

Optimization and visualization of phase modulation with filtered and amplified maximal-length sequence for SBS suppression in a short fiber system: a theoretical treatment

YIFENG YANG,^{1,2} BINGLIN LI,¹ MEIZHONG LIU,¹ XUCHEN HUANG,² YUTONG FENG,² DAN CHENG,² BING HE,^{1,3} JUN ZHOU,¹ AND JOHAN NILSSON^{2,4}

¹Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China

²University of Southampton, Southampton SO17 1BJ, UK

³bryanho@siom.ac.cn

⁴jn@orc.soton.ac.uk

Abstract: We use a model to investigate both the temporal and spectral characteristics of a signal lightwave which has been spectrally broadened through phase modulation with a maximal-length sequence (MLS), which is a common type of pseudo-random bit sequence. The enhancement of the stimulated Brillouin scattering (SBS) threshold of the modulated lightwave in a fiber system is evaluated by numerically simulating the coupled three-wave SBS interaction equations. We find that SBS can build up on a nanosecond-level time scale in a short fiber, which can reduce the SBS suppressing capability of MLS modulation waveforms with GHz-level clock rate, if the sub-sequence ("run") lengths with the same symbol (zero or one) of the MLS extend over several nanoseconds. To ensure the SBS buildup is perturbed and thus suppressed also during these long sub-sequences, we introduce a low-pass filter to average the signal over several bits so that the modulation waveform changes gradually even during long runs and amplify the RF modulation waveforms to the level required for sufficient spectral broadening and carrier suppression of the optical signal. We find that the SBS suppression depends non-monotonically on the parameters of the filtered and amplified MLS waveform such as pattern length, modulation depth, and the ratio of low-pass filter cutoff frequency to clock rate for maximum SBS mitigation. We optimize the SBS suppression through numerical simulations and discuss it in terms of the temporal and spectral characteristics of the lightwave and modulation waveform using derived analytical expressions and numerical simulations. The simulations indicate that the normalized SBS threshold reaches a maximum for a RMS modulation depth of 0.56π and a ratio of filter cutoff frequency to clock rate of 0.54 and that MLS9 is superior to other investigated patterns.

© 2021 Optical Society of America under the terms of the [OSA Open Access Publishing Agreement](#)

1. Introduction

Yb-doped fiber amplifiers (YDFAs) at wavelengths around $1\text{ }\mu\text{m}$ are well-established as reliable laser sources for high power and brightness [1,2]. Still, they are limited by nonlinearities, optical damage, and thermal problems [3–6]. Several beam combining schemes aiming to overcome their limitations were demonstrated in recent years [7–9]. Both spectral and coherent beam combining benefit from monolithic fiber amplifiers with narrow linewidth and good beam quality [10–13]. However, for those beam combining schemes, the nonlinear effect of stimulated Brillouin scattering (SBS) limits power scaling, and suppression techniques are therefore applied [14–16]. SBS is a spectrally narrow process that involves scattering off an acoustic wave. External phase modulation of a single-frequency seed laser with a temporal pseudo-random bit sequence (PRBS)

realized in the radio-frequency (RF) domain has been shown to be effective for broadening the spectrum and thus suppressing SBS [17,18]. The PRBS is normally a maximal-length sequence (MLS) of symbols (bits) "0" and "1". Control of the clock rate (i.e., the inverse of the bit duration) and pattern length of the MLS provides useful flexibility and control of the frequency spacing as well as of the total linewidth of the optical spectrum with the basic binary phase modulation between 0 rad (zero-symbol) and π rad (one-symbol), or more generally, between the zero-symbol phase ϕ_0 and $\phi_0 + \pi$. In this scenario, the optical phase can be varied faster than the SBS buildup time, which prevents the acoustic wave from building up to a large amplitude, and the SBS gain will be reduced consequently [19,20]. In addition, the effect of low-pass filtering and amplification of the MLS on the SBS suppression has been investigated [21,22]. However, despite the success and widespread use of MLS phase modulation for SBS suppression, reports of rigorous analytical expressions for the resulting optical spectra phase modulated with a MLS waveform and investigations of the temporal and frequency characteristics of MLS phase modulation are sparse [23]. Furthermore, the optimization of the waveform parameters, i.e., pattern length, clock rate, modulation depth, and filter bandwidth, for best SBS mitigation has yet to be reported in detail.

In this work, we report theoretical investigations of SBS suppression in a short passive fiber through MLS phase modulation of a single-frequency optical signal. Resulting optical spectra are found analytically by considering the MLS as a cyclostationary sequence. The dependence of the carrier and sideband components on the modulation depth (i.e., amplitude of the phase modulation) and the pattern length is illustrated. We introduce the triply coupled set of nonlinear partial differential equations to describe the SBS dynamics of the modulated optical signal, and solve it with numerical integration. It is shown that when unperturbed, the SBS can build up with a nanosecond-level time constant in a short fiber, which is faster than the decay constant of the acoustic wave. The buildup is quasi-exponential, and can therefore compromise the SBS suppressing capabilities of the MLS phase modulation, insofar as this has long uninterrupted sub-sequences (known as "runs") of the same symbol, which can extend over several nanoseconds. We introduce a low-pass filter to ensure the modulation waveform changes even during long runs, and use a RF amplifier to reach desired phase modulation depth. The dependence of the normalized SBS threshold and the RMS linewidth on the filter cutoff frequency and the phase modulation depth for MLS with different pattern lengths is investigated, and the optical spectra for some local maxima are illustrated. Aiming to accomplish the best SBS mitigation, parameters of the filtered and amplified MLS such as pattern length, modulation depth, and the ratio of filter cutoff frequency to clock rate are optimized numerically.

This paper is structured as follows. Section 2 describes the numerical model and the SBS dynamics. The SBS threshold and the buildup time for a short fiber system are investigated. In section 3, the temporal characteristics of the MLS waveform and the frequency characteristics of the phase modulated optical signal are discussed. Section 4 illustrate the SBS suppressing capability for unfiltered MLS phase modulation cases. Optimization of the filtered and amplified MLS phase modulation is investigated in Section 5. Section 6 concludes the paper.

2. Numerical model

The MLS phase modulation and SBS suppression scheme we consider is shown in Fig. 1. A single-frequency seed laser at 1075 nm (typically with linewidth less than 5 MHz) is externally modulated by an electro-optic phase modulator (EOPM). A MLS waveform in the RF domain is filtered by a low-pass filter and amplified by a RF amplifier and then drives the EOPM. The modulated lightwave is then amplified in an optical amplifier, the output of which is spliced to a passive delivery fiber with length L . The optical amplifier is assumed to be ideal, so does not introduce any distortions. Thus, the pattern length and the clock rate of the MLS, the RF power (related to the modulation voltage and depth), and the cutoff frequency of the filter control the

103 modulation and thus spectral broadening of the lightwave. We then consider the SBS dynamic in
 104 this passive fiber. Although SBS could also occur in the amplifier, this is not considered.
 105

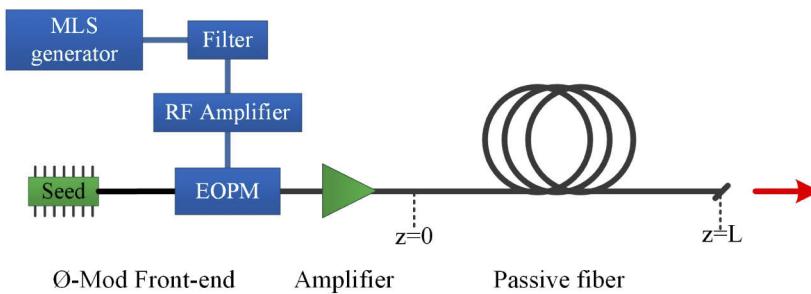


Fig. 1. Schematic diagram of the MLS phase modulation and short fiber system. $z = 0$ and $z = L$ denote the input and output end of the passive fiber. EOPM, electro-optic phase modulator.

The optical waves propagating in the fiber core can be represented by the electric field A_L of the forward propagating laser and the electric field A_S of the backward propagating Brillouin Stokes wave [17]. We do not consider the SBS seeding effect [21] that can occur when the linewidth exceeds the Brillouin frequency shift (~ 16 GHz for 1064 nm), because the spectral broadening in this work is small compared to that, and because it is possible to fine-tune the clock rate so that the spectral lines of the signal avoid the Brillouin gain peak [24]. Using the slowly varying envelope approximation and ignoring the group velocity dispersion and the background propagation losses (negligible in a short fiber), the temporal and spatial evolution of the laser, Stokes and acoustic fields in a fiber are determined by the following coupled system (corresponding to a Lorentzian Brillouin line):

$$\frac{c}{n} \frac{\partial A_L}{\partial z} + \frac{\partial A_L}{\partial t} = i\sigma\rho A_S \quad (1)$$

$$-\frac{c}{n} \frac{\partial A_S}{\partial z} + \frac{\partial A_S}{\partial t} = i\sigma\rho^* A_L \quad (2)$$

$$(\alpha - i)\frac{\partial \rho}{\partial t} - i\frac{\Gamma_B}{2}\rho = \chi A_L A_S^* - if \quad (3)$$

Here $\sigma = \omega\gamma_e/2n^2\rho_0$, $\chi = \epsilon_0\gamma_e k_q^2/2\Omega_B$, $\alpha = \Gamma_B/\Omega_B$, respectively. The phonon decay rate $\Gamma_B = 2\pi/17.5 \text{ ns}^{-1}$ [17] = $2\pi \times 57.1 \times 10^6 \text{ s}^{-1}$. This is also the full-width at half-maximum (FWHM) of the Brillouin line in angular frequency. Thus, in “regular” frequency, the FWHM Brillouin linewidth $\Delta\nu_B$ becomes 57.1 MHz. The phonon lifetime τ_p is the inverse of the decay rate and becomes 2.79 ns. Furthermore, $\omega = 2\pi c/\lambda$ and $\Omega_B = 2n\nu_A\omega/c$ is the laser and resonant acoustic angular frequency, respectively. The acoustic wave number $k_q = 4\pi/\lambda$. The definition of some other parameters are like this: γ_e is the electrostrictive constant, ρ_0 is the mean density of the fiber medium, n is the core refractive index, c is the velocity of light in vacuum, ϵ_0 is the dielectric constant, ν_A is the speed of the acoustic wave, and ρ is the amplitudes of the acoustic wave, respectively. Since the second derivative of the acoustic field has negligible influence on the simulation results with low optical linewidths, we omit this term for simplicity. The quantity $f_{j,k} = \sqrt{ncQ/(\Delta t)^2}S_{j,k}$ in RHS of Eq. (3) represents the initiation of the SBS process from Langevinian noise [25], where $Q = 2k_B T_c \Gamma_B \rho_0 / A \nu^2$, k_B is Boltzmann’s constant, T_c is the temperature in the fiber core, and A is the fiber effective mode area, respectively. The quantity $S_{j,k}$ denotes a complex random function with Gaussian distribution of zero mean and unit variance. The indices j and k enumerate the spatial and temporal points of the numerical grid along the fiber and in time. The symbols Δz and Δt denote the spatial and temporal grid spacing,

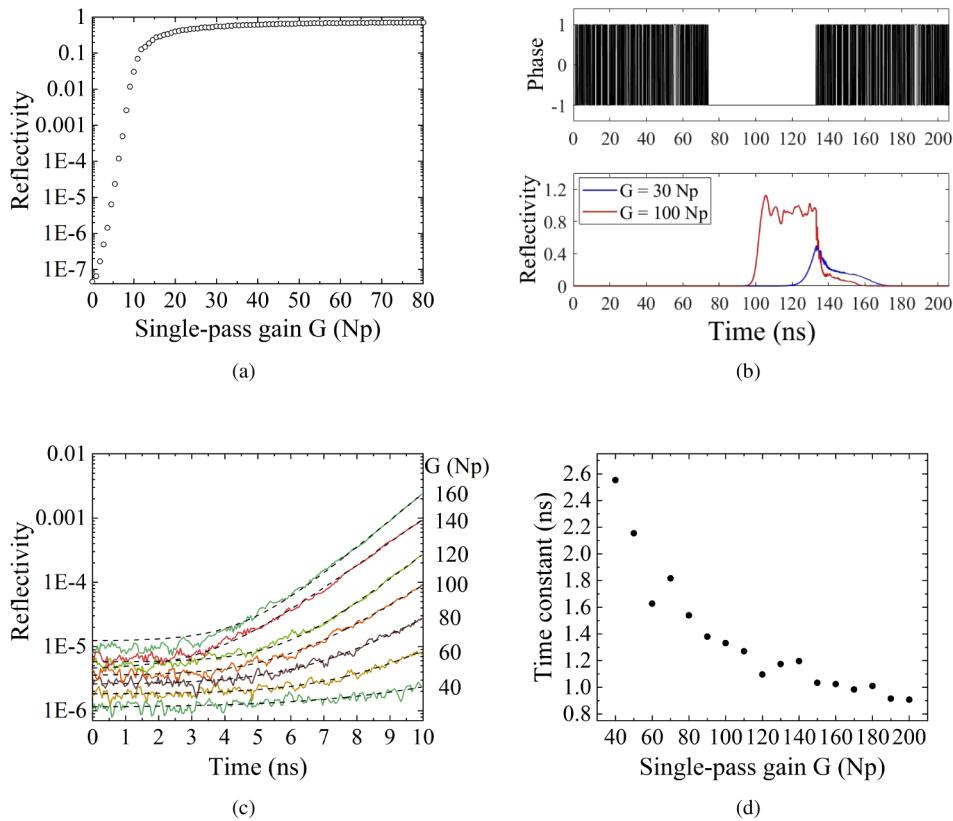
154 respectively. The MLS coded phase modulation can be introduced by $A_L(0, t) = A_L(0, 0)e^{i\phi(t)}$,
 155 where $\phi(t)$ is the optical phase coded by MLS waveform and $A_L(0, 0)$ is the input laser amplitude
 156 at location $z = 0$. Given the noise seeding of SBS, the Stokes wave is often pulsing. The
 157 SBS level is therefore quantified by the time-averaged reflectivity $R = \langle |A_S(0, t)|^2 \rangle / \langle |A_L(0, t)|^2 \rangle$,
 158 where the brackets indicate time-averaging over several transit times (20 fiber transit times
 159 in this work). The SBS threshold is defined as the laser power that results in $R = 1\%$. The
 160 single-pass gain G , in units of nepers (Np), is defined by $G = g_p PL/A$, where P is the laser power
 161 at $z = 0$, and $g_p = \gamma_e^2 \omega^2 / \rho_0 n c^3 v_A \Gamma_B$ is the peak value of the Brillouin gain. The three-wave
 162 equations Eqs. (1)–(3) are solved numerically using the Euler method along the characteristic lines
 163 $dz/dt = \pm c/n$ [17]. We use the normalized SBS threshold to quantify the SBS suppression (or the
 164 SBS threshold enhancement factor). This is the ratio of the SBS threshold with phase modulation
 165 to the unmodulated SBS threshold. It is also equivalent to the multiplicative inverse for the
 166 normalized SBS gain introduced in Ref. [23], i.e., one is the inverse of the other. Parameters and
 167 the values we have used are shown in Table 1. The fiber length of 7.4 m leads to a single-pass
 168 transit time of 35.8 ns.

Table 1. Parameters and the values used for simulation 1mm

A	$2.6 \times 10^{-10} \text{ m}^2$	n	1.45
T_c	293.15 K	λ	1075 nm
ω	$1.7534 \times 10^{15} \text{ rad/s}$	ρ_0	2201 kg/m^3
γ_e	1.95	v_A	$5.9 \times 10^3 \text{ m/s}$
L	7.4 m	c	$3 \times 10^8 \text{ m/s}$
k_B	$1.38064852 \times 10^{-23} \text{ m}^2 \text{Kgs}^{-2} \text{K}^{-1}$	ϵ_0	$8.854187817 \times 10^{-12} \text{ F/m}$
τ_p	2.79 ns	$\Delta\nu_B$	57.1 MHz

179 First of all, we use this numerical model to calculate the SBS threshold thus defined with no
 180 phase modulation. The dependence of the SBS reflectivity on the single-pass gain G is shown in
 181 Fig. 2(a). The fluctuation of the reflectivity is caused by the stochastic nature of the noise source
 182 and indicates the uncertainty resulting from the finite duration of the averaging. The threshold
 183 for 0.01 reflectivity is around $G = 9 \text{ Np}$ ($\sim 5 \text{ W}$) for the parameters above. We also examine the
 184 temporal evolution of the Stokes power at its output (at the signal input end of the passive fiber at
 185 $z = 0$) and investigate the details about the SBS buildup time at this location. The SBS buildup
 186 time can be defined as the delay between the start of the Stokes and that of the laser [26]. Here in
 187 our simulation, according to the relaxation oscillations in SBS dynamics, we evaluate the buildup
 188 process in terms of the time constant in the time before the reflectivity reaches its maximum value,
 189 during which the temporal evolution of the Stokes power shows an approximately exponential
 190 form. For this we introduce an ON-OFF-ON-like phase modulation with a MLS waveform with
 191 parameters such that SBS is well suppressed when the MLS is ON. The switch-OFF moment of
 192 the MLS waveform represents the starting point of the SBS buildup. The modulating scheme and
 193 the SBS reflectivity as a function of time for $G = 30 \text{ Np}$ and 150 Np are shown in Fig. 2(b), as
 194 calculated by ensemble averaging over 100 times of the SBS temporal evolution to reduce noise
 195 fluctuations. It shows a rapid growth of the Stokes power in the first several nanoseconds for
 196 large G (such as $G = 150 \text{ Np}$), and then relaxation oscillations appear, which agrees with the
 197 statement in Ref. [27]. To further investigate the dependence of time constant on G , we also
 198 examine the SBS buildup kinetics in a modulation switch-OFF time period of 10 ns, which is
 199 shown in Fig. 2(c). The dashed curves show the exponential fitting curves. The time constants
 200 for different G calculated by the curve fitting are shown in Fig. 2(d). It is clear that the time
 201 constant is inversely proportional to G and in the nanosecond time scale. To be certain, SBS in a
 202 short fiber system can build up within several nanoseconds at high power, with a time constant
 203 that is considerably shorter than the transit time of the optical waves, and shorter than the phonon

205 lifetime. The smallest time constant becomes 0.9 ns in Fig. 2(d), which occurs for the highest
 206 considered single-pass gain of 200 Np, i.e., around 22 times the unbroadened threshold. Note
 207 that narrow-line fiber systems may well be broadened to a higher enhancement factor than this,
 208 e.g., 53 in [22], and we would then expect an even shorter time constant.
 209



236 **Fig. 2.** (a) SBS reflectivity of unmodulated signal plotted as a function of the single-pass
 237 gain G (Np). (b) The ON-OFF-ON MLS phase modulation and the SBS dynamic for $G = 30$
 238 Np and 150 Np. (c) The temporal evolution of SBS reflectivity for different single-pass gain
 239 G. (d) The time constant of the exponential growth of the Stokes wave as a function of G.
 240

242 3. Temporal and frequency characteristics of MLS phase modulation

243 The maximal-length sequence is a type of PRBS which possesses all three PRBS randomness
 244 criteria simultaneously [28]. An MLS is sometimes called an m-sequence or n-sequence, and can
 245 also be denoted as PRBSn or MLSn. It is commonly used in spread spectrum systems, bit error
 246 testing, and many other areas, and can be easily produced by a Linear Feedback Shift Register
 247 (LFSR) of length n . Mathematically, the maximal-length sequences are described by irreducible
 248 and primitive polynomials [29]. For MLS3, the polynomial is $x^3 + x + 1$, or abbreviated as (3,1,0).
 249 Correspondingly, there are (5,2,0) for MLS5, (7,1,0) for MLS7, (9,4,0) for MLS9, (11,2,0) for
 250 MLS11, (13,4,3,1,0) for MLS13, and (17,3,0) for MLS17, respectively. A MLS consists of an
 251 aperiodic base sequence of length $N = 2^n - 1$, which is then periodically repeated to form a
 252 continuous infinite sequence, and since it is periodically repeated, its bit sequence (or pattern)
 253 has a discrete spectrum with frequency spacing equal to the inverse of the period.
 254

256 The choice of the pattern length in MLS phase modulation in fiber system has always been
 257 a dilemma. If the pattern of the MLS is too short then the line spacing can become excessive
 258 and the number of spectral lines small, and the power per spectral line thus too high for efficient
 259 SBS suppression. On the other hand, the phase for a MLS phase modulated lightwave stays
 260 constant during the uninterrupted sub-sequences ("runs"), which could also lead to significant
 261 SBS in a fiber system if these sub-sequences are too long (large n). This suggests that there is a
 262 length that optimizes the trade-off between these conflicting considerations. In addition, with
 263 low-pass filtering, the MLS waveform is averaged over several bits due to significant inter-symbol
 264 interference (ISI) when the filter cutoff frequency is small compared to the clock rate. Thus, the
 265 phase can vary continuously, and SBS suppressed, even during long runs. Although averaging
 266 also reduces the amplitude of the modulation, this can be restored through amplification of the
 267 low-pass filtered RF wave. This control of the RF power (i.e., modulation amplitude) further
 268 extends the control of the optical spectrum. The temporal and frequency characteristics of
 269 unfiltered and filtered and amplified MLS phase modulation are important for the understanding
 270 of the SBS suppression capability.

271 In this Section, we investigate the temporal characteristics of the MLS waveform (Section 3.1),
 272 the optical spectra of MLS phase modulation (Section 3.2), and the optical spectra of filtered and
 273 amplified MLS phase modulation (Section 3.3).

275 3.1. Temporal characteristics of a MLS waveform

276 The properties of a MLS waveform are controlled by the sequence

$$278 \quad \{a_j\} = \{a_0, a_1, \dots, a_{N-1}\} \quad (4)$$

280 The quantity $\{a_j\}$ is a variable with a period of N that takes on discrete values -1 (if the bit is
 281 symbol 0) and +1 (if the bit is symbol 1). If an element from the sequence is chosen at random,
 282 then the probabilities of the different values become $Pr_{+1} = (1 + 1/N)/2$ and $Pr_{-1} = (1 - 1/N)/2$,
 283 respectively, where of course $Pr_{+1} + Pr_{-1} = 1$. To form a continuous waveform (e.g., for
 284 modulation) from the sequence, a single period $x_N(t)$ of the continuously repeated train $x(t)$ can
 285 be written as

$$286 \quad x_N(t) = \sum_{j=0}^{N-1} a_j p(t - jT) = p(t) * \sum_{j=0}^{N-1} a_j \delta(t - iT) \quad (5)$$

289 where T is the bit duration (equal to the inverse of the clock rate f_{cr}) and $*$ denotes convolution.
 290 The base shape $p(t)$ of a single symbol is assumed to be the same for both types of symbols. It is
 291 often taken to be a rectangular function, constant throughout the duration T of the symbol slot
 292 and zero outside, and can thus be written as

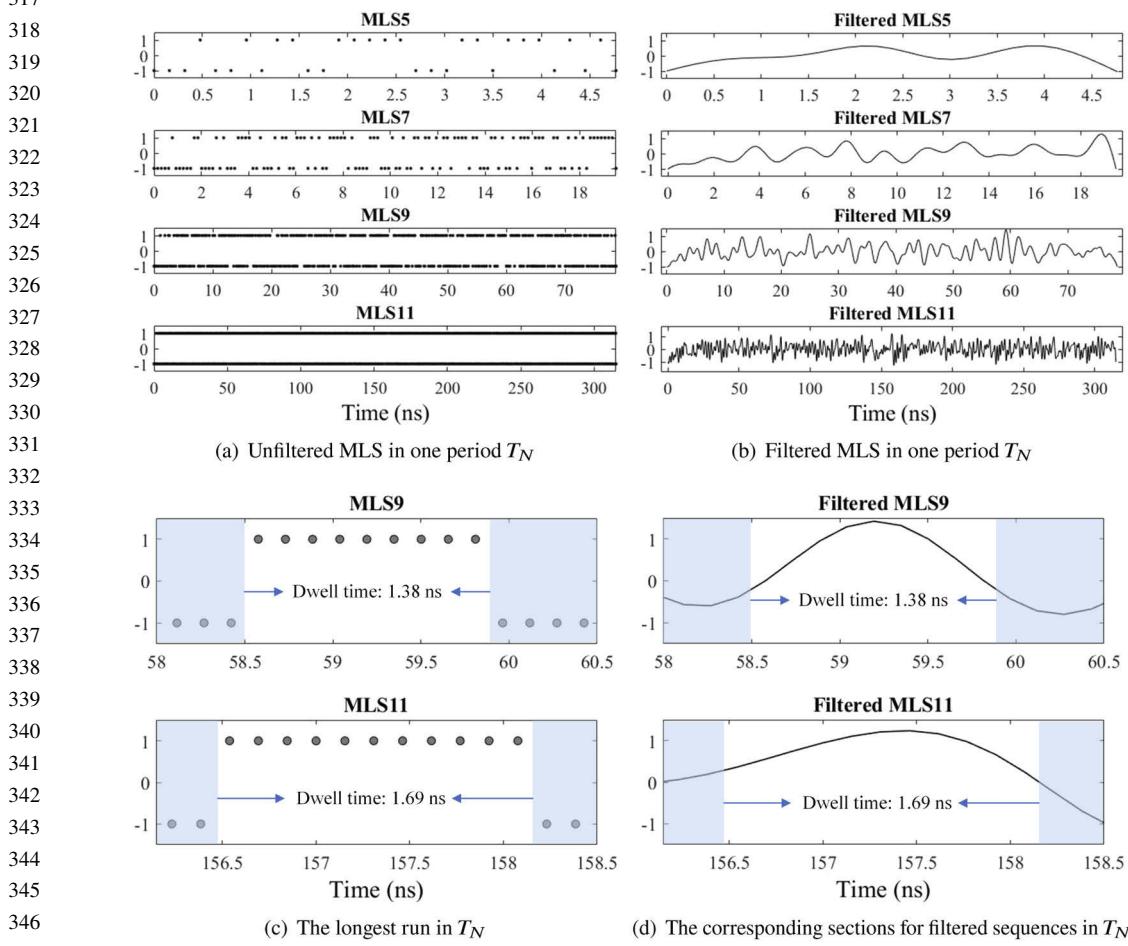
$$293 \quad p(t) = \begin{cases} 1 & 0 \leq t \leq T \\ 294 \quad 0 & \text{otherwise} \end{cases} \quad (6)$$

297 The intermediate aperiodic signal $x_N(t)$ can then be extended in time by using a comb of delta
 298 functions with a time spacing of $T_N = NT$. This operation can be formulated as convolution
 299 resulting in the periodic train

$$301 \quad x(t) = p(t) * \sum_{j=0}^{N-1} a_j \delta(t - jT) * \sum_{k=-\infty}^{\infty} \delta(t - kT_N) \quad (7)$$

305 where $j, k \in \mathbb{Z}$ are used to specify discrete instants in time. For the purpose of comparing the
 306 characteristics of MLS with different base sequence lengths N , we plot normalized values in one

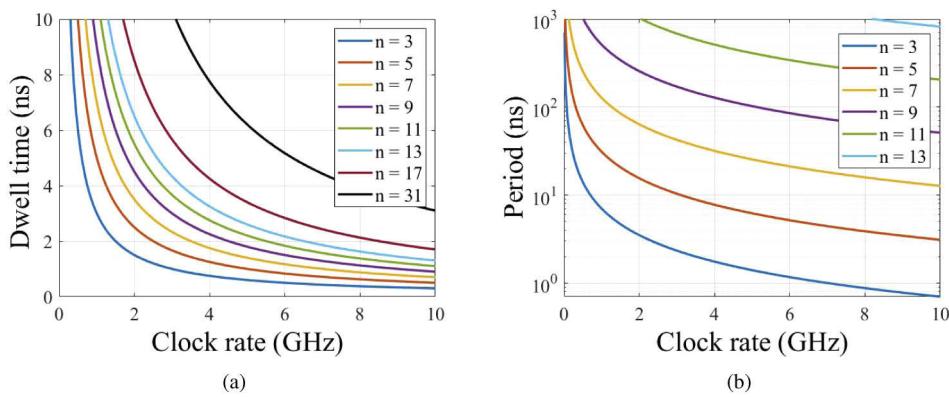
307 period T_N for sequences with $N = 31, 127, 511$, and 2047 bits ($n = 5, 7, 9, 11$) with a clock rate
 308 of 6.5 GHz, shown in Fig. 3(a). The signal filtered by a low-pass filter with a cutoff frequency of
 309 2.2 GHz is shown in Fig. 3(b). We choose a low-pass filter with the amplitude characteristics of
 310 a 6^{th} -order Butterworth filter in this paper, because we have found that to agree well with the
 311 filtering in our previous experimental work [22]. However, the filter is of the zero-phase type,
 312 i.e., with flat phase characteristics. Such a filter is not causal but the resulting signal can still be
 313 generated by an arbitrary waveform generator (AWG) with pre-calculated sample values. We
 314 use Matlab's "filtfilt" function to implement zero-phase filtering [30]. It is clear in Fig. 3(b) and
 315 Fig. 3(d) that the normalized phase spreads beyond the range $(-1, 1)$ and also attains intermediate
 316 values.
 317



348 **Fig. 3.** Normalized MLS-based phase sequences according to Eq. (5) in one period for
 349 MLS5, MLS7, MLS9, and MLS11 with 6.5 GHz clock rate. (a) Unfiltered MLS, one dot
 350 represents one bit, that is $T = 0.1538$ ns in our case. (b) MLS filtered by zero-phase low-pass
 351 filter with the amplitude response of a 6^{th} -order Butterworth filter with a cutoff frequency of
 352 2.2 GHz. (c) Enlargement over the longest run in a single period (T_N) of MLS9 and MLS11.
 353 (d) The corresponding sections for the longest runs in filtered MLS9 and MLS11.

354 We next consider the temporal properties of MLS and compare them to the SBS buildup time.
 355 A MLSn sequence contains 2^{n-1} runs, including one single "1" run of length n (the "dwell time"
 356 in Ref. [17]), which is the longest run, and 2^{n-1-i} runs of length i , where $i = 1, 2, 3, \dots, n-1$.
 357

358 This includes the second-longest run, which comprises $n-1$ of "0". For shorter runs, there are the
 359 same number of zero-runs and one-runs. Take MLS9 for example, there are a total of 256 runs,
 360 which include a single run of ones of length 9, a single run of zeros of length 8, 2 runs of length
 361 7, 4 runs of length 6, 8 runs of length 5, 16 runs of length 4, 32 runs of length 3, 64 runs of length
 362 2, and 128 runs of length 1. We plot the longest run of MLS9 (1.38 ns) and MLS11 (1.69 ns)
 363 before (Fig. 3(c)) and after Fig. 3(d) filtering. The dwell time nT as a function of clock rate for n
 364 = 3, 5, 7, 9, 11, 13, 17, and 31 is shown in Fig. 4(a). For clock rates ranging from 3 GHz to
 365 10 GHz, the dwell times for patterns considered in this work are within several nanoseconds,
 366 which are comparable to that of the SBS buildup time constant in the 7.4-m of passive fiber that
 367 we consider. Such dwell times may then lead to significant SBS, which will be demonstrated
 368 in Section 4. The amplitude of the low-pass filtered MLS waveform no longer stays constant
 369 (Fig. 4(b)), which may then allow for better SBS suppression, although a small bandwidth may
 370 lead to excessive averaging. Also, the dependence of the period NT on clock rate for different
 371 MLS patterns is shown in Fig. 4(b). As seen, the period is much longer than the SBS buildup
 372 time (except for MLS3). In many cases, it is also longer than the 35.8 ns fiber transit time.
 373



374 **Fig. 4.** (a) The length of the longest uninterrupted sub-sequence (or dwell time) nT vs.
 375 clock rate and (b) the period NT vs. clock rate for different patterns.
 376

390 3.2. Optical spectra of MLS phase modulation

391 In this section, we discuss the optical spectra of lightwave phase-modulated with a MLS. We
 392 consider a linearly polarized single-frequency laser electric field

$$393 E(t) = \bar{E}_L \operatorname{Re}\{e^{i[\omega_c t + \phi(t)]}\} \quad (8)$$

394 where \bar{E}_L is the constant amplitude of the laser field, which we ignore in the calculation of the
 395 power spectral density for simplicity. For convenience, we shift the optical spectrum by the
 396 carrier frequency ω_c to be centered around $\omega = 0$. According to the expression given by Eq. (7),
 397 the MLS coded phase $\phi(t)$ can be represented as
 398

$$401 \phi(t) = \frac{k_p}{2} p(t) * \sum_{j=0}^{N-1} a_j \delta(t - jT) * \sum_{k=-\infty}^{\infty} \delta(t - kT_N) \quad (9)$$

402 where k_p is the peak-to-peak phase modulation amplitude, which is defined as π times the ratio
 403 of the peak-to-peak modulation voltage to the half-wave voltage V_π of the EOPM. Here, the
 404 laser electric field $E(t)$ is an infinitely repeated periodic sequence with a period of N which takes
 405 two distinctive values $\exp(ik_p/2)$ and $\exp(-ik_p/2)$ (i.e., the phase $\phi(t)$ takes two values $k_p/2$ and

409 $-k_p/2$). Based on these properties, we can then calculate the autocorrelation function (ACF) of
 410 $E(t)$ as phase modulated by the MLS waveform. Recalling the periodic ACF (i.e., PACF) of a
 411 complex function (i.e. $E(t)$ in our case) at discrete times $\tau = kT$ is defined by
 412

$$413 \quad 414 \quad 415 \quad R_{x,x}(\tau) = \frac{1}{N} \sum_{j=0}^{N-1} x_j x_{j+\tau} \quad (10)$$

416 where $x_j x_{j+\tau}$ is the product of one bit in the base sequence with a corresponding bit shifted by kT ,
 417 where j and k are integers. Figure 5 illustrates the evaluation of the PACF $R_{E,E}$ of $E(t)$ phase
 418 modulated by MLS3 for $k = 0, 1$, and 2 , according to Eq. (10). The calculating procedure is
 419 shown in Fig. 5. The first period of $R_{E,E}$ can be expressed as
 420

$$421 \quad 422 \quad 423 \quad 424 \quad 425 \quad 426 \quad 427 \quad 428 \quad 429 \quad 430 \quad 431 \quad 432 \quad 433 \quad 434 \quad 435 \quad 436 \quad 437 \quad 438 \quad 439 \quad 440 \quad 441 \quad 442 \quad 443 \quad 444 \quad 445 \quad 446 \quad 447 \quad 448 \quad 449 \quad 450 \quad 451 \quad 452 \quad 453 \quad 454 \quad 455 \quad 456 \quad 457 \quad 458 \quad 459 \quad R_{E,E}(t) = \begin{cases} 1 - (1 + \frac{1}{N}) \sin^2(\frac{k_p}{2}) \frac{|t|}{T} & 0 \leq \frac{|t|}{T} \leq 1 \\ \cos^2(\frac{k_p}{2}) - \frac{1}{N} \sin^2(\frac{k_p}{2}) & 1 \leq \frac{|t|}{T} \leq \frac{N}{2} \end{cases} \quad (11)$$

One period		
$\tau=0$	0 1 0 1 1 1 0	0 1 0 1 1 1 0
Optical field sequence		$e^{-ikp/2} e^{ikp/2} e^{-ikp/2} e^{ikp/2} e^{-ikp/2} e^{ikp/2} e^{-ikp/2}$
complex conjugate		$e^{ikp/2} e^{-ikp/2} e^{ikp/2} e^{-ikp/2} e^{-ikp/2} e^{ikp/2} e^{-ikp/2}$
ACF		$R_{E,E}(\tau)=1$
$\tau=T$	1 0 1 1 1 0 0	1 0 1 1 1 0 0
Optical field sequence		$e^{ikp/2} e^{-ikp/2} e^{ikp/2} e^{-ikp/2} e^{ikp/2} e^{-ikp/2} e^{-ikp/2}$
complex conjugate		$e^{-ikp/2} e^{ikp/2} e^{-ikp/2} e^{ikp/2} e^{-ikp/2} e^{ikp/2} e^{-ikp/2}$
ACF		$R_{E,E}(\tau)=\cos^2(k_p/2)-\sin^2(k_p/2)/N$
$\tau=2T$	0 1 1 1 0 0 1	0 1 1 1 0 0 1
Optical field sequence		$e^{-ikp/2} e^{ikp/2} e^{-ikp/2} e^{ikp/2} e^{-ikp/2} e^{ikp/2} e^{-ikp/2}$
complex conjugate		$e^{ikp/2} e^{-ikp/2} e^{-ikp/2} e^{ikp/2} e^{ikp/2} e^{-ikp/2} e^{-ikp/2}$
ACF		$R_{E,E}(\tau)=\cos^2(k_p/2)-\sin^2(k_p/2)/N$
...

450 **Fig. 5.** An example calculation of the ACF for MLS3 phase modulated optical field.
 451

452 The minimum value of $R_{E,E}$ varies in the range of $(-1/N, 1)$ according to k_p , which is shown
 453 in Fig. 6. The power spectral density (PSD) of the laser field can then be given by the Fourier
 454 transform of the PACF according to the Wiener-Khinchin theorem, that is

$$455 \quad 456 \quad 457 \quad 458 \quad 459 \quad S_{E,E}(f) = \mathcal{F}\{R_{E,E}(\tau)\} = \mathcal{F}\left\{R_{E,E}(\tau) - \cos^2\left(\frac{k_p}{2}\right) + \frac{1}{N} \sin^2\left(\frac{k_p}{2}\right)\right\} \\ - \mathcal{F}\left\{\cos^2\left(\frac{k_p}{2}\right) - \frac{1}{N} \sin^2\left(\frac{k_p}{2}\right)\right\} \quad (12)$$

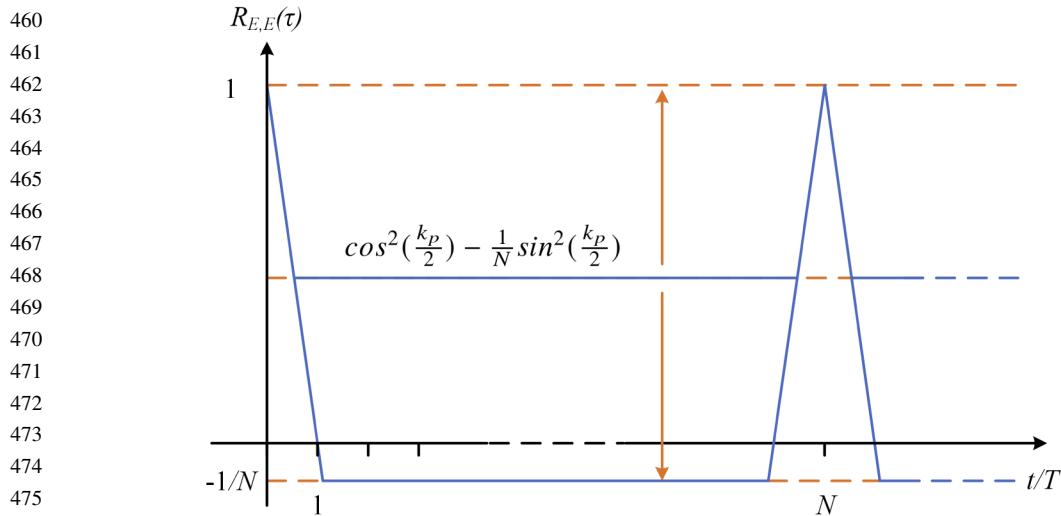


Fig. 6. PACF of the MLS phase modulated optical field, normalized by \bar{E}_L .

Through the use of elementary Fourier transform pairs and arithmetic, we can substitute Eq. (11) into Eq. (12), whereby Eq. (12) becomes

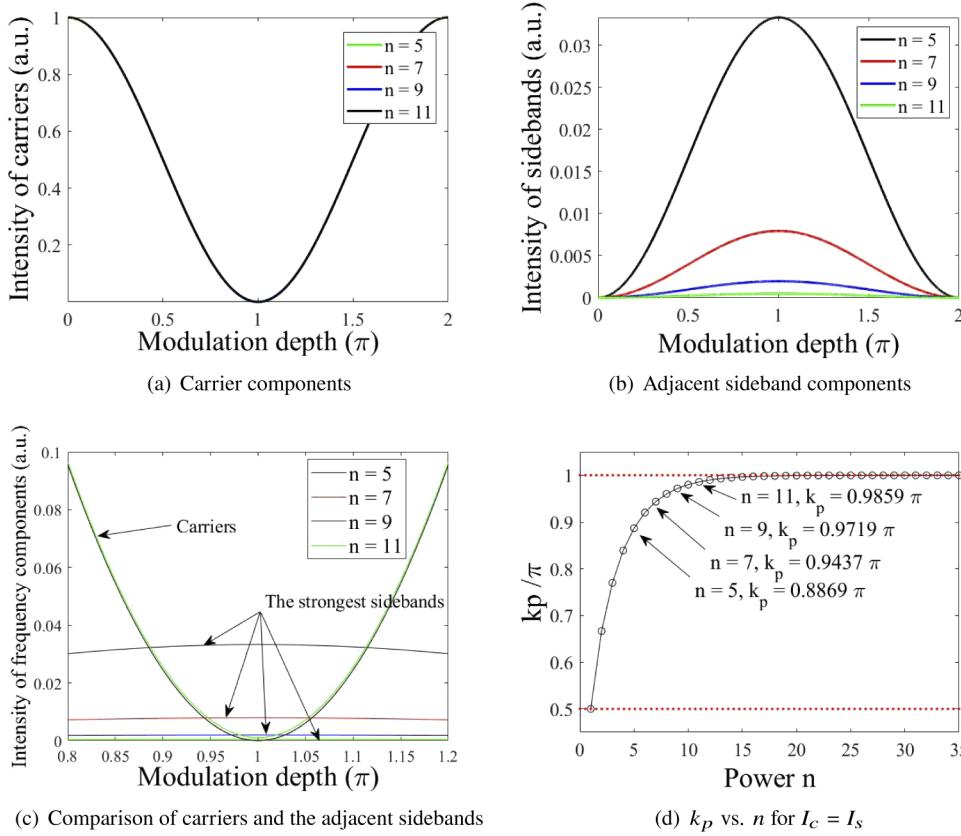
$$S_{E,E}(f) = \left[\frac{1 + \cos(k_p)}{2} + \frac{1 - \cos(k_p)}{N^2} \right] \delta(f) + \frac{1 - \cos(k_p)}{2} \frac{N + 1}{N^2} \times \text{sinc}^2 \left(\frac{f}{f_{cr}} \right) \sum_{\substack{i=-\infty \\ i \neq 0}}^{\infty} \delta(f - if_N) \quad (13)$$

Equation (13) is the normalized optical spectrum of the MLS phase modulation scheme, which is a discrete spectrum. The line spacing is given by $f_N = 1/NT = f_{cr}/N$ and the clock rate f_{cr} and the modulation amplitude k_p determine the bandwidth. With a clock rate of 6.5 GHz, the line spacing becomes 928.57 MHz, 209.68 MHz, 51.18 MHz, 12.72 MHz, and 3.18 MHz for $n = 3, 5, 7, 9$, and 11, respectively. Spectral nulls occur at integer multiples of clock rate. The first part in RHS of Eq. (13) corresponds to the intensity (i.e., optical power) of the carrier while the second part corresponds to the intensity of the sidebands. The dependence of the intensities of the carrier and the adjacent sideband components on k_p is shown in Fig. 7(a) and 7(b). When $k_p = (2m + 1)\pi$ ($m \in \mathbb{Z}$), Eq. (13) becomes the PSD of the MLS waveform [28], viz

$$S_{E,E}(f) = \frac{1}{N^2} \delta(f) + \frac{N + 1}{N^2} \text{sinc}^2 \left(\frac{f}{f_{cr}} \right) \sum_{\substack{i=-\infty \\ i \neq 0}}^{\infty} \delta(f - if_N) \quad (14)$$

At this point, the carrier reaches its lowest intensity $1/N^2$ and the adjacent sideband components reach their highest intensity $(N + 1)/N^2$. If there is dominating spectral line with more power than in other lines then it is well known that the SBS threshold is dictated mainly by this line, when the optical sidebands act independently (approximately when $f_N > \Gamma_B/\pi$) [17]. It is clear from Fig. 7(a) and 7(b) that the carrier can be such a dominant component. Most importantly, this must not be excessive, but nor should it be depleted of power since this would mean that the other lines carry more power than necessary. Thus, a value of k_p that leads to the same carrier component intensity as in the adjacent (or the strongest) sideband components may be best for SBS suppression at large line spacing. The strengths of carrier and the adjacent sideband

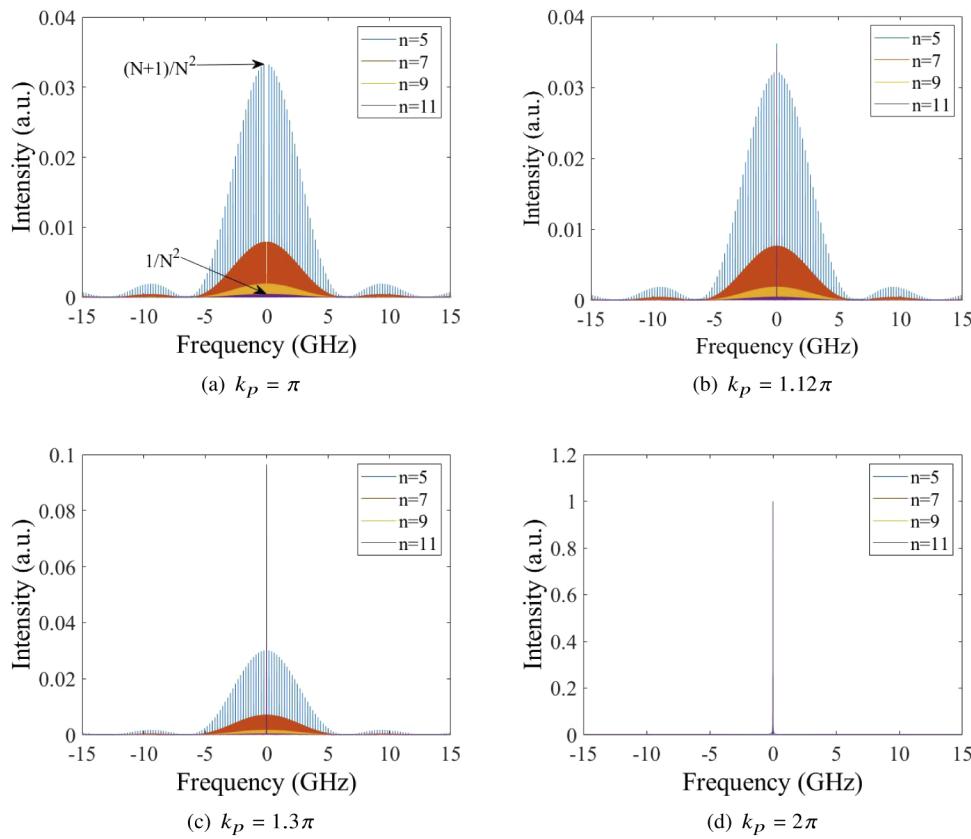
511 components are compared in Fig. 7(c). We find that the values of k_p that lead to the same intensity
 512 in the carrier and the adjacent sideband components ($I_c = I_s$) are 0.8869π for MLS5, 0.9437π
 513 for MLS7, 0.9719π for MLS9, and 0.9859π for MLS11, respectively, as shown in Fig. 7(d).
 514 There are also equivalent points for k_p slightly larger than π . However, the power in the strongest
 515 spectral line varies only slowly near $k_p = \pi$ for every n (see Fig. 7(c)). Therefore, we take
 516 $k_p = \pi$ for the SBS suppression optimization for unfiltered MLS phase modulation in this work.
 517 Although this leads to marginally higher power in the strongest lines than necessary, this does not
 518 necessarily translate to a lower SBS threshold for small line spacings. Furthermore, we note that
 519 for most values of k_p , the carrier is the dominant line and needs to be controlled precisely if it is
 520 to match the highest sideband peak. The slow variation of the power in the carrier around $k_p = \pi$
 521 reduces the sensitivity to errors in k_p .
 522



537
 538 **Fig. 7.** Intensity of (a) the carrier and (b) the adjacent sideband components vs. k_p for
 539 $n = 5, 7, 9$, and 11 . (c) Intensity of the carrier and the strongest sideband components around
 540 $k_p = \pi$ for different n . (d) Values of k_p that lead to the same intensity in the carrier and the
 541 adjacent components for different power n .
 542

543 To verify the derivation, we construct a series of MLS waveforms with $n = 5, 7, 9, 11$, and
 544 calculate numerically the PSD of the MLS phase modulated laser field using the Wiener-Khinchin
 545 theorem. The clock rate is 6.5 GHz, and the modulation depth assumes the values $\pi, 1.12\pi, 1.3\pi$,
 546 and 2π . The calculated results are shown in Fig. 8. The intensity of both carrier and sidebands
 547 are in good agreement with the derivation. The results confirm that when $k_p = \pi$, the carrier
 548 nearly vanishes and the sidebands reach their highest intensity. From these results we expect that
 549

562 in this scheme, errors in k_p can easily result in a large carrier and thus drastically degraded SBS
 563 threshold.
 564



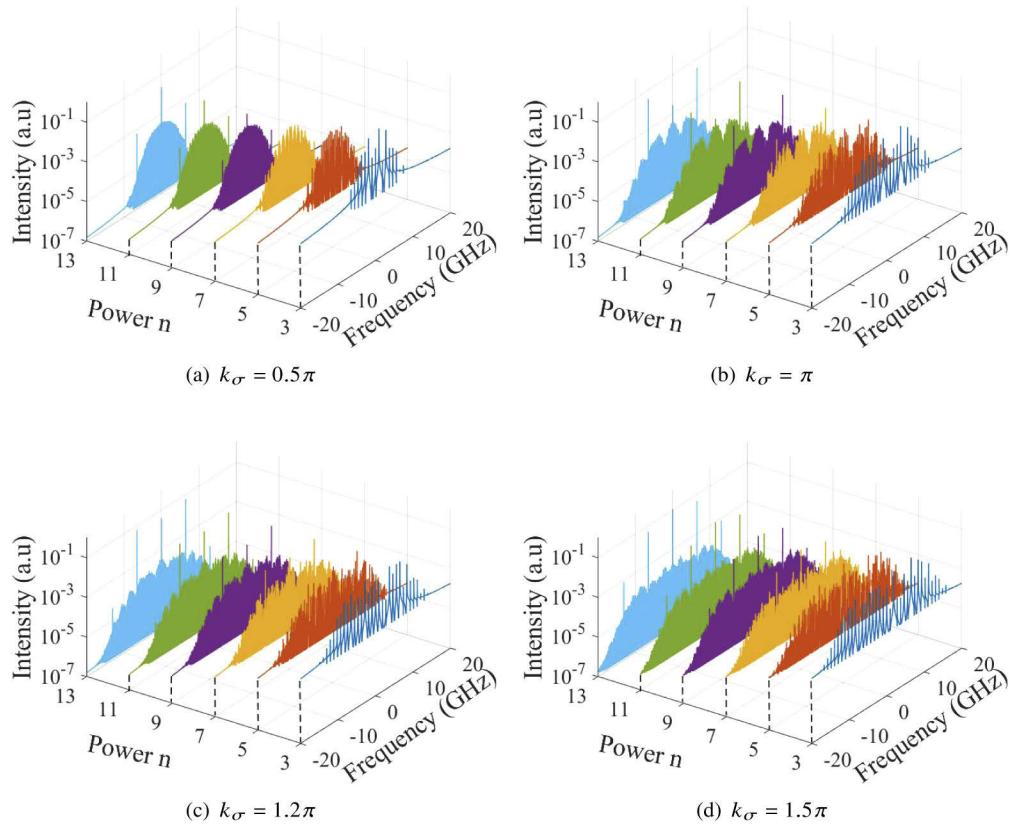
565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
Fig. 8. Optical spectra for MLS phase modulation with $n = 5, 7, 9, 11$, and $f_{cr} = 6.5$ GHz
 for k_p equal to (a) π , (b) 1.12π , (c) 1.3π , and (d) 2π . Note the different vertical scales in (c)
 and (d).

3.3. Optical spectra of filtered and amplified MLS phase modulation

598 So far, the spectra of the phase modulated optical field are easy to find analytically because
 599 the unfiltered MLS is a sum of rectangular pulses. However, the spectra are sinc-shaped with
 600 slow decaying sidelobes, which is often undesirable, as is the distinctive behavior of the carrier.
 601 On the other hand, the bandwidth of rectangular pulses is infinite, so they will be distorted by
 602 the limited bandwidth of the different parts of a real system, in particular if there is a filter.
 603 As before, we will assume that a low-pass filter akin to a 6th-order Butterworth filter but with
 604 spectrally flat phase characteristics determines the overall response. All other components are
 605 ideal, with bandwidth significantly larger than that of the filter, but other linear filter would be
 606 straightforward to implement. With reference to Fig. 1, the complex envelope at the RF input of
 607 the EOPM may be written as $\phi(t) * h(t)$, where $h(t)$ is the impulse response of the filter. The
 608 frequency-domain response for a Butterworth low-pass filter is $1/\sqrt{1 + (f/f_{co})^{2m}}$, where f_{co} is the
 609 cutoff frequency (-3dB) and m is the order. The electric field of the lightwave phase modulated
 610 by this filtered signal can be described as

$$611 \quad 612 \quad E'(t) = \bar{E}_L \operatorname{Re}\{e^{i[\phi(t)*h(t)]}\} \quad (15)$$

613 We have not been able to obtain an analytical expression for the spectrum of a lightwave phase
 614 modulated according to Eq. (15). Instead, we calculated spectra numerically. The modulation
 615 depth of the low-pass filtered and amplified MLS is defined as $k_\sigma = \pi V_\sigma / V_\pi$, where V_σ is the
 616 standard deviation of the voltage of the modulation waveform. This is related to the RMS voltage
 617 according to $k_\sigma = \sqrt{k_{RMS}^2 - k_{AVG}^2}$, where k_{AVG} is the average of the modulation depth. Thus, the
 618 RMS value and the standard deviation are equal if $k_{AVG} = 0$. We note that for an unfiltered
 619 MLS phase modulation with a peak-to-peak modulation amplitude of k_p , the modulation depth
 620 $k_{RMS} = k_p/2$ when MLS waveform takes the values of $-\pi/2$ or $\pi/2$. Although $k_{AVG} \neq 0$, the
 621 resulting difference is small, especially for a long MLS, and therefore we neglect it. Optical
 622 spectra for $n = 3, 5, 7, 9, 11$, and 13 with $f_{cr} = 6.5$ GHz are calculated with the ratio of the
 623 low-pass filter cutoff frequency to clock rate $f_{co}/f_{cr} = 0.4$, and $k_\sigma = 0.5\pi, \pi, 1.2\pi, 1.5\pi$, and are
 624 shown in Fig. 9. The spectra become wider as k_σ increases, and whereas the temporal periodicity
 625 means the spectra remain discrete, the envelopes are no longer $sinc^2$ shaped. There are no clear
 626 sidelobes, and, significantly, the power in the carrier does not depend critically on the modulation
 627 depth, at least for $k_\sigma > \pi/2$. Still, the carrier is in many cases the strongest component by a
 628 considerable margin, which may lead to SBS. Next, we will investigate the SBS suppression
 629 capability of unfiltered and filtered MLS phase modulation scheme numerically, including the
 630 impact of the spectral spikes. We start with the unfiltered case in the next section.
 631



632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663

Fig. 9. Optical spectra as phase modulated by filtered and amplified MLS waveform with $f_{cr} = 6.5$ GHz, $f_{co}/f_{cr} = 0.4$, and $n = 3, 5, 7, 9, 11$, and 13 for k_σ equal to (a) 0.5π , (b) π , (c) 1.2π , and (d) 1.5π .

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

4. SBS suppression with unfiltered MLS phase modulation

As mentioned previously, phase modulation by an unfiltered MLS can provide an effective way of suppressing the SBS gain. We examine SBS suppression with phase modulation by a MLS with $k_p = \pi$ (approximate to $k_\sigma = \pi/2$) using the simulation method introduced in Section 2. This modulation amplitude avoids strong spectral lines in the optical spectrum (see Fig. 8). The normalized SBS threshold (i.e., the enhancement factor) as a function of clock rate for different bit patterns is shown in Fig. 10(a). It should be noted that, even though the normalized SBS threshold is calculated by time averaging over 20 transit times, there is still some residual randomness in the simulation results, due to the Langevinian noise introduced in every temporal and spatial grid point. The increase in enhancement factor with clock rate saturates for MLS3 and MLS5, for a clock rate of ~ 1.7 GHz (line spacing ~ 243 MHz) and ~ 7.5 GHz (line spacing ~ 242 MHz), respectively. Also, a rollover point of about 30 GHz can be obtained for MLS7 (line spacing ~ 236 MHz), which is shown in Fig. 10(b). The spectral line separation is more than twice the spontaneous Brillouin linewidth $\Delta\nu_B$ of 57.1 MHz in this paper at these points. For clock rates higher than these points, the spectral lines act independently and the SBS threshold no longer grows [17]. For high SBS threshold, the power should then be distributed over a large number of spectral lines, without excessive power in any line. Thus, in that regime, spectral considerations suggest a long MLS with smaller line spacing is preferable. However, once the spectral line spacing becomes sufficiently small for cross-interactions (beating) between adjacent spectral lines to contribute to the SBS gain, the SBS threshold decreases.

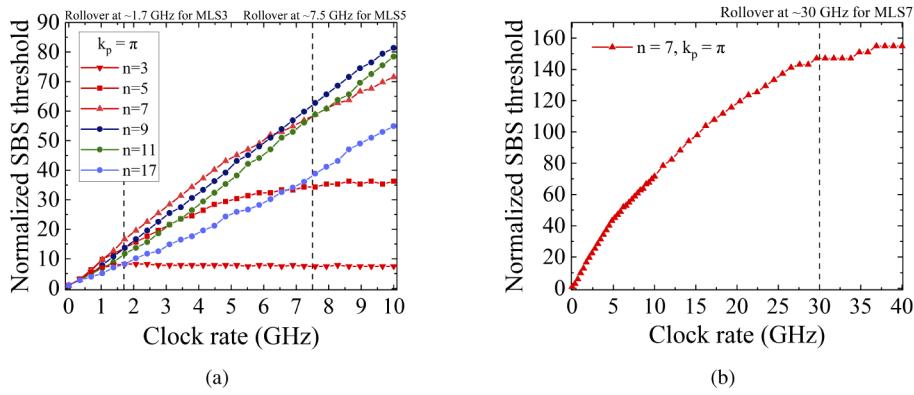


Fig. 10. Normalized SBS threshold with unfiltered MLS and $k_p = \pi$ vs. clock rate for (a) $n = 3, 5, 7, 9, 11$, and 17 for clock rates from 0 GHz to 10 GHz, and (b) $n = 7$ for clock rates from 0 GHz to 30 GHz.

It is shown in Fig. 10(a) that the SBS threshold enhancement with MLS11 is smaller than with MLS9 and that with MLS17 is smaller than with MLS9 as well as with MLS11. Thus, the shorter sequences are better, and we note that all of these sequences have line spacings smaller than the Brillouin linewidth for the range of clock rates plotted in Fig. 10(a). The largest spacing becomes $10 \text{ GHz} / 511 = 19.6 \text{ MHz}$. This is often explained as a result of the smaller line spacing of the longer sequences ($= f_{cr}/N$), but in the simulations in [16], smaller line spacing, down to 12.5 MHz (the smallest considered) led to better SBS suppression for optimized, non-MLS, waveforms. However, this is not always the case, and a temporal-domain description may provide more insight into why one waveform should be better than the other, than the line spacing does. This includes MLS sequences, for the situation that the clock rate is sufficiently low relative to the rollover point. Then we believe that the dwell time for the MLS signal plays an increasingly important role in the SBS buildup kinetics, and for the same clock rate, the dwell time for MLS11 is longer than MLS9 (shown in Fig. 4(a)). For example, the dwell time for MLS9 and MLS11

715 with a clock rate of 1.5 GHz is 5.99 ns and 7.33 ns, respectively. Given that the Stokes power
716 grows exponentially when the signal is unmodulated (Fig. 2(c)), for the case of $G = 160$ Np
717 (corresponding to an enhancement factor of ~ 18 relative to the unbroadened threshold gain of 9
718 Np), the reflectivity can grow up to 6.13×10^{-5} for 5.99 ns and 1.91×10^{-4} for 7.33 ns, which
719 means the reflectivity of the MLS11 case is 3 times than that of the MLS9 case. It is clear that
720 there can be a significant penalty for the longer dwell time of MLS11. For MLS17, the dwell
721 time is much longer still, and its SBS suppressing capability thus reduced.
722

723 5. Optimization of filtered and amplified MLS phase modulation

724 In this section, we numerically optimize a filtered and amplified MLS waveform used to drive a
725 phase modulator for the best SBS mitigation. Still, we use a low-pass filter similar to a 6th-order
726 Butterworth filter but with zero phase. As a starting point, we investigate the SBS suppression
727 capability for phase modulation with low-pass-filtered MLS (no RF amplification). A plot of
728 the normalized SBS threshold vs. clock rate for different f_{co}/f_{cr} and $k_p = \pi$ for MLS9 is shown
729 in Fig. 11(a). It is shown that the SBS threshold increases with f_{co}/f_{cr} for $k_p = \pi$. The highest
730 threshold is reached for the unfiltered case (with infinite f_{co}). The reason for this is that the
731 low-pass filtering is equivalent to temporal averaging, whereby the modulation depth k_σ becomes
732 too small, leaving too much power in the carrier for effective SBS suppression (shown in Fig. 9).
733

734 To overcome this and achieve a high SBS threshold also with the low-pass filter, we use a RF
735 amplifier to boost the modulation depth of the filtered MLS9 waveform. Then we investigate the
736 dependence of normalized SBS threshold on the clock rate at $f_{co}/f_{cr} = 0.4$ for different modulation
737 depth k_σ , which is shown in Fig. 11(b). As EOPMs often have a maximum RF input power
738 of around 28 dBm into 50 Ω impedance (thus RMS voltage of 5.6 V) and a half-wave voltage
739 around 5 V, the modulation depth K_σ in our calculations is chosen to be within π (corresponding
740 to 27 dB). We note that the unfiltered case with $k_p = \pi$ (thus with $k_\sigma = \pi/2$) approximately
741 matches the filtered case with $k_\sigma = \pi$. We plotted k_σ/k_p as a function of f_{co}/f_{cr} for different n , as
742 shown in Fig. 11(c). For large values of filter cutoff frequency, k_σ is close to $k_p/2$.
743

744 Although Fig. 11 suggests that higher cutoff frequency and modulation are better, this is not
745 generally the case. Figure 12(a) shows the dependence of the normalized SBS threshold on
746 both f_{co}/f_{cr} and k_σ . The value of f_{cr} is chosen to be 10 GHz, which is a typical value. We note
747 that within the parameter range investigated in Fig. 12(a), f_{co}/f_{cr} must be at least around 0.1.
748 Furthermore, for large f_{co}/f_{cr} , good suppression is only achieved when k_σ equals an integer
749 multiple of $\pi/2$. From a design perspective for filtered and amplified MLS phase modulation
750 with a high SBS suppression, the optical linewidth plays an important role in this optimization.
751 Figure 12(b) shows corresponding contours of the RMS linewidth $\Delta\nu_{RMS}$ according to these two
752 parameters. Often, a narrow linewidth is preferred, and it is then desirable to suppress SBS
753 with the smallest possible linewidth broadening. It is often assumed that the SBS threshold
754 increases linearly with linewidth, and, the ratio of the normalized SBS threshold to $\Delta\nu_{RMS}$ is used
755 as a figure of merit. This ratio is plotted in Fig. 12(c). Generally, there is significant structure
756 with large variations in the plot, and the local maxima for normalized SBS threshold follows
757 approximately a $k_\sigma = [0.06/(f_{co}/f_{cr} - 0.1) + 0.5] \times \pi$ behavior, where $f_{co}/f_{cr} > 0.1$. We especially
758 consider five local maxima in Fig. 12(c) (marked in red circles), and calculate the optical spectra
759 using parameters in these zones, as shown in Fig. 13. It is interesting to note that there are no
760 strong side bands in Fig. 13(a) and Fig. 13(b) (local maximum 1 and 2, respectively), whereas
761 the other three local maxima (Fig. 13(c)–Fig. 13(e)) exhibit spectral "spikes" located at integer
762 multiple of f_{cr} . In addition, the carriers are suppressed in all these five local maxima. It may safe
763 to draw the conclusion that the suppression of the carrier and the strong sidebands for the filtered
764 and amplified MLS phase modulation is necessary for SBS threshold enhancement in a fiber
765 system.

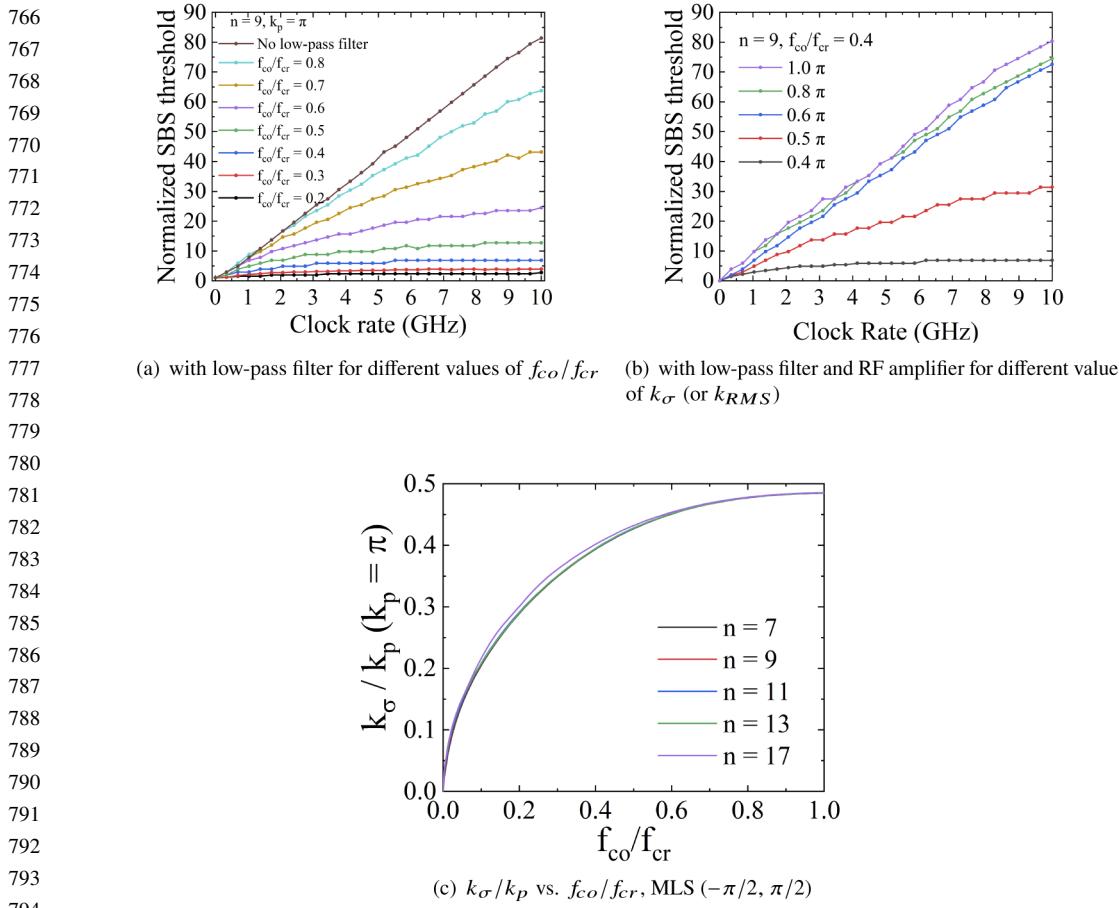


Fig. 11. The normalized SBS suppression of MLS9 vs. clock rate for (a) different f_{co}/f_{cr} and (b) different k_σ ($f_{co}/f_{cr} = 0.4$). (c) k_σ/k_p vs. f_{co}/f_{cr} with $f_{cr} = 10$ GHz for different n ($k_p = \pi$).

If SBS is to be suppressed without regard to linewidth, Fig. 12(a) suggests it is best to use a large modulation depth, where suppression is good and the structure is reduced. However, as mentioned, modulation depths k_σ larger than π are difficult to reach because of limitations on the half-wave voltage and the maximum RF input power of commonly used EOPMs. We therefore restrict further investigations to k_σ below π , and use numerical simulations to find the dependence of the normalized SBS threshold on both f_{co}/f_{cr} and k_σ for $n = 3, 5, 7, 9, 11$ with $f_{cr} = 6.5$ GHz in this regime. The results are shown in Fig. 14(a)–14(e). For a large pattern power n , especially $n = 9$, a distinct curve for the local maximum of the normalized SBS threshold appears (see Fig. 14(d)). By comparing Fig. 14(a)–14(e), we find that the global maximum for MLS9 outperforms the other patterns for $k_\sigma < \pi$, and reaches the maximum around $f_{co}/f_{cr} = 0.54$ and $k_\sigma = 0.56\pi$ within the investigated parameter range. The corresponding optical spectrum is shown in Fig. 13(e). Figure 14(a)–14(e) also indicate that a minimum value of f_{co}/f_{cr} of 0.3~0.4 and of k_σ of 0.5π is needed for high SBS suppression. To further distinguish the SBS suppression capability from different patterns, we plot the dependence of the normalized SBS threshold on the modulation depth k_σ with $f_{cr} = 6.5$ GHz and $f_{co}/f_{cr} = 0.4$ in Fig. 14(f). These corresponds to cuts through the Fig. 14(a)–14(e) at $f_{co}/f_{cr} = 0.4$. It is clear from this figure that the $n = 9$ pattern is superior to other patterns for k_σ more than 0.5π . We also calculate the normalized SBS

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

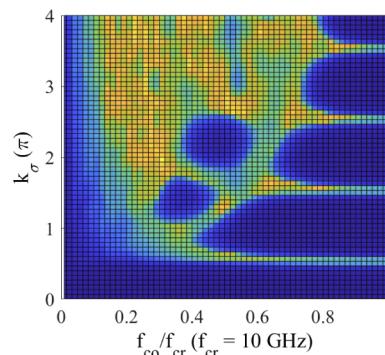
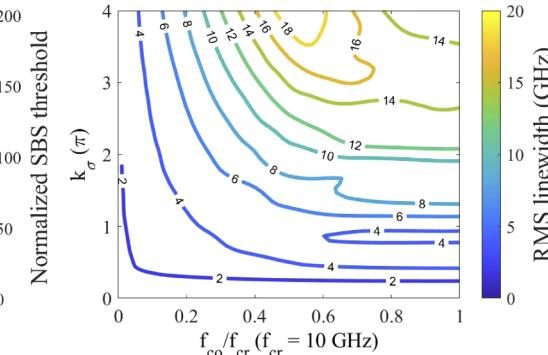
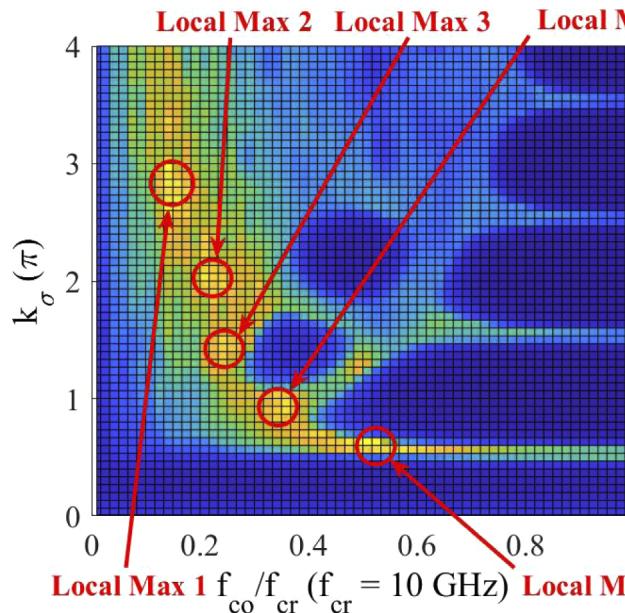
(a) Normalized SBS threshold vs. f_{co}/f_{cr} and k_{σ} (b) RMS linewidth vs. f_{co}/f_{cr} and k_{σ} (c) Normalized SBS threshold / RMS linewidth vs. f_{co}/f_{cr} and k_{σ}

Fig. 12. The normalized SBS suppression vs. f_{co}/f_{cr} and k_{σ} for MLS9 takes values of $-\pi/2$ or $\pi/2$. (b) The RMS linewidth vs. f_{co}/f_{cr} and k_{σ} . (c) The ratio of normalized SBS threshold to RMS linewidth vs. f_{co}/f_{cr} and k_{σ} . Five local maxima are marked in red circle.

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

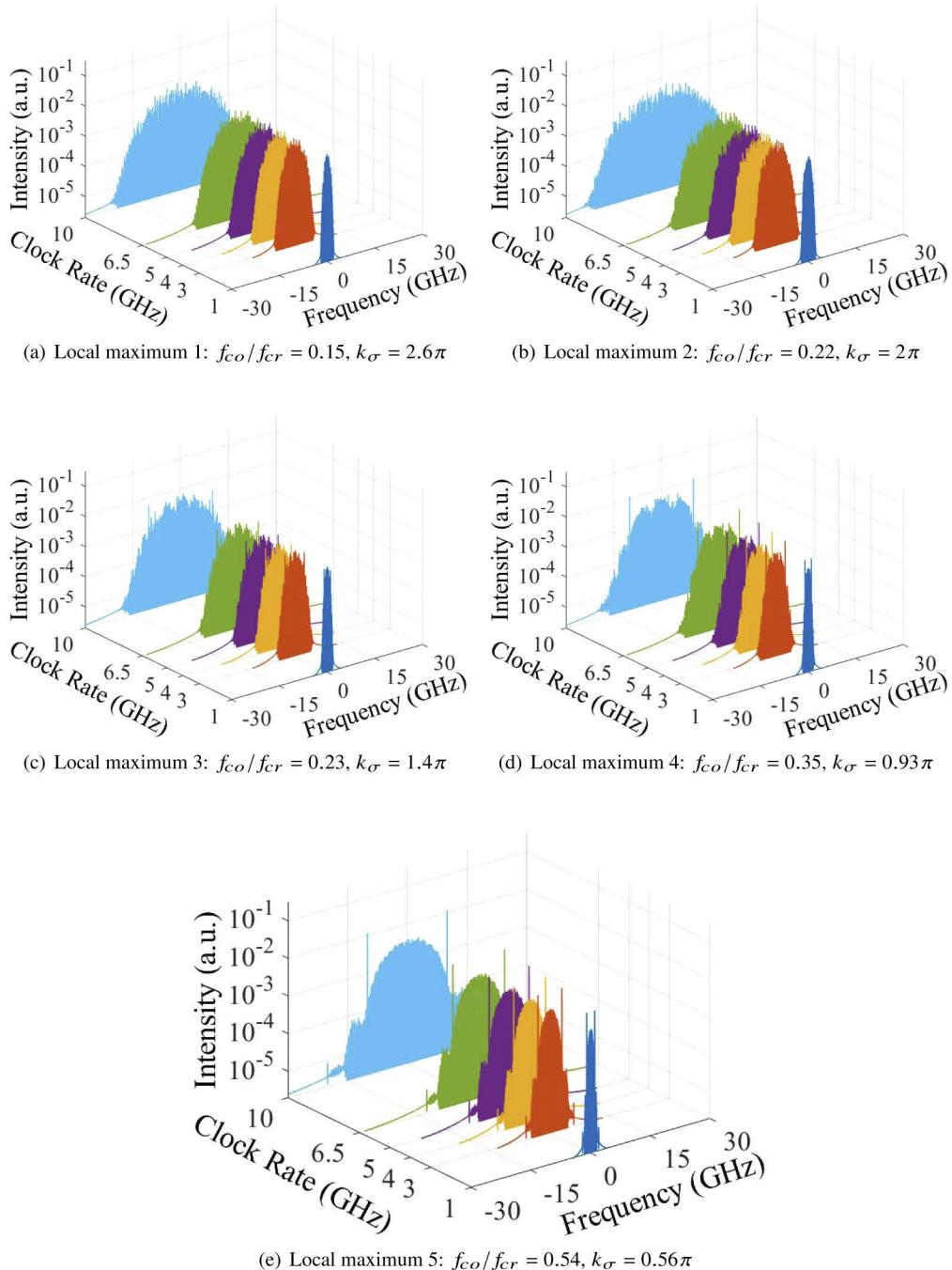
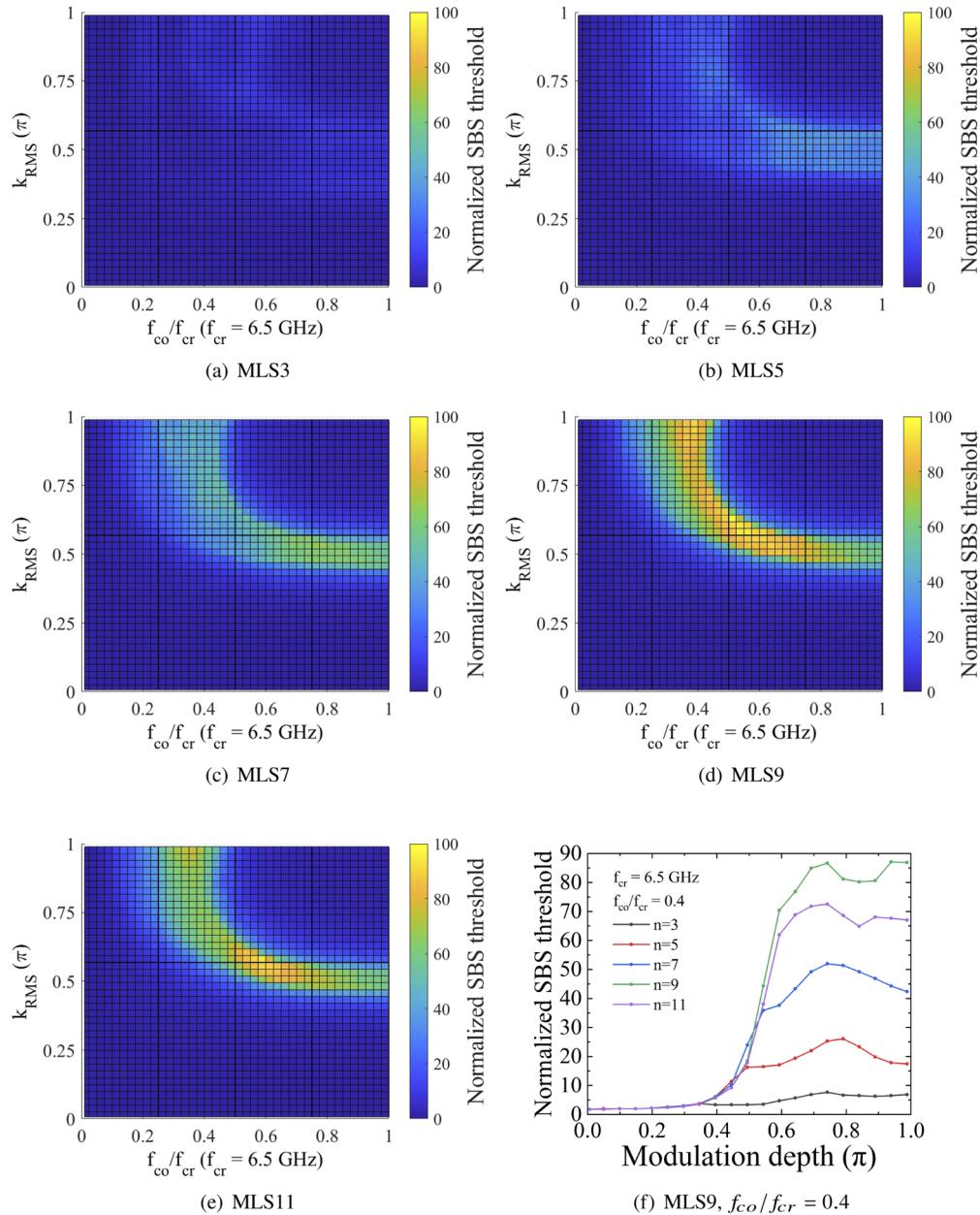


Fig. 13. Power spectra of optical signal as phase modulated by filtered and amplified MLS waveform with f_{co}/f_{cr} and k_{σ} taking values of (a) $f_{co}/f_{cr} = 0.15$, $k_{\sigma} = 2.6\pi$ (local maximum 1), (b) $f_{co}/f_{cr} = 0.22$, $k_{\sigma} = 2\pi$ (local maximum 2), (c) $f_{co}/f_{cr} = 0.23$, $k_{\sigma} = 1.4\pi$ (local maximum 3), (d) $f_{co}/f_{cr} = 0.35$, $k_{\sigma} = 0.93\pi$ (local maximum 4), and (d) $f_{co}/f_{cr} = 0.54$, $k_{\sigma} = 0.56\pi$ (local maximum 5). $f_{cr} = 10$ GHz.

919
920 threshold for MLS9 with clock rate of 1 GHz, 3 GHz, 4 GHz, 5 GHz, 6.5 GHz and 10 GHz, as
921
922 shown in Fig. 15(a)–15(f). Figure 15(f) is a subset of Fig. 12(a). It is shown that the maximum
923
924 of the normalized SBS threshold depends on f_{co}/f_{cr} but not the absolute value of f_{cr} .
925
926
927
928
929
930
931
932
933
934
935



950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969

Fig. 14. Normalized SBS threshold vs. f_{co}/f_{cr} and k_{σ} (or k_{RMS}) for (a) MLS3, (b) MLS5, (c) MLS7, (d) MLS9, and (e) MLS11 with 6.5 GHz clock rate. (f) The normalized SBS threshold vs. k_{σ} for different patterns ($f_{co}/f_{cr} = 0.4$).

Returning to Fig. 13(e), this contains spectra for the optimized parameters ($f_{co}/f_{cr} = 0.54$ and $k_{\sigma} = 0.56\pi$) for MLS9 with clock rates of 1 GHz, 3 GHz, 5 GHz, 6.5 GHz, and 10 GHz. For all the clock rates, there are strong components at f_{cr} . We calculate the RMS optical linewidth of

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

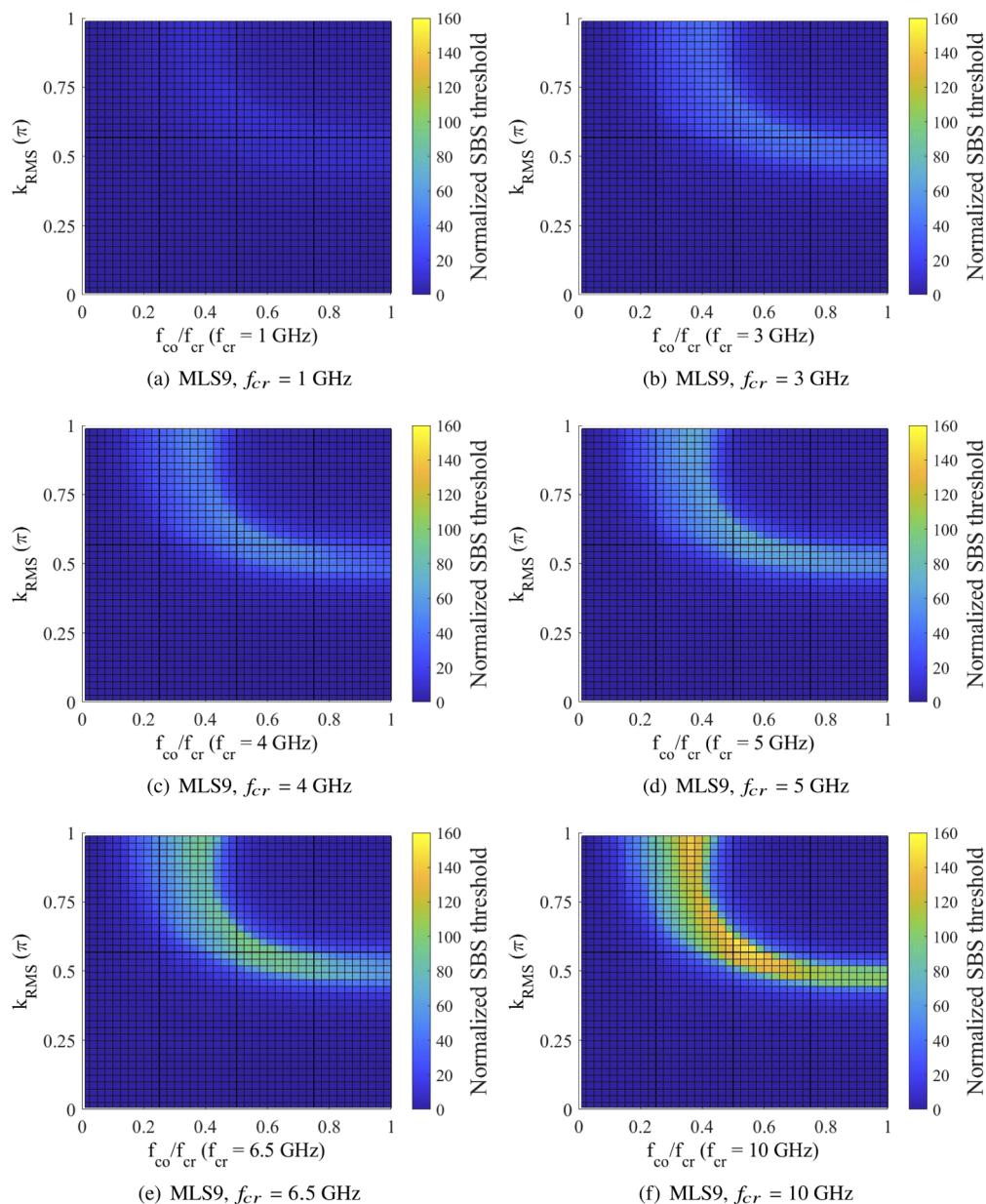
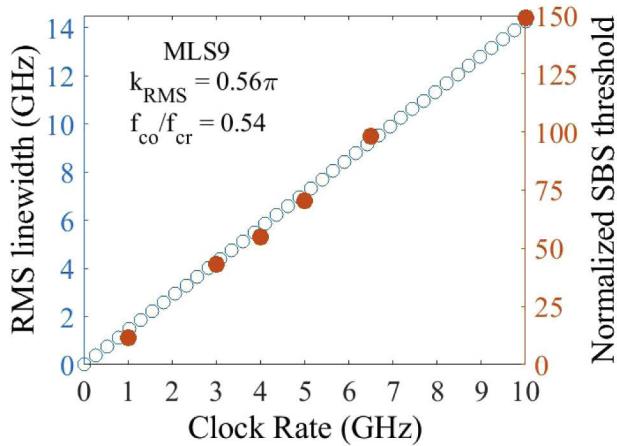


Fig. 15. Normalized SBS threshold vs. $f_{\text{co}}/f_{\text{cr}}$ and k_{σ} for MLS9 with f_{cr} equal to (a) 1 GHz, (b) 3 GHz, (c) 4 GHz, (d) 5 GHz, (e) 6.5 GHz, and (f) 10 GHz.

1021 this optimized filtered and amplified MLS phase modulation with $f_{cr} \in (0, 10)$ GHz, as shown in
 1022 Fig. 16. The normalized SBS threshold for MLS9 with $f_{co}/f_{cr} = 0.54$ and $k_\sigma = 0.56\pi$ for $f_{cr} = 1$
 1023 GHz, 3 GHz, 4 GHz, 5 GHz, 6.5 GHz, and 10 GHz (also the global maxima in Fig. 15) is also
 1024 shown in Fig. 16 (red circles). It is shown that both the RMS linewidth of the optical spectra and
 1025 the maximum normalized SBS threshold with the optimized parameters increase linearly with f_{cr} ,
 1026 although a roll-off in threshold is expected when the line spacing (which stay below 19.6 MHz in
 1027 Fig. 16) is sufficiently large, relative to the Brillouin line. The maximum RMS optical linewidth
 1028 with the parameters considered here is calculated to be within 15 GHz, which indicates that the
 1029 optimization in this work is suitable for both spectral and coherent beam combining.
 1030



1046 **Fig. 16.** RMS linewidth (blue circles) of the optical spectra and normalized SBS threshold
 1047 (red circles) plotted as a function of the clock rate, MLS9, $f_{co}/f_{cr} = 0.54$, $k_\sigma = 0.56\pi$.

1048 The calculations for Fig. 12(a), Fig. 12(c), Fig. 14(a)–14(e) and Fig. 15 are time consuming
 1049 even for the 61×61 grid that we use, because the SBS threshold is found by numerical iteration
 1050 with an increasing laser power, incremented in small laser power steps to ensure the accuracy.
 1051 During the integration, the power increment is adapted to reduce the number of iterations to save
 1052 computation time: first, we choose a relatively big power increment (20 W). Then the iteration
 1053 goes quickly through the linear zone of the SBS reflectivity vs. G curve. The nonlinear zone of
 1054 the reflectivity curve needs a smaller increment to achieve a high accuracy. When the calculated
 1055 SBS reflectivity exceeds 1% (i.e., when the laser power is above our definition of the threshold),
 1056 the iteration is repeated from a low power with a new increment which is the previous increment
 1057 divided by 2. A solution is found when, the SBS reflectivity deviates from the threshold of 1% by
 1058 less than 1×10^{-6} (relative error $< 10^{-4}$). We use the Parallel Computing Toolbox^T *M* in Matlab to
 1059 split the execution of iterations over eight workers in a parallel pool. The execution time for each
 1060 sub-figure in Fig. 12(a), Fig. 12(c), Fig. 14(a)–14(e) and Fig. 15 is less than 12 hours. Further
 1061 optimization of the algorithm for threshold searching can improve the computational efficiency.
 1062

6. Conclusion

1063 We have investigated SBS suppression in a 7.4-m-long passive fiber through phase-modulation
 1064 of a single-frequency lightwave with a maximal-length sequence, assumed to be a RF wave.
 1065 We considered ideal sequences comprising undistorted rectangular bits with π phase difference
 1066 between symbols, as well as those that were low-pass-filtered and amplified to different levels
 1067 of phase modulation. The temporal and spectral characteristics of the modulation waveform
 1068 and the modulated lightwave were investigated analytically with expressions we derived, as
 1069

well as numerically. The SBS threshold power was evaluated through numerical integration of a time-dependent three-wave coupled nonlinear system that describes the SBS dynamics of the phase-modulated lightwave, and subsequent time-averaging. The threshold was quantified relative to the threshold for the unbroadened lightwave (the so-called enhancement factor). For an enhancement factor of around 20, we found that the Brillouin Stokes wave can build up exponentially with a sub-nanosecond time constant in our 7.4-m fiber length. This can then reduce the SBS suppressing capability for MLS waveforms at GHz-level clock rate, insofar as these have uninterrupted single-symbol sub-sequences ("runs") extending over several nanoseconds. The combination of a low-pass filter and a RF amplifier can be used to distort the uninterrupted long sub-sequences and improve the phase distribution and SBS suppression with the MLS waveform. Aiming to accomplish the best SBS mitigation, parameters of the filtered and amplified MLS such as pattern length, modulation depth, and the ratio of filter cutoff frequency to clock rate are optimized numerically. The simulations indicate that for a RMS modulation depth of 0.56π and a ratio of filter cutoff frequency to clock rate of 0.54, the normalized SBS threshold reaches a maximum, and that MLS9 is superior to other investigated patterns (but note that MLS8 and MLS10 were not investigated). Unless the modulation is close to an integer multiple of $\pm\pi/2$, a cutoff frequency larger than around 80% of the clock rate leads to lower SBS suppression in the cases we considered, which we attribute to inadequate suppression of the lightwave's carrier. By contrast, there is no upper limit on the modulation depth, beyond which SBS suppression is no longer effective. Nevertheless, the suppression does not increase monotonically with modulation depth, which necessitates a careful selection of waveform parameters. Similarly, the suppression vs. linewidth characteristics vary significantly, and the suppression can be poor even with large linewidths. Our results provide new insights into SBS and its dynamics, relevant for kilowatt-class fiber systems for spectral and coherent beam combining which need to balance the linewidth and the SBS.

Funding. Youth Innovation Promotion Association of the Chinese Academy of Sciences (2020252); National Key Research and Development Program of China (2018YFB0504500); National Natural Science Foundation of China (61705243, 61735007, 61805261); Special Project for Research and Development in Key areas of Guangdong Province (2018B090904001); Air Force Office of Scientific Research (FA9550-17-1-0007). Q3

Acknowledgments. We would like to thank Dr. Jinghua Tang, School of Engineering, University of Southampton for fruitful discussions.

Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this paper are available in Ref. [31]. Q1

References

1. D. J. Richardson, J. Nilsson, and W. A. Clarkson, "High power fiber lasers: current status and future perspectives," *J. Opt. Soc. Am. B* **27**(11), B63–B92 (2010).
2. C. Jauregui, J. Limpert, and A. Tünnermann, "High-power fibre lasers," *Nat. Photonics* **7**(11), 861–867 (2013).
3. G. D. Goodno, S. J. McNaught, J. E. Rothenberg, T. S. McComb, P. A. Thielen, M. G. Wickham, and M. E. Weber, "Active phase and polarization locking of a 1.4 kW fiber amplifier," *Opt. Lett.* **35**(10), 1542–1544 (2010).
4. S. Kablukov, E. Zlobina, E. Podivilov, and S. Babin, "Output spectrum of Yb-doped fiber lasers," *Opt. Lett.* **37**(13), 2508–2510 (2012).
5. S. Naderi, I. Dajani, T. Madden, and C. Robin, "Investigations of modal instabilities in fiber amplifiers through detailed numerical simulations," *Opt. Express* **21**(13), 16111–16129 (2013).
6. M. N. Zervas and C. A. Codemard, "High power fiber lasers: A review," *IEEE J. Sel. Top. Quantum Electron.* **20**(5), 219–241 (2014).
7. T. Y. Fan, "Laser beam combining for high-power, high-radiance sources," *IEEE J. Sel. Top. Quantum Electron.* **11**(3), 567–577 (2005).
8. S. J. Augst, J. K. Ranka, T. Fan, and A. Sanchez, "Beam combining of ytterbium fiber amplifiers," *J. Opt. Soc. Am. B* **24**(8), 1707–1715 (2007).
9. C. Wirth, O. Schmidt, I. Tsypin, T. Schreiber, T. Peschel, F. Brückner, T. Clausnitzer, J. Limpert, R. Eberhardt, A. Tünnermann, M. Gowin, E. ten Have, K. Ludewigt, and M. Jung, "2 kW incoherent beam combining of four narrow-linewidth photonic crystal fiber amplifiers," *Opt. Express* **17**(3), 1178–1183 (2009).
10. T. H. Loftus, A. Liu, P. R. Hoffman, A. M. Thomas, M. Norsen, R. Royse, and E. Honea, "522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality," *Opt. Lett.* **32**(4), 349–351 (2007).

1123 11. P. Madasamy, D. R. Jander, C. D. Brooks, T. H. Loftus, A. M. Thomas, P. Jones, and E. C. Honea, "Dual-grating
1124 spectral beam combination of high-power fiber lasers," *IEEE J. Sel. Top. Quantum Electron.* **15**(2), 337–343 (2009).
1125 12. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, A. Tünnermann, K. Ludewigt, M. Gowin, E.
1126 Ten Have, and M. Jung, "High average power spectral beam combining of four fiber amplifiers to 8.2 kW," *Opt. Lett.*
1127 **36**(16), 3118–3120 (2011).
1128 13. Y. Zheng, Y. Yang, J. Wang, M. Hu, G. Liu, X. Zhao, X. Chen, K. Liu, C. Zhao, B. He, and J. Zhou, "10.8 kW spectral
1129 beam combination of eight all-fiber superfluorescent sources and their dispersion compensation," *Opt. Express*
1130 **24**(11), 12063–12071 (2016).
1131 14. B. Anderson, A. Flores, R. Holten, and I. Dajani, "Comparison of phase modulation schemes for coherently combined
1132 fiber amplifiers," *Opt. Express* **23**(21), 27046–27060 (2015).
1133 15. N. A. Naderi, A. Flores, B. M. Anderson, and I. Dajani, "Beam combinable, kilowatt, all-fiber amplifier based on
1134 phase-modulated laser gain competition," *Opt. Lett.* **41**(17), 3964–3967 (2016).
1135 16. A. V. Harish and J. Nilsson, "Optimization of phase modulation formats for suppression of stimulated Brillouin
1136 scattering in optical fibers," *IEEE J. Sel. Top. Quantum Electron.* **24**(3), 1–10 (2018).
1137 17. C. Zeringue, I. Dajani, S. Naderi, G. T. Moore, and C. Robin, "A theoretical study of transient stimulated Brillouin
1138 scattering in optical fibers seeded with phase-modulated light," *Opt. Express* **20**(19), 21196–21213 (2012).
1139 18. A. Flores, C. Robin, A. Lanari, and I. Dajani, "Pseudo-random binary sequence phase modulation for narrow
1140 linewidth, kilowatt, monolithic fiber amplifiers," *Opt. Express* **22**(15), 17735–17744 (2014).
1141 19. M. Howerton and W. Burns, "Depolarized source for high power remote operation of an integrated optical modulator,"
1142 *IEEE Photonics Technol. Lett.* **6**(1), 115–117 (1994).
1143 20. A. V. Harish and J. Nilsson, "Optimization of phase modulation with arbitrary waveform generators for optical
1144 spectral control and suppression of stimulated Brillouin scattering," *Opt. Express* **23**(6), 6988–6999 (2015).
1145 21. B. M. Anderson, A. Flores, and I. Dajani, "Filtered pseudo random modulated fiber amplifier with enhanced coherence
1146 and nonlinear suppression," *Opt. Express* **25**(15), 17671–17682 (2017).
1147 22. M. Liu, Y. Yang, H. Shen, J. Zhang, X. Zou, H. Wang, L. Yuan, Y. You, G. Bai, B. He, and J. Zhou, "1.27 kW, 2.2
1148 GHz pseudo-random binary sequence phase modulated fiber amplifier with Brillouin gain-spectrum overlap," *Sci.
1149 Rep.* **10**(1), 629 (2020).
1150 23. E. Lichtman, R. G. Waarts, and A. A. Friesem, "Stimulated Brillouin scattering excited by a modulated pump wave
1151 in single-mode fibers," *J. Lightwave Technol.* **7**(1), 171–174 (1989).
1152 24. M. S. Bowers and N. M. Luzod, "Stimulated Brillouin scattering in optical fibers with end reflections excited by
1153 broadband pump waves," *Opt. Eng.* **58**(10), 1 (2019).
1154 25. R. W. Boyd, K. Rzaewski, and P. Narum, "Noise initiation of stimulated Brillouin scattering," *Phys. Rev. A* **42**(9),
1155 5514–5521 (1990).
1156 26. V. Kovalev, R. Harrison, and A. Scott, "The build-up of stimulated Brillouin scattering excited by pulsed pump
1157 radiation in a long optical fibre," *Opt. Commun.* **185**(1-3), 185–189 (2000).
1158 27. I. Bar-Joseph, A. Friesem, E. Lichtman, and R. Waarts, "Steady and relaxation oscillations of stimulated Brillouin
1159 scattering in single-mode optical fibers," *J. Opt. Soc. Am. B* **2**(10), 1606–1611 (1985).
1160 28. H.-J. Zepernick and A. Finger, *Pseudo random signal processing: theory and application* (John Wiley & Sons, 2013).
1161 29. W. H. Press, H. William, S. A. Teukolsky, W. T. Vetterling, A. Saul, and B. P. Flannery, *Numerical recipes 3rd
1162 edition: The art of scientific computing* (Cambridge university press, 2007).
1163 30. F. Gustafsson, "Determining the initial states in forward-backward filtering," *IEEE Trans. Signal Process.* **44**(4),
1164 988–992 (1996).
1165 31. Y. Yang, B. Li, M. Liu, X. Huang, Y. Feng, D. Cheng, B. He, J. Zhou, and J. Nilsson, "Provide title," University of
1166 Southampton repository, 2021, <https://doi.org/10.5258/SOTON/D1795>.
1167
1168
1169
1170
1171
1172
1173

Q2