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SUMMARY

Background: Development of an effective vaccine against the patho-
genic blood-stage infection of human malaria has proved challenging,
and no candidate vaccine has affected blood-stage parasitemia
following controlled human malaria infection (CHMI) with blood-stage
Plasmodium falciparum.
Methods: We undertook a phase I/IIa clinical trial in healthy adults
in the United Kingdom of the RH5.1 recombinant protein vaccine, tar-
geting the P. falciparum reticulocyte-binding protein homolog 5
(RH5), formulated in AS01B adjuvant. We assessed safety, immunoge-
nicity, and efficacy against blood-stage CHMI. Trial registered at
ClinicalTrials.gov, NCT02927145.
Findings: The RH5.1/AS01B formulation was administered using a range
of RH5.1 protein vaccine doses (2, 10, and 50 mg) and was found to
be safe and well tolerated. A regimen using a delayed and fractional
third dose, in contrast to three doses given at monthly intervals, led
to significantly improved antibody response longevity over �2 years
of follow-up. Following primary and secondary CHMI of vaccinees
with blood-stage P. falciparum, a significant reduction in parasite
growth rate was observed, defining amilestone for the blood-stagema-
laria vaccine field. We show that growth inhibition activity measured
in vitro using purified immunoglobulin G (IgG) antibody strongly corre-
lates with in vivo reduction of the parasite growth rate and also identify
other antibody feature sets by systems serology, including the plasma
anti-RH5 IgA1 response, that are associated with challenge outcome.
Conclusions: Our data provide a new framework to guide rational
design and delivery of next-generation vaccines to protect against
malaria disease.
Funding: This study was supported by USAID, UK MRC, Wellcome
Trust, NIAID, and the NIHR Oxford-BRC.

Context and significance

A highly effective vaccine against

the human malaria parasite

Plasmodium falciparum is

urgently needed. One vaccine

strategy aims to prevent parasite

growth in the blood, protecting

against clinical disease; however,

this has proved exceptionally

challenging. Here we show that a

candidate vaccine (reticulocyte-

binding protein homolog 5.1

[RH5.1]/AS01B) is safe in a phase I/

IIa clinical trial and identify a

vaccination regimen that

improves the durability of the

human antibody response, which

is critical for long-term protection.

Following experimental challenge

of vaccinated adults with malaria,

we observed that the vaccine

could reduce parasite growth in

the blood and identified immune

responses that could predict how

well the vaccine performs. These

data will help guide the design of

improved vaccines in the future.
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INTRODUCTION

Despite major advances in malaria control, estimates in 2018 suggest that there

were still 228 million clinical cases leading to 405,000 deaths.1 Consequently, there

remains a pressing need for a highly effective and durable vaccine.2 Encouragingly,

whole-parasite and subunit strategies targeting the invasive sporozoite and/or liver

stage of Plasmodium falciparum have shown moderate levels of efficacy in field

trials.3 However, these approaches continue to face various challenges related to

durability or breadth of protection and immunopotency in target populations.

They also necessitate sterilizing immunity to prevent the subsequent pathogenic

blood stage of infection. An alternative and complementary approach is to vaccinate

against the blood-stage merozoite leading to inhibition of erythrocyte invasion and,

thus, control and/or clearance of blood-stage parasitemia, protecting against

morbidity and mortality and reducing transmission.3 However, historical efforts to

develop anti-merozoite vaccines have been thwarted by substantial levels of target

antigen polymorphism,4 redundancy of erythrocyte invasion pathways,5 and a poor

understanding of immune mechanisms that can provide in vivo protection in

humans.

Nonetheless, substantial progress has been made in recent years following identifi-

cation of an essential, highly conserved, antibody-susceptible, heterotrimeric pro-

tein complex used by P. falciparum merozoites to invade erythrocytes.6 Vaccine

development efforts are most advanced for one component of the complex, called

RH5.3 This vaccine target binds basigin on the erythrocyte surface,7 an indispensable

receptor-ligand interaction linked to host erythrocyte tropism of P. falciparum8 and

one the parasite has evolved to shield from the immune system. Indeed, RH5 ap-

pears to be poorly immunogenic in the context of natural malaria infection,9–12 likely

explaining its relatively high degree of sequence conservation. Conversely, vaccina-

tion of mice, rats, and rabbits with full-length RH5 (RH5_FL) induces high levels of

functional antibodies that inhibit in vitro growth of all tested P. falciparum laboratory

lines and isolates,9,13–15 notably with higher efficiency than other historical target an-

tigens, such as merozoite surface protein 1 (MSP1) and apical membrane antigen 1

(AMA1).13,16 Additionally, significant in vivo protection has been demonstrated

against a stringent blood-stage P. falciparum challenge in Aotus monkeys.17 These

data provided momentum to advance RH5-based vaccines into clinical testing.

Expression of RH5_FL protein proved challenging for a number of years, and, conse-

quently, the first vaccine regimen that progressed to phase Ia clinical testing

(VAC057; ClinicalTrials.gov: NCT02181088) utilized a recombinant prime-boost vi-

rus-vectored delivery platform that enabled in situ expression of RH5_FL by virally

infected cells.11 This regimen was well tolerated and induced functional antibodies

that exhibited cross-strain in vitro growth inhibition activity (GIA). However,

although the levels of anti-RH5_FL serum immunoglobulin G (IgG) in this trial greatly

exceeded those observed in naturally exposed African adults, they still only peaked

at moderate concentrations of �9 mg/mL.11 Notably, our study in Aotus monkeys

predicted these to fall below a protective immunological threshold, and we there-

fore elected not to proceed to efficacy testing by blood-stage controlled humanma-

laria infection (CHMI).18 Indeed, protection in Aotus monkeys was strongly associ-

ated with anti-RH5_FL serum IgG antibody concentration and in vitro GIA

measured using purified IgG,17 with high-level protection only achieved when using

a recombinant RH5_FL protein-in-adjuvant formulation.17 Subsequently, we suc-

cessfully expressed recombinant RH5_FL by using a Drosophila S2 stable cell

line19,20 (a platform compatible with human delivery) and were therefore able to
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biomanufacture a soluble protein vaccine, called RH5.1.21 We hypothesized that this

antigen, when presented with a potent adjuvant, could induce significantly higher

levels of anti-RH5_FL antibodies than virus-vectored RH5 (VV-RH5) and therefore

conducted the VAC063 phase I/IIa clinical trial (ClinicalTrials.gov: NCT02927145)

to determine safety, immunogenicity, and efficacy against blood-stage CHMI of

RH5.1 formulated in GlaxoSmithKline’s (GSK) adjuvant system AS01B.

RESULTS

The RH5.1/AS01B vaccine is safe and immunogenic

Fifty healthy adult volunteers were enrolled, across three sites in the United

Kingdom, into the phase Ia arm of the VAC063 clinical trial, which assessed the

RH5.1/AS01B vaccine in an open-label, dose-escalation study (Figure 1A and S1).

Three immunizations at monthly intervals with 2, 10, or 50 mg RH5.1 in 0.5 mL

AS01B (groups 1, 2, and 4) were compared with a delayed fractional dosing (DFx)

regimen, where two monthly immunizations of 50 mg RH5.1 were followed by a third

immunization at one-fifth dose (10 mg RH5.1) in 0.5 mL AS01B and delayed to

6 months after the first immunization (group 3). Forty-seven of 50 (94%) volunteers

received all scheduled vaccinations, and 44 completed follow-ups.

All vaccinations in groups 1–4 were well tolerated (Figure S2, Data S1A and S1B), and

no safety concerns arose during the trial period. The reactogenicity of the vaccine

was similar to that seen in previous malaria vaccine trials using the same adjuvant

Figure 1. Antibody immunogenicity of RH5.1/AS01B

(A) Timing of immunizations and follow-up in groups 1–4. All antigen doses were formulated in 0.5 mL AS01B.

(B and C) Median and individual anti-RH5_FL serum total IgG responses 14 days after two vaccinations (Vacs; day 42, B) and after three Vacs (day 70 or

day 196, C). Both datasets were analyzed separately by Kruskal-Wallis test with Dunn’s multiple comparisons test; **p < 0.01. Historical data for the

VV-RH5 vaccine11 were not included in the analysis and are shown for comparison only.

(D) In vitroGIA of purified IgG assessed at 10 mg/mL against 3D7 clone P. falciparum parasites. Individual data and medians are shown for each group at

the stated time-point; pooled sera were used for each group at baseline (day 0). Historical data for VV-RH5 were included as before.

(E) Dilution series of purified IgG for all group 1–4 samples starting from 10 mg/mL.

(F) Relationship between GIA data from the dilution series shown in (E) and concentration of anti-RH5_FL purified IgG used in the assay as measured by

ELISA. A non-linear regression curve is shown for all samples combined (solid line, r2 = 0.96, n = 279). The EC50 (concentration of anti-RH5_FL polyclonal

IgG that gives 50% GIA, dashed line) was calculated.
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in healthy adults in the United Kingdom,18,22 with the booster vaccinations generally

associated with a higher grading of systemic adverse events (AEs) and local redness

(STAR Methods, safety analysis). A single occurrence of scalp psoriasis in one group-

3 volunteer was regraded retrospectively as a suspected unexpected serious

adverse reaction (SUSAR) on the basis of (1) protocol-specified AEs of special inter-

est for the AS01B adjuvant and (2) temporal onset 1 month after the second vaccina-

tion, making a causal relationship ‘‘possible’’ despite being unlikely clinically.

The anti-RH5 total IgG serum antibody concentration (in micrograms per milliliter)

was assessed over time by ELISA against RH5_FL recombinant protein. Two priming

immunizations induced antigen-specific IgG responses in all volunteers, with a clear

dose response on day 42 (Figure 1B). By 2 weeks after the third monthly immuniza-

tion (day 70), responses had equalized across the doses, with median (range) anti-

body levels of 91 (29–219) mg/mL in groups 1, 2, and 4 combined (n = 33). Two weeks

after the final boost in the DFx regimen (day 196), responses trended higher, with

median levels of 118 (45–314) mg/mL (n = 12) in group 3 (Figure 1C). Following

each of the two booster immunizations, a burst of antibody-secreting cells (ASCs)

was measured in the peripheral blood by ELISPOT; these were largely comparable

across the vaccine doses and regimens (Figure S3A). Similar comparability was

seen for interferon g (IFN-g) T cell responses in peripheral blood mononuclear cells

(PBMCs), as measured by ex vivo ELISPOT and flow cytometry, 2 weeks after the

third immunization (Figures S3B–S3D). In comparison with the previously reported

first-generation VV-RH5 vaccine,11 the serum IgG concentrations induced by

RH5.1/AS01B were �10-fold higher, with the opposite trend observed for IFN-g

T cell responses (Figures 1C and S3B). We also assessed serum antibody isotypes

and subclasses by ELISA. Here, the anti-RH5_FL response was mainly composed

of IgG1, IgG3, IgA, and IgM with little detectable IgG2 or IgG4 (Figure S4A), and

this profile was consistent over time and vaccine dose/regimen.

To assess functional antibody activity, sera were analyzed by the GIA Assay Refer-

ence Center at the NIH. IgG was purified from each sample prior to testing against

3D7 clone P. falciparum parasites at a starting concentration of 10 mg/mL total IgG

and in the absence of complement. Pooled samples from groups 1–4 prior to vacci-

nation (day 0) did not demonstrate any GIA above baseline. Samples from group 1–4

volunteers taken 2 weeks after the final immunization showed in vitro GIA, with

median levels ranging between 70%–75% across all four groups (Figure 1D)—

the highest levels of GIA reported in this assay following human vaccina-

tion.11,18,23–25 We confirmed that GIA decreased as purified IgG was diluted in

the assay (Figure 1E). GIA was also related to RH5_FL-specific IgG concentration

(Figure 1F), as seen previously for this antigen following VV-RH5 immunization,11

as well as following human immunization with other antigens, such as MSP1 and

AMA1.16,18,23,24 For RH5.1/AS01B, the concentration of RH5_FL-specific polyclonal

IgG required to give 50% GIA (EC50) was 34 mg/mL (95% confidence interval [CI],

33–36); this ‘‘quality’’ readout of vaccine-induced IgG was identical across the

different dosing groups and regimens.

The DFx regimen improves antibody response longevity

All volunteerswere followedup for 6monthsafter thefinal immunization, atwhichpoint it

becameapparent that the longevity of the anti-RH5_FL IgGantibody responsewas strik-

ingly different following the DFx regimen (group 3) (Figures 2A and S4B). We therefore

invited all volunteers who completed follow-up to return for a ‘‘late bleed’’ (approxi-

mately 1.5–2.5 years after their final vaccination), of whom 30 of 44 (68%) consented.

Serum IgG responses at this late time point were significantly and �10-fold higher in
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group 3 compared with groups 1, 2, and 4. In group 3, the median (range) of the serum

IgGresponsewas50 (29–140)mg/mL (n=7), in contrast to themonthlydosing regimenof

groups1,2, and4,where the responsewas4 (0.9–13)mg/mL (n=23) (Figure2B). Theanti-

RH5_FL serum IgG antibodies induced by the DFx regimen also showed significantly

higher avidity (as measured by a sodium thiocyanate [NaSCN] displacement ELISA)

compared with antibodies induced by the monthly dosing regimen or viral vectors (Fig-

ure 2C). Notably, the substantial increase in IgG avidity in the DFx group was coincident

with administration of the delayed fractional third immunization and was maintained

thereafter (Figure S4C), whereas avidity in the other groups did not change over time.

We observed no association between the magnitude of the RH5-specific IFN-g T cell

response and the improved maintenance and avidity of the serum IgG response

Figure 2. Assessment of the DFx regimen

(A) Median anti-RH5_FL serum total IgG responses for groups 1–4 over time. Individual responses are shown in Figure S4B.

(B) Median and individual anti-RH5_FL serum total IgG responses at the time of the late bleed. Statistical analysis was performed using a Mann-Whitney

test, ****p < 0.0001.

(C) Avidity of serum total IgG responses 14 days after three immunizations (day 70 or day 196) was assessed by NaSCN displacement RH5_FL ELISA and

is reported as the molar concentration of NaSCN required to reduce the starting optical density (OD) in the ELISA by 50% (IC50). Individual responses

over time are shown in Figure S4C. Historical data for the VV-RH5 vaccine11 are shown for comparison. Kruskal-Wallis test with Dunn’s multiple

comparison test, ***p < 0.001 for group 3 versus groups 1, 2, and 4.

(D) Estimated proportion of antibodies generated from LLPCs; for group 3, it was possible to provide separate estimates of the proportion following the

first and second doses (purple) and following the third dose (pink). The long-lived response following the third dose in group 3 is significantly greater

than in other groups; ****p < 1 3 10�6 in all cases by one-sided t test.

(E) Anti-RH5_FL antibody levels at peak and 1 and 4 years following the third vaccine dose. Peak antibody levels are based on the maximum measured

values (day 70 or day 84 for groups 1, 2, and 4 and on day 196 or day 210 for group 3). Antibody levels at 1 and 4 years are based on model estimates and

are presented with 95% CI.
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induced by the DFx regimen. Peripheral blood IFN-g T cell responses in group 3

decreased significantly from day 56 to the time of the delayed third immunization

(day 182), consistent with a natural contraction of these responses over time (Fig-

ure S5A). These responses were of a similar magnitude across the groups and regi-

mens 2 weeks after the final boost (Figure S3B) and still detectable �2 years later in

the memory phase at the time of the late bleed (Figure S5B). More detailed pheno-

typing of the peripheral anti-RH5.1 specific CD4+ T follicular helper (Tfh) cell popu-

lation, induced 2 weeks after the final boost, also revealed no difference between

monthly vaccine dosing versus the DFx regimen (Figures S5C and S5D). However,

we did note that the proportion of Tfh2 cells within the RH5.1-specific Tfh cell pop-

ulation, the subset regarded as the best at providing B cell help during generation of

humoral responses,26 was significantly greater in the delayed fractional dose vacci-

nees (Figure S5E). This suggested a possible qualitative improvement in the Tfh cell

response when using the DFx regimen as opposed to monthly dosing, even when

the magnitude of the total Tfh cell response is comparable. Given these observa-

tions relating to Tfh2 cells, we hypothesized that the DFx regimen could favor induc-

tion of a greater proportion of long-lived plasma B cells (LLPCs) over short-lived

plasma B cells compared with the monthly dosing regimen, leading to improved

maintenance of the anti-RH5_FL serum IgG response over time. To address this,

we undertook a modeling analysis of the serum IgG kinetics (Data S2A). This re-

vealed that the estimated proportion of antibody generated by vaccine-induced

LLPCs was significantly higher following the delayed fractional vaccine dose in group

3 (Figure 2D). A key factor driving the improved longevity of the vaccine-induced

antibody response was thus an �2-fold quantitative increase in the proportion of

antibody generated by the LLPC population. Moreover, modeling of the antibody

response suggested that the improved longevity seen with the DFx regimen would

be maintained up to 4 years (Figure 2E).

Vaccinated and challenged volunteers show inhibition of parasite growth

in vivo

At the time of proceeding to the phase IIa arm of the VAC063 clinical trial, immuno-

genicity data were only available for groups 1, 2, and 4. Given that, following three

monthly immunizations, no substantial differences were observed across the three

doses of RH5.1, we elected to proceed with the 10-mg dose in the challenge study

(called VAC063A). A new cohort of 17 volunteers (group 5) was recruited and vacci-

nated three times at monthly intervals with 10 mg RH5.1 formulated in 0.5 mL AS01B
(Figure 3A and S6), and these volunteers showed an AE profile comparable with that

seen previously with the identical regimen in group 2 (Figures S7 and S2). Three vac-

cinees withdrew during the immunization phase; thus, 14 of these volunteers, along

with 15 unvaccinated infectivity control individuals (group 6), subsequently under-

went primary blood-stage CHMI with 3D7 clone P. falciparum parasites 14 days after

the final immunization (day 70), using an established protocol18 (Figure S6).

All volunteers developed blood-stage parasitemia following CHMI and were subse-

quently drug treated according to a diagnostic algorithm based on patency by thick-

film microscopy and/or pre-defined thresholds of parasites per mL (p/mL) blood by

quantitative PCR (qPCR) and/or symptoms. The protocol pre-specified primary anal-

ysis for vaccine efficacy was comparison of the parasite multiplication rate (PMR) be-

tween the two groups. The PMR for each volunteer was calculated using a protocol

pre-specified linear model fitted to log10-transformed qPCR data27 (Figures 3B and

S8A; Data S1C). This analysis showed a significant reduction (p = 0.031) in the mean

PMR between the two groups (Figure 3C), with a group 6 (infectivity control individ-

uals) mean of 9.75 (95% CI, 8.39–11.11; standard deviation [SD] = 2.46) and a group
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5 (vaccinees) mean of 8.12 (95% CI, 7.47–8.77; SD = 1.13). This reduction in PMR by

�20% (from�10-fold per 48 h in control individuals to�8-fold in vaccinees) was also

evident by significantly lower parasitemia at individual time points (Figure S8B) and

would also predict an approximately 1-day delay to diagnosis at a threshold of

10,000 p/mL, as was indeed observed by the protocol pre-specified secondary effi-

cacy analysis (Figure 3D). A post hoc analysis combined these PMR data with those

from our previous VAC054 phase I/IIa clinical trial of the FMP2.1 AMA1/AS01B pro-

tein/adjuvant vaccine that was assessed for efficacy in an identical manner.18 This

combined analysis of 30 controls, 12 AMA1 vaccinees, and 14 RH5 vaccinees

showed a significantly lower mean PMR in RH5 vaccinees compared with AMA1 vac-

cinees and the control individuals (Figures 3E and S8C). These data provide the first

evidence of a significant in vivo effect of a malaria vaccine candidate on blood-stage

parasite growth in humans following CHMI.

In light of these data, we invited group 5 and 6 volunteers to return for a re-challenge

study (VAC063B). Eight control individuals consented (now referred to as group 8),

along with nine vaccinees who were re-boosted with a single 10-mg dose RH5.1

Figure 3. Results of primary and secondary blood-stage CHMI

(A) Timing of immunizations, CHMIs, and follow-up in groups 5–9. All antigen doses were formulated in 0.5 mL AS01B.

(B) qPCR data for the VAC063A phase IIa study; group 5 (n = 14) and group 6 (n = 15). Median parasitemia is shown over time for each group. The lower

limit of quantification is indicated by the dotted line at 20 p/mL; values below this level are plotted for information only. Time = days after blood-stage

CHMI.

(C) Primary efficacy endpoint analysis of PMR, showing each individual plus the mean. Both datasets are normally distributed (D’Agostino-Pearson test);

*p = 0.031 using two-tailed t test with Welch’s correction for non-equal variances (F test; p = 0.008).

(D) Kaplan-Meier plot of time to diagnosis in days for the VAC063A study. Median time to patent parasitemia was 9.5 days for control individuals and

10.5 days for vaccinees. Secondary pre-specified efficacy analysis in the protocol compared time to diagnosis between the groups; p = 0.01, Mann-

Whitney test.

(E) Post hoc analysis combining the VAC063A dataset with the AMA1/AS01B trial (VAC054) data18. Mean PMR G 95% CI is shown for control individuals

(n = 15 from VAC063A and n = 15 from VAC054), AMA1 vaccinees (n = 12 from VAC054), and RH5 vaccinees (n = 14 from VAC063A). *p < 0.05 for RH5

versus AMA1 and control individuals, using one-way ANOVA with Bonferroni correction for multiple comparisons.

(F) qPCR data for the VAC063B phase IIa study shown as in (B); group 7 (n = 9), group 8 (n = 8), and group 9 (n = 6).

(G) Secondary efficacy endpoint analysis of PMR, showing each individual, plus the median. *p = 0.022; Kruskal-Wallis test with Dunn’s multiple

comparison test.
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formulated in 0.5 mL AS01B approximately 16 weeks after their last immunization

(now referred to as group 7). The AE profile of this delayed fourth RH5.1 immuniza-

tion was comparable with the second immunization (Figure S7). Fourteen days after

vaccinating group 7, all volunteers underwent secondary blood-stage CHMI, exactly

as before, alongside six new malaria-naive primary CHMI control volunteers (group

9) (Figures 3A and S6). All volunteers developed blood-stage parasitemia following

CHMI and were drug treated according to a diagnostic algorithm based on qPCR

and/or symptoms, except for one group 8 volunteer who requested treatment on

day of challenge (dC)+20 (Figures 3F, S8D, and S8E; Data S1D). qPCR-derived

PMR again constituted the efficacy endpoint, and data were analyzed for all volun-

teers. The new group 9 primary controls showed parasite growth dynamics highly

similar to the VAC063A study control individuals, with a mean PMR of 11.22 (95%

CI, 9.20–13.23; SD = 1.92). Notably, one of the eight unvaccinated control individ-

uals (group 8) undergoing secondary CHMI showed a dramatically reduced PMR

(1.45-fold growth/48 h), with parasites not detectable by qPCR until dC+19. A sec-

ond group-8 volunteer also showed evidence of reduced growth, but the remaining

six volunteers in group 8 had PMRs in line with the primary control individuals (group

9). In contrast, 8 of 9 RH5 vaccinees showed PMRs that were lower than any of the

primary controls, with an overall significantly reduced mean PMR of 7.62 (95% CI,

6.51–8.73; SD = 1.44) in comparison with group 9 (Figure 3G; adjusted p = 0.022 us-

ing Kruskal-Wallis test with Dunn’s multiple comparisons post hoc test). The

observed PMRs in group 7 and 8 volunteers also correlated with their PMRs from

the primary CHMI (Figure S8F). These data confirm the ability of RH5 vaccination

to significantly affect in vivo blood-stage parasite growth in humans.

Anti-RH5 antibody responses can boost following repeat vaccination after

CHMI

We next assessed the anti-RH5_FL serum antibody response over the course of both

CHMI studies (Figure 4A). The levels induced in group 5 vaccinees by dC-1 (prior to

the first CHMI) were highly similar to those measured in the original group 2 vacci-

nees on day 70, confirming comparability across these replication cohorts (Figures

4B and S9A). Also, despite CHMI and as seen for group 2, the peak responses in

group 5 soon waned, resulting in significantly lower responses by 28 days after

CHMI (dC+28) (Figure 4A). The fourth RH5.1/AS01B immunization nevertheless re-

boosted these antibodies, which trended toward higher levels by dC-1 for the

secondary CHMI (Figure 4B). Intriguingly, after the second CHMI, there was no sig-

nificant change in anti-RH5_FL serum IgG levels between dC-1 and dC+28 for the

group 7 vaccinees. These responses were significantly higher than when measured

in the same individuals 28 days after their primary infection (Figures 4A and 4C). A

possible explanation is that they were naturally boosted or maintained by the sec-

ond CHMI. However, there was no evidence of natural boosting in the primary

CHMI (given comparable antibody levels in groups 2 and 5 regardless of CHMI,

approximately 3 months after their last immunization) (Figure 4D). There was also

no detectable induction of de novo anti-RH5_FL serum IgG responses in control vol-

unteers after one or two rounds of CHMI (Figure 4C), consistent with RH5’s known

poor immunogenicity in the context of natural malaria infection9–12,28 and primary

CHMI.29 Moreover, the anti-RH5_FL serum IgG in group 7 was also better main-

tained over the next 1–2 years (Figures 4D and 4E), closely mirroring our previous

observations in group 3 using the DFx regimen. These data therefore suggest that

the fourth delayed (but non-fractional) immunization in group 7 led to improved

longevity of the anti-RH5_FL serum IgG response. Consistent with this, the anti-

RH5_FL IgG responses in group 5/7 volunteers also showed a significant increase
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in avidity immediately after the fourth immunization (Figure 4F), just as we observed

previously with the DFx regimen (Figure 2C).

In vitro growth inhibition correlates with in vivo growth inhibition

We next assessed functional in vitro GIA for groups 5–9 as done previously, using puri-

fied IgG from the dC-1 time point at a starting concentration of 10mg/mL. There was no

GIA above baseline prior to primary or secondary challenge of any control volunteers, in

contrast to high levels in groups 5 and 7 (Figure 5A). Titration of IgG again showed that

GIA was related to RH5_FL-specific IgG concentration, with an antigen-specific EC50 of

35 mg/mL (95% CI, 33–37), identical to that observed previously in groups 1–4 (Figure

5B). To assess the relationship between in vitro GIA and in vivo outcome following

CHMI, we calculated the in vivo growth inhibition (IVGI) for each vaccinated volunteer

as the percentage of reduction in the PMR in each individual relative to the mean in

themalaria-naive control group. In this post hoc analysis, we included all vaccinated vol-

unteers assessed over three blood-stage CHMI studies (group 5, group 7, and our pre-

viously reported AMA1/AS01B vaccine trial18). Data from previous Aotus monkey

P. falciparum challenge studies suggested that levels of in vitro GIA of more than 60%

at 2.5 mg/mL purified IgG are associated with a protective outcome following blood-

stage vaccination.17,30 Consistent with this, the median levels of IVGI in each group

increased as their in vitroGIA increasedwhen using 2.5mg/mL purified IgG in the assay,

although no individual measured more than 60% (Figure 5C). Moreover, there was a

highly significant correlation between the in vitro assay of GIA and IVGI (Figure 5D),

Figure 4. Antibody responses after CHMI and the fourth booster immunization

(A) Median and individual anti-RH5_FL serum total IgG responses shown for groups 5 and 7 over time (note that a subset of group 5 vaccinees became

group 7; Figure S6). Gray shading indicates periods of CHMI, and arrows indicate Vacs. The legend indicates the sequence of 10-mg RH5.1/AS01B Vacs

as well as the first and second CHMIs, as relevant to each group.

(B–E) Individual and median responses are shown for the indicated groups and time points. dC, day of challenge. *p < 0.05, **p < 0.01; Wilcoxon

matched-pairs signed-rank test in (C) and (D). *p < 0.05, Mann-Whitney test in (E).

(F) Avidity of serum total IgG responses in groups 5 and 7 at the indicated time points was assessed by NaSCN displacement RH5_FL ELISA. *p < 0.05,

**p < 0.01; Friedman test for paired samples with Dunn’s multiple comparisons test.
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as also seen for the same analysis of GIA versus time to/day of diagnosis (DOD) (Fig-

ure S9B). Given that the GIA assay uses a normalized concentration of purified IgG,

we also related these results to each individual’s serum IgG concentration (Figures

S9C and S9D), and the correlation remained highly significant (Figure S9E). These

data provide the first strong evidence that the in vitro GIA assay can correlate with

outcome against blood-stage P. falciparum CHMI in vaccinated humans; this is highly

consistent with previous non-human primate studies that also assessed MSP1, AMA1,

or RH5 vaccine efficacy against blood-stage malaria challenge.17,30,31

The anti-RH5 plasma IgA1 response is associated with delayed time to

diagnosis

Despite observing a significant correlation between in vitro GIA and IVGI after

blood-stage CHMI, we hypothesized that the vaccine-induced polyclonal anti-RH5

Figure 5. Analysis of in vitro GIA versus IVGI

(A) In vitro GIA of purified IgG assessed at 10 mg/mL against 3D7 clone P. falciparum parasites.

Individual data and medians are shown for each group (Figure 3A) at the stated time points.

(B) Relationship between GIA and concentration of anti-RH5_FL purified IgG used in the assay,

as measured by ELISA. A non-linear regression curve is shown for all samples combined (solid line,

r2 = 0.97, n = 180). The EC50 (dashed line) was calculated.

(C) In vitro GIA as in (A), using purified IgG assessed at 2.5 mg/mL. Historical data from the AMA1/

AS01B (VAC054) trial18 are included. The median percent IVGI observed in each group following

blood-stage CHMI is indicated below the graph. The red dashed line at 60% GIA indicates the

threshold level required for protection in Aotus monkeys.17,30 *p < 0.05, **p < 0.01; Kruskal-Wallis

test with Dunn’s multiple comparisons test.

(D) Correlation of % IVGI observed in each individual following blood-stage CHMI versus their

individual in vitro GIA measured at dC�1 using 2.5 mg/mL purified IgG. Spearman’s rank

correlation coefficient and p value are shown; n = 35. Colored symbols are the same as those used in

(C) for AMA1, group 5 (G5), and G7.
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antibody may have additional Fc-mediated effector functionalities that are not

measured in the standardized GIA assay but still relevant to mediating protection

against merozoite invasion. The GIA assay provides a neutralization-type readout us-

ing purified IgG lacking immune cells, complement, and other vaccine-induced anti-

body isotypes/subclasses. To address this limitation of the GIA assay, we also under-

took an exploratory analysis using a systems serology approach.32,33 Here we

initially measured a diverse array of antibody features and functions prior to using

these datasets for computational modeling. Our aim was to decipher the most

important antibody feature sets that are associated with reduced parasite growth

in vivo, identifying key immune parameters for future experimental vaccine testing.

Initially, we sought to (1) quantify the post-vaccination plasma levels of RH5-specific

antibodies of each major isotype and subclass; (2) evaluate the capacity of anti-RH5

antibody to bind Fc receptors (FcRs) and activate natural killer (NK) cells, neutrophils,

monocytes, and the complement cascade; and (3) characterize the glycosylation

profile of the anti-RH5 IgG Fc domains, which is known to influence these Fc-medi-

ated functions.34 We then performed computational analyses with these in vitro

assay datasets for RH5 vaccinee (groups 5 and 7) dC-1 plasma samples and the

DOD and IVGI efficacy measures (Figures 6A and S10A; Data S2B). Correlation anal-

ysis confirmed a positive relationship between the DOD and IVGI efficacy measures

(as would be expected) and identified a strong positive correlation between anti-

body-dependent neutrophil phagocytosis (ADNP) and IVGI (Figures 6A and 6B).

Computational analysis was subsequently able to generate a model that could pre-

dict values within a cross-validation framework that were consistently and signifi-

cantly correlated (p = 0.011) with the DOD efficacy readout data measured in the

trial (Figure 6C). The same modeling analysis using the IVGI efficacy readout but

marginally missed significance (p = 0.053) (Figures S10B–S10E).

We therefore proceeded to identify the set of in vitro systems serology features that

are most important for the DOD model. These are shown in decreasing order of

importance (Figure 6D), along with correlations between DOD and the top seven

features (Figure 6E): magnitude of the anti-RH5 IgA1 response, IgA1:IgA2 ratio,

magnitude of anti-RH5 IgA2, binding of RH5-specific antibody to FcRn, anti-RH5

antibody binding to FcaRI, proportion of RH5-specific IgG Fc glycans that are fuco-

sylated 2-galactose with bisecting N-acetylglucosamine (G2FB), and magnitude of

anti-RH5 IgG1. Although the FcRn and IgG1 readouts are highly correlated with

many other features, the IgA readouts, FcaRI binding, and G2FB glycan results

show greater independent importance (Figure 6F). These data therefore indicate a

relationship between an increased anti-RH5 IgA1 response and delayed time to

diagnosis and highlight this response for future investigation.

DISCUSSION

Development of an effective blood-stage vaccine against P. falciparum has proved

challenging. Historical protein-in-adjuvant vaccine candidates against the MSP1,

AMA1, or MSP3-GLURP antigens have shown no efficacy,35,36 strain-specific effi-

cacy,37 or low-level efficacy38 in phase IIb field trials in African children or infants.

The two vaccines to report efficacy signals in the field underwent retrospective

testing by CHMI in adults, but no differences were observed between vaccinees

and control individuals,18,39 suggesting that the challenge model may pose a higher

bar for efficacy even when using vaccine-homologous parasites. Consistent with this,

no other blood-stage P. falciparum subunit vaccine candidate has significantly

reduced the in vivo PMR (in vaccinees compared with control individuals) following
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CHMI in malaria-naive adults, including other vaccines formulated in AS01B (ruling

out an adjuvant effect).25,40–42 Reduced PMRs (as measured by qPCR and compared

with malaria-naive adults) are nevertheless observed in semi-immune African adults

following natural infection43 or CHMI.44,45 Consequently, our data with RH5.1/

AS01B provide the first demonstration of a significant in vivo effect on PMR following

vaccination and primary blood-stage CHMI, defining a milestone for the blood-

stagemalaria vaccine field. These findings were confirmedwhen a greater significant

effect on in vivo PMR was also seen in a subset of nine vaccinees who received

a fourth booster vaccination followed by secondary CHMI. However, the overall

Figure 6. Systems serology analysis of CHMI outcome in RH5 vaccinees

(A) Correlation heatmap showing the Spearman rank correlation coefficients (rS) between Fc functions and titers as well as the rank correlation of the

features to the CHMI readouts of DOD and IVGI. *q < 0.1, **q < 0.01 (Benjamini-Hochberg procedure for multiple testing correction; the correction was

done within the groups of comparison; 54 comparisons for Fc functions/titer, 40 for features/DOD, and 40 for features/IVGI).

(B) Scatterplot to show the relationship between ADNP score and IVGI. Each color corresponds to one volunteer, and the shape indicates the group:

G5 (n = 13) or G7 (n = 7).

(C) Prediction for the random forest regression model plotted against the data for DOD. The model was obtained using leave-one-volunteer-out cross-

validation. The Pearson correlation coefficient (rP) and p value are shown.

(D) The antibody features in the predictive model for DOD are ranked according to how often they were chosen for 100 repetitions of recursive feature

elimination (RFE) in the leave-one-volunteer-out cross-validation.

(E) Graphs showing DOD versus systems serology assay data for the seven antibody features that were chosen in more than 10% of the elimination

procedures (D).

(F) The co-correlates network shows the pairwise correlation of features. The nodes correspond to features and the edges to Spearman rank correlations

between the features. Only significant correlations (Benjamini-Hochberg q < 0.05) between features that are selected in more than 10% of the RFE

procedures and all other features are shown. G2FB Fc glycan, fucosylated 2-galactose with bisecting N-acetylglucosamine.
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vaccine-induced effect was modest and only led to a 1- to 2-day delay in time to

diagnosis, as would be predicted when reducing the growth rate from an average

of �10-fold to �7- to 8-fold per 48 h.3 Improved next-generation vaccine immuno-

gens and/or formulations targeting RH5 or its invasion complex are now required to

achieve protection via more substantial reductions in PMR.

We also identified the in vitro assay of GIA as a highly significant predictor of IVGI,

following a post hoc analysis of data across three blood-stage P. falciparum CHMI

studies, using vaccines targeting RH5 or AMA1. This quantitative association was

nearly identical to that we reported previously following vaccination and

P. falciparum challenge of Aotusmonkeys.17 More recently, we confirmed this asso-

ciation as a mechanistic correlate in Aotus monkeys; i.e., one that can cause in vivo

protection via passive transfer of a GIA-positive, RH5-specific IgG monoclonal anti-

body (mAb),46 with similar results observed in humanized mice.47 Full protection of

Aotus monkeys required a serological threshold level of GIA,17,30 which we ap-

proached in this trial of adults in the United Kingdom but did not exceed. Nonethe-

less, our analysis of RH5.1/AS01B now provides defined benchmark levels of GIA and

IVGI in humans; these can guide interpretation of future clinical trials of populations

living in malaria-endemic areas as well as endeavors to develop improved RH5-

based vaccines.

Our systems serology analysis also identified other antibody feature sets, most

frequently including the plasma anti-RH5 IgA1 response, that are associated with

challenge outcome. These data provide important evidence to support the notion

that ‘‘neutralization’’ of erythrocyte invasion by IgG (as measured by the GIA assay)

may not be the only relevant component of functional vaccine-induced immunity

against the merozoite. The relationship between ADNP and IVGI implies that the

role of IgA1 could be related to activation of neutrophils, the most abundant im-

mune cells in the blood and, therefore, intuitively the most likely cells to be in close

proximity to a rapidly invadingmerozoite. Previous work has reported that antibody-

dependent respiratory burst (ADRB) activity from neutrophils can be associated with

clinical immunity to malaria.48 Further studies and novel assay development are now

required to interrogate mechanism-of-action hypotheses for vaccine-induced RH5-

specific IgA1, replicate these findings, and synthesize the relative contributions of

different antibody effector functions against the blood-stage merozoite.

Our data also confirm the quantitative challenge of achieving high-level antibody-

mediated protection against the merozoite. Protection of Aotus monkeys necessi-

tated more than 300 mg/mL anti-RH5 IgG or more than 60% GIA using 2.5 mg/mL

purified IgG in the assay,17 and, although we approached these immunological

thresholds in humans, a minimum 3-fold quantitative improvement is still required

to exceed them. Nevertheless, the relationship reported here in humans between

in vitro GIA and IVGI following CHMI is highly similar to that we reported previously

for Aotus monkeys vaccinated with RH5 and then challenged with blood-stage

P. falciparum,17 suggesting a strong degree of comparability across these two

species.

Addressing the challenge of how to further improve the quantity and/or quality of

the vaccine-induced anti-merozoite antibody response is now of strategic impor-

tance. First, evidence from clinical trials of pre-erythrocytic malaria subunit vaccine

candidates suggests that substantially higher antibody responses (in the range of

5- to 10-fold) are observed in the target population (African infants) compared

with malaria-naive adults.49–51 Consequently the first phase Ib data of the VV-RH5
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vaccine and RH5.1 protein vaccine in African infants are awaited eagerly (Clinical-

Trials.gov: NCT03435874 and NCT04318002). These will provide important insight

regarding whether the efficacy of RH5-based vaccines is potentially underestimated

by CHMI in adults in the United Kingdom because of relatively lower levels of anti-

body response. A second strategy to improve RH5-based vaccines would be to

incorporate the other, more recently described antigens CyRPA and RIPR, which

associate with RH5 to form a heterotrimeric protein complex; like RH5, both of these

antigens are highly conserved and essential and can induce high levels of growth-

inhibitory antibodies following vaccination of animals.6,52 Finally, rational improve-

ments of the design and delivery of the RH5 immunogen should also be explored.

Strategies to achieve substantial improvements in the quantity and/or quality of vac-

cine-induced polyclonal anti-RH5 IgG would include analysis of vaccine-induced

anti-RH5 human mAbs53 to inform structure-based vaccine design54 coupled with

improved delivery of novel RH5 immunogen arrays on virus-like particles.55 In-depth

analysis of the RH5 antibody epitope specificities induced by the RH5.1/AS01B vac-

cine, linked to structure and functional outcome, will be essential to guide these

future approaches to improve the vaccine by rational design.

However, even when protective levels of antibody are achieved, these levels of func-

tional antibody must also be maintained if they are to provide a useful duration of

immunity. Our CHMI data suggest that RH5-based vaccines cannot rely on ‘‘natural

boosting’’ followingmalaria exposure, fully consistent with the poor immunogenicity

of RH5 in the context of malaria infection. Nevertheless, given the potential of ma-

laria infection to have immunomodulatory effects on B cell responses,56 our finding

that CHMI did not negatively affect vaccine-induced antibody titers or the ability to

boost existing anti-RH5 IgG responses is encouraging for future vaccine use in ma-

laria-endemic areas. Furthermore, our assessment of the DFx regimen builds on the

experiences of the RTS,S/AS01 vaccine,57 aligns with emerging strategies for sea-

sonal malaria vaccination,58 and offers significant promise for induction of more

durable malaria immunity. Although not definitive, our data from the delayed fourth

RH5.1/AS01B booster vaccination in the vaccinated and challenged cohort also sug-

gest that the delay (as opposed to dose fractionation) is the major contributor to this

effect. This is also consistent with our observations that RH5.1 vaccine doses ranging

from 2–50 mg showed comparable immunogenicity, albeit after monthly as opposed

to DFx dosing.

Regardless, the DFx regimen showed higher average anti-RH5 IgG responses at the

peak as well as significantly improved anti-RH5 IgG avidity and longevity, with

modeling of the antibody kinetics at 4 years suggesting that an�10-fold quantitative

improvement would be maintained (compared with the monthly dosing regimen).

Further quantitative and qualitative analyses of the underlying cellular responses

are now warranted in the DFx regimen vaccinees, given that our data indicate (1)

that an increased proportion of the antibody response is generated by the LLPC

population and (2) a RH5-specific Tfh2 cell skew, again similar to a recent report

for RTS,S/AS01.59 Notably, improved anti-RH5 IgG avidity did not affect in vitro

GIA; however, this observation is consistent with recent human anti-RH5 mAb

data indicating that speed of binding (i.e., antibody on-rate) is a key determinant

of GIA potency as opposed to off-rate/overall affinity or strength of binding.53

Nevertheless, improved antibody avidity is associated with increased anti-sporo-

zoite vaccine efficacy against CHMI,57 suggesting that regimen optimization could

add significant value to ongoing efforts to improve other malaria subunit vaccines.

Our data also pose a wider challenge to the traditional dosing and boosting regi-

mens used for human vaccine development. Substantial gains in vaccine-induced
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efficacy and response longevity could be achieved via simple modulation and opti-

mization of dose and delivery regimen.

Limitations of study

Our study has certain limitations. First, although powered for a certain effect size in

the primary CHMI, the trial still has a relatively small sample size. This is fairly com-

mon for early-phase malaria vaccine clinical trials that seek to demonstrate proof of

concept for vaccine safety, dosing, regimen, and/or efficacy using the CHMI model.

Also, some analyses, including secondary CHMI and late bleed to assess antibody

response longevity after �1.5–2.5 years, were amended into the trial protocol in

light of promising data arising in the original part of the study. This relied on volun-

teers being able and willing to return to the trial and led to an inevitable reduction in

sample size. Second, although our analysis of efficacy in the primary CHMI study was

pre-specified, our investigation of immune responses that were associated with

in vivo outcome following CHMI was post hoc and exploratory. Our conclusions

could therefore be strengthened in the future by a replication cohort with larger

sample size to assess vaccine efficacy, alongside pre-specified analyses of the immu-

nological responses identified here that were associated with CHMI outcome mea-

sures. Third, our systems serology assays to measure antibody function utilized re-

combinant RH5 protein as opposed to merozoites; although technically

challenging, on-going development of these assays to incorporate whole parasites

should be an improvement. Finally, blood-stage CHMI remains a model to investi-

gate blood-stage vaccine efficacy and was used here in malaria-naive adults in the

United Kingdom. It is ultimately imperative to understand how these observations,

using the CHMI model, relate to efficacy against natural mosquito-borne infection

in African infants, the target population for such a vaccine.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Alkaline phosphatase-conjugated goat
anti-human IgG (g-chain)

Sigma A3187

biotin-conjugated mouse anti-human
IgG1 Fc (clone HP6070)

ThermoFisher MH1515

biotin-conjugated mouse anti-human
IgG2 (clone HP6002)

ThermoFisher 05-3540

biotin-conjugated mouse anti-human
IgG3 (clone HP6050)

Sigma B3523

biotin-conjugated mouse anti-human
IgG4 (clone HP6025)

Sigma B3648

Alkaline phosphatase-conjugated goat
polyclonal anti-human IgA a-chain

Sigma A9669

Biotin-conjugated goat polyclonal anti-
human IgM m-chain

Sigma B1265

Polyvalent goat-anti human Ig ThermoFisher H17000

Anti-human IgG (g-chain) antibody
conjugated to alkaline phosphatase

Merck 401442

IFN-g capture monoclonal antibody (1-D1K) Mabtech 3420-2A

IFN-g biotinylated detection monoclonal
antibody (7-B6-1)

Mabtech 3420-2A

Anti-human CD183-APC (clone: 1C6/CXCR3) BD Biosciences 550967

Anti-PD1-BV421 (clone: EH12.2H7) Biolegend 329920

Anti-CD14-BV510 (clone: M5E2) Biolegend 301842

Anti-CCR6-BV711 (clone: G034E3) Biolegend 353436

Anti-CD3-BV605 (clone: UCHT1) Biolegend 300460

Anti-CD137-BV650 (clone: 4B4-1) Biolegend 309828

Anti-CD45RO-BV785 (clone: UCHL1) Biolegend 304234

Anti-CD19-BV510 (clone: SJ25C1) BD Biosciences 562947

Anti-CD69-PE-Cy5 (clone: FN50) BD Biosciences 555532

Anti-CXCR5-AF700 (clone: RF8B2) BD Biosciences 565191

Anti-CD4-APC-H7 (clone: SK3) BD Biosciences 641398

Anti-OX40-PE (clone: L106) BD Biosciences 340420

Anti-CD25-PE-Cy7 (clone: 2A3) BD Biosciences 335824

Anti-IFN-g-PerCP-Cy5.5 (clone: 42.B3) Life Technologies 45-7319-42

Anti-CD8-PE-TR (clone: 3B5) Life Technologies MHCD 0817

Anti-ICOS-biotin (clone: ISA-3) Invitrogen 13-9948-82

APC-Cy7 anti-huCD14 BD Biosciences 557831

PE-Cy7 anti-huCD3 BD Biosciences 563423

PE-Cy7 anti-huCD56 BD Biosciences 335791

BV421 anti-huMIP-1b BD Biosciences 562900

Pacific Blue anti-huCD66b Biolegend 305112

APC-Cy7 anti-huCD3 Biolegend 300426

BV605 anti-huCD107a Biolegend 328634

PE anti-huIFN-g Biolegend 506507

FITC-conjugated, goat anti-guinea pig
complement C3 polyclonal antibody

MP Biomedical 0855385

PE-conjugated secondary antibodies
total huIgG

Southern Biotech 9040-09

PE-conjugated huIgM Southern Biotech 9020-09

PE-conjugated huIgA1 Southern Biotech (#9130-09),

PE-conjugated huIgA2 Southern Biotech 9140-09

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

PE-conjugated huIgG1 Southern Biotech 9052-09

PE-conjugated huIgG2 Southern Biotech 9070-09

PE-conjugated huIgG3 Southern Biotech 9210-09

PE-conjugated huIgG4 Southern Biotech 9200-09

Biological samples

Human blood products This study ClinicalTrials.gov NCT02927145

P. falciparum (clone 3D7) parasitized red blood cells QIMR Berghofer Medical Research Institute, Brisbane 60

FCS Labtech N/A

Chemicals, peptides, and recombinant proteins

Recombinant RH5.1 protein (full-length PfRH5 aaE26-
Q526 based on 3D7 clone of P. falciparum with
C-terminal E-P-E-A C-tag)

University of Oxford 21

AS01B adjuvant GlaxoSmithKline (GSK) N/A

Dimethyl sulfoxide (DMSO) Sigma D2650

RH5.1 peptides, 20mers overlapping by 10aa NEO Scientific, USA

Brefeldin A Life Technologies 00-4506-51

Staphylococcal enterotoxin B Sigma S-4881

Cytofix/Cytoperm BD Biosciences 554714

Live/Dead Aqua Invitrogen L34966

Anti-ICOS-biotin (clone: ISA-3) Invitrogen 13-9948-82

Sodium thiocyanate (NaSCN) Sigma 251410

Biotinylated RH5 University of Oxford

Guinea pig complement CedarLane CL4051

Gelatin veronal buffer containing calcium
and magnesium

Boston Bioproducts IBB-300

GolgiStop BD 554724

FCGR2A avi tag Duke Human Vaccine Institute Protein Production facility N/A

FCGR2B avi tag Duke Human Vaccine Institute Protein Production facility N/A

FCGR3A avi tag Duke Human Vaccine Insitute Protein Production facility N/A

FCGR3B avi tag Duke Human Vaccine Insitute Protein Production facility N/A

Purified human C1q protein Sigma C1740

EZ-Link-NHS-LC-LC-Biotin Pierce A35358

Streptavidin-PE Prozyme PJ31S

Streptavidin coated microspheres New England Biolabs S1420S

IdeZ enzyme New England Biolabs P0770S

PNGase F Applied Biosystems A28404

Bir A Ligase Avidity BirA500

Streptavidin-BB515 BD 564453

Critical commercial assays

QIAGEN DSP DNA Midi Kit QIAGEN 937255

RosetteSep human NK cell enrichment cocktail StemCell 15065

Glycan Assure kit Thermo A28676

TaqMan Universal PCR master mix Applied Biosystems 4440038

Experimental models: Cell lines

RH5.1 production cell line: Drosophila
melanogaster Schneider 2 (S2) cell line

ExpreS2ion Biotechnologies, Denmark 21

THP-1 cells ATCC TIB-202

Experimental models: Organisms/strains

P. falciparum 3D7 clone parasites GIA Reference Center N/A

Oligonucleotides

Forward primer (50GTAATTGGAATGATAGG
AATTTACAAGGT 30)

Applied Biosystems N/A

Reverse primer (50 TCAACTACGAACGTTTT
AACTGCAAC 30 )

Applied Biosystems N/A

TaqMan FAM-NFQ-MGB Probe (50 FAM-
AACAATTGGAGGGCAAG-NFQ-MGB 30 )

Applied Biosystems 4316033

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed

to and will be fulfilled by the lead contact, Simon Draper (simon.draper@ndm.ox.

ac.uk).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The published article includes the R notebook (analysis_Rh5.Rmd) for the Systems

Serology analysis (see Data S2B).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

VAC063 Study Design, Subject Details and Study Procedures

RH5.1/AS01B Vaccine. The RH5.1 protein consists of the entire full-length ectodo-

main of the PfRH5 antigen (amino acids E26 – Q526) with the sequence based on

the 3D7 clone of P. falciparum. The vaccine was produced from a stable Drosophila

melanogaster Schneider 2 (S2) cell line, and also contained an N-terminal 18 aa BiP

insect signal peptide (MKLCILLAVVAFVGLSLG) that is cleaved off as the protein is

secreted from the cell, and a C-terminal four amino acid (E-P-E-A) ‘‘C-tag’’ used

for affinity purification.20 The cell line system called ExpreS2 was provided by

ExpreS2ion Biotechnologies in Denmark.19 All four putative N-linked glycosylation

sequons (N-X-S/T) were mutated Thr to Ala – as performed for a previous PfRH5 pro-

tein vaccine produced in mammalian HEK293 cells and tested in rabbits9 and Aotus

monkeys.17

RH5.1 was manufactured under Good Manufacturing Practice (GMP) by the Clinical

Biomanufacturing Facility (CBF) in Oxford in 2015 and protein vaccine stability was

monitored over time, as previously reported in detail.21 The doses used in this study

were 2 mg, 10 mg and 50 mg (nominal doses as the actual doses may have varied

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Recombinant DNA

Parasite or Plasmid DNA qPCR standards University of Oxford N/A

Software and algorithms

ABI StepOne Plus machine with v2.3 software Applied Biosystems 4376598

Gen5 ELISA software v3.04 Biotek, UK N/A

GraphPad Prism version 8.3.1 for Windows GraphPad Software Inc. N/A

FlowJo v10, Treestar Treestar N/A

R notebook (analysis_Rh5.R.md) Data S2

BD FACSDiva8.0 Software BD Biosciences N/A

R version 3.3.3 R foundation for Statistical Computing, Vienna, Austria N/A

Other

ABI StepOne Plus machine Applied Biosystems N/A

Biotek Elx808 reader Biotek N/A

Fortessa X20 flow cytommeter BD Biosciences N/A

QIAsymphony SP robot QIAGEN N/A

ELISPOT counter Autoimmun Diagnostika, Germany N/A

Agilent 1260 HPLC system Agilent, UK N/A

Bio-Monolith Protein G column Agilent N/A

Intellicyt iQue Screener PLUS flow cytometer Intellicyt N/A

ABI 3500xL Genetic Analyzer + software Applied Biosystems N/A
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slightly dependent on dilution, mixing and administration). The RH5.1 vaccine was

stored at the clinical facilities between �70�C and �90�C. The adjuvant system

AS01B was provided by GlaxoSmithKline (GSK) and stored as a 0.5 mL extractable

liquid in a mono-dose glass vial at +2 to +8�C before use. The RH5.1 protein and

AS01B adjuvant were mixed in the clinic prior to use and injected (within 1 h) intra-

muscularly into the non-dominant deltoid (carried out as per local Standard Oper-

ating Procedures MC031 and VC002).

Study Design and Approvals. VAC063 was a first-in-human, open-label, non-random-

ized, multi-center, dose escalation Phase I/IIa clinical trial evaluating the safety,

immunogenicity and efficacy of the recombinant blood-stage malaria protein

RH5.1 formulated in GSK’s adjuvant system AS01B.21 The study was conducted in

the UK at the Centre for Clinical Vaccinology and Tropical Medicine (CCVTM), Univer-

sity of Oxford (Phase I/IIa), the NIHR Wellcome Trust Clinical Research Facility

(WTCRF) in Southampton (Phase Ia) and Guys and St Thomas’ NIHR Clinical Research

Facility, London (Phase I/IIa). All volunteers recruited were healthy, malaria-naive

adults (males and females) aged between 18 and 45 years. Vaccine efficacy was as-

sessed using blood-stage controlled human malaria infection (CHMI) by injection

of parasitized red blood cells,18 as described below. Blood-stage CHMI and

follow-up for all challenged volunteers took place at the CCVTM at the University

of Oxford. There were nine study groups across two phases of the trial, with a total

of 88 volunteers enrolled (33 male and 55 female); 50 in Phase Ia, 38 in Phase IIa

(see Figures S1 andS6 for more detail). The trial was registered on ClinicalTrials.

gov (NCT02927145) and was conducted according to the principles of the current

revision of the Declaration of Helsinki 2008 and in full conformity with the ICH guide-

lines for Good Clinical Practice (GCP). All volunteers signed written consent forms,

and consent was checked to ensure volunteers were willing to proceed before

each vaccination and prior to CHMI.

The study received ethical approval from the UK NHS Research Ethics Service

(Oxfordshire Research Ethics Committee A, Ref 16/SC/0345), and was approved

by the UK Medicines and Healthcare products Regulatory Agency (Ref 21584/

0362/001-0011).

The primary objectives of the trial were to i) assess the safety of the RH5.1/AS01B
vaccine in healthy volunteers at different doses; ii) assess the in vitro GIA against

3D7 clone P. falciparum parasites of IgG purified from the serum of vaccinees; and

iii) to establish whether the RH5.1/AS01B vaccine could demonstrate a reduced

parasite multiplication rate (PMR) in vaccinated subjects compared to infectivity con-

trols in a blood-stage CHMI model (PMR being the primary efficacy endpoint). Sec-

ondary objectives were to assess immunogenicity and the durability of any reduction

in PMR after a secondary blood-stage CHMI four months after the primary challenge.

The study was conducted in healthy volunteers aged 18 - 45 and was in two parts

(Figures S1 and S6). The first part was a dose escalation / dose finding study (Phase

Ia), examining the safety and immunogenicity of the vaccine (Groups 1-4, recruited

and vaccinated at the CCVTM,Oxford; Guys and St Thomas’ NIHR CRF, London; and

the NIHR WTCRF, Southampton). Participants in Groups 1, 2, and 4 received three

vaccinations with RH5.1/AS01B at days 0, 28 and 56, with a dose escalation of

RH5.1 from 2 mg (Group 1), to 10 mg (Group 2), to 50 mg (Group 4), each administered

in 0.5 mL AS01B. Participants in Group 3 received the same initial two 50 mg doses of

RH5.1 as Group 4 (in 0.5mL AS01B) but then received a final fractional (one fifth) dose

(10 mg RH5.1) given at day 182 (rather than 50 mg RH5.1 given at day 56 in Group 4).
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This delayed fractional dose (DFx) group was included due to reported improve-

ments with the DFx regimen when using the pre-erythrocytic malaria vaccine

RTS,S/AS01.57,61 Nominal study vaccination days are reported throughout; a win-

dow period of G 7 days was permitted in the protocol. Volunteers in Groups 1-4

were enrolled between 17 October 2016 and 6 December 2017.

The second part of the study evaluated vaccine efficacy using a blood-stage CHMI

methodology,18 taking forward the optimal vaccine dose (selected from Groups 1,

2 and 4 only) as determined by the Phase Ia. Volunteers for the Phase IIa (Groups 5-

8) were recruited at the CCVTM, Oxford, and at Guy’s and St Thomas’ NIHR CRF,

London and were enrolled between 4 September 2017 and 13 November 2017.

Seventeen volunteers (Group 5) received three successive vaccinations with

10 mg RH5.1 in 0.5 mL AS01B at 0, 28 and 56 days. Fourteen of these vaccinated

volunteers went on to receive an intravenous blood-stage CHMI in parallel with

fifteen unvaccinated malaria-naive infectivity control volunteers (Group 6), and

any efficacy (assessed by a reduction in the PMR) was reported. This arm of the

CHMI study was also termed ‘‘VAC063A.’’ Nine of these fourteen Group 5 vacci-

nees (Group 7) then went on to receive a fourth and final booster vaccination

with RH5.1/AS01 B (again at a dose of 10 mg RH5.1 in 0.5 mL AS01B) approximately

four months after their third vaccination. Two weeks later they were administered a

second homologous intravenous blood-stage challenge, in parallel with eight of

the previous control volunteers (Group 8) and six new malaria-naive controls

(Group 9, who were recruited only from Oxford and enrolled on 5 March 2018).

This arm of the CHMI study was termed ‘‘VAC063B.’’ This second CHMI was to

investigate the durability of any vaccine effect in parallel with any protective effect

of a prior homologous challenge. All volunteers were challenged and followed up

at the CCVTM, Oxford.

Allocation to study groups was sequential from Group 1 to Group 3. Groups 3 and 4

were then recruited simultaneously. Volunteers, where possible, were able to

choose to which group they were allocated. For safety reasons the first volunteer

who received a new vaccine dose was vaccinated alone and there was at least a

48 h gap before subsequent volunteers were vaccinated. A further two volunteers

could be vaccinated 48 h after the first, and then at least another 48 h gap had to

elapse before the remaining volunteers receiving that dose of vaccine could be

vaccinated. Safety stopping and holding rules were used in this study to ensure

participant safety, particularly given that this was a first-in-human dose escalation

study, as detailed below.

Stopping / Holding Rules. Safety reviews took place prior to each dose escalation.

The following holding rules were applied to study Groups 1-5 and Group 7 (i.e., vac-

cinees). The study would have been put on hold if any of the following criteria were

reached:

Solicited local adverse events:

If more than 25% of doses of a vaccine are followed by the same Grade 3 solicited

local adverse event beginning within 2 days after vaccination (day of vaccination

and one subsequent day) and persisting at Grade 3 for > 72 h.

Solicited systemic adverse events:
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If more than 25% of doses of a vaccine are followed by the same Grade 3

solicited systemic adverse event beginning within 2 days after vaccination

(day of vaccination and one subsequent day) and persisting at Grade 3 for

> 48 h.

Unsolicited adverse events:

If more than 25% of volunteers develop the same Grade 3 unsolicited adverse

event (including the same laboratory adverse event) that is considered possibly,

probably or definitely related to vaccination and persists at Grade 3 for > 48 h.

A serious adverse event considered possibly, probably or definitely related to vacci-

nation occurs.

Individual stopping rules (applied to all vaccinated individuals):

In addition to the above stated group holding rules, stopping rules for individual vol-

unteers were applied (i.e., indications to withdraw individuals from further vaccina-

tions). Volunteers would have been withdrawn from further vaccinations if any of

the events listed below had occurred and were considered possibly, probably or

definitely related to vaccination:

Local Reactions: Injection site ulceration, abscess or necrosis.

Laboratory AEs: The volunteer develops a Grade 3 laboratory adverse event

considered possibly, probably or definitely related within 7 days after vaccination

and persisting continuously at Grade 3 for > 72 h.

Solicited systemic adverse events: The volunteer develops a Grade 3 systemic

solicited adverse event considered possibly, probably or definitely related within

2 days after vaccination (day of vaccination and one subsequent day) and persist-

ing continuously at Grade 3 for > 72 h.

Unsolicited adverse events: The volunteer has a Grade 3 adverse event, consid-

ered possibly, probably or definitely related to vaccination, persisting continu-

ously at Grade 3 for > 72 h.

The volunteer has a serious adverse event considered possibly, probably or defi-

nitely related to vaccination.

The volunteer has an acute allergic reaction or anaphylactic shock following the

administration of the vaccine investigational product.

Safety reviews were carried out by the Local Safety Monitor (LSM) prior to each dose

escalation (after the first six vaccinations in each of the dose groups), and no con-

cerns were raised with any of the vaccine doses.

Monitoring. The LSM provided safety oversight, and Good Clinical Practice (GCP)

compliance was independently monitored by the University of Oxford Clinical Trials

and Research Governance (CTRG) Office.

Inclusion and Exclusion Criteria. A medical history and physical examination were

conducted at the screening visit, as well as baseline blood tests including a full

blood count; urea and electrolytes; liver function tests; and hepatitis B virus

(HBV), hepatitis C virus (HCV) and human immunodeficiency virus (HIV) serology.

Dipstick urinalysis for all volunteers and pregnancy testing for all female volunteers

were conducted at screening, as well as an electrocardiogram for all volunteers due

to undergo CHMI (Groups 5-9). Pregnancy testing was also carried out in female
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volunteers prior to each vaccination, prior to CHMI and prior to initiation of antima-

larial therapy. A full list of inclusion and exclusion criteria is shown below:

—Inclusion criteria. Volunteers had to satisfy all the following criteria to be eligible

for the study:

Healthy adults aged 18 to 45 years.

Able and willing (in the Investigator’s opinion) to comply with all study require-

ments.

Willing to allow the Investigators to discuss the volunteer’s medical history with

their General Practitioner (GP).

For females only, willingness to practice continuous effective contraception (see

below) during the study and a negative pregnancy test on the day(s) of screening

and vaccination, and on the day prior to blood-stage CHMI, and prior to the start

of antimalarial treatment for Groups 5-9 volunteers.

Agreement to refrain from blood donation during the course of the study.

Provide written informed consent.

—Additional Inclusion Criteria for Groups 5 - 9. Agreement to permanently refrain

from blood donation, as per current UK Blood Transfusion and Tissue Transplanta-

tion Services guidelines.62

Reachable (24 hours a day) by mobile phone during the period between CHMI

and completion of antimalarial treatment.

Willingness to take a curative anti-malaria regimen following CHMI.

Answer all questions on the informed consent questionnaire correctly.

For Groups 7-9: completion of primary challenge, curative anti-malarials and

follow-up (up until at least the dC+28 visit)

—Exclusion Criteria. Volunteers were not eligible to participate if any of the

following applied:

Participation in another research study involving receipt of an investigational

product in the 30 days preceding enrolment, or planned use during the study

period.

Prior receipt of an investigational vaccine likely to impact on interpretation of the

trial data, as assessed by the investigator. For Group 7 volunteers undergoing re-

challenge, this exclusion criterion does not extend to the RH5.1/AS01B vaccine

previously received.

Any medical condition that in the judgment of the Investigator would make intra-

muscular (IM) injection unsafe.

Administration of immunoglobulins and/or any blood products within the three

months preceding the planned administration of the vaccine candidate.

Any confirmed or suspected immunosuppressive or immunodeficient state,

including HIV infection; asplenia; recurrent, severe infections and chronic (more

than 14 days) immunosuppressant medication during the period starting six

months prior to the first vaccine dose. For corticosteroids, this will mean predni-

sone 20 mg/day (for adult subjects), or equivalent. Inhaled and topical steroids

are allowed.

Administration of long-acting immune-modifying drugs at any time during the

study period (e.g., infliximab).
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Chronic use of antibiotics with antimalarial effects (e.g., tetracyclines for derma-

tologic patients, sulfa for recurrent urinary tract infections, etc.).

History of malaria chemoprophylaxis within 60 days prior to vaccination.

History of allergic disease or reactions likely to be exacerbated by any compo-

nent of the vaccine.

Any history of anaphylaxis in relation to vaccination.

Pregnancy, lactation or willingness/intention to become pregnant during the

study.

History of cancer (except basal cell carcinoma of the skin and cervical carcinoma

in situ).

History of serious psychiatric condition likely to affect participation in the study.

Any other serious chronic illness requiring hospital specialist supervision.

Suspected or known current alcohol abuse as defined by an alcohol intake of

greater than 42 units every week.

Suspected or known injecting drug abuse in the 5 years preceding enrolment.

Seropositive for hepatitis B surface antigen (HBsAg).

Seropositive for hepatitis C virus (antibodies to HCV) at screening (unless has

taken part in a prior hepatitis C vaccine study with confirmed negative HCV anti-

bodies prior to participation in that study, and negative HCV RNA PCR at

screening for this study).

History of clinical malaria (any species; not applicable to prior CHMI for Groups 7,

8 and 9).

Travel to a malaria endemic region during the study period or within the previous

six months.

Any clinically significant abnormal finding on screening biochemistry or hematol-

ogy blood tests or urinalysis.

Any other significant disease, disorder or finding which may significantly increase

the risk to the volunteer because of participation in the study, affect the ability of

the volunteer to participate in the study or impair interpretation of the study data.

Inability of the study team to contact the volunteer’s GP to confirm medical his-

tory and safety to participate.

—Additional Exclusion Criteria for Groups 5-9. Use of systemic antibiotics with

known antimalarial activity within 30 days of CHMI (e.g., trimethoprim-sulfamethox-

azole, doxycycline, tetracycline, clindamycin, erythromycin, fluoroquinolones and

azithromycin).

History of sickle cell anemia, sickle cell trait, thalassaemia or thalassaemia trait or

any hematological condition that could affect susceptibility to malaria infection.

Laboratory evidence of glucose-6-phosphate dehydrogenase (G6PD) deficiency

at screening.

Laboratory evidence of haemoglobinopathy at screening.

Use of medications known to cause prolongation of the QT interval and existing

contraindication to the use of Malarone.

Use of medications known to have a potentially clinically significant interaction

with Riamet and Malarone.

Contraindications to the use of both Riamet and Malarone.

Any clinical condition known to prolong the QT interval.

Family history of congenital QT prolongation or sudden death.

Positive family history in both 1st and 2nd degree relatives < 50 years old for car-

diac disease.

History of cardiac arrhythmia, including clinically relevant bradycardia.
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Volunteer unable to be closely followed for social, geographic or psychological

reasons.

Safety Analysis. Following each vaccination, volunteers completed an electronic di-

ary card for 28 days with any AE data. Participants were asked to record both soli-

cited and unsolicited AEs. Data on solicited AEs were collected for 7 days after

each vaccination, whereas details of any unsolicited AEs were collected for the dura-

tion of each diary. Solicited AEs were those expected following an intramuscular

vaccination and included local AEs (pain, erythema, warmth, swelling and itching)

and systemic AEs (headache, malaise, myalgia, arthralgia, feverishness, nausea, fa-

tigue, and measured fever). If these AEs occurred outside of the first seven days they

were defined as unsolicited. Any solicited AEs occurring during the diary card period

were defined as being at least possibly related to vaccination.

Volunteers graded all AEs as mild, moderate or severe:

GRADE 0: None.

GRADE 1: Transient or mild discomfort (< 48 h); no medical intervention/therapy

required.

GRADE 2: Mild to moderate limitation in activity – some assistance may be

needed; no or minimal medical intervention/therapy required.

GRADE 3: Marked limitation in activity, some assistance usually required; medical

intervention/therapy required; hospitalization possible.

AE data also included the results of the hematology (full blood count) and biochem-

istry (liver function tests, urea and electrolytes) carried out at all visits during the diary

card period, except at 2 days post-vaccination, when blood was not taken.

For each unsolicited AE, an assessment of the relationship of the AE to the study in-

tervention(s) was undertaken. Alternative causes of the AE, such as the natural his-

tory of pre-existing medical conditions, concomitant therapy, other risk factors

and the temporal relationship of the event to vaccination were considered. The likely

causality of all unsolicited AEs was assessed as per the criteria below:

No Relationship: No temporal relationship to study product and alternate etiol-

ogy (clinical state, environmental or other interventions); and does not follow

known pattern of response to study product.

Unlikely: Unlikely temporal relationship to study product and alternate etiology

likely (clinical state, environmental or other interventions) and does not follow

known typical or plausible pattern of response to study product.

Possible: Reasonable temporal relationship to study product; or event not readily

produced by clinical state, environmental or other interventions; or similar

pattern of response to that seen with other vaccines.

Probable: Reasonable temporal relationship to study product; and event not

readily produced by clinical state, environment, or other interventions or known

pattern of response seen with other vaccines.

Definite: Reasonable temporal relationship to study product; and event not

readily produced by clinical state, environment, or other interventions; and

known pattern of response seen with other vaccines.

All unsolicited AEs that were assessed as being possibly, probably or definitely

related to RH5.1/AS01B are shown in Data S1B.
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Data on AEs of special interest were also collected for Groups 1-5 and Group 7 (vac-

cinees) and data on serious adverse events (SAEs) were collected for all groups

throughout the study period.

—AEs in the post-CHMI period. Post-CHMI, volunteers were asked if they had expe-

rienced solicited malaria symptoms, and asked to grade these (as above). Data on

AEs occurring during and after the CHMI period (that may have related to CHMI

or antimalarial treatment) were collected at clinic visits, from dC+1 up until

90 days post-CHMI. These CHMI-related safety data will be fully reported elsewhere

(Y.T., unpublished data).

Follow-upSchedule.Vaccination visits occurredondays 0, 28and56 (Groups1, 2, 4 and

5) anddays 0, 28, 182 (Group3). Group 7 received a fourth and final vaccination 98days

(fourteen weeks) post-CHMI (and 112 days, sixteen weeks post-third vaccination).

Reviews post-vaccination for Groups 1, 2 and 4 occurred on Days 1, 7, 14, 29, 35, 42,

57, 63, 70, 84, 140 and 240. Reviews for Group 3 were on Days 1, 7, 14, 29, 35, 42, 56,

183, 189, 196, 210, 266 and 366. Reviews for Group 5 were as per Groups 1, 2 and 4,

until day 63. They then attended on day 69 – the day before challenge (dC-1 visit) –

and underwent CHMI fourteen days post-final vaccination. Reviews post-vaccination

for Group 7 – i.e., after the final and fourth vaccination – were as for Group 5,

including a day 1 and day 7 visit post-vaccination, with a dC-1 visit and CHMI

14 days after the final vaccination. Volunteers in Groups 5-9 were reviewed in clinic

the day after challenge (dC+1), twice a day from dC+2 until dC+12, then once daily

from dC+13 (if not yet diagnosed) until dC+21 (or diagnosis). Upon malaria diag-

nosis or dC+21 being reached, subjects were reviewed approximately 24 and 48 h

after diagnosis and / or starting antimalarial therapy, then at dC+28 and finally at

dC+90. Group 5 additionally attended for a dC+170 visit.

Volunteers were invited back for a final ‘‘late bleed’’ approximately 1.5-2.5 years af-

ter the first vaccination in order to assess the longevity of the vaccine-induced

response. Thirty of the vaccinated volunteers in Groups 1-4 (at day 875, 663 and

626 (median) for Groups 1, 2 and 4 respectively, and at day 687 (median) in Group

3) returned for a late bleed visit. Additionally, three of the volunteers in Group 5

(at day 643, median) and six in Group 7 (at day 643, median) underwent a late bleed.

Vaccine Safety – Extra Information. Solicited adverse events (AEs) in Groups 1-4, 5

and 7 were primarily mild to moderate in severity; however, occasional severe AEs

occurred (Figures S2 and S7). The majority of these solicited AEs lasted for approx-

imately 24-48 hours following vaccination. The unsolicited AEs considered possibly,

probably or definitely related to the vaccine are shown in Data S1B. The majority

were mild in nature and all resolved spontaneously. One Group 5 volunteer devel-

oped mild bilateral infraorbital swelling within 24 h of their second vaccination.

They had no other features of an allergic reaction, required no clinical intervention,

and the swelling had completely resolved within 48 hours. The volunteer was, how-

ever, withdrawn from the study due to the possibility that this represented a mild

allergic reaction.

A single occurrence of scalp psoriasis in one Group 3 volunteer was retrospectively

regraded a suspected unexpected serious adverse reaction (SUSAR) on the basis of i)

its likely autoimmune nature (all new/suspected autoimmune events were collected

as AEs of special interest and therefore reported as SAEs, as for previous clinical tri-

als of vaccines using the AS01B adjuvant); and ii) its potentially plausible time of
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onset in relation to vaccination (onset 1 month post-second vaccination). This made

a causal relationship ‘‘possible,’’ despite being unlikely clinically.

Four grade 3 laboratory AEs were reported in vaccinated participants (prior to CHMI)

(Data S1A): A grade 3 lymphocytopenia occurred in one volunteer in Group 1 occur-

ring on day 6 post-first vaccination. This was not felt to be related to vaccination as

the volunteer became unwell with malaise, nausea, muscle aches, feverishness and

diarrhea starting de novo 6 days post-vaccination, having been completely well

prior. The symptoms and lymphocytopenia resolved spontaneously within 72 hours.

A grade 3 hyperkalaemia occurred in one Group 1 volunteer 7 days post-third vacci-

nation, but was reported by the testing laboratory as a haemolysed sample and had

normalized on repeat testing 72 hours later. A grade 3 hypoalbuminemia (9 g/dL)

was reported in one Group 5 volunteer at day14 post-first vaccination. However,

this was reported by the lab as a spurious result, and was within the normal range

when re-checked 2 days later. Finally, a grade 3 anemia (Hb 88 g/dL) occurred in

oneGroup 4 volunteer at days 7 and 14 post-first vaccination. However, this was sub-

sequently found to be a preceding condition for which the volunteer was under

investigation and treatment (not initially apparent at screening), and so the volunteer

was withdrawn from the study.

One volunteer in Group 7 fell pregnant following her fourth 10 mg dose of the vaccine

and her second blood-stage CHMI (pregnancy testing by urinary b-HCG prior to

challenge was negative). Pregnancy was first detected by urinary b-HCG testing

on day 9 post-challenge, following routine testing at time-point of malaria diagnosis,

just prior to treatment. Following immediate discussion between the Chief Investi-

gator and the Local Safety Monitor, this volunteer was treated with Riamet. Preg-

nancy was also confirmed within 24 hours by serum b-HCG testing. The volunteer

was closely monitored over the treatment phase and afterward with no further clin-

ical concerns arising. There was no detectable malaria DNA by qPCR after 3 weeks.

She remained well and went on to have a termination of pregnancy about 2 months

later for personal reasons.

Blood-Stage Inoculum and CHMI. The inoculum used for CHMI was produced at

QIMR Berghofer Medical Research Institute in Brisbane, Australia in 1994 and con-

sists of aliquots of P. falciparum (clone 3D7) infected erythrocytes taken from a single

donor.60,63,64 Over 400 volunteers have been challenged with the inoculum since

1997 (79 in Oxford inclusive of the VAC063 trial), and the estimated number of in-

fected erythrocytes has varied from 30 to 6000. CHMI of malaria-naive individuals

using this inoculum has always resulted in parasitemia as detected by qPCR and/

or microscopy.63,64 All volunteers within VAC063A and within VAC063B were chal-

lenged with the same preparation of the inoculum. The intended inoculum was

1000 infected erythrocytes per volunteer, thawed and prepared under strict aseptic

conditions as previously described,18 with some modifications. Briefly, a single vial

of cryopreserved erythrocytes was thawed in a derogated containment level III lab-

oratory area using solutions licensed for clinical use and single-use disposable con-

sumables. A class II microbiological safety cabinet (MSC) was used to prepare the

inoculum, which was fumigated with hydrogen peroxide and decontamination vali-

dated prior to use. To prepare the inoculum, 0.2 volume 12% saline was added drop-

wise to �1.5 mL of thawed infected blood, left for 5 min, and an additional 10 vol-

umes of 1.6% saline added dropwise. This was centrifuged for 4 min at 830 xg,

the supernatant was removed, and 10 mL of 0.9% saline was added dropwise. The

cell pellet was washed twice in 0.9% saline and resuspended in 0.9% saline in a sterile

syringe for injection. The injection volume per volunteer was 5 mL containing an
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estimated 1000 parasitized erythrocytes based on microscopic estimates of the do-

nor’s parasite density prior to freezing. The clinical inoculum was also cultured

following preparation and shown to be negative for bacterial contamination. The or-

der in which vaccinated and unvaccinated volunteers received the inoculum was

interspersed in case of time effects on viability of the parasites. All subjects were

inoculated intravenously, in a total volume of 5 mL of normal saline followed by a sa-

line flush, within 2 h 6 min of inoculum preparation (VAC063A) and 2 h 8 min of inoc-

ulum preparation (VAC063B). Subjects were observed for 1 h before discharge from

the clinical facility.

Diagnostic Criteria. For VAC063A (Groups 5 and 6), at each time-point thick blood films

were evaluated by experienced microscopists and qPCR was performed in real time.

Diagnosis of malaria required volunteers to fulfil two of three criteria: a positive thick

blood film (one viable parasite in 200 fields) and/or qPCR R 500 parasites/mL (p/mL)

and/or symptoms consistent with malaria infection. However, in VAC063B (Groups 7-

9) microscopywas removed as a diagnostic tool. This reduced the number of volunteers

diagnosed prematurely (i.e., < 5,000 p/mL) in VAC063B (Figure S8E) without impacting

on volunteer safety. In light of the above, the new criteria for diagnosis and immediate

treatment of volunteers in VAC063B (Groups 7-9), were:

Asymptomatic with any available qPCR result R 10,000 parasites/mL;

Symptomatic with any available qPCR result R 5,000 parasites/mL.

At diagnosis volunteers were treated with Riamet (except for 4 volunteers who

received Malarone due to documented sinus bradycardia pre-challenge, and one

who received Malarone due to a potential concomitant medication interaction

with Riamet). Follow-up visits took place at days dC+28 and dC+90.

METHOD DETAILS

Inoculum Viability

Parasite viability was assayed by limiting dilution assay, as described previously,18

and was setup at the time the last volunteer was infected. In brief, the culture period

was 10 days and after this time qPCR was used to score wells positive or negative for

replicating parasites. Because the qPCR assay can also detect dead parasites, a plate

of identical dilutions of the inoculum that had been frozen without incubation was

used as a negative control; there was no detectable amplification from these wells,

and unincubated control wells which had received a 100-fold greater parasite inoc-

ulum gave positive results. Cultured wells plated at an estimated 1.5 parasites/well

gave a clear bimodal distribution, with wells showing negative results by qPCR (sug-

gesting they contained no viable parasite), and wells that gave highly positive results

by qPCR (suggesting they had contained at least one viable parasite at the start of

the culture period). The number of viable parasites/mL of inoculum could then be

calculated with reference to the Poisson distribution, and viability expressed as a

percentage of the pre-freezing microscopy-estimated parasitemia calculated using

the RBC count/mL of inoculum. For VAC063A, the limiting dilution assay demon-

strated 45.2% viability (i.e., an effective inoculum of 452 parasites per volunteer),

and for VAC063B this was 85.7% viability (i.e., 857 parasites per volunteer).

Parasite qPCR

qPCR was conducted as previously described,18 with the following modifications.

Briefly, blood was collected at baseline and at clinical protocol defined time-points

following CHMI for qPCR in 2.0 mL tubes containing EDTA. DNA was extracted from

0.4mL EDTAwhole blood using aQIAsymphony SP robot, utilizing theQIAGENDSP
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Blood Midi Kit and the pre-loaded Blood 400 v6 extraction protocol, with a 100 mL

elution in ATE buffer selected. 5 mL of each extraction was used per assay well and

was run in triplicate for qPCR (equivalent to 60 mL blood directly assessed). Parasites

per mL (p/mL) equivalent mean values were generated by a standard Taqman abso-

lute quantitation, against a defined standard curve of diluted P. falciparum 3D7

DNA, qualified against DNA from counted parasites in whole blood, previously ex-

tracted by the samemethod. qPCR was conducted on an ABI StepOne Plus machine

with v2.3 software, using default Universal qPCR andQC settings, apart from the use

of 45 cycles and 25 mL reaction volume. This process has since been formally vali-

dated as suitable for diagnostic purposes and qPCR detection is regularly externally

assessed by participation in the UKNEQAS Malaria (Molecular) scheme.

Based upon results obtained using dilution series of microscopically-counted

cultured parasites, this method has a lower limit of quantification (LLQ, defined as

%CV < 20%) of around 20 p/mL blood.27 Counted parasite dilution series results

suggest that the lower limit of probable detection (LLD, i.e., a probability of >

50% of R 1 positive result among three replicate qPCR reactions) is in the region

of 5 p/mL, while samples at 1 p/mL are consistently negative (24/24 qPCR reactions).

Positive results in this assay (even at very low level) are thus essentially 100% specific

for genuine parasitemia, with positive results beneath the LLQ likely to signify para-

sitemia in the range 2-20 p/mL.

For quality control purposes, qPCR samples were re-tested if;

Replicates included a mixture of positive and negative (in terms of amplification)

results with one or more positive results > 100 p/mL.

The % CV of any results were high outliers.

All ‘passed’ data following quality control QC steps above, including any 0 values,

were used to generate the mean result for each time-point.

Peripheral Blood Mononuclear Cell (PBMC), Plasma and Serum Preparation

Blood samples were collected into lithium heparin-treated vacutainer blood collec-

tion systems (Becton Dickinson, UK). PBMC were isolated and used within 6 hours in

fresh assays as previously described.65 Excess cells were frozen in fetal calf serum

(FCS) containing 10% dimethyl sulfoxide (DMSO) and stored in liquid nitrogen.

Plasma samples were stored at�80�C. For serum preparation, untreated blood sam-

ples were stored at room temperature (RT) and then the clotted blood was centri-

fuged for 5 min (1000 xg). Serum was stored at �80�C.

Peptides

Peptides for ex-vivo IFN-g ELISPOT were purchased from NEO Scientific (Cam-

bridge, MA, USA). Sequences have been reported previously,11 although eight of

these were replaced with slight sequence changes to provide exact match to the

RH5.1 vaccine. In brief, the peptides (20 amino acids (aa) in length and overlapping

by 10 aa) covered the entire RH5 sequence present in the RH5.1 protein vaccine.

Peptides were reconstituted in 100% DMSO at 50-200 mg/mL and combined into

various pools for the ELISPOT assay.

Recombinant RH5 Protein

Recombinant RH5.1 protein was used for all ELISA assays, B and T cell ELISPOT as-

says and flow cytometry assays. The protein was produced and purified from a stably

transfected Drosophila S2 cell line as previously described.11,21
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Ex-vivo IFN-g ELISPOT

Fresh PBMC were used in all assays using a previously described protocol.11 Spots

were counted using an ELISPOT counter (Autoimmun Diagnostika (AID), Germany).

Results are expressed as IFN-g spot-forming units (SFU) per million PBMC. Back-

ground responses in unstimulated control wells were almost always less than 20

spots, and were subtracted from those measured in peptide-stimulated wells.

Flow Cytometry

RH5.1-specific CD4+, CD8+ and CD4+ Tfh cells were analyzed with an activation

induced marker (AIM) assay as previously described,66 with the exception of stimu-

lation with RH5.1 protein rather than a peptide pool, and the addition of brefeldin A

(BFA; 00-4506-51, Life Technologies). Briefly, cryopreserved PBMC were thawed

and rested before stimulation for 24 h with medium alone, 1 mg/mL RH5.1, or

1 mg/mL Staphylococcal enterotoxin B (SEB; S-4881, Sigma; positive control). BFA

was included for the final 2 h of stimulation at 3 mg/mL. Medium only served as a

negative control. Anti-human CD183-APC (550967, clone: 1C6/CXCR3; BD Biosci-

ences) was included in the cell culture medium. Following incubation, PBMC were

stained and fixed with Cytofix/Cytoperm (554714, BD Biosciences). The following

anti-human antibodies / dyes were used: anti-PD1-BV421 (329920, clone:

EH12.2H7), anti-CD14-BV510 (301842, clone: M5E2), anti-CCR6-BV711 (353436,

clone: G034E3), anti-CD3-BV605 (300460, clone: UCHT1), anti-CD137-BV650

(309828, clone: 4B4-1), and anti-CD45RO-BV785 (304234, clone: UCHL1) – all Bio-

legend; anti-CD19-BV510 (562947, clone: SJ25C1), anti-CD69-PE-Cy5 (555532,

clone: FN50), anti-CXCR5-AF700 (565191, clone: RF8B2), anti-CD4-APC-H7

(641398, clone: SK3), anti-OX40-PE (340420, clone: L106), anti-CD25-PE-Cy7

(335824, clone: 2A3), and streptavidin-BB515 (564453) – all BD Biosciences); anti-

IFN-g-PerCP-Cy5.5 (45-7319-42, clone: 42.B3), and anti-CD8-PE-TR (MHCD 0817,

clone: 3B5) – both Life Technologies; Live/Dead Aqua (L34966), and anti-ICOS-

biotin (13-9948-82, clone: ISA-3) – both Invitrogen. Samples were acquired on a For-

tessa flow cytometer using BD FACSDiva (both BD Biosciences) and data were

analyzed in FlowJo (v10, Treestar). For the Tfh cell analysis, RH5.1-specific cells

were defined using Boolean gating as cells co-expressing CD25 with OX40 and/or

CD137 and/or CD69 following stimulation with RH5.1. Frequencies of total CD4+

and CD8+ T cells producing IFN-g in response to RH5.1 stimulation were measured

in the same assay. For both Tfh cells and IFN-g-producing T cells, the frequency of

activated cells in sample-matched unstimulated wells was subtracted to control for

non-specific activation. Samples were excluded from analysis if the parent popula-

tion contained < 50 cells.

Total IgG ELISAs

ELISAs were performed against full-length RH5 protein (RH5.1) using standardized

methodology as previously described.11 The reciprocal of the test sample dilution

giving an optical density at 405nm (OD405) of 1.0 in the standardized assay was

used to assign an ELISA unit value of the standard. A standard curve and Gen5 ELISA

software v3.04 (BioTek, UK) was used to convert the OD405 of individual test samples

into arbitrary units (AU). These responses in AU are reported in mg/mL following gen-

eration of a conversion factor by calibration-free concentration analysis (CFCA) as re-

ported previously.11

Avidity and Isotype/Subclass ELISAs

Anti-RH5.1 IgG antibody avidity was assessed by sodium thiocyanate (NaSCN)-

displacement ELISA using previously described methodology.11 The concentration

of NaSCN required to reduce the OD405 to 50% of that without NaSCNwas used as a
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measure of avidity (IC50). Anti-RH5.1 antibody isotype and subclass ELISAs were also

performed using methodology described in detail elsewhere.11

Antibody-Secreting Cell (ASC) ELISPOT

Ex-vivo ASC ELISPOT assays were performed against RH5.1 protein as described in

detail elsewhere11 using fresh PBMC. Plates were counted using an AID ELISPOT

plate reader. Results are reported as RH5_FL-specific ASC as a % of the total number

of measured IgG-secreting B cells.

Serum IgG Concentration

Total serum IgG concentrations were determined using a Bio-Monolith Protein G col-

umn on an Agilent 1260 HPLC system (Agilent, Cheshire, UK). Separation was per-

formed at 1 mL/min using PBS and 0.2MGlycine pH 2.0 as mobile phases with detec-

tion at UV 280 nm. A calibration curve was produced using purified human IgG.

Assay of Growth Inhibition Activity (GIA)

Standardized assays were performed by the GIA Reference Center, NIH, USA, using

previously described methodology,67 with one modification. Here, each sample was

tested in three independent replication assays, and themedian of these three results

was used to generate the final dataset. Otherwise for each assay, in brief, protein G

purified IgG samples were incubated with red blood cells (RBC) infected with syn-

chronized P. falciparum 3D7 clone parasites in a final volume of 40 mL for 40 h at

37�C, and the final parasitemia in each well was quantified by biochemical determi-

nation of parasite lactate dehydrogenase. All samples were tested at 10mg/mL in a

final test well, followed by a dilution series for positive samples to determine the con-

centration that gave 50% GIA (EC50).

Viral-Vectored RH5 Trial Data

Where specifically referred to in the text, historical data were included for compar-

ison from the VAC057 Phase Ia clinical trial of a viral-vectored RH5 (VV-RH5) vac-

cine.11 RH5-specific immune readouts were measured in an identical manner across

the different clinical trials. Serology/GIA (day 84) and T cell ELISPOT (day 63) assay

data for the VV-RH5 vaccine are shown from Group 2C in that trial.

FMP2.1 AMA1/AS01 Trial Data

Where specifically referred to in the text, historical data were included for compar-

ison from the VAC054 Phase I/IIa clinical trial of the FMP2.1 AMA1/AS01 vaccine.18

PMR efficacy and GIA assay readouts were measured in an identical manner across

the different clinical trials.

Systems Serology Analyses

Experimenters at Massachusetts General Hospital (MGH) were blinded as to the

sample identity until all data had been collected. Assays performed at MGH using

plasma samples from the VAC063 trial were deemed not human research following

review by the MGH Institutional Review Board (protocol 2012P002452). Addition-

ally, human whole blood and buffy coats were collected at MGH from healthy donors

who did not participate in the VAC063 trial. Use of these internal samples as sources

of uninfected primary neutrophils and NK cells was deemed not human research by

the MGH IRB (protocols 2010P002121 and 2005P001218).

Fluorescent Primary and Secondary Antibodies

The following fluorescent antibodies were purchased fromBDBiosciences: APC-Cy7

anti-huCD14 (#557831), PE-Cy7 anti-huCD3 (#563423), PE-Cy7 anti-huCD56
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(#335791), and BV421 anti-huMIP-1b (#562900). Additional fluorescent antibodies

were purchased from BioLegend: Pacific Blue anti-huCD66b (#305112), APC-Cy7

anti-huCD3 (#300426), BV605 anti-huCD107a (#328634), and PE anti-huIFN-g

(#506507). A FITC-conjugated, goat anti-guinea pig complement C3 polyclonal

antibody was purchased fromMP Biomedical (#0855385). PE-conjugated secondary

antibodies were purchased from Southern Biotech for the detection of total huIgG

(#9040-09), huIgM (#9020-09), huIgA1 (#9130-09), huIgA2 (#9140-09), huIgG1

(#9052-09), huIgG2 (#9070-09), huIgG3 (#9210-09), and huIgG4 (#9200-09).

Antigen Coupling to Fluorescent Beads

NeutrAvidin-labeled yellow-green (#F8776) and red (#F8775) fluorescent 1 mm mi-

crospheres were purchased from Thermo Fisher Scientific. For immune functional as-

says, 1.8 3 108 NeutrAvidin-labeled fluorescent microspheres were coupled to 5 mg

biotinylated PfRH5 antigen (exact construct described in Nielsen et al.66) by co-incu-

bation in PBS/5% BSA (PBSA) overnight at 4�C, then the beads were washed twice

with PBSA. Magplex-C microspheres (Luminex Corp) were covalently coupled to

streptavidin (Jackson Immunoresearch, #016-000-113) using a two-step carbodii-

mide reaction. Magplex-C beads (9 3 108) were washed, resuspended in 100 mM

NaH2PO4 (pH 6.2), and activated by incubating with 500 mg Sulfo-NHS (Pierce,

#A39269) and 500 mg EDC (Pierce, #A35391) for 30 min at room temperature (RT).

The beads were washed three times with coupling buffer (50 mM MES, pH 5.0),

then incubated with streptavidin in 500 mL of coupling buffer for 2 h at RT. The beads

were washed with PBS/0.05% Tween-20, incubated overnight at 4�Cwith 100 mg/mL

biotinylated PfRH5 in PBSA, washed, and stored in PBS/0.05% sodium azide.

THP-1 Monocyte Phagocytosis Assay

An assay for measuring antibody-dependent THP-1 monocyte / cellular phagocy-

tosis (ADCP) was used as previously described.68 Briefly, 1 mm yellow-green fluores-

cent NeutrAvidin beads were coupled to biotinylated PfRH5 antigen and blocked

overnight with PBSA. The beads were then washed twice with PBSA, diluted to

1.8 3 108 beads/mL, and 10 mL beads/well were added to a 96-well round-bottom

microplate. Diluted plasma from immunized subjects (10 mL/well) was added to the

beads and incubated at 37�C for 2 h to allow the formation of immune complexes.

Unbound antibodies were washed off, then 25,000 THP-1 cells/well (ATCC, #TIB-

202) were added to the beads in 200 mL THP-1 medium (R-10 + 55 mM b-ME) and

incubated overnight at 37�C. Cells were fixed and acquired on an Intellicyt iQue

Screener PLUS flow cytometer. The phagocytic score for each sample was calculated

as (% bead-positive cells) x (gMFI of bead-positive cells)/(10 x gMFI of first bead-pos-

itive peak).

Primary Neutrophil Phagocytosis Assay

An assay for measuring antibody-dependent neutrophil phagocytosis (ADNP) has

been described previously.69 Briefly, 1 mm yellow-green fluorescent NeutrAvidin

beads were coupled to biotinylated PfRH5 antigen and blocked with PBSA overnight

at 4�C. The beads were then washed twice with PBSA and diluted to 1.8 3 108

beads/mL. PfRH5-coupled beads (10 mL/well) and diluted test plasma (10 mL/well)

were combined in a round-bottom 96-well plate, then incubated at 37�C for 2 h. Pri-

mary leukocytes were isolated from freshly drawn whole blood (collected from

healthy donors in anticoagulant citrate dextrose tubes) by treatment with ACK red

blood cell lysis buffer, then diluted in R-10 media to 250,000 cells/mL. After immune

complex formation, the beads were washed, combined with 50,000 primary leuko-

cytes/well, and incubated for 1 h at 37�C. Cells were stained for surface CD66b,

CD14, and CD3, fixed, and acquired on an Intellicyt iQue Screener PLUS flow
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cytometer. Gates were drawn to identify singlet SSChigh CD66b+ CD14- CD3- cells,

and phagocytic scores for each sample were calculated as (% bead-positive cells) x

(gMFI of bead-positive cells)/(10 x gMFI of the first bead-positive peak).

Complement Deposition Assay

An assay for measuring antibody-dependent complement deposition (ADCD) was

used as previously described.70 Briefly, 1 mm red fluorescent NeutrAvidin beads

were incubated with biotinylated PfRH5 antigen, blocked with PBSA, then washed

and diluted to 1.8 3 108 beads/mL. PfRH5-coupled beads (10 mL/well) were com-

bined with diluted test plasma (10 mL/well) in a 96-well round-bottom microplate,

then incubated at 37�C for 2 h. Guinea pig complement (CedarLane, #CL4051)

was diluted in gelatin veronal buffer containing calcium and magnesium (GVB++,

Boston Bioproducts, #IBB-300). The beads were washed with PBS and incubated

with diluted complement for 20 min at 37�C. The beads were then washed with

5 mM EDTA, stained with FITC-conjugated anti-complement C3, and acquired on

an Intellicyt iQue Screener PLUS flow cytometer. Gates were drawn on singlet, red

fluorescent particles, and complement deposition was reported as the median fluo-

rescence intensity (MFI) on the FITC channel.

NK cell Activation Assay

An assay for measuring antibody-dependent NK cell activation (ADNKA) has been

described previously.71,72 Flat-bottom 96-well ELISA plates (Thermo Fisher,

#439454) were coated with biotinylated PfRH5 antigen, then blocked with PBSA.

Plasma samples from test subjects were diluted in PBSA, added to the plates, and

incubated for 2 h at 37�C. Primary human NK cells were purified from buffy coats

from healthy donors using the RosetteSep human NK cell enrichment cocktail (Stem-

Cell, #15065), then resuspended in R-10 media containing 10 mg/mL brefeldin A

(Sigma, #B7651), GolgiStop (BD Biosciences, #554724), and fluorescent anti-

CD107a. The ELISA plates were washed three times with PBS, then isolated NK cells

(25,000/well) were added and incubated at 37�C for 5 h. The cells were then stained

for surface CD56 and CD3, permeabilized, stained with fluorescent antibodies to

IFN-g and MIP-1b, fixed, and acquired on an Intellicyt iQue Screener PLUS flow cy-

tometer. Gates were drawn on singlet, CD56+/CD3- cells, and results were reported

as the percentages of these cells that expressed surface CD107a, intracellular MIP-

1b, or intracellular IFN-g.

Antibody Isotype and Subclass Analysis

The isotypes and subclasses of PfRH5 antigen-specific antibodies were quantified

using a previously described method.73 Magplex-C microspheres were coupled to

streptavidin via carbodiimide crosslinking with Sulfo-NHS and EDC. Streptavidin-

coupled beads were then incubated overnight with biotinylated PfRH5 antigen,

blocked with PBSA, and added to black flat-bottom 384-well plates (Greiner Bio-

One, #781906) so that each well contained 1500 RH5-coupled beads. Plasma from

test subjects was diluted in PBSA and co-incubated with the beads for 2 h at RT

on a plate shaker (800 rpm). The beads were then washed and incubated with a

PE-conjugated antibody to detect total human IgG, huIgG1, huIgG2, huIgG3,

huIgG4, huIgM, huIgA1, or huIgA2 for 1 h at RT on a plate shaker (800 rpm). The

beads were then washed and acquired on an Intellicyt iQue Screener PLUS flow cy-

tometer. Results were reported as the median PE fluorescence intensity.

Fc-binding Protein Array

The binding of PfRH5 antigen-specific antibodies to human Fc receptors (FcR) and

complement C1q was measured using a previously-described assay.74,75 Briefly,
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avi-tagged FCGR2A, FCGR2B, FCGR3A, and FCGR3B proteins were produced and

purified by the Duke Human Vaccine Institute Protein Production Facility. These pro-

teins were then biotinylated with BirA ligase using a commercially available kit (Avid-

ity, #BirA500). Purified human C1q protein (Sigma, #C1740) was biotinylated using

EZ-Link Sulfo-NHS-LC-LC-Biotin (Pierce, #A35358) according to the manufacturer’s

instructions. These biotinylated Fc domain-binding proteins were then incubated

with streptavidin-PE (Prozyme, #PJ31S) to generate the assay detection reagents.

Magplex-C microspheres were coupled to biotinylated PfRH5 antigen as described

above, blocked with PBSA, and added to 384-well plates so that each well contained

1500 RH5-coupled beads. Plasma from test subjects was diluted in PBSA, added to

the beads, and incubated for 2 h at RT on a plate shaker (800 rpm). The beads were

then washed, incubated with one of the PE/FcR conjugates for 1 h at RT on a plate

shaker (800 rpm), washed again, and acquired on an Intellicyt iQue Screener PLUS

flow cytometer. Results were reported as the median PE fluorescence intensity.

Fc glycan Analysis

The Fc glycans on RH5 antigen-specific IgG were analyzed using a previously

described method.76,77 Briefly, 200 mL of plasma from each vaccinated subject

was heat-inactivated at 56�C for 1 h, then centrifuged at 20,000 xg for 10 min at

RT. The resulting supernatant samples were first pre-cleared by incubating with

1 mm magnetic streptavidin-coated microspheres (New England Biolabs, #S1420S)

for 1 h at RT. A magnet was used to pellet the beads, and the supernatants were

then transferred to new tubes containing streptavidin-coated beads that had been

coupled to biotinylated PfRH5 antigen. The PfRH5-coupled beads were incubated

with plasma samples for 1 h at 37�C, then washed and incubated with IdeZ enzyme

(New England Biolabs, #P0770S) for 1 h at 37�C to remove the Fc fragments from the

bead-bound antibodies. These Fc fragments were transferred to new tubes and

incubated with PNGase F (Applied Biosystems, #A28404) for 1 h at 50�C to remove

the glycans. The glycans were then isolated and labeled with APTS dye using a Gly-

canAssure kit (Thermo Fisher, #A28676) according to the manufacturer’s instruc-

tions. Finally, APTS-labeled glycan samples were analyzed by capillary electropho-

resis on an ABI 3500xL Genetic Analyzer. The area under the peak for each Fc

glycan structure was calculated using GlycanAssure data analysis software. Results

were then reported as the frequency (%) of each glycan structure within a given

sample.

QUANTIFICATION AND STATISTICAL ANALYSIS

Unless otherwise stated, data were analyzed using GraphPad Prism version 8.3.1 for

Windows (GraphPad Software Inc.). All tests used were 2-tailed and are described in

the text, along with the protocol pre-specified analyses in the relevant Results sec-

tions. To analyze the relationship between GIA and ELISA assay data, a Richard’s

five-parameter dose-response curve was fitted, constrained to 0%GIA at the bottom

and 100% GIA at the top. A value of p < 0.05 was considered significant.

Modeling of PMR

qPCR-derived PMR was pre-specified in the VAC063 trial protocol as the primary ef-

ficacy endpoint, and the comparison of the endpoint between the two groups in

VAC063A constituted the pre-specified primary analysis for RH5.1/AS01B vaccine ef-

ficacy. PMR was modeled as previously reported;44 here, in order to model the PMR,

the arithmetic mean of the three replicate qPCR results obtained for each individual

at each time-point was used for model-fitting. Negative individual replicates were

assigned a value of 0 p/mL for the purposes of calculating the arithmetic mean of

triplicates (where at least one of the three readings was positive). All qPCR data
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points which, based upon the mean of the three replicates, are greater than the LLD

(> 5 p/mL) were used for modeling. Any values ranging from 1-5 p/mL were replaced

with a value = LLD (i.e., 5 p/mL). Any data point that was negative but preceded a

positive data point was replaced with a value = LLD (i.e., 5 p/mL); otherwise negative

data points occurring after any positive data point but not preceding a positive data

point were treated as 0 p/mL. PMR was then calculated using a linear model fitted to

log10-transformed qPCR data.27 On day of CHMI for both VAC063A and VAC063B,

all volunteers were inoculated by midday. Therefore, for modeling purposes, morn-

ing follow-up bleeds were taken to occur at 9:00am (i.e., dC+1 was 0.9 d post-infec-

tion), and the evening bleeds were taken to occur at 6:00pm (i.e., 0.37 d later). As

previously, fitted lines were constrained to pass through the known starting parasi-

temia, calculated from the results of the limiting-dilution-based assay of the number

of viable parasites in the inoculum, and a weight-based estimate of each volunteer’s

blood volume (70 mL/kg).40 PMR was modeled for all volunteers that underwent

blood-stage CHMI, given they all had R 5 data points above the LLQ (the criterion

for proceeding to model the PMR).40

Modeling of Antibody Kinetics

See Data S2A.

Computational Analysis of Systems Serology Data

Spearman and Pearson correlation coefficients were used as indicated in the corre-

sponding Figures. For assessing the statistical significance, Benjamini-Hochberg

correction for multiple hypothesis testing was used. Random forest regression using

the ‘randomForest’ package of R was used to model DOD or IVGI based on the sys-

tems serology data. To take into account that some volunteers are in both Group 5

and Group 7, we used a leave-one-volunteer-out cross-validation framework that

yielded 13-folds. For each volunteer, the model was built on data of the remaining

volunteers and then used to predict the phenotype of the holdout volunteer. The

model prediction for the phenotype was compared to the observed phenotype

based on the Pearson’s product moment correlation coefficient and corresponding

P values (R function ‘cor.test’). The random forest regression was repeated 100 times

and the correlation coefficients and P values are shown in Figures S10D and S10E. To

assess the importance of the features within the leave-one-volunteer-out cross-vali-

dation framework, 100 repetitions of a recursive feature elimination (RFE) were per-

formed for each of the 13-folds. In each repetition, a random forest model is gener-

ated for the full feature set, and recursively the feature with the lowest importance

determined via the mean decrease in mean squared error is removed. For each of

the recursively obtained models, the out-of-bag mean squared error in prediction

is determined and the feature set corresponding to the best performing model is

chosen. Overall, we count how often a feature is chosen in the final feature set.

The regressionmodel was compared to amodel that was trained and tested for shuf-

fled phenotype labels. An R notebook (analysis_Rh5.Rmd) for the analysis is avail-

able as Data S2B.
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