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Abstract: In this paper, we propose a switching control mechanism for the stabilization of a DC-DC Zeta converter operating 

in continuous conduction mode.  The switching control algorithm is based on a control Lyapunov function and extends the 

method proposed for a two-dimensional boost converter model presented in the literature to a four-dimensional Zeta 

converter model.  The local asymptotical stability of the operating point is established using LaSalle's invariance principle for 

differential inclusions. By applying spatial regularization, a modified switching control algorithm reduces the switching 

frequency and keeps the state-trajectory around a neighbourhood of the operating point. The method works well even if the 

operation point changes significantly and it is valid for both step-up and step-down operations.  Furthermore, by 

approximating the state-trajectory near the operating point, we obtain an explicit relation between the modified switching 

algorithm and the switching frequency, which allows us to choose systematically the desired switching frequency for the 

converter to operate.  The effectiveness of the proposed method is illustrated with simulation results. 

 

1. Introduction 

In energy harvesting systems, DC-DC converters are 

part of the power management system. Because of the 

uncertain nature of the ambient energy, for example, low or 

high irradiance of sun and fluctuation of the wind speed, the 

voltage generated by the energy harvester, which is connected 

to the input of the DC-DC converter, can be higher or lower 

than the output voltage. For this reason, a fourth-order DC-DC 

converter is a good candidate to be deployed, since it has step-

up and step-down capability. There are a few topologies 

available, and the Zeta topology is selected for our research 

due to two reasons: 1) positive output voltage, and low output 

voltage ripple [3], 2) natural DC input-to-output voltage 

isolation [4].  
To control a DC-DC converter, the conventional fixed-

frequency, average-based system control methods are 
commonly deployed such as proportional integral (PI) [5–9], 
optimal [11–16], sliding-mode [17, 18], fuzzy [19, 20], model 
predictive [21, 22], adaptive [23], and fuzzy-neural [24], to 
name a few. The PI control produces fast output voltage 
regulation, however, it suffers from high control duty-ratio 
effort [9] that can lead to PWM circuitry problem [12]. The 
conventional optimal linear quadratic regulator (LQR) control 
produces optimal compensation with minimal control effort, 
but lack of robustness if the parameter is uncertain [14]. While 
LMI-LQR control is robust, it’s control duty-ratio signal has 
quite a large ripple [15], which may produce nonlinear effect 
if the ripple exceeded 20% [10]. As for the sliding-mode, 
fuzzy, model predictive, adaptive, and fuzzy-neural, because 
they use the so-called small-signal average model, when the 
duty ratio largely deviates from the nominal one, the small-
signal average model is not a good approximation. As a result, 
the controller design is no longer valid, which in turn 
jeopardize the system performance. On the other hand, non-
average-based system control, typically known as hybrid 
control, is a variable switching frequency type of control 

where the switching frequency is initially low and it becomes 
arbitrarily fast at operating point. The hybrid control is more 
robust than average-based system control [2], due to the 
former’s ability to execute the switching mechanism online. 
Hybrid control has been implemented for the stabilization of 
the DC-DC converter [25–32]. In [25–28], the authors propose 
a switching algorithm by approximating the state-trajectory 
and restricting the state-trajectory within a limits specified by 
the guard conditions. Even though the output voltage 
regulation is achieved and demonstrated, no theoretical work 
is presented to proof the stability of the system. In [29-32], the 
authors propose a Lyapunov-based hybrid control to stabilize 
the DC-DC converters. The study [29] basically proposes the 
switching rule that assigns the mode decreasing the value of 
the Lyapunov function most. When the trajectory reaches the 
switching boundary, it evolves as a sliding mode solution, 
which means that the switching interval becomes 
infinitesimally small. In [30, 31], the authors use sampled-data 
control to avoid sliding mode solutions. Though switching 
frequency is controlled by the sampling period, it tends to be 
small because the method is based on sufficient conditions. 
Hence the trajectory is close to the sliding solution. Though 
our paper uses the same switching mechanism as in [32], the 
stability analysis is fundamentally different. A second-order 
boost converter model in [32] can be analyzed by the standard 
Lyapunov approach by showing the decrease of the Lyapunov 
function along the trajectory. The derivative along the 
trajectory of the fourth-order Zeta converter model becomes 
zero even if the point is not the operating point. Hence 
LaSalle’s invariance principle proved for this class of 
differential inclusion should be established. The preliminary 
and much shorter version of our work were presented in the 
conference proceedings [1,2]. 

The remainder of the paper is organized as follows. In 

Section 2, we establish a switching control mechanism for a 

two-mode system. The two-mode system is instrumental to 

model the DC-DC zeta converter operating in continuous 

conduction mode (CCM). In Section 3, we analyze the 
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stability of the switching system in Section 2, and apply it to 

the Zeta converter. In Section 4, the switching control 

mechanism discussed in Section 2 is modified to limit the 

switching frequency of the Zeta converter. In addition, by 

using linear-line-approximation of the trajectory, we show 

how to decide the switching frequency. Simulation results to 

show the effectiveness of our proposed method are presented 

in Section 5. Lastly, in Section 6, we conclude our work and 

state the plan for future work. 

Notation: ℝ denote the set of real numbers. For  ∈ ℝ, 

ℝ"# , ℝ$# , ℝ%# , and ℝ&#  denote the set of real numbers 

larger, smaller, larger than or equal to, and smaller than or 

equal to  , respectively. The notation conv  denotes the 

convex hull of a set. For a function ' : ℝ( → ℝ, '*+ denotes 

the inverse image of '. For a singleton {,},  ∈ ℝ, we use the 

simplified notation, #$%(c) = #$% ({c}).  A set valued map & 

is denoted as &: ℝ' ⇝ ℝ), where for * ∈ ℝ', &(*) ⊂ ℝ). 

2. Switching Control of Two-mode System  

Because transistors and diodes exhibit on-off 

behaviours, many converters can be modeled as multi-mode 

systems, where each mode is described as a linear state-space 

model.  A two-mode system can be used to model the 

continuous-conduction mode of any DC-DC converters. In 

this section, we introduce a Lyapunov-function-based 

switching control strategy and motivate its stability analysis. 

Two linear systems of the same state dimension are 

given by 
./

.0
= 1%* + 3%4,     (1) 

./

.0
= 15* + 354,     (2) 

 

where *(6) ∈ ℝ' is the state and 4(6) ∈ ℝ is the input. Fix 

47 ∈ ℝ and 8 ∈ ℝ. Assume that 

 

81% + (1 − 8)15 

 

is invertible. Define  

 

*∗ = −( 811 + (1 − 8)12)−1( 831 + (1 − 8)32)40. (3) 

 

Note that we do not assume the stability nor the non-

singularity of the matrices 1% and 15. Let AB (C = 1, 2) denote 

the set of stationary points of the systems (1) and (2); namely 

 

A% = {*: 1%* + 3%47 = 0 }, A5 = {*: 15* + 3547 = 0 }. (4) 

 

If 1B  is non-singular, AB  is a singleton; otherwise it may be 

empty or infinite. The following proposition is easy to derive, 

but useful in the subsequent discussions. 

 

Proposition 1. The point *∗ is given by (3) if and only if it 

satisfies the following equation: 

 

8(1%*∗ + 3%47) = −(1 − 8)(15*∗ + 3547).       (5) 

 

Furthermore, 1B*
∗ + 3B47 ≠ 0 (C = 1, 2) if and only if A% ∩

A5 = ∅. 

 

Proof. Since 

 
( ��� + (1 − �)��)�∗ = ( �"� + (1 − �)"�)#$, 

 

the equivalence of (3) and (5) is immediate. If �# ∈ '� ∩ '�, 

then 

 

�(���# + "�#$) = −(1 − �)(���# + "�#$) = 0, 

 

which implies �# = �∗  by the non-singularity of                   

��� + (1 − �)�� . Conversely, if ���∗ + "�#$ = 0 , then 

���∗ + "�#$ = 0 by (5). Thus, �∗ ∈ '� ∩ '�.        ∎ 

 

We are interested in a switching control law that drives the 

state of the switching system with the modes (1) and (2) to �∗ 

under #(-) ≡ #$ . For this, define a candidate Lyapunov 

function 

/(�) = (� − �∗)23(� − �∗),           (6) 

 

where 3 is a positive definite matrix. Because 3 > 0, there 

exist 4� > 0 and  4� > 0 such that 

 

4�‖� − �∗‖� ≤ /(�) ≤ 4�‖� − �∗‖�,   (7) 

 

holds. The derivatives of /(�) along the trajectories of (1) 

and (2) are 

 

7�(�) ≔
9:

9;
(��� + "�#$)          (8) 

           = (� − �∗)2(3�� + ��
23)(� − �∗) + 2(���∗ +

"�#$)23(� − �∗), 

 

7�(�) ≔
9:

9;
(��� + "�#$)          (9) 

           = (� − �∗)2(3�� + ��
23)(� − �∗) + 2(���∗ +

"�#$)23(� − �∗), 

 

respectively. 

 

Proposition 2. Suppose that 3�� + ��
23 ≤ 0  and 3�� +

��
23 ≤ 0. Then, 

 

7�
?�(ℝA$) ⊂ 7�

?�(ℝC$),   7�
?�(ℝA$) ⊂ 7�

?�(ℝC$),     (10) 

 

7�
?�(0) ∩ 7�

?�(0) = {�: � − �∗ ∈ ker  (3�� + ��
23) ∩

ker  (3�� + ��
23) ∩ ker  (���∗ +

"�#$)23}.       (11) 

 

The proof is based on the following observation. 

 

Lemma 1. Let E� ≤ 0  and E� ≤ 0  be F × F  symmetric 

matrices. Let G� ∈ ℝH  and G� ∈ ℝH  satisfy  

�G� + (1 − �)G� = 0 for some 0 < � < 1. Define  

 

J�(�) ≔ �2E�� + G�
2�, J�(�) ≔ �2E�� + G�

2�. 

 

Then 

 

J�
?�(ℝC$) ⊂ J�

?�(ℝA$), J�
?�(ℝC$) ⊂ J�

?�(ℝA$), 

J�
?�(0) ∩ J�

?�(0) = ker E� ∩ ker E� ∩ ker G�
2 . 

 

Proof. If J�(�) > 0, then 

 

   0 < �J�(�) = ��2E�� + �G�
2� 

       ≤ �G�
2� = −(1 − �)G�

2� 

 ≤ −(1 − �)�2E�� − (1 − �)G�
2� = −(1 − �)J�(�) 
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holds. Thus, � (!) < 0 . Because �"
#"(ℝ%&) = ℝ' ∖

 �"
#"(ℝ,&)  and � 

#"(ℝ-&) = ℝ' ∖ � 
#"(ℝ.&) , � 

#"(ℝ-&) ⊂

�"
#"(ℝ%&). By interchanging �"  and � , in the argument, it 

follows that �"
#"(ℝ-&) ⊂ � 

#"(ℝ%&). If �"(!) = � (!) = 0, 

then 

 

0 = 1�"(!) = 1!23"! + 15"
2! 

   ≤ 15"
2! = −(1 − 1)5 

2! 

  ≤ −(1 − 1)!23 ! − (1 − 1)5 
2! = −(1 − 1)� (!) = 0. 

 

Hence all the inequalities hold as equalities. This implies 

5"
2! = 0 , !23"! = 0 , and !23 ! = 0 , which means ! ∈

ker 3" ∩ ker 3 ∩ ker 5"
2 . Conversely, if ! ∈ ker 3" ∩

ker 3 ∩ ker 5"
2 , then ! ∈ ker 5 

2  and �"(!) = � (!) = 0.∎ 

 

Proof of Proposition 2. Define 

 

3" ≔ ?@" + @"
2?,   3 ≔ ?@ + @ 

2?, 

5" ≔ 2?(@"!∗ + C"D&),   5 ≔ 2?(@ !∗ + C D&), 

�"(!) ≔ E"(! + !∗),    � (!) ≔ E (! + !∗). 

 

Notice that the assumptions of Lemma 1 are satisfied since 

(5) holds. Then the proof is immediate from Lemma 1.           ∎ 

 

Based on Proposition 2, we propose the following switching 

control mechanism. 

 

Switching Mechanism A 

· If the system is operating in mode 1 and reaches � ! (0), then it switches to mode 2. 

· If the system is operating in mode 2 and reaches �"! (0), then it switches to mode 1. 

 

Remark 1. Switching Mechanism A is initially proposed for 

a boost converter model in [32]. Proposition 2 clarifies a 

condition that ensures that Switching Mechanism A is well 

defined. 

 

To analyze the stability of the switching control law, we 

consider the differential inclusion 

 #$#% ∈ '(*),         (12) 

 

'(*) ≔ , {- * + / 12} if * ∈ 4 ,{-"* + /"12} if * ∈ 4",conv {- * + / 12, -"* + /"12} if * ∈ 42, 
 

where 

 4 = {*: � ! (ℝ72) ∩ �"! (ℝ92) = � ! (ℝ72)}, 4" = {*: � ! (ℝ92) ∩ �"! (ℝ72) = �"! (ℝ72)}, 

  42 = {*: � ! (ℝ;2) ∩ �"! (ℝ;2)}. 

 

The set-valued map ': ℝ< ⇝ ℝ< is upper semi-continuous, 

and its values are bounded closed convex sets. Solutions of 

(12) include solutions of (1), (2) with the switching control 

mechanism. We shall analyze the stability of the operating 

point *∗ of the differential inclusion (12). 

 

Remark 2. The switching mechanism that selects the mode 

defined by 

arg min{�@(*): A = 1,2} 

 

is in line with the method used in [29], except that [29] 

assumes that 

 D(E- + (1 − E)-") + (E- + (1 − E)-")GD < 0 

 

for some  ∈ (0, 1). This mechanism does not stabilize the 

operating point asymptotically when we only assume  !" +!"# ≤ 0  and  !% + !%# ≤ 0 . The following simple 

example 

 !" = &0 00 −1(, )" = &00(, !% = & 0 1−1 −1(,  )" = &00(,  = &1 00 1( 
 

results in the differential inclusion 

 *,*- ∈ .(,) 

 .(,) = 3 {1}   {1,2}    if  [0  1]  , ≠ 0,   if  [0  1]  , = 0. 
 

If [0 1],9 = 0 , then the differential inclusion has the 

unique solution ,(-) ≡ ,9 , which shows that it is not 

asymptotically stable. Note that this is not a counterexample 

of [29, Theorem 2]. Nevertheless, the example shows that the 

distinction of positive definiteness and positive semi-

definiteness is meaningful. 

3. Stability of Switching System 

In this section, we analyze the stability of the 

switching mechanism proposed in the previous section and 

apply the method to a DC-DC Zeta converter operating in the 

continuous conduction mode (CCM). 

 

3.1. Stability Analysis 
 

Consider the differential inclusion (12) and the 

function ;(,) in (6). Define ;̇(,): ℝ@ ⇝ ℝ by 

 ;̇(,) = BCBD .(,) ≔ FBCBD G: G ∈ .(,)H. 

 

It is easy to verify that 

 

;̇(,) = I {J"(,)} if , ∈ K",{J%(,)} if , ∈ K%,conv {J"(,), J%(,)} if , ∈ K9.  (13) 

 

The inverse image ;̇L"(M), where M ⊂ ℝ, is defined by 

 ;̇L"(M) ≔ OP ∈ ℝ@: ;̇(P) ∩ M ≠ ∅S. 

 

When M = {T}, we write ;̇L"(T) ≔ ;̇L"({T}). 

 

Proposition 3. Consider the differential inclusion (12) and 

the Lyapunov function (6). Then, 

 

�̇��(0) = ��
��(0) ∪ � 

��(0). 
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Proof. If ! ∈ ��
��(0) , then �̇(!) = conv {0, � (!)} ∋ 0 . 

Similarly, we have 0 ∈ �̇(!)  if ! ∈ � 
��(0) . Hence 

�̇��(0) ⊃ ��
��(0) ∪ � 

��(0). Conversely, if 0 ∈ �̇(!), then                      

! ∈ ��
��(ℝ'*) ∩ � 

��(ℝ'*)  and 0 ∈ conv {��(!), � (!)} . 

Because ��(!) ≤ 0  and � (!) ≤ 0 , this implies either 

��(!) = 0 or � (!) = 0.           ∎ 

 

Proposition 4. Let !∗, 1�, and 1  be defined by (3) and (4). 

Then {!∗} ∪ 1� ⊂ � 
��(0) hold. 

 

Proof. We have already shown that !∗ ∈ ��
��(0) ∩ � 

��(0) in 

Proposition 2. If ! ∈ 1�, then ��(!) = 0 by (8). Similarly, if 

! ∈ 1 , then � (!) = 0.           ∎ 

 

Proposition 5. Let !# ∈ {!∗} ∪ 1� ∪ 1 . Then, the 

differential inclusion (12) has a stationary solution 

4(5, !#) ≡ !#. 

 

Proof. If !# ∈ 1� , then ��(!#) = 0 by Proposition 4. Thus 

7(!#) = conv {0, 8 !∗� + : ;*} ∋ 0 . Similarly, !# ∈ 1  

implies 0 ∈ 7(!#). By Proposition 4, ��(!∗) = � (!∗) = 0. 

Consequently 7(!∗) = conv {8�!∗ + :�;*, 8 !∗ + : ;*} ∋

<(8�!∗ + :�;*) + (1 − �)( !"
∗ + $!%&) = 0.              ∎ 

 

By Proposition 5, the operation point "∗  is not globally 

asymptotically stable if *, ∪ *! ≠ ∅. We shall study local 

asymptotic stability of "∗. The next result shows that "∗ is 

stable in this sense. 

 

Theorem 1. Suppose that 1 , +  ,
21 ≤ 0  and 1 ! +

 !
21 ≤ 0 hold. If 4,

5,(0) ∩ 4!
5,(0) contains no solution of 

(12) except for "(7) ≡ "∗, then "∗ is locally asymptotically 

stable. 

 

The proof of Theorem 1 hinges on a couple of Lemmas. The 

first one states that the operating point "∗ is stable. 

 

Lemma 2. Suppose that 1 , +  ,
21 ≤ 0 and 1 ! +  !

21 ≤

0 hold. Then "∗ is stable. 

 

Proof. Note that the set-valued function 9(")  in (12) is 

defined for all " ∈ ℝ< from (10) in Proposition 2. Let > > 0, 

and choose @ =
ABC

� 
> 0. If ‖"# − "∗‖& < ', it follows from 

(7) that (("#) ≤ ,&' = ,-.. Along the trajectory /(1, "#) of 

(12), it holds that 

 
3

34
((/(1, "#)) = (̇(/(1, "#)) ⊂ ℝ8#, 

 

by (13), and hence ((/(1, "#)) ≤ (("#) holds. This implies 

that ‖/(1, "#) − "∗‖& ≤ ., and therefore "∗ is stable.        ∎ 

 

One of the important observations is the property of the 

limiting set of a solution of a differential inclusion with an 

upper semi-continuous set-valued map. Let 

 
3:

34
∈ ?("),         (14) 

 

be a differential inclusion where ?: ℝB ⇝ ℝB is upper semi-

continuous and its values are bounded closed convex sets. Let 

/(1, "#) be a solution of (14). A point D ∈ ℝB  is called a 

limit point of  /(1, "#) if there is a sequence {1E} in [0, ∞) 

such that 1E → ∞ and  

 

lim
E→H

/(1E, "#) = D. 

 

The set of all limit points of /(1, "#) is called the limit set of 

/(1, "#) and is denoted as Ω. 

 

Lemma 3. Consider the differential inclusion (14). Suppose 

that a solution /(1, "#) is bounded. Then the limit set Ω is 

nonempty, closed, and bounded. Furthermore, if D ∈ Ω, then 

there exists a solution of /(1, D) of (14) with initial condition 

"(0) = D satisfying /(1, D) ∈ Ω for all 1 ≥ 0. 

 

Proof. The first half is elementary, see for example [33, 

Lemma 5.30]. To prove the second half, let {1E}  be a 

sequence in [0, ∞)  such that 1E → ∞  and DE ≔ /(1E , "#) 

tends to D ∈ Ω . Let L > 0  be fixed, and define ME(1) ≔
/(1 + 1E, "#) for 1 ∈ [0, L]. Note that ME(1) is a solution of 

(14) with the initial condition "(0) = DE . Using a similar 

argument as in [34, p.13, Theorem 4] and [34, p.104, 

Theorem 1], one can prove there exists M and a convergent 

subsequence of  {ME} where limit is M, and M(1) = /(1, D) 

is a solution of the differential inclusion (14) with the initial 

condition "(0) = D. Then any point on M(1) is a limit point 

of /(1, "#) and hence /(1, D) ∈ Ω for 0 ≤ 1 ≤ L. Since this 

is true for any L > 0, this concludes the proof.        ∎ 

 

Lemma 4. There exists O > 0 such that for every D in the set 

PQR-
S-(0) ∖ R&

S-(0)U ∪ QR&
S-(0) ∖ R-

S-(0)UW ∩ {": ((") <
O} and every solution /(1, D) of (12), there exists Y > 0 such 

that (Q/(Y, D)U < ((D). 

 

Proof. Define  

Ṙ-(") ≔ Z\^(:)

Z:
(_-" + -̀a#), 

 

and recall from (9) that 

 
Z\^(:)

Z:
= 2((" − "∗)c(d_- + _-

cd) + (_-"∗ + -̀a#)cd). 

 

It follows that Ṙ-(") is a continuous function; moreover, 

 

Ṙ-("∗) = (_-"∗ + -̀a#)cd(_-"∗ + -̀a#) > 0, 

 

and from the continuity of Ṙ-(") , Ṙ-(") > 0  in some 

neighborhood of "∗, say e = {": ((") < O} for some O > 0. 

Let D ∈ QR-
S-(0) ∖ R&

S-(0)U ∩ e . Since R-(D) = 0 , 

R&(D) < 0  by (10). We can take Y > 0  small enough, so 

R&Q/(Y, D)U < 0  for all 1 ∈ [0, Y] . If (Q/(1, D)U = ((D) 

for all 1 ∈ [0, Y], then 

 
3

34
((/(1, D)) = Zf

Z:

3

34
/(1, D) = 0,              (15) 

 

for almost all 1. Let g = P1: R-Q/(Y, D)U > 0W. Note that g 

is an open set. If 1 ∈ g , then by (12) ?Q/(Y, D)U =

{_&/(Y, D) + `&a#} , and hence 
Zf

Z:

3

34
/(1, D) =

R&Q/(Y, D)U < 0 . Hence g = ∅ . Consequently,  

?Q/(Y, D)U = conv {_-/(Y, D) + -̀a#, _&/(Y, D) +
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`&a#} , but 
Zf

Z:
_&/(Y, D) + `&a# = R&Q/(Y, D)U < 0 

implies 
3

34
/(Y, D) = _-/(Y, D) + -̀a#  for almost all 1 . 

Hence /(Y, D) is the solution of the differential equation 

 
3:

34
= _-" + -̀a#,   "(0) = D,   0 ≤ 1 ≤ Y, 

 

((/(1, D)) is twice continuously differentiable, and 

 
3 

34 ((/(1, D)) = Ṙ-(/(1, D)) > 0, 1 ∈ [0, Y]. 
 

This implies that RQ/(1, D)U > RQ/(0, D)U = 0 for some 1. 

But g = ∅, and this is not possible. Hence, ((/(Y, D)) ≤
(Q/(1, D)U < ((D)  for some 1 ∈ [0, Y] . The proof for         

D ∈ QR&
S-(0) ∖ R-

S-(0)U ∩ e is similar.         ∎ 

 

Proof of Theorem 1. Since /(1, "#) is bounded, its limit set Ω 

is an invariant set by Lemma 3. Since ((") is bounded from 

below and (Q/(1, "#)U is monotonically non-increasing for 

every sequence {1E}  such that 1E → ∞  as p → ∞ , , ≔
lim
E→H

(Q/(1E, "#)U  exists. If D ∈ Ω , then there exists a 

sequence {1E}  such that D = lim /(1E, "#) . This means 

((D) = ((lim /(1E , "#)) = lim (Q/(1E, "#)U = , . Because 

Ω  is an invariant set, 0 ∈ ((D)  for any D ∈ Ω . From 

Proposition 3, D ∈ R-
S-(0) ∪ R&

S-(0). Take O > 0 and e =
{": ((") < O} as in Lemma 4. If D ∈ PQR-

S-(0) ∖ R&
S-(0)U ∪

QR&
S-(0) ∖ R-

S-(0)UW ∩ e , then D  is not a limit point by 

Lemma 4. Thus, D ∈ R-
S-(0) ∩ R&

S-(0). Hence, if (("#) <
O, then /(1, "#) does not have a limit point except "∗.        ∎ 

 

Remark 3. Theorem 1 is a consequence of LaSalle’s 

invariance principle proved for the differential inclusion (12). 

This is a useful tool to prove the stability of the switching 

control applied to a DC-DC Zeta converter in Section 3.2. 

 

 
Fig. 1. A DC-DC Zeta converter circuit. 

 

 
Fig. 2. Equivalent circuit when the switch is closed. 

 

 
Fig. 3. Equivalent circuit when the switch is open. 

3.2. DC-DC Zeta Converter Operating in 
Continuous Conduction Mode 
 

Consider the DC-DC Zeta converter circuit shown in 

Fig. 1. The circuit consists of two inductors �� and  !, two 

capacitors "� and "!, an ideal diode # and "!, a DC voltage 

source $%, a resistive load &, and an ideal switch '. Denote 

the currents of  �  and  !  as ()�  and ()! , the voltages of "� 

and "! as $*� and $*!, respectively. 

The converter is in continuous conduction mode 

(CCM) if the diode # is open when the switch ' is on and it 

is shorted when the switch is off. When the switch is closed 

(mode 1), the converter is equivalent to the circuit shown in 

Fig. 2, and when the switch is open (mode 2), the converter is 

equivalent to the circuit shown in Fig. 3. With the state vector + = [()� ()! $*� $*!]- and the input . = $%, the matrices for 

the two modes are given by 

 

/� =
⎣⎢⎢
⎢⎢⎡
0 0 0 00 0 �)4 − �)40 − �*6 0 00 �*4 0 − �7*4⎦⎥⎥

⎥⎥⎤,    ;� =
⎣⎢⎢
⎢⎡ �)6�)400⎦⎥⎥

⎥⎤
, 

/! =
⎣⎢⎢
⎢⎢⎢
⎡0 0 − �)6 00 0 0 − �)4�*6 0 0 00 �*4 0 − �7*4⎦⎥⎥

⎥⎥⎥
⎤
,    ;! = <0000>.        (16)   

 

If .? > 0, then the mode 1 has no stationary solution, 

and the mode 2 has a unique stationary solution                    +∗! = [0 0 0 0]-. 

 

For B ∈ (0,1), 

 +∗ = −( B/1 + (1 − B)/2)−1( B;1 + (1 − B);2).0 

=
⎣⎢⎢
⎢⎢⎢
⎡ 0 0 − �JK)6 00 0 K)4 − �)4�JK*6 − K*6 0 00 �*4 0 − �7*4⎦⎥⎥

⎥⎥⎥
⎤

⎣⎢
⎢⎢
⎡ K)6K)400⎦⎥

⎥⎥
⎤ .?  

=
⎣⎢
⎢⎢
⎡ LM47LNLM7$O$O ⎦⎥

⎥⎥
⎤ =: < ()�∗()!∗$*�∗$*!∗ >,        (17) 

where $% ≔ .? and $O ≔ KRS�JK. Based on the energy stored in 

the Zeta converter, define 

 

T ≔
⎣⎢
⎢⎢
⎢⎡)6! 0 0 00 )4! 0 00 0 *6! 00 0 0 *4! ⎦⎥

⎥⎥
⎥⎤
.     (18) 
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Then  

     T/� + /�-T = ⎣⎢⎢
⎡0 0 0 00 0 0 00 0 0 00 0 0 − �7⎦⎥⎥

⎤ ≤ 0, 

     T/! + /!-T = ⎣⎢⎢
⎡0 0 0 00 0 0 00 0 0 00 0 0 − �7⎦⎥⎥

⎤ ≤ 0, 

           (/�+∗ + ;�.?)-T = VLN! LN! − LM!7 0W, (/!+∗ + ;!.?)-T = V− LM! − LM! − LM4!7LN 0W.    (19) 

 

From (19), ker (T/� + /�-T) ∩ ker  (T/! + /!-T) ∩ker (/�+∗ + ;�.?)-T = span {#�, #!} where 

 

#� = ⎣⎢
⎢⎡

LM70$%0 ⎦⎥
⎥⎤,    #! = < 0LM7$%0 >.     (20) 

 

The function Y(+) decreases along the trajectory as long as + ∉  \�J�(0) ∩ \!J�(0). It remains to see what happens when 

the trajectory reaches \�J�(0) ∩ \!J�(0). 

 

Lemma 5. Let + ∈  \�J�(0) ∩ \!J�(0). Then the following 

properties hold: 

 

(a) 0 ∈ �(�) if and only if � = �∗. 

(b) if � − �∗ ∉ span {$%}, then �(�) ∩ ker ('*% + *%,') ∩ker  ('*- + *-,') ≠ ∅. 

(c) if � − �∗ ∈ span {$%}, and � ≠ �∗, then �(�) ∩span {$%} ≠ ∅. 

 

Proof. It follows from (17) that  

 

*%�∗ + 1%23 = ⎣⎢⎢
⎡ 00− 789:;0 ⎦⎥⎥

⎤ +
⎣⎢⎢
⎢⎡

7@A:7@AB00 ⎦⎥⎥
⎥⎤ =

⎣⎢⎢
⎢⎢⎡

7@A:7@AB− 789:;0 ⎦⎥⎥
⎥⎥⎤,    (21) 

*-�∗ + 1-23 =
⎣⎢⎢
⎢⎢⎡

− 78A:− 78AB78B9:;7@0 ⎦⎥⎥
⎥⎥⎤ + C0000D =

⎣⎢⎢
⎢⎢⎡

− 78A:− 78AB78B9:;7@0 ⎦⎥⎥
⎥⎥⎤.      (22) 

 

Note that � ∈ E%F%(0) ∩ E-F%(0) if and only if � = �∗ + ∆� 

with 

 

∆� = H%$% + H-$- =
⎣⎢⎢
⎢⎡ H% 78;H- 78;(H% + H-)230 ⎦⎥⎥

⎥⎤
. (23) 

 

From this, it follows that 

 

*%∆� =
⎣⎢⎢
⎢⎢⎡

0(H% + H-) 7@AB−H2 2J9:KH2 2J9BK ⎦⎥⎥
⎥⎥⎤,    *-∆� =

⎣⎢⎢
⎢⎢⎡
−(H% + H-) 7@A:0H1 2J9:KH2 2J9BK ⎦⎥⎥

⎥⎥⎤. 
 

Hence if � ∈ E%F%(0) ∩ E-F%(0), then 

 *%� + 1%23 = *%�∗ + 1%23 + *1∆� 

=
⎣⎢⎢
⎢⎢⎡

2MN12MN2− 2JO1K0 ⎦⎥⎥
⎥⎥⎤ +

⎣⎢⎢
⎢⎢⎡

0(H% + H-) 7@AB−H2 2J9:KH2 2J9BK ⎦⎥⎥
⎥⎥⎤,      (24) 

 *-� + 1-23 = *-�∗ + 1-23 + *2∆� 

=
⎣⎢
⎢⎢
⎢⎡ − 2JN1− 2JN22J2O1K2M0 ⎦⎥

⎥⎥
⎥⎤ +

⎣⎢⎢
⎢⎢⎡
−(H% + H-) 7@A:0H1 2J9:KH2 2J9BK ⎦⎥⎥

⎥⎥⎤,      (25) 

 

Hence if P ∈ �(�)  for � ∈ E%F%(0) ∩ E-F%(0) ∖ span {$%} , 

then [0 0 0 1]P = RB789B; ≠ 0, 

 

which shows �(�) ∩ ker ('*% + *%,') ∩ ker  ('*- +*-,') ≠ ∅  and  0 ∉ conv{*%� + 1%23, *-� + 1-23} . 

Suppose � − �∗ ∈ span {$%}, then, 
 

rank TU*%� + 1%23V U*-� + 1-23VW  
= rank 

⎣⎢
⎢⎢
⎡ 7@A: − 78A: − H% 7@A:7@AB + H% 7@AB − 78AB− 789:; 78B9:;7@ + H% 789:;⎦⎥

⎥⎥
⎤
 

= rank 
⎣⎢⎢
⎢⎡ 7@A: −H% 7@A:7@AB + H% 7@AB H% 78AB− 789:; H% 789:; ⎦⎥⎥

⎥⎤
 

= rank 
⎣⎢⎢
⎢⎡ 7@A: − 7@A:7@AB + H% 7@AB 78AB− 789:; 789:; ⎦⎥⎥

⎥⎤
 

= rank 
⎣⎢⎢
⎢⎡ 0 − 7@A:78X7@AB + H% 7@AB 78AB0 789:; ⎦⎥⎥

⎥⎤
. 

 

If H% ≠ − 78X7@7@ , then *%� + 1%23  and *-� + 1-23  are 

linearly independent, and hence 0 ∉ �(�). If H% = − 78X7@7@ , 

then 
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� = �∗ + ∆� =
⎣⎢
⎢⎢
⎡ 78B;7@78;2Y2Y ⎦⎥

⎥⎥
⎤ +

⎣⎢
⎢⎢
⎡− 78X7@7@ Z78; \0− 78X7@7@ U23V0 ⎦⎥

⎥⎥
⎤ =

⎣⎢⎢
⎢⎡− 78;78;−232Y ⎦⎥⎥

⎥⎤
, 

    *%� + 1%23 =
⎣⎢⎢
⎢⎢⎡

7@A:7@AB− 789:;0 ⎦⎥⎥
⎥⎥⎤ + ⎣⎢⎢

⎢⎡ 0− 2J+2M2M Z7@AB\00 ⎦⎥⎥
⎥⎤  =

⎣⎢⎢
⎢⎢⎡

7@A:− 2JAB− 789:;0 ⎦⎥⎥
⎥⎥⎤, 

    *-� + 1-23 =
⎣⎢⎢
⎢⎢⎡

− 78A:− 78AB78B9:;7@0 ⎦⎥⎥
⎥⎥⎤ +

⎣⎢⎢
⎢⎢⎡

2J+2M2M Z7@A:\0− 2J+2M2M Z 789:;\0 ⎦⎥⎥
⎥⎥⎤ =

⎣⎢⎢
⎢⎢⎡

7@A:− 2JAB− 789:;0 ⎦⎥⎥
⎥⎥⎤. 

 

Because *%� + 1%23 = *-� + 1-23 ≠ 0 , we have 0 ∉�(�). Finally, note that  

 ∆�,'U*%� + 1%23V 

= ^H% A:78-; H- AB78-; (H% + H-) 9:7@- 0_
⎩⎪⎨
⎪⎧

⎣⎢⎢
⎢⎢⎡

7@A:7@AB− 789:;0 ⎦⎥⎥
⎥⎥⎤ +

⎣⎢⎢
⎢⎢⎡

0(H% + H-) 7@AB−H- 789:;H- 789B; ⎦⎥⎥
⎥⎥⎤
⎭⎪⎬
⎪⎫

  

= 0, 

 ∆�,'U*-� + 1-23V 

= ^H% A:78-; H- AB78-; (H% + H-) 9:7@- 0_
⎩⎪⎨
⎪⎧

⎣⎢⎢
⎢⎢⎡

78A:78AB− 789:;7@0 ⎦⎥⎥
⎥⎥⎤ +

⎣⎢⎢
⎢⎢⎡
−(H% + H-) 7@A:0H% 789:;H- 789B; ⎦⎥⎥

⎥⎥⎤
⎭⎪⎬
⎪⎫

  

= 0. 

 

Let � − �∗ ∈ span {$%}  and � ≠ �∗ . Then for every P ∈�(�) , $%,'P = 0 . Since 0 ∉ �(�) , it follows that �(�) ∩span {$%} = ∅.            ∎ 

 

Theorem 2. Consider the differential inclusion (12) defined 

by the system matrices (16) and the operating point �∗  in 

(17). Then, the operating point �∗  is local asymptotically 

stable. 

 

Proof. Assume that  (!, �") is a solution of the differential 

inclusion satisfying  (!, �") ∈ $%
&%(0) ∩ $*

&%(0)  for ! ≥ 0 

and �" ≠ �∗ . If �" − �∗ ∉ span {2%} , then 
3

34
 (!, �") ∉

ker (56% + 6%
85) ∩ ker  (56* + 6*

85) by Lemma 5, but this 

contradicts the assumption that  (!, �") ∈ $%
&%(0) ∩ $*

&%(0) 

for ! ≥ 0. If �" − �∗ ∈ span {2%}, then from Lemma 5, there 

exists !%  such that �% ≔  (!%, �")  satisfies �% − �∗ ∉

span {2%} . Then the trajectory  (!, �%)  cannot stay in 

$%
&%(0) ∩ $*

&%(0)  just as we have proved before. This 

completes the proof.           ∎ 

 

Remark 4. The stability of switching control of a boost 

converter is proved in [32]. The state-space of the boost 

converter model is two dimensional, and the set $%
&%(0) ∩

$*
&%(0) is a singleton consisting of �∗. The state dimension of 

the Zeta converter model is four, and the set $%
&%(0) ∩

$*
&%(0) includes the two-dimensional affine set spanned by 

d1 and d2 in (20). The stability of the operating point is a 

consequence of Theorem 1, which is a differential-inclusion 

version of LaSalle’s invariance principle. 

 

Remark 5. The switching mechanisms proposed in [29], 

[30], and [31] basically pick up the mode which nearly 

decreases the Lyapunov function most while our method 

retains the mode as long as it decreases the Lyapunov 

function. The trajectory of [29] evolves as a sliding mode 

solution when it approaches the sliding boundary, which 

means that the switching interval becomes infinitesimally 

small. The sampled-data control approach in [30] and [31] 

can reduce the switching frequency by adjusting the sampling 

period. However, the period depends on the feasibility of 

matrix inequality, which is a sufficient condition and hence 

incurs conservativeness. Our method approaches a sliding 

mode solution only when the trajectory is near the operating 

point. Further reduction of switching frequency to the 

predetermined level is possible by using the modified 

switching mechanism stated in the 

next section. 

4. Limiting the Switching Frequency 

The switching control proposed in Section 2 requires 

unbounded number of switching as a solution approaches the 

operating point �∗ . In this section, the switching control 

mechanism discussed in Section 2 is modified to limit the 

switching frequency of a Zeta converter. 

 

4.1. Modified Switching Mechanism 
 

The switching mechanism considered in Section 2 is 

based on the signs of the derivatives along the trajectories (8) 

and (9). Let  !,  " > 0 and ᾶ! and ᾶ" be modified switching 

functions which satisfy the following: 

 ᾶ!(�) ≥ %!(�),   ᾶ"(�) ≥ %"(�),             (26) %"&!(ℝ*+) ⊂ ᾶ!&!-ℝ./12,   %!&!(ℝ*+) ⊂ ᾶ"&!-ℝ./32.(27) 

 

Notice that (27) is equivalent to 

 

ᾶ!&!-ℝ4/12 ⊂ %"&!(ℝ5+), ᾶ"&!-ℝ4/32 ⊂ %!&!(ℝ5+). 

 

Based on (26) and (27), we propose the following modified 

switching control mechanism: 

 

Switching Mechanism B 

· If the system is operating at mode 1 and reaches ᾶ!&!( !), then it switches to mode 2. 

· If the system is operating at mode 2 and reaches ᾶ"&!( "), then it switches to mode 1. 

 

The differential inclusion (12) is modified accordingly. 

6768 ∈ :;(�),          (28) 

 

:;(�) ≔ = {?!� + A!B+} if � ∈ DE!,{?"� + A"B+} if � ∈ DE",conv {?!� + A!B+, ?"� + A"B+} if � ∈ DE+, 
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where 

 

� ! = "#: $!
%!(ℝ')) ∩ ᾶ-

%!.ℝ/012 = ᾶ-
%!.ℝ/0123, 

� - = "#: ᾶ!
%!.ℝ/042 ∩ $-

%!(ℝ')) = ᾶ!
%!.ℝ/0423, 

    � ) = "#: ᾶ!
%!.ℝ5042 ∩ ᾶ-

%!.ℝ50123. 

 

Assumption 1. The sets ᾶ!
%!.ℝ5042 ∩ $!

%!(ℝ/))  and 

ᾶ-
%!.ℝ5012 ∩ $-

%!(ℝ/)) are bounded. 

 

Proposition 6. Suppose Assumption 1 holds. Let 6 > 0 

satisfy 

 

6 > sup 89(#): # ∈ ?ᾶ!
%!.ℝ504 2 ∩ $!

%!(ℝ/))@ ∪
?ᾶ-

%!.ℝ5012 ∩ $-
%!(ℝ/))@B. 

 

Then for any solution CD(E, #))  of (28), there exists G > 0 

such that CD(E, #)) ∈ {#: 9(#) < 6} for E > G. 

 

Proof. First, we shall prove that � (!) ⊂ �(!) if ! ∉ Ξ% ≔
'ᾶ+,+-ℝ/%01 ∩ 3+,+(ℝ45)6 ∪ 'ᾶ8,+-ℝ/%91 ∩ 38,+(ℝ45)6 . 

From (27), ᾶ+,+-ℝ4%01 ⊂ 38,+(ℝ:5). So, if ᾶ8(!) > ;8, then  

 
� (!) =
< {?+! + A+B5} = �(!), 38(!) > 0,
{?8! + A8B5} ⊂ conv {?+! + A+B5, ?8! + A8B5} = �(!), 38(!) ≤ 0.  

 

From Assumption 1, the number H > 0 exists. If I(!5) > H, 

then a solution J (K, !5) of (28) satisfies J (K, !5) = J(K, !5) 

as long as J (K, !5) ∉ Ξ% where J(K, !5) is a solution of (12). 

There exists L > 0  such that I-J(K, !5)1 ≥ H  if K > L 

because I-J(K, !5)1  is monotonically decreasing and 

I-J(K, !5)1 → 0 as K → ∞ from Theorem 1. Note that Ξ% ∩
{!: I(!) ≥ H} = ∅ . This implies that J (K, !5) = J(K, !5) 

and I 'J (K, !5)6 ≥ H  for 0 ≤ K ≤ L . Furthermore, 

I 'J (K, !5)6  is non-increasing when J (K, !5) ∉ Ξ% . 

Therefore,  I 'J (K, !5)6 < H for K > L.         ∎ 

 

4.2. Example for the DC-DC Zeta Converter 
 

From (19), 

3+(!) = (! − !∗)V

⎣
⎢
⎢
⎡0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 − +

Z⎦
⎥
⎥
⎤

(! − !∗) + _̂(`a+ −

`a+∗ ) + _̂(`a8 − `a8∗ ) − bd
Z (^e+ − ^e+∗ ),     (29) 

 

38(!) = (! − !∗)V

⎣
⎢
⎢
⎡0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 − +

Z⎦
⎥
⎥
⎤

(! − !∗) − f̂(`a+ −

`a+∗ ) − f̂(`a8 − `a8∗ ) + bd9
Z (^e+ − ^e+∗ ).     (30) 

 

Define  

gh ≔
⎣
⎢
⎢
⎢
⎡b������ �����!−#$0 ⎦⎥⎥

⎥⎤
,   () ≔ + 000#$

,.              (31) 

 

Then {(-, (/, (1, ()} with (- and (/ in (20) is a basis of ℝ), 

and thus any 3 ∈ ℝ) can be written as 

 3 − 3∗ = ∆3 = 7-(- + 7/(/ + 71(1 + 7)().     (32) 

 

The modified functions ᾶ-(3) and ᾶ/(3) can be defined as 

 ᾶ-(3) ≔ <-(3) + >-7)/ + ?(@-‖7-, 7/‖),     (33) ᾶ/(3) ≔ </(3) + >/7)/ + ?(@/‖7-, 7/‖),     (34) 

 

where ‖7-, 7/‖ is any norm in ℝ/ , and ?: ℝDE → ℝDE  is a 

monotone nondecreasing function satisfying  

 ?(0) = 0,    ?(G) = H,   if G ≥ H, 

 0 < >- <  K!� , 0 < >/ <  K!� , @- > 0, @/ > 0, H > 0. 

 

Proposition 7. The functions ᾶ- and ᾶ/ defined by (33) and 

(34) satisfy (26), (27), and Assumption 1. 

 

Proof. It is obvious that (26) holds. Suppose </(3) ≥ 0 . 

Define M-(3 − 3∗) ≔ <-(3) + >-7)/  and M/(3 − 3∗) ≔</(3) + >/7)/ . Then the quadratic terms of M-  and M/  are 

nonpositive, and hence by Lemma 1, we assert that <-(3) +>-7)/ ≤ 0. Because ?(@-‖7-, 7/‖) ≤ H-, we obtain ᾶ-(3) ≤H-. Similarly, <-(3) ≥ 0 implies ᾶ/(3) ≤ H/. To show that <-O-(ℝPE) ∩ ᾶ-O-RℝST�U  is bounded, we use the 

representation (30) and show that the set V((-, (/, (1, ()): 3 ∈ <-O-(ℝPE) ∩ ᾶ-O-RℝST�UW  is bounded. 

If <-(3) > 0 and ᾶ-(3) ≤ H-, then  

 H- > ᾶ1(3) − <-(3) = >-7)/ + ?(@-‖7-, 7/‖) ≥ Y?(@-‖7-, 7/‖),>-7)/.  

(35) 

 

From (35), it follows that ‖7-, 7/‖ < T�[�  and |7)| < \T�]� . 

From the definition of <-, ᾶ-, and (1, we have 

 <-(3) = >71 + ^(7-, 7/, 7)),   ᾶ-(3) = >71 + ^̃(7-, 7/, 7)), 

 

where ^ and ^̃ are continuous functions and 

 > =  K!����� +  K!����! +  K!� > 0. 

Let  ` ≔ sup Y^(7-, 7/, 7)): ‖7-, 7/‖ < T�[� , |7)| < \T�]� a, 

       b ≔ inf Y^̃(7-, 7/, 7)): ‖7-, 7/‖ < T�[� , |7)| < \T�]� a. 

 

Then, 0 < <-(3) = >71 + ^(7-, 7/, 7)) ≤ >71 + `, H- ≥ ᾶ-(3) = >71 + ^̃(7-, 7/, 7)) ≥ >71 + b, 
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and it follows that − c] < 71 ≤ T�Od] . The boundedness of the 

set </O-(ℝPE) ∩ ᾶ/O-RℝST!U can be proved similarly.        ∎ 

 

Remark 6. From Proposition 6 and 7, we conclude that any 

solution of (28) converges to the set {3: g(3) < @} . The 

spatial regularization was studied for the boost converter in 

[29] to reduce the high rate of switching.  The method 

discussed in this section extends the idea to the Zeta converter 

by adding extra terms in (33) and (34) to cope with the four 

dimensional state-space. 

 

4.3. Estimating the Switching Frequency 
 
Although the modified switching mechanism is able to 

limit the switching frequency, the value of the switching 

frequency itself, however, is controlled by the parameters in 

Switching Mechanism B. In this subsection, we will show how 

to decide such parameters based on a linear-line-

approximation of the trajectory. 

From Section 4.2, the switching occurs when 

 

�� ≔ ᾶ�(�∗ + ∆��), 

�! ≔ ᾶ!(�∗ + ∆�!), 

 

where ∆�� ≔ [∆"#�$   ∆"#!$   ∆&'�$  0]*  and ∆�! ≔
[∆"#�,  ∆"#!,  ∆&'�, 0]*  are the difference of the 

approximated state-trajectory from the operating point at their 

respective switching instants as shown in Fig. 4.     

 

 
Fig. 4. Approximate state-trajectory.  

Table 1 The DC-DC Zeta converter parameters. 

Parameter Value 

�  18 V 

�!(�"#$) 5 V 

% 2.5 Ω 

&' 100 μH 

&* 100 μH 

+' 100 μF 

+* 220 μF 

, 100 kHz 

 

Observing Fig. 4 and from (21) and (22), the gradient 

of the state-trajectory at the operating point is given by 

 

*∆./
0123

=

⎣
⎢
⎢
⎢
⎢
⎡

78
9/
78
9:

− 7<
>/?
0 ⎦

⎥
⎥⎥
⎥
⎤
,   

!∆#$
(%&')*+,

=

⎣
⎢
⎢
⎢
⎢
⎡ − 12

34
− 12

3$
12$

54617
0 ⎦

⎥
⎥
⎥
⎥
⎤
. 

 

where :;< = %
> is the period of the switching frequency ? . 

With  @ = 12
12A17

 (from (17)) the above expressions can be 

rewritten as 

 

∆B% =

⎣
⎢
⎢
⎢
⎢
⎡

1217
!>34C12A17D

1217
!>3$C12A17D

− 12$
!>546C12A17D

0 ⎦
⎥
⎥
⎥
⎥
⎤

,   ∆B! =

⎣
⎢
⎢
⎢
⎢
⎡−

1217
!>34C12A17D

− 1217
!>3$C12A17D

12$
!>546C12A17D

0 ⎦
⎥
⎥
⎥
⎥
⎤

.   (36) 

 

Define penalty functions E% ≔ G%HI! + K(L%‖H%, H!‖) 
and E! ≔ G!HI! + K(L!‖H%, H!‖)  and assume the state-

trajectory near the operating point. Therefore, the penalty 

functions are close to 0 such that E% ≈ 0  and E! ≈ 0 , 

consequently, P% ≈ Q%(B∗ + ∆B%)  and P! ≈ Q!(B∗ + ∆B!) . 

Nevertheless, the effect of E% > 0  and E! > 0  will be 

investigated and illustrated graphically later in Section 5. 

Therefore, with (17) and (36), and from (29) and (30), we have 

 

P% ≈ 12(343$12$A54346$17$A543$6$17$)
!>54343$6$C12A17D ,              (37) 

P! ≈ 12$(343$12$A54346$17$A543$6$17$)
!>54343$6$17C12A17D .              (38) 

 

From (37) and (38), we observe how the desired switching 

frequency ? is related to the thresholds P% and P!.   Therefore, 

the DC-DC Zeta converter will operate at the prescribed 

switching frequency under the modified switching rule. 

Though the expressions of P% and P! look complex, they are 

straightforwardly processed beforehand (offline). Nowadays, 

considering the capability of the high-speed processors like in 

the DSP, FPGA, or even (maybe) microcontroller, there 

should be no performance issue in executing the switching 

mechanism.  

5. Simulation Results 

The simulations are carried out using the circuit 

simulation software PSIM® with the parameters shown in 
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Table 1. With the input voltage TU, the capacitor voltage T5!, 

and the load current VW are the variables that are sensed in the 

circuit in Fig. 1, and fixed number computation instead of 

floating-point computation is used practically to reduce 
computational burden; P%  and P!  in (37) and (38), 

respectively, can be rewritten as 

 

P% ≈ !X
%YY(17AX) Z25 ] ^_

1`$
a! + (TU! + 1)c ,  

P! ≈ %!X
%YY17(17AX) Z25 ] ^_

1`$
a! + (TU! + 1)c. 

 

In Fig. 5, the simulation results for E% ≈ 0 and E! ≈ 0 

are shown. As can be seen, with the nominal TU = 18 V and 

VW = 2 A, no overshoot for the output voltage TW is observed 

at the start-up, and the settling time is approximately 10 

milliseconds (ms). At d =  20 ms, TU  drops to 9 V and VW 

reduces to 1  A. Despite the large input voltage drops, the 

overshoot at the output voltage is considerably small with 

some oscillations can be seen before it settles down at 

approximately d = 30 ms. Afterward, at d = 40 ms, the input 

voltage drops further to 3 V and VW = 0.33  A. Similarly, 

although more oscillation and longer setting time are 

observed, nonetheless the output voltage is able to return to its 

operating point. Moreover, the converter is now operating in 

step-up mode (instead of step-down mode for the first two 

perturbations), thus proves the effectiveness of the switching 

control in regulating the output voltage at both operation 

modes. Finally, at d = 80 ms, the input voltage return to its 

nominal value of 18 V. Although the increment is very 

significant (+500 %), the switching control can regulate the 

output voltage well with minimum overshoot (approx. 10 %) 

and considerably fast settling time (approx. 8 ms). On the 

other hand, the steady-state switching waveforms in close 

view for the three different input voltage perturbations are 

illustrated in Fig. 6. As shown, the switching control algorithm 

 
Fig. 5. Simulation results under perturbations with �� ≈ 0 and � ≈ 0.  

Variations in (a) the output voltage !", (b) the output current #", (c) the input voltage !$,  

and (d) the switching waveform S. 

 
Fig. 6. Close view of the switching waveform S when !$ =

18 V(top), !$ = 9 V(middle), and !$ = 3 V(bottom). 
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is able to produce the desired switching frequency of 

appoximately 100 kHz  for all three instances.  

In the next simulation, the effect of introducing the 

penalty functions �� > 0 and � > 0, defined in Section 4, are 

shown in Fig. 7. As can be observed, the introduction of �� 

and �  does not have much effect on the response of the output 

voltage. Increasing ��  and � , hovewer, increases the 

switching frequency as shown in Fig. 8. These observations 

are expected:  (37) and (38) are no longer valid, since �� and 

�  are not approximately zero. As ��  and �  reaches &�  and 

& , respectively, the number of switching becomes 

unbounded, which is identical for the case of the switching 

control mechanism in Section 2. 

6. Conclusion and Future Work 

In this paper, we have presented a switching control 

mechanism which induces closed-loop stability of the DC-

DC Zeta converter. A two-mode system is use to model the 

DC-DC Zeta converter operating in continuous conduction 

mode. A switching control algorithm is derived from a 

Lyapunov functional candidate which is basically the energy 

storage function of the Zeta converter. Instrumental in our 

work is the establishment of an analysis of the fourth-order 

Zeta converter that is simple but sufficient to prove the 

stability of the control. Moreover, our switching control 

mechanism is not only able to reduce the switching frequency, 

but most essentially one can systematically choose the 

desired switching frequency for the converter to operate. 

Important to highlight here is how we use two different 

thresholds �   and �! (for mode 1 and mode 2, respectively) 

to define the spatial regularization, as opposed to a single 

common threshold for the two modes as adapted in [32]. As 

a result, we were able to solve the switching control flaw in 

[32] by eliminating the output voltage steady-state error. 

Although the approximate state-waveforms are used to find 

�   and �!, the close agreement between the theoretical and 

simulation results of the desired switching frequency shows 

that the approximation is indeed justified. In future, we plan 

to add the internal resistances in the Zeta converter model, 

consider the effect of interference, and most importantly 

validate the findings with experimental results. 
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