairing performance. These results indicate promise for extension
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Fig. 12. Pareto front of MTS and MLSGA-MTS on the UF5.
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Comparison of MLSGA hybrids and original algorithms on CEC’09 two-objective constrained

problems CF1-7.

Aleorithm Average IGD (min; max; std)
8 CFl | Cr2 | CF3 | CMd | CF5 | CF6 | CF/
NSGA-II 0.01480 | 0.01249 | 0.24428 | 0.04946 | 0.13595 | 0.03309 | 0.13749
0.02429 | 0.00692 | 0.11619 | 0.01924 | 0.05513 | 0.02231 | 0.06110
MLSGA- (0.02074; | (0.00402; | (0.07265; | (0.01289; | (0.03812; | (0.01191; | (0.03247;
NSGA-II 0.02842; | 0.01252; | 0.15936; | 0.03344; | 0.11002; | 0.04561; | 0.17206;
0.001883)| 0.002491)| 0.027561) | 0.004994)| 0.015264)| 0.007163)| 0.031170)
[-] [+] [+] [+] [+] [+] [+]
MOEA /D 0.0204 0.06324 0.543 0.1503 0.223 0.1392 1.192
0.00401 | 0.00550 | 0.27730 | 0.03404 | 0.20834 | 0.03710 | 0.15495
MLSGA- (0.00255; | (0.00366; | (0.14522; | (0.02203; | (0.10708; | (0.02475; | (0.08564;
MOEA/D 0.00700; | 0.01266; | 0.37486; | 0.05054; | 0.37707; | 0.05598; | 0.31225;
0.001151) | 0.001814) | 0.051974)| 0.005912)| 0.068027)| 0.008044)| 0.056544)
[+] [+] [+] [+] [+] [+] [+]
MTS 0.01918 0.02677 0.10446 0.01109 0.02077 0.01616 0.02469
0.01825 | 0.00285 | 0.10195 | 0.00822 | 0.02876 | 0.00747 | 0.02405
MLSGA- (0.01267; | (0.0026; | (0.07297; | (0.00729; | (0.02183;| (0.00662; | (0.01969;
MTS 0.02396; | 0.00306; | 0.13768; | 0.00932; | 0.03499; 0.0094; 0.02927;
0.002441) | 0.000111) | 0.014918)| 0.000524)| 0.003313)| 0.000707)| 0.002662)
[+] [+] [~] [+] [-] [+] [~]

[+], [-], and [~] indicate that the results of MLSGA hybrid are significant
similar to the original algorithm using Wilcoxon’s rank sum test.

Table 4

y better, worse or

Comparison of MLSGA hybrids and original algorithms on CEC’09 two-objective unconstrained

problems UF1-7.

Aleorithm Average IGD (min; max; std)
8 UFl | U2 [ U3 [ UF4 | UF5 | UF6 | UF?
NSGA-II 0.048182 | 0.01671 | 0.15966 | 0.04798 | 0.22088 0.302 0.02751
0.01407 0.01532 | 0.15700 | 0.04663 | 0.18373 | 0.25145 | 0.01175
MLSGA- | (0.01079; | (0.01404; | (0.13171; | (0.04549; | (0.11668; | (0.22234; | (0.00962;
NSGA-II 0.02067; | 0.01814; | 0.19965 | 0.04775; | 0.26350; | 0.29777; | 0.01688;
0.00239) | 0.000945) | 0.016248) | 0.000640)| 0.032948)| 0.016909) | 0.001641)
[+] [+] [~] [~] [+] [+] [+]
MOEA/D 0.00435 | 0.00679 | 0.00742 | 0.06385 | 0.18071 | 0.00587 | 0.00587
0.04281 | 0.02321 | 0.09862 | 0.07288 | 0.82728 | 0.36551 | 0.02279
MLSGA- (0.02609; | (0.01804; | (0.05775; | (0.06169; | (0.55343;| (0.32494; | (0.01613;
MOEA /D 0.07431; | 0.02995; | 0.14859; | 0.08331; | 1.21254; | 0.39631; | 0.03927;
0.010244) | 0.002626)| 0.023678)| 0.004818)| 0.161068)| 0.020352)| 0.005208)
[ [l ] [ [l ] ]
MTS 0.00646 | 0.00615 0.0531 0.02356 | 0.01489 | 0.05917 | 0.04079
0.0041 0.00411 0.03632 0.02724 0.06154 0.0579 0.03714
MLSGA- (0.00398; | (0.00400; | (0.0279; | (0.02628; | (0.04357; | (0.04937; | (0.01664;
MTS 0.00427; | 0.00427; | 0.04397; | 0.02889; | 0.07368; | 0.06716; | 0.07475;
0.000071) | 0.000068) | 0.003525) | 0.000602)| 0.006264)| 0.00482) | 0.01714)
[+] [+] [+] [] -] [~] [+]
[+], [-], and [~] indicate that the results of MLSGA hybrid are significantly better, worse or

similar to the original algorithm using Wilcoxon’s rank sum test.

to many-objectives problems as concerns that each objective would
require its own level is dismissed. This concern would have led to a
large number of levels, potentially one per objective, and an extensive
tree of corresponding collectives of collectives. Expansion in the num-
ber of collectives required would necessitate an exponential increase
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in individual population sizes to allow for a large enough number
of higher level collectives. However, additional investigations will be
required into how best to adjust the fitness function at each level for
these problems.
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Table 5
Updated CEC ‘09 ranking on the two-objective constrained CF1-7 problems including MLSGA-MTS
hybrid.
Rank Name/Average IGD
CF1 CF2 CF3 CF4 CF5 CF6 CF7
LiuLi DMOEA- | DMOEA- | DMOEA- | DMOEA- | MLSGA- | DMOEA-
1 0 01(‘)‘08‘5 DD DD DD DD MTS DD
. 0.0021 0.056305 | 0.00699 0.01577 0.00747 0.01905
NSGA- | MLSGA- | MLSGA- . MLSGA-
2 ILS MTS MTS 0%13;3939 0 16;1;]528 MTS
0.00692 0.00285 0.10195 : : 0.02405
NSGAIL Liuli MLSGA- | MLSGA- | DMOEA-
3 0.01480 0.0042 LA DS DD
: : 0.00822 0.02876 0.01502
A MEGOI\?D' MEGOI\?D' GDE3 GDE3 GDE3
0.0108 0,008 0.127506 0.06799 0.04169
5 DNIID%EA' NISISS' LiuLi LiuLi LiuLi NISIESA' LiuLi
0.01131 001183 | 0182905 | 0.01423 0.10973 0.02013 0.10446
; MII\‘/ISTGSA' NSGA-II NISI(E?' NISI(L;?' NSGA-II | NSGA-II | NSGA-II
0.01825 0.01249 023994 0.01576 0.13595 0.03309 0.13749
GDE3 | NSGA-II | NSGA-II NISISSA' GDE3 lelfs'
0.01597 0.24428 0.04946 01802 0.06199 023345
GDE3 MEOAD- | MEOAD- | MEOAD- | DECMO- | DECMO-
8 00094 GM GM GM SA SA
: 0.5134 0.0707 0.5446 0.14782 0.26049
DECMO- DECMO- | DECMO- | DECMO- | MEOAD- | MEOAD-
9 SA SA SA SA GM GM
0.10773 1000000 0.15265 0.41275 0.2071 0.5356

The authors suggest that the increase in performance is due a com-
bination of the use of novel reproduction mechanisms between sub-
populations, collectives, and the split in the fitness function. In MLSGA,
the individual-level operations lead to exploration and exploitation of
both objective and variable spaces, in a similar manner to the orig-
inal algorithms. The collective-level creates artificial boundaries, by
strongly penalizing solutions in certain regions and pushing the indi-
viduals in to the preferred ones. Splitting the population, either in
the form of separate fronts [7], decomposition [9] or direct subpop-
ulation approaches [15], has been shown to be beneficial in other
algorithms. This is because it decreases the chances of premature con-
vergence for the whole population at a local optima and leads to an
increase in the overall diversity of the final solutions. The MLSGA mech-
anisms enhance the ability to explore different parts of the objective
space even further, by introducing an additional selection pressure.
The hybrid algorithms demonstrate an increase in performance over
the original variants on the constrained problems as the diversity is
more crucial on this type of problem. The split in fitness function and
independence of collectives allows them to more easily move around
“gaps” in the objective space created by the constraints; for the uncon-
strained problems this diversity is less essential. This claim is supported
by the high gains in performance of the MLSGA-MOEA/D hybrid on
constrained problems, as the original MOEA/D struggled to operate in
non-continuous search spaces as the weights are defined in straight
lines which may pass through these regions, leading to an inefficient
search.

In the hybrid approach, the addition of MLS-U, defining differ-
ent fitnesses from MLS1, MLS2 and MLS2R in each collective, leads
to a “specialisation” of collectives, where each collective type cre-
ates a selection pressure into a different direction, and thus leads to
exploration of different regions of the objective space. This is illus-
trated in Fig. 13, where the different collective types are shown to
be exploring different parts of the Pareto Front. MLS1 focuses on the
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“middle” regions of the Pareto Front, as individuals with the lowest
value of the average of both fitness functions are promoted, due to
its fitness definition. MLS2 and MLS2R exploit the peripheral regions
of the Pareto Front and in these cases the collective reproduction
mechanisms promote extreme solutions, as only one fitness function
is considered. Furthermore, the proposed methodology is able to search
negative regions of the objective space, unlike decomposition meth-
ods, as it can avoid the regions without feasible solutions where the
decomposition methods has been proven ineffective, such as in dis-
continuous problems. This is exhibited by high performance on the
constrained problems, and non-continuous functions such as UF5 and
UF6.

The MSLGA mechanisms do not increase the performance for all
of the algorithms on all cases. In the unconstrained functions, the
MOEA/D hybrid performs worse than the original. The authors sug-
gest that this reduction in performance is caused by the collective
reproduction mechanisms, which do not properly maintain a number
of the parameters that the original MOEA/D utilises, such as the weight
vectors and neighbourhood of solutions. It might also be that such
a specialist solver’s performance is also degraded by the addition of
the MLSGA mechanism, which improves the generality of the algo-
rithm; there is no free lunch after all. In the MLSGA-MOEA/D hybrid
the newly created collective inherits the weight vector of the elimi-
nated collective during the collective reproduction step. However, the
solutions copied from the remaining collectives are not subject to this
weight vector as the specific weights are assigned to the individuals ran-
domly. This means that the best weight vector is not assigned to each
new solution. The neighbourhood of solutions in the hybrid approach
is recreated in the offspring collective, based only on the weight val-
ues. Therefore, the new neighbourhood does not reflect the relation-
ship between the two neighbour solutions in both the objective and
decision variable spaces. This lowers the overall fitness of the individu-
als in the new collective and thus decreases the performance compared
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Table 6
Updated CEC‘09 ranking on the two-objective unconstrained UF1-7 problems including MLSGA-MTS
hybrid.
Rank Name/Average IGD
UF1 UF2 UF3 UF5 UF6 UF7
. BCE MI{J/ISTGSA- MOEA /D MOEA/D| HEIA
0.00164 N 0.00742 0.00587 0.00309
) HEIA HEIA BCE GDE3 GDE3 MII\“ASTC;A' MOEA/D
0.0027 0.00581 0.00957 0.0265 0.03928 0.0579 0.00587
MLSGA- HEIA MLSGA- | MLSGA-
3 MTS 0.00128 MTS MTS
0.0041 . 0.02724 0.06154
MOEA /D | MOEAD- Liula DECMO- |, v/~ | DMOEA-
41 000435 GM 0.01497 | SASQC | 00405 DD GM
: 0.0064 : 0.03392 . 0.06673 0.0076
5 GDE3 BCE DNIIDODEA' HEIA LiuLi OMSEA' DIV]ID%EA'
0.00534 0.00656 0.03337 0.0377 0.16186 0.07338 0.01032
MOEAD- | DMOEA- | MLSGA- DECMO- | Clustering
6 GM DD MTS g‘(ﬁggg SA-SQP | MOEA og1CzE12
0.0062 0.00679 0.03632 : 0.16713 0.0871 :
MOEA/D | MOEAD- | DMOEA-"|"OMOEA- ||/ ~0, MOEP
0.00679 GM DD 1l 0.1031 0.0197
. 0.049 0.04268 0.1692 : ‘
LiuLi MOEP MOEA/D DECMO- | NSGA-
8 1 000785 aDE 00427 | oasor1 | SASQP | IELS
. 0.0081 . : 0.12604 0.02132
DMOEA- GDE3 Clustering LiuLi HEIA AMGA Clustering
K DD 0.01195 MOEA 0.0435 0.205 0.12942 MOEA
0.01038 : 0.0549 . : : 0.0223
NSGA- LiuLi AMGA OMOEA- NSGA-II HEIA DECMO-
10 [-LS 00123 | 0.06998 1T 0.22088 0152 | SASQP
0.01153 : : 0.04624 : : 0.02416
OWMOS- | NSGA- | DECMO- | MOEAD- | /oo LiuLi GDE3
1 aDE I-L5 SA-SQP GM 0.2245 0.17555 0.02522
0.0122 0.01237 0.0935 0.0476 : : :
Clustering AMGA MOEP NSGA-IT Clustering| OWMOS- NSGA-II
121 MOEA | 1603 0.099 0.04798 | MOEA aDE 0.02751
0.0299 : . : 0.2473 0.1918 :
AMGA | NSGA | OWMOS- [ OWMOS- | DMOEA- | 0o OMOEA-
13 0.03588 | 0.01671 abE abDE DD 0.25091 1
: : 0.103 0.0513 0.31454 : 0.03354
NSGA-II MOEP NSGA- NSGA- BCE NsGA- | MLSGA-
141 0048182 | 00189 LS I-LS 0.40341 0.302 LA
. : 0.10603 0.0584 : : 0.03714
Clustering Clustering| OWMOS- NSGA-
15 ISA(%I;E MOEA 0(31]36]5339 MOEA aDE II-LS
: 0.0228 : 0.0585 0.4303 0.31032
DECMO- | DECMO- 1 s BCE NSGA- BCE AMGA
161 SASQP | SASQP | 50007 | 06063 LS 0425 | 0.05707
0.07702 0.02834 : . 0.5657 ) :

to the original MOEA/D. In addition, the NSGA-II and MOEA/D algo-
rithms rely on a constant front to generate the optimal results, which
the current simple collective reproduction mechanisms do not account
for. Development of improvements to the collective level mechanisms,
bespoke to the algorithm used at the individual level, may provide a
further increase in performance. For NSGA-II and MOEA/D, this will
promote the constant front generation and will consider the original
algorithms specific mechanisms, such as weight and neighbourhoods in
MOEA/D.

MLSGA-MTS provides strong performance across all of the problem
sets, providing the best general performance. Its only poor performance,
12th in the updated CEC’09 rankings, is on UF?7. It is difficult to deter-
mine the reasons for the poor performance but UF7 is a continuous
linear non-uniform problem with a strong bias towards the right side
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of the Pareto Front. MTS and MLSGA do not have as strong diver-
sity preservation metrics as other leading algorithms, and this poten-
tially causes problems in regions where there is such a strong bias
towards points in one area, a limitation to the MLSGA-MTS approach. In
comparison to the other hybrid approaches, BCE [18] and HEIA [19],
the MLSGA-MTS exhibits better performance in 4 out of 7 functions.
Unfortunately, the algorithms cannot be compared on the constrained
functions due to lack of benchmarks of BCE and HEIA on these prob-
lems.

The authors believe that MLSGA mechanisms can be successfully
utilised on various GAs to improve the performance, not only those
presented in this work. Guidance is provided on how to tune the algo-
rithm for these different hybrids, and the result is that many of the new
parameters require little adjusting.
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Fig. 13. Pareto Front of MLS1, MLS2 and MLS2R fitness definition types from
MLSGA-NSGA-II algorithm on the CF1 problem.

6. Conclusions

This paper investigates the performance of implementing different
mechanisms at the individual level of Multi-Level Selection Genetic
Algorithm (MLSGA). This leads to a better understanding of how the
split in the fitness function and collective level reproduction mech-
anisms interact with a range of individual level mechanisms. Utili-
sation of MLSGA to create hybrid algorithms is shown to be benefi-
cial in a number of cases. Hyperparameter tuning is performed which
shows that the results are relatively insensitive to the new parameters,
or that these parameters are easy to select. The MLSGA mechanisms
improve the overall performance and provide a different behaviour
to the typical “convergence first, diversity second” approach, which
leads to the hybrids demonstrating particularly strong performance on
discontinuous problems. The hybrid genetic algorithms, MLSGA-MTS
and MLSGA-NSGA-II, show increased performance on the CEC’'09 con-
strained and unconstrained problems over their original implementa-
tions but MLSGA-MOEA/D only exhibits this improvement on the con-
strained problems. The best hybrid is MLSGA-MTS, which performs the
best on a number of the CEC’09 benchmarking test problems and on
the updated rankings places 2nd on the constrained test sets and 2nd
on the unconstrained functions, leading to the best general performance
across all the problems.
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development of genetic algorithms with specific mechanisms for these prob-
lems. To ensure that these developed mechanisms are capable of solving a
wide range of practical problems it is important to have a diverse set of
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1 Dynamic optimisation problems

Many real-world problems have characteristics which change over time. Ex-
amples include forecasting of financial markets and stocks to increase profits
in automated stock market investors [Bagheri et al., 2014]; forecasting, control
systems and pattern recognition in traffic management to determine the scale
of the traffic on the road and reduce the waiting time [Wismans et al., 2014];
climate controlling systems for crop growing greenhouses [Zhang, 2008] and
LNG storage tank terminal design to reduce the cost of transporting LNG
[Effendy et al., 2017]. This is increasing the interest in optimisation of Dy-
namic Single-Objective Problems [Branke, 2002] (DSOP) and Dynamic Multi-
Objective Problems [Helbig and Engelbrecht, 2015, Li et al., 2011, Farina et al.,
2004] (DMOP), via Genetic Algorithms (GA).

In order to identify the mechanisms with the strongest performance on
these types of problems there are a growing number of dynamic test sets
such as: FDA [Farina et al., 2004], JY [Jiang and Yang, 2017], UDF [Biswas
et al., 2014], DSW [Mehnen et al., 2006], HE [Helbig and Engelbrecht, 2014]
and ZJZ [Zhou et al., 2007]. These are used to replicate the most significant
characteristics from different types of real-world problems. Current Dynamic
Multi-Objective Problems exhibit various dynamic characteristics: search and
objective space geometry changes, Pareto Optimal Front (POF) and Set (POS)
curvature changes and shifts, discontinuities, modalities, periodicities, ran-
domness of changes or predictabilities and variable-linkages [Helbig and En-
gelbrecht, 2014] but all of the presented benchmarking sets are limited to un-
constrained problems and are focused on solutions with continuous Pareto
Optimal Fronts. Conducting benchmarking on a limited range of problem
types can lead to overdevelopment of mechanisms with a strong bias towards
these problems, which reduces their efficiency across the entire set of prob-
lems. Taking dynamic optimisation as an example, then since most of the cur-
rent benchmarks utilise continuous characteristics there are difficulties when
selecting the best solver for a constrained problem. It is also possible that the
mechanism development is biased towards these problems and it is likely
that these problems will require different mechanisms in the same way that
static problems tend to have solvers specialised either for constrained or un-
constrained problems [Zhang and Suganthan, 2009]. Testing on a wider set
of problems is more likely to highlight potential improvements to the mech-
anisms and understanding the limitations of each mechanism is essential if
they are to be utilised effectively in real-life applications.

Therefore, this paper introduces a novel constrained dynamic test set to
improve the knowledge related to Genetic Algorithm performance on dy-
namic problems with the aim of broadening the benchmarking possibilities
for the current state-of-the-art. A set of 15 constrained dynamic multi-objective
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problems are developed and 6 Genetic Algorithms are selected for their top
performance on dynamic or constrained/discontinuous problems: NSGA-
II [Deb et al., 2002], MOEA /D [Zhang and Li, 2007], MLSGA-MTS [Grud-
niewski and Sobey, 2018], MTS [Tseng and Chen, 2009], HEIA [Lin et al,,
2016] and BCE [Li et al., 2016], and their performance is compared on these
problems. This performance is also tested in combination with different re-
initialisation mechanisms, as these mechanisms make a considerable improve-
ment to Genetic Algorithm performance on dynamic problems.

This paper is organised as follows: section 2 presents a literature review
of different Genetic Algorithms and dynamic optimisation specific mecha-
nisms; section 3 introduces a new set of constrained dynamic (CDF) multi-
objective problems along with a review of currently existing sets; section 4
presents a brief overview of the Genetic Algorithms and the re-initialisation
mechanisms used in the benchmarking; section 5 shows the results followed
by conclusions in section 6.

2 Increasing the diversity of the population for dynamic optimisation

In dynamic multi-objective problems, the diversity of solutions has to be
maintained over the generations in order to achieve a complete set of re-
sults, the same as for static problems. However, the diversity of the gene pool
must also be maintained through different time steps, meaning that diversity
must be retained after convergence has occurred, unlike in static problems.
To solve this problem a number of novel re-initialisation methodologies are
proposed as additions to the current Genetic Algorithms, to improve per-
formance on these dynamic problems [Nguyen et al., 2012]. These methods
generally enhance the diversity of the population whenever an environmen-
tal change occurs, without significant impact on the computational cost of the
whole algorithm. Three major classes are found in the current state-of-the-art:
niching and other diversity preservation schemes [Goh and Tan, 2009], par-
tial replacement of the population or hypermutation [Deb et al., 2007] and
guided re-initialisation [Zhou et al., 2007].

In niching and other diversity preservation schemes the internal algo-
rithm mechanisms are used in order to regain the diversity of the popula-
tion after the environment changes. An example is dCOEA [Goh and Tan,
2009] where a separate competitive process occurs when a dynamic change is
detected, without the need to re-evaluate the whole population. Despite the
positive impact on the final performance, the mechanisms from this method-
ology group often cannot be utilised outside of specific algorithms in which
they were introduced and therefore the number of applications is limited.
In addition, they show poor performance on problems with discontinuous
search or objective spaces and cases where the environmental change is sig-
nificant.

A second type of preservation scheme is hypermutation where a fraction
of the set of potential solutions is modified by mutating the current individu-
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als, or by replacing them with randomly generated new ones when an en-
vironmental change is detected. This method is implemented in the most
commonly used Genetic Algorithm, NSGA-II [Deb et al., 2002], where the
resulting algorithm is designated DNSGA-II [Deb et al., 2007], and is suc-
cessfully tested on the FDA2 test function. However, the algorithm with the
updated dynamic element is not compared to the original variant and there-
fore it is hard to determine how much benefit is gained from the hypermuta-
tion mechanism [Deb et al., 2007]. Various benchmarks show that DNSGA-II
struggles on more complex cases, and is outperformed by other algorithms,
such as MOEA /D and dCOEA [Jiang and Yang, 2017, Biswas et al., 2014], in-
dicating that hypermutation does not sufficiently maintain diversity over the
time changes.

Re-initialisation methods are the final class of preservation scheme. Four
main variants have been described by Zhou et. al. [Zhou et al., 2007]:

1. random, where the new population is initiated arbitrarily;

2. prediction-based, where the movement of the Pareto Optimal Set or Front
is predicted, based on historical information, and the new population is
sampled around the predicted location using Gaussian noise;

3. variation-based, where new points are created by varying the solution in
the last time window with a predicted Gaussian noise, therefore only the
information from the last time window is used, without the need to store
the historical data;

4. the mixed method, variance and prediction (VP), where the variation method

is applied to half of the population, and the prediction method to the rest.

In an initial benchmarking exercise the random variant is shown to be
highly inefficient, as the algorithm needs to restart at every time change,
the prediction-based method is shown to outperform the variation-based ap-
proach but the variance and prediction method shows the top performance
as it can maintain benefits from both of these methods. However, all of the
variants are benchmarked on a limited test set, Z]Z [Zhou et al., 2007] and
FDA [Farina et al., 2004], and are only combined with a single algorithm,
DMEA /PRI [Zhou et al., 2007], and therefore further testing is required to
test the pervasiveness of these conclusions. The prediction-based methods
are also investigated by Biswas et. al. [Biswas et al., 2014] and a new strat-
egy is introduced that relies on Controlled Extrapolation with a Pareto Op-
timal Front based on a distance approach (CER-POF). In this method, the
positions of the parent solutions are evaluated based on the Pareto Optimal
Front distances, instead of the Pareto Optimal Set distances as in Zhou et.
al. [Zhou et al., 2007], and the offspring points are sampled using Gaus-
sian noise or a hyperbolic function, with equal probability. The proposed
CER-POF method, combined with MOEA/D, is shown to outperform the
prediction-based re-initialisation strategy presented by Zhou [Zhou et al,,
2007], and the hypermutation-based DNSGA-II algorithm [Deb et al., 2007].
However, it is not compared to MOEA /D without re-initialisation, in com-
bination with the VP method or to the Pareto Optimal Set based prediction
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introduced by Zhou [Zhou et al., 2007], which limits the generality of the con-
clusions. In addition, the prediction-based re-initialisation methods assume
that the change of the Pareto Optimal Set or Pareto Optimal Front follow spe-
cific patterns, which can be found and exploited to predict the next time step.
The performance of these methods on problems where a pattern does not ex-
ist or cannot be found easily, has not been properly evaluated despite it being
the case for many real-world applications.

The re-initialisation methods have shown to increase the effectiveness
of Genetic Algorithms on Dynamic Multi-Objective Problems without sig-
nificant impact on the computational cost. These mechanisms outperform
the hypermutation-based algorithms and exhibit comparable performance to
niching-based approaches. Three re-initialisation schemes: CER-POF, VP and
CER-POS, are selected as the most promising mechanisms for dynamic prob-
lems due to their combination of high performance and flexibility, where the
Controlled Extrapolation with a Pareto Optimal Set based distance approach
(CER-POS) [Biswas et al., 2014] is introduced in order to determine the im-
portance of different nearest-distance definitions on dynamic problems.

3 A test set for constrained dynamic problems

To increase the range of dynamic problems this paper develops a set of 15
novel two-objective Constrained Dynamic Functions (CDF)!, which reflect
the constrained and discontinuous problem types found in many applica-
tions. These modify the Constrained Functions (CF) developed for the CEC
09 multiobjective competition [Zhang et al., 2009] according to the dynamic
function framework proposed by Biswas et.al [Biswas et al., 2014], as it al-
lows straightforward modification of static functions into dynamic problems.
Only two-objective problems are considered as these allow a simpler inter-
pretation of the results, without issues of scaling, while providing enough
complexity to resemble a number of real-world problems, such as [Bagheri
et al., 2014, Wismans et al., 2014, Zhang, 2008, Effendy et al., 2017].

3.1 General summary of dynamic problems

According to Farina et.al [Farina et al., 2004] 4 types of dynamics can be dis-
tinguished: type I, where changes are made to the Pareto Optimal Set only;
type III, where the Pareto Optimal Front is dynamic; type II, where both
the Pareto Optimal Set and the Front are subject to environmental changes
and type IV, where only the objective function or constraints are altered, but
both the Pareto Optimal Front and the Set remain static. Part of developing a
new set of constrained problems is determining to what extent the constraint
should be time dependant in relation to the Pareto Optimal Front and the Set,
three cases are considered:

1 These functions are available in C++ at: https:/ /www.bitbucket.org/Paglc18
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a)

A static constraint where no time dependency is introduced. However, de-
spite the constraint itself being static the effect of the constraint, and the re-
sulting regions where there are no feasible solutions, are not constant due
to the time dependency of the search and objective spaces. Therefore, the
Pareto Optimal Front and Set change with respect to the resulting gaps.
A dynamic constraint where the time dependency is bonded to the dy-
namic change of the optimisation problems Pareto Optimal Front and Set.
In this case, the applied constraints follow the dynamic change in the pat-
tern of the optimisation problem as the same time-dependency is applied
to both of them. Therefore, the resulting gaps in both the Pareto Optimal
Set and Pareto Optimal Front do not change.

A dynamic constraint where the dynamic change is independent from the
change in the optimisation problem. In this case, the constraint is subject
to different dynamic changes than those applied to both the Pareto Op-
timal Set and Pareto Optimal Front, or they remain static. Therefore, the
resulting gaps on both the search and objective spaces shift independently
every time step, making the problem harder to solve.

Table 1: Summary of the Constrained Dynamic Test set

Type of

Name dynamic Type (?f Continuity Type of POF/POS Constraints
constraint change
problem

CDF1 1 Dynamic Continuous Curvature change 2 varlgble
constriants

CDF2 I Static Continuous Curv-ature char}ge; 1 Vanable
horizontal shift constraint

CDF3 I Dynamic Discontinuous Curvature change ! vanalr‘ﬂe
constraint

CDF4 I Static Discontinuous Vertical shift 1 ob]ect}ve
constraint

CDF5 I Dynamic Continuous Diagonal shift ! var1ab1e
constraint

CDFeé I Static Continuous Diagonal shift 2 varl:able
constriants

CDF7 I Dynamic Discontinuous Curyature cha'n 8¢ ! ob]ect}ve
diagonal shift constraint

CDF8 I Static Discontinuous Curvature change ! ob]ec'qve
constraint

CDF9 I Dynamic Continuous Cu;yature Cha.n 8¢ 2 vangble
iagonal shift constriants

CDF10 I Static Continuous Curvature change ! varlal?le
constraint

CDF11 I Dynamic Discontinuous Horizontal shift ! "am}.’le
constraint

CDF12 I Static Discontinuous Curvature che'mge; 1 ob]ect}ve
angular shift constraint

CDF13 I Static Discontinuous Random curva.t ure 1 ob]ect{ve
change or shift constraint

CDF14 v Dynamic Discontinuous Continuity change 1 objective
constraint

CDF15 v Dynamic Discontinuous Discontinuity shift 1 ob]ec‘qve
constraint
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3.2 Test instances

In this paper, the CDF test set is developed to ensure a range of different prob-
lem types by considering all 3 cases, with changes to the location of the Pareto
Optimal Set or Front, changes to the geometries of the search and objective
space and dynamic or static constraints introduced to the variables and ob-
jectives. Due to the quantity of potential combinations for these parameters,
orthogonal design is used to develop 12 representative functions as described
in Table 1; this is performed according to the types of dynamic problems and
constraints, changes in Pareto Optimal Front and Pareto Optimal Set, and the
continuity of both Pareto Optimal Front and Pareto Optimal Set. This gener-
ates a set of problems including at least one of each of the type I-III problems
with different Pareto Optimal Front and Pareto Optimal Set geometries. Ad-
ditionally, one problem with a random dynamic change is introduced, as the
random element greatly increases the complexity of a problem as the change
cannot be predicted; and two problems of type IV are added in order to inves-
tigate the different types of time-dependency in constraints with static vari-
able and objective spaces. All of the functions are to be minimised and have
10 decision variables.

CDF1: is generated by combining the UDF2 problem with two variable
constraints; the resulting function is a Type I problem. This combination al-
lows investigation of the behaviour of algorithms on continuous objective
spaces in dynamic Pareto Optimal Set environments. However, as the con-
straint is also dynamic relative to the change in sin(t) the infeasible regions
are not observed over time, which reduces the overall complexity of the prob-
lem. The problem is described on eq. 1 with the Pareto Optimal Front illus-
trated in Fig. 1.

fi=x1+ ﬁ Z (zia7)?
Jj€J1 )
fo= =21+ D (zizy)?
al jEJ2
vy =051+ + |G, j=2,...,n
z€[0,1] x [-1,2]71
5% G —sign
pr(ont)  Jar et ERIEED = (k)y/Th1] )
k1 =0.5(1—x1) — (1 —x1)2

N m(om(%%wcm\)—sign<k2>\/\k2|
42

kg = 0.25y/T — 21 — 0.5(1 — z1)

POF:{fQ(l_fl)z
0<fi<1

g2(z,t) =

CDF2: introduces a vertical shift of the Pareto Optimal Set into the CF4; the
resulting problem is Type L. In comparison to CDF1, the introduced constraint
is static and limits the obtainable Pareto Optimal Front values on the right-
hand side of objective space. The complexity is due to the high multimodality
with an uneven distribution of points across the Pareto Optimal Front. The
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problem is described in eq. 2 with the Pareto Optimal Front illustrated in Fig.
2.

fi=ai+ Y wi(y))

J€J1
fo=lzi+ Y wjly))
Jj€J2
y; = xjsin(6rry + (JTW), ji=2,...,n
|| if 2z<1.5(1-0.5V2)
wa(z) = 5 .
0.125 4 (z — 1)* otherwise
’LU]‘(Z):(Z—G(t))Z, j=3,...,n (2)

z €1[0,1] x [-2,2]"!

a
) = T
a = z2 — sin(6rz] + 2%)0.51‘1 +0.25
1—f1 if 0<f1 <05
=< —0. . i < 0.
POF - f2 0.5f1 +0.75 elself f1 <0.75
1—f1+0.125 elseif f1 <1
0<f1<1

CDF3: is a combination of the UDF3 with a simple dynamic, variable con-
straint. The resulting function is a type I problem, but unlike CDF1 and CDF2,
a high discontinuity of both objective and search spaces can be observed and
CDFS3 requires a higher diversity of the search. The problem is described in
eq. 3 with the Pareto Optimal Front illustrated in Fig. 3.

f1:m1+h+ﬁ Z:(aclar:ij])2

JjeJ1 )
fo=1—x1+h+ ﬁ Z(mlm;l])Q
Jje€J2
h= (% + ¢)|sin(2N7z1)|
vy =052+ +|G@)], j=2,...,n
z€0,1] x [-1,1]7"1 ®)

N =10;e =0.1

g(x’ t) = a9 — x§1+\G(t)\)
h=s%
— 1
POF fo=1-35%
for ©=0,1,...,2N

00 01 02 03 04 05 06 07 08 09 10
f,

Fig. 1: Pareto Optimal
Front for CDF1 over the
first 11 times steps

00 01 02 03 04 05 06 07 08 09 10
f,

Fig. 2: Pareto Optimal
Front for CDF2 over the
first 11 times steps

00 01 02 03 04 05 06 07 08 09 10
f,

Fig. 3: Pareto Optimal
Front for CDE3 over the
first 11 times steps
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CDF#: is generated by combining the objective constraint from CF1 with a
UDE2 dynamic shift; the resulting function is a Type I problem. The complex-
ity of the problem is higher than of CDE3, due to the utilisation of the static
constraint where the relative position of the infeasible region changes every
time step. The problem is described in eq. 4 with the Pareto Optimal Front
illustrated in Fig. 4.

fi=a1+ Y (wial’)?

Jj€J1 )
f2=17$%+‘(]272‘ Z(:L'Zl'ilj)Q
] JjE€J2
v = 0501+ 2=2) |G, j=2,...0m W
z€10,1] x [-2,2]"!
g(z,t) = fi + fo — [sin(N7(fr — fo +1))| -1
N =10
— _ f2
pop+ 2= 10
0<fi<1

CDF5: the CF5 is combined with the UDF1 constraint resulting in CDF5,
which is a type II problem with a dynamic constraint. A diagonal shift in
both the Pareto Optimal Set and Front is introduced, and infeasibility is not
dependant on time. The high complexity of this problem is the result of the
high multimodality and an uneven distribution of points across the Pareto
Optimal Front, which is similar to CDF2. The problem is described in eq. 5
with the Pareto Optimal Front illustrated in Fig. 5.

fi=zi+1G@)+ D wi(y))
JjeJ1
fo =11 + GO+ D w;(y;)
JEJ2
) %;0.8z1c08(6mz1 + %) —-G(t), je
77 ) 2;0.8z1 sin(6mx1 + %) —G(t), je€ T2
{z| if z<1.5(1—05v2)
wa(z) = 5 .
0.125 4+ (z — 1) otherwise
wj(z) =222 —cos(dnz) +1, j=3,...,n
z€10,1] x [-2,2]"!
g(z,t) = x2 — 0.8z1sin(6wr1 + 27")0.5:v1 +0.25 — G(t)
fi=n+IGO)  f2=y2+|GQ)
1—y1 if 0<y <05
POF : {ys =14 —0.5y; +0.75 elseif y3 <0.75
1—y; +0.125 elseif y;3 <1
0<y1 <1

®)
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CDF6: the UDF1 is combined with the CF6 constraint resulting in a type II
problem. This problem is similar to the CDF5 in terms of the changes in both
Pareto Optimal Set and Front. Two constraints are incorporated, compared to
one in the CDF5 and the utilised objective function is easier to solve due to
the higher uniformity of the Pareto Optimal Front. The problem is described
in eq. 6 with the Pareto Optimal Front illustrated in Fig. 6.

fi=a+|GO)+ D (y))?
JEJ1
f2 = (@) + GO+ D (y5)°
) J€J2
x;0.8z1sin(6mxy + %), j=2,4
yj = { ©;0.8z1cos(6mr1 + %) —|G@®)|, je

z;0.8z15m(6mzr 4+ 25) — |G(t)], € Ja —{2,4}

z€10,1] x [-2,2]"!

z2 — |G(t)| — 0.8z1sin(6wzy + 2777)51’971%1)\/ |k1] ©)

9T = e 2051 — 21) — (1 — 1)
x4 — |G(t)] — 0.8z sin(67z1 + 4”)sign(k2)m
92(% ) =\ 1) 025y T =21 — 0.5(1 — 1)
=y +[GR) f2=y2+[G@)
(1—y1)2? if 0<y1 <05
POF : {0.5(1 —y1) elseif y; <0.75

0.25y/1 —y1 elseif 3 <1
0<y1 <1

CDF?7: is generated by combining the CF1 with a UDF2 dynamic shift; the
resulting function is a Type II problem. This combination allows investigation
of the behaviour of algorithms on highly discontinuous spaces in dynamic
Pareto Optimal Set and Front environments. However, as the constraint is
also dynamic then changes in the infeasible regions are not observed over
time, which reduces the overall complexity of the problem. The problem is
described in eq. 7 with the Pareto Optimal Front illustrated in Fig. 7. This
function allows an investigation into the performance of algorithms based on
a diagonal shift in the Pareto Optimal Front and vertical shift with curvature
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change of the Pareto Optimal Set on a highly discontinuous space, without
relative changes to the positions of the infeasible regions over time.

fi=a+ GO+ 7 D (2 — )’ = G(1)?

IS

fo= 1z + (GO + 21 S (5 -2l — G(1)?
JEJ2
v =05(1+2U=2) j=2_ .n W)

z €1[0,1] x [-2,2]"~!
9(z,t) = fr + f22|G@O)| — |sin[N7(f1 — f2+ D] - 1
_ N =10
POF : points: (5k + |G(t)],1 — ;5% +|G(®)]), i=0,1,...,2N

CDEF8: the UDF5 is combined with the CF3 constraint to form CDF4. This
problem has a similar Pareto Optimal Front pattern to CDF4. However, an an-
gular shift of the Pareto Optimal Set with a curvature change is included and
this function introduces a constraint in a more continuous objective space.
In addition, the objective function is less complex but a larger search space
is utilised. The problem is described in eq. 8 with the Pareto Optimal Front
illustrated in Fig. 8.

f1:x1+u—21| Z(xj—rlj)Q

JEJ1
fo = M@ @)HO + 20 3 (2 -2y

e ®)
vy =052+ 32 =2 n

x €[0,1] x [-1,2] 1
9(z,t) = Vi + fa — sin2r(Vfi — fa+ 1)) — 1
POF* : fo = 1M(t)(f1)H®, 0< fi <1

CDF9: is a modified CDF6 function, with the dynamic change removed
from the Pareto Optimal set and instead added to the constraints. This results
in a Type III problem, with a significant curvature change in the Pareto Op-
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Fig. 7: Pareto Optimal Fig. 8: Pareto Optimal Fig. 9: Pareto Optimal
Front for CDF7 over the Front for CDF8 over the Front for CDF9 over the
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timal front. The problem is described in eq. 9 with the Pareto Optimal Front
illustrated in Fig. 9.

A=z + GO+ Y (y5)°
Jj€J1
fo =M @O)z)TOR + G0+ Y (y))
JEJ2
) ;0.8z1cos(6mx1 + %), jen
77 ) 0.8z sin(6mxy + ), € Ja—{2,4}
z€10,1] x [-2,2]"!
g1(@,t) = z2 — |G(t)| — 0.8z1sin(6wz1 + T’T)szgn(h)m
’ k1 = 0.5[1(M (t)z1)"®)] — [1(M (t)l“l) ®)2
(o) = x4 — |G(t)| — 0.8z1sin(6mx1 44 ) sign(k )m
92051 = 1, 0,25,/ T(M(0a1) 1O — 0.5[1(M(£)a1) O]
=y +I|GO f2=y2 +|G()]
{[12]2 if 0<z<05

©)

0.5[1 — 2] elseif z<0.75
0.25v1z elseif z<1

z = (M(t)y)"®

0<y1 <1

POF :

CDF10: is generated by adding curvature variation of the Pareto Optimal
Front to the CF7; the resulting function is a Type III problem. Due to the util-
isation of the static constraint the time complexity of the problem is higher
than for CDF9, but the complexity overall is lower. The problem is described
in eq. 10 with the Pareto Optimal Front illustrated in Fig. 10;

fr=zi4+ > (w;(y;))?
JEJ1
fo=1—z)HO + 3" (w;(y)))?
JEJ2
_ Jzjcos(6mar + %), je 1
vi= zisin(6mzy +17), j€ Ja
wa(z) = wa(z) = 22
wj(z) =222 —cos(dnz) +1, j=3,...,n
x €[0,1] x [-2,2]"~1
g(z,t) = z2 — 0.8z1sin(67z1 + 27")0.5;101 +0.25 — G(t)

(1—f)A® if 0<f1<05
POF f

(10)

A—f)H® (1 - )2 405+ (1 —f1) elseif f1 <0.75

A= f)HOA = f1)2 4025+ /T — f1 elseif f1 <1
0<f1<1
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CDF11: is a modified CDF3 function, with the dynamic change removed
from the Pareto Optimal set, but added to the constraints. This results in a
Type III problem, with a vertical change of the Pareto Optimal front rather
than changes in the curvature. The problem is described in eq. 11 with the
Pareto Optimal Front illustrated in Fig. 11.

A=a1+|GOI+h+ D wily;)
JE€J1
fo=1z1 + |G|+ h+ Y wiy))
J€J2
h= (O—N‘r’ +¢)|sin(2Nnz1 + G(t)7)|
x;0.8x1cos(6mry + %), j€ N
Y; = . in .
z;0.8z1sin(6mzy + ]7), j€ Jo
|z| if z<1.5(1—0.5v2)
wa(z) = 5 .
0.125 + (z — 1) otherwise
wj(z) =222 —cos(dnz) +1, j=3,...,n
z€10,1] x [-1,1]*!
N =10;e =0.1
g(z,t) = z2 — 0.8z sin(6mwx1 + 27'”)0.5:(:1 +0.25

(1n

_ i=G(t)
h=%5g
1—f1 if 0<f1<05
POF:{ fs =4 —05f1 +0.75 elseif f1 <0.75

1—f1+0.125 elseif f; <1
for 1=0,1,...,2N

CDF12: introduces angular shift and curvature variations of the Pareto
Optimal Front into the CF2. A static objective constraint is introduced and
the resulting function is a Type III problem, as no environmental change is
applied to the Pareto Optimal Set. This function allows the behaviour in the
constrained and dynamic Pareto Optimal Front environments to be evalu-
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ated. The problem is described in eq. 12 with the Pareto Optimal Front illus-
trated in Fig. 12.

_ 2 2
f=a+ 7 2y
JEJ1
fa =10 + 20 37 3
J€J2
_ J%;0.8z1cos(6mw1 + 27), je€ N
Y7 2,08z sin(6may + 15), € Js

x €[0,1] x [-1,1]*~1

g(z,t) = et
a=~fi+ fo—sm2r(vfi—fa+1)] -1

POF*: fo =1(f)H®, 0<fi <1

(12)

CDF13: the UDF8 is combined with the CF4 constraint resulting in the
CDF13. This problem is type II, and uses the same objective function as CDF9.
However, the constraint is dynamic as a random change is introduced. The
random element greatly increases the complexity of the problem as the change
cannot be predicted. The problem is described in eq. 13 with the Pareto Opti-
mal Front illustrated in Fig. 13.

In CDF13, several types of dynamic changes are incorporated, in a similar
manner to UDFS, but only one of them is employed at a time; during the
environmental change one of t1 to t5 is selected randomly and is increased
by 1.

fi=z1+|G(t3)| + ﬁ Z T
JEJ1
f2 = 1M (ta) (@) 1) + |G(ts)| + 157 D v
JjEJ2
y; = xjsin(brry + W)G(tg), ji=2,...,n
z €[0,1] x [-2,2]* ! (13)
_Jw+ fa—sin[2n(w — fo+1)] -1
g(ﬂ?,t) = {w — M(t4)(f1)H(t5)
pop~ . 2= 1M ) (1 - IG(t3))H*s) + |G(t3)],
| 0+1G(t3) < fr < 1+G(ts)]
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CDF14: introduces a time-dependent constraint into the static CF1. The
additional constraint is independent of the change in objective function and
the resultis a Type IV problem. The time-dependency of the constraint changes
the geometry of the Pareto Optimal Front and the Set over time from distinct
points, through to disconnected fronts and finally to a continuous set. This
means that retaining the diversity of solutions over time steps is essential,
especially when the sizes of the infeasible regions are decreasing. Due to this
the boundary ranges are lowered, in order to decrease the complexity. The
problem is described in eq. 14 with the Pareto Optimal Front illustrated in
Fig. 14.

fl :$1+‘T21| Z(iﬂj 71”?‘)2

Jj€J1

f2=111+ﬁ Z(ac]’fﬂ:?{j)Q
JEJ2
y; =0.5(1+ 242Dy j—92. . n (14)
x € [0, 1]
9(@,t) = fr + f2 — [sin[N7(f1 — f2 + 1)]| = 1+ |G(?)|
N =10

POF*:fa=1-f1, 0<f1 <1

CDF15: is Type 1V, similar to CDF14, as the time-dependent constraint is
introduced into the CF3, without any direct environmental changes in ob-
jective or variable spaces. However, in this case the position of the infeasible
regions is shifting in both the search and objective spaces, instead of changing
the size of them. The problem is described in eq. 15 with the Pareto Optimal
Front illustrated in Fig. 15.

— 2 2
fi=ai+ iy 29

Jj€J1
— 2 2 2
fo =127 + 72l Z Yj
. JEJ2
yj = x; — sin(6rz1 +25), j=2,...,n (15)

x €[0,1] x [-2,2]" !
g(z,t) = f2 + fasin2n(fE — f2+ 1)+ G®)] -1

POF*:fy=1-f2 0<fi<1

4 Methodology
4.1 Selection of mechanisms and unconstrained test problems

The performances of different Genetic Algorithms are evaluated in combi-
nation with different re-initialization methods over the developed test in-
stances, CDF1-15. Furthermore, eighteen bi-objective unconstrained functions
are used to evaluate the differences in behaviour of the utilised solvers be-
tween the constrained and unconstrained problems. The unconstrained func-
tions are UDF1-9 [Biswas et al., 2014], except for UDF7 as it is a three-objective
problem, JY1-8 [Jiang and Yang, 2017], except JY4 as the parameters given
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in [Jiang and Yang, 2017] do not reflect the problem description and the pro-
vided Pareto Optimal Front, and FDA1-3 [Farina et al., 2004]. The selected
set provides a range of problems including all types of dynamics, I-IV, differ-
ent kinds of Pareto Optimal Front and Set changes, varying Pareto Optimal
Front and Set geometries, and problem characteristics: modalities, biases and
variable-linkages.

Six different Genetic Algorithms are selected for the benchmarking due
to their high performance: MOEA /D, as the best algorithm for static and dy-
namic unconstrained problem types [Zhang and Suganthan, 2009, ?]; NSGA-
II [Deb et al., 2002] as the most commonly utilised Genetic Algorithm with
high performance on static constrained and unconstrained problems; MTS
[Tseng and Chen, 2009] due to the high performance on constrained and un-
constrained static problems while also representing a Genetic Algorithm with
no crossovet, it has a high potential for dynamic problems as it demonstrates
rapid convergence but is currently untested on these problems; BCE [Li et al.,
2016] and HEIA [Lin et al., 2016] as examples of the current state-of-the-
art of static Genetic Algorithms, with top performance on static problems
and a higher emphasis on diversity; and the MLSGA-MTS hybrid [Grud-
niewski and Sobey, 2018], in MLS1 configuration, which shows the best gen-
eral performance on static problems where the addition of the MLS1 mecha-
nisms have been shown to increase the convergence speed [Sobey and Grud-
niewski, 2018], essential in dynamic optimisation. Each of the six selected
algorithms, MOEA /D, NSGA-II, MTS, BCE, HEIA and MLSGA-MTS, are
combined with the 3 different re-initialisation methodologies: VP, CER-POS
and CER-POF, and compared to results without any re-initialisation mecha-
nisms. DEMO [Farina et al., 2004], DMEA /PRI [Zhou et al., 2007] and DQ-
MOO/ AR [Hatzakis and Wallace, 2006], are not selected as they are shown
to be outperformed by MOEA /D [Biswas et al., 2014]. DNSGA-II [Deb et al.,,
2007] is also not included as it is outperformed by other methods and not
compatible with the selected re-initialisation mechanisms. dCOEA [Goh and
Tan, 2009] is not selected as it performs poorly on discontinuous search and
objective spaces, while showing similar performance on other problems to
MOEA /D [Biswas et al., 2014]. Only Genetic Algorithms are considered, in-
stead of the other Evolutionary Algorithms, as the principle of this paper is
not to find the best solver for each kind of problem, but rather to evaluate
the impact of implementing constraints into dynamic problems on Genetic
Algorithms.

In addition, two constraint-handling approaches are tested against each
other in order to minimise the potential bias of a single technique towards a
certain Genetic Algorithm or re-initialisation methodology: the dominance-
based [Deb et al., 2002] and the adaptive penalty-based [Azzouz et al., 2018]
constraint-handling methods are selected as the most commonly utilised tech-
niques.



Title Suppressed Due to Excessive Length 17

4.2 Benchmarking parameters

The benchmarks are conducted using two different combinations of dynamic
settings, the time change, 7', and n,. T' denotes the time-window when the
problem remains static, as the number of generations; n, denotes the severity
of change. The first set of benchmarks represents a harsh dynamic environ-
ment with both values taken to be 5. In the second set of benchmarks, devel-
oped to demonstrate optimisation in a less harsh dynamic condition, both of
the parameters are set equal to 10. These two tests are conducted in order to
eliminate the selection of certain parameters which promote the performance
of certain algorithms or mechanisms, especially the importance of diversity
and convergence rate. However, the results show similar trends in both cases,
and therefore only the results for T'and n, equal to 5 are documented with the
values set to 10 documented in the supplementary material. The performance
is evaluated based on the Inverted Generational Distance (IGD) [Bosman and
Thierens, 2003] and Hyper Volume (HV) [While et al., 2012].

In most benchmarks a relatively small population is used, around 200-
500. However, as the presented constrained functions are more challenging,
larger population sizes may be required to prevent the algorithm from getting
stuck in an infeasible region of the search space and premature convergence.
Therefore, two population sizes of 300 and 1000 are evaluated to avoid the
situation where the population size is the limiting factor for the algorithm,
i.e. it is not enough to develop the necessary diversity of solutions. However,
the population size does not affect the trends in the results, equally reducing
the overall performance of each algorithm meaning no mechanism is unfairly
penalised. Therefore, the results for the 300 population sizes are attached as
a data supplement but are not documented in the paper.

In most benchmarks of Genetic Algorithms on dynamic problems, the ter-
mination criterion utilised is the number of generations and the time change
occurs after T' generations [Jiang and Yang, 2017, Biswas et al., 2014]. How-
ever, the number of objective function evaluations conducted at each gen-
eration is not uniform across different methodologies. For NSGA-II it is the
population size and for MOEA /D it is the number of new offspring, which
is significantly lower than the parent population size, usually 0.1 of the over-
all population size. For the MTS and MLSGA-MTS algorithms the number
of evaluations is a multiple of the population size, ranging from 5x to 50x,
as multiple local searches are used. Comparing the performance of these al-
gorithms using the number of generations gives a wide range of different
function calls and does not provide a fair benchmark. Furthermore, the total
number of generations is irrelevant in most cases, as the calculation time per
generation is normally relatively small in comparison to the objective func-
tion evaluation. Therefore, the selected stopping criterion is the number of fit-
ness function evaluations and the time change occurs after a certain number
of evaluations. The total number of fitness function evaluations for T and n,
equal to 5 and 10 are therefore 300,000 and 600,000 respectively, which allows
6 cycles of the UDF and CDF [Biswas et al., 2014], and 3 cycles of the JY [Jiang
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and Yang, 2017] and FDA [Farina et al., 2004]. The time change occurs after
population size xT iterations and is equal to 5000 iterations in the case of T
equal to 5 and 10,000 iterations in the second case. All cases are evaluated
over 30 independent runs. In order to show the importance of a proper ter-
mination condition, a separate test is conducted with the commonly utilised
generations termination condition, with 300 generations as the limit. The re-
sults show that MTS outperforms all of the other algorithms on almost all of
the selected functions and MOEA /D performs poorly due to the dispropor-
tionate number of fitness evaluations per generation. Therefore, the data for
the generation termination condition is not included but attached as supple-
mentary material to allow comparison to the previous literature. Even though
this issue is widely known in static MOPs, the previous dynamic benchmarks
have not addressed it [Jiang and Yang, 2017, Biswas et al., 2014] and fitness
evaluations limits have not been mentioned or obviously implemented. The
obtained results show that future dynamic benchmarking exercises should
use fitness evaluation limits, to allow a fair comparison of algorithms across
different exercises.

5 Performance Benchmarking

A summary of the top performing algorithms and re-initialization mecha-
nisms is presented in this section for 7" and n, equal to 5, using 1000 indi-
viduals in the population. Pre-benchmarking simulations show that the dy-
namic parameters only have a minor impact on the comparative performance
of the utilised algorithms and re-initialisation strategies. In the conducted
benchmarks the adaptive penalty-based constraint-handling approach leads
to significantly better results in comparison to the second technique. How-
ever, there is no significant differences in comparative performance of the
selected Genetic Algorithms and re-initialisation mechanisms between those
constraint-handling techniques. The only exception is that HEIA shows stronger
performance with the dominance-based strategy and therefore all of the re-
sults shown are from the domination-based approach. The detailed data, with
minimum, maximum and average values of the IGD and HV, along with stan-
dard deviations and calculation times are added as supplementary material.
The most dominant factor in determining the performance on the dy-
namic problems is the selection of the Genetic Algorithm. Despite this, the
results indicate that in most cases the selection of the re-initialization method
can have a significant impact on the final performance. Only in a few, seem-
ingly random, cases is the performance of the Genetic Algorithm indepen-
dent of these re-initialisation methods. Interestingly, the impact of the re-
initialisation strategy is not uniform across different Genetic Algorithms and
problems, i.e. on the same problem the VP variant can exhibit the best per-
formance for MTS but for BCE with VP shows the worst performance. There-
fore, selection of the best strategy is difficult and further work needs to be
performed to determine how this selection can be made in advance. These
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results are summarised in section 5.1 for the re-initialisation methods and in
section 5.2 for the different algorithms to understand the final performance.

5.1 Re-initialisation

In order to compare the different re-initialization methods, the average rank,
according to the IGD and HV metrics, of each mechanism is calculated on
problems with the same characteristics and presented in Table 2 for 7' and
ns equal to 5. In most cases, the VP re-initialisation outperforms the other
methodologies tested and has the lowest rank in total across all of the prob-
lem types, despite the lack of uptake for this method outside of the original
paper [Zhou et al., 2007]. The high performance of the VP method is due to
the inclusion of the variance module, which is not based on pattern predic-
tion but on random Gaussian noise. The prediction-based strategies utilize
historical information from the Pareto Optimal Set at previous generations to
approximate the position of the final Pareto Optimal Set in the next time step.
Therefore, these methods are inefficient on problems where the Pareto Op-
timal Set remains static, such as type III problems: FDA2, UDF3, UDF6 and
CDF9-12, and the problems where the pattern for how the objectives change
cannot be predicted, such as the random change problems: UDF8, UDF9 and
CDF13. This is supported by the higher performance of the variant with no
re-initialisation over other methods. Industrial applications are often unpre-
dictable, or extremely complex, and so the separation in performance of these
mechanisms is likely to be even greater. Furthermore, in the vast majority of
cases there is a significant difference between the ranked results according
to Wilcoxons rank sum test with a confidence level of @ = 0.05, especially
comparing VP to other methods, showing its superiority.

The results show the importance of the selection of an appropriate re-
initialisation mechanism. Importantly, the effect on performance of different
strategies is not uniform across the Multi-Objective Evolutionary Algorithms.
For example, on the two top performing Genetic Algorithm methodologies,
MTS works best with the VP method, but usually there is no statistical sig-
nificance between the 4 used re-initialisation mechanisms for this methodol-
ogy, whereas MOEA /D is more likely to show higher performance without
any re-initialisation method. In the case of MOEA /D the authors suggest that
this is caused by the MOEA /D specific mechanisms such as weight-vectors
and neighbourhoods of solutions. In the re-initialisation step these features
are not taken into consideration when the new population is created and
the parent solutions are selected. Therefore, the overall efficiency is limited
and re-initialisation mechanisms specific to MOEA /D might be necessary.
This is similar to the performance of MOEA/D with the MLSGA mecha-
nisms [Grudniewski and Sobey, 2018], and it seems the MOEA /D mecha-
nisms are more difficult to blend with additional elements.

Despite the importance of the re-initialisation method, the choice of ap-
propriate method is often neglected in the dynamic Genetic Algorithm lit-
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Table 2: The average ranks of each re-initialisation method for the 1000 pop-
ulation size with iterations termination criterion and 7" and n, equal to 5

[ None | CER-POS | CER-POF | VP

Overall 2.83/3.07 | 2.47/229 | 2.74/2.49 1.95/ 2.15
Type I 3.02/343 | 2.38/207 | 2.62/2.52 1.98/ 1.98
Typell 3.09/3.39 | 231/218 | 2.81/243 1.79/ 2.00
TypeIIl || 2.13/2.28 | 2.81/2.69 | 2.74/ 2.63 2.31/ 241
TypelIV || 3.17/3.08 | 2.33/2.33 | 2.58/2.25 1.92/ 2.33

UDF 279/321 | 246/231 | 2.81/2.40 1.94/ 2.08

CDF 2.78/3.06 | 2.40/2.07 | 2.72/2.51 210/ 2.37

The best mechanism in each category is highlighted in green.
The second best is highlighted in yellow.

erature and in most cases the re-initialization method is chosen arbitrarily
and not compared to the other variants [Biswas et al., 2014] or not utilized at
all [Jiang and Yang, 2017]. Therefore, benchmarking of novel re-initialization
mechanisms with other variants, on the same algorithm methodologies, and
with the algorithm without any diversity preservation mechanisms is neces-
sary, to ensure that new re-initialisation methods provide benefits over the
current methods.

5.2 Genetic Algorithm methodologies

In order to investigate the performance of the different algorithms, the aver-
age ranks according to the IGD and HV indicators are calculated across all
of the dynamic problem types and presented in Table 3 for T" and n, equal
to 5. There are significant differences between the ranked results according
to Wilcoxons rank sum test with a confidence level of & = 0.05 in most of
the presented cases. The performances of the Genetic Algorithm mechanisms
are less consistent across the utilised problems than for the re-initialisation
methods, and it is not easy to choose a single best method. According to
the average ranks, the best overall performer is MOEA /D, while MTS and
HEIA come second and third respectively. However, MOEA /D is less effec-
tive when the Pareto Optimal Set remains static, demonstrated by compar-
atively poor performance on Type III problems. This is caused by the static
weight vectors, where the previous best point according to one weight is no
longer the most suitable one after the time change. Therefore, it is likely that
the points with the best values may be eliminated quickly, as their vectors are
not properly assigned. This problem could be solved by reassignment of each
weight after the time changes occur. MTS does not have these disadvantages
and is less susceptible to the time changes due to the utilisation of multiple lo-
cal searches that maintains both the convergence and diversity of the search;
this results in a lack of significant differences between the implemented re-
initialisation methods. High performance of these high convergence-based
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Table 3: The average ranks of each Genetic Algorithm for the 1000 population
size with iterations termination criterion and 7" and n, equal to 5

[ MOEA/D | MTS | NSGA-I | MLSGA | BCE | HEIA

Overall 245/231 | 2.71/4.97 | 510/2.70 | 3.16/4.70 | 4.58/2.92 | 2.99/3.39
Type 225/243 | 2.89/4.89 | 4.82/250 | 3.11/4.82 | 4.64/3.04 | 3.29/3.32
Typell 197/1.75 | 2.88/5.15 | 5.15/2.87 | 3.45/448 | 437/3.15 | 3.18/3.60
TypeIll || 3.22/3.08 | 2.33/4.89 | 528/228 | 2.86/5.03 | 472/261 | 258/3.11
TypeIV || 2.63/2.13 | 2.88/4.25 | 4.88/4.63 | 2.88/450 | 5.38/138 | 2.38/4.13

UDF 2.59/213 | 256/ 491 | 516/2.63 | 3.88/4.44 | 391/291 | 291/4.00
CDF 2.37/232 | 3.05/4.63 | 477/3.05 | 293/5.55 | 557/2.28 2.32/3.17

The best algorithm in each category is highlighted: in yellow according to IGD; in blue for
HV; and green with both metrics.

solvers, such as MOEA /D, further supports the findings that Dynamic Multi-
Objective Problems requires high convergence of the search over diversity,
unlike many static problems, which was originally suggested in [Biswas et al.,
2014].

The HEIA and MOEA /D exhibit the best overall performance for the con-
strained results. The high performance of MOEA /D on these problems is in-
teresting as previous research shows poor results on the static constrained
problems [Zhang and Suganthan, 2009], and MOEA /D is outperformed by
MLSGA-MTS, MTS and NSGA-II [Grudniewski and Sobey, 2018]. Further-
more, for most of the tested algorithms there is no significant difference in
comparative performance on the CDFs than on the UDFs, on which the de-
veloped set is based. This unexpected behaviour indicates that, for dynamic
problems, the fast convergence of MOEA /D is more important than the abil-
ity to discover discontinuous search and objective spaces, characteristics where
the MOEA /D mechanisms perform poorly. Therefore, the constrained dy-
namic problems act similarly to the unconstrained cases. These findings fur-
ther indicate that high convergence rate is essential when dealing with Dy-
namic Multi-Objective Problems.

5.3 Performance of the different algorithms on the Constrained Functions
over time

In order to investigate the behaviour on the developed constrained set, the
IGD values obtained by the benchmarked algorithms are tracked during a
single run, period ¢ = 0 to ¢t = 11.8. This is illustrated in Fig. 17 for CDF4 and
in Fig. 16 for CDF10, as problems where the behaviour is representative of
these rest of the set. In all cases the VP re-initialisation is used, and only the
results for MTS, MOEA /D and NSGA-II are shown as the two best and the
worst performing algorithm respectively. The figures for the other developed
problems, as well as for the HV metric, are attached as supplementary data.
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CDF10 case. CDFA4 case.

There is a considerable difference in performance between the top algo-
rithms for a problem and the next best performer. Fig. 16 shows that MTS is
able to accurately approximate the true Pareto Optimal Front at every time
step for the CDF10 problem, resulting in stable IGD values. NSGA-II is not
able to properly converge on the Pareto Optimal Front whereas MOEA /D is
unable to find all of the regions of the Pareto Optimal Front on the highly
discontinuous search space; this is especially clear after the shift of the con-
straints. This behaviour of MOEA/D is expected as a similar principle is
shown on constrained static problems and is due to the low performance
on the Type I problems, as discussed previously. However, a different be-
haviour is exhibited on the CDF4 function, Fig. 17. In this case MOEA /D out-
performs MTS, showing lower IGD values that remain stable at every time
step, indicating that the true Pareto Optimal Front has been found, whereas
the performance of NSGA-II remains the worst. This is most likely caused by
a higher uniformity and continuity of the CDF4 problem in comparison to
the CDF10. According to that CDF10 case requires a higher diversity of the
search, which MOEA /D is unable to provide, unlike the MTS. The low per-
formance of NSGA-II on both problems, and the effectiveness of MOEA /D,
even over MTS on some cases, is contrasting to the trends shown on static
problems. This indicates that the dynamicity is the dominant characteristic of
the Dynamic Multi-Objective Problems, even over the level of discontinuities
in the search spaces.

6 Conclusions

Dynamic optimisation has many applications. However, the current bench-
marking problems are limited to unconstrained problems, which may bene-
fit certain types of Genetic Algorithms. In this paper the range of dynamic
test problems is expanded by proposing a set of constrained test functions. A
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number of combinations of current state-of-the-art algorithms and re-initialization
methods are then benchmarked to determine the most effective methods for
solving constrained dynamic optimisation problems. Overall MOEA /D shows
the best performance on both the new constrained and traditional uncon-
strained test sets. The Variation and Prediction re-initialisation strategy per-
forms the best on most problems but in some cases no significant improve-
ment is shown over no re-initialization. Importantly, the performance of the
algorithms on the constrained and unconstrained problems is similar, show-

ing that the dynamic characteristic is dominating these problems. The follow-

ing recommendations are made:

— The importance of dynamic behaviour dominates the non-continuous char-
acteristic of the constrained problems, as there is no significant difference
in the comparative performance of the tested algorithms between the con-
strained and unconstrained cases. The results show that Genetic Algo-
rithms with strong convergence profiles are best at solving these prob-
lems.

— In most cases the obtained solutions are far from the true Pareto Optimal
Front. As the highly dynamic problems are dominated by convergence,
this puts the Genetic Algorithms at a disadvantage over other methods.
Therefore, there is a need for dynamic specific methodologies with high
convergence and low diversity.

— The prevalence of the predictable dynamic test problems leads to mecha-
nisms that do well on these problems. However, in most applications the
dynamic changes are unpredictable, which makes them more difficult to
solve and more random elements should be included in future test sets to
develop more realistic mechanisms.
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Abstract

In post-amputation rehabilitation, a common goal is to return to ambulation using a prosthetic limb, suspended by a cus-
tomised socket. Prosthetic socket design aims to optimise load transfer between the residual limb and mechanical limb, by
customisation to the user. This is a time-consuming process, and with the increase in people requiring these prosthetics, it
is vital that these personalised devices can be produced rapidly while maintaining excellent fit, to maximise function and
comfort. Prosthetic sockets are designed by capturing the residual limb’s shape and applying a series of geometrical modifi-
cations, called rectifications. Expert knowledge is required to achieve a comfortable fit in this iterative process. A variety of
rectifications can be made, grouped into established strategies [e.g. in transtibial sockets: patellar tendon bearing (PTB) and
total surface bearing (TSB)], creating a complex design space. To date, adoption of advanced engineering solutions to sup-
port fitting has been limited. One method is numerical optimisation, which allows the designer a number of likely candidate
solutions to start the design process. Numerical optimisation is commonly used in many industries but not prevalent in the
design of prosthetic sockets. This paper therefore presents candidate shape optimisation methods which might benefit the
prosthetist and the limb user, by blending the state of the art from prosthetic mechanical design, surrogate modelling and
evolutionary computation. The result of the analysis is a series of prosthetic socket designs that preferentially load and unload
the pressure tolerant and intolerant regions of the residual limb. This spectrum is bounded by the general forms of the PTB
and TSB designs, with a series of variations in between that represent a compromise between these accepted approaches.
This results in a difference in pressure of up to 31 kPa over the fibula head and 14 kPa over the residuum tip. The presented
methods would allow a trained prosthetist to rapidly assess these likely candidates and then to make final detailed modifica-
tions and fine-tuning. Importantly, insights gained about the design should be seen as a compliment, not a replacement, for
the prosthetist’s skill and experience. We propose instead that this method might reduce the time spent on the early stages of
socket design and allow prosthetists to focus on the most skilled and creative tasks of fine-tuning the design, in face-to-face
consultation with their client.
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1 Requirement of automation in design
of prosthetics

Approximately 40 million people globally require access
to prosthetic or orthotic services (Eklund and Sexton
2017). Prosthesis—human interface design aims to max-
imise comfort and functionality for people with ampu-
tations, towards ambulatory rehabilitation. This is com-
monly provided through a prosthetic socket, which is
designed through geometric modifications to the captured
shape of the residual limb, known as rectifications, to cre-
ate a desired pattern of load transfer. This is currently an
iterative process performed by a highly skilled prosthetist,
who manages the residuum’s changing size, shape, soft
tissue healing and biomechanical adaptation. Indeed, due
to these factors, the development of a definitive socket
takes a considerable period of time. Prosthetic limb users
require lifelong access to prosthetics services, and in the
UK the annual cost of prosthesis provision and care is
over £2800 per patient (Kerr et al. 2014). This includes
the replacement of prosthetic limb components typically
every 2 to 5 years. Skilled prosthetists take many years to
train to a high standard, and often prosthetic users develop
relationships with their preferred clinician to maintain
socket comfort. However, there are limited numbers of
these highly skilled individuals and practice efficien-
cies are required in the face of growing clinical demand.
Researchers have considered mechanisms for employing
quantitative prediction in the socket design process (Goh
et al. 2005; Colombo et al. 2013), although at present these
work to a single design target for a single individual and
have not entered conventional clinical use.

In Part 1 of this study (Steer et al. 2019), a kriging-
based surrogate model was generated for a parametric FE
model of a population-based transtibial residual limb and
accompanying total surface bearing (TSB) socket design.
This enabled the prediction of biomechanical relation-
ships between the residual limb morphology and prosthetic
socket design, while reducing the computational cost of
each new prediction by six orders of magnitudes (1.6 ms
vs. 30 min). The simplified total surface bearing socket
design was defined parametrically from the limb’s neutral
shape, by reducing the cross-sectional area along its length
with three points at the proximal, mid and distal regions of
the socket. However, within a clinical setting, the socket
design process is substantially more nuanced. There are
several different design philosophies, all with different
intended residual limb load transfer mechanisms. The clas-
sic patella tendon bearing (PTB) socket design was devel-
oped in 1957 and is still commonly used in-clinic today
(Radcliffe 1962). This socket design aims to apply pres-
sure over load-tolerant areas of the limb such as the patella

@ Springer

tendon, and off-load pressure-sensitive regions such as the
anterior tibia, fibula head and residuum tip. Other sock-
ets include the Kondylen-Bettung Miinster (KBM) which
provides supracondylar suspension in addition to features
consistent with the patella tendon bearing design (Kuhn
1966), and hydrostatic sockets (Murdoch 1964) such as
the PCAST system (Lee et al. 2000; Goh et al. 2003; Goh
et al. 2004; Laing et al. 2017; Laing et al. 2018) which
uses a pressurised fluid as a medium to form the shape of
the socket with the aim of achieving minimal residuum
surface pressure gradients with less manual intervention.
More recently, total surface bearing sockets, which were
proposed in 1987, are used to generate near-total contact in
between the residual limb and the socket (Staats and Lundt
1987). In theory, this should maximise the contact area
between the residual limb and prosthetic socket and the
uniformity of pressure across the surface of the residual
limb, thereby minimising potentially harmful pressure gra-
dients (Hachisuka et al. 1998).

Despite the fundamental differences in the load distri-
bution between these socket designs, they can potentially
all deliver satisfactory outcomes for prosthesis users. There
is substantial research into quantifying the biomechanical
differences between these socket designs, which is compre-
hensively reviewed by Safari and Meier in (2015). Their
systematic review concluded that ‘the included studies only
had low to moderate methodological rigour’, thus demon-
strating the difficulties in defining biomechanical guidelines
for the highly dynamic environment of the residual limb—
prosthetic socket system, or selection of the preferred socket
type for a particular individual or situation. One possible
reason for the difficulty in establishing the definitive guide-
lines of these different socket types is that they are defined
primarily by design intent, rather than quantitative rules.
This effect has been illustrated for a simple total surface
bearing socket using parametric FEA (Steer et al. 2019),
and it is almost certain the within-type variability would be
increased for more complex designs. We propose that there
is a large potential to enhance the evidence base behind this
clinical challenge, allowing prosthetists to develop, critique
and share their own expertise and decision-making, making
more effective use of their valuable design and consulta-
tion time. A key and relatively unexplored possibility is to
apply automated search algorithms to explore designs prior
to optimisation for the individual.

Optimisation algorithms are common in many areas of
engineering. They are used as concept design methods,
providing an initial product which engineers can use as a
starting point and to increase the proportion of their time
spent on creatively solving complex problems. In addition,
they provide a visualisation for how these changes will affect
the final product’s performance, allowing a greater under-
standing of the design space which can be put to use in the
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Table 1 Parameters of the

f p h Virtual Residuum length, v, Residuum profile, v, Tibia length, v, Soft tissue
our cases extrgcted from the person initial modu-
parametric residual limb model 1
us, v,
A —0.80 (Short) —0.80 (Bulbous) +20% (Long) 40 kPa (Soft)
B —0.80 (Short) +0.80 (Conical) — 5% (Short) 50 kPa (Stiff)
C +0.80 (Long) —0.80 (Bulbous) +20% (Long) 40 kPa (Soft)
D ¥0.80 (Long) +0.8¢ (Conical) — 5% (Short) 50 kPa (Stift)

Soft tissue initial modulus corresponds to the initial stiffness of the applied neo-Hookean hyperelastic

material model

more detailed stages of the process. A choice of potential
candidate designs can be provided to the decision maker,
which weight the objectives differently, for example put-
ting more load on one region of a structure and removing it
from another, and therefore give a range of performances.
This requires algorithms capable of multi-objective optimi-
sation that provide a rapid convergence on the global opti-
mum while retaining a high diversity of the search, to ensure
that the entire search space is investigated and that the focus
is not upon local optima. Many methodologies have been
developed, and state-of-the-art research focuses on improve-
ments in diversity or convergence.

This paper employs optimisation algorithms to generate
personalised ‘candidate’ prosthetic socket designs for the
first time. This is applied to the transtibial case, which is
the most common major lower limb amputation and where
most clinical success has been achieved with associated
CAD/CAM socket design and fabrication tools. Different
design problems require different optimisation processes.
The aim is therefore to determine appropriate methods for
the automated application of candidate socket rectifications,
collating the state of the art in biomechanical analysis of
prosthesis—limb interfaces, surrogate modelling and optimi-
sation. Genetic Algorithms are chosen due to their ability to
effectively search large and complex design spaces, which
is the problem presented by the continually variable distri-
bution of possible limb—socket shape rectifications. These
methods rely on thousands of function calls, and using FE
models would not be feasible beyond single cases due to
the time required for each simulation. However, by leverag-
ing the speed increases of the surrogate model (Steer et al.
2019), it becomes technically feasible to perform automated
socket optimisation based upon structural analysis of the
limb—prosthesis system. This provides the motivation for
the current study, to perform a first-of-kind, subject-specific,
multi-objective design optimisation of the prosthetic socket
using the previously reported surrogate model. The result
will be a series of personalised ‘candidate’ transtibial pros-
thetic socket designs, to which the prosthetist would add
local modifications based upon their knowledge and con-
ventional patient consultation. Finally, equipped with these
results, a prosthetist would then further refine these concepts

to achieve a desired pattern of prosthesis—limb load transfer,
by using these designs to augment their experience-based
decision-making.

2 Optimisation of transtibial prosthetic
sockets

2.1 Population-based surrogate model

A detailed description of the population-based surrogate
model is found in Part 1 of this paper (Steer et al. 2019). In
short, a generic residual limb was generated by producing a
volume mesh from an MRI scan and imposing radial basis
function mesh morphing to apply parametric variation in
residuum length and profile (conical to bulbous) obtained
from principal modes of variation from a population of
3D surface scans. These were varied by + 1 o (standard
deviation) about the mean length and profile in the statisti-
cal shape model (SSM). Furthermore, internal parametric
variation of the relative tibia length (i.e. distal soft tissue
coverage) from — 15% to +30% of the tibia length from the
MRI scan, and soft tissue material properties between stiff,
flaccid muscle and contracted muscle (Palevski et al. 2006;
Portnoy et al. 2009; Hoyt et al. 2008) were applied. The
soft tissue was assigned a neo-Hookean material to cap-
ture the nonlinear behaviour of the soft tissue. The present
surrogate model implementation investigates the effects of
socket design variation for four synthetic ‘virtual’ people
sequentially by selecting exemplar values for the model’s
residuum variability parameters (Table 1, Fig. 1). These
cases were chosen as being close to the models’ population
extremes while remaining within the bounding box of the
sampling plan, to avoid extrapolating beyond the surrogate.
These meshes were imported into the finite element solver
(ABAQUS 6.14, Dassault Systemes, Velizy-Villacoublay,
France). The socket was donned under displacement control
and loaded uniaxially to 400 N to simulate a two-leg stance.
The resultant pressure and soft tissue strain outputs from
75 simulations were used to construct a kriging surrogate
model for each virtual person, enabling a function call to be
made in~2 ms.
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Fig. 1 Sagittal sections through equivalent residuum FE models for the four virtual people. Blue indicates the liner, red the soft tissue, and grey

the bones. The prosthetic socket is not shown

2.2 Parametric socket design

In the preceding work (Steer et al. 2019), a simplified, three-
parameter total surface bearing socket design was used. This
model enabled control of the socket press fit by reducing its
cross-sectional area through a B-spline function with proxi-
mal, mid and distal control points. The three variables were
constrained between — 1% and 3% by cross-sectional area

Anterior Lateral

\ y

reduction. The present study’s socket design was extended
to include the localised rectifications observed in patella ten-
don bearing sockets. Control points were generated over the
fibula head, patella tendon and either side of the tibial crest
(Fig. 2). These localised rectifications were applied using
the same radial basis function mesh morphing algorithm
detailed above, by radially displacing the control points
between 0 and 6 mm.

Posterior Medial

—

\FH/

TC

-6 -3

3 6

Socket Rectification, mm

Fig. 2 Rectification maps of the patella tendon bearing socket design
at the maximum values of patella tendon bar (PTB), fibula head (FH)
relief and tibial crest (TC) rectifications. The figure demonstrates the
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resulting socket shape change once the control nodes have been dis-
placed and explains the convention directions of each rectification
type (FH vs. PT and TC)
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2.3 Optimisation via genetic algorithms

Genetic algorithms (GA) are population-based multi-objec-
tive solvers inspired by the principles of Darwinian evo-
lution (Goldberg and Holland 1988). In a simple Genetic
Algorithm, a set of potential solutions, called individuals,
reproduce via an evolutionary-like process. Each individual
contains set of decision variables, called chromosomes, with
an initial population with variables that are usually assigned
randomly. The fitness of each individual can be evaluated
according to some predefined objectives. After this step
individuals are then chosen for reproduction, and according
to the principles of natural selection, the fitter individuals
have significantly higher chances of reproducing than those
with a low fitness. Offspring are generated from the selected
parents using crossover and mutation processes. During
crossover, the chromosomes of the offspring are produced
by mixing the genes of the parents, providing convergence
and diversity. In the mutation step, the offspring’s genes
have a small chance to be randomly modified, improving
the population diversity. Finally, the old population becomes
extinct and is replaced by the new generation, with the new
generation being fitter, on average, than the parent genera-
tion. This process continues until the predefined termination
condition is met, often specified as a maximum number of
objective functions calls or total calculation time.

Many competing genetic algorithms have been developed,
each introducing novel mechanisms to increase the conver-
gence rates and diversity of the search. In the current state
of the art of Gas, there is particular emphasis on specialist
solvers. According to the ‘no free lunch’ theorem (Wolpert
and Macready 1997), a specialist solver exhibits high per-
formance on a narrow set of problems but its performance
will rapidly decline when outside of this set. Therefore, a
suitable methodology has to be selected with respect to the
particular problem’s characteristics in order to avoid poor
performance. The optimisation problem characteristics and
their difficulty are defined by the topology of the search and
objective spaces, number of local optima and the applied
constraints. If the problem characteristics are not known,
then more than one GA methodology should be applied
as their performance can differ drastically. This will pro-
vide more reliable results and allow an evaluation of the
problem’s difficulty and its dominant characteristics (Wang
et al. 2018). In the case presented in this paper, no knowl-
edge about the characteristic of the problem is available a
priori, except that no constraints are used. However, this is
not sufficient to choose a single properly adjusted optimiser.
Therefore, five different Genetic Algorithms are compared:
NSGA-II as the most commonly utilised Genetic Algorithm
which retains a high diversity of search and has had much
success in the applied literature (Deb et al. 2002); MOEA/D
as the most proficient algorithm for unconstrained problems

(Zhang and Li 2007); MTS as an aggregation of a Genetic
Algorithm and a local-search method which provides
improved convergence (Tseng and Chen 2007); cMLSGA
and HEIA as the general-type GAs that exhibit high per-
formance across wide range of problem types and therefore
higher robustness (Lin et al. 2016; Grudniewski and Sobey
2019). HEIA is more dominant in scenarios where conver-
gence is more important and cMLSGA provides a higher
diversity of search. The detailed principles of working and
parameter settings of each methodology can be found in their
respective publications.! All the tests were performed over
30 separate runs, with 50,000 fitness function evaluations
as a termination criterion. Multiple runs must be performed
in order to assure the robustness of the method and the best
likelihood of identifying the true Pareto Front. Different
population sizes were tested and 600 individuals were uti-
lised as the best for NSGA-II, MTS, MOEA/D and HEIA,
while cMLSGA utilised 1800 as it requires significantly
higher population sizes (Grudniewski and Sobey 2018).

The socket design process presented in our prior work
(Steer et al. 2019) can be framed as a formal engineer-
ing design optimisation problem. In this case the indi-
vidual socket rectifications function as design parameters
across a multi-dimensional input space, and the resultant
pressure and soft tissue strain fields are formulated as the
objective functions. The locations across the limb for the
objective functions were selected because they are known
to be load-intolerant (Radcliffe 1962). It was predicted that
the introduction of a peripheral press fit around the main
body of the residuum will allow load transfer through the
longitudinal shear forces and thus reduce the residuum tip
pressure, at the expense of pressure concentrations over the
bony prominences of the tibial tuberosity and fibula head.
Four state variables were defined: the pressure over the
residuum tip (f}), the tibial tuberosity (f,), the fibula head
(f3) and the soft tissue strain around the distal tibia ( f;).
These model outputs can be described as competing fitness
functions, indicating proximal and distal loading, defined as
FF1 = f; + f, and FF2 = f, + f;. These were evaluated using
the surrogate model developed previously (Steer et al. 2019)
for the four synthetic people defined in Table 1.

One of the issues with multi-objective optimisation is the
comparison of the results obtained by different methods. The
visual comparison is limited, only providing useful informa-
tion when the performance of two solvers differs drastically.
Otherwise, the points will overlap making objective com-
parison near impossible. Therefore, multiple quality indica-
tors have been developed (Li and Yao 2018). Most of them
are able to indicate the performance in both convergence and

! Source codes for all methodologies can be found at: https:/bitbu
cket.org/Paglc18/cmlsga.
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diversity of the solutions. However, each of them has certain
drawbacks or biases and it is common practice to utilise
more than one indicator (Li and Yao 2018). In this paper
the inverted generational distance (IGD) and hypervolume
(HV) were chosen as indicators. IGD measures the average
Euclidean distance between each point in a real Pareto Opti-
mal Front (POF) and the closest solution in the obtained set.
Lower values indicate better convergence and uniformity of
the points and are calculated according to Eq. 1:

Lep dv, 4)

IGD(A, P*) = T

, ey
where P is a set of uniformly distributed points along the
true PF, A is the approximate set to the POF, which is being
evaluated and d(v, A) is the minimum Euclidean distance
between the point v and points in A.

However, this IGD shows poor performance in deter-
mining the diversity of a population when the Pareto Front
population is small. HV is calculated as the volume of an
objective space between a predefined reference point and
the obtained solutions where higher values are preferred
(Li and Yao 2018). This indicator has a stronger focus on
the diversity and boundary points. Most indicators require
a predefined reference Pareto Optimal Front that illustrates
the ideal set of solutions. However, in cases where the opti-
mal answer is not known the utilisation of these indicators
can be problematic. A solution is to calculate a reference
Pareto Optimal Front using the non-dominated selection of
Pareto Optimal Fronts achieved by every algorithm when
performing multiple runs, or performing a few test runs with
significantly higher numbers of iterations than that utilised
for comparison (Wang et al. 2018). In this paper both are
applied, and a combined non-dominated front obtained by
brute force from all 6 Genetic Algorithms after 300,000 fit-
ness function evaluations was used to determine the success
of the algorithm.

3 Results

A single Genetic Algorithm run with a maximum of 50,000
function calls was computed in approximately 30 min, where
Fig. 3a shows the individuals evaluated over this lifetime
and the final Pareto Front. Comparing the different genetic
algorithms, it was observed that the shape of the Pareto Opti-
mal Fronts remains consistent. Therefore, visual compari-
son only shows that all of the methodologies exhibit similar
performance and it is not possible to unanimously choose
the best methodology (Fig. 3b). The bias between Fitness
Functions FF1 and FF2 along the normalised Pareto Optimal
Front is visualised in Fig. 3c. The reason the no-bias point is
not in the middle of the front is due to the longer ‘tail’ when
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minimisation is biased towards FF2 (minimising proximal
bony prominence loading), compared with bias towards FF1
(minimising distal tip loading). It was also observed that
while the minima of FF1 for all individuals plateaued at just
below 20 (unitless), the minima of FF2 were different for
all of the virtual people (Fig. 3d). The minima of the short,
conical limb of person B and the long, bulbous limb of per-
son C plateaued at FF2 =55 kPa and 40 kPa, respectively.

From visualisation of the sockets at either end of the
Pareto Front, as well as the neutral case, consistencies in
design emerged across the four people (Fig. 4). When the
optimiser was biased towards FF1 (minimising tip load-
ing), designs of higher press fit which off-loaded the resid-
uum tip emerged from the Genetic Algorithm. For person
B (Fig. 4b) and person D (Fig. 4d), pressure hotspots were
generated where there was little soft tissue coverage over
the proximal bony prominences. When the model was
biased towards FF2, sockets with higher fibula head relief
evolved in order to off-load over this region.

Trends in the designs can be observed between the
competing fitness functions by visualising how the opti-
mal socket designs change along the Pareto Optimal Front
(Fig. 5). Across all virtual people, the patella tendon bar
variable converged at the constraint maximum of 6 mm for
almost all of the points along the Pareto Optimal Front.
The exception was in Person D, with the longest and thin-
nest residual limb. When the optimiser was biased towards
FF1, a few designs evolved with the patella tendon bar
rectification at the 0 mm lower limit. This was offset by
removal of the fibula head relief to ensure that the pressure
over the residuum tip is still minimised. A clear trend for
all virtual people was in the mid reduction in the socket,
where the press fit decreases along the Pareto Optimal
Front from FF1 (with the aim of minimising the distal
loading) to FF2 (with the aim of minimising the proximal
loading). By reducing the press fit, the pressure over the
bony prominences and the peripheral shear both decreased,
resulting in an increase in distal tip pressure and soft tis-
sue strain.

The performance of different methodologies was evalu-
ated using the proposed indicators, IGD and HV and pre-
sented in the form of rankings with average values and
standard deviations (Table 3). In this case the algorithms
all performed in the same manner for IGD and HV. HEIA
and cMLSGA were the best performing algorithms and
MOEA/D and MTS performed the worst. However, the rel-
atively similar performances of all five algorithms indicate
that the complexity of the presented cases is low. The final
Pareto Front was continuous and there were no constraints,
which led to convergence-dominated HEIA having the best
performance, over cMLSGA and NSGA-II. MOEA/D and
MTS perform less well. However, this may be due to a lack
of hyperparameter tuning to the particular problem. These



Predictive prosthetic socket design: part 2—generating person-specific candidate designs...

Fig.3 Analysis of the Pareto
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two algorithms are dependent on a number of parameters
which must be optimised for each problem, and in the pre-
sent work the authors used default values described in the
algorithms’ original papers. The MOEA/D and MTS algo-
rithms may perform better once tuned, now that a priori
knowledge has been developed, but the present results indi-
cate the caution with which these algorithms should be used.

In order to better understand the complexity of the
problem and to check whether the best possible set of
solutions has been found, a set of 5 runs with 300,000
total iterations was conducted on each virtual person,
utilising HEIA. In this case hardly any difference was
observed between 50,000 and 300,000 iterations. Fig-
ure 6a shows some very slightly higher uniformity and
diversity of the points in the high FF1 bias region with
300,000 iterations. When comparing the performance
over the number of generations in Fig. 6b, virtually no
improvement in performance can be seen after 50,000
generations and the highest performance gain occurred
before 25,000 iterations. The low possible performance
increase beyond 50,000 iterations in this case would not

Fitness Function 1

justify conducting optimisation of this problem with
higher values, unless the virtual person is suspected to
benefit from an extreme reduction in pressure over the
residuum tip and the soft tissue strain around the distal
tibia (FF1 bias).

4 Discussion

This study aimed to explore a range of potential concepts
for transtibial socket design using FE modelling, surro-
gate modelling and GA-based optimisation techniques, to
provide a quantitatively informed starting point for the
prosthetist when designing a bespoke prosthetic socket.
Exploring the parametric socket design space dem-
onstrates that biomechanical objective functions are in
competition and illustrates the challenges associated with
defining the ‘best’ socket design solution. As explored in
our previous work (Steer et al. 2019), by increasing the
socket press fit, particularly in the mid-section, an increase
in longitudinal shear around the main body of the residual
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«Fig.4 Optimal socket designs and corresponding predicted pressure
maps for the four different virtual people at the two ends of the POF,
i.e. biased towards minimising distal tip loading (top) and minimising
proximal bony prominence loading (bottom), and the design with no
bias (centre)
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limb was predicted. This resulted in a pressure reduction
at the residuum tip coupled to a reduction in the internal
strain around the distal tibia. By oversizing the socket (i.e.
negative press fit), these peripheral shear forces were not

Normalised value

Normalised value

Virtual Person B
vi= —0.80,v, = +0.80, v3= — 5%, v4 = 50kPa

1.0 [ ]
i * ¢
]
H e
0.8 -4
$ i
[ ]
06 I
]
|
04 e
]
8 °

0.2 H l

0 i
Proximal Mid Distal Patella Fibula
Reduction Reduction Reduction Tendon Head

Socket design variable

Tibial
Crest

Virtual Person D
vi= +0.80,v, = +0.80, v3= — 5%, v4 = 50kPa

1.0 [] °
0.8
0.6
0.4
0.2
| °
0 ° [ ] ) (]
Proximal Mid Distal Patella Fibula Tibial
Reduction Reduction Reduction Tendon Head Crest

Socket design variable

Fig.5 Comparison of how the socket design variables (see Table 2) changed between the four cases along the Pareto Optimal Front. Blue
denotes a bias towards FF1 (distal loading), while red denotes bias towards FF2 (proximal loading)
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Table 2 Parameters and limits of the parametric socket design

Socket rectification variable Lower bound Upper bound
name

Proximal press fit -2% + 6%

Mid press fit -2% +6%

Distal press fit —2% +6%

Patella tendon bar 0 mm 6 mm

Fibula head relief 0 mm 6 mm

Tibial crest 0 mm 6 mm

generated, thereby increasing the distal pressure and soft
tissue strain. These represent the competing fitness func-
tions inherent in prosthetic socket design.

Introduction of the patella tendon bar and tibial crest
rectifications provided an alternative method of off-load-
ing the residuum tip beyond a uniform press fit. Fibula
head relief is predicted to be effective in reducing the high

pressure that was observed over this bony prominence for
the total surface bearing socket designs, thus reiterating
the importance of localised shape change beyond applying
gross scaling to the limb shape (Goh et al. 2003).

The sockets that emerged from the Genetic Algorithm
exhibited features of both total surface bearing (TSB) and
patella tendon bearing (PTB) manual socket design phi-
losophies. One consistent feature along the Pareto Front
for all virtual people was the patella tendon bar rectifica-
tion variable, which saturated at its maximum limit. This is
because no optimisation cost was associated with applying
pressure over this region, which the Genetic Algorithm
exploited to off-load the high-cost residuum tip region.
This effect is observed clinically for the patella tendon
bearing socket where prosthetists produce a marked recti-
fication over the patella tendon to leverage its load bearing
capacity. Although load tolerant, there clearly would be
a load threshold for injury at the patella tendon, so with
enhanced spatial data of load tolerance across these key

Table 3 Ranking of different

; . X Rank 1 2 3 4 5
genetic algorithms using HV
and IGD as the performance IGD
indicators Algorithm HEIA* cMLSGA* NSGA-IT* MOEA/D* MTS
Average 0.029349 0.057565 0.1384 0.281601 0.590279
(S.D.) 0.001741 0.001553 0.139218 0.158822 0.049102
HV
Algorithm HEIA* cMLSGA NSGA-IT* MOEA/D MTS
Average 0.174846 0.174475 0.174461 0.174094 0.168158
(S.D.) 0.000027 0.000039 0.000288 0.000214 0.000464
*indicates if the results are significantly different to the next lowest rank, using the Wilcoxon’s rank sum
with a 0.05 confidence
Fig.6 a The comparison of (a) (b)
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Pareto Fronts from Virtual Ay BE
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residuum locations (Bramley et al. 2019) an additional
constraint of maximal patellar tendon pressure could be
included in the optimisation problem.

Along the Pareto Front of the best solutions, trends
were predicted as the bias of the optimised socket varied
between the two fitness functions. When fitness function
1 was dominant and the Genetic Algorithm aimed to mini-
mise pressure and soft tissue strain at the residuum tip,
sockets with high levels of mid-height press fit emerged
from the model. Conversely, when fitness function 2 was
dominant and the Genetic Algorithm aimed to minimise
pressure over the proximal bony prominences, the global
press fit was reduced and local relief over the fibula head
was increased. The sockets which minimised residuum
tip pressure (FF1-biased) exhibited characteristics asso-
ciated with a total surface bearing socket design, while the
patella tendon bearing rectifications were dominant when
minimising pressure over bony prominences (FF2-biased).
While it is difficult to validate these findings from the cur-
rent literature, a systematic review of transtibial prosthetic
socket designs by Safari and Meier concluded that TSB
sockets exhibited improved weight-bearing, greater sus-
pension and reduced pistoning, which may be, in part,
due to the increased peripheral shear from the TSB socket
(Safari and Meier 2015). However, extensive experimental
data collection is required to validate such a hypothesis.

Differences in the Pareto Front were observed between
the virtual people. While the minimum value of fitness
function 1 was consistent across the cases at just below
20, the minima of fitness function 2 varied substantially.
This result was to be expected based upon the results of
the population model where residuum morphology, in par-
ticular the residuum profile, had a substantial effect on the
pressure over the bony prominences.

A range of genetic algorithms proved effective in per-
forming multi-objective design optimisation of the socket
by handling the complex task of simulating the interplay
between rectifications on the competing objective func-
tions of the residual limb across the presented design
space. In this case the performance of all methodologies
was comparable and it could be concluded that the utilisa-
tion of several GAs was unnecessary. However, in this case
the problem is rather simple to optimise, as 50,000 fitness
function calls are sufficient to provide good approximation
of the best Pareto Front, and in some cases 20,000 was
adequate. The problem has continuous search and objec-
tive spaces which further indicates its simplicity (Wolde-
senbet et al. 2009). However, as the importance of utilis-
ing multiple methodologies has been shown by previous
researchers (Wang et al. 2018), it is strongly advised here
to follow this procedure as good practice until the design
space for transtibial prosthetic sockets is better understood.
In the future, as more variables and objectives are added

to the search space, it is expected that the topology of the
design space will change and therefore provide an increas-
ing challenge to resolve the optimal points and require
review of the required GA parameters and convergence
limits.

The presented multi-objective design optimisation pro-
vides an early demonstration of how the speed increases
achieved by surrogate techniques enable the socket design
process to be framed as an engineering design problem.
There are several potential improvements that could be
implemented within this process. One such approach may be
a dual-level solver where the solver starts with no data, runs
a full simulation on a limited population of designs, creates
a surrogate from these designs and evaluates the fitness of
a substantially larger group across the surrogate. The elite
individuals, the fittest individuals in the population which
are often defined as the top 10%, would be retained for the
next generation and the process repeated. This approach
would enable the GA to ignore regions which are clearly
sub-optimal, and instead prioritise expensive FE analyses
in regions where the minima of the fitness function is more
likely to be found. As an alternative approach, to prevent
overfitting, the surrogate might be used to generate initial
generations, and more expensive FE analyses used at the
end to select a preferred design from the options along the
Pareto Front.

5 Limitations

User satisfaction with the socket is ultimately a subjective
measure dependent upon a range of human factors such as
comfort, pain thresholds and proprioception arising from
a firm, functional prosthesis-skeletal coupling. This means
that the predictions of pressure, shear stress and soft tissue
strain are not directly related to comfort (Mak et al. 2001).
Furthermore, the model would not account for local tissue
sensitivities associated with neuromata and soft tissue inju-
ries which could only be identified in limb assessment by
the prosthetist. This process might therefore be enhanced by
surveying functional and user-reported outcome measures
across a population of socket designs.

No direct experimental validation of the underlying rela-
tionships between socket design and load transfer predicted
by the model in this study has been performed, and such
validation evidence must be obtained prior to any clinical
evaluation. Pressure and shear sensors (Laszczak et al. 2015)
and laboratory-based residuum-socket simulators (McGrath
et al. 2017) measure the interaction between the residual
limb and socket and could be used to reinforce the find-
ings of this study. As the model uses invented residual limb
shapes with thousands of socket designs, it is clearly infea-
sible to perform experimental validation upon any more than
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a limited subset of data points in this model. However, in
future, a limited number of key socket designs should be
tested to validate its conclusions. Furthermore, the popu-
lation-based surrogate model only characterises a simpli-
fied representation of the variability which exists across the
population. As discussed previously (Steer et al. 2019), a
practical application of these tools requires further data to
construct the surrogate model, for example variation in fem-
oral or patella geometry, bone and liner material properties,
as well as dynamic load cases. Some confidence is provided
by corroboration with literature reports of pressure predic-
tions across the limb between 30 and 100 kPa during gait for
TSB sockets (Al-Fakih et al. 2013; Beil et al. 2002; Beil and
Street 2004; Dumbleton et al. 2009) and 25-320 kPa for PTB
(Dumbleton et al. 2009; Zhang et al. 1998; Dou et al. 2006),
which is consistent with the range of predicted pressures for
the FF1-biased sockets in this study.

As the study is an initial investigation into the methods
and potential it forms the basis for further investigations
that provide a more complex design. In increasing this
complexity a number of elements will change. First, the
Kriging model itself will become more complex providing
some challenges in the use of this model which must be
investigated. Second, the design space will change and this
will provide a different set of optimisation challenges. In
both instances the methods used will need to be evaluated
carefully. In the case of more complex design spaces, other
surrogates might become more appropriate, such as Deep
Reinforcement learners. These are subject to a disadvantage
of requiring more input data. For the optimisation, it is likely
that the space will become more discontinuous (Sobey et al.
2019), similar to other more complex applications, and this
will require algorithms with stronger diversity (Wang et al.
2018): NSGA-II and cMLSGA. There is also likely to be a
greater separation between specialist, which will have even
further reduced performance compared to the general solv-
ers: NSGA-II, cMLSGA and HEIA.

6 Clinical applications

Attempting to use simulations to inform clinical decision-
making requires extreme caution, especially when applied
to devices which depend upon personalised design to ensure
comfort and functional efficacy, as comfort and propriocep-
tion are difficult to quantify. Crucially, in prosthetic limb
design we would argue that these techniques should not be
used in isolation, or substituted for human-facing clinical
practice. The expert prosthetist must retain control over
socket design, and the presented optimisation approach could
be used to provide a ‘first-guess’ rectification map. The pros-
thetist would then modify this candidate design according
to their own clinical reasoning which combines palpation,

@ Springer

user feedback and re-evaluation. Other technologies such as
real-time pressure measurements and predictions from the
previously reported PCA-kriging model (Steer et al. 2019)
incorporated with their skill and experience could provide a
technology-enhanced limb assessment. This approach will
help the community to test the key translational research
question in this field: can the clinical application of FEA
support the prosthetist’s evidence base and enable delivery
of comfortable, highly functional prosthetic limbs to users
in a more timely and efficient manner?

7 Conclusion

This paper provides a first assessment of the use of multi-
objective optimisation in the design of prosthetic sockets.
The experiential judgement and skill-based process of pros-
thetic socket design is framed as a multi-objective engineer-
ing design problem. This is achieved by developing paramet-
ric models of the residual limb informed by statistical shape
modelling techniques and the prosthetic socket incorporating
both total surface bearing and patella tendon bearing rectifi-
cations, which allow the underlying biomechanical relation-
ships between the residual limb and prosthetic socket to be
predicted. In line with experimental data to allow detailed
biomechanical validation, the developed methods show
substantial potential to be used as part of a more informed
socket design process, and provide clinicians with support
for selecting from the range of candidate design approaches.
The resulting designs correspond with the general forms of
the two most popular designs: patella tendon bearing and
total surface bearing sockets, at the extremes with a series
of variations that result in designs that are a compromise
between both in the centre. This results in a difference in
pressure of up to 31 kPa over the fibula head and 14 kPa
over the residuum tip.
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Appendix E List of utilised

parameters for genetic algorithms

For the ease of reproducibility, the parameters are presented as in the C+4 code used for

simulations’.

/*GA parameters - MOEA /D*/
const float MOEAD _niche_multi = 0.1; //multiplier of the neighbour size (* pop size)

const float MOEAD _limit_multi = 0.01; //multiplier of the number of solutions replaced(*
pop size)

const float MOEAD mating_chance = 0.9; //probability chance for mating

const int MOEAD_new_sol_.multi = 5; //How many new individuals are generated each gen-

eration = pop_size/ MOEAD _new_sol_multi

const int MOEAD _evol_operation_type = 1; //Define type of evol. operations; 1 - DE cross.

and poly. mut.; 2 - LL cross. and mut.

const std::string MOEAD _weight_generator “Uniform” ; //Define how the MOEA /D generate
weight vectors; “File” - get from file in /Input/MOEADWeight; “Sobol” - generated by Sobol

- not implemented properly; “Uniform” - uniform method from MSF/PSF and mine

const std::string MOEAD _weight _assign “Pop” ; //Define how the weight vectors are assigned
to the population - in case of MLS; “Pop” -Assigned to population before the collective split;
“Col” - Assigned to separately to each collective; “Sep” - Each collective have separate weight

vector from 0. to 1. (i.e. each covers the whole search space)
/*GA parameters - MTS*/

const int MTS_LocalSearch_test_amount = 5; //How many times each local search is tested

each generation

const int MTS_LocalSearch_amount = 45; //How many local searches are made each gener-

ation

'The code of MLSGA is made available online at https://bitbucket.org/Paglcl8/cmlsga
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const float MTS_foreground_multp = 0.125; //Size of the foreground (* Population size)
const int MTS_MPL1 = 9; //Bonus 1

const int MTS_MPL2 = 2; //Bound 2

/*GA parameters - BCE*/

const int BCE_PC_capacity = 600; //maximum size of the PC population

const short BCE_mode = 2; //setting variation in the NPC and PC evolution; 1: SBX
crossover, 2: DE /*GA parameters - HETA*/

const float HEIA _crossover_prob = 0.5; //Crossover probability for HEIA (between SBX and
DE)

/*Additional GA parameters*/

const unsigned short Di_c = 20; //Distribution index for SBX crossover

const unsigned short Di_m = 20; //Distribution index for polynomial mutation

const float mut_prob_min = 0.08; //Mutation probability

const float cross_prob_min = 1; //Crossover probability

const int Pop_size = 600; //Population size for all algorithms except of MLSGA and MTS
const int Pop_size. MTS = 100; //Population size

/*MLSGA parameters™/

const std::vector<std::vector<std:string>> GA_mode "HEIA”, "MEOADMSF” ; //Used
evolutionary algorithms for cMLSGA

const std::vector<std::vector<std::string>> GA_mode "HEIA”; //Used evolutionary algo-
rithms for MLSGA-hybrid

const unsigned short MLSGA n_col = 8; //Numbers of collectives
const unsigned short MLSGA n_col_elim = 1; //Number of collectives eliminated

const unsigned short MLSGA _col_elim_limit = 10; //Define how many generations have to

pass before collective elimination occurs

const unsigned short MLSGA n_MLS = 7; //Index of the MLS type used: 7 - MLS-U; 1 -
MLS1; 2 - MLS2R; 3 - MLS2
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Appendix F Description of utilised

engineering problems

3D spatial arrangement of leisure boats

The leisure boatbuilding industry is a competitive market and therefore it is essential to
minimise the cost of overall production by utilising as much space as possible. Due to the
curved shape of the boats and smaller sizes of leisure boats, this is a complex task with
additional problems such as requiring as much space as possible for customer used rooms and
as much space as necessary for practical rooms, such as the engine. The case shows a nice

“toy problem” to determine methods with the best chance of success on larger vessels.

The first objective of the optimisation is therefore to minimise the wasted volume space in
the hull defined as:

J1= Vi = Vo) /Vh, (1)

where, V},, is the volume of the hull calculated based on the lines plan of the motor yacht
which has the parameters given in the Table F.1 representing typical values for a motor yacht

and V. is the sum of all of the volumes of all of the cabins.

FicURE F.1: The 3D cabin geometry and the cabin face
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TABLE F.1: Motor yacht particulars.

Parameter L Value

Length 24.8m
Beam 6.9m
Draught 1.955m
Displacement | 152.8t
LCB 8.673m

The overall design is split into a number of building blocks, each representing a different
cabin. Therefore, each block is optimised semi-separately and then fit into overall design.
Each cabin can be defined as two location parameters (z,y), the length L and a number of
the offset w points on each side of the cabin, as presented in fig. F.1. Therefore, the total

number of variables is defined as:

d=mnc* (34 ny*2), (2)

Where, n., is the number of cabins and n,,, is the number of offsets on each side. There
is a balance between the number of offsets, the accuracy and the computational time. Too
many offsets increase the complexity with no increase in accuracy but too few will give a
poor utilisation volume. In this case the number of offsets is equal to 7 and 4 cabins are

optimised, which results in 68 decision variables.

Due to the different masses of each cabin, which change during the optimisation process as
they change size, the trimming of the boat becomes an issue and needs to be optimised.
Therefore, the second objective function is defined as the normalised distance between the
longitudinal centre of buoyancy (LCB) and longitudinal centre of gravity (LCG) as given in

eq. 3, which should be minimised,

fo=(LCB — LCG)/LCB. (3)

The LCG is calculated by summing the mass moments of each cabin and dividing by the
total mass of all the cabins, while LCB is derived from the boat lines plan and the design
water line. As the cabins are optimised separately, three constraints are added to ensure that
the cabins form a valid formation. Firstly, the cabins are not allowed to overlap, and the first

constraint is defined as:

x;+1; < x;

x;—lj >z

o =mind "’ ! (4)
Yi + maz(wip, w1 ... Wn,—1) < Yj

Yi — max(wio, Wit . . . Wny,—1) > Yj
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Secondly, all cabins must be within the yacht hull’s boundaries. As the hull shape is defined
by a lines plan, the calculation of the maximum allowable breadth is composed of three steps

corresponding to interpolations in the (x, z), (y, z) and (x, y) planes, respectively.

Thirdly, all of the cabins volume has to be within a 20% margin of the predefined standard
sizes. The given limit is a simplifying assumption and the standard sizes are derived from

linear regression of 39 similar vessels. This ensures that the cabins are realistically sized.

Structural design of composite stiffened plates

Composite materials are often selected due to their high strength/weight ratio and ability to
design the properties to a given parameters. They are the main materials used for composite
leisure boat hulls under 130ft with all of the internal structure also normally made from
these materials. These structures can be simplified to a flat plated grillage, with a simple
analytical model developed to be accurate to FEA, an accurate modelling method common
in structural design, within 5% [146]. The representation of the stiffened plates is given in
fig. F.2. In order to minimise the mass of the plate, and thus the cost, while maintaining
sufficient structural strength it is essential to choose the number of the stiffeners and their

geometrical parameters correctly.

The typical design parameters are the number of transverse and longitudinal stiffeners; stiff-
ener heights; stiffener widths; thickness of the stiffener crown; thickness of the stiffener web;
and overall thickness of the plate. These parameters are taken from [159] and are detailed
with respectable lower and upper boundaries in Table F.2 and represented in fig. F.3. All

parameters are given in millimetres.

In order to simplify the problem only rectangular stiffeners are considered (a = €), the amount
of longitudinal and transverse stiffeners is assumed to be the same to simplify the problem
and the stiffeners are evenly spread across the whole plate. The size of the plate is predefined

and equal to 3810mm in both length and breadth and the uniform pressure of 137 kPa is

a
—b
d c
| f
e
FIGURE F.2: 8byS FiGure F.3: Cross

stiffened plate. section of a stiffener.
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TABLE F.2: Design parameters of the stiffener

Parameter ‘ Variable ‘ Lower boundary ‘ Upper boundary
Number of stiffeners N 2 8
Width of crown a 150 300
Crown thickness b 5 20
Web thickness ¢ 5 20
Height d 150 300
Base width e 150 300
Plate thickness f 5 20

TABLE F.3: Fitness function assignment for the stiffener optimisation

| CLPT2 | CLPT3
fi mass
fo stress
f3 w/o ‘ deflection

applied to the structure. The material is carbon/epoxy composite for which the properties
can be found in [146].

In the presented problem, three objectives are considered: overall mass of the structure, total
stress in the outer layer of the stiffener and deflection. All objectives are to be minimised and
are calculated using a modified Navier grillage model with Classical Laminate Plate Theory
(CLPT?2) implemented as described in detail in [146]. In the second case, the problem is
simplified and only the mass and stress are set as objectives and the deflection is neglected.

The respective objectives for each case are presented in Table F.3
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Appendix G Additional figures

Enlarged heat maps from Chapter 3

Individuals over generations
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FIGURE G.1: The heat map of the MLS1 variant of MLSGA on ZDT1 problem.
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F1GURE G.2: The heat map of the MLS2 variant of MLSGA on ZDT1 problem.
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F1GURE G.3: The heat map of the MLS2R variant of MLSGA on ZDT1 problem.
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F1GURE G.4: The heat map of the single population GA on ZDT1 problem.
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FIGURE G.5: The heat map of the sub-population GA on ZDT1 problem.
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Individuals over generations
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F1GURE G.6: The heat map of the MLS1 variant of MLSGA on ZDT6 problem.
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FIGURE G.7: The heat map of the MLS2 variant of MLSGA on ZDT6 problem.
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Individuals over generations
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F1cURE G.8: The heat map of the MLS2R variant of MLSGA on ZDT6 problem.
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FIGURE G.9: The heat map of the single population GA on ZDT6 problem.
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F1cURE G.10: The heat map of the sub-population GA on ZDT6 problem.
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FIGURE G.11: The heat map of the MLS1 variant of MLSGA on CF2 problem.
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F1GURE G.12: The heat map of the MLS2 variant of MLSGA on CF2 problem.
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F1GURE G.13: The heat map of the MLS2R variant of MLSGA on CF2 problem.
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FI1GURE G.14: The heat map of the single population GA on CF2 problem.
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FIGURE G.15: The heat map of the sub-population GA on CF2 problem.
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FIGURE G.16: The heat map of the MLS1 variant of MLSGA on UF3 problem.
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FIGURE G.17: The heat map of the MLS2 variant of MLSGA on UF3 problem.
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F1GURE G.18: The heat map of the MLS2R variant of MLSGA on UF3 problem.

Individuals over generations
0.45

6
‘ it b 8 0.0x1"
L o4
5 | _
L o35
4 | - L 1 03
~ | 025
g
g3 L _
2
S 02
2 0.15
0.1
1
0.05
0 | | | 0
0 1 2 3 4 5 6
Objective 1

F1GURE G.19: The heat map of the single population GA on UF3 problem.
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F1cURE G.20: The heat map of the sub-population GA on UF3 problem.
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F1GURE G.21: The heat map of the MLS1 variant of MLLSGA on CF2 problem.
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FIGURE G.22: The heat map of the MLS2 variant of MLSGA on CF2 problem.
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F1GURE G.23: The heat map of the MLS2R variant of MLSGA on CF2 problem.
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FIGURE G.24: The heat map of the MLSU variant of MLSGA on CF2 problem.
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F1GURE G.25: The heat map of the MLS1 variant of MLSGA on UF4 problem.
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FIGURE G.30: The heat map of the MLS2 type of collective in MLSGA_U-NSGA-III algo-
rithm on UF2 problem.
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F1GURE G.32: The heat map of the original U-NSGA-III algorithm on UF2 problem.



226 Chapter 7 Conclusions

Individuals over generations

I I "Temp\CP_23_0.0x1"
03
5 i
025
4 |
. B o2
S 0.15
2
0.1
1
0.05
0 0
0 1 2 3 4 5 6 7
Objective 1
FIGURE G.33: The heat map of the MLS1 type of collective in MLSGA_MOEA/D algorithm
on CF2 problem.
Individuals over generations
5 035
45
~ o3
4 _
35 L oz
3 il
% 25 4
s
2
15 il
1
05 4
0

0 1 2 3 4 5 6
Objective 1

FIGURE G.34: The heat map of the MLS2 type of collective in MLSGA_MOEA/D algorithm
on CF2 problem.
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