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Abstract9

Four data-driven low-order modelling approaches, Dynamic mode decomposition (DMD) and three other vari-10

ations (optimal mode decomposition, total-least-squares DMD and high-order DMD), are used to capture the11

spatio-temporal evolution of fluid-structure interactions. These methods are applied to experimental data ob-12

tained in a flow over a flexible membrane wing and its elastic deformation. Spectral coherence indicates there13

exists an interaction between the flow and structural deformation at a single frequency for this problem (de-14

pending on the angle of attack and/or the presence of a ground). It is therefore an ideal data set to assess15

the performance of the four different methods in terms of the relevant modes/frequencies and reconstruction of16

flow and structural deformation. We show that the four methods detect the same dominant frequency (within17

Fourier resolution) and qualitatively the same associated mode. However, the modes appear to be heavily18

damped or amplified preventing a successful flow and structure reconstruction (except when using high-order19

DMD). This problem persists even if the damping coefficients are set to 0 due to imprecision in the estimation20

of the dominant frequency. The reconstruction is assessed by means of the average correlation between the real21

and reconstructed fields corresponding to 0.42 and 0.85 for the fluid and membrane deformation respectively22

when using high-order DMD (and virtually 0 for the other three methods). Based on the analysis, we conclude23

that high-order DMD, particularly for when fluid and structural data are modeled simultaneously, is the most24

suitable method to generate linear low-order models for fluid-structure interaction problems. Further, we show25

that this modeling is not dependent on the relative energies of fluid and membrane deformation.26

1 Introduction27

Low-order modelling in fluid dynamics has undergone a shift through the introduction of Dynamic Mode Decom-28

position (DMD) by Schmid (2010). In contrast to previous methods based on proper orthogonal decomposition29

(POD; Berkooz et al., 1993), which only provide spatial information of the dominant modes of the flow, DMD30

associates these spatial modes with a single temporal frequency and decay/growth rate. Consequently, modes31

are orthogonal in time. Additionally, the method only requires information of time-resolved snapshots and no32

information is required about the underlying equations describing the physical phenomena. These two facts33

have captured the attention of the fluid-dynamics community and its application to flow problems has become34

widespread since its introduction.35

In general, any DMD-based methodology seeks two elements: a suitable linear subspace onto which to project36

the flow snapshots and the linear description of the dynamics in that subspace. The DMD method by Schmid37

(2010) takes that subspace to be the POD modes and the dynamics are approximated by the evolution from the38

snapshot at time t to the next snapshot at time t + ∆t. A number of modifications of this basic methodology39

have been proposed over the last few years. Wynn et al. (2013) proposed to perform a numerical optimization40

to find an optimal projection space instead of the POD modes. Whilst keeping the POD modes as projection41

subspace, Dawson et al. (2016) suggested to modify the way in which the dynamics are estimated to account42

for measurement noise. More recently, Le Clainche and Vega (2017) have generalized the DMD algorithm to43

include a larger number of snapshots from previous time steps.44
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DMD and related methods are often used to identify the dynamics of the flow. That is, they aim to obtain the45

spatial structure of the dominant flow modes and their corresponding frequency and damping/growth rate. This46

analysis provides an excellent means to describe or understand a large number of the flow problems (c.f. Rowley47

and Dawson 2017 and references therein). However, not so much attention has been paid to flow reconstruction.48

In this context, we refer to flow reconstruction as the ability of the method to reconstruct snapshots based on49

a linear combination of the modes and their frequencies. A successful reconstruction is more demanding than50

a qualitative description of the flow phenomena hence it requires better accuracy in the estimation of modes’51

shapes and frequencies. In fact, Dawson et al. (2016) showed that the damping coefficient and frequencies in52

these methodologies are often not correctly estimated due to noise in the measurements. These inaccuracies53

may not be a problem to describe the flow but they definitely hinder flow reconstruction.54

Considering now the type of problems that can be solved by these methodologies; most of the applications55

are focused on the description of fluid flows, probably due to the inherent difficulty in understanding them.56

Nevertheless, note that these methods do not require any knowledge of the physics involved. They could57

therefore be easily applied to other problems such as fluid-structure interactions (FSI). However, in the context58

of FSI, these methodologies have only been applied to either the flow (see table 3 of Rowley and Dawson, 2017)59

or the structural vibrations (Bozkurttas et al., 2009; Kim et al., 2013) separately, but not to both of them60

simultaneously. Recently, Goza and Colonius (2017) proposed a combined methodology to study FSI problems61

by means of POD and DMD. However, their study was only focused on identifying the flow dynamics but none62

of the reconstruction results were presented.63

In summary, DMD and other variants have been primarily concentrated in the description of flow problems64

but not in flow reconstruction. Recently, some DMD-based reconstructions were reported by Menon and Mittal65

(2020) for simulations of a pitching aerofoil. However, to our knowledge DMD reconstructions and variants66

thereof have not been thoroughly investigated to model FSI. Consequently, in the present study, the aim is67

to discuss the suitability of these methodologies to reconstruct FSI problems. In particular a set of low-order68

models of the flow and the elastic deformation of a membrane wing are presented.69

Flexible membrane wings present a novel solution for improving the performance of small/micro air vehicles.70

The flow around these wings is modified due to the coupling with the elastic membrane which entails improved71

flight performance at relatively low and transitional Reynolds numbers (1000 to 100,000). In particular, they72

are shown to delay stall at large angles of attack due to the formation of a leading-edge vortex which is shed73

and convected downstream (Rojratsirikul et al., 2011). They can be used for flow control, for instance, active74

camber adjustment (Curet et al., 2014; Buoso and Palacios, 2016; Barbu et al., 2017). In this context, the role75

of the leading edge vortices is especially significant due to its relationship with the aerodynamic performance.76

Additionally, control algorithms may benefit from a low-order model of the flow which enables the problem to77

be reduced to a few degrees of freedom.78

The structure of the paper is as follows: Section 2 describes the experimental setup and analyzes the coupling79

between the flow and the membrane deformation to assess the suitability of this problem to be described by a80

low-order model as proposed. Section 3 describes briefly the various DMD-like algorithms that will be considered.81

Section 4 shows the results of the study: the low-order models are applied separately to the fluid and structure82

and their results discussed in terms of description of the flow and structural deformation (section 4.1) and, more83

importantly, their reconstruction (section 4.2). These results will be then compared with the combined approach84

in which we consider flow and membrane deformation simultaneously (section 4.3). Finally, the conclusions of85

the study are drawn in section 5.86

2 Experimental set-up and data reduction87

2.1 Experimental set-up88

A link to the experimental dataset of the flow-structure dynamical coupling between the membrane-wing defor-89

mation and the flow field can be found in Bleischwitz et al. (2017). Although the complete details can be found90

in Bleischwitz et al. (2015, 2016, 2017), a brief summary of the most important parameters is compiled below.91

The membrane wing was designed with a chord c = 100 mm and a wingspan of 200 mm resulting in an aspect92

ratio of 2. The flexible wings were constructed using a latex membrane attached to a steel frame. The latex93

sheet had a thickness of tm = 0.2 mm density of ρm = 1 g/cm3 and Young’s Modulus of Em = 1.5 MPa. The94

membrane was wrapped around the perimeter steel frame and attached to itself with a 5 mm wide double side95

tape. The wind-tunnel speed was set to U∞ = 8.4 m/s reaching a Reynolds number based on the wing chord of96

Re = 56000. At this speed, the freestream turbulence of the wind tunnel was less than 0.1%.97

The dataset consists in simultaneous measurement of the flow around a membrane by means of particle98

image velocimetry (PIV) and measurements of the membrane deformation by means of stereoscopic digital99

image correlation (DIC). Both techniques were synchronized at a frequency of 800 Hz and a total of 5000 images100

were acquired over a period of 6.25 s. The spatial resolution of the DIC technique is 0.03c and its accuracy is101
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Figure 1: Sketch (not to scale) of the experimental set-up and the coordinate systems. The amplitude of the
instantaneous membrane deformation is exaggerated for illustration.

estimated to be better than 0.001c. PIV is conducted at quarter-span in a streamwise/wing-normal plane. Two102

cameras are employed in a side-by-side arrangement. After image stitching and multipass post-processing the103

final resolution is 1.47 mm with a vector spacing of 0.016c due to the overlap between the PIV interrogation104

windows.105

The original study focused on three angles of attack (α = 10◦, 15◦ and 25◦) and three heights over the106

ground (h/c = 0.1, 0.25 and 2) in order to test the membrane wings with and without ground effect. It was107

found that the strongest fluid-structure coupling was achieved with ground effect (h/c = 0.1) at moderate angle108

of attack (α = 15◦). A similar coupling was found for a larger angle of attack (α = 25◦) in free-flight conditions109

(h/c = 2). Consequently, these two cases will be presented below. Throughout this article these two cases will110

only be referred to by using the angle of attack α, however it should be noted that in the largest α = 25◦ the111

wing is in free-flight conditions whilst for α = 15◦ there is a considerable ground effect (h/c = 0.1).112

The flow coordinate system x and y is defined as the streamwise and vertical coordinates with origin in the113

trailing edge (xte = yte = 0). Analogously u = U + u′ and v = V + v′ are the instantaneous velocities in the x114

and y directions decomposed in their mean (U , V ) and fluctuations (u′, v′). Magnitudes expressed with a caret115

are normalized using the chord length and/or the freestream velocity, e.g. x̂ = x/c, ŷ = y/c for coordinates or116

Û = U/U∞, V̂ = V/U∞ for velocities. The sub-index rms will be used to indicate the root-mean-square level.117

Note that the previous coordinate system is oriented with x̂ parallel to the freestream and ŷ normal to it. In118

order to study the membrane deformation it is more natural to consider the coordinate system in the membrane119

plane. Coordinates in the membrane plane normalized with the membrane chord will be designated with a tilde:120

x̃ = xmem/c, ỹ = ymem/c and z̃ = zmem/c represent the membrane-parallel, membrane-normal and spanwise121

directions respectively. Note that the plane x̃− z̃ is defined without considering mean membrane deformation.122

A sketch of the coordinate system and other experimental parameters can be found in figure 1.123

The original flow field extended until 1.2c downstream of the trailing edge and 0.8c in the vertical direction.124

However, as the present study is mainly focused on the fluid-structure interaction, only a subset of this field of125

view will be considered such that −1 ≤ x̂ ≤ 1.1 and −0.1 ≤ ŷ ≤ 0.55. Furthermore, the flow in the pressure126

side of the membrane will be discarded, as within this region the PIV correlation values were significantly127

smaller and hence the uncertainty in the measurements considerably larger. For the membrane deformation,128

the 5 mm next to the steel frame were discarded to eliminate the deformations influenced by the tape that held129

the membrane.130

2.2 Preliminary data analysis131

Figure 2 shows the mean and root-mean-square velocities for both angles of attack. The mean deformation of132

the membrane is also shown. A direct comparison between the degree of camber of the membrane is difficult133

due to the change in both angle of attack and ground effect. In any case, it is clear that the membrane mean134

curvature adapts to the flow which, in turn, delays the onset of stall (Bleischwitz et al., 2017). In fact, only a135

small region of the flow seems to be detached in the larger α case.136

The largest magnitudes of the vertical velocity fluctuation (v̂′rms) are concentrated in the wings’ wake likely137

due to the leading edge vortices being convected downstream. The largest magnitude of the horizontal velocity138

fluctuation (û′rms) is located close to the leading edge in the shear layer forming between the wing’s wake and139

the freestream.140
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ŷ

-0.7 -0.35 0 0.35 0.7
V̂

α = 15
◦

v̂′rms

α = 25
◦

û′
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Figure 2: Colormaps of normalized mean streamwise (top row) and vertical (bottom row) velocities for two
angles of attack. The superimposed contour lines correspond to the normalized root-mean-square velocity from
0.05 in steps of 0.05. The closed blue contour represents the region of recirculating (Û < 0) flow. Note that
contours that intercept the membrane position do not correspond to PIV points, and are the result of forcing
specific contour levels that wrap around the PIV domain.
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Figure 3: Strouhal number corresponding to the peak of the power spectral density for the two angles of attack.

By analysing the vertical velocity fluctuation at a series of point in the wings’ wakes, Bleischwitz et al. (2017)141

showed that, downstream of membrane wings, there is a distinct peak in the spectral content of v̂′. This peak142

was associated with the periodic shedding of the leading edge vortices. Whereas the intensity of the peak was143

shown to decrease with streamwise distance its frequency f seemed to be at a constant St = fc/U∞ ≈ 0.75 for144

the α = 15◦ case.145

Given that there exists a clear spectral peak at a certain Strouhal number; rather than showing spectral146

content at a few discrete points, the Strouhal number St? at which the power spectral density is maximum is147

presented. This is done for the streamwise Euu or vertical Evv velocity fluctuations. The power spectral density148

is calculated taking the average of 5 windows multiplied by a Hann window to avoid spectral leakage. This149

provides a frequency resolution of 0.8 Hz.150

Figure 3 shows the peak Strouhal St? at both angles of attack. The differences between the streamwise and151

vertical spectra are clearly observed here. Evv exhibits a clear peak which is at a constant Strouhal (within152

frequency resolution) throughout the flow field. Although there are few spots closer to the wing in which153

this is not the case, this can be attributed to either noise in the PIV measurements close to the wing, or the154

influence of the wing’s boundary layer and leading-edge formation region. Following Bleischwitz et al. (2017), it155

is reasonable to assume that this frequency is generated by periodic formation and shedding of vortices from the156

leading edge. Whilst the α = 15◦ presents St? = 0.75; the α = 25◦ case indicates a higher peak of St? = 0.83.157
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In contrast, the streamwise spectra Euu presents distinct dominant frequencies in other regions. As was158

reported above, the larger fluctuations originated in the shear layer between the wing’s wake and the freestream.159

This shear layers appears to have a higher frequency peak than that corresponding to the leading edge vortex.160

This is consistent with an incipient shear layer in which the typical eddies are smaller hence their frequencies161

are higher. It is interesting to note that, particularly for the α = 15◦ case, in this region the peak frequency162

for Euu is twice that of Evv. This is consistent with what is observed in the wake of a cylinder (e.g. Zheng and163

Zhang, 2008) where the coefficient of drag oscillates at twice the frequency as the lift coefficient. In the trailing164

region, a less evident second shear layers appears between the wings’ wake and the laminar flow under the wing.165

These two shear layers seem to merge at approximately x̂ ≈ 0.3 ŷ ≈ 0.2 in the α = 15◦ case and ŷ ≈ 0.1 for166

the α = 25◦ case. The spectra in this region peaks at a lower frequency, perhaps due to the flapping of both167

shear layers close to their merging point. As evidenced by the streamwise spectral content, two regions of the168

flow can be distinguished: the core of the wake sharing the same peak frequency as the vertical fluctuations and169

another region in which the unsteady shear produces differing dominant frequencies.170
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Figure 4: Bottom left corner: sketch of the methodology to obtain the coherence γ(x̂, ŷ, St). The other three
plots are two-dimensional cuts of γ(x̂, ŷ, St) at x̂ = x̂?, St = St? and ŷ = ŷ? (respectively in clockwise direction)
for α = 15◦.

Spectral results suggest that a large part of the flow field is strongly influenced by the leading edge vortices.171

Further, Bleischwitz et al. (2017) showed a correlation between the flow field and the membrane deformation.172

However, only results of the mean correlations were presented. In light of the spectral results, we propose to173

study the correlation by means of the spectral coherence γ between the flow field and the membrane deformation.174

To do so, the fluctuating signal ỹ′(t) of the membrane deformation at x̃ = 0 and z̃ corresponding to the PIV175

plane (c.f. figure 1) is considered. The correlation is then performed with the fluctuating velocity at every point176

of the PIV field of view û′(x̂, ŷ, t). The coherence as the normalized absolute value of the cross spectral density177

of these two quantities is obtained via:178

γu(x̂, ŷ, St) =
|F [û′(x̂, ŷ, t)]F? [ỹ′(t)]|2

Eûû(x̂, ŷ, St)Eỹỹ(St)
. (1)

Here, F [·] represents the fast Fourier transform, | · | represents the absolute value, the superscript ? represents179

the complex conjugate and Eûû and Eỹỹ are the power spectral density of the membrane deformation ỹ′ or180

the velocity fluctuation û′. Analogously, one computes γv by substituting û′ with v̂′. Note that, with this181

normalization, 0 ≤ γ ≤ 1 where γ = 0 represents the total lack of coherence whilst a perfect coherence is182

given by γ = 1. A graphic summary of this procedure is found in figure 4. Given the practical difficulty of183

a three-dimensional representation of the function γu(x̂, ŷ, St), three two-dimensional cuts of the function at184
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ŷ

0 0.2 0.4 0.6 0.8 1
γ(St, ŷ)|x̂⋆

γv(St, ŷ)
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Figure 5: Coherence γ(St, ŷ) of the streamwise (top row) and vertical (bottom row) velocity fluctuations for
the two angles of attack at x̂ = x̂? = 0.1.

x̂? = 0.1, ŷ? = 0.4 and St? = 0.75 are shown (the peak frequency at this location for the spectral content shown185

in figure 3).186

Three main results can be observed in figure 4. (i) A significant coherence is maintained throughout the flow187

field except in those regions where, as suggested above, there exist clear shear layers. Moreover, γu|St? is close188

to zero in the region where these two shear layers merge, confirming the independence between the eddies in the189

shear layer and the membrane deformation. (ii) A second harmonic of St? can be observed for −1 < x̂ < 0 at190

ŷ?. A third harmonic is significantly less evident and also appears for a much shorter streamwise extent. The191

appearance of these harmonics seem to be related with the point of maximum membrane deformation, perhaps192

due to the proximity to the wing. (iii) Downstream of the wing (x̂? = 0.1) the second harmonic is negligible.193

Nevertheless, a significant level of coherence can be observed for every ŷ (except at the points where the shear194

layers cross x̂? = 0.1).195

The difference between the two angles of attack and between γu and γv can be observed in figure 5. It is196

evident that the coherence is larger for the smaller angle of attack and the peak appears at different St? (as197

shown above in figure 3). The differences between γu and γv are less evident, but the membrane deformation198

seem to be slightly more correlated with the vertical velocity. This was also shown by Bleischwitz et al. (2017)199

for the mean correlation.200

To summarize, Bleischwitz et al. (2017) showed that there is a temporal correlation between the membrane201

deformation and the flow field. By means of spectral analysis the current study has been shown that there202

are two distinct regions of the flow: the wake of the wing and the shear layers separating this wake from the203

freestream. Furthermore, it has been demonstrated that the wing’s wake is closely related with the membrane204

deformation as evidenced by the coherence between these two quantities at close to unity. This has important205

implications for the analysis of the flow-structure interaction of this phenomenon. In particular, the frequency206

relationship between flow and membrane is concentrated at a single frequency (within resolution); moreover,207

there is a linear relationship between them. These two facts suggest a suitability of low-order models to capture208

the flow-structure interaction around the membrane wings. The methodologies used will be briefly described in209

section 3 and the results will be presented in section 4.210

3 Methodology211

Various modes of the membrane deformation extracted by means of proper orthogonal decomposition (POD)212

were shown in Bleischwitz et al. (2016). Further, they linked these modes with the dominant eigenfunctions213

of the membrane vibration (by means of a sinusoidal decomposition). However, a link between a low-order214

model of the membrane and the flow was not presented. Given that there exists a clear relationship at a single215

frequency between the flow and the membrane deformation (as shown in section 2.2), a temporal-based modeling216

approach would intuitively seem most suitable. As a basis, the most energetic POD modes capture structures217

without considering how one flow instance maps into the next, and instead treating the flow as an ensemble that218

can be reassembled through a set of coefficients. In contrast, tools such as the Dynamic mode decomposition219

(Schmid, 2010) associate particular spatial structures with a distinct frequency such that modes are orthogonal220

in time (i.e. they shrink or grow at distinct characteristic frequencies). Below we introduce the nomenclature221
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that will be employed and describe briefly various low-order DMD-based modeling techniques.222

The notation vk ∈ RJ for the k-th snapshot for k = 1, 2, . . . ,K = 5000 is used. Here J is twice the number223

of spatial data points as the data was acquired by means of two-dimensional PIV. The number of spatial points224

changes slightly in the two considered cases due to reflection of light in the membrane and the angle of attack but225

is approximately JPIV ≈ 6×104. The snapshots are arranged as the columns of a matrix V K1 = [v1,v2, . . . ,vK ]226

and the notation for a subset of consecutive snapshots is given as A ≤ k ≤ B: V BA = [vA,vA+1, . . . ,vB−1,vB ].227

Of particular advantage in using DMD is its completely general application, i.e. the method’s ignorance to228

underlying physical phenomena. As a consequence of this flexibility the implementation for both flow and229

membrane is identical, where the membrane deformations are similarly formatted into columns and ordered230

sequentially (the only marginal difference being in the total number of degrees of freedom JDIC ≈ 104).231

In general, a low order representation such as the ones outlined below seeks two elements. First, a suitable232

linear subspace P , such that, by projecting onto it, the degrees of freedom are significantly reduced from J in233

the real space to some N � J in the projected space. Following the projection, the dynamics of the flow are234

modelled as a linear evolution of N eigenvectors with N associated frequencies and damping coefficients.235

The four methods presented offer distinct methodologies to calculate the projection subspace as well as236

the linear dynamics. To start, the traditional dynamic mode decomposition (Schmid, 2010) is described in237

section 3.1. Three variants that have since emerged from DMD will be subsequently presented: optimal mode238

decomposition (OMD; Wynn et al., 2013) in section 3.2; total-least-squares based dynamic mode decomposition239

(DMDtls; Dawson et al., 2016) in section 3.3 and high-order dynamic mode decomposition (DMDho; Le Clainche240

and Vega, 2017) in section 3.4. Once the projection subspace and the linear dynamics are obtained using any241

of the four methods, some further considerations common to all of them are summarized in section 3.5.242

Henceforth, the superscript T will represent the transpose of a matrix. The operator diag(·) applied to a243

matrix will provide a vector whose elements are the diagonal of the matrix. Analogously, the same operator244

applied to a vector will generate a diagonal matrix with the elements of the vector along the diagonal. The245

operator || · ||2F will represent the second order Frobenius norm of a matrix. Unless otherwise stated, SVD will246

represent the economy-sized singular value decomposition of a matrix.247

3.1 Dynamic mode decomposition (DMD)248

First developed by Schmid (2010), the central idea behind DMD is to model a particular snapshot as a linear249

evolution from the previous one, mathematically: vk+1 ≈ Rvk. In matrix form:250

V K2 ≈ RV K−1
1 , (2)

where R ∈ RJ×J . In order to solve for R one considers the POD decomposition (obtained by SVD) of the251

snapshots such that252

V K−1
1 = WΣTT , (3)

where W is a matrix of orthogonal spatial modes, Σ a matrix containing the singular values, and TT the253

orthogonal temporal basis. Furthermore, it may be desirable to truncate a number of POD modes which may254

be dominated by experimental noise and keep only those N modes whose energy (proportional to the singular255

values) is larger than a certain threshold σN+1/σ1 < εt where the energies σ ≡ [. . . , σi, . . . ] = diag(Σ) are256

placed in decreasing order. Following the truncation, the POD results in V K−1
1 ≈ Ŵ Σ̂T̂T where ŴT Ŵ = IN is257

the identity matrix of size N ×N and the hat symbol denotes the reduced POD space. Projecting equation (2)258

in the truncated POD modes (i.e. premultiplying by ŴT ) and reordering one obtains259

R̂ = ŴTV K2 T̂ Σ̂−1 , (4)

where R̂ = ŴTRŴ is the projection of the DMD matrix, R, into the reduced POD space.260

3.2 Optimal mode decomposition (OMD)261

As described in Wynn et al. (2013), the OMD algorithm can be observed as a modification of the basic DMD262

procedure. Whilst the POD projection given in equation (3) is exact; its truncated counterpart (V K−1
1 ≈263

Ŵ Σ̂T̂T ) is no longer so. Therefore, there may exist a certain linear subspace such that the projection onto264

it provides a smaller error than in the truncated POD space Ŵ . In other words, while DMD minimizes265

||V K2 − ŴT R̂ŴV K−1
1 ||2F ; OMD will seek the matrices L and R̂ such that ||V K2 − LR̂LTV K−1

1 ||2F is minimum266

subject to LLT = IN (for a user-prescribed projection rank N). It can be shown that for a given L the matrix267

R̂ that minimizes the error is given by268

R̂ = LTV K2 V K−1
1 L(LTV K−1

1 (V K−1
1 )TL)−1 . (5)

The problem is therefore reduced to the search of a suitable subspace L of rank N which minimizes the Frobenius269

norm of the residual. For more details about the numerical strategy the reader is referred to Wynn et al. (2013).270
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Although the rank of the projection subspace can be prescribed a priori, for consistency, the same N as that in271

the DMD algorithm based on the energy of the POD modes is used in the present study. Ŵ is also employed272

as initial condition for the numerical search of L.273

3.3 Total least squares dynamic mode decomposition (DMDtls)274

The DMDtls approach of Dawson et al. (2016) maintains the projection onto the POD space. However, it275

modifies the way R̂ is computed in order to account for experimental noise. It is assumed that vk+1 ≈ Rvk is276

equivalent to minimizing the residual ek+1 in vk+1 + ek+1 = Rvk through the process described in section 3.1.277

However, this implies that no residual is present in the snapshot vk. Dawson et al. (2016) proposed to consider278

both residuals vk+1 + ek+1 = R(vk + ek) and find the R that minimizes both of them simultaneously. By279

projecting this expression onto the first N POD modes (given by Ŵ ) and reordering280

[
R̂− IN

] [V̂ K−1
1 + Ê1

V̂ K2 + Ê2

]
= 0 , (6)

where the matrices Ê1 = [ê1, . . . , êK−1] and Ê2 = [ê2, . . . , êK ] are obtained by projecting the residual vectors281

ek (k = 1, . . . ,K). One can also define E =

[
Ê1

Ê2

]
as the residual matrix. Note that, although this algorithm is282

valid for any 2N < K, for consistency with the other methods present the first N POD modes are used in the283

present study as described in section 3.1.284

The SVD decomposition

[
V̂ K−1

1

V̂ K2

]
= USHT is then considered (with analogous notation to equation (3)). In285

general, S will be full rank (2N) due to sensor noise. This is clearly at odds with the first matrix of equation (6)286

whose maximum rank is N . The minimization of the residual ||Ê||2F is performed by approximating S with the287

closest N-ranked matrix. According to the theorem presented in Eckart and Young (1936), this is possible if288

the first N elements of s = diag(S) are maintained and set si = 0 for N + 1 ≤ i ≤ 2N :289

min||E||2F ⇔
[
V̂ K−1

1

V̂ K2

]
≈
[
U11 U12

U21 U22

] [
S11 0
0 0

] [
HT

1

HT
2

]
=

[
U11S11H

T
1

U21S11H
T
1

]
. (7)

This expression can therefore substitute the second matrix in equation (6) resulting in R̂ = U21U
−1
11 .290

3.4 High order dynamic mode decomposition (DMDho)291

One interpretation of DMDtls is that it is a modification of DMD which takes information from snapshots292

both before and after to form the matrix R̂. Similarly, Le Clainche and Vega (2017) proposed a higher order293

expansion of equation 2 in which a snapshot is estimated as a linear combination of the previous d snapshots:294

vk+d ≈ R1vk +R2vk+1 + · · ·+Rdvk+d−1 . (8)

Projecting onto the first N POD modes (as done in sections 3.1 and 3.3) and rearranging equation (8) in matrix295

form Ṽ k−d+1
2 = R̃Ṽ k−d1 is obtained where296

R̃ =



0 I 0 · · · 0 0

0 0 I
. . . 0 0

...
. . .

. . .
. . .

. . .
...

0 0 0
. . . I 0

R̂1 R̂2 R̂3 · · · R̂d−1 R̂d


and Ṽ k−d+1

1 =


V̂ k−d+1

1

V̂ k−d+2
2

...

V̂ k−1
d−1 V̂

k
d

 . (9)

A second model reduction is then performed by considering the SVD Ṽ k−d+1
1 = USV T to be truncated at N ′297

modes such that sN ′+1/s1 ≤ εt with si = diag(S): Ṽ k−1+1
1 ≈ Ũ S̃Ṽ T . Projecting Ṽ k−d+1

2 = R̃Ṽ k−d1 onto the298

truncated SVD modes Ũ results in T k−d+1
2 = R̄T k−d1 where R̄ = ŨT R̃Ũ and T k−d+1

1 = S̃Ṽ T . This is solved for299

R̄ by pseudo-inverting the SVD of T k−d1 = AΛBT : R̄ = T k−d+1
2 BΛ−1AT .300

3.5 Reconstruction considerations301

For convenience, the various projection subspaces are referred to as P where PTP = IN and P = Ŵ for DMD,302

DMDtls and DMDho or P = LT for OMD. In the four cases, the linear dynamics are given by R̂. First,303

the original snapshots are projected onto the subspace P as: V̂ K1 = [v̂1, . . . , v̂K ] = PV K1 . To extract the304
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dynamics, the eigenvectors1 qi ∈ CN and eigenvalues µi (i = 1, . . . , N) of R̂ are computed and the snapshots305

are reconstructed using:306

v̂k ≈
N∑
i=1

aiqiµ
k−1
i , k = 1, 2, . . . ,K . (10)

The unknown amplitudes ai correspond to the projection of the first snapshot onto the i-th mode. In practice,307

they are obtained by a least squares fitting. To do so the eigenvalues and eigenvectors are arranged into matrices308

such that Q = [q1, . . . , qN ] ∈ CN×N and M = diag(µi) ∈ CN×N . As such, following (10), K equations are309

written as La = b (see e.g. Le Clainche and Vega, 2017) where310

L =


Q
QM
QM2

...
QMk−1

 , a =


a1

a2

...
aN

 and b =


v̂1

v̂2

...
v̂K

 . (11)

The amplitudes are obtained by solving the system La = b through pseudo-inverting the matrix L. The modes311

in the real space are defined as φi = Pqi (Φ = [φ1,φ2, . . . ,φN ] = PQ in matrix form). The characteristic312

damping coefficients δi = Re(log(µi))/∆t and frequencies ωi = Im(log(µi))/∆t of the linear evolution are given313

by the complex eigenvalues of the matrix R̂ and are the same in the real and projected spaces.314

With the dynamic modes, amplitudes, and eigenvalues obtained the low-order reconstruction of the original315

snapshots vk is performed as:316

vk ≈ vk,rec =

N∑
i=1

aiφie
(δi+iωi)∆t(k−1) , k = 1, 2, . . . ,K . (12)

3.6 Selection of parameters317

The DMD-based methods start by maintaining only the N most energetic POD modes such that σN+1/σ1 < εt.318

The parameter εt is prescribed by the user and should be similar to the uncertainty in the velocity (or membrane319

deformation) measurements (Le Clainche et al., 2017). The larger the value of chosen εt, the more POD modes320

that are discarded as noise. In the present case, different values of εt were tested from 0.01 to 0.05. Whilst the321

former may be too optimistic, particularly for membrane deformation measurements (Bleischwitz et al., 2017),322

it is reasonable to assume that the uncertainty in the measurements was lower than 5%. After some preliminary323

tests (not shown for brevity) it was found that εt = 0.02 provided the best compromise between capturing the324

essential dynamics of the flow whilst keeping the number of noisy modes to a minimum. Note that this value325

must be chosen for a given experiment. Nevertheless, the results did not present major qualitative changes for326

other values of εt.327

In the DMDho algorithm, d has to be specified a priori. As discussed in Le Clainche and Vega (2017) and328

Le Clainche et al. (2017) it should be comprised between d � 1 and a maximum number which scales with329

d ∼ K/3. Different values of 100 ≤ d ≤ 1000 were tested with little influence in the results. Nevertheless, a330

slightly better performance (in terms of the residual between the reconstructed and original fields) was achieved331

with d = 300 hence that value will be used throughout the present study.332

4 Results333

4.1 Flow description: frequencies, dampings, amplitudes and modes334

Low-order models such as the those in the present study are utilized based on their ability to detect dynamics335

present within the flow. The temporal characteristics of these dynamics are described by their frequency and336

damping (growth or decay) given by the imaginary and real parts respectively of the eigenvalues of the reduced337

dynamic matrix R̂. Similarly, their spatial structure is described by the modes φ. Note that, for multi-component338

data such as the present PIV, each mode φi ∈ CJ can be divided in stream-wise and stream-normal modes φui339

and φvi respectively. As all of the data considered is real, the modes appear either as real modes (associated340

with null frequencies) or in pairs of complex conjugates. Nevertheless, the modes’ shape is independent of any341

normalization. For simplicity, each pair of conjugate modes will be referred to as a single mode thereafter. The342

modal amplitude ai (calculated as described in section 3.5) is proportional to the importance of the i-th mode343

in the flow reconstruction.344

1In the DMDho case, it is necessary to first compute q̄i, the eigenvalues of R̄. The eigenvectors qi are then obtained by retaining
only the first N components of Ũ q̄.
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Figure 6: Damping coefficient δ, and amplitude a as a function of the frequency St for various decomposition
methods of the flow field (PIV) data at the two angles of attack.

Figure 6 presents the modal damping and amplitudes for the various methods at both angles of attack.345

Frequencies and modes are calculated in complex conjugate pairs but, for brevity, only the positive part of the346

spectra is shown. Spectral measurements indicate that a quasi-periodic motion is expected in most of the flow347

field (c.f. figure 3). One would therefore expect the modal damping to be zero corresponding to a steady periodic348

motion. It is strikingly clear, however, that this is not the case for DMD and OMD cases. Substituting δ ≈ −50349

in equation (12) implies that after a few snapshots (k ≈ 500) the mode’s gain is already e−50∆tk ≈ 10−14. The350

reconstructed signal therefore vanishes after a few snapshots and these modes cannot describe the physics of the351

flow. This was previously reported by Dawson et al. (2016) for noise-contaminated measurements who, using352

synthetic data, showed that truncated DMD and OMD algorithms are unable to capture accurately the value353

of the mode damping. Similarly, Bagheri (2014) related process noise with a parabolic decay in the estimated354

damping coefficients. It is expected that the present measurements present both measurement noise (due to the355

experimental uncertainty) and process noise (due to the non-linearity of the underlying turbulent flow). Thus it356

is not surprising that the damping coefficients are inaccurately estimated. This has further implications on the357

amplitudes determined by means of equation (10). The methodology finds ai such that they minimize the least358

square error between the reconstructed and the original snapshots. However, if the reconstructed snapshots are359

virtually zero after a few time steps the interpretation of ai is rendered invalid.360

In order to minimize the influence of signal noise, Dawson et al. (2016) proposed to use DMDtls as a means361

to obtain the low-order dynamics R̂ as described in section 3.3. Figure 6 shows that the damping coefficients362

using DMDtls are significantly closer to δ ≈ 0. From a qualitative point of view, this reflects the underlying363

flow more accurately; approaching the condition of steady periodicity. Nevertheless, from a quantitative point364

of view, these damping coefficients are also problematic. In fact, some of them are even δi > 0; implying that365

eδi∆tk →∞. This necessarily implies that ai → 0 for those modes with δi > 0 (as the data is finite).366

Some of these problems may be solved by using DMDho as described in section 3.4. By including a larger367

number of previous snapshots, the damping and frequencies of the flow are estimated with more accuracy due368

to the method receiving information of a larger time interval to estimate a given snapshot (c.f. equation (8)).369

In this case, the number of modes is largely reduced as the POD modes are truncated twice hence only the370

most important modes survive the double truncation. In contrast with the previous methods, the damping371

coefficients estimated by means of DMDho are virtually 0 as would be expected for steady periodic motion.372

They are not strictly 0 due to numerical and experimental noise however their small magnitude implies negligible373

amplification or damping across the 5000 snapshots.374

A further challenge when interpreting the results of these low-order models is identifying the representative375

dynamics. Following the spectral results of figure 3, one would expect that the flow may be largely described376

by a single mode/frequency pair whose spatial and temporal properties provide a qualitative description of377

the flow. The selection of a single mode is straightforward in the DMDho case for α = 15◦ where the double378

truncation removes all the modes but two; one associated with the mean flow and another one at a frequency379

similar to the Fourier spectra. However, this is not so straightforward in the other cases. Ideally the modes380

10



Figure 7: Damping coefficient δ, and amplitude a as a function of the frequency St for various decomposition
methods of the membrane deformation (DIC) data at the two angles of attack.

would be selected by assessing the decompositions’ results without resorting to known information such as the381

spectral content of the flow. For flows with apparent periodic motion one could make an argument to select382

those modes with their damping as close to 0. Nevertheless it seems ill-posed given that the damping coefficients383

are easily incorrectly estimated. This is also problematic when assessing results from DMDtls or DMDho since384

the damping coefficients are virtually 0. In those cases, the most reasonable assumption is to select the modes385

with the second highest amplitude ai (in convective flows the largest amplitude is always associated with the386

mean flow). The problem exists however that large ai may be artificially associated with highly damped modes;387

pointing to a connection between the wrongly estimated damping coefficients and the modes’ amplitudes. To388

avoid this problem Thomareis and Papadakis (2017) proposed using |aieδi∆tK | as mode-selection criteria for389

their application of non-truncated DMD of the direct numerical simulation of flow around an airfoil. However,390

in our current dataset eδ∆tK vanishes independently of how large is ai.391

In summary, the damping coefficients are not correctly estimated; implying that mode selection based on δi392

is problematic. Analogously, it implies that the values of ai are somehow contaminated by the wrong estimation393

of δi hence any possible mode selection based on ai may also be ill-advised. The method in which these two394

problems are absent is DMDho where the damping coefficients are virtually 0 hence the information contained395

in ai is more meaningful.396

The same methods can be applied to the membrane deformation data to obtain the characteristic frequencies397

and damping coefficients. The results of this decomposition are presented in figure 7 along with the modes’398

amplitudes. Unlike the turbulent flow in the wing’s wake, the membrane deformation can be more closely399

approximated by a linear process. Consequently, the various methods only detect two significant modes which400

resemble the mean deformation and the primary vibrational mode. This could be anticipated given the POD401

decomposition presented in Bleischwitz et al. (2016) where the first fluctuating mode contains 84.3% of the402

energy for the α = 15◦ case. Nevertheless, the problem of inaccurate estimation of the damping coefficients is403

still present for the truncated DMD and OMD methods.404

Despite the difficulty in selecting a single mode/frequency pair for the flow data the modes with either405

smallest damping (for DMD and OMD methods) or with largest amplitude (for DMDtls and DMDho) are406

tentatively selected. The selected modes are encircled with a dashed line in figures 6 and 7 and their properties407

(|a?/a1|, St? and δ?) summarized in table 1. From a qualitative perspective, it is clear that all the four methods408

capture the same flow event characterized by St ≈ 0.75 or St ≈ 0.83 for the α = 15◦ and α = 25◦ cases409

respectively. In the present case the frequency resolution is ∆f = 0.8 Hz which, in non-dimensional units,410

corresponds to ∆St ≈ 0.01. Consequently, the dispersion obtained in St? is of the same order of that of the411

Fourier spectra. From a qualitative point of view, the relative difference between the characteristic frequency412

of the flow and membrane deformation (shown in the last row of table 1) is reasonable for all the four methods413

for α = 15◦. Nevertheless, it is clear that the DMDho performance is at least two orders of magnitude better at414

estimating the same frequency for both flow and membrane deformation. In fact, if one only considers DMD,415

OMD and DMDtls methods for the α = 25◦ case; one could conclude that there is not any significant flow-416
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α = 15◦ α = 25◦

DMD OMD DMDtls DMDho DMD OMD DMDtls DMDho
P

IV
Number of modes 20 20 20 3 33 33 33 26

|a?/a1 |(%) 12 0.029 0 5.9 6.0 9.0 8.2 2.4
St? 0.747 0.731 0.748 0.750 0.820 0.827 0.817 0.836
δ? -14 -17 0.066 0.013 -27 -160 2.7 -0.027

D
IC

Number of modes 3 3 3 3 3 3 3 3
|a?/a1| (%) 6.6 5.8 2.8 5.9 3.2 2.5 0.59 2.2

St? 0.724 0.724 0.735 0.750 0.628 0.629 0.675 0.836
δ? -9.2 -8.9 -1.5 0.0061 -37 -36 -7.9 0.044

St?PIV −St
?
DIC

St?DIC
(%) 3.1 0.90 1.7 0.0033 23 24 17 0.061

Table 1: Summary of frequencies, damping coefficients and amplitudes for the decompositions of PIV and DIC
data for the selected modes. Lower row shows the relative difference between the estimated frequencies of the
flow and membrane deformation. Note that 3 modes correspond with a mode for the mean flow plus a pair of
conjugate modes hence representing a single dynamic phenomenon.

structure interaction as the characteristic frequencies are significantly different (up to 24% difference). However,417

the same phenomena studied by means of DMDho shows virtually no difference between the PIV and membrane418

frequencies implying a significant flow-structure interaction as was reported by Bleischwitz et al. (2017).419
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Figure 8: Real part of the characteristic flow mode φv? (at frequency St?) for various decomposition and the
two angles of attack. The modes are arbitrarily normalized such that the imaginary part of φv? at the location
of the pink dot (x̂ = −0.2, ŷ = 0.3) is null.

Apart from the temporal properties (damping and frequencies) it is also of interest to inspect the spatial420

structure of the modes for the various decompositions. Figure 8 shows the the vertical mode φv? associated with421

the frequencies summarized in table 1 and encircled in figure 6. The modes’ normalization is arbitrary and their422

real part changes according to the normalization coefficient. Thus, in order to present a meaningful comparison,423

the modes are normalized such that the imaginary part of φv? at the point x̂ = −0.2, ŷ = 0.3 is null. Then424

their real part is plotted in figure 8 for the various methods and angles of attack. It is clear that, despite small425

differences, the spatial structure of the modes remains independent of the decomposition method. The largest426

difference is observed for the OMD decomposition of the α = 25◦ case. This is not surprising as OMD is the427

only method that seeks an alternative low-order subspace to project the dynamics.428
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The dominant mode shape is related with the leading edge vortex rolling and convecting downstream along429

the membrane chord. The reminiscence of this vortex is also observed for x̂ > 0 i.e. downstream of the430

trailing edge. This mode shape is in agreement with the observations of the most energetic POD mode of the431

velocity fluctuations presented in Bleischwitz et al. (2017). In fact, the mode/frequency pair establishes an432

straightforward relationship between the spectral content shown in figure 3 and the formation of leading edge433

vortices.434

To summarize, any of the four tested methods are able to provide a qualitative description of the flow. This435

implies that the frequencies and mode shapes found by any of these methods are relatively insensitive to the436

methodology. However, the damping coefficients (and therefore the amplitudes) are not correctly estimated437

except for the DMDho method. This may imply important qualitative differences when assessing the fluid-438

structure interaction (which has been reported to be significant indeed using the spectral coherence figure 5).439

The selection of the dominant mode/frequency pair is also observed to be challenging for methods other than440

DMDho due to the problem with the damping estimation. A more demanding assessment can be performed by441

assessing the flow reconstruction using equation 12 as will be investigated in the following section.442

4.2 Flow reconstruction443

Section 4.1 discussed which are the most dominant modes and frequencies of the flow field and the membrane444

deformation. Here, the flow/membrane reconstruction is focused. As described above, the flow can be recon-445

structed using a linear combination of spatial modes evolving temporally with characteristic frequency and446

damping (c.f. equation 12).447

4.2.1 Reconstruction via calculated damping coefficients448

As a first approach, the time series at an arbitrary point located in the wing’s wake (x̂ = −0.2, ŷ = 0.3 shown449

with a pink dot in figure 8) is studied. Due to it’s relation to the membrane deformation, in the following the450

analysis is focused around the fluctuations of the vertical flow velocity normalized with the freestream velocity451

v̂′ = v′/U∞. Figure 9 shows the measured velocity compared with its reconstructed counterpart using the452

various methodologies. Three subsets are zoomed in on to highlight distinct distinct aspects of the results.453

For times t̂ < 10 all of the decompositions perform adequately. However, by t̂ ∼ 10 the estimations using454

DMD and OMD vanish to 0. This was previously discussed in section 4.1 as a consequence of the incorrect455

estimation of the damping coefficient. This problem is more significant for the OMD method (also reported456

by Baj et al., 2015; Rodŕıguez-López et al., 2016) which vanishes for t̂ ∼ 1. The reconstruction based on457

DMDtls slowly grows in amplitude until t̂ ∼ 230 where the exponential term eδ∆tk tends to infinity and so458

the reconstructed velocity. For large times t̂ > 400 the only signal which is not either 0 or infinity is the459

reconstruction based on DMDho. This reflects the properties mentioned above: first, DMDho estimates the460

damping coefficients more adequately. Despite the fact that they are not strictly 0 (c.f. table 1) their influence461

up to t̂ ∼ 500 is negligible as observed in figure 9. In addition, the frequency estimation is reasonable. This462

can be observed qualitatively in the top right subplot of figure 9 where the sinusoidal line estimated by DMDho463

appears to align with the peaks of the velocity fluctuation measured with PIV.464

4.2.2 Reconstruction via artificially null damping coefficients465

The main barrier to a good reconstruction seems to be the incorrect determination of the damping coefficients466

either due to noise contamination or due to the inability of the various methods to capture the underlying non-467

linear dynamics over long times. The non-zero estimation of these damping coefficients result in reconstructed468

velocities that either vanish or tend to infinity. Given that the present flow is expected to be quasi periodic, it is469

of interest to have the damping coefficients artificially set to δi = 0 and then the flow field reconstructed using470

equation (12). This provides a useful comparison using the same analysis of the velocity time series shown in471

figure 10.472

In contrast to tha results in figure 9, the reconstructed velocity neither vanishes nor tends to infinity in473

figure 10 by design. Note that as the damping for the DMDho was already near zero the result is virtually474

unaltered. For the other decompositions, the magnitude is significantly smaller than the reconstructed velocity475

field. This may not pose a problem for some applications like flow control but compromises undoubtedly the476

flow reconstruction. This is further evidenced by the sinusoids following less closely the velocity signal measured477

by means of PIV. This frequency mismatch is particularly clear in the OMD case dominated by an artificial478

low-frequency component.479
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Figure 9: Normalized vertical velocity fluctuations v̂′ at an arbitrary point (x̂ = −0.2, ŷ = 0.3, shown with a
pink dot in figure 8) measured by PIV and using the various decomositions. The three upper plots represent
zoomed regions of the lower graph. For clarity, some lines are suppressed in these zoomed plots.

4.2.3 Correlations of reconstructions with original flow field480

One way to quantify the phase alignment between the signals of the original and reconstruction is to define the481

temporal correlation coefficient ρ as482

ρu(x̂, ŷ) =
u′(x̂, ŷ, t̂)u′rec(x̂, ŷ, t̂)

u′rmsu
′
rec,rms

, (13)

where the overline represents the temporal average. Similarly, ρv is defined by substituting the stream-wise483

velocity u′ by the vertical velocity v′. A perfect correlation ρ = 1 only implies that, at every instant of484

time, the undulations of the signals are in phase. This is judged to be sufficient to quantify the degree of the485

reconstruction of the velocity fields. However this criterion neglects the significantly lower magnitude of v̂′486

shown in figure 10. The overall performance of each method is assessed by considering the spatial average over487

the J points considered in the decompositions: 〈ρu〉 or 〈ρv〉. Analogously, for the membrane deformation ỹ488

and ỹrec and their correlation coefficient ρy(x̃, z̃) (with spatial average 〈ρy〉). To avoid to the issue of vanishing489

or infinitely large velocities, the correlations are presented for the artificially null damping coefficients δ = 0490

reconstructions.491

Figure 11 shows the correlation map for the vertical velocity fields. The correlation is always higher for492

the α = 15◦ case than for the α = 25◦ case. This is probably due to the periodic shedding from the leading493

edge for the former for which the wake is less dominated by the chaotic turbulence. The average correlation is494

virtually 0 for both DMD and OMD reconstructions, despite the artificial damping. A closer inspection of the495

time series reveals that this is due to a slight mismatch between the frequency estimated by the method and the496

real distinct frequency observed in the flow. It is therefore unsurprising that DMDho performs better as it is497

the only method that estimates the same frequency for both PIV and DIC decompositions. This does not imply498

that the other methods are incorrect. In fact, the relative differences between the estimated frequencies by every499

method is of the same order of the spectral resolution using fast Fourier transform. Nevertheless, reconstructing500

the signal is a significantly more demanding test. Therefore, greater accuracy in the determination of St? is501

required for the data to be well reconstructed.502

Considering the spatial distribution of the correlation in the DMDho case; a smaller correlation can be503

observed in the flow regions where shear layers appear. This result is in agreement with figure 3 where the504

shear layers are reported to be dominated by a distinctly different frequency. Further, as they are uncorrelated505

with the membrane deformation (c.f. figure 4), one would not necessarily expect the reconstruction to perform506

adequately in these areas. To assess the contribution of the shear layers to the spatial average the average507

conditioned to St? = 0.75 is computed following figure 3. By comparing the former 〈ρv〉 = 0.42 with the508

conditioned 〈ρv|St? = 0.75〉 = 0.45, it is concluded that the shear layers in the global reconstruction of the flow509

field are not of leading order importance.510
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Figure 10: Normalized vertical velocity fluctuations v̂′ at an arbitrary point (x̂ = −0.2, ŷ = 0.3, shown with
a pink dot in figure 8) measured by PIV and using the various decomositions. The damping coefficients are
set to δ = 0. The three upper plots represent zoomed regions of the lower graph. For clarity, some lines are
suppressed in these zoomed plots.

A similar analysis was performed for the membrane deformation. For brevity, the time series reconstruction511

(as done in figures 9 and 10 for the PIV data) is not shown. However, the problem of vanishing reconstructions512

persisted accordingly (as can also be inferred from δ < 0 in figure 7). Therefore, the damping coefficients were513

set to δ = 0. The fidelity of the reconstruction was quantified just as for the velocities using ρy as shown in514

figure 12. Similar conclusions can be drawn from this figure: (i) the correlation of the real and reconstructed515

fields is virtually 0 for DMD, OMD and DMDtls. (ii) The reconstruction is comparatively better for the α = 15◦516

case. (iii) There is a significant level of correlation, i.e. a satisfactory degree of reconstruction using the DMDho517

method. This result is surprising in the sense that one would expect these methods to exhibit better performance518

for the membrane deformation as the phenomenon is intrinsically more linear with comparatively less non-linear519

effects due to turbulence. This may be the reason why the correlation coefficient reaches 〈ρy〉 = 0.85 via DMDho520

as opposed to 〈ρv〉 = 0.42 for the PIV case. It appears that the lack of accuracy regarding the estimation of521

the primary oscillating membrane frequency for the other three methods renders them unable to accurately522

reconstruct the membrane deformation (figure 7).523

To summarize, whilst all methods considered produce a sufficiently good estimation of the flow phenomena524

(similar dominant modes and similar estimated St? within frequency resolution), this is not true for the recon-525

struction process following equation (12). A first obstacle is encountered because the damping coefficients are526

estimated to be non-zero while the process is quasi-periodic. However, even avoiding this problem, the slight527

differences in the frequency estimation cause DMD, OMD and DMDtls to fail in the reconstruction process528

whereas the reconstruction using DMDho provides a satisfactory level of correlation with the original field.529

This correlation level is higher in the membrane deformation, likely due to it’s linear nature.530

We remark that although the lack of correlations may leave the impression that the methods other than531

DMDho fail completely, this largely stems from the choice of quantifying the reconstruction as defined in532

equation 13. In fact, the mode shapes (figure 8) and estimated frequencies (table 1) agree reasonably well533

across methods. A slight misalignment in phase due to inaccuracies in the estimated mode frequency may534

lead to zero correlation. An alternative quantification could account for this by shifting the reconstructions535

forwards and backwards in time. The present study is however focused on the efficacy of the instantaneous536

reconstructions without considering time lags. Nevertheless, this effect remains important in the interpretation537

of the presented results.538

4.3 A combined fluid-structure reconstruction539

Section 4.2 has shown that for the present data the only method able to provide a satisfactory reconstruction540

of the flow-structure interaction is DMDho. This was shown by performing two separate decompositions: one541

for the flow and one for the membrane. The only point where fluid-structure interaction may be inferred is542
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Figure 11: Correlation coefficient maps ρv(x̂, ŷ) of the real and reconstructed fields of the vertical velocity fields
for various decompositions and the two angles of attack. The legends show the numerical values of the spatial
averages 〈ρu〉 and 〈ρv〉. Note that the maps of ρu(x̂, ŷ) are not shown.

the comparison of the PIV and DIC characteristic frequencies (only 0.003% difference for the α = 15◦ case).543

Alternatively, instead of forming the snapshot vector vj with only the PIV or the DIC fields (as described in544

section 3), one can instead generate a new snapshot by combining the PIV and the DIC fields together. In545

this case vj ∈ RJ where J = JPIV + JDIC ≈ 7 × 104 is twice the number of PIV vectors plus the number of546

DIC points. In this way, a linear model is sought that combines the flow and membrane information, taking547

advantage of the flexibility of DMD. As mentioned in section 1, these methods have been extensively used to548

retrieve information from fluid flow but they have not been applied to fluid-structure problems. Recently, Goza549

and Colonius (2017) considered the simulation of the flow over a flapping flag. In their study they also used550

a combined approach including the velocity of the structure in vj . They proposed a different weighting for551

the flow and structural deformations based on their respective mechanical energy. However, they only use that552

weighting for the computation of POD modes (as POD modes are order based on the energy content) and not553

in the DMD.554

In the present study, this combined approach will be carried out using the DMDho method as it has clearly555

outperformed the other three methods. The vector vj is formed with the PIV and DIC data (no deformation556

velocity or weighting are considered). Further, for consistency, the same values of εt = 0.02 and d = 300 are557

maintained as in the previous cases.558

The performance of the combined approach can be assessed by comparing the correlation coefficient between559

the real and reconstructed fields. Figure 13 presents the flow results for both separated and combined approaches.560

There appears to be virtually no difference between the two methodologies. Further, the same features can be561

observed: worse reconstruction in the shear layers where the flow is not driven by the membrane deformation,562

marginally better reconstruction of the vertical velocity and significantly better performance in the α = 15◦563

case. The membrane deformation reconstruction is only marginally improved by using the combined approach564

in the α = 15◦ case (〈ρy〉 = 0.86 contrasting with 〈ρy〉 = 0.85 in the separated approach).565

Using the other decompositions (DMD, OMD and DMDtls), it was observed in previous sections that the566

frequencies estimated in the PIV or DIC cases were different (c.f. table 1). This result could potentially lead567

to an erroneous conclusion in which the fluid-structure coupling was neglected (especially in the α = 25◦ case568

where the difference was of the order of 20%). Using the combined approach, this problem could potentially be569

avoided as the same frequency is estimated for the fluid and structure together (which are now combined into a570

single mode). However, the same problems that were reported in sections 4.1 an 4.2 still remain: (i) inaccurate571

estimation of damping coefficient (preventing successful reconstruction). (ii) Artificially setting δ = 0 does not572

improve the result due to inaccurate frequency estimation of the dominant periodic motions. It is therefore573

concluded that, although providing the same qualitative description of the flow phenomena (frequencies and574
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Figure 12: Correlation coefficient maps ρy(x̃, z̃) of the real and reconstructed fields of membrane deformation
for various decompositions and the two angles of attack. The legends show the numerical values of the spatial
average 〈ρy〉.

modes); these three decompositions (DMD, OMD and DMDtls) are unable to produce qualitative reconstruc-575

tions of the flow-structure interaction in the present data. The fact that these decompositions fail to provide a576

satisfactory reconstruction of the flow field in the present case does not imply that they would fail to do so in all577

circumstances. In fact, it is likely that the inaccurate estimation of the frequency (which is the main source of578

reconstruction error) is due to the presence of measurement noise. It is therefore expected that this may change579

for other problems. However, the use of DMDho is expected to yield improved estimation and reconstruction580

based on these results.581

It should be noted that DMD-based methods do not extract the flow dynamics based on their energy content.582

Instead, the different modes and/or frequencies are extracted based on their dynamical significance. Further,583

modes are associated with a flow phenomenon with the same frequency are likely to be included in the same584

spatial structure. For example, the lack of energy-based information enabled Baj et al. (2015) to detect and585

isolate wakes of small cylinders originated in the vicinity of larger wakes. Baj et al. (2015) showed that energy-586

based methodologies, such as POD, failed to capture small wakes due to their small relative energy content.587

This is the same reason why, more recently, Goza and Colonius (2017) proposed to apply a different weighting588

to the fluid and structure data to compensate for their unequal distribution of energy. These authors also589

claimed that the same weighting was not applied to their DMD case for consistency with most of the cases590

in the literature. It should be noted that DMD-based methods should not require energy weighting as they591

will detect the dynamics purely in terms of mapping one flow instant to the next through the propagator R592

(equation 2). Such a weighting would play a role mainly for intelligent choices of the POD subspace truncation593

threshold εt based on an estimation of the role played by combined uncertainty in the quantities of interest.594

To test the validity of DMD independence of energy-based weighting, the relative importance of the flow and595

structural data can be systematically varied. The easiest way to do this is to consider only a subset of the DIC596

points to describe the membrane deformation. Note that, in the previous examples, the number of PIV data597

points (JPIV ≈ 6×104) and the number of DIC data points (JDIC ≈ 104) were of the same order of magnitude.598

The same procedure is repeated but now reducing JDIC in systematically. The membrane information was599

progressively reduced down to taking a single point. For consistency the performance of the method was600

evaluated as the spatial average of the correlation coefficient between the measured and reconstructed fields.601

Figure 14 shows 〈ρ 〉 for the fluid velocity and the membrane deformation as a function of the number of data602
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points describing the membrane deformation. It is clear that the performance of the method is not affected by603

JDIC . Hence it is concluded that, as far as the flow and structural data happen at the same frequency, the604

performance of DMD-based methodologies is independent of the relative energy of flow and deformation.605

5 Conclusions606

Simultaneous measurements of flow velocity (PIV) and membrane deformation (DIC) are considered in the flow607

past a membrane wing at two angles of attack α = 15◦ and α = 25◦. It is observed that the majority of the608

flow exhibits a single dominant frequency as a consequence of the coupling between the fluid and membrane.609

This fluid-structure interaction was also characterized by means of the spectral coherence, γ, showing that610

there exists an approximately linear relationship (γ 6= 0) between the membrane deformation and the flow at a611

particular Strouhal number St? (the dominant frequency of the flow field).612

As this coupling occurs primarily at a single frequency, the problem is suitable for the application of low-613

order models in which each spatial mode is uniquely associated with a temporal frequency. Consequently, the614

suitability of four such models (DMD, OMD, DMDtls and DMDho) were tested. As a first approach, these615

methodologies were applied to the flow field and membrane deformation separately. It was shown that the616

dominant mode/frequency pair selection is not straightforward due to the sensitive estimation of the damping617

coefficients. Their inaccuracy implied that the flow reconstruction either vanishes (δ < 0) or tends to infinity618

(δ > 0); compromising the reconstruction. Nevertheless, the four decompositions provided the same qualitative619

flow description and the spatial modes were similar. Furthermore, the dominant frequencies estimated by620

the various decompositions coincided within the same frequency resolution of the Fourier transform (though621

the precision of that estimation proved very important in the quality of the reconstructions). Using this622
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methodology, the degree of fluid-structure interaction was assessed by comparing the dominant frequencies of623

the PIV and DIC fields. DMD, OMD and DMDtls exhibited similar behaviour: when the interaction was624

stronger (α = 15◦) the estimated dominant frequencies varied less than 3% and when the interaction was625

weaker (α = 25◦) the PIV and DIC frequencies differed up to 20%. On the other hand, DMDho performed626

better than the other three decompositions and the estimated frequencies differed less than 0.1% independently627

of α. Moreover, the damping coefficients estimated by DMDho were sufficiently close to 0; avoiding the problem628

of reconstructions vanishing or tending to infinity.629

The flow and membrane deformation reconstruction was assessed by means of the average temporal corre-630

lation between the measured and reconstructed fields. This was shown to be virtually 0 for the DMD, OMD631

and DMDtls decompositions. This was due to (i) inaccurate estimation of the damping coefficients, δ 6= 0, and632

(ii) the imprecise estimation of the dominant frequency. It was demonstrated that although the former can be633

improved by artificially setting δ = 0, the latter problem prevailed and the reconstruction was unsuccessful. In634

contrast, DMDho resulted in 〈ρv〉 = 0.42 and 〈ρy〉 = 0.85 in the α = 15◦ case. This implies that the flow and635

the membrane deformation are reconstructed with satisfactory accuracy with this method.636

The difference in dominant frequency of the PIV and DIC cases can be avoided by using a combined approach637

in which the low-order model is applied to a combined snapshot containing both the PIV velocities and the638

DIC deformations. However, it was found that doing so did not circumvent the imprecise estimation of the639

dominant frequency. DMDho remained the only decomposition able to provide a satisfactory reconstruction.640

By taking a smaller subset of the membrane deformation data points it was shown that, as opposed to previous641

approaches based on energy content (POD), this methodology enables a satisfactory reconstruction of the642

problem independently of the relative energy of the fluid and membrane deformation.643
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