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Abstract In many meta-analyses, the variable of interest is frequently a count out-
come reported in an intervention and a control group. Single- or double-zero studies
are often observed in this type of data. Given this setting, the well-known Cochran’s
Q statistic for testing homogeneity becomes undefined. In this paper, we propose two
statistics for testing homogeneity of the risk ratio, particularly for application in the
case of rare events in meta-analysis. The first one is a chi-square type statistic. It
is constructed based on information of the conditional probability of the number of
events in the treatment group given the total number of events. The second one is a
likelihood ratio statistic, derived from the logistic regression models allowing fixed
and random effects for the risk ratio. Both proposed statistics are well defined even
in the situation of single-zero studies. In a simulation study, the proposed tests show
a performance better than the traditional test in terms of type I error and power of
the test under common and rare event situations. However, as the performance of the
two newly proposed tests is still unsatisfactory in the very rare events setting, we
suggest a bootstrap approach that does not rely on asymptotic distributional theory
and it is shown that the bootstrap approach performs well in terms of type I error.
Furthermore, a number of empirical meta-analyses are used to illustrate the methods.
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2 Dankmar Böhning et al.

1 Introduction

Meta-analysis is a powerful statistical tool for analyzing and combining the results
from several studies on the same topic. In the traditional 2-stage approach, meta-
analysis of continuous or discrete endpoints requires in the first stage the effect mea-
sure estimate θ̂i of the true parameter value θi to be calculated from study i, together
with an estimated standard error. The analysis of these calculated estimates follows
in the second stage, either using the fixed effect or random effects model. The fixed
effect model allows θi to have a common true parameter θ across all studies. In the
random effects model, θi differs between studies. It is often assumed that across-study
variations follow a normal distribution with mean θ and between-study variance τ2

(Böhning et al., 2003; Schulze et al., 2003).
In medicine or psychology, counts of events such as the number of health events

or deaths are of interest. When these count outcomes are observed, the risk ratio,
risk difference, or odds ratio are considered as effect estimates. In many of these
meta-analytic datasets, the number of events and number at risk or person-time are
also available in an intervention compared with a control group. The risk ratio is
often the quantity of interest when considering cohort studies or clinical trials. An
overall risk ratio estimate is then computed as a weighted mean of the study-specific
risk ratios where the weight for the specific study is obtained from the inverse of
variance of the effect estimate, depending on whether the fixed or random effects
model is used (Borenstein et al., 2009). To decide on methods for combining studies
and for concluding the consistency or inconsistency of findings, a statistical test for
heterogeneity is therefore an important tool. As noted in Sánchez-Meca and Marán-
Martánez (1997), a test whether the effect measures in the studies are homogeneous is
necessary when integrating results on a common topic. In other words, heterogeneity
evaluation in meta-analysis provides the choice of synthesizing method, especially
for interpretation of results. The conventional test for homogeneity is Cochran’s chi-
square statistic Q (see Cochran (1954) for count data, Sánchez-Meca and Marán-
Martánez (2000), Viechtbauer (2007), and Kulinskaya et al. (2011) for continuous
data). However, as we will point out in the following, the Q-statistic becomes often
undefined when the meta-analytic data contain rare events.

In fact, this work is motivated by meta-analytic data on myocardial infection
events and cardiovascular deaths as adverse events when taking Rosiglitazone as
anti-diabetes therapy in comparison with control. The data originally published by
Nissen and Wolski (2010) (taken from Böhning et al. (2015) and given in Table 1 in
the web-supplement) consist of 56 trials with patients numbers and person-times in
weeks. They include rare events, including zero counts which frequently occur. The
studies with zero events in one arm are called single-zero studies. If zero events oc-
cur in both arms, they are called double-zero studies. Unfortunately, in this situation
some or many study specific risk ratio estimates become undefined as its associated
variance. The problem is often addressed in practice by adding a continuity correction
of 0.5 (Sweeting et al., 2004; Bhaumik et al., 2012; Piaget-Rossel and Taffé, 2019).
However, the use of a continuity correction in meta-analysis with many zero events
can introduce bias in estimation and the normal approximation is inappropriate in
studies with few events (Stijnen et al., 2010; Jackson and White, 2018), and the use
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of the Q-statistic (on the basis of the remaining defined risk ratio estimates) becomes
questionable.

Given these limitations, it is therefore important to develop a statistical approach
that takes into account the characteristics of the rare events cases. The work in Böhning
et al. (2015) gives an overview on modelling approaches including fixed and random
effects models which are appropriate for count outcomes and do not involve conti-
nuity corrections. Also, papers by Stijnen et al. (2010) and by Hamza et al. (2008)
provide appropriate exact likelihood methods, which do not need a continuity cor-
rection, can be used for studies with rare events. A paper related to few studies was
proposed by Spittal et al. (2015). They introduce Poisson regression meta-analysis to
estimate the incidence risk ratio in the presence of zero events. Their approach as well
as the works mentioned above rely on specific forms of modelling the random effects
distribution whereas we focus here on a test for the variance of the random effects
distribution being zero without making specific assumptions on its distribution.

Hence, in the work presented here, we are interested in addressing the issue of
testing homogeneity in meta-analysis with zero-event studies. We will show that the
conventional Q-statistic performs poorly, even if it can be defined at all. Alternatively,
we suggest two novel approaches.

i. The first approach is based on a conditional likelihood of a Poisson variable. The
test using this method is a simple semi-parametric statistic, semi-parametric in
the sense that it does not require any assumption of the random effects distribu-
tion which is generating the potential heterogeneity. The (weak) parametric as-
sumption is that each study count is assumed to be Poisson with a study-specific
parameter.

ii. The second approach is based on generalized linear mixed models, in particular
the conditional logistic regression with a normal random effect. It allows a like-
lihood ratio test for homogeneity of the risk ratio. This approach is mentioned in
Böhning et al. (2015) briefly but now fully developed here. The benefit of this
approach lies in the fact that eliminates the nuisance intercept parameter and only
involves the risk ratio as the parameter of interest.

The remainder of the paper is organized as follows. In Section 2, the construc-
tion of the proposed statistics is derived, and the distribution of the tests is explained.
Section 3 presents a number of different examples from medical meta-analysis, and
example of computation for logistic regression is given. In Section 4, we investi-
gate the performance of the tests using simulations. Both common and rare events
are considered across multiple cases. Sections 5 and 6 present our conclusions and
investigation of the asymptotic distribution of the test.

2 Heterogeneity tests

Consider a meta-analysis of k independent studies in which a Poisson distributed
variable Xij denotes the number of events for study i and treatment j, where i =
1, 2, ..., k, and j = 1 identifies the treatment arm and j = 0 the comparison arm.
The mean and variance of Xij are given by µijPij , where µij is the true incidence
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rate for group j in study i and Pij is the person-time for study i in arm j, which
is non-random. The estimated incidence rate is given as µ̂ij = Xij/Pij . It follows
that the estimated variance of Xij is given by Xij . For each trial i, the true risk
ratio is RRi = µi1/µi0 with its estimate R̂Ri = Xi1Pi0/(Xi0Pi1). The variance of
R̂Ri is generally computed on the log-scale of risk ratio. Using the δ−method, we
have V ar(log R̂Ri) ' 1/Xi1 +1/Xi0. To estimate the risk ratio under homogeneity
(RR1 = ... = RRk), the Mantel-Haenszel (MH) estimator (Tarone, 1981) is then
used and given by

R̂RMH =
∑k

i=1 Xi1Pi0/Pi∑k
i=1 Xi0Pi1/Pi

, (1)

where Pi = Pi1 + Pi0. This is usually applied in Cochran’s Q statistic for testing
homogeneity of the risk ratio, reflecting the hypotheses, H0 : RR1 = RR2 = ... =
RRk = RR vs H1 : not H0. The statistic is given as follows:

χ2
HOM =

k∑
i=1

(log R̂Ri − log R̂RMH)2

1/Xi1 + 1/Xi0
, (2)

which is considered to have an approximate chi-square distribution with k−1 degrees
of freedom under H0. This is based on the argument that the Poisson distribution
converges with increasing parameter µijPij to a normal distribution and seems to be
realistic if Xij is large as it is estimating µijPij . However, we have seen that χ2

HOM

cannot even be calculated if at least one observed Xi1 or Xi0 event is zero. A simple
way of using this method is to remove studies that have zero events. However, as
pointed out in Böhning et al. (2015),

... the available test of homogeneity is of unknown behaviour even if infeasible
study-specific effect estimates are omitted ...

as asking the degrees of freedom based on the remaining studies after removing zero
studies is a random quantity itself. In the following section, an approach based on a
conditional likelihood is presented.

The proposed chi-square test. In the following, we will make use of the well known
fact that for two independent Poisson variates V and W with means µV and µW ,
respectively, the conditional distribution of V given the sum V + W = v + w is
binomial with event parameter µV /(µV +µW ) and sample size parameter v+w. This
is now applied to our situation. Suppose that Xi0 and Xi1 are Poisson variables with
means µi0Pi0 and µi1Pi1, respectively, and are independent. Thus, Xi = Xi0+Xi1 is
the total number of events, which is a Poisson distribution with mean µi0Pi0+µi1Pi1.
Consider the random variable Xi1 conditional on Xi = xi, where xi is an observed
value. The conditional probability density function is given below

P (Xi1 = xi1|Xi = xi) =
(

xi

xi1

) (
µi1Pi1

µi0Pi0 + µi1Pi1

)xi1
(

µi0Pi0

µi0Pi0 + µi1Pi1

)xi0

,
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where xi1 = 0, 1, 2, ..., xi. Here, Xi1|Xi is a binomial distribution with size param-
eter Xi and probability event parameter

qi =
µi1Pi1

µi0Pi0 + µi1Pi1
=

RRi
Pi1
Pi0

1 + RRi
Pi1
Pi0

, (3)

where RRi = µi1/µi0 as defined previously. Under H0 : RR1 = RR2 = ... =
RRk = RR , qi can be rewritten into the form:

qi =
RRPi1

Pi0

1 + RRPi1
Pi0

, (4)

which depends only on the true risk ratio RR. Note that qi can easily estimated by
replacing RR by its Mantel-Haenszel estimator RRMH . The conditional probability
based on the binomial distribution together with qi in (4) is now used to derive the
new chi-square statistic for test of homogeneity. It is given by

χ2
pr =

k∑
i=1

(Xi1 −Xiq̂i)2

Xiq̂i(1− q̂i)
, (5)

where q̂i = (R̂RMHPi1/Pi0)/(1+R̂RMHPi1/Pi0) is the estimator for qi. This new
form of Q-statistic has an approximate chi-square distribution with k − 1 degrees of
freedom. This approximation underlies the same laws as the approximation of the
binomial distribution by the normal. We point out that k is the number of studies
excluding double-zero studies. In applications, the null hypothesis will be rejected if
the observed value of χ2

pr is greater than χ2
1−α,k−1, where χ2

1−α,k−1 is the (1− α)th
quantile of the chi-square distribution with k − 1 degrees of freedom. Note that the
approximation to the chi-square might be not good although this statistic is always
defined. Note that this new definition of a χ2−test on homogeneity would also allow
an easy incorporation into heterogeneity measures such as Higgins’ I2 which would

take the form in this setting I2 = χ2
pr−(k−1)

χ2
pr

. For more details on Higgins’ I2 see
Higgins and Thompson (2002) and Borenstein et al. (2009).

The proposed likelihood ratio test. Whereas the approach in the previous section is
still in the 2-stage framework, we now make use in a more direct way of the available
count data. Böhning et al. (2015) pointed out that the functional expression of qi can
be modelled by a logistic regression. This is taken advantage of in our paper. Suppose
that the log-risk ratio is defined by βi = log RRi. From (4), qi can be rewritten as
qi = exp(βi+log(Pi1/Pi0))

1+exp(βi+log(Pi1/Pi0))
, so that 1 − qi = 1/(1 + exp(βi + log(Pi1/Pi0))). As

the expression qi is similar to the standard logistic response function, simple logistic
regression analysis can be applied. The logistic regression model is then given as

log
(

qi

1− qi

)
= βi + log(Pi1/Pi0), (6)
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and PM0 will denote the logistic regression model with homogeneous effect βi = β
for all i = 1, 2, ..., k. Note that (6) is a model for the log-odds ratio, but still represents
the original risk ratio in which we are interested by taking the exponential of β.

It is pointed out here that the model (6) involves only the parameter of interest and
includes no further nuisance parameters. This is in contrast to working with the joint
Poisson distribution which would require inference on the baseline as well as on the
effect parameter (see also Böhning et al. (2015)) whereas here inference is reduced
to a univariate problem.

The estimate of the unknown parameter βi = β is performed using logistic re-
gression of the binomial count Xi1 in Xi with an offset log(Pi1/Pi0). Note that the
offset is a covariate with known coefficient that is used in the model to estimate the
response. Since PM0 is under the homogeneous treatment effect, it is denoted as the
null model. If the effect estimates differ between trials, the study factor is a potential
confounding factor. In that case, it is appropriate to consider βi as a random effect
and it is common to assume its distribution to be normal with mean β and variance
σ2

β , denoted as βi ∼ N(β, σ2
β). The random effects model under heterogeneity of the

log-risk ratio is denoted as PM1 or the full model, and its related parameter is fitted
using random effects logistic regression. Random effects models have been used for
some time in linear regression (see for example Baltagi (2013)) and generalized lin-
ear mixed models (Stroup, 2012), of which the random effects logistic regression is a
special case, have also become more popular.

The likelihood ratio test (LRT) involves a test statistic constructed by the max-
imised log likelihoods under the null model, LLr, and full model, LLf . Under the
general testing H0 : θ = θ0 and H1 : θ 6= θ0, where θ is a generic parameter and θ0

is a constant, the LRT is defined as LRT = −2(LLr −LLf ). Under the null model,
the distribution of this statistic converges to a chi-square distribution with ν degrees
of freedom, where ν is the difference between the number of parameters involved in
the associated models. Now we have two models, PM0 and PM1, related to the risk
ratio. The proposed LRT, used to test H0 : σ2

β = 0 and H1 : σ2
β > 0, is therefore

given by
LRTpr = −2(LL0 − LL1), (7)

where LL0 and LL1 are the log-likelihoods of PM0 and PM1, respectively. We need
to elaborate on this statistics and its distribution. Since in the heterogeneity case βi

is a random variable, heterogeneity is assessed by the variance σ2
β . H0 : σ2

β = 0
therefore means that there is no variation of the risk ratios between studies, which
is equivalent to H0 : RR1 = RR2 = ... = RRk. Furthermore, it is important to
note that the asymptotic null-distribution of the LRTpr is given by 0.5χ2

0 + 0.5χ2
1,

a mixture of a one-point mass at zero and a chi-square distribution with one degree
of freedom. This is because in this testing H0 (related to PM0) is on the boundary
of H1 (related to PM1). The distribution of the test, when testing H0 : σ2 = 0 and
H1 : σ2 > 0, has also been discussed elsewhere, for example Böhning et al. (2015),
Self and Liang (1987), Feng and McCulloch (1992) or Baey et al. (2019) for a more
general result. In this case, the theoretical cumulative distribution function (CDF) of
the proposed likelihood ratio statistic is derived as follows:

P (LRTpr ≤ x) =
1
2

+
1
2
P (χ2

1 ≤ x) = 1− α, (8)
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where x > 0 and α is the significance level. From the last two terms, we obtain
P (χ2

1 ≤ x) = 1 − 2α. In practice, H0 will be rejected if the observed LRTpr

is greater than χ2
1−2α,1. Finally, we emphasize again that the considerations on the

asymptotic distribution of the likelihood ratio will require large numbers of events
which might be critically in our case and need to be investigated in the following.

3 Empirical illustrations

The proposed methods were investigated using two real datasets from meta-analytic
studies in medical research. The cases involved both common and rare events. The
data for all examples discussed in this section are available in the web supplemental
material.

Catheter related bloodstream infection. A meta-analysis on the effect of anti-infective-
treated central venous catheters on catheter related bloodstream infection (CRBSI)
was obtained from Niël-Weise et al. (2008). The data comprised nine clinical tri-
als comparing the risk of CRBSI in patients with an anti-infective-treated catheter
(treatment) and a standard catheter. In this dataset, no trial had zero events. Since pa-
tients participated for different observation times, the person-times of central venous
catheterisation in days were also given. In the analysis, it was found that the MH risk
ratio estimate was 0.6602. The estimated risk ratios using logistic regression with
fixed and random effects models were 0.6586 and 0.6218, respectively. This suggests
the patients with an anti-infective-treated catheter had lower risk of CRBSI. The vari-
ance between the risk ratios was σ̂2

β = 0.1183. The I2 statistic was computed as
17.30%. This leaves the variability of the effect size unclear, making it difficult to de-
cide which model, fixed or random effects, should be used. To make the choice clear,
we calculated the statistics χ2

HOM , χ2
pr, and LRTpr. In logistic regression analysis,

the functions glm, and glmer contained in the lme4 package of R were used to fit
the models (Bates et al., 2015). The formulas were

glm(cbind(x1, xi-x1) ˜ 1 + offset(log(p1/p0)),
family = binomial("logit"))

for the fixed effect model PM0 and

glmer(cbind(x1, xi-x1) ˜ 1 + offset(log(p1/p0)) + (1|study),
family = binomial("logit"))

for the random effects model PM1. In this example, we reject H0 : RR1 = RR2 =
... = RRk, if the p-value for χ2

HOM is less than α = 0.05. H0 : σ2
β = 0 is rejected

if the p-value from LRTpr is less than 2α. The empirical test statistics and their p-
values are presented in Table 1. The results of this meta-analysis showed that the
risk ratios of CRBSI did not differ significantly across studies at the 0.05-level. The
proposed chi-square test produced the smallest p-value, and the likelihood ratio test
the largest.
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Myocardial infarction and cardiovascular mortality. This application used a meta-
analytic dataset on myocardial infarction (MI) events and cardiovascular (CV) deaths
in the Rosiglitazone and control arms obtained from Böhning et al. (2015), where
it was originally published by Nissen and Wolski (2010). The data of 56 studies
presented the number of events and the person-times in weeks. For MI dataset, it
included a large number of rare events, with 46% single-zero and 27% double-zero
trials. The MH estimated risk ratio was 1.2782 based upon all studies. Note that this is
similar to the estimate calculated by Böhning et al. (2015). Logistic regression with
fixed and random effects models produced the same estimated risk ratio of 1.2788
with the variance between the risk ratios σ̂2

β = 0. As a test of homogeneity, the
results are shown in Table 1. At the 0.05 significance level, H0 was not rejected. This
confirmed that no significant difference in risk ratios existed between studies for MI.
Furthermore, the I2 estimate was zero. Hence, as the 95% confidence interval for the
risk ratio is (1.0116, 1.6135), a significant effect homogeneous across trials can be
established. The results showed that no significant difference in risk ratios existed
between studies for CV.

4 Simulation studies

Simulation settings. Simulations were undertaken to study the performance of the
homogeneity tests for the risk ratio. Two sets of meta-analytic data were considered
under common events and rare events. The scope of the simulations was given as fol-
lows. For the common events cases, the number of events Xi1 and Xi0 were gener-
ated from Po(µ1Pi1) and Po(µ0Pi0), respectively. The incidence rates (µ1, µ0) were
set at (0.1,0.2), (0.4,0.4), and (0.6,0.3) for the population risk ratios θ = µ1/µ0 =
0.5, 1.0, and, 2.0, respectively. The person-times Pi0 and Pi1 were generated from
Po(ηi), where the mean ηi was sampled from N(100, 1), for a balanced design.
For the rare events cases, the number of events Xi1 and Xi0, and the person-times
Pi0 and Pi1 were generated from Poisson distributions with the same parameter val-
ues as in the previous settings. The event occurrence probabilities were given by
(µ1, µ0) = (0.01, 0.02), (0.02,0.02), and (0.02,0.01) for a small number of events.

In all cases, the number of studies were set as k = 20, 30, and 60, and the sig-
nificance levels at α = 0.01, 0.05, and 0.10. Using R (R Core Team, 2019), the
simulation runs were repeated 10,000 times for each case. If double-zero (DZ) trials
occurred they were removed before computing the chi-square tests and the degrees of
freedom were adjusted to k − 1− d, where d is the number of DZ studies. If single-
zero (SZ) trials occurred, the values were adjusted using a smoothing constant of 0.5.
The new likelihood ratio test was estimated using the full dataset based on logistic
regression of Xi1 conditional on Xi0 + Xi1.

The performance of the test was evaluated using type I error probability and
power of the test. The estimate of type I error is given by n(reject H0|H0)/10,000,
where n(reject H0|H0) refers to number that the test statistic falls within the critical
region if H0 is true. To investigate the power of the test, a number ci was generated
from uniform distributions on (1,2) and (1,3) for common events, and on (1,10) and
(1,20) for rare events, reflecting small to large deviations. When used to multiply µ1,
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this yields RRi = ciµ1/µ0 = ciθ, so that H0 becomes wrong. In a second approach,
we generated a random number βi from N(β, σ2

β) where β = log θ, the true log-
relative risk. It can be seen that the two different simulated datasets were under the
alternative hypothesis, but were investigated under a misspecified alternative for the
former approach and a correctly specified alternative for the latter. A second criterion,
the average power of the test is determined as n(reject H0|H1)/10,000. In conclusion,
the test statistic that has an appropriate type I error rate with more power of the test
is more efficient than the other.

Simulation results. For the common events setting the estimated type I error rates for
the proposed tests (χ2

pr and LRTpr) and the conventional chi-square test (χ2
HOM ) are

shown in Table 4 of the web supplement. It was found that χ2
pr produced type I errors

very close to the target significance level in all cases. The type I error of LRTpr was
close to the significance level when number of studies was greater than 30. Power of
all tests when simulated data under the alternative hypothesis using a normal distribu-
tion was greater than 0.95. This contrasted with the power of the tests when simulated
under the alternative using a uniform distribution given in Table 6 of the supplemen-
tal material. In the latter case, the tests showed low power for θ = 0.5 in ciθ and ci

ranging uniformly in the small interval although the newly proposed tests showed in
all cases larger power than the conventional chi-square test. Therefore, these results
suggest that the misspecified alternative has little effect on the relative power perfor-
mance of these tests in the common events setting. We conclude that the proposed
chi-square test is recommended for homogeneity testing in meta-analysis with com-
mon events, given its appropriate type I error rate and good test power.

In the rare cases setting, the number of events was small, and some studies had
zero values. When SZ or DZ trials were presented, LRTpr needed no requiring a
continuity correction. However, the zero count value needed adjustment for χ2

HOM

and this was also applied to χ2
pr to ensure comparability. Table 5 of the web supple-

ment presents the simulation results for the homogeneity tests. It was found that the
values of χ2

HOM were very low, while those of χ2
pr and LRTpr in the rare events

case did not differ much from those computed in the common events. However, all
tests had lower type I error rates and test power than the results for common events.
Only type I errors of χ2

pr and LRTpr were greater than zero, where those of the latter
were greater in general. LRTpr had the highest test power in all cases, while χ2

pr

performed better than χ2
HOM . Table 7 in the web-supplement shows the power per-

formance of the three tests under a uniform distribution as alternative. Both new tests
perform consistently better than χ2

HOM . However, in this case χ2
pr has consistently

larger power than LRTpr. Given the fact that χ2
pr and LRTpr performed similarly

in the normal alternative (with slight benefits to the LRTpr) it appears that χ2
pr is a

reasonable choice of testing homogeneity.
Evidently, the performance of χ2

HOM was unsatisfactory in terms of both type I
errors and power of the test. These results suggest that the use of the conventional chi-
square statistic should be avoided entirely in the presence of rare events, and applied
with caution in the non-rare event situation. When meta-analysis is concerned with
rare-event data, a 1-stage approach from the likelihood ratio statistic is possible and
recommended. As the results here indicate that using asymptotic distributions for the
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newly proposed tests might be inappropriate for rare events settings, we suggest to
base inference on a bootstrap approach which we outline in the next section.

We have also explored the behavior of the tests for common and rare events in
terms of the distribution, using simulation. Figure 1 compares the plots of empirical
cumulative distribution functions (CDFs) of the test statistics with the theoretical
CDFs. For common events (upper panel), all test statistics approach the asymptotic
reference distribution. For rare events (lower panel of Figure 1), the empirical CDF of
the conventional chi-square test obviously failed to track the theoretical, asymptotic
distribution. In contrast, a closer match was found between the empirical and the
theoretical distributions for the two proposed tests. This underlines that these novel
statistics perform well. Figure 2 illustrates the probability-probability (P-P) of the test
statistics. From the P-P plot for rare events (lower panel of Figure 2), the empirical
distribution of the proposed likelihood ratio statistic lies close to the reference line of
the distribution 0.5χ2

0 + 0.5χ2
1.

5 Bootstrap p-value

The simulation study for the rare events situation showed that also for the newly pro-
posed test estimated type I errors are below the significance level. To address this
shortcoming and improve the power of the test, we suggest to consider a bootstrap
correction and outline this here for the p-value. Bootstrap tests are used now for some
time (see for example Sinha (2009)) and out proposed procedure follows this tradi-
tion. In more detail, the bootstrap algorithm below is used to construct an estimate
of the bootstrap p-value, relating to the true underlying null-distribution. However, it
can also be used to estimate the underlying null-distribution itself. The procedure of
parametric bootstrap is given as follows.

Algorithm 1

1. Draw a sample of size k with replacement from the original sample of k studies
(excluding the DZ studies) leading to r∗i = Pi1/Pi0 and x∗i = x∗i1 + x∗i0, for
i = 1, 2, ..., k

2. Compute q∗i = r∗i R̂RMH/(1 + r∗i R̂RMH)
3. Sample X∗

i1 from a binomial distribution with size x∗i and event parameter q∗i
4. Compute R̂R

∗
MH on the basis of the sample X∗

i1, x∗i , and r∗i
5. Compute q∗∗i = r∗i R̂R

∗
MH/(1 + r∗i R̂R

∗
MH)

6. Compute a bootstrap sample

Q∗ =
k∑

i=1

(X∗
i1 − x∗i q̂

∗∗
i )2

x∗i q̂
∗∗
i (1− q̂∗∗i )

. (9)

The procedure was repeated B = 50, 000 times, so that a bootstrap sample
Q∗

1, Q
∗
2, ..., Q

∗
B is obtained. We then computed the bootstrap p-value by comparing
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Q∗
b , for b = 1, 2, ..., B, to the observed chi-square statistic for measuring heterogene-

ity

Q =
k∑

i=1

(Xi1 −Xiq̂i)2

Xiq̂i(1− q̂i)
. (10)

The bootstrap p-value is given as n(Q∗
b |Q∗

b ≥ Q)/B, n(x) is defined to be the number
of times x is true.

We applied these concepts to the rare event data examples: myocardial infarction,
cardiovascular mortality, catheter related bloodstream infection and an additional data
set on perinatal death (the number of deaths induced by routine and selective induc-
tion of pregnancies that go beyond term obtained from Crowley (2000)). We have
added the data set on perinatal deaths to provide a most extreme example of rare
event meta-analytic data. All these data are given in the supplemental material.

For the perinatal mortality meta-analysis, we experienced the problem that a full
set of X∗

i1 generated in step 3 of Algorithm 1 was entirely consisting out of zero
counts. Hence the recalculation of R̂R

∗
MH was not feasible. In this case, we used a

modification of Algorithm 1 as follows.

Algorithm 2

1. Draw a sample of size k with replacement from the original sample of k studies
(excluding the DZ studies) leading to r∗i = Pi1/Pi0 and x∗i = x∗i1 + x∗i0, for
i = 1, 2, ..., k

2. Compute q∗i = r∗i R̂RMH/(1 + r∗i R̂RMH)
3. Sample X∗

i1 from a binomial distribution with size x∗i and event parameter q∗i
4. Compute a bootstrap sample

Q∗ =
k∑

i=1

(X∗
i1 − x∗i q̂

∗
i )2

x∗i q̂
∗
i (1− q̂∗i )

. (11)

The p-values for both bootstrap algorithms as well as the p-value using the chi-
square approximation are given in Table 2. From the rare event data, the observed
values of the chi-square statistic were different from those of the mean of all bootstrap
Q statistics, as the former statistic was often much lower. It can be concluded that the
approximate chi-square statistic averted from the null distribution for the rare event
cases. It is interesting to note that mean of the bootstrapped Q statistics was close to
what would have been expected under a chi-square distribution. Note that Algorithm
1 gets close to the k−1 expectation in the mean as it mimics estimating the risk ratio.
As Algorithm 2 is unable to mimic this we see that the expectation is closer to k.

Furthermore, bootstrap p-values were different from p-values using the approxi-
mate χ2

k−1 distribution in all examples. So, the bootstrap value should be used. How-
ever, the chi-square statistic can be used in the common event data as the simulation
showed. Note that, since the example on perinatal death had many zero studies on the
treatment arm leading to all zero samples on X∗

i1 and R̂R
∗
MH cannot be computed,

only Algorithm 2 was used. In all other cases, the bootstrap p-values obtained from
these two algorithms were not substantially different.
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6 Discussion and conclusions

In this paper, we have proposed two statistics for testing of homogeneity as alterna-
tives to the conventional Q-statistic which entirely collapses in meta-analysis of rare
event studies. Both use information from the distribution of the number of events in
an intervention group Xi1 given the total number of events Xi. The advantages of
both tests are that they can be applied even if the trials have SZ arms, and that it
requires no specialized software in computation. However, when confronted with a
DZ event we need to either exclude the trial or add a continuity correction, as in the
formula the total number Xi is not allowed to be zero. This places a limitation on
the proposed tests as DZ-studies are excluded. However, it is shown in Böhning and
Sangnawakij (2020) that this is no loss of information with respect to the risk ratio.
The difference between the two proposed test statistics lies in the assumption of nor-
mality of the random effects distribution whereas this is not needed for the former.
Future research will further investigate the impact of this assumption.

The performance of the proposed tests was compared with that of the conven-
tional chi-square test using simulations. For common events, our chi-square test per-
formed overwhelmingly better than the traditional test, producing appropriate type I
error rates and demonstrating very high test power in all cases. The performance of
the proposed likelihood ratio test was similar to that of the traditional chi-square test.
Both tests had type I error lower than the nominal significance level, while retaining
satisfactory test power. In the case of rare events, our likelihood ratio test was demon-
strated to outperform the competing tests. The conventional chi-square test had very
low power. It is therefore not recommended for use in such cases. The newly pro-
posed chi-square test can be always formulated in the rare events setting, but does not
reach the significance level. As an alternative method, the bootstrap is recommended
for these cases. If there remain concerns of the validity of the approximation for a
given rare events data set, we recommend to use the suggested bootstrap approxima-
tion of the true null distribution. From these results, and the output of the simulations,
we conclude that our tests for homogeneity can be applied in meta-analyses based on
count outcomes with rare events.

Finally, we consider the meta-analysis of studies with DZ trials and end the dis-
cussion with a cautionary note. When a continuity correction of 0.5 per arm is applied
(which we do not recommend but let us assume we want to do this), the study-specific
risk ratio is given by R̂Ri = (0.5/Pi1)/(0.5/Pi0) = Pi0/Pi1, which is dependent on
the person-times in the arms only. This seems an unreasonable as an estimate of the
risk ratio. A question arises how to choose the continuity correction in this case. We
therefore introduce the following idea. Let ci1 and ci0 be the smoothing constants of
study i in the treatment and control arms, respectively, with ci1 + ci0 = 1. Suppose
that R̂Ri = 1 in a DZ trial, as there is no evidence for either side. To satisfy this
condition, it can be written as 1 = (ci1/Pi1)/(ci0/Pi0) or (1 − ci0)/Pi1 = ci0/Pi0.
Thus, the smoothing constant according to the weight of the person-time is given as
ci0 = Pi0/Pi for the control arm, where Pi = Pi1 + Pi0. Clearly, ci = 0.5 is applied
if the trial is balanced. We suggest this only for settings where the inclusion of DZ
trials is required, or otherwise wished to be included. From our perspective the exclu-
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sion on inclusion of DZ trials, in contrast to SZ trials, will not change the evidence
neither for the effect nor for its heterogeneity.
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 Fig. 1 The plots of theoretical (in black) and empirical CDFs for the test statistics (χ2

HOM , χ2
pr , and

LRTpr) using simulations when k = 30 and risk ratio θ = 0.5.
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Fig. 2 The P-P plots for the test statistics (χ2
HOM , χ2

pr , and LRTpr) using simulations when k = 30 and
risk ratio θ = 0.5.
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