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GRAPHS AND COMPLEXES OF LATTICES

SAM HUGHES

ABSTRACT. We study lattices acting on CAT(0) spaces via their commensurated sub-
groups. To do this we introduce the notions of a graph of lattices and a complex of lattices
giving graph and complex of group splittings of CAT(0) lattices. Using this framework we
characterise irreducible uniform (Isom(E™) x T')-lattices by C*-simplicity and the failure
of virtual fibring and biautomaticity. We construct non-residually finite uniform lattices
acting on arbitrary products of right angled buildings and non-biautomatic lattices acting
on the product of E™ and a right-angled building. We investigate the residual finiteness,
L?-cohomology, and C*-simplicity of CAT(0) lattices more generally. Along the way we

prove that many right angled Artin groups with rank 2 centre are not quasi-isometrically

rigid.
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1. INTRODUCTION

Let H be a locally compact group with Haar measure p. A discrete subgroup I' < H is
a lattice if the covolume p(H /T) is finite. We say the lattice uniform is H /T is cocompact
and non-uniform otherwise. We say a lattice I' in a product Hy x Hy is weakly irreducible
if the projection of I' to each factor is non-discrete, otherwise we say I is reducible. Given
a pair of locally compact groups H; and Hs there are a number of basic questions one

can ask:

(Q1) Does Hy x Hj contain weakly irreducible lattices?
(Q2) What are the generic properties of a weakly irreducible lattice?

In the classical setting of lattices in semisimple Lie groups and linear algebraic groups
over local fields these questions are well studied. Indeed, there are deep theorems such
as the Margulis normal subgroup theorem, super-rigidity theorem, and the arithmeticity
theorem [Mar91|.

The non-classical setting is more complicated and was initiated by studing lattices in
the full automorphism group of a locally-finite polyhedral complex. A striking example
of the non-classical setting is given by the work of Burger and Mozes [BM97; BM00a;
BMOOb]. The authors constructed torsion-free simple groups which could be realised as

cocompact irreducible lattices in a product of automorphism groups of locally-finite trees.
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Thus, one should find a class of spaces which contain the exciting phenomena to be
found in products of polyhedral complexes whilst enjoying a strong geometric grounding.
The answer was to be found in the notion of non-positive curvature or CAT(0) spaces.
The theory encompasses symmetric spaces, non-positively curved manifolds, Euclidean
and hyperbolic buildings, and more [BH99|. The reader is referred to [BH99] for a com-

prehensive introduction to the theory.

Assumption 1.1. Throughout this paper, all actions of groups on graphs or polyhedral
complezes are assumed to be without inversion. That is, each element of a group fizes

pointwise each cell it preserves.

A systematic study of the full isometry groups of CAT(0) spaces and their lattices was
undertaken by Caprace and Monod [CM09b; CM09a; CM19|. The authors showed in
[CMO09b, Theorem 1.6], that under mild hypotheses on a CAT(0) space X, there is finite
index subgroup of H < Isom(X) which splits as

(1) H =~ TIsom(E") x Sy x -++ x S, x Dy x -++ x Dy,

for some n,p,q = 0, where each S; is an almost connected simple Lie group with trivial
centre and each D; is a totally disconnected irreducible group with trivial amenable
radical. Moreover by [CM09b, Addendum 1.8], X itself splits as

(2) X=E"xX;x--xX,xY;x-xY,

where each X; is an irreducible symmetric space of non-compact type and each Y; is an
irreducible minimal CAT(0)-space.

Taking these decompositions as a starting point motivates a new approach towards
CAT(0) groups, that is, understanding the lattices in each of the factors individually and
then how the factors interact. The later question is the central goal of this paper: To
provide a combinatorial framework for studying lattices in products of irreducible CAT(0)
spaces and deduce properties of the weakly irreducible lattices. To this end we introduce
the notion of a graph of lattices (Definition 3.2) with fixed locally-finite Bass-Serre T (we
will also assume that the tree is unimodular and its automorphism group is non-discrete,
these are essentially non-degeneracy conditions so that there are tree lattices). Note that
in the case of a product of two trees a similar construction was considered by Benakli and
Glasner [BG02].

Roughly a graph of lattices is a graph of groups such that all local groups are finite-by-
commensurable- H-lattices equipped with a morphism to H. We use this to study lattices
in the product of T := Aut(7) and closed subgroups H of the isometry group of a fairly
generic CAT(0) space. We prove a structure theorem for (H x T')-lattices. That is, we
show every (H x T')-lattice gives rise to a graph of H-lattices and conversely, we give
necessary and sufficient conditions for a graph of H-lattices to be an (H x T')-lattice.
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Theorem A (Theorem 3.3). Let X be a finite dimensional proper CAT(0) space and let
H = Isom(X) contain a uniform lattice. Let (A, A, 1) be a graph of H-lattices with locally-
finite unimodular non-discrete Bass-Serre tree T, and fundamental group T'. Suppose
T = Aut(T) admits a uniform lattice.

(1) Assume A is finite. If for each local group T, the kernel Ker(v|a,) acts faithfully
on T, then T is a uniform (H x T)-lattice and hence a CAT(0) group. Conversely,
if A is a uniform (H x T)-lattice, then A splits as a finite graph of uniform H-
lattices with Bass-Serre tree T .

(2) Under the same hypotheses as (1), T' is quasi-isometric to X x T .

(3) Assume X is a CAT(0) polyhedral complex. Let p be the normalised Haar measure
on H. If for each local group T, the kernel K, = Ker(y|a,) acts faithfully on T
and the sum Y, v 4 1(As)/| K| converges, then T is a (H x T')-lattice. Conversely,
if A is a (H x T)-lattice, then A splits as a graph of H-lattices with Bass-Serre
tree T .

We also introduce an analogous construction we call a complez of lattices (Definition 6.1)
by replacing the tree with a CAT(0) polyhedral complex and then prove an analogous
structure theorem (Theorem 6.2). In the process we deduce some consequences about
commensurated subgroups of CAT(0) groups.

We study of various properties of (H x T')-lattices providing answers to (Q2). In
Section 4.1 we investigate the L?-Betti numbers of (H x T)-lattices and some closely
related groups. We also compute the rational homological dimension of S-arithmetic
lattices in characteristic p > 0 (Theorem 4.5). The author expects this latter result is
well known however he could not find a reference in the literature. We investigate C*-
simplicity (Section 4.2), virtual fibring (Section 4.3) and autostackability (Section 4.4)
of (H x T')-lattices in terms of the properties of H-lattices. We will give the necessary
background for each property in the relevant section.

In Section 5 we detail a number of constructions and examples of (H x T')-lattices using
elementary Bass-Serre theory answering ((QQ1). The constructions are reminiscent of the
“universal covering trick” of Burger and Mozes [BM00a| and so we provide a comparison
in Section 5.3.

Until Leary and Minasyan’s examples of CAT(0) but not virtually biautomatic groups
in [LM19] there were no known examples of lattices where the projection to Isom(E") is
non-discrete. In light of this we begin a study of weakly irreducible lattices with non-trivial
de Rham factor. We adapt the biautomaticity criterion given in [LM19, Theorem 1.2] to
apply to arbitrary CAT(0) lattices in the presence of a de Rham factor (Theorem 7.7).

For T the automorphism group of a locally-finite tree we give constructions of many
more (Isom(E™) x T')-lattices. We then prove the following characterisation of uniform

(Isom(E™) x T')-lattices eliciting a number of generic properties of such lattices eleciting a
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strong answer to ()2). Note the following theorem is optimal in the sense that irreducible
uniform (Isom(E™) x T')-lattices are always non-residually finite and not virtually biauto-
matic, however, there also exist non-residually finite reducible uniform (Isom(E") x T')-
lattices for n > 3 (this can be seen by taking the direct product of an irreducible
(Isom(E?) x T')-lattice with Z"~2, then applying Theorem 7.7).

Theorem B (Theorem 7.13). Let T be a locally finite unimodular leafless tree not quasi-
isometric to R and let T = Aut(T). Let I' be a uniform (Isom(E™) x T')-lattice. The
following are equivalent:

(1) T is a weakly irreducible (Isom(E™) x T')-lattice;

(2) T is irreducible as an abstract group;

(3) T acts on T faithfully;

(4) T does not virtually fibre;

(5) T is C*-simple;

(6) and if n =2, T is non-residually finite and not virtually biautomatic.

In Section 8 we adapt a construction of Horbez and Huang [HH20] to extend actions
from a regular tree to the universal cover of a Salvetti complex S; with defining graph
L. 1In particular, from a graph of lattices, one obtains a complex of lattices. With a
mild hypothesis on the graph L, we use this construction to obtain weakly irreducible
non-biautomatic uniform lattices acting on S, x E" for n > 2 (Example 11) answering
(Q1). We also deduce a consequence about quasi-isometric rigidity of right angled Artin

groups with centre containing Z2.

Corollary C (Example 11 and Corollary 8.5). Let L be a finite simplicial graph on vertices
{v1,...,Un}. Suppose (vy,...,v5y = F5 < AL is a free subgroup and that {vy,...,v5} <
Aut(L) - vy. If Ay is irreducible, then there exists a weakly irreducible uniform lattice in
Aut(Sy) x Isom(E"™) which is not virtually biautomatic nor residually finite. In particular,

Ap x 72 is not quasi-isometrically rigid.

In [ThoO6], Thomas constructs a functor from graphs of groups covered by a fixed
biregular tree 7 to complexes of groups covered by a fixed “sufficiently symmetric” right-
angled building X with parameters determined by the valences of 7. We will give the
relevant definitions in Section 9.1. In Theorem 9.4 we show that Thomas’ functor theorem
takes a graph of lattices to a complex of lattices and in particular (H x T')-lattices to
(H x A)-lattices, where T" = Aut(7), A = Aut(X), and H is a closed subgroup of the
isometry group of a CAT(0) space (under mild hypothesis). As consequences we construct
more CAT(0) groups which are not virtually biautomatic (Corollary 9.5) and both uniform
and non-uniform weakly irreducible lattices in products of fairly arbitrary hyperbolic and
Euclidean buildings (Corollary 9.9) answering (Q1). We highlight one special case here:
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Corollary D (Special case of Corollary 9.5). Let X be the right-angled building of a
reqular m-gon of uniform thickness 10n and let A = Aut(X). For each n = 2 there exists
a weakly irreducible uniform (Isom(E™) x A)-lattice which is not virtually biautomatic nor
residually finite. In particular, if Y is irreducible, then the direct product of a uniform

A-lattice with Z? is not quasi-isometrically rigid.

1.1. Structure of the paper. In Section 2 we give the relevant background on lattices
acting on CAT(0) spaces. In Section 3 we give the relevant background on graphs of
groups, define graphs of lattices, and prove the structure theorem (Theorem 3.3). In Sec-
tion 4 we investigate L2-cohomology, C*-simplicity, virtual fibring, and autostackability of
(H x T)-lattices. We also compute the rational homological dimension of group schemes
over function fields in positive characteristic. In Section 5 we provide a number of con-
structions and explicit examples of (H x T)-lattices. In Section 6 we give the relevant
background on complexes of groups, define complexes of lattices, and prove the structure
theorem (Theorem 6.2). In Section 7 we study CAT(0) lattices acting on spaces with non
trivial de Rham factor. We prove the non-biautomaticity criterion for general CAT(0)
groups and prove the characterisation of (Isom(E") x T')-lattices. In Section 8 we adapt
the construction of Horbez and Huang. In Section 9 we give the relevant background on
right-angled buildings and Thomas’ functor theorem. We then prove our functor theorem
(Theorem 9.4) and deduce a number of consequences. Finally, in Section 10 we record a

few questions and conjectures.
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author would like to thank his PhD supervisor lan Leary for his guidance and support.
The author would like to thank Motiejus Valiunas for sharing his preprint [Val21| and
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the author would like to thank Naomi Andrew, Pierre Emmanuel-Caprace, Mark Ha-
gen, Susan Hermiller, Jingyin Huang, and Harry Petyt for helpful correspondence and

conversations.

2. PRELIMINARIES

2.1. Lattices and covolumes. Let H be a locally compact topological group with right
invariant Haar measure u. A discrete subgroup I' < H is a lattice if the covolume u(H/T)
is finite. A lattice is uniform if H/T' is compact and non-uniform otherwise. Let S be
a right H-set such that for all s € S, the stabilisers H; are compact and open, then if
I' < H is discrete the stabilisers are finite.

Let X be a locally finite, connected, simply connected simplicial complex. The group
H = Aut(X) of simplicial automorphisms of X naturally has the structure of a locally
compact topological group, where the topology is given by uniform convergence on com-

pacta.
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Theorem 2.1 (Serre’s covolume formula [Ser71]). Let X be a locally finite simply-connected
simplicial complex. LetT' < H be a lattice with fundamental domain A, then there is a no-
malisation of the Harr measure p on H, depending only on X, such that for each discrete

subgroup I' < H we have

p(H/T) = Vol(X/T) :=

veA(0)

1
U

T

Note that T" the automorphism group of a locally finite tree 7 admits lattices if and
only if the group 7" is unimodular (that is the left and right Haar measures coincide). In

this case we say T is unimodular.

2.2. Non-positive curvature. We will be primarily interested in lattices in the isometry
groups of CAT(0) spaces, we will call these groups CAT(0) lattices (note that a uniform
CAT(0) lattice is a CAT(0) group). We begin by recording several facts about the struc-
ture and isometry groups of general CAT(0) spaces. The definitions and results here are
largely due to Caprace and Monod [CM09b; CM09a; CM19].

An isometric action of a group H on a CAT(0) space X is minimal if there is no non-
empty H-invariant closed convex subset X’ < X, the space X is minimal if Isom(X)
acts minimally on X. Note that by [CM09b, Proposition 1.5, if X is cocompact and
geodesically complete, then it is minimal. The amenable radical of a locally compact group
H is the largest amenable normal subgroup. We can now state Caprace and Monod’s

group and space decomposition theorems mentioned in the introduction.

Theorem 2.2. [CM09b, Theorem 1.6] Let X be a proper CAT(0) space with finite di-
mensional Tits’ boundary and assume Isom(X) has no global fixed point in 0X. There is
a canonical closed, conver, Isom(X)-stable subset X' € X such that G = Isom(X’) has a

finite index, open, characteristic subgroup H < G that admits a canonical decomposition
H =~ Tsom(E") x Sy x --+ xS, x Dy x -+ x D,,

for some n,p,q = 0, where each S; is an almost connected simple Lie group with trivial

centre and each Dj is a totally disconnected irreducible group with trivial amenable radical.

U
Theorem 2.3. [CM09b, Addendum 1.8] Let X’ and H be as above, then
X >2E'x X3 x -+ x X, xY; x-- xY,

where each X; is an irreducible symmetric space and each Y; is an irreducible minimal

CAT(0)-space. O

2.3. Irreducibility. Let X = X; x --- x X, be a product of irreducible proper CAT(0)
spaces and let I' be a lattice in H = Hy x --- x H, := Isom(X;) x -+ x Isom(X,),

with each H; non-discrete and acting minimally. There are several possible notions of
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irreducibility for a lattice in H, moreover, in the general setting of CAT(0) groups, they
are not necessarily equivalent. In the interest of clarity, we recount each of these and

summarise their implications, we follow the treatment in [CM12; CL19].

(Irrl) For every ¥ < {1,...,n}, the projection 7y, : I' — Hy, has dense image. Here we
say ' is topologically irreducible or an irreducible lattice.

(Irr2) The projection to each factor H; is injective.

(Irr3) For every ¥ < {1,...,n}, the projection my : I' — Hy has non-discrete image.
Here we say 1" is weakly irreducible or a weakly irreducible lattice.

(Irr4) ' has no finite index subgroup which splits as a direct product of two infinite

subgroups. Here we say I is algebraically irreducible.

Firstly, if each H; is a centre-free semisimple algebraic group without compact factors
then each of the definitions are equivalent [Mar91]. When each H; is a non-discrete,
compactly generated, tdlc group, then [CL19, Theorem H| summarises all possible im-
plications. Returning to the setting described above we have that (Irr2) = (Irr3) =
(Irr4) and if I' is finitely generated, then by Theorem 2.4 we have (Irr4) = (Irr3). Note
that in general (Irr4) = (Irr2) fails, unless I is residually finite. The following theorem
from [CM09a| shows the equivalence of (Irr3) and (Irr4) for many CAT(0) lattices.

Theorem 2.4. [CM09a, Theorem 4.2| Let X be a proper CAT(0) space, H < Isom(X) a
closed subgroup acting cocompactly on X, and I' < H a finitely generated lattice.

(1) If T is irreducible as an abstract group, then for for finite index subgroup I'y < T'
and any [g-equivariant splitting X = X1 x Xy with X; and Xy non-compact, the
projection of Tg to both Isom(X;) and Isom(X3) is non-discrete.

(2) If in addition the H-action is minimal, then the converse holds. U

Finally, we restate a result of Caprace-Monod which we can use as criterion to determine
non-residual finiteness of lattices in products.

Theorem 2.5. [CM09a, Theorem 4.10| Let X be a proper CAT(0) space such that
G = Isom(X) acts cocompactly and minimally. Let T' < Isom(X) be a finitely gener-
ated algebraically irreducible lattice. Let I = T' n H, where H is given in Theorem 2.2.
If the projection of T to an irreducible factor of X has non-trivial kernel, then T' is not
residually finite. 0

3. GRAPHS OF LATTICES

In this section we will review Bass-Serre theory, graphs of spaces and tree lattices.
These tools will be fundamental to us in the following chapters. We will then define a

graph of lattices and prove the structure theorem for (H x T')-lattices.
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3.1. Graphs of groups. We shall state some of the definitions and results of Bass-Serre
theory. In particular, the action will be on the right. We follow the treatment of Bass
[Bas93|. Throughout a graph A = (V A, EA,,7) should be understood as it is defined by
Serre [Ser03|, with edges in oriented pairs indicated by €, and maps ¢(e) and 7(e) from each
edge to its initial and terminal vertices. We will, however, often talk about the geometric
realisation of a graph as a metric space. In this case the graph should be assumed to
be simplicial (possibly after subdividing) and should have exactly one undirected edge e
for each pair (e,e). We will often not distinguish between the combinatorial and metric
notions.

A graph of groups (A, A) consists of a graph A together with some extra data A =
(VA EA ®A). This data consists of vertex groups A, € V A for each vertex v, edge groups
A, = Az € EA for each (oriented) edge e, and monomorphisms (a. : Ac — A,)) € © for
every oriented edge in A. We will often refer to the vertex and edge groups as local groups
and the monomorphisms as structure maps.

The path group w(.A) has generators the vertex groups A, and elements t, for each edge
e € FA along with the relations:

The relations in the groups A,,
te =t 1,
teaz(g)t;t = ae(g) for allee EA and g € A, = As.

We will often abuse notation and write A for a graph of groups. The fundamental group
of a graph of groups can be defined in two ways. Firstly, considering reduced loops based
at a vertex v in the graph of groups, in this case the fundamental group is denoted (A, v)
(see [Bas93, Definition 1.15]). Secondly, with respect to a maximal or spanning tree of
the graph. Let X be a spanning tree for A, we define 7 (A, X) to be the group generated
by the vertex groups A, and elements t. for each edge e € FA with the relations:

The relations in the groups A,,
te =t ! for each (oriented) edge e,
teas(g)t; = ae(g) for all g € A,
te = 1if e is an edge in X.

Note that the definitions are independent of the choice of basepoint v and spanning tree
X and both definitions yield isomorphic groups so we can talk about the fundamental
group of A, denoted m;(A).

Let G be the fundamental group corresponding to the spanning tree X. For every
vertex v and edge e, A, and A, can be identified with their images in G. We define a tree
with vertices the disjoint union of all coset spaces G/A, and edges the disjoint union of
all coset spaces G/ A, respectively. We call this graph the Bass-Serre tree of A and note

that the action of G admits X as a fundamental domain.
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Given a group G acting on a tree T, there is a quotient graph of groups formed by
taking the quotient graph from the action and assigning edge and vertex groups as the
stabilisers of a representative of each orbit. Edge monomorphisms are then the inclusions,

after conjugating appropriately if incompatible representatives were chosen.

Theorem 3.1. |Bas93| Up to isomorphism of the structures concerned, the processes of
constructing the quotient graph of groups, and of constructing the fundamental group and

Bass-Serre tree are mutually inverse. O

Let (A, A) and (B,B) be graphs of groups. A morphism of graphs of groups ¢ :

(A, A) — (B, B) consists of:
(1) A graph morphism f: A — B.
(2) Homomorphisms of local groups ¢, : A, — By, and ¢. = ¢z : Ac — By(e).
(3) Elements =, € m1(B, f(v)) for each v € VA and ~, € n(B) for each e € EA such

that if v = i(e) then

o b =7, € By
® ¢q 0. = Ad(d) o f(e) © Pe-

3.2. A Structure theorem. In this section we will define a graph of lattices and prove

the structure theorem for (H x T')-lattices.

Definition 3.2 (Graph of lattices). Let H be a locally compact group with Haar measure
p. A graph of H-lattices (A, A, 1) is a graph of groups (A, .A) equipped with a morphism
1 : A — H such that:

(1) Each local group A, € A is covirtually an H-lattice and the image ¥(A,) is an
H-lattice;

(2) The local groups are commensurable in I' = 7;(A) and their images are commen-
surable in H;

(3) For each e € EA the element t. of the path group 7(A) is mapped under ¢ to an
element of Commp (¢(Ae)).

Theorem 3.3 (The Structure Theorem - Theorem A). Let X be a finite dimensional
proper CAT(0) space and let H = Isom(X) contain a uniform lattice. Let (A, A, 1) be
a graph of H-lattices with locally-finite unimodular non-discrete Bass-Serre tree T, and

fundamental group T'. Suppose T = Aut(T) admits a uniform lattice.

(1) Assume A is finite. If for each local group T, the kernel Ker(v|a,) acts faithfully
on T, then T is a uniform (H x T)-lattice and hence a CAT(0) group. Conversely,
if A is a uniform (H x T)-lattice, then A splits as a finite graph of uniform H-
lattices with Bass-Serre tree T .

(2) Under the same hypotheses as (1), I' is quasi-isometric to X x T .
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(3) Assume X is a CAT(0) polyhedral complex. Let pu be the normalised Haar measure
on H. If for each local group T, the kernel K, = Ker (|4, ) acts faithfully on T
and the sum Y, v 4 1(As)/| K| converges, then T is a (H x T')-lattice. Conversely,
if A is a (H x T)-lattice, then A splits as a graph of H-lattices with Bass-Serre
tree T .

We will divert the majority of the proof to the proof of Theorem 6.2 due to the similarity
of the theorem statement and arguments involved in the proof. The minor difference arises
from the fact that the category of graphs of groups is not equivalent to the category of
1-complexes of groups (see |[Tho06, Proposition 2.1]) due to the difference in morphisms.
We highlight the key differences below.

Proof. We first prove (1). The “if direction" is the same as Theorem 6.2(1). For the con-
verse note that an (H x T')-lattice " splits as a graph of groups (A, .A) by the fundamental
theorem of Bass-Serre theory and the projection to H induces a morphism 7y : A — H
The same argument as Theorem 6.2(1) implies that the local groups are commensurable
covirtually commensurable H-lattices. In particular, the images of the elements ¢, € 7(.A)
for e € E'A are contained in Commpy (7 (A,)) for every local group A,.

We now prove (2). By (1) I' acts properly discontinuously cocompactly on X x 7. The
result follows from the Svarc-Milnor Lemma [BH99, p. 1.8.19]. «

The proof of (3) is almost identical to (1) we will highlight the differences. Since X
is a CAT(0) polyhedral complex, it follows that X x 7 is. Now, we may apply Serre’s
Covolume Formula to I" = 71(A). Let A be a fundamental domain for I acting on X x T,
then the covolume of I' may be computed as

1 1 | Ko | p(m
DI SR 20 T TR & T TR [oR

oeAO | U| oenr(A%) ren oenr(A9) TET Tl(o-) oenr (A0

Since 77 (A) can be identified with VA and the later sum converges by assumption, it
follows as before that I' acts faithfully properly discontinuously and isometrically with

finite covolume on X x Y. For the converse we proceed as in Theorem 6.2(3). & O

3.3. Reducible lattices. Let X be a proper minimal CAT(0) space and H = Isom(X).
Let T be a locally-finite non-discrete unimodular leafless tree and 7' = Aut(7). We will
now characterise reducible uniform (H x T')-lattices by both their projections to H and
T, and by the separability of the vertex stabilisers in the projection to T'. Moreover, if
H is linear, we will show that all such lattices are linear, and thus, residually finite. We
say that a subgroup A < I' is separable if it is the intersection of finite-index subgroups of
I', virtually normal if A contains a finite index subgroup N such that N <= I', and weakly

separable if it is the intersection of virtually normal subgroups of T'.

Proposition 3.4. Let X be a proper minimal CAT(0) space and H = Isom(X). Let T
be a locally-finite non-discrete unimodular leafless tree and let T = Aut(T). Let T be a
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uniform (H x T)-lattice equipped with projections wy and mp to H and T respectively,

then the following are equivalent:

(1) 7 (L) is an H-lattice;

(2) mp(T) is a T-lattice;

(8) For every vertex v € T, the projection of the vertex stabiliser wr(I',) is separable
in mp(1);

(4) There is a vertex v € T such that the projection of the vertex stabiliser mp(I',) is

weakly separable in wp(I');
(5) T is a reducible (H x T')-lattice.

Proof. First, we will show that (1) implies (2), our proof for this case largely follows
[BMOOb, Proposition 1.2|. Assume 7y (I") is an H-lattice, then I"- T is closed and so 'n T
is a uniform 7-lattice. Now, 77(I") normalises I' n 7" and hence by [BM00a, p. 1.3.6] is
discrete. Thus, mp(I") is discrete and so is a lattice in 7.

Next, we will show that (2) implies (1). Assume 7p(I") is a lattice in 7" and consider
the kernel K of the action of I' on 7. We will show that K is a finite index subgroup of
7y (T). Assume that K has infinite index, then 7y (T")/K < 7p(T") is an infinite subgroup
of the vertex stabiliser, a profinite group, and so cannot be discrete. Thus, K has finite
index in 7y (I"). Since K acts trivially on 7 we see that K = I' n H. Since I' - H is
closed it follows K is an H-lattice. Thus, 7y (I") is virtually a lattice in H and therefore
an H-lattice.

Clearly, (5) implies (1) and (2). We will now prove that (1) and (2) imply (5). By the
previous paragraph we have K < 7y (') finite index. Let I'r = {7 | (e,7) € '}, we want
to show that I'r is a uniform T-lattice. Since all uniform 7T-lattices are commensurable
I'r will be a finite index subgroup of 77 (I"). By the first paragraph we see I'r is a uniform
lattice. Thus, K x I'r is a finite index subgroup of I' and so I is reducible.

Now, evidently (3) implies (4). To see that (4) implies (5) we apply [Cap+19, Corollary
30] to 7r(T), noting that a cocompact action on a leafless tree does not preserve any
subtree, in particular, 7r(I") is discrete. Finally, we show that (5) implies (3). Observe
that 77 (L) is a virtually free T-lattice which splits as a finite graph of finite groups. Since

7r(I) is a finite graph of finite groups, the vertex stabilisers are separable subgroups. O

One immediate consequence of the theorem is that we can determine whether a lattice
is irreducible simply by considering the projections to either H or T. Also, note that
if H is the automorphism group of a unimodular leafless tree then we recover [BMO00b,
Proposition 1.2] and and [Cap+19, Corollary 32].

We also have the following observations about the linearity and residual finiteness of

reducible lattices.
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Proposition 3.5. With the same notation as before, assume H is linear (or lattices in H
are residually finite). If T is a uniform reducible (H x T)-lattice, then T is linear (resp.
residually finite).

Proof. 1f T is reducible, then I' is virtually a direct product of a linear (resp. residually
finite) group with a virtually free group. In particular, I" is virtually a direct product of

linear (resp. residually finite) groups and therefore linear (resp. residually finite). O

Corollary 3.6. With H and T as before, assume H is linear. If I is a finitely generated
uniform (H x T)-lattice, then exactly one of the following holds:

(1) T is reducible and therefore linear (hence residually finite);
(2) T is irreducible and linear (hence residually finite);

(8) T is irreducible and non-residually finite.

Moreover, if H is a connected centre-free semisimple linear algebraic group without com-

pact factors and I is irreducible and linear, then I' is arithmetic and just-infinite.

Proof. The first case follows from the previous proposition. Now, assume I' is irreducible
and 7y (I") is injective, then 7y is a faithful linear representation of I' and we are in
the second case. Since I' is linear, mp must be injective otherwise I" would contradict
Theorem 2.5. Now, if either of mp or my are not injective, then by Theorem 2.5 we
see that I' is not residually finite. Note that w7 not being injective necessarily implies
that mg is not injective because otherwise I' would admit a faithful linear representation,
contradicting non-residual finiteness. To prove the moreover note that I' is just-infinite
follows from the Bader-Shalom Normal Subgroup Theorem [BS06| applied to the closure
of I"in H x T. The arithmeticity of I" follows from [BFS19]. O

Let vb,(I") denote the pth virtual Betti number of I' which is defined to be the maximum

of the pth Betti number over all finite index subgroups of I', or oo if the set is unbounded.

Proposition 3.7. With H and T as before, assume H is a connected centre-free semisim-
ple linear algebraic group without compact factors. Let I' be a finitely generated uniform
irreducible (H x T')-lattice. If vby(T") > 0, then T is not residually finite. In particular, if
bi(T/T) > 0, then T is not residually finite.

Proof. Since T is irreducible, by the previous corollary, either I' is linear and just-infinite,
or I' is not residually finite. Now, if the virtual Betti number of I' is greater than zero,
then a finite index subgroup I'” of T admits Z as a quotient and so cannot be just infinite.
Hence, I" is not residually finite and so neither is I'.

The quotient space T /I" gives rise to a graph of groups splitting of I" with Bass-Serre
tree 7. An easy application of the Mayer-Vietoris sequence applied to 7 shows that
b1 (T) = by (T/T). O
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4. PROPERTIES OF (H x T)-LATTICES

In this section we will investigate the L?-cohomology, C*-simplicity, virtual fibring, and
autostackability of (H x T')-lattices in terms of properties of H-lattices. We remark that
in each case the proofs are relatively elementary but depend in an essential way on the

structure theorem (Theorem 3.3).

4.1. L?>-cohomology and dimension. Let I' be a group. Both I' and the complex
group algebra CI" act by left multiplication on the Hilbert space /2I" of square-summable
sequences. The group von Neumann algebra NT is the ring of I'-equivariant bounded
operators on /2G. The regular elements of NG form an Ore set and the Ore localization
of NT can be identified with the ring of affiliated operators UT.

There are inclusions CI' € NT < 2" € UT and it is also known that UT is a self-
injective ring which is flat over NT. For more details concerning these constructions
we refer the reader to |Liic02| and especially to Theorem 8.22 of Section 8.2.3 therein.
The von Neumann dimension and the basic properties we need can be found in [Liic02,
Section 8.3].

Let Y be a I-CW complex as defined in |Liic02, Definition 1.25]. The ¢*>-homology
groups of Y are defined to be the equivariant homology groups H} (Y;UT), and we have

b2 (Y) = dimye HE (Y;UT).

7

The 2-Betti numbers of a group I are then defined to be the ¢2-Betti numbers of ET'. By
[Liic02, Theorem 6.54(8)], the zeroth ¢*-Betti number of T is equal to 1/|T'| where 1/|T|
is defined to be zero if I is infinite. Moreover, if I' is finite then bg)(G) =0forn>1.

In this section we will compute the L?-Betti numbers of (H x T')-lattices for a very
general choice of H and T. Our primary tool will be Gaboriau’s invariance of L2-Betti
numbers under measure equivalence.

Two countable groups I' and A are said to be measure equivalent if there exist com-
muting, measure-preserving, free actions of I' and A on some infinite Lebesgue measure
space (£2,m), such that the action of each of the groups I' and A admits a finite measure
fundamental domain. The key examples of measure equivalent groups are lattices in the

same locally-compact group [Gro93|.

Theorem 4.1. Let H be a unimodular locally compact group with lattices and T be a
locally-finite unimodular tree with automorphism group T. Assume H-lattices do not have
two consecutive non-zero L*-Betti numbers. Let T' be an (H x T)-lattice and let V and E

be a representative set of orbits of vertices and edges respectively for the action of I' on
T. We have

bAI) = D167 (0e) — D62 ().

eeE veV
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Proof. Let A be a reducible (H x T)-lattice and assume A splits as L x F,, where L is an
H-lattice. Using the Kiinneth formula we see that the L2-Betti numbers of A are non-
vanishing in the dimensions precisely 1 higher than the non-vanishing L2-Betti numbers
of L. Both A and I' are measure equivalent, since they both lattices in (H x T'). By
Gaboriau’s theorem on the invariance of L?-Betti numbers under measure equivalence
[Gab02, Theorem 6.3], the L2-Betti numbers of I' are non-vanishing in the same degrees
as A.

Now, we apply the I'-equivariant cohomology Mayer-Vietoris (|[Bro94, Chapter VII.9])
sequence with UT" coefficients to the filtration of ET' given by the cell structure of the
Bass-Serre tree 7. Since the vertex and edge stabilisers of the action on 7" do not have two
sequential non-zero L?-Betti numbers, neither does I'. Thus, the sequence degenerates
into short exact sequences

0> @ HH;UT) — P HE(L;UT) — HEFH(TUT) — 0
ecEl veV

and the result follows from the additivity of von Neumann dimension. O]
As an immediate corollary we recover the following well known result.

Corollary 4.2. Let I' be a tree lattice, then all L?-Betti numbers of I' vanish, except

W) =Y Loy L
0 ZIM Z\m

ecE veV

The assumption of not having two sequential non-zero L2-Betti numbers turns out to
not be very restrictive as [Liic02, Theorem 5.12] and [PST18, Theorem 1.6] demonstrate.
For arbitrary CAT(0) lattices, the presence of the de Rham factor causes the L2-Betti

numbers to vanish.

Proposition 4.3. Let X be a proper CAT(0) space with non-trivial de Rham factor and
H < Isom(X) be a closed subgroup acting minimally and cocompactly. IfT is an H -lattice,
then the L?-Betti numbers of I' vanish.

Proof. By [CM19, Theorem 2(i)] I' has a commensurated free abelian subgroup A and so
bz(,Q)(A) = 0 for all p > 0. Now, we apply [BFS14, Corollary 1.4]. O

Remark 4.4. More generally, let X be a proper CAT(0) space with canonical closed
convex Isom(X)-stable subset X’ € X such that X’ = M x X x --- x X,,, where M is
a symmetric space of non-compact type and each X is irreducible and minimal. Assume
rankc (Isom(M)) — ranke(Isom(M)) = 0, let H < Isom(X'’) be a closed subgroup acting
cocompactly and minimally and let I' be an H-lattice. By measure rigidity and repeat
applications of the Kiinneth theorem we have béQ)(F) = 0 for p < 5dim(M) + X1, b;,
where b; is the smallest dimension such that an Isom(X;)-lattice has a non-vanishing L*-
Betti number. In particular, if either the L?-cohomology of an Isom(X;)-lattice vanishes
or f-rk(M) > 0 (see |Liic02, Theorem 5.12]), then the L*-cohomology of T' vanishes.
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4.1.1. Rational homological dimension of group schemes over function fields. Let k be the
function field of an irreducible projective smooth curve C defined over a finite field F,.
Let S be a finite non-empty set of (closed) points of C. Let Og be the ring of rational
functions whose poles lie in S. For each p € S there is a discrete valuation v, of k£ such
that v,(f) is the order of vanishing of f at p. The valuation ring O, is the ring of functions
that do not have a pole at p, that is

Os =[Oy

p¢S

Let k denote the algebraic closure of k. Let G be an affine group scheme defined over
k such that G(k) is almost simple. For each p € S there is a completion k, of k and the
group G(k,) acts on the Bruhat-Tit’s building X,. Thus, we may embed G(Og) into the
product [ [ ¢ G, as an arithmetic lattice.

In [Ganl2] it is shown that cdg(G(Os)) = [[,cgdim X,. In light of this lan Leary
asked the author what is hdg(G(Og))?

Theorem 4.5. Let G be a simple simply connected Chevalley group. Let k and Og be as
above, then
hdg(G(0s)) = cdg(G(Og)) = | [ dim X,,.
peS

Proof. We first note that the group I' := G(Og) is measure equivalent to the prod-
uct [[,c5 G(Fy[ty]) for some suitably chosen ¢, € O,. By [PST18, Theorem 1.6] the
group G(F,[t,]) has one non-vanishing L*-Betti number in dimension dim(X,). Hence,
by the Kiinneth formula G(F,[t,]) has one non-vanishing L*-Betti number in dimension
d = [[,egdim X,, Thus, by Gaboriau’s theorem [Gab02|, the group I' has exactly one
non-vanishing L?-Betti number in dimension d. It follows that hdg(T') > d. The re-
verse inequality follows from the fact that I' acts properly on the d-dimensional space
[ [es dim X, O

4.2. C*—simplicity. Let ' be a discrete group. The reduced C*-algebra of I'; denoted
C*(T), is the norm closure of the algebra of bounded operators on ¢*(T") by the left
regular representation of I'. We say I' is C*-simple if C*(I") has exactly two norm-closed
two-sided ideals 0 and C*(T") itself. A C*-simple group I' enjoys a number of properties
including having trivial amenable radical, the infinite conjugacy class (icc) property, the
unique trace property |[Bre+17, Theorem 1.3], and having a free action on its Furstenberg
boundary drI' [KK17].

In 1975 Powers proved that the free group Fy is C*-simple [Pow75]. Since this result
it has been a major open problem to classify C*-simple groups, we refer the reader to
[Har07] for a general survey and [Bre+17] for a number of recent developments. In the

setting of CAT(0) groups there is a characterisation of C*-simple CAT(0) cubical groups
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|[KS16| and of linear groups |[Bre+17, Theorem 1.6]. In this section we will consider the
C*-simplicity of (H x T')-lattices.

The C*-simplicity of graphs of groups has been considered before [HP11], however, the
methods developed there are not applicable to (H x T')-lattices because the vertex and
edge groups are all commensurable. Instead, we will apply the machinery developed in
[Bre+17] to prove the C*-simplicity of (H x T)-lattices via properties of either H or the
action on 7.

Let I' be a group. We say a subgroup H is normalish if for every n > 1 and ¢, ...,

the intersection (1), H" is infinite.

Proposition 4.6. Let I" be the fundamental group of a (possibly infinite) graph of finite
groups with leafless Bass-Serre tree T not quasi-isometric to R. If T' is infinite, not

virtually cyclic and acts faithfully on T, then ' is C*-simple.

Proof. As T is not finite or virtually cyclic T has a positive (possibly infinite) first L%
Betti number. Indeed, the chain complex of the Bass-Serre tree C,(T;UT), which is
concentrated in dimension 0 and 1, may be used to compute the L?-homology. As I is
infinite the boundary map is surjective and so the L?-homology is concentrated in degree 1.
We may pair each orbit of 0-cells v with an orbit of 0-cells e contained in the boundary of
e, in each case the dimension of the YI"-module is 1/|T",| or 1/|T|, and 1/|T".| —1/|T",| = 0.
Since I' is non-trivial and not virtually cyclic some of these inequalities must be strict.
In particular, we conclude T' has a (possibly infinite) non-trivial first L2-Betti number
equal to the sum of these partial sums plus extra terms 1/|I'.| for any orbit of edges not
accounted for. Since I' has a trivial amenable radical and a non-trivial L2-Betti number
we may apply [Bre+17, Theorem 6.5] to deduce that I" is C*-simple.

Alternatively, we first note that any normalish subgroup of I' contains a free subgroup
since I' is a faithful graph of finite groups and is not virtually cyclic. Now, we apply
[Bre+17, Theorem 6.2| to deduce that I' is C*-simple. O

The following theorem and corollary give a partial answer to two questions of de la
Harpe [Har07] and consider the more general case of an arbitrary graph of groups. Let
T be a locally-finite non-discrete unimodular leafless tree and 7' = Aut(7). The theorem

implies the following lattices are C*-simple:

e H is a semisimple Lie group with trivial centre and I'" is a graph of S-arithmetic
lattices. This new whenever T is not residually finite. To see this, apply (1) and
(2a);

e [ is a lattice in a product of trees. To see this, apply (2¢);

e [' is the fundamental group of a graph of lattices where each vertex and edge
group acts on the universal cover of a Salvetti complex corresponding to a right-
angled Artin group with trivial centre. To see this, apply (1) and (2a) to [Bre+17,
Theorem 1.6];
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e H is the automorphism group of an affine building with no irreducible factor
isometric to E" and I is an irreducible (H x T')-lattice. To see this, apply (2a);

e H is the automorphism group of a hyperbolic building and T' is an irreducible
(H x T)-lattice. To see this, apply (2a);

e H is a product of the above and I is an irreducible (H x T)-lattice. To see this,
apply (2a);

e Isom(E™) and T is an irreducible (Isom(E") x T')-lattice. Note this characterises
irreducible (Isom(E") x T')-lattices and will follow from (2b) (see Theorem 7.13).

The results in this list are new whenever the (H x T')-lattices in question are not cubical

or linear groups.

Theorem 4.7. Let X = X x -+ x X}, be a product of proper minimal cocompact CAT(0)-
spaces each not isometric to R and let H = Isom(X;) x -+ x Isom(Xy) act without
fized point at infinity. Let T be a locally-finite non-discrete unimodular leafless tree and
T = Aut(T). Let n =0 and T’ < Isom(E™) x H x T be a finitely generated lattice.

(1) Assume T is reducible and n = 0, then I' is C*-simple if and only if ' n H is
C*-simple, and I" has the icc property.
(2) Assume T is weakly irreducible. If one of the following holds:
(a) H-lattices have no normalish amenable subgroups;
(b) Ker(mr) is trivial and Ker(Tisommnyx ) @5 infinite;
(c) H-lattices have a non-zero L*-Betti number and trivial amenable radical;

then I' is C*-simple.

Proof. In the reducible case I' virtually splits as F,, x I'y. The result follows from the
following three observations [Har07, Proposition 19 (i, iii, iv)|, a direct product of two
C*-simple groups is C*-simple, finite index subgroups of C*-simple groups are simple,
and a virtually C*-simple group is C*-simple if and only if it satisfies the icc property.

Now, assume I is irreducible. We will show that (2a) implies C*-simplicity. Since
[ is finitely generated G = T /I" is finite. We first show that any amenable normalish
subgroup N of I' must fix a vertex of 7. Let g € I" act as a hyperbolic element on T,
choose any other element h € I' acting hyperbolically on 7 with an axis not equal to
g, then any normalish subgroup N containing g contains the free group (g, h) and so
cannot be amenable. Thus, N fixes a vertex of 7. Now, by Theorem 3.3 every vertex
and edge stabiliser of I' is a finite-by-H-lattice group. Since by assumption H-lattices
do not contain any normalish amenable subgroups, neither does I'. It remains to verify
that I' has no finite normal subgroups, but I' has trivial amenable radical by [CM09a,
Corollary 2.7]. In particular the result now follows from [Bre+17, Theorem 6.2].

We next prove (2b) implies C*-simplicity. Let K = Ker(isom&r)xm)), we have that I is
an extension of K by Tisommn)x ) (I"). Now, K is a (possibly infinite) graph of finite groups

acting faithfully on 7. Indeed, restricting m := TgomEn)xz to a vertex stabiliser I', < I'
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of the action on 7, by Theorem 3.3 we see Ker(r|r,) is finite. Every finite subgroup of T,
and hence K, is conjugate to a finite subgroup of some vertex stabiliser. Thus, the graph
of groups decomposition is given by 7 /K.

We claim K is not virtually infinite cyclic. Indeed, if K was virtually cyclic, then there
exists a commensurated infinite cyclic subgroup Z < K < I'. By [CM19, Theorem 2(i)|
Z acts properly on E” in the decomposition of X. But Z < K, a contradiction.

It follows the group K is C*-simple by Proposition 4.6. Because Ker(mr) is trivial,
every element acts non-trivially on 7 and so the centraliser Cp(K) is trivial. Now, we
apply [Bre+17, Theorem 1.4] to prove the result.

Finally, we will prove (2¢) implies C*-simplicity. We apply the cohomology I'-equivariant
Mayer-Vietoris sequence with UT" coefficients arising from filtering ET' by the Bass-Serre
tree [Bro94, Chapter VIL.9]. Since 7 is not a quasi-line there is a vertex v connected to an
edge e such that the stabilisers satisfy |T', : .| = 3, thus the L?-Betti numbers of T, are
at least 3 times the L2-Betti number of I',. Now, additivity of von Neumann dimension
over exact sequences and a simple counting argument implies every (H x T')-lattice must
have a non-trivial L2-Betti number. Alternatively, we note that every (H x T')-lattice is
measure equivalent to L x F, where L is an H-lattice and F, is a free group. Now, an
application of the Kunneth formula yields that L x F, has a non-trivial L?-Betti num-
ber and so by Gaboriau’s theorem [Gab02, Theorem 6.3] so does every (H x T')-lattice.
By |CM09a, Corollary 2.7| every (H x T')-lattice has trivial amenable radical, the result
follows from [Bre+17, Theorem 6.5]. O

A near identical proof to that of 2a yields the following corollary.

Corollary 4.8. Let I' be the fundamental group of a finite graph of groups. Assume,
that for each edge and vertex that are incident that the intersection of the corresponding
edge group and the vertex group does not contain either a normalish amenable subgroup
or a non-trivial finite normal subgroup. If T' is irreducible as an abstract group, then I' is

C*-simple.

4.3. Fibring. Recall that a group I' is said to algebraically fibre if there is a non-trivial
homomorphism ¢ : I' — Z such that Ker(¢) is finitely generated. If I" has a finite index
subgroup which algebraically fibres, then we say I' virtually fibres.

Fix a finite generating set S for I'. A character 0 # ¢ € H'(I';R) = Hom(T',R) lies
in the first Bieri-Neumann-Strebel-Renz (BNSR) invariant $'(T') if and only if the full
subgraph of Cay(I",S) spanned by {g € I | ¢(g) = 0} is connected. The relevance of the

BNSR invariant is due to the following classical theorem of Bieri-Neumann-Strebel.

Theorem 4.9. [BNS87, Theorem B1| Let T be a finitely generated group and let ¢ : T — Z
be non-trivial, then Ker(¢) is finitely generated if and only if {¢, —¢} = LH(T). O
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Theorem 4.10. Let X be a finite dimensional proper CAT(0) space and let H = Isom(X)
be cocompact and minimal. Let T be a locally finite unimodular leafless tree not quasi-
isometric to R and let T = Aut(T). Suppose H'(L;R) = 0 for all H-lattices L, then
every (H x T')-lattice ' does not virtually fibre.

Proof. Let I' be an (H x T)-lattice, then I' splits as a graph of H-lattices A. In particular,
every vertex and edge group is finite-by-H-lattice and so has trivial first cohomology.
Now, we apply the Mayer-Vietoris sequence of the graph of groups decomposition (see
[Bro94, Chapter VI.9|) to obtain an exact sequence

0—— H()(F) - C—BveVA HO(FU) — @eEEA HO(Fe) - HI(F> — 0.

Where the ending 0 is due to the fact @ 4 H'([,) = 0. It follows that H*(I;R) =
HY(T/T;R).

Claim: T splits as a reduced graph of groups and is not an ascending HNN extension.

We may assume the graph of groups is reduced by contracting any edges with a trivial
amalgam L =7 K. Note that these contractions do not change the vertex and edge sta-
bilisers, but may change the Bass-Serre tree (the tree will still not be quasi-isometric to
R since there are necessarily other vertices of degree at least 3).

Now for I' to be an ascending HNN-extension A must consist of a single vertex and
edge. Let t be the stable letter of I', then t acts as an isometry on X. In particular, by
considering covolumes of H-lattices acting on X, the two embeddings of the edge group
I'. into the vertex group I', must have the same index. Now, since 7T is not a quasi-line,
these embeddings must have index at least 2 yielding the claim.

Now, HY(I'; R) = Hom(T',R) and so every character ¢ € Hom(I',R) vanishes on every
vertex and edge group of the graph of groups decomposition A. Moreover, we may assume
A is reduced by contracting any edges of the from B #¢ C. Thus, we may apply [CL16,
Proposition 2.5] to deduce ¢ ¢ X(I"). As this is true for every (H x T')-lattice, it follows
I' does not virtually fibre. U

4.4. Autostackability. In this section we will discuss autostackability of (H x T')-lattices
in terms of H-lattices. The property was introduced by Brittenham, Hermiller and Holt
in [BHH14| to simultaneously generalise automatic groups and groups with finite rewrit-
ing systems - we will not define the property here since our proofs do not require the
definition and are elementary. The class of autostackable groups is broad, including
all automatic groups, 3-manifold groups [BHS18|, Thompson’s group F' [Cor+20|, the
Baumslag-Gersten group [HM18|, and some groups not of type F'P; [BHJ16]. In spite of
this, it appears to be unknown if every group with solvable word problem is autostack-
able. Moreover, autostackability properties of the class of CAT(0) groups have largely
gone unstudied. In light of Leary and Minasyan’s examples of CAT(0) groups which are
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not biautomatic [LM19] it would be desirable to determine the autostackability properties

of these and related groups.

Theorem 4.11. Let X be a finite dimensional proper CAT(0) space and H = Isom(X).
Let T be a locally finite unimodular tree and let T = Aut(T). If uniform H-lattices
are (auto)stackable, then uniform (H x T)-lattices are (auto)stackable. Moreover, if X
is CAT(0) polyhedral complex and finitely presented H-lattices are (auto)stackable, then
finitely presented (H x T)-lattices are (auto)stackable.

Proof. In either case, by Theorem 3.3 we see I' splits as a graph of H-lattices. In par-
ticular, every local group is a commensurable finite-by-H-lattice. Now, by [BHJ16, The-
orem 3.3| (auto)stackable groups are closed under extension, so we see the local groups
are (auto)stackable. By [BHS18, Proposition 4.2| (see also [BHJ16, Theorem 3.4|), a
group is (auto)stackable with respect to any finite index subgroup. Finally, [BHS18, The-
orem 3.5| states that the fundamental group of a graph of groups whose vertex groups
are (auto)stackable with respect to the edge groups is (auto)stackable. In particular, I" is
(auto)stackable. O

The following corollary follows by induction on the number of trees n with the base
case given by the previous theorem. The inductive step is given by applying previous
theorem to deduce the result holds for n trees after assuming the result holds for n — 1

trees. As an example the corollary applies whenever X is CAT(—1).

Corollary 4.12. Let X and H be as above. Let [ [}, T; be a product of trees and let T =
[T, Aut(T;). If uniform H-lattices are (auto)stackable, then uniform (H x T)-lattices
are (auto)stackable. Moreover, if X is CAT(0) polyhedral complex and finitely presented
H-lattices are (auto)stackable, then finitely presented (H x T')-lattices are (auto)stackable.

In Theorem 7.13 we will prove that all irreducible uniform (Isom(E"™) x T')-lattices are
not virtually biautomatic, generalising the result of Leary and Minasyan [LM19]. However,

the following corollary proves that all of these lattices are in fact (auto)stackable.

Corollary 4.13. Uniform (Isom(E") x T)-lattices are (auto)stackable. In particular, the

Leary-Minasyan groups are (auto)stackable.

Proof. A free abelian group is automatic and hence (auto)stackable. As (auto)stackability
is closed under finite extensions it follows Isom(E")-lattices are (auto)stackable. Now, we

apply the previous theorem. [l

5. CONSTRUCTIONS AND EXAMPLES

In this section we will detail a number of constructions and explicit examples of lattices

in products of CAT(0) spaces and trees.
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5.1. Residual finiteness and amalgams. For each symmetric space X of non-compact
type with associated Lie group H we will construct infinitely many non-residually finite
irreducible (H x T')-lattices, where T" is the automorphism group of an appropriate Bass-
Serre tree. More generally the construction applies whenever there are upper bounded
chains in the poset (Lat(H), <).

Theorem 5.1. Let X be a CAT(0) space, let H = Isom(X) act cocompactly and mini-
mally. Let A, B be commensurable uniform H-lattices such that A # B. Let C <;; AnDB
and I' = Axc B. Let T be the Bass-Serre tree of I' and T = Aut(T). Assume T is

unimodular, then I' is a (H x T)-lattice. Moreover,

(1) If (A, B) < H is not an H-lattice, then T" is an irreducible (H x T)-lattice.
(2) If T is irreducible and C' is a proper subgroup of A n B, then I' is not residually
finite.

Proof. The fact that I' is a lattice follows from Theorem 3.3. Now, (1) follows from
Theorem 3.4, since if (A, B) is not a lattice, then 7wy (T") is not a lattice and so I' is not
reducible and hence irreducible. To prove (2), consider an element v in (A n B) — C
and words 7, and 7, representing v in the generating sets of copies of A and B in T
Since, 7,7, = is not contained in the copy of C' in T, the element acts non-trivially on
T, and so is non-trivial. However, my(v.) = 7u(), 50 mu(vay, ') = lg. But T is
irreducible and 7y (I") has a non-trivial kernel so we can apply Caprace and Monod’s
criteria (Theorem 2.5). O

The following lemma is immediate, but combined with the previous theorem, it implies
that we can construct non-residually finite groups out of uniform lattices in each Lie group

corresponding to a symmetric space of non-compact type.

Lemma 5.2. Let H be a locally compact group with Haar measure . If there exists a
bound € on the minimal p-covolume of lattices in H and the set of possible covolumes of

H-lattices is discrete, then the poset Lat(H) has mazimal elements.

Example 1. Let X be a symmetric space of non-compact type and H the associated Lie
group. Let A and B be commensurable maximal H-lattices such that A # B. Let C
be a finite index proper subgroup of A n B, then I' = A *¢ B is a non-residually finite
(H x T)-lattice. Such examples exist by considering arithmetic lattices I in H. Indeed,
Margulis’ commensurator criterion states that Commp (I') is dense in H and so there exist

lattices commensurable to I" which are not contained in I'.
In the more general setting of CAT(0)-spaces we have the following corollary.

Corollary 5.3. Assume I' = A xc B is a uniform (H x T)-lattice such that A # B and
neither A < B nor B < A. If A or B is the upper bound of a chain in (Lat, <), then T" is

irreducible. Moreover, if C is a proper subgroup of A B, then I" is non-residually finite.
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Proof. Assume without loss of generality that A is the upper bound, then (A, B) cannot
be a lattice because it would contain A, contradicting the maximality of A. Thus, we can

apply Theorem 5.1. 0

Example 2 (Change of tree). Given an edge transitive but not vertex transitive irre-
ducible (H x Ty ,)-lattice I" one may construct a non-residually finite irreducible (H x
Tk ne)-lattice for all m,n > 2 as follows:

Firstly, note I' splits as a graph of H-lattices. Indeed, I' = A xc B where A, B and
C are covirtually H-lattices. We may assume that A stabilises a vertex of valence k
and B stabilises a vertex of valence ¢. Let N4y and Np be finite groups of order m
and n respectively and pick split extensions A=NyxAand B = Ngx B. We may
construct a graph of lattices by considering the graph of groups corresponding to A 0 B.
The representations of A and B are the given by the composites A+ A — H and
B - B — H. The resulting fundamental group [ acts on the (mk, nl)-regular tree, the

lattice is irreducible and non-residually finite by Theorem 5.1.

This technique gives the following partial solution to the problem of realising lattices

in every possible tree for H a rank one real Lie group with trivial centre.

Example 3. Let H = H(R) be a rank one real Lie group with trivial centre and H, =
H(Q,) denote the same group scheme over the p-adic numbers for some prime p. Let
X be the rank-one symmetric space associated to H. The Bruhat-Tits’ building for H,
is a tree of valence given by some function f of the prime p. In particular, there is an
edge transitive but not vertex transitive S-arithmetic lattice acting on X x Typy. By
the previous example we may construct irreducible non-residually finite lattices acting on
X X Tongp)nfep) for all m,n = 2.

These groups are C*-simple by Theorem 4.7, austostackable by Theorem 4.11, and if
X is 2n-dimensional, then the groups have a non-trivial L2-Betti number in dimension
n + 1 by Theorem 4.1. If X is odd-dimensional, then the L2-cohomology vanishes.

Concretely, in the case of H = PSLy(R), the function f is given by f(p) = p+ 1, so we
obtain irreducible lattices acting on the (m(p + 1),n(p + 1))-regular tree for all primes p

and integers m,n > 2.

5.2. Vertex transitive lattices. In this section we will detail some constructions for
lattices in a product of a CAT(0) space and a tree such that the lattices act vertex

transitively on the tree.

Proposition 5.4. Let L < H be groups and t € Commpy (L), then there exist finite-index
subgroups J, K < L such that J' = K

Proof. By definition K = L ~ L has finite index in L. Now, set J = K* ', this clearly

also has finite index in L. O
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Jt2 = K,
FIGURE 1. A single vertex graph of groups.

Let X be a metric space and let H = Isom(X). Let L be a H-lattice and let ¢1,...,t, €
Commpy(L). Assume that ¢; conjugates a finite-index subgroup J; < L to a finite-index
subgroup K; < L (existence of H; and K; is given in the next proposition). In light
of Proposition 5.4, whilst slightly abusing notation, we can construct a single vertex
graph of groups G where all of the edges are loops (Figure 1). We now define I' =
G(L,{(J1,t1), ..., (Jn,tn)}) := m1(G). We can associate to I' the Bass-Serre tree T of the
graph of groups G. Note that 7 is an infinite, locally finite, (3, |I' : J;| + |I' : K;|)-

regular, simplicial tree.

Lemma 5.5. Let I' be a lattice in a rank-one Lie group H with symmetric space X of
non-compact type. Let t be an infinite order elliptic element of H, then
L.=()"
nez

has infinite index in T'.

Proof. Assume L has finite index, then by Garland and Raghunathan [GR69; GR70|, the
quotient X /L has finitely many cusps with bounded intersection. Let p be the fixed point
of ¢ and consider a Dirichlet domain A = A,(L) for L at p. Since X /I" has finitely many
cusps, A has finitely many sectors (each with bounded intersection) going to infinity. The
{t)-orbit of such a sector is unbounded (indeed it traces out a copy of S* in dX), but this

contradicts Garland-Raghunathan and so we conclude L must have infinite index. 0

Theorem 5.6. Let X be a rank-one symmetric space of non-compact type and let H be
the associated Lie group. Let L be an H-lattice, ti,...,t;, € Commpg(T') and let T :=
G(L,{(Ji,t;)}) with Bass-Serre tree T. Let T = Aut(T). If mults,...,tx) contains an
infinite order elliptic element t, then T is a weakly irreducible (H x T')-lattice.

Proof. Clearly, the projection of I' to the group H is not discrete because I' contains an
infinite order elliptic element. Now, the vertex stabilisers of the action of I' on T are
conjugates of L < G Thus, the kernel of the action is equal to Core(I", L), but by the

previous lemma this is infinite index in L. It follows that the image of I' is an infinite
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subgroup of the vertex stabiliser in 7' (a compact profinite group) and so cannot have

discrete image. O

Example 4. Let H be a non-compact simple Lie group and O the ring of integers of
some number field k. Assume that either H(QO) is either an irreducible uniform lattice or
rank-one. Now, choose an infinite order elliptic element ¢t € Commy (H (O)) and construct
the group I' = G(H(0O),t) with Bass-Serre tree 7. Let T' = Aut(7). By Theorem 3.3
we conclude that I' is a lattice in G = ([ [, cqw H(K?) x T'). Moreover, if t is irreducible,
then I' is a weakly and algebraically irreducible lattice. To see I' is weakly irreducible,
note that the projection of I' to any sub-product of G is clearly non-discrete. Now, we

apply Theorem 2.4 to see I is algebraically irreducible.

In the next example we will present an explicit presentation of a non-residually finite,
irreducible, vertex and edge transitive (PSLy(R) x Tgo)-lattice.

Example 5. Consider the following matrices in SLy(R) given by

2V2 —3V2 3(=3v2-3) 5
. 2 2(V2H 1) | R R C1
3(=3v2+3) 3 |—5V2 5

The projectivisation of the matrices a,b and ¢ in PSLy(R) generate a Fuchsian group of
signature [0;2,2,3,3] with presentation L = {(a,b,c | a®> = b* = 3 = (¢ tab™)? = 1).
The conjugate of L by the infinite order elliptic element ¢ in PSLy(R) yields an isometric
Fuchsian group L' = («, 3,7). The intersection is generated by

K =(acb™ta, cac™t, b rach™t, ¢ 'bea, beabe™t, b eberab™t, b e be 0T, ¢ racab™!
ababc 'ba, abachb tab™t, babac”'b"'c™!, babcac 'b, b~ lcabe b,

We also find that K is index 30 and has signature [5;2,2,2,2]. Since K is contained in
L, to complete our construction we simply need to find J := ¢t !(K), which will also be

contained in I'. A lengthy calculation yields

J =(ctabab™', b tab, cab 'c, acb tabac, cabac 'ab, ¢ ‘acab 'a, babac 'bac b1,

ac tba, bach tach ¢ rab tac™t, bac b, cberacrab, cbtabeac,
ctac tac o tach ™).
The group I' = {a,b,c,t | a®> =1® = ¢ = (c'ab™')? = 1, J' = K) is a non-residually
finite irreducible lattice in PSLy(R) x Tgo. By Theorem 4.1 the only non-vanishing L2-

Betti number of T is in dimension 2 and is equal to —3 — (—=10) = 2. By Theorem 4.7

I' is C*-simple, by Theorem 4.11 I' is autostackable, and by the same argument as in the
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proof of Theorem 4.10, I' does not algebraically fibre. Moreover, if I" has first virtual Betti

number equal to 1, then I' does not virtually fibre.

Example 6 (Mixed products). Consider a uniform weakly irreducible lattice in PSLy(R) x
Tso constructed as a single vertex graph of groups G(I', t), assume that the stable letter
t acts on RH? as an infinite order elliptic rotation. Similarly, consider a uniform weakly
irreducible lattice in Isom(IE?) x Ty, constructed as a single vertex graph of groups G(Z?, s),
assume that the stable letter s acts on E? as an infinite order elliptic rotation (such
examples were considered by Leary and Minasyan in [LM19]).

We will now construct a uniform lattice in PSLy(R) x Isom(E?) x T3g0. Let A :=
G(I' x Z2,r), where 7 acts as t on RH? and as s on E2. We claim the projections to
each sub-product of the factors are non-discrete and so A is not commensurable with any
reducible lattice. Thus, by Theorem 3.4, A is an weakly irreducible lattice.

To prove the claim we investigate each projection in turn. Clearly, the projections to
PSLy(R), Isom(E?) and PSLy(R) x Isom(E?) are non-discrete. Moreover, by Theorem 5.6
or [LM19, Theorem 7.5] it is easy to see the projection to T3 is non-discrete. In fact
more is true, the projection is faithful. In light of this it is easy to see the projections to
PSLy(R) x Typo and Isom(IE?) x Tyg are non-discrete.

Note that the choices of the ambient groups PSLy(R) and Isom(E?) were arbitrary.
Indeed, the reader can pick any combination of symmetric spaces of non-compact (and
Euclidean) type, or any irreducible proper minimal CAT(0) space which contains lattices
which have a non-discrete commensurator and construct a weakly irreducible lattice in
the product of the automorphism group of the Bass-Serre tree and the associated real
simple Lie groups (and Isom(E")) and the isometry group of the CAT(0) space. This is

markedly different to the arithmetic setting where the Lie groups must be isogenous.

Example 7 (Non-uniform lattices in products of trees). Fix a prime p. Consider the linear
algebraic group H = PSLy(F,((¢))) and the non-uniform lattice L = PSLy(F,[t]) < H.
The Bruhat-Tits’ building for H is a (p+1)-regular tree 7 and L acts with finite covolume
and fundamental domain an infinite ray. Let t € Commy (L) be infinite order and elliptic.
By Proposition 5.4 there exist finite index subgroups J, K < L such that J' = K. Let
n = 1 and consider the HNN-extension I' of L™ over finite index subgroups J" and K"
where each copy of J is mapped to the corresponding copy of K by t. The group I' is
non-uniform lattice acting on 7., x Topn where k = [L : J|. Moreover, it is easy to see
that I' is a weakly irreducible lattice.

More generally by [AR09| non-uniform tree lattices of ‘Nagao type’ have a dense com-
mensurator in the full automorphism group of the universal covering tree. The construc-

tion can be easily adapted to this setting.

5.3. The universal covering trick. In this section we will compare the notion of a graph

of lattices with the “universal covering trick" of Burger-Mozes [BM00a, Section 1.8] and
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generalised by Caprace-Monod [CM09a, Section 6.C|. In particular, we will show how in
many cases one can obtain a graph of lattices from the universal covering trick. We take
the opportunity to point out that many of the groups constructed in the previous sections

cannot be obtained from universal covering trick.

Example 8 (The universal covering trick). Let A be the geometric realisation of a locally
finite graph (not reduced to a single point) and let @) < Isom(A) be a vertex transitive
closed subgroup. Let C' be an infinite profinite group acting level transitively on a locally
finite rooted tree Ty. Let B be the 1-skeleton of the square complex A x 7y and let T be
the universal cover. Define D to be the extension 1 — m(B) — D — C x Q — 1. By
[CMO09a, Proposition 6.8|, there exists a CAT(0) space Y such that D — Isom(Y) is a
closed subgroup, and D acts cocompactly and minimally without fixed point at infinity.
The classical situation where this is applied is as follows: Let () be a product of p-adic
Lie groups, H be a product of real Lie groups and I' < H x () to be an S-arithmetic
irreducible lattice. Let A be the 1-skeleton of the Bruhat-Tit’s building for X, let T be
the universal cover of A and let 7' = Aut(7). Now, I lifts to a weakly irreducible lattice
' < H x @ x T and the corresponding graph of lattices is obtained by considering the
graph A/T" equipped with local groups given by the stabilisers of the action of I" on A.

6. COMPLEXES OF LATTICES

In this section we will introduce the notion of a complex of H-lattices. We will then

prove a structure theorem analogous to Theorem 3.3 for these complexes of H-lattices.

6.1. Complexes of groups. The definitions in this section are adapted from [Tho06,
Section 1.4] and [Hae91; Hae92|. Throughout this section if X is a polyhedral complex
then X" is its first barycentric subdivision. This is a simplicial complex with vertices V X’
and edges FX'. Each e € FX' corresponds to cells 7 € ¢ of X and so we may orient
them from o to 7. We will write i(e) = ¢ and t(e) = 7. We say two edges e and f of X’
are composable if i(e) = t(f), in which case there exists an edge g = ef of X’ such that
i(c) = i(e) and t(c) = t(f), and e, f and g form the boundary of a 2-simplex in X. We
denote the set of composable edges by E?X’.

A complez of groups G(X) = (G4, Ve, ge, ) over a polyhedral complex X is given by the
following data:

(1) For each vertex o of VX', a group G, called the local group at o.

(2) For each edge e of EX’', a monomorphism . : Gi) — Gy called the structure
map.

(3) For each pair of composable edges e and f, an element g,y € Gy called the
twisting element. We require these elements to satisfy the following conditions:
(a) For (e, f) € EX', we have Ad(ge,f)tes = ety
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(b) For each triple of composable edges a, b and ¢ we have a cocycle condition
Va(Gba) = GepYeb.a-
We say G(X) is simple if each of the twisting elements g. s are the identity.

Some complexes of groups arise from actions on polyhedral complexes. Let G be a
group acting without inversions on a polyhedral complex Y. Let X = Y /G with natural
projection p : Y — X. For each o € VX', choose a lift € VY’ such that po = 0. The
local group G, is the stabiliser of 7 in G, and the structure maps and twisting elements
are given by further choices. The resulting complex of groups G(X) is unique up to
isomorphism. A complex of groups isomorphic to a complex of groups arising from a
group action is called developable.

Let G(X) be a complex of groups over a polyhedral complex X. Let T" be a maximal
tree in the 1-skeleton of X’ and fix a basepoint ¢ in T. The fundamental group of G(X),
denoted m(G(X), 09), is generated by the set

H G, ]_[{e*,e_: ce EX'}
oeV X'

subject to the relations

the relations in the groups G,
(ef)™ =€ and (e7)™! = e,

S et ft =geslef)T, Ve, f) e E2X,
Ve(g) = €ge™, Vg€ Gy,

et =1, VeeT.

v

y

\

If G(X) is developable, then it has a universal cover EJT)?) This is a simply connected
polyhedral complex, equipped with an action of G = m(G(X), 0¢) such that the complex
of groups given by a(\XJ) /G is isomorphic to G(X).

Let G(X) = (G4,%.) and H(Y) = (H-,v¢y) be complexes of groups over polyhedral
complexes X and Y. Let f : X’ — Y’ be a simplicial map sending vertices to vertices

and edges to edges. A morphism ® : G(X) — H(Y) over f consists of:

(1) A homomorphism ¢, : G, — Hy(y for each 0 € VX'
(2) For each e € EX’ an element g. € Hy(s()) such that
(a) Ad(ge)Vs(e)Pite) = Prie)e;
(b) For all (a,b) € E*X’ we have ¢ya)(ga)gab = 9e¥5(a)(96)95(a).10)-

6.2. Complexes of lattices. In this section we introduce complexes of lattices in analogy

with the graphs of lattices we defined previously.

Definition 6.1 (Complex of lattices). Let H be a locally compact group with Haar mea-
sure . A complex of H-lattices (G(X),1) is a developable complex of groups equipped
with a morphism v to H such that:
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(1) For each 0 € VX', the local group G, is covirtually an H-lattice and the image
¥(G,) is an H-lattice;

(2) The local groups are commensurable in I' = m(G(X),0) and their images are
commensurable in H.

(3) For each e € EX’  the elements et and e~ in I' are mapped to elements of

Commy; (¢(Go))-
The analogous structure theorem is given as follows.

Theorem 6.2. Let X be a finite dimensional proper CAT(0) space and let H = Isom(X)
contain a uniform lattice. Let (G(Z),v) be a complex of H-lattices over a polyhedral
complex Z, with universal cover Y, and fundamental group I'. Suppose A = Aut(Y)

admits a uniform lattice.

(1) Assume Z is finite and Y is a CAT(0) space. If for each local group G, the kernel
Ker(¢|a,) acts faithfully on' Y, then T' is a uniform (H x A)-lattice and hence a
CAT(0) group. Conversely, if A is a uniform (H x A)-lattice, then A splits as a
finite complex of uniform H-lattices with universal cover Y .

(2) Under the same hypotheses as (1), I' is quasi-isometric to X x Y.

(3) Assume X is a CAT(0) polyhedral complez and Y is a CAT(0) space. Let p
be the normalised Haar measure on H. If for each local group G, the kernel
K, = Ker(¢|a,) acts faithfully on'Y and the sum Y, ., 1(Gy)/|K,| converges,
then T is a (H x A)-lattice. Conversely, if A is a (H x A)-lattice, then A splits as

a finite complex of H-lattices with universal coverY .

Note that by definition we are assuming all complexes of lattices are developable com-

plexes of groups.

Proof. We first prove (1). The fundamental group I" of G(Z) acts on the universal cover
Y and on X via the homomorphism ¢ : I' — H. The action on the product space
X x Y is properly discontinuous cocompact and by isometries. The kernel of the action
is contained in the intersection [ ., Ker(¢|q,). But this acts faithfully on Y, thus, the
action is faithful. It follows I" is an (H x A)-lattice.

We now prove the converse. Assume T" is an (H x A)-lattice, and note that the action
of I on Y yields a developable complex of groups G(Z) = (I'y, %4, gap) with spanning
tree T" and equipped with a homomorphism 7y : I' — H. It suffices to show the local
groups corresponding to the vertices of Z are covirtually H-lattices. Indeed, for an edge
ee EZ', if the index [Ty : ¥e(Lye))| is infinite, then the universal cover of G(Z) would
not be locally finite. It follows that all of the local groups are commensurable and hence,
commensurable in H. Consequently, the elements e™ and e~ for all e € E2Z’/T in T must

commensurate the local groups.
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Let 0 € Y be a vertex and consider the stabiliser I', < I'" for the action on X x Y.
Suppose I', does not act cocompactly on X x o, then there is no compact set whose I,
translates cover X x o. Let D be a non-compact set whose I',-translates cover X x o,
but there is a compact set C' whose ' translates cover X x Y. We may arrange our
subsets such that C' = C n (X x ¢) € D. In particular, there are elements g; € I'/T,
whose translates of C’ cover D. But some of these elements fix must X x o yielding a
contradiction. Hence, I',, is cocompact.

It is clear that Ker(I', — H) is finite. Otherwise I' would act with infinite point
stabilisers on X x Y contradicting the discreteness of I'. It remains to show that the
projection T, of I';, to H is discrete. Assume that I, is not discrete, then there does not
exists a neighbourhood N of 1 € H such that N nT, = {1}. But this immediately implies
there does not exist a neighbourbood N’ of 1 € H x A such that N’ n I' = {1} which
contradicts the discreteness of I'. It follows I',, is covirtually an H-lattice.

The final step is to show the elements e™ and e~ for each e € EX’ are mapped to
elements of Commpy(7y(I',)). But this is immediate since the local groups map to H
with finite kernel, the elements e™ and e~ commensurate the local groups, and so must
still preserve the appropriate conjugation relations in the map to H. e

We now prove (2). By (1), I' acts properly discontinuously cocompactly on X x Y. The
result follows from the Svarc-Milnor Lemma [BH99, p. 1.8.19]. «

The proof of (3) is almost identical to 1 we will highlight the differences. Since X
is a CAT(0) polyhedral complex, it follows that X x Y is. Now, we may apply Serre’s
Covolume Formula to I'. Let A be a fundamental domain for I" acting on X x Y, then
the covolume of I' may be computed as

1 | K| p(m
LT A, A T A TR A T A R [oN

oeAl | U| oemy (AD) -,—gﬂ-*l(g) oemy (A Yl(a‘) oemy (A0

Since Ty (A?%) can be identified with Z and the later sum converges by assumption, it
follows as before that I' acts faithfully properly discontinuously and isometrically with
finite covolume on X x Y. For the converse the only adjustment required is that the
compact sets C' and C” in the proof of (1) should be replaced with ones of finite covolume.

The remainder of the proof is identical. & 0

6.3. Properties: L?-cohomology and C*-simplicity. In this section we will prove a
result on L2-cohomology in the spirit of Theorem 4.1 and a result on C*-simplicity in the
spirit of Theorem 4.7 for (H x A)-lattices.

Theorem 6.3. Let H be a unimodular locally compact group with lattices and X be a
locally-finite CAT(0) polyhedral complex with cocompact minimal automorphism group A.
Assume any two non-zero L?-Betti numbers of an H-lattice are in dimensions separated

by at least dim(X) and that A-lattices have at most one non-vanishing L?-Betti number
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in dimension k. Let T be an (H x A)-lattice and AW be q representative set of p-cells for
the action of I' on X. We have

dim(X)
bAM) = YN (~1)PP (Ts).
p=0 geAP

Proof. The proof is essentially identical to Theorem 4.1, except now we use a G-equivariant
spectral sequence [Bro94, Chapter VIL7| applied to the filtration of X by skeleta with
UT coefficients. The assumption that any two non-zero L*-Betti numbers of an H-lattice
are in dimensions separated by at least dim(X) forces any higher differentials to be 0. In
particular, the E2-page equals the E* page of the spectral sequence. Moreover, the E2-

page is computed by using the same measure equivalence argument as in Theorem 4.1. [

The proof of the following theorem is essentially the same measure equivalence and

Kiinneth formula argument as in Theorem 4.7(2¢).

Theorem 6.4. Let X = X x---x X}, be a product of proper minimal cocompact CAT(0)-
spaces each not isometric to R and let H = Isom(X;) x -+ x Isom(Xy) act without fized
point at infinity. Let Y be a locally-finite CAT(0) polyhedral complex not quasi-isometric
to E™ and let A = Aut(Y') act without fized point at infinity. Let ' < H x T be a finitely
generated weakly irreducible lattice. If both H- and A-lattices have a mnon-zero L?-Betti

number and trivial amenable radical, then I' is C*-simple.

7. LATTICES WITH NON-TRIVIAL DE-RAHM FACTOR

In this section we will characterize irreducible uniform (Isom(E") x T')-lattices. We will
also strengthen the virtual biautomaticity criterion for a Leary-Minasyan group [LM19,
Theorem 8.5] to arbitrary CAT(0)-lattices. Along the way we will prove a number of
results about (Isom(E") x A)-lattices. To this end we will examine the projections migomgn)

and mo(,) more closely.

Lemma 7.1. Let X be a proper CAT(0)-space, let H = Isom(X), and let T' be a finitely
generated (Isom(E™) x H)-lattice. If the projection Tiommn)(I') is not discrete, then

Tom)(I') contains an element of infinite order.

Proof. For Tigom@n)(I') to be not discrete at least one of the following must be true:

(1) o (') is not discrete and thus, contains an element of infinite order.

(2) There exists a sequence of elements g; € R™ such that g; — 0 as i — o0.
If the first case holds we are done, so assume it does not. After passing to a subsequence we
may assume that each g; is not some power or root of any other g; and so mgomen) (') "R™
contains an infinitely generated abelian subgroup A. Since we have assumed the first case

does not hold 7o, (I") is a finite group F' and we have a short exact sequence

{1} > A > Tpgomeen (D) — F — {1}.
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But this implies 7som(en)(I') is an infinitely generated quotient of the finitely generated

group I', a contradiction. Hence, o) (I') contains an element of infinite order. O

The following propositions give criteria for irreducibility in terms of the action of
Tom)(I") on R™.

Proposition 7.2. Let T be a locally finite unimodular leafless tree not quasi-isometric to
R and let T = Aut(T). Let T’ be a uniform (Isom(E™) x T)-lattice, then T' is weakly and
algebraically irreducible if and only if 7o) (T') is not virtually contained in some O(n—1).
In particular, if I' is weakly irreducible, then no finite index subgroup of oy (') fives a

1-dimensional subspace of R™.

The analogous result for (Isom(E") x A)-lattices is as follows. We will prove both results

simultaneously.

Proposition 7.3. Let X be an irreducible locally finite CAT(0) polyhedral complex and
let A = Aut(X) act cocompactly and minimally. Let T be a uniform (Isom(E"™) x A)-
lattice, then I' is weakly and algebraically irreducible if and only if 7o) (1) is not virtually
contained in some O(n — 1). In particular, if I' is weakly irreducible, then no finite index

subgroup of Tom)(I') fizes a 1-dimensional subspace of R™.

Proof of Proposition 7.2 and 7.3. Suppose I' is reducible then I' has a virtually normal Z
subgroup. Clearly, mo@)(I") virtually centralises this subgroup and so mo(,)(I") must be
virtually contained in some O(n — 1).

Conversely, suppose mon)(I') is virtually contained in some O(n — 1). Passing to the
corresponding finite index subgroup A we see that the action of A preserves two subspaces
of R™. One isomorphic to R*~! and one isomorphic to R =~ R. Now, A splits as a graph
of lattices in which every vertex and edge group has an infinite order generator which
acts freely cocompactly on R and stabilises the subspace R setwise via Tisom(En)- Lhe
infinite cyclic groups intersect in some infinite cyclic subgroup Z < A. The stable letters
of A must virtually centralise Z since otherwise they would map R into R*. Thus, Z is
virtually normal in A and hence I'. By [CM19, Theorem 2(ii)| I" is reducible. O

The following corollary is immediate.

Corollary 7.4. Let T be a locally finite unimodular leafless tree not quasi-isometric to R
and let T = Aut(T). Let T be a uniform (Isom(E?) x T)-lattice, then T is an irreducible

lattice if and only if mo@2)(I') contains an element of infinite order.

The following propositions give criteria for irreducibility in terms of the action of I" on

T.

Proposition 7.5. Let T be a locally finite unimodular leafless tree not quasi-isometric to
R and let T = Aut(T). Let T' be a uniform (Isom(E™) x T')-lattice. Then I is weakly and
algebraically irreducible if and only if I acts on T faithfully.
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The analogous result for (Isom(E") x A)-lattices is as follows. We will prove both results

simultaneously.

Proposition 7.6. Let X be an irreducible locally finite CAT(0) polyhedral complex and let
A = Aut(X) act cocompactly and minimally. Let T' be a uniform (Isom(E"™) x A)-lattice,
then I' is weakly and algebraically irreducible if and only if I' acts on X faithfully.

Proof of Proposition 7.5 and 7.0. Assume I is irreducible. By [CM19, Corollary 3|, I" has
finite amenable radical B. Such a non-trivial element g € B stabilises a vertex of the
Bass-Serre tree T (resp. complex X). Now, either g has infinitely many conjugates which
contradicts the finiteness of B, or g stabilises the whole of T (resp. X) and so is contained
in I' n Isom(E™). By Lemma 7.1 and Proposition 7.2 (Proposition 7.3) there is an infinite
order element in mo(,)(I') and hence an infinite order element in migomgn)(I") which does
not commute with g. But now the normal closure of g in I' must contained infinitely
many conjugates of g. Hence, B is infinite, a contradiction. Thus, B must be trivial.
The converse in the tree case follows from Proposition 3.4. If " acts on X faithfully,
then the projection m4(T") is non-discrete. By Theorem 2.4 it suffices to show P =
Wlsom(En)(P> is non-discrete. Suppose P is discrete, then there is a finite index subgroup
of P isomorphic to Z = Z". But this is a virtually normal free abelian subgroup, so by
[CM19, Theorem 2(ii)], I' is reducible and so there is a finite index subgroup of Z which
acts trivially on X, a contradiction. Thus, P is non-discrete and so I' is weakly irreducible

and by Theorem 2.4 algebraically irreducible. U

As an brief application we will construct (virtually) torsion-free irreducible (Isom(E™) x
Thp)-lattices.

Example 9. Recall the Leary-Minasyan group LM(A) where A is the matrix correspond-
ing to the Pythagorean triple (3,4,5) which acts on E? x Ti,. (Note that these groups
were classified up to isomorphism by Valiunas [Val20].) By [LM19], this has presentation

LM(A) = {a,b,t | [a,b], ta*b™ 't = a®b, tab’t™' = a 'b*).

Using this group we will construct a virtually torsion-free irreducible (Isom(E™) x T')-
lattice where T is the automorphism group of the 10n-regular tree for all n > 3.

Let Z™ = {ag,...,a,—1) and let F' = {f) be a cyclic group of order n acting on L by
cyclically permuting the a;. Let L = Z" x F, this is a crystallographic group and so

embeds into Isom(E™). Now, consider the (n x n)-matrix B given by

B:A 0 .
OInf2

We define T',, to be the HNN extension of L by the matrix B, the Bass-Serre tree of this

HNN extension will be regular of valence 10n. This has generators ag,...,a,_1, f,t and
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relations

fn = 17 [aiaaj] = 17 faifil = Gj4+1 (mod n)» [a27t] = 17 BRI [&nflat] = 17

1 -1 2

tagal_lt_ = agal, tagait ! = ag - ay,

where i, 7 € {0,...,n —1}. Here the first three sets of relation come from L, the relations
[a;,t] =1 for i > 2 come from the fact B fixes {as, ..., a,_1} point-wise, and the last two
relations arise from the action of B on {ag,a;). Now, let a := ag, then we may write T,

as
T, ={a, fit] f"=1, ta>a 't = a?d’, ta(a®’t™" = a ' (a®), [/, a”] = 1)

, 2n(n — 1) + 3 relator group.

To see I, is irreducible note that 7o, (') is not virtually contained in some O(n—1) <

for i,j€{0,...,n—1}. Thus, ', is a 3 generator

O(n). Indeed, consider the subgroup generated by the mo,(f)-orbit of 7o, (t). To show
I, is virtually torsion-free note that every torsion element of I',, has non-trivial image in
Tom)(I'n). This is generated by the images of f and ¢ and so is a finitely generated linear
group and hence has a finite index torsion-free subgroup P,. The preimage of P, in I',, is

torsion-free.

7.1. Biautomaticity. In this section we give a condition to determine the failure of
biautomaticity for a CAT(0) group in the presence of a non-trivial de Rham factor.

For the rest of this section we fix the following notation and terminology, the treatment
roughly follows [LM19, Section 2| and [Eps+92, Section 2.3, 2.5]. Let A be a finite set
and let I' be a group with a map p : A — I'. We say that I' is generated by A if the
unique extension of y to the homomorphism from the free monoid A* to I' is surjective.
We will call elements of A* words and for any w € A*, if u(w) = ¢ for some g € I', we
will say w represents g. We will always assume A is closed under inversion, that is, there
is an involution i : A — A such that u(i(a)) = p(a)™!, in this case we will denote i(a) as
a~t. Any subset £ < A* will be called a language over A.

An automatic structure for a group I' is a pair (A, L), where A is a finite generating
set of I' equipped with a map p : A — I' and closed under inversion, and A < A* is a
language satisfying three conditions. Firstly, u(£) =T, secondly L is a regular language,
that is, it is accepted by some finite state automaton, and thirdly, it satisfies a fellow
traveller property (which we will not make precise here). We say (A, £) is biautomatic
structure if both (A, £) and (A, L) are automatic structures. A group I is said to be
automatic (resp. biautomatic) if it admits an automatic (resp. biautomatic) structure.

A (bi)automatic structure is finite-to-one if |u='(g) N A| < o for all g € T'. As noted
in [LM19, Page 8| by [Eps+92, Theorem 2.5.1] it may be assumed that all (bi)automatic
structures are finite-to-one. So without loss of generality we will make this assumption

and we will also suppose that all the automata in this paper have no dead states.
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A subgroup H < I' is L-quasiconvex if there exists k > 0 such that for any path p
in the Cayley graph of I' with respect to A, starting at 1r, ending at some h € H, and
labelled by a word w € L, then every vertex of p lies in the k-neighbourhood of H. The
main examples of L-quasiconvex subgroups are centralisers of finite subsets as proved in
|GS91, Proposition 4.3] and [Eps+92, Theorem 8.3.1 and Corollary 8.3.5].

Theorem 7.7. Let X = [[", X; be a product of proper irreducible CAT(0) spaces each
not isometric to B and H < Isom(X) be a closed subgroup acting minimally and co-
compactly on X. Let n = 2 and let T’ be an (Isom(E") x H)-lattice. If the projection

Tsom(®r) (L) is not discrete, then I' is not virtually biautomatic.

Proof. Assume (B, L) is a biautomatic structure on I'. By [CM19, Theorem 2(i)| there
exists a commensurated free abelian subgroup A < I' acting properly on E" of rank n.

Claim: There is a finite index subgroup of A that is L-quasiconvex.

By the Flat Torus Theorem the rank of a maximal abelian subgroup of I' is bounded
by the rank of a maximal flat in X x E". Let F' be such a flat acted on by A. Fix a set
of generators Sy for A and a set of generators S containing S, for the maximal abelian
subgroup containing A stabilising F'.

We may split X into a product Y; x Y5 where A acts trivially on Y; and non-trivially
on Y. For j = 1,2 let K; = Isom(Y;) n H. Since, A acts trivially on Y; it follows
A and I' n Ky commute. Now, I' splits as a complex of (Isom(E") x K)-lattices. In
particular, A is a subgroup of a vertex group I',, which is covirtually virtually isomorphic
to A x K,, where K, is a lattice in K. Define Sk to be a set of generators for K, and
for each s € Sk let s’ € K, be some element which does no commute with s. Define a set
Sh ={s,s': s € Sk} and note that it is finite.

Let N = Ker(msom(En)). For each irreducible factor Z; for j = 1,...,¢ of Y5 choose
some element g; € N < I' which acts non-trivially on Z;. Note the kernel IV is non-empty
since otherwise I' would be a finitely generated linear group and hence residually finite,
contradicting [CM09b, Theorem 2(iv)]. Now, we can choose such an element so that it
centralises a finite index subgroup of A. Indeed, we may choose g; € ((A)) " N. Since A is
commensurated g; centralises A% N A a finite index subgroup of A. For each g; pick another
element g; which centralises a finite index subgroup of A and does not commute with g;.
Let Sy, = {gj,9;: j = 1...,(} and note that it is finite. Let A" = (ﬂgesy2 A9> N A, since
this is the intersection of finitely many commensurable subgroups A’ is a finite index
subgroup of A. By construction A’ is the centraliser of the finite set S% U Sy, US4. Thus,
by |GS91, Proposition 4.3], A" is L£-quasiconvex. &

Now, by Lemma 7.1 there exists an element in ¢ € mo(,)(I') with infinite order, let ¢
denote a preimage of ¢ in I'. By [LM19, Corollary 5.4|, there is a finite index subgroup
I'% < T such that every finitely generated subgroup of I'Y centralises a finite index subgroup

of A. After passing to a suitable power we may assume t* € I'’. But (t*) does not centralise
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a finite index subgroup of A, a contradiction. Hence, there is no biautomatic structure on
I'. Since the hypotheses on I' pass to finite index subgroups, it follows I' is not virtually

biautomatic. ]

The following corollary characterises the biautomaticity of (Isom(E™) x T')-lattices.

Corollary 7.8. Let T be a locally finite unimodular leafless tree not quasi-isometric to E
and let T'= Aut(T). Letn = 2 and let T" be a (Isom(E™) x T')-lattice. Then, I is virtually

biautomatic if and only if ' is uniform and the projection mo, (L) is finite.

Proof. Note that a non-uniform (Isom(E") x T')-lattice is not finitely generated and hence,
not virtually biautomatic. Indeed, it must split as a graph of groups with infinitely many
vertices since Isom(E"™) does not have any non-uniform lattices. Thus, we may assume I'
is uniform. Now, if I' is virtually biautomatic then by Theorem 7.7 Tigom@n)(I') is discrete
and hence mo(,)(I') is finite. Conversely, if mo(m)(I') is finite then I' virtually splits as

7" x F, which is biautomatic. ]

Example 10. The group I',, for each n > 2 constructed in Example 9 is an irreducible

(Isom(E™) x T, )-lattice that is not virtually biautomatic.

Remark 7.9. In light of M. Valiunas’ result [Val21, Theorem 1.2] Theorem 7.7 can be
strengthened to state that I' does not embed into any biautomatic group. It may also be

possible to simplify the proof using their result.

7.2. Fibring. In this section we characterise irreducible (Isom(E") x T')-lattices as those

which do not virtually fibre. This result is new even for Leary-Minasyan groups.

Theorem 7.10. Let T be a locally-finite leafless unimodular tree, not isometric to R, and
let T = Aut(T). Let T’ be a uniform (Isom(E™) x T')-lattice, then T virtually algebraically
fibres if and only if T' is reducible.

Proof. If T is reducible, then I" virtually splits as Z x I, in which case I virtually fibres.

We will now prove every irreducible uniform (Isom(E™) x T')-lattice does not alge-
braically fibre, this will prove the theorem since a finite index subgroup of an irreducible
lattice is an irreducible lattice. Now, suppose I' is an irreducible uniform (Isom(E") x T')-
lattice. By Theorem 3.3, the group IT" splits as a graph of Isom(E"™)-lattices, and so is
the fundamental group of a graph of groups with vertex and edge stabilisers finite-by-
Isom(E")-lattices. By the same argument as in the claim of the proof of Theorem 4.10
we may assume [' is a reduced graph of groups which does not split as an ascending
HNN-extension.

Now, H(T'; Z)®R =~ H(T'; Z) and by Proposition 7.11, for every character ¢ € H'(T'; R)
we see that ¢ restricted to a vertex or edge group is zero. Since I' is the fundamental

group of a reduced graph of groups, is not an ascending HNN extension, and ¢ vanishes
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on every edge group, we may apply [CL16, Proposition 2.5| to deduce that ¢ ¢ X(T).
Hence, I' does not algebraically fibre. O

Proposition 7.11. Let T be a locally-finite leafless unimodular tree, not isometric to R,
let T = Aut(T), and let T be a uniform (Isom(E"™) x T)-lattice. If T is irreducible, then
H\T;Z) = HY(T/T;Z).

The analogous result for (Isom(E™) x A)-lattices is as follows. We will prove both results

simultaneously.

Proposition 7.12. Let X be an irreducible locally finite CAT(0) polyhedral complex and
let A = Aut(X) act cocompactly and minimally, and let T' be a uniform (Isom(E") x A)-
lattice. If T is algebraically irreducible, HY(T'; Z) = HY (X /T; Z).

Proof of Proposition 7.11 and 7.12. Let ¢ € H (I';Z) = Hom(I',Z). Suppose ¢ is non-
zero on some local group L, then after passing to a finite index subgroup the restriction of
¢ is non-zero on some subgroup isomorphic to Z". In particular, ¢ defines a codimension
1 subgroup of Z" contained in Ker(¢). Moreover, after passing to a further finite index
subgroup L' =~ Z", by commensurability of the local groups, there is codimension 1
subgroup K = Z"~! of L' which is contained in every local group. Now, the flat R® K
is an (n — 1)-dimensional flat stabilised by P = 7o, (I'), contradicting Proposition 7.2
(Proposition 7.3). Thus, every local group is contained in Ker(¢).

The isomorphism now follows from applying the equivariant spectral sequence to the
filtration of 7 or X by skeleta (see |Bro94, Chapter VIL.7]). The previous paragraph
shows that ES"' = 0, thus HY(I';Z) = E,° = EX° = HY(X/T'; Z). O

7.3. A characterisation. We are now ready to prove the characterisation of irreducible
(Isom(E™) x T')-lattices (Theorem B) from the introduction.

Theorem 7.13 (Theorem B). Let T be a locally finite unimodular leafless tree not quasi-
isometric to R and let T = Aut(T). Let T' be a uniform (Isom(E") x T')-lattice. The
following are equivalent:

(1) T is a weakly irreducible (Isom(E™) x T')-lattice;

(2) T is irreducible as an abstract group;

(3) T acts on T faithfully;

(4) T does not virtually fibre;

(5) T is C*-simple;

(6) and if n =2, T is non-residually finite and not virtually biautomatic.

Proof. The equivalence of (1) and (2) is given by Theorem 2.4. The equivalence of (1) and
(3) is given by Proposition 7.5. The equivalence of (1) and (4) is given by Theorem 7.10.
To see (1) and (3) imply (5), observe that by [CM19, Theorem 2(iv)| I is non-residually

finite and so Ker(isom(en)) is infinite. Now, I satisfies the conditions of Theorem 4.7(2h)
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and so I' is C*-simple. If I' is reducible, then I' virtually splits as A = Z* x I for some
1 < k < n. In particular, A is not C*-simple since A has non-trivial amenable radical. It
follows that I' is not C*-simple. Thus, (5) is equivalent to (1).

Assume n = 2 and note, by Corollary 7.4, I is irreducible if and only if 7o, (I") contains
an infinite order element. It follows from [CM19, Theorem 2(iv)] that I is reducible if and
only if I is residually finite. The equivalence of (1) and (6) is given by Corollary 7.8. O

8. PRODUCTS WITH SALVETTI COMPLEXES

In this section we will adapt a construction of Horbez and Huang [HH20, Proposi-
tion 4.5] to extend actions from trees to Salvetti complexes. Horbez—Huang constructed
an example of a non-uniform lattice acting on the universal cover of the Salvetti complex
S 1, provided L is not a complete graph. We generalise this to construct a tower of uniform

lattices in Aut(§ ) and with an additional hypothesis on L non-biautomatic lattices in

Isom(E") x Aut(S}).

8.1. Graph and polyhedral products. Let K be a simplicial complex on the vertex
set [m] :=={1,...,m}. Let (X, A) = {(X;, 4;) | i € [m]} be a collection of CW-pairs. The
polyhedral product of (X, A) and K, is the space

m m )(Z ifie g,
(XA =] [we] X whee Y7 =
oeK i=1 i=1 A; ifi¢o.
Let K be a simplicial complex on [m] vertices. Let I = {T'y,...,T,} be a set of discrete

groups. The graph product of I and K, denoted T'¥ is quotient of the free product *ie[m) L
by the relations [v;,7,;] = 1 for all 4, € I'; and 7; € I'; if ¢ and j are connected by an
edge in K. Let BT = {BTy,..., BT,}. The graph product '’ is the fundamental group
of the polyhedral product X = (BL,*)%X. Moreover, if K is a flag complex, i.e. every
nonempty set of vertices which are pairwise connected by edges spans a simplex, then X
is a K (%, 1) [Stal5, Theorem 1.1].

If every vertex group in a graph product I'Y is Z then we call the group a right-angled
Artin group (RAAG) and denote I'" by A;. In this case we will identify the generating
set of Ay with the vertex set VL of L. The polyhedral product (S!, )L is a classifying
space for Ay, is referred to as the Salvetti complex for A and denoted by Sp. We denote

the universal cover by Sr.

8.2. Extending actions over the Salvetti complex. We will now adapt the construc-
tion of Horbez and Huang [HH20, Proposition 4.5] to extend actions from trees to Salvetti

complexes and present some applications.

Construction 8.1. Let L be a finite simplicial graph on vertices {vq, ..., vy} and suppose

(v1,...,v5) = F, < Ap is a free subgroup. Let T' be a group acting on Toy, by isometries
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such that the action is label-preserving, then the action of I' on T extends to an action of

T on §L by isometries. Moreover, if I is a Ty -lattice then T is an Aut(gL)-lattice.

Proof. There is an isometric embedding 7o, ~— S 1 with edges labelled by V = {vq, ..., v} <
VL. Define ¢ : A, — Fj, by v — 1 unless v € V and let 7 : §L — X be the covering
space corresponding to Ker(¢). Let I' be a group acting on Ty preserving the labelling,
we want to extend the action of I on 73, to an action on §L,

We may identify the vertex set of Ty with the vertex set of X via the embedding
of Top, S 1. We orient each edge of S 1, and endow X with the induced labelling and
orientation. The 1-skeleton X of X is obtained from 73, by attaching to each vertex of
Tar a circle for each v e VL\V.

Since I' acts by isometries on Ty label preservingly, it follows I' acts by isometries on
X @ Jabel preservingly and preserves the orientation of edges in VL\V. It follows the
action extends to X. Let I' be the group of lifts of all automorphisms in I', we have a

short exact sequence

1 —— Aut(m) s T > T > 1.

We have gL/f = X/I" so there is a bijection between the I-orbits of §§:0) and the I'-
orbits of 7;(,3). For a vertex v € X, each lift of g € Stabr(v) fixes a unique vertex o € Sy..
In particular, the cardinality of the vertex stabilisers is preserved. It follows from Serre’s

covolume formula that if T' was a Th-lattice, then T is an Aut(Sy)-lattice. O

Proposition 8.2. There is an ascending tower of lattices in Ty = Aut(Ty) with label

preserving action.

Proof. The groups will be index two subgroups of the HNN extensions constructed in
[BK90, Example 7.4]. We describe them here for the convenience of the reader. Let
Vi =A{f:Z, > Zy : [ afunction} =~ Z} and «, € Aut(V,) by a,.(f)(i) = f(i + 1). Let
W, ={feV,: f(0)=1} =2Z;" and define I, to be the HNN extension

Vot | ff = ou(f) Vf e W),

By |[BK90, Proposition 7.6] the group T', acts faithfully on 7; with quotient a loop (one
vertex and one edge) and covolume 1/m”. Moreover, if r|r’ then I', < ', with index
m” " and so for r = 2, the sequence (T'ys)s=1 is an infinite ascending chain in Lat,(7y).
Now, define ¢ : I, — Zs by ¢(V,) = 0 and ¢(t) = 1. The kernel A, is an index
two subgroup which satisfies the same properties as I', except now the quotient has
fundamental domain the first barycentric subdivision of a loop (two vertices and two

edges) and covolume 2/m". O
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Corollary 8.3. Let L be a finite flag complex which is not a full ssimplex, then the auto-
morphism group Aut(gL) of the universal cover of the Salvetti complex contains a tower

of uniform lattices.

Proof. Fix r = 2. We apply Construction 8.1 to the lattices A, for s > 1 in the preceding
proposition and obtain a sequence of lattices A in Aut(S ). The group A, has two
orbits of vertices, each stabilised by a group of order m™”, it follows from Serre’s Covolume
Formula that A,. has covolume equal to 2/m" . Tt remains to show that the inclusions
A,s — A, induce inclusions Arb — A for s’ < s. Consider the covering space 7 : S L —
X where X is as in Construction 8.1. Note that X and hence Aut(7) does not depend
on r or s since each group acts with the same fundamental domain. In particular, as

Aps < Ao we have As < Ao for s < s, O

Theorem 8.4. Let L be a finite simplicial graph on vertices V = {vy,...,v,} and suppose
vy, ..o vk = F, < Ap is a free subgroup and that {vq,..., v} S Aut(L) - vy. Let X be a

proper CAT(0) space and assume H < Isom(X) acts cocompactly and minimally.

(1) Let T" be a group acting on Tz by isometries, then the action of I' on T extends
to an action off‘ on §L by isometries.

(2) If T is a uniform lattice in H x Toy, then I is a uniform lattice in H x Aut(S),).

(3) If in addition X is a CAT(0) polyhedral complex and I' is an (H x Ty)-lattice,
then T is an (H x Aut(S,))-lattice.

(4) If the projection of T to H (resp. Tox) is non-discrete, then so is the projection of
I' to H (resp. Aut(S.)).

Proof. The proof of (1) is identical to Construction 8.1 except now we do not require the
action to be label preserving on 7Ts;.. Indeed, the assumption that {v, ..., v} € Aut(L)-v,
implies there is an isometry of S 1, that permutes the edges around any vertex of 75, and
so we can extend any action on 7Ty to §L. .

The proof of (2) follows from taking the diagonal embedding ' — H x Aut(§ 1) and
then noting that the quotient (S, x X)/I" is compact and that cardinality of each of the
vertex stabilisers is finite. o

We prove (3) in the same manner, noting the covolume on the product space is finite
by Serre’s Covolume Formula.

The images of the projections of I'" and I' to H coincide. Since any element of I' which
acts non-trivially on 73, lifts to an element acting non-trivially on S 1, the non-discreteness

of mr,, (I') implies the non-discreteness of 7, . gL)(f). This proves (4). & O

Example 11. Applying the previous theorem to the Leary-Minasyan group LM(A) which
acts irreducibly on the product of a 10-regular tree and E? we obtain a lattice I' in

Isom(E2) x Aut(S.). Moreover, the projection to either factor is non-discrete. Thus, if S},
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is irreducible, then T' is algebraically irreducible by [CM09a|. By Theorem 7.7 the group

I' is not virtually biautomatic.

Recall that a group I' is quasi-isometrically rigid if every group quasi-isometric to I is
virtually isomorphic to I'. The quasi-isometric rigidity of right angled Artin groups has
received a lot of attention recently (see for instance [Hual8] and the references therein).
The following corollary is immediate and appears to be new if L has no induced 4-cycle

and Ay is not a free group.

Corollary 8.5 (Corollary C). Let L be a finite simplicial graph on vertices {vq,...,Um}.
Suppose (vy,...,v5) = F5 < Ar is a free subgroup and that {vy, ... ,vs} < Aut(L)-v,. If Ap
is irreducible, then there exists a weakly irreducible uniform lattice in Aut(Sy,) x Isom ()
which is not virtually biautomatic nor residually finite. In particular, A; x Z* is not

quasi-isometrically rigid.

Proof. The group I' constructed in Example 11 is algebraically irreducible, non-residually
finite, and quasi-isometric to Ay, x Z2. Both properties are virtual isomorphism invariants
but Ay, x Z? is algebraically reducible and residually finite. In particular, A;, x Z? is quasi-

isometric to I" but not virtually isomorphic to I' and so cannot be quasi-isometrically
rigid. ([l

Remark 8.6. It seems likely that one could take a polyhedral product of locally CAT(0)
cube complexes over a flag complex and then repeat the above constructions to obtain
towers of lattices in the automorphism group of the universal cover and more weakly

irreducible lattices in mixed products.

9. FROM TREES TO RIGHT-ANGLED BUILDINGS

In this section will show that the functors introduced by A. Thomas in [Tho06| take
graphs of H-lattices with a fixed Bass-Serre tree to complexes of H-lattices whose de-
velopment is a “sufficiently symmetric" right-angled building (we will make this precise
later). Finally, we will combine these tools to construct a number of examples. In par-
ticular, non-residually finite (Isom(E™) x A)-lattices where A is the automorphism group
of a sufficiently symmetric right-angled building, and non-residually finite algebraically
irreducible lattices in products of arbitrarily many isometric and non-isometric sufficiently

symmetric right-angled buildings.

9.1. Right angled buildings. Let (W, I) be a right-angled Coxeter system. Let N be
the finite nerve of (W, I) and P’ be the simplicial cone on N’ with vertex xg. A right-
angled building of type (W, I) is a polyhedral complex X equipped with a maximal family
of subcomplexes called apartments. Such an apartment is isometric to the Davis complex
for (W, I) and the copies of P" in X are called chambers. Moreover, the apartments and

chambers satisfy the axioms for a Bruhat—Tits building.
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Let S denote the set of J < I such that W; < W is finite. Note that Wy = {1} so
€ S. For each i € I, the vertex P’ of type {i} will be called an i-vertex, and the union of
the simplices of P’ which contains the i-vertex but not zy will be called the i-face There
is a one-to-one correspondence between the vertices of P’ and the types J € S.

Let X be a right-angled building. A vertex of X has a type J € § induced by the
types of P’. For i € I an {i}-residue of X is the connected subcomplex consisting of all
chambers which meet in a given i-face. The cardinality of the {i}-residue is the number

of copies of P’ in it.

Theorem 9.1 ([HP03|). Let (W, 1) be a right-angled Cozeter system and {q;: i € I} a set
of integers such that q; = 2, then up to isometry there exists a unique building X of type
(W, I) such that for each i € I the {i}-residue of X has cardinality g;.

If (W, I) is generated by reflections in an n-dimensional right-angled hyperbolic polygon
P, then P’ is the barycentric subdivision of P. Moreover, the apartments of X are
isometric to RH". In this case we call X a hyperbolic building. We remark that a right-
angled building can be expressed as the universal cover of a polyhedral product, however,

we will not use this observation elsewhere.

Remark 9.2. Let (W, I) be a right-angled Coxeter system with parameters {¢;} and nerve
N. Let E; be a set of size ¢; and let C'E; denote the simplicial cone on F;, denote the
collections of these by E and CE respectively. The right-angled building of type (W, I)
with parameters {¢;} is the universal cover of the polyhedral product (CE, E)V.

9.2. A functor theorem. In this section we will recap a functorial construction of
A. Thomas which takes graphs of groups with a given universal covering tree to com-
plexes of groups with development a right-angled building. We will then show that this
functor takes graphs of lattices to complexes of lattices and deduce some consequences.

Let X be a right-angled building of type (W, I) and parameters {¢;} with chamber P’.
Suppose m;, ,, = % and define the following two symmetry conditions due to Thomas
[ThoO6]:

(T1) There exists a bijection g on I such that m,; = mgyq) ;) for all i,j € I, and
g(ir) = .

(T2) There exists a bijection h : {i € I : my,; < w0} — {i € [ : m;,; < 0} such that
m;;j = Mpeyni) for all 4,5 in the domain, h(iy) = i3, and for all 7 in the domain

qi = qn(i)-

We include the construction adapted from [ThoO6] for completeness and for utility in
the proofs of the new results which will follow. An example of the construction for a

graph of groups consisting of a single edge is given in Figure 2



GRAPHS AND COMPLEXES OF LATTICES 43

Ge X Lgy X Ly,
Ge X Ly,

Gy X Lg,

{is}

G
{ig, 5} G X Ly,

FIGURE 2. The left pentagon shows a labelling of the types J € §. The right
pentagon shows the local groups after applying Thomas’ functor to a graph of
groups with a single edge. In both pentagons the dashed line shows the
embedding of the graph. If the graph of groups has a single vertex, then

Gy = Gy, q1 = @2, q3 = qu, the edge ({i1,i5}, {i1}) is glued to ({i2,i5}, {i2}), and
the edge ({1, i3}, {i1}) is glued to ({iz, s}, {iz}).

Construction 9.3 (Thomas’ Functor [Tho06|). Let X be a right-angled building of type
(W, I) and parameters {q;}. For each iy,is € I such that m;, ;, = o let T be the (qi,, Gi,)-
biregular tree. Suppose (1'1) holds and if q;, = qi, then (T2) holds with g an extension of
h. Then there is functor F : G(T) — C(X) preserving faithfulness and coverings.

We will construct F' as a composite Fy o F}. We first define F} : G — C;. Let (A, A) be
a graph of groups and | A| the geometric realisation of A. We will construct a complex of

groups Fi(A) over |A|. For the objects we have:

e The local groups at the vertices of |A| are the vertex groups of A.

e For all e € FA let 0. = 0z be the vertex of the barycentric subdivision |A|" at the
midpoint of e.

e The local group at o, in Fj(A) is A, = Az.

e A monomorphism . : Ac — A;() in A induces the same monomorphism in Fj(A).

Let ¢ : A — B be a morphism of graphs of groups over a map of graphs f, note that by
[Tho06, Proposition 2.1] F} is not injective on morphisms. We define Fj(¢) as follows:

e The map f induces a polyhedral map [’ : |A]" — |B|' so we will define Fj(¢) :
Fl(A) — F1<B> over f
e Now take the morphisms on the local groups to be the same as for ¢.
Let C(T) = Im(F1(G(T))) and G(Y') € C(T). Now, we will define F, : C(T) — C(X) as
follows:
e We first embed Y’ into a canonically constructed polyhedral complex F»(Y'). For
each e € EY let P! be a copy of P’ and identify the midpoint of e with the cone

vertex xg of P..



GRAPHS AND COMPLEXES OF LATTICES 44

e If Y is 2-colourable with colours i; and iy (from the valences of the Bass-Serre tree
if g;, # qi,), then we identify the vertex of e of type i; with the i;-vertex of P..

e Suppose Y is not 2-colourable. If e € EY is not a loop in Y then identify one
vertex of e with the i1-vertex of P! and the other with the iy-vertex. If e forms
a loop then we attach P!/h (where h is the isometry from the assumption) and
identify the vertex of e to the image of the i;- and is-vertices of in P./h.

e Glue together, either by preserving type on the i;- and is-faces or by the isometry
h, the faces of the the P! and P!/h whose centres correspond to the same vertex
of Y. Let F5(Y') denote the resulting polyhedral complex.

e Note that Y’ »— F5(Y) and that each vertex of F5(Y) has a unique type J € S or
two types J and h(J) where i; € J € S and h is the isometry from the assumption.

e Fix the local groups and structure maps induced by the embedding of Y’ in F/(Y).
For each i € I let G; = Z,, and for J < I let G; = [[..; G;. For each e € EY let

G, be the local group at the midpoint of e.

jed

e Let J € § such that neither i; or i5 are in J. The local group at a vertex of
type J is G, x GG ;. The structure maps between such local groups are the natural
inclusions.

e Let J € § and suppose iy € J for one of k = 1 or k = 2. Since m;, ;, = o both
i1 and iy cannot be in J. Let F, be the ix-face of P! or the glued face of P!/h.
The vertex of type J in P, or P./h is contained in F,. Let v be the vertex of Y
identified with the centre of F, and let G, be the local group at v in G(Y)

e The local group at the vertex of type J is G, x G p,;. For each J' < J with
ir € J' the structure map G, x Gy} — Gy X Gy, is the natural inclusion.
For each J' < J with 4, ¢ J' the structure map G, x Gy — G, x G,y is the

product of the structure map G, — G, in G(Y) and the natural inclusion.

Now, let ¢ : G(Y) — H(Z) be a morphism in C(7) over a non-degenerate polyhedral
map f:Y — Z. We will define Fy(¢) as follows:

e If Y and Z are two colourable f extends to a polyhedral map Fy(f) : Fo(Y) —
F5(Z). Otherwise we use (T1) to construct F(f).

o If Te VF(Y) then G, = G, x G; where o is a vertex of Y’. The homomorphism
of local groups G, x G; — Hys) x G is ¢, on the first factor and the identity on
the other factors.

o Let ae FF(Y). If ¢, the structure map along a € F»(G(Y)), has a structure map
Yy from G(Y) as its first factor, put F5(¢)(b) = ¢(a). Otherwise set Fp(¢)(b) = 1.

We will now show the functor takes graphs of lattices to complexes of lattices and
deduce a number of consequences. Recall for a locally compact group H that Lat(H)
denotes the (po)set of H-lattices and Lat,(H) denotes the (po)set of uniform H-lattices.
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Theorem 9.4. Let Y be a right-angled building of type (W, 1) and parameters {q;} and
let A = Aut(Y'). For each iy,is € I such that my, ;, = oo let T be the (i, ¢i,)-biregular
tree and let T = Aut(T). Suppose (T1) holds and if q;, = q;, then (T2) holds with
g an extension of h, and let F' : G(T) — C(Y) be Thomas’ functor. Let X be a finite
dimensional proper CAT(0) space and assume H = Isom(X) contains a cocompact lattice.

The following conclusions hold:

(1) If G(T) is a graph of H-lattices, then F(G(T)) is a complex of H-lattices.

(2) F induces an inclusion of sets Lat,(H x T) — Lat,(H x A).

(3) If Y is a CAT(0) polyhedral complex then F' induces an inclusion of sets Lat(H x
T) — Lat(H x A).

Let T be a uniform (H x T)-lattice and let FT be the corresponding (H x A)-lattice.

(4) (L) is discrete if and only if ma(FT) is discrete. Moreover, my(I') = mp(FT).
(5) If T satisfies any of {algebraically irreducible, non-residually finite, not virtually
torsion free}, then so does FT.

Proof. We first prove (1). We will first verify the conditions on the local groups and
then construct a morphism to H. Let (B, B,v) be a graph of H-lattices and consider
the image L(Z) of B under F. Here Z = F(B). Each local group in L(Z) is of the
form G, x G; where G, is a local group in B and G is a finite product of finite cyclic
groups. We have a morphism v : B — H such that the image of each local group G, is
an H-lattice and the restriction to GG, has finite kernel. Thus, by construction the local
groups in L(Z) are commensurable in m(L(Z)). We define F(1,) to be the composite
Vg, oy : Go x G; — G, — (G,), thus commensurability of the images in H is
immediate.

We will now deal with the edges. Note the twisting elements in L(Z) are all trivial and
the complex of groups H has all structure maps the identity. Let the structure maps in
L(Z) be denoted by A, for a € EZ" and the structure maps in B by «. for e € EB. The
family of elements (t.)eepp in the path group 7(B) are mapped under ¢ to elements of
Commy (¢ (G,)) where G, is some local group. Now, let a € EZ’, then by construction a
either corresponds to a subdivision of an edge a in EB in which case we define (F)(a) =
Y(a). Or, a corresponds to a inclusion of local groups G, x Gy — G, x G5, in which case
we define (F'Y)(a) = 1p.

It remains to verify the two edge axioms for a morphism. For each a € EZ’ correspond-
ing to the subdivision of an edge a in B we have

Ad((Fy)(a)) o F(via) = Ad((a)) 0 Yi(a) © Ta = Yi(a) © 0t © Ta = F(ty(a)) © Faw),

where 7, is the surjection G, x G; — G,. For any other edge a € EZ' we have

Ad((Fv)(a)) o F(Yi)) = F(Wi)) and F (1)) © Aa = F (Vi)
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Finally, the other condition that (Fv)(ab) = (Fv)(a)(F4)(b) for (a,b) € E*Z' is verified
trivially. Thus, F(B) = L(Z) is a complex of H-lattices. ¢

We will next prove (2). Let I' be an (H x T')-lattice. By Theorem 3.3, I" splits as graph
of H-lattices B. Thus, by (1) we obtain a complex of H-lattices F'(B) with fundamental
group A. By Theorem 6.2(1) it suffices to show that for each local group G, in F(B)
the kernel K, = Ker(my|pg,) acts faithfully on X. Now, K, is a direct product of
L, = Ker(mg|g,) with a direct product of cyclic groups G, where G, is a local group in
B. By construction GG; acts faithfully on X and by Theorem 3.3, K, acts faithfully on T
whose automorphism group embeds into A. In particular, K, acts faithfully on X.

We will next prove (3). We construct a complex of lattices as in the previous case.
The proof for (3) is now identical once we have verified that covolume condition in The-
orem 6.2(3). Let ¢ denote the covolume of an (H x T')-lattice I" with associated graph of
lattices (B, B), this is given by the formula ¢ = Y __,,, #(I'y) < 0. Now, every vertex of
the complex Z = F(B) has local group isomorphic to a finite extension of some I',. In
particular we may bound . _, u(I',) by ¢ x ¢ where ¢ is the number of vertices in the
finite Coxeter nerve of X. o

The proof of (4) follows from the proof of (1).

The proof of (5) follows from either applying Theorem 2.4 to (4) (algebraically irre-
ducible) or the fact I' — FT" and the properties of residual finiteness and virtual torsion-

freeness are subgroup closed. & O

9.3. Examples and applications. In this section we will detail some sample examples
and applications of the functor theorem.

We can obtain a number of examples by applying Thomas’ functor to any irreducible
(Isom(E™) x T')-lattice. This will give a non-biautomatic group acting properly discontin-
uously cocompactly on E" x X where X is a sufficiently symmetric right-angled building.

More precisely, we have the following corollary:

Corollary 9.5 (General version of Corollary D). Let Y be a right-angled building of type
(W, I) and parameters {¢;} and let A = Aut(Y'). For each iy,iy € I such that m;, ;, = ©
let T be the (q,, @, )-bireqular tree and let T' = Aut(T). Suppose (T1) holds and if ¢;;, = q;,
then (T2) holds with g an extension of h and let F' : G(T) — C(Y) be Thomas’ functor.
Let T' be a uniform (Isom(E"™) x T')-lattice and suppose Tow)(I') is infinite, then FT' is
a uniform (Isom(E"™) x A)-lattice which is not virtually biautomatic nor residually finite.
In particular, if Y is irreducible, then the direct product of a uniform A-lattice with Z2 is

not quasi-isometrically rigid.

Proof. By Theorem 9.4 FT' is a uniform (Isom(E™) x A)-lattice with a non-discrete pro-
jection to O(n). That FT is not virtually biautomatic then follows from Theorem 7.7.

The failure of quasi-isometric rigidity follows from the fact that the direct product of a
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uniform A lattice with Z? is reducible, whereas, the weakly irreducible lattice is alge-
braically irreducible by Theorem 2.4 and so does not virtually split as a direct product of

two infinite groups. In particular, the groups cannot by virtually isomorphic. 0J

Example 12. Let I' = LM(A) where A is the matrix corresponding to the Pythagorean
triple (3,4, 5) . Recall the group acts on E* x Tyy. Let X be the right angled building whose
Coxeter nerve is the regular pentagon and whose parameters are given by ¢; = ¢» = 10,
g3 = q1 = k, and ¢5 = (. Let A be the automorphism group of X and consider FT' the
image of I' under Thomas’ functor F' as in Figure 2. By Theorem 9.4, the group FT is a
non-residually finite (Isom(E™) x A)-lattice with non-discrete projections to both factors
and is irreducible as an abstract group. Moreover, by the previous corollary, FT' is not
virtually biautomatic.

We will now construct a presentation for Ay, := FI'. The group has generators

a,b,x3, x4, x5,t and relations
ok =k =2l =1, [a,0], [a,73], [a,24], [a,25], [b,23], [b,24], [, 5], [73, 4],
ta’b~ 't = a®b, tab*t' = a'0?, tast™' = ay, [t, 25).
The following proposition shows the group is virtually torsion-free.
Proposition 9.6. The group Ao in Example 12 is virtually torsionfree. This is witnessed
by the index 16 subgroup
A= {a, b, xstagt ™, zszat™? (ws513)?, (x524)?, t twswat ™, (twszat™)?).

Proof. The quotient Ay »/A is isomorphic to Dy x Zs which has order 16. By construction
every torsion element of Ay, is conjugate to some power of 3, x4, 5 or xszy. Indeed,
every torsion element is contained in a vertex or edge stabiliser of the action on the
pentagonal building and acts trivially on E?. Each of these elements is mapped to a

non-trivial element of Dy x Zs. In particular, the kernel A is torsion-free. L]

Corollary 9.7. The group A admits a presentation with 8 generators

a, ba Y1, Y2, Y3, Ya, Y5, Yo

and 20 relations
[a,0], [a,ya], [a,ys] [b,ys], [b,yal,
a~2b ysa2byg L,
a Yyiba2y; e,
ba by, b ay,,
Yeys b Y5 s by,
YoYs Yy 0 a6y ta,

Yy ab” ayays ta”ba T ys,
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ysa 0y ysysatbys tys

YaYs Y3 YsYr Yales Ui YshYs s
vs ab~ ysysys b a bysyg

Y5 ba” 0 ysyays b ab P ysyr
ys tabPysb a2y th?a bysa®h,
b ta b ta?y; o ab B atysba’h T,
Yy tbabyoys b tab2ysb a2 2ay; b tab 2ysb e,
aysa*ba’b?ys 'bPa bPa b a hysatbPy; %,
ysysys  Yeaba’bys 0’ a” ysabys 0PaT bysys yays s 0 aysbatbys tb*aT D

and the abelianization of A is isomorphic to Z2 ® 7.

Remark 9.8. It follows immediately from the presentation of A that it and hence Ag
contain a subgroup isomorphic to Z3. For example {a,b,ys) or {a,b,y,). Note that this
coincides with the dimension of a maximal flat in X x E2. Since both groups have a

commensurated abelian subgroup their L?-cohomology vanishes (see Proposition 4.3).

Example 13. Let n > 2 and let I'), be the irreducible lattice constructed in Example 9
acting on E" x Tip,. Let X be a right angled building satisfying (T1) and (T2) with
automorphism group A and parameters {¢;} all equal to 10n. Applying Thomas’ functor
and Theorem 9.4 to I', we obtain a non-residually finite (Isom(E") x A)-lattice with
non-discrete projections to both factors. Moreover by Corollary 9.5, I, is not virtually

biautomatic.

We will now show the existence of non-residually finite lattices in arbitrary products of
sufficiently symmetric isometric and non-isometric right-angled buildings. We note that
Bourdon’s “hyperbolization of Euclidean buildings" [Bou00, Section 1.5.2| can be used to
construct weakly irreducible uniform lattices in products of hyperbolic buildings. We will

provide a number of examples to show that the groups we construct here are distinct.

Corollary 9.9. Let I be a weakly irreducible lattice in product of trees Ty x -+ x T,
such that Ty, is (tg,,tr,)-bireqular. Let X1 x --- x X, be a product of irreducible right
angled buildings satisfying (T1) and (T2). Suppose Xy is of type (Wi, Ii,), has parameters
{tkl,th,qk3,...,qknk} where my, 1, = © and Ay = Aut(Xy). The lattice A = F"T
obtained by applying Thomas’ functor n times (once for each tree Ty corresponding to the
building Xy.) is a lattice in Ay x --- x A, is weakly and algebraically irreducible, and is

non-residually finite.

Proof. Let T}, = Aut(Ty). The result follows from applying Theorem 9.4 n times as follows.
Consider I' as a graph of (T3 x - - - x T}, )-lattices and apply F to obtain a (A; xTeyx -+ - xT},)-

lattice with the desired properties (non-residual finiteness follows from the fact that the
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projection to Ty x --- x T, has a non-trivial kernel). Now, consider FT as a graph of

(A x T3 x ...T,)-lattices and proceed by induction on the index k. U

Examples 14. We will detail three examples:

(1)

(3)

In [RSV19, Theorem 2.27, Theorem 3.15] the authors construct infinite series of
explicit examples of irreducible S-arithmetic quaternionic lattices acting simply
transitively on the vertices of products of n > 1 trees of constant valency, in each
case we may apply Theorem 9.9 to obtain algebraically and weakly irreducible
non-residually finite uniform lattices acting on a product of n buildings. It is
unclear whether these groups are related to the groups constructed by Bourdon’s
hyperbolization.

In [BMOOb; BM97] Burger and Mozes construct for each pair of sufficiently large
even integers (m,n) a finitely presented simple group as a uniform lattices in
a product of trees T, x T, (for more examples see [Rat07b; Rat07a; Rad20]).
Applying Theorem 9.9, we obtain uniform non-residually finite algebraically and
weakly irreducible lattices acting on a product of buildings X; x X5 each satisfying
(T1) and (T2) with X; having some parameters equal to m and X, having some
parameters equal to n.

Applying Theorem 9.9 to the non-uniform lattices in products of arbitrarily many
trees constructed in Example 7 yields weakly irreducible non-uniform lattices in

products of arbitrarily many sufficiently symmetric right-angled buildings.

10. SOME QUESTIONS

In this section we will raise a conjecture and some questions left open by this paper.

In light of the results in Section 4.4 showing that many CAT(0) groups are autostackable

(in particular the Leary-Minasyan groups) we raise the following conjecture:

Conjecture 10.1. Every CAT(0) group is autostackable.

In every example of an (Isom(E™) x T)-lattice known to the author, the lattice is

virtually torsion-free.

Question 10.2. Are there non-virtually torsion-free (Isom(E"™) x T')-lattices?

Since it is possible to characterise (Isom(E™) x T')-lattice in terms of C*-simplicity and

virtual fibring, it would be interesting to recover the characterisation for complexes of
Isom(E™)-lattices.

Question 10.3. Are the weakly irreducible non-biautomatic groups constructed in Sec-
tion 8 and Section 9 C*-simple? Do they virtually fibre?

More generally we ask:
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Question 10.4. When is a CAT(0) lattice C*-simple?

The characterisation of weakly irreducible (Isom(E™) x T')-lattices (Theorem B) suggests

the following question:

Question 10.5. Can C*-simplicity and virtual fibring of a Leary-Minasyan group LM(A)

be determined by properties of the matriz A?

1]

2l

3]

4]

5]
(6]

7]

8]

19]

[10]
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