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1 Introduction

Phase coexistence is an essential feature of systems with a first-order phase transition. Con-
sider for example figure 1. This shows the energy density as a function of the temperature,
in the infinite-volume limit, for the four-dimensional gauge theory that we will study in
this paper. The blue curve indicates homogeneous states with energy density E , which we
measure in units of the microscopic scale in the gauge theory Λ. In the canonical ensemble
there is a first-order phase transition at a critical temperature Tc indicated by the dashed,
vertical line. The thermodynamically preferred, lowest-free energy states at T > Tc lie on
the upper branch and have energies above that of point D. Similarly, at T < Tc the pre-
ferred states are on the lower branch with energies below that of point E. States between
points A and D, and between B and E, are locally but not globally thermodynamically
stable. Finally, states between points A and B are locally thermodynamically unstable.
The region between A and B is known as the “spinodal region”.

In the canonical ensemble, setting T = Tc does not select a unique state. For this
reason, it is convenient to work in the microcanonical ensemble, in which the control
parameter is the energy instead of the temperature. In this case the preferred, maximum-
entropy configuration for energy densities between points D and E is well understood in
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Figure 1. Phase diagram in the infinite-volume limit. The dashed, vertical line indicates the
critical temperature T = Tc. The blue curve corresponds to homogeneous states. The red line
corresponds to inhomogeneous, phase-separated states. Solid segments indicate locally dynamically
stable states; dashed segments indicate unstable ones. The black curves with arrows indicate the
sequence of maximum-entropy states as the average energy density E decreases. In the canonical
ensemble there is one first-order phase transition at which the system jumps betweens points D
and E. In the microcanonical ensemble there are two second-order phase transitions at points D
and E between homogeneous and inhomogeneous states.

the infinite-volume limit: it is a phase-separated state in which part of the volume is in
the phase associated to point D and the other part is in the phase associated to point E
(see section 2.4.1). The fraction of volume occupied by each phase is determined by the
average energy density E , which lies between D and E. The two phases are separated by
a universal interface, i.e. by an interface whose spatial profile is independent of the way in
which the phase-separated configuration is reached. Since the temperature is constant and
equal to Tc across the entire volume, these states lie on the red, vertical segment DE in
figure 1. We conclude that, at infinite volume in the microcanonical ensemble, the sequence
of preferred states as the energy density decreases is that indicated by the black arrows in
figure 1.
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The thermodynamic statements above have dynamical counterparts. Since the total
energy is conserved under time evolution, it is again convenient to think of the system in
the microcanonical ensemble. Imagine preparing the system in a homogeneous state. If the
energy density lies above point D or below point E then this state is dynamically stable
against small or large perturbations. If instead the energy density is between points A and
D or between B and E then we expect the system to be dynamically stable against small
perturbations but not against large ones. This means that, if subjected to large enough a
perturbation, the system will dynamically evolve to a phase-separated configuration. The
average energy density in this inhomogeneous configuration will be the same as in the
initial, homogenous state, but the entropy will be higher. Finally, if the initial energy
density is between A and B then the state is dynamically unstable even against small
perturbations. This instability, known as “spinodal instability”, implies that the slightest
perturbation will trigger an evolution towards a phase-separated configuration of equal
average energy but higher entropy.

If the system of interest is an interacting, four-dimensional quantum field theory then
following the real-time evolution from an unstable homogeneous state to a phase-separated
configuration can be extremely challenging with conventional methods. For this reason,
in [1, 2] holography was used to study this evolution in the case of a four-dimensional
gauge theory with a gravity dual (see also [3, 4] for a case in which the gauge theory is
three-dimensional). In order to regularise the problem, refs. [1, 2] considered the gauge
theory formulated on R1,2×S1 with periodic boundary conditions on a circle of size L. For
simplicity, translational invariance along the non-compact spatial directions was imposed,
thus effectively reducing the dynamics to a 1+1 dimensional problem along time and the
compact direction. The compactness of the circle makes the spectrum of perturbations
discrete and simplifies the technical treatment of the problem. Ref. [1] provided a first
example of the time evolution from a homogeneous state to an inhomogeneous one. A
systematic study was then performed in [2]. In this reference the focus was on the infinite-
volume limit, understood as the limit in which L is much larger than any other scale in
the problem such as the microscopic gauge theory scale Λ, the size of the interface, etc.
It was shown that, if slightly perturbed, an initial homogeneous state with energy density
between A and B always evolves towards a phase-separated configuration, and that the
latter is dynamically stable.

In addition to its implications for gauge theory dynamics, the spinodal instability
of states between A and B is interesting also on the gravity side, where it implies that
the corresponding black branes are afflicted by a long-wavelength dynamical instability.
Although this is similar [5–7] to the Gregory-Laflamme (GL) instability of black strings
in spacetimes with vanishing cosmological constant [8], there is an important difference:
in the GL case all strings below a certain mass density are unstable, whereas in our case
only states between points A and B are unstable. Having clarified this, since the term
“GL-instability” is familiar within part of the gravitational community, in this paper we
will use the terms “spinodal instability” and “GL-instability” interchangeably to refer to
the dynamical instability between points A and B.

The purpose of this paper is to extend the analysis of the equilibrium states summarised
in figure 1, as well as the systematic analysis of their dynamical stability properties of [2],
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to the case of finite volume. In particular, we would like to: (i) classify all possible states,
homogeneous or inhomogeneous, available to the system; (ii) determine which ones are
thermodynamically preferred; (iii) establish the local dynamical stability or instability of
each state; and (iv) investigate the time evolution from unstable states to stable ones. For
this purpose we will place the system in a box, impose translational invariance along two
of its directions and vary the size L of the third direction. We will then see that the results
depend on the value of L compared to a hierarchy of length scales

LK < LΣ1 < LΣ2 . (1.1)

These three scales are an intrinsic property of the system at finite volume that cannot be
determined through an infinite-volume analysis. Depending on the ratio of L to these scales
we will uncover: (i) a large configuration space of inhomogeneous states, both stable and
unstable; (ii) a rich set of first- and second-order thermodynamic phase transitions between
them; and (iii) the possible time evolutions from dynamically unstable to dynamically
stable states. Note that the existence of phase transitions is not in contradiction with the
finite volume of the gauge theory because we work in the planar limit, N → ∞, which
effectively acts as a thermodynamic limit. Our results are summarised in section 4. The
reader who is only interested in this summary can go directly to this section.

2 Nonconformal lumpy branes: nonlinear static solutions

2.1 Setup of the physical problem and general properties of the system

We consider the AdS-Einstein-scalar model with action

S = 1
2κ2

∫
d5x
√
−g

[
R− 2 (∇φ)2 − 4V (φ)

]
, (2.1)

where κ2 = 8πG5 with G5 Newton’s constant, g is the determinant of the metric gµν , R is
the associated Ricci scalar and φ is a real scalar field. The potential V (φ) can be derived
from the superpotential

W (φ) = −1
`

(
3
2 + 1

2φ
2 + φ4

4φ2
M

− φ6

φQ

)
(2.2)

through the usual relation

V (φ) = −4
3W (φ)2 + 1

2W
′(φ)2 . (2.3)

The positivity of energy theorem for the AdS-Einstein-Scalar model is subtle [9]. For
a given potential, one can find up to two superpotentials W± that satisfy (2.3). One
way of distinguish these two possible solutions is to inspect the small φ behaviour of the
superpotential, namely

− `W± = 3
2 + ∆±

2 φ2 +O(φ4) , (2.4)

where ∆+ = 3 and ∆− = 1 for our potential. It is not a coincidence that ∆± corre-
spond to the conformal dimensions of the operator dual to φ in standard, and alternative
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Figure 2. Superpotential (left) and potential (right) of our model.

quantisation, respectively. One can show that if W− exists globally, then so does W+ [9].
Our superpotential (2.2) is of the W− form irrespectively of the value of the dimensionless
parameters φM and φQ. For a sourced solution such as ours, the existence of W− ensures
that all solutions of our model have positive energy [9]. For any value of φM and φQ the
potential V (φ) has a maximum at φ = 0, corresponding to an ultraviolet (UV) fixed point
of the dual gauge theory. We will choose the values φQ = 10 and φM = 1, for which W

and V take the form shown in figure 2. In this case both functions have a minimum at
φmin ≈ 1.54, corresponding to an infrared (IR) fixed point of the gauge theory. The poten-
tial has an additional maximum at φmax ≈ 3.65 and diverges negatively, i.e. V (φ)→ −∞,
as φ→ +∞. However, values of φ larger than φmin will play no role in our analysis.

Our motivation to choose this model is simplicity. The superpotential (2.2) is the
same as in [1, 2, 10] except for the φ6 term, which was absent in those references but was
introduced in [11]. As in [1, 2, 10, 11], the dual gauge theory is a Conformal Field Theory
(CFT) deformed by a dimension-three scalar operator with source Λ. On the gravity
side this scale appears as a boundary condition for the scalar φ. The first two terms in
the superpotential are fixed by the asymptotic AdS radius ` and by the dimension of the
dual scalar operator. As in [1, 2, 10], the present model also possesses a first-order phase
transition. In those references this was achieved by choosing the value of φM appropriately,
with no need to include a φ6 term. However, this leads to a phase diagram in which the
energy densities at points D and E differ from one another by three orders of magnitude.
This huge ratio makes the numerical treatment of the system extremely challenging. In
contrast, by including the φ6 term as in [11] and choosing the values of φM and φQ as
quoted above, this ratio is of order unity, as is clear from figure 3.

We are interested in finding static, “lumpy” black brane solutions of (2.1) that can
break translational invariance along a spatial gauge theory direction x̃ while being isometric
along the remaining two spatial directions x2 and x3 directions. The most general ansatz
compatible with such symmetries is

ds2 =−Q1(x̃, Z)dt2 +Q2(x̃, Z)dZ2 + 2Q3(x̃, Z)dx̃dZ +Q4(x̃, Z)dx̃2

+Q5(x̃, Z)dx2
2 +Q6(x̃, Z)dx2

3 + 2Q7(x̃, Z)dx2dx3 , (2.5a)
φ =Q8(x̃, Z) , (2.5b)

where Z is the holographic coordinate. We shall be interested in solutions which are
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isotropic in x2 and x3, so we take Q5 = Q6 and Q7 = 0 . To fix the gauge completely we
demand Q3 = 0, and

Q1(x̃, Z) = `2q1(x̃, Z)2

Z2

(
1− Z4

Z4
+

)
, (2.6a)

Q2(x̃, Z) = `2

Z2 q2(x̃, Z)

(
1− Z4

Z4
+

)−1

, (2.6b)

Q4(x̃, Z) = `2

Z2 q2(x̃, Z) q3(x̃, Z) , (2.6c)

Q6(x̃, Z) = `2

Z2 q1(x̃, Z) , (2.6d)

Q8(x̃, Z) = Z

`
q4(x̃, Z) , (2.6e)

together with the condition

q1(x̃, Z+)2 q2(x̃, Z+) = αΛ . (2.6f)

This condition corresponds to a constraint that comes from the equations of motion and
that will be explained in detail in section 2.2. In eq. (2.6f) αΛ > 0 is a positive constant
whose physical significance will be discussed later; see (2.27). The coordinate x̃ is periodic
with period L, and we take x̃ ∈ [−L/2, L/2] and Z ∈ [0, Z+]. We consider the translation-
ally invariant directions x2,3 compactified with lenghts L2 and L3 sufficiently small, such
that they play no role in our discussion.1

We shall also be interested in solutions which are Z2-symmetric around x̃ = 0, which
means that we can restrict our domain of integration to x̃ ∈ [0, L/2], at the expense of
imposing ∂x̃qj

∣∣
x̃=0 = 0, for j = 1, 2, 3, 4. In order to vary L in a numerically efficient

manner, we further change to a new coordinate

x = 2x̃
L
, (2.7)

and take all functions to take values in x ∈ [0, 1]. Note that our ansatz (2.8) together with
our periodicity conditions further imply that ∂xqj

∣∣
x=1 = 0 (j = 1, 2, 3, 4).

Putting everything together brings (2.5) to the following simplified form

ds2 = `2

Z2

[
− q1(x, Z)2

(
1− Z4

Z4
+

)
dt2 + 1

q2(x, Z)

(
1− Z4

Z4
+

)−1

dZ2

+
(
L

2

)2
q2(x, Z) q3(x, Z)dx2 + 1

q1(x, Z)
(
dx2

2 + dx2
3

) ]
, (2.8)

φ = Z

`
q4(x, Z) .

Our gauge choice is such that the determinant of the metric along the Killing directions
(t, x2, x3) is fixed and defines the radial (holographic) direction Z. The conformal boundary

1To be precise, we choose L2 and L3 lower than LK , which will be defined later.
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is located at Z = 0 where we demand

q1 = q2 = q3 = 1 . (2.9)

In this sense we can denote this gauge choice as the “double Wick rotation Schwarzschild
gauge” and, as far as we are aware, this is the first time it is introduced. The advantage of
this gauge choice (at least in the present system) is that the fields qj (j = 1, 2, 3, 4) have
an asymptotic power law decay without irrational powers (nor logarithmic terms; more
below), unlike e.g. the DeTurck gauge.2

Our gauge choice — condition (2.6f) — reveals that Z = Z+ is a null hypersurface,
where the norm of the Killing vector field ∂/∂t vanishes.3 Thus, Z = Z+ is a Killing
horizon, and αΛ controls its associated surface gravity or, equivalently, temperature. In
fact, we find

T =
√
αΛ
π

1
Z+

. (2.10)

Our solutions have two important scaling symmetries. The first one is

{t, Z, xi} → {λ1t, λ1Z, λ1xi}, {q1,2,3, q4} → {q1,2,3, λ
−1
1 q4}, {`, Z+} → {λ1`, λ1Z+}

(2.11)

where xi = {x, x2, x3}. This leaves the equations of motion and scalar field invariant and
rescales the line element as ds2 → λ2

1 ds2, namely gµν → λ2
1 gµν . It follows that we can

use this scaling symmetry to fix the AdS radius to ` ≡ 1. In other words, under the
scaling gµν → λ2

1 gµν , the affine connection Γγµν , and the Riemann (Rαβµν) and Ricci
(Rµν) tensors are left invariant. It follows from the trace-reversed equations of motion that
the AdS radius must scale as `→ λ1` and we can use this scaling symmetry to set ` ≡ 1.

The second scaling symmetry (known as a dilatation transformation, one of the con-
formal transformations) is

{t, Z, xi} → {λ2t, λ2Z, λ2xi}, {q1,2,3, q4} → {q1,2,3, λ
−1
2 q4}, {`, Z+} → {`, λ2Z+} .

(2.12)

This leaves the metric, scalar field and equations of motion invariant. It follows that we
can use this symmetry to set the horizon radius at Z = Z+ ≡ 1 or, equivalently, the
temperature (2.10) to

T =
√
αΛ
π

. (2.13)

We will see below that this is just a convenient choice of units with no effect on the physics.
2This feature is particularly important when finding qj numerically using pseudospectral collocation

methods to discretize the numerical grid, as we will do. Due to the absence of the irrational powers
near the conformal boundary, the numerical scheme will exhibit exponential convergence when reading
asymptotic charges. This is unlike e.g. the DeTurck gauge that has power law decays also with irrational
powers and therefore does not have exponential convergence in the continuum limit [12, 13].

3Strictly speaking, in order to prove this we need to introduce regular coordinates at the horizon located
at Z = Z+. This can be achieved if we use ingoing (or outgoing) Eddington-Finkelstein coordinates of the
Schwarzschild brane.
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Let us turn now our attention to the scalar field. It follows from (2.3) and (2.2) that
the scalar field potential has the Taylor expansion about φ = 0

V (φ)
∣∣
φ∼0 = − 3

`2
− 3

2`2 φ
2 +O

(
φ4
)
, (2.14)

and thus it describes a scalar field with mass µ2 = V ′′(0) = −3/`2. According to AdS/CFT,
the conformal dimension of the dual operator is simply given by

∆± = 2±
√

4 + µ2`2 ⇔ ∆− = 1 or ∆+ = 3, (2.15)

and these give the two independent asymptotic decays Z∆± of the scalar field. Actually,
since ∆± are integers, the nonlinear equations of motion might also generate logarithmic
decays of the form

∑
n=3 cnZ

n lnZ where the coefficients cn depend exclusively on the am-
plitude of the two independent terms. When this is the case, the conserved charges depend
on c3. However, for the potential we use (only with even powers of φ and double Wick
rotation Schwarzschild gauge choice) it turns out that logarithmic terms are not generated
by the equations of motion. So, for our system, the scalar field decays asymptotically as

φ
∣∣∣
Z→0

∼ ΛZ∆− + φ2Z
∆+ + · · · = Z

(
Λ + φ2Z

2
)

+ · · · (2.16)

where Λ and φ2 are two arbitrary integration constants and · · · represent higher order
powers of Z (with no logarithms) whose coefficients are fixed in terms of Λ and φ2 by the
equations of motion. The fact that ∆− = 1 motivates our choice of ansatz for the scalar
field in (2.8). The Breitenlöhner-Freedman (BF) bound of the system is µ2

BF`
2 = −4 and

thus µ2`2 = −3 coincides precisely with the unitarity bound µ2
BF`

2 +1. It follows that only
the mode Z∆+ with the faster fall-off is normalizable. In the AdS/CFT correspondence, the
non-normalizable mode Λ is the source of a boundary operator Oφ since it determines the
deformation of the boundary theory action. On the other hand, the normalizable modes
φ2 are identified with states of the theory with φ2 being proportional to the expectation
value 〈Oφ〉 of the boundary operator (in the presence of the source Λ). ∆+ = 3 is then
the (mass) conformal dimension of the boundary operator Oφ dual to φ. Under the scaling
symmetries (2.11)–(2.12) the scalar source transforms as Λ → λ1λ2Λ. As a consequence,
the ratio T/Λ is left invariant by these scalings. Since the physics only depends on this
ratio, setting T = √αΛ/π as we did above is just a convenient choice of units with no effect
on the physics. In general, throughout this paper we will measure all dimensionful physical
quantities in units of Λ.

The undeformed boundary theory — a CFT — corresponds thus to the Dirichlet
boundary condition Λ = 0, and we have a pure normalizable solution. For this reason the
planar AdS5 Schwarzschild solution (2.8) with q1,2,3 = 1, q4 = 0 is often denoted as the
(uniform) “conformal” brane of the theory (2.1). In contrast, if we turn-on the source the
dual gauge theory is no longer conformal. In particular, there are such solutions (2.8) with
q1,2,3,4(Z, x) = q1,2,3,4(Z) (and q4(0) = Λ) that are translationally invariant along x, x2, x3.
These are often denoted as the “uniform nonconformal” branes of the theory. This is one
family of solutions that we will construct in this manuscript. Still with Λ 6= 0, we can then
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have solutions that break translational invariance along x (while keeping the isometries
along the other two planar directions). Our main aim is to construct these nonuniform
solutions, which we denote as “lumpy nonconformal branes”, and study their thermal
competition with the uniform nonconformal branes in a phase diagram of static solutions
of (2.1), both in the micro-canonical and canonical ensembles. Of course there are also
nonconformal branes that break translation invariance along the other two directions x2,3.
These are cohomogeneity-4 solutions that we will not attempt to construct. Fortunately,
the cohomogeneity-2 lumpy branes that we will find seem to already allow us to understand
the key properties of the most general system.

2.2 Setup of the boundary-value problem

Finding the nonconformal brane solutions necessarily requires resorting to numerical meth-
ods. For that, we find it convenient to change our radial coordinate into

y = Z2

Z+
, and define y+ ≡

1
Z+

, (2.17)

so that the ansatz (2.8) now reads

ds2 = 1
y

[
− y2

+ q1(x, y)2(1− y2)dt2 + 1
q2(x, y)

dy2

4y(1− y2)

+
(
L

2

)2
y2

+ q2(x, y) q3(x, y)dx2 +
y2

+
q1(x, y)

(
dx2

2 + dx2
3

) ]
, (2.18)

φ =
√
y

y+
q4(x, y) ,

with compact coordinates y ∈ [0, 1] and x ∈ [0, 1]. The horizon is located at y = 1 and the
asymptotic boundary at y = 0. Note, that we used the two scaling symmetries (2.11)–(2.12)
to set ` ≡ 1 and y+ ≡ 1.

In these conditions we now need to find the minimal set of Einstein-scalar equations
— the equations of motion (EoM) — that allows us to solve for all qj(x, y) while closing
the full system of equations, gµν = Tµν and 2φ = 0, of the action (2.1). This is a
nested structure of PDEs. This structure motivates also in part our original choice of
gauge in the ansätze (2.8) and (2.18). For this reason, rather than presenting the final
EoM, it is instructive to explain their origin and nature. Prior to any gauge choice and
symmetry assumptions, the differential equations that solve (2.1) are second order for all
the fields. The symmetry requirements we made fix some of these fields. Additionally,
the fact that we have chosen to fix the gauge freedom of the system using the ‘double
Wick rotation Schwarzschild’ gauge means that our system of equations should have the
structure of an ADM-like system but with the spacelike coordinate x playing the role of
“time”. Of course, our problem is ultimately an elliptic problem. However, it is instructive
to analyse our EoM adopting the above “time-dependent” viewpoint. In doing so, one
expects that the equations of motion take a nested structure of PDEs that include a subset
of “evolution” equations (to be understood as evolution in the x-direction) but also a subset
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of non-dynamical (“slicing” and “constraint”) equations. We now describe in detail this
nested structure.

We have a total of five equations of motion. Two of these EoM are dynamical evolution
equations for q1 and q4. The main building block of these equations is the Laplacian
operator ∂2

x + ∂2
y (acting either on q1 or q4) that describes the spatial dynamics as the

system evolves in x. With respect to the familiar ADM time evolution in the Schwarzschild
gauge, this Laplacian replaces the wave operator ∂2

t − ∂2
y . Additionally, we have two (first-

order) slicing EoM for ∂yq2 and ∂yq3 that can be solved at each constant-x spatial slice
for q2 and q3. Besides depending on ∂yq2,3 and q2,3 — but, quite importantly, not on
∂xq2,3 — these equations also depend on q1,4 (that are determined “previously” by the
evolution equations) and on their first derivatives (both along x and y). This means that
we can integrate the slicing equations of motion along the radial direction to find q2,3 at a
particular constant-x slice. Finally, the EoM still includes a fifth PDE that expresses ∂xq2
as a function of (q1,2,3,4, ∂xq1,4, ∂yq1,4). Let us schematically denote it as C(x, y) = 0. This
is a constraint equation. To see this note that, after using the evolution and slicing EoM
and their derivatives, the Bianchi identity ∇µ(Rµν − gµνR/2) = 0 implies the constraint
evolution relation4

∂y
(√
−g C

)
+ F (x, y)

√
−g C = 0 , (2.19)

where F (x, y) is a function that is regular at the horizon whose further details are not
relevant.5 It follows from this constraint evolution relation that if the constraint equation
is obeyed at a given y, say at the horizon C(x, y)

∣∣
y=1 = 0, then it is obeyed at any other

y ∈ [0, 1]. In practice, this means that we just need to impose the constraint as a boundary
condition at y = 1, say. It is then preserved into the rest of the domain.

Altogether, the strategy to solve the EoM is thus the following. There are effectively
four EoM, two second order PDEs for q1,4(x, y) and two first order PDEs for q2,3(x, y). We
need to solve these equations for q1,2,3,4(x, y) as a boundary-value problem. One of the
boundary conditions is imposed at the horizon and takes the form C(x, y)

∣∣
y=1 = 0, whereas

the others are the physically motivated boundary conditions discussed next.
Our integration domain is a square bounded in the radial direction by y = 0 (the

asymptotic boundary) and y = 1 (the horizon). Along the x-direction the boundaries are
at x = 0 and x = 1. The angular coordinate x is periodic in the interval [0, 1]. We can thus
use this symmetry to impose Neumann boundary conditions for all qj at x = 0 and x = 1:

∂xqj(x, y)
∣∣
x=0 = 0 , for j = 1, 2, 3, 4 , (2.20)

∂xqj(x, y)
∣∣
x=1 = 0 , for j = 1, 2, 3, 4. (2.21)

Consider now the asymptotic UV boundary at y = 0. The invariance of the EoM under
dilatations (2.12) guarantees that asymptotically our PDEs are of the Euler type and thus

4Note that in standard ADM time-evolution problems the constraint relation that must vanish involves
the time derivative, i.e. it is schematically of the form ∂t

(√
−g C̃

)
+ F̃ (t, y)

√
−g C̃ = 0, where y is a radial

coordinate. Interestingly, in our ‘double Wick rotation of the ADM gauge’ — where x is the evolution
coordinate — it is the radial derivative ∂y (and not ∂x) that appears in the vanishing constraint relation.

5Let Ĉ ≡
√
−g C. Solving ∂yĈ + F (x, y) Ĉ = 0 yields Ĉ(x, y) = Ĉ(x, 1) exp

(∫ y
1 F (x, Y )dY

)
which

converges if F (x, y) is regular at the horizon y = 1.
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y = 0 is a regular singular point. The order of our PDE system (two second-order and two
first-order PDEs) is 6. It follows that we have a total of 6 free UV independent parameters.
We have explicitly checked that, for our gauge choice and scalar potential, all our functions
qj admit a Taylor expansion in integer powers of y (in particular, without logarithmic
terms) that contains precisely 6 independent parameters. In this Taylor expansion, at
a certain order (as expected due to the fact that we fixed the gauge and our system is
cohomogeneity-2) we need to use a differential relation that is ultimately enforced by the
Bianchi identity:6

q
(1,2)
2 (x, 0) = 8

3 Λ q(1,1)
4 (x, 0). (2.22)

The requirement that our nonconformal branes asymptote to AdS fixes two of the six UV
integration constants to unity, namely q1(x, 0) and q3(x, 0) at the boundary (it then follows
directly from the EoM that q2(x, 0) = 1). We complement these boundary conditions with
a Dirichlet boundary condition for the scalar field function q4 which introduces the source
Λ. This will be a running parameter in our search for solutions. Altogether we thus impose
the boundary conditions at the UV boundary:

qj(x, y)
∣∣
y=0 = 1 , if j = 1, 2, 3; q4(x, y)

∣∣
y=0 = Λ. (2.23)

Finally, we discuss the boundary conditions imposed at the horizon, y = 1. It follows
directly from the four equations of motion that q1,2,3,4(x, 1) are free independent parameters
and q1,2,3,4 must obey a set of four mixed conditions that fix their first radial derivative
as a function of q1,2,3,4(x, 1) and ∂xq1,2,3,4(x, 1) that is not enlightening to display. When
assuming a power-law Taylor expansion for

qj(x, y)
∣∣
y∼1 =

∑
k=0

cj(k)(x)(1− y)k (2.24)

we are already imposing boundary conditions that discard two integration constants that
would describe contributions that diverge at the horizon.

Having imposed the boundary conditions, we must certify that we have a well-defined
elliptic (boundary-value) problem. For that, we need to confirm that the number of free
parameters at the UV boundary matches the IR number of free parameters. Recall that,
before imposing boundary conditions, we have 6 integration constants at the UV and
another 6 in the IR. A power-law Taylor expansion about the asymptotic boundary,

qj(x, y)
∣∣
y∼0 =

∑
k=0

aj(k)(x)yk , (2.25)

concludes that, after imposing the boundary conditions (2.23) that fix a1(0) = 1, a3(0) = 1
and a4(0) = Λ (a2(0) is not a free parameter since it is fixed by the equations of motion), we
are left with three free UV parameters, namely a1(2)(x), a2(2)(x), a4(1)(x). Note that we will
give Λ as an input parameter so the boundary-value problem will not have to determine

6The notation q(p,q)
j (x, y) refers to partial derivative p times with respect to the first variable and q times

with respect to the second variable. This notation should not be confused with notation q
(n,η)
j defined later

in (2.63).
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it. As we shall find later, the energy density depends on these three parameters, whereas
the expectation value of the dual operator sourced by Λ is proportional to a4(1)(x). On the
other hand, at the horizon, after imposing the aforementioned boundary conditions that
eliminate two integration constants, one finds that there are 4 free IR parameters.

So we have 3 UV free parameters but 4 IR free parameters. In order to have a well-
defined boundary value problem (BVP) the number of free UV parameters must match
the IR number. Note however that in our discussion of the boundary conditions we have
not yet imposed the constraint equation C(x, y) = 0. As described above we just need to
impose it at the horizon y = 1, where C(x, 1) = 0 simply reads

2q2(x, 1)∂xq1(x, 1)2 + q1(x, 1)∂xq2(x, 1) = 0 . (2.26)

This is solved by q1(x, 1) = √αΛ/
√
q2(x, 1) where αΛ is a constant to be fixed below. It

follows that, if we impose this Dirichlet condition together with the three aforementioned
mixed conditions for q2,3,4 at the horizon

q1(x, y)
∣∣
y=1 =

√
αΛ√

q2(x, 1)
; ∂yqj

∣∣
y=1 = ∂yqj (q1,2,3,4, ∂xq1,2,3,4)

∣∣
y=1 ifj = 2, 3, 4, (2.27)

then we have just three free IR parameters, namely q2,3,4(x, 1). We fix the value of αΛ as
follows. For a given source Λ, the lumpy nonconformal branes that we seek merge with
the uniform nonconformal branes at the onset of the Gregory-Laflamme-type instability of
the latter. We use this merger (where the fields of the two solutions must match) to fix
the constant αΛ to be the value of q1(y)2q2(y)

∣∣
y=1 (no x-dependence) of the nonuniform

solution when it merges with the uniform brane.
This discussion can be complemented as follows (which also allows us to set the IR

boundary condition we impose to search for the uniform branes). Note that when looking
for uniform branes, the PDE system of EoM reduces to an ODE system without any x-
dependence. In particular, the constraint equation C(x, 1) = 0 reduces to C(1) = 0 and is
trivially obeyed, since all of its terms involve terms with partial derivatives in x. So when
searching for uniform branes we use the IR boundary conditions (2.27) but with the first
condition replaced by the Dirichlet condition q1(y)

∣∣
y=1 = 1:

q1(y)
∣∣
y=1 = 1 ; ∂yqj

∣∣
y=1 = ∂yqj (q2,4)

∣∣
y=1 if j = 2, 3, 4; (if uniform branes).

(2.28)
This is a choice of normalization that does not change physical thermodynamic quantities.
Solving the EoM for a given source Λ we then find, in particular, the value of q2(y) at y = 1.
We can then read the constant αΛ = q1(y)2q2(y)

∣∣
y=1 = q2(y)

∣∣
y=1 of the uniform brane with

source Λ. This value of αΛ(Λ) is then the one we plug in the boundary condition (2.27)
to find the non-uniform branes with the same source Λ. The UV boundary conditions for
the uniform branes is still given by (2.23) (with the replacement qj(x, y)|y=0 → qj(y)|y=0).

We can now discuss the strategies we will use to generate (numerically, in section 2.5)
the 2-parameter space of lumpy branes. The above discussions naturally invite us to follow
one of two strategies (we will use both):
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1. We can choose to generate lines of non-uniform branes that have the same source
Λ − as fixed by the UV boundary condition (2.23) − and the same temperature
parameter T (and thus αΛ) − as fixed by the IR boundary condition (2.27) − as
the uniform brane they bifurcate from. Altogether, when following this strategy we
are generating lines of lumpy branes that have constant dimensionless temperature
T/Λ and the dimensionless length LΛ is varying along these lines of solutions (these
dimensionless thermodynamic quantities are the appropriate quantities to discuss the
physical properties of the system as it will be justified when discussing (2.48) in the
next section).

2. Alternatively, we can choose to generate lines of lumpy branes that have the same
source Λ − as fixed by the UV boundary condition (2.23) − and, this time, the
same length parameter L as the uniform brane they bifurcate from (i.e. we fix this
length to be L = 2π/kGL where kGL is the zero-mode wavenumber for the Gregory-
Laflame/spinodal instability of the uniform brane to be discussed in section 2.4;
further note that the dependence of the system on L appears via the equations of
motion not through the boundary conditions). Altogether, with this approach we
generate lines of lumpy branes that have constant dimensionless length LΛ, and the
dimensionless temperature T/Λ (and thus αΛ and the associated boundary condi-
tion (2.27)) is varying along these lines of solutions (although Λ itself is fixed which
perhaps demonstrates that our choice of nomenclature for αΛ is misleading up to this
clarification).

A plot that best illustrates these two strategies will be the one of figure 11 of section 2.5
where we provide examples of lumpy branes with constant dimensionless temperature or
constant dimensionless length.

2.3 Thermodynamic quantities

Having found the nonconformal solutions (2.18) that obey the boundary conditions (2.20)–
(2.27), we will now implement the holographic renormalization procedure in order to obtain
the relevant thermodynamic quantities (recall that ` ≡ 1 and y+ ≡ 1). Our (non)uniform
branes are asymptotically AdS5 solutions with a scalar field with mass µ2 = −3. In these
conditions, the holographic renormalization procedure to find the holographic stress tensor
Tab and expectation value 〈Oφ〉 of the operator dual to the scalar field φ was developed
in [14, 15]. We apply it to our system. We first need to introduce the Fefferman-Graham
(FG) coordinates (z, χ) that are such that the asymptotic boundary is at z = 0 and
gzz = 1/z2 and gza = 0 (with a = t, χ, w2,3) at all orders in a Taylor expansion about
z = 0. In terms of the radial and planar coordinates (y, x) of (2.18) the FG coordinates are

y = z2 + Λ2

3 z4 + 1
12z

6
(

Λ4 − 3 + 3
2q

(0,2)
2 (χ, 0)

)
+O(z8);

x = χ− q
(1,2)
2 (χ, 0)

96L2 z6 +O(z8). (2.29)
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The expansion of the gravitational and scalar fields around the boundary up to the order
that contributes to the thermodynamic quantities is then

ds2 = 1
z2

[
dz2 + ds2

∂ + z2 ds2
(2) + z4 ds2

(4) +O(z6)
]

(2.30)

where

ds2
∂ = g

(0)
ab dxadxb = −dt2 + L2dχ2 + dx2

2 + dx2
3,

ds2
(2) = g

(2)
ab dxadxb = −Λ2

3 ds2
∂ ,

ds2
(4) = g

(4)
ab dxadxb

= 1
36

(
27− Λ4 − 36 q(0,2)

1 (χ, 0) + 9
2 q

(0,2)
2 (χ, 0)

)
dt2

+L2

36

(
9− 7Λ4 + 27

2 q
(0,2)
2 (χ, 0)− 72 Λ q(0,1)

4 (χ, 0)
)
dχ2

+ 1
36

(
9 + Λ4 − 18 q(0,2)

1 (χ, 0)− 9
2 q

(0,2)
2 (χ, 0)

)(
dx2

2 + dx2
3

)
; (2.31)

φ = Λ z + φ2 z
3 +O(z5) , (2.32)

φ2 =
(Λ3

6 + q
(0,1)
4 (χ, 0)

)
. (2.33)

The holographic quantities can now be computed using the holographic renormalization
procedure of Bianchi-Freedman-Skenderis [14, 15].7 At the end of the day, for our system,
the expectation value of the holographic stress tensor is given by

〈Tab〉 = 2`3

κ2

[
g

(4)
ab + g

(0)
ab

(
Λφ2 −

Λ4

18 −
Λ4

4φ2
M

)]
, (2.34)

where the metric components g(0)
ab , g

(4)
ab and the scalar decay φ2 can be read directly

from (2.30)–(2.33), and we recall that φM is a parameter of the superpotential (2.2) that
we will eventually set to φM = 1. Similarly, the expectation value of the dual operator
sourced by Λ is

〈Oφ〉 = 2`3

κ2

(
Λ3

φ2
M

− 2φ2

)
. (2.35)

The trace of the expectation value yields the expected Ward identity associated to the
conformal anomaly

〈T a
a 〉 = −Λ〈Oφ〉 , (2.36)

which reflects the fact that our branes are not conformal.8 Furthermore, after using the
Bianchi relation (2.22), we confirm that the expectation value of the holographic stress

7Note however that we use different conventions for the Riemann curvature, that is to say, with respect
to [14, 15] our action (2.1) has the opposite relative sign between the Ricci scalar R and the scalar field
kinetic term (∇φ)2.

8Note that the holographic gravitational conformal anomaly contribution Agrav [14, 15] and the scalar
conformal anomaly contribution Ascalar vanish for our system.
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tensor is conserved, i.e.
∇a〈Tab〉 = −〈Oφ〉∇bΛ = 0 . (2.37)

In (2.34) and (2.35) we have reinstated the appropriate power of ` in order to remind
the reader that, for an SU(N) gauge theory, the prefactor in these expressions typically
scales as

2`3

κ2 ∝ N
2 . (2.38)

In the rest of the paper we will work with rescaled quantities obtained by multiplying the
stress tensor and the scalar operator by the inverse of this factor.

Evaluating (2.34) explicitly we find the following expressions for the energy density
E , the longitudinal pressure PL (along the inhomogenous direction x) and the transverse
pressure PT (along the homogenous directions x2 and x3):

E(χ) = Λ4

4

(
1
φ2
M

− 5
9

)
+ 1

4

(
3− 4 q(0,2)

1 (χ, 0) + 1
2 q

(0,2)
2 (χ, 0)

)
− Λ q(0,1)

4 (χ, 0) , (2.39)

PL = Λ4

4

(
1
φ2
M

+ 1
3

)
− 1

4
(
1 + 3 q(0,2)

2 (χ, 0)
)

+ Λ q(0,1)
4 (χ, 0) , (2.40)

PT (χ) = Λ4

4

(
1
φ2
M

− 5
9

)
− 1

4
(
1− 4 q(0,2)

1 (χ, 0)− q(0,2)
2 (χ, 0)

)
− Λ q(0,1)

4 (χ, 0) . (2.41)

Note that PL is the pressure conjugate to the dimensionful coordinate x̃, not to the dimen-
sionless coordinate x. Moreover, for static configurations, conservation of the stress tensor
implies that PL is constant along the inhomogeneous direction, i.e. independent of χ. The
temperature T and the entropy density s of the nonconformal branes can be read simply
from the surface gravity and the horizon area density of the solutions (2.18), respectively:

T =
√
αΛ
π

,

s = π
√
αΛ

√
q3(χ, 1)

(
q1(χ, 1)

)−2
, (2.42)

where have already used the boundary condition (2.27) that introduces the constant αΛ
(that we read from the uniform solutions; see discussion below (2.27)). The Helmoltz free
energy density is F = E − Ts. The total energy E, entropy S and free energy F are
obtained by integrating over the total volume:

E = L2 L

∫ 1

0
dχ E(χ) , S = L2 L

∫ 1

0
dχ s(χ) , F = L2 L

∫ 1

0
dχF(χ) , (2.43)

where we have made use of the fact that the system is homogeneous in the transverse
directions. It will also be useful to define average densities by dividing the integrated
quantities by the total volume:

E = E

LL2 , s = S

LL2 , f = F

LL2 . (2.44)
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For uniform branes these averages coincide with the corresponding densities, since the
latter are constant, but for nonuniform branes they do not. A quantity that will play a
role below is an analogous integral for the expectation value of the scalar operator:

O = L2 L

∫ 1

0
dχ 〈Oφ〉(χ) . (2.45)

Because of the translational invariance in the transverse directions it will also be conve-
nient to work with densities in the transverse plane, namely with quantities that are only
integrated along the inhomogeneous direction. Thus we define the energy, the entropy, the
free energy and the expectation value densities per unit area in the transverse plane as

ρ = E

L2 , σ = S

L2 , f = F

L2 , ϑ = O
L2 . (2.46)

We will refer to these type of quantities as “area densities” or “Killing densities”. In order
to write the first law we will also need the integral of the transverse pressure along the
inhomogeneous direction. We therefore define

pL = PL , pT = L

∫ 1

0
dχPT (χ) . (2.47)

Note that pL and pT have mass dimension 4 and 3, respectively. Finally, we will choose to
measure all dimensionful quantities in units of the only gauge theory microscopic scale Λ.
We will use a “ˆ” symbol to denote the corresponding dimensionelss quantity obtained by
multiplying or dividing a dimensionful quantity by the appropriate power of Λ, thus:

L̂ = ΛL , T̂ = T

Λ , Ê = E
Λ4 , Ê = E

Λ4 , ρ̂ = ρ

Λ3 , f̂ = f

Λ3 , etc.
(2.48)

We are now ready to write down the first law. In order to do this, we first note that the
extensive thermodynamic variables of the system are the total energy E, the total entropy
S, the scalar source Λ, and the three lengths L, L2 ≡ L, L3 ≡ L of the planar directions.
It follows that the first law for the total charges of the system is:

dE = T dS +O dΛ + pL L2 dL+ 2 pT L dL . (2.49)

We see that T , O, pLL2 and pTL are the potentials (intensive variables) conjugate to
S,Λ, L and L, respectively. Since the system is translationally invariant along the x2
and x3 directions, under the associated scale transformation x2,3 → λ0 x2,3 the energy
transforms as E(x2,3) → λ2

0E(x2,3) and thus it is a homogeneous function of λ0 of degree
2. This means that for any value of λ0 one has:

E
(
λ2

0 S,Λ, L, λ0 L2, λ0 L3
)

= λ2
0E (S,Λ, L, L2, L3) . (2.50)

We can now apply Euler’s theorem for homogeneous functions to write the energy as a
function of its partial derivatives:9

2S∂E
∂S

+ L2
∂E

∂L2
+ L3

∂E

∂L3
= 2E (S,Λ, L, L2, L3) . (2.51)

9Essentially, in the present case, Euler’s theorem amounts to take a derivative of the homogeneous
relation (2.50) with respect to λ0 and then sending λ0 → 1.
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The relevant partial derivatives in (2.51) can be read from (2.49) and, recalling that we are
taking L2 = L3 ≡ L, this yields the Smarr relation for the total charges of the system

E = TS + pTL2 . (2.52)

Dividing by L2 we obtain a Smarr relation for the area densities along the transverse plane:

ρ = Tσ + pT . (2.53)

Rewriting the first law (2.49) in terms of these densities and using (2.53) we find the first
law for the area densities:

dρ = T dσ + pL dL+ ϑ dΛ . (2.54)

Since we will measure all dimensionful quantities in units of Λ, it will be useful to find a
first law and a Smarr relation for the dimensionless densities ρ̂, σ̂, etc. In order to do this we
first use the dilatation transformation (2.12). Under this scale transformation xµ → λ2 x

µ

the energy density ρ transforms as ρ(xµ)→ λ3
2 ρ(xµ) and thus it is a homogeneous function

of λ2 of degree 3, i.e.
ρ
(
λ2

2 σ, λ2 Λ, L/λ2
)

= λ3
2 ρ (σ,Λ, L) . (2.55)

Applying Euler’s theorem for homogeneous functions we get

2σ ∂ρ
∂σ

+ Λ ∂ρ

∂Λ − L
∂ρ

∂L
= 3ρ (σ,Λ, L) . (2.56)

Reading the associated derivatives from the first law (2.54) we find (another) Smarr relation
for the dimensionful densities:

3 ρ = 2T σ − pL L+ ϑΛ . (2.57)

Dividing this relation by Λ3 we get the Smarr relation for the dimensionless densities:

3 ρ̂ = 2 T̂ σ̂ − p̂L L̂+ ϑ̂ . (2.58)

Finally, we can now rewrite the first law (2.54) in terms of the dimensionless area densities
and use (2.58) to find the desired first law

dρ̂ = T̂ dσ̂ + p̂L dL̂ (2.59)

that nonconformal branes with two Killing planar directions x2,3 must obey. In a traditional
thermodynamic language the first law (2.59) and the Smarr relation (2.58) are also known as
the Gibbs-Duhem and Euler relations, respectively. In our case they provide valuable tests
of our numerical results. Moreover, they will be useful to discuss the dominant thermal
phases in the microcanonical and canonical ensembles. Indeed, in the microcanonical
ensemble the dominant phase will be the one that maximises σ̂ for fixed values of ρ̂ and L̂.
Similarly, in the canonical ensemble the dominant phase will be the one that minimises f̂
for fixed T̂ and L̂.
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2.4 Perturbative construction of lumpy branes

In the previous sections we have setup the BVP that will allow us to find the uniform
and nonuniform nonconformal branes (2.18) that obey the boundary conditions (2.20)–
(2.27). This nonlinear BVP can be solved in full generality using numerical methods. In
the uniform case we have a system of coupled quasilinear ODEs that can be solved without
much effort. However, in the nonuniform case the ODEs are replaced by PDEs and it is
harder to solve the system. We will do this numerically in section 2.5. In the present section
we will complement this full numerical analysis with a perturbative nonlinear analysis that
finds lumpy branes in the region of the phase diagram where they merge with the uniform
branes. This perturbative analysis will already provide valuable physical properties of
the system. Additionally, these perturbative results will also be important to test the
numerical results of section 2.5. We solve the BVP in perturbation theory up to an order
in the expansion parameter where we can distinguish the thermodynamics of the uniform
and nonuniform branes.

We follow a perturbative approach that was developed in [16] (to find vacuum lattice
branes) and that has its roots in [17–19] (to explore the existence of vacuum nonuniform
black strings). More concretely, our strategy to find perturbatively the lumpy branes has
three main steps:

1. The first step is to construct the uniform branes.

2. Then, at linear (n = 1) order in perturbation theory, we find the locus in the space of
uniform branes where a zero-mode, namely a mode that is marginally stable, exists.
We will refer to this mode as the GL-mode. In practice, we will identify this locus by
finding the critical length L = LGL (wavenumber kGL = 2π/LGL) above (below) which
uniform branes become locally unstable (stable). As expected from the discussion in
section 1, this critical length only exists for energy densities between points A and B.

3. The third step is to extend perturbation theory to higher orders, n ≥ 2, and construct
the nonuniform (lumpy) branes that bifurcate (in a phase diagram of solutions) from
the GL merger curve of uniform branes.

We describe in detail and complete these three steps in the next three subsections.

2.4.1 Uniform branes: O(ε0) solution

The first step is to construct the uniform branes. We solve the system of four coupled ODEs
for qj(x, y) ≡ Qj(y) (here and below, j = 1, . . . , 4) subject to the boundary conditions (2.23)
and (2.28), as described in section 2.2. This can be done only numerically: we use the
numerical methods detailed in the review [20].

There is a 1-parameter family of uniform nonconformal branes. We can take this pa-
rameter to be the scalar field source Λ. This is actually how we construct these solutions
since Λ is an injective parameter: we give the source Λ via the boundary condition (2.23)
and find the associated brane; then we repeat this for many other values of Λ. The dimen-
sionless energy density Ê = E/Λ4 decreases monotonically as Λ grows, so this procedure
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Figure 3. Dimensionless energy density (left) and free energy density (right) as a func-
tion of the dimensionless temperature for uniform nonconformal branes in our model. The
curve between A and B is the spinodal region and we will refer to it as the “intermedi-
ate branch”. At T̂c ' 0.3958945 (vertical dashed line) there is a first order phase tran-
sition in the canonical ensemble (see right panel). For reference here and in future plots,
(T̂ , Ê)A ' (0.387944, 1.076417), (T̂ , Ê)B ' (0.405724, 0.650227), (T̂ , Ê)C ' (0.3958945, 0.867956),
(T̂ , Ê)D ' (0.3958945, 1.37386) and (T̂ , Ê)E ' (0.3958945, 0.452754).
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Figure 4. (Left) Dimensionless expectation value 〈Oφ〉/Λ3 of the operator with source Λ as a
function of the dimensionless temperature T̂ of the uniform branes. (Right) Value of the scalar field
of the uniform branes at the horizon φH as a function of T̂ .

maps out all possible uniform branes. Recall that, once we have found qj(x, y) ≡ Qj(y),
the thermodynamic quantities of the solution follow straightforwardly from section 2.2.

The properties of uniform branes are summarized in figures 3 and 4. In the left
panel of figures 3 we plot the dimensionless energy density Ê ≡ E/Λ4 as a function of
the dimensionless temperature T̂ ≡ T/Λ. We see the familiar S-shape associated to the
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multivaluedness of a first-order phase transition. Specifically, for a given temperature T̂ in
the window of temperatures T̂A ≤ T/Λ ≤ T̂B there are three distinct families or branches
of uniform branes with different values of Ê . We will refer to these families as the “heavy”,
“intermediate” and “light” branches. The heavy branch (with higher energy density) starts
in the conformal T/Λ → ∞ limit and then extends through point D all the way down to
point A as the temperature T̂ decreases. The intermediate branch extends from point A,
passes though point C, towards point B. This branch has negative specific heat and is
both thermodynamically and dynamically locally unstable. A general discussion of these
features can be found in section 2 of ref. [2]. In the present paper we will analyse the zero-
mode properties of this instability in section 2.4.2, and its timescale in section 2.7. Finally,
the light branch (with lower energy density) starts at point B, passes thought point E and
extends all the way down towards T/Λ→ 0. We do not show the plots of ŝ(T̂ ) and p̂L,T (T̂ )
because they are qualitatively similar to the plot of Ê(T̂ ).

The relevant phase diagram for the canonical ensemble, namely the dimensionless free
energy F̂ ≡ F/Λ4 as a function of the dimensionless temperature T̂ , is displayed in the
right panel of figure 3, where we see the expected swallow-tail shape. For a given T̂ , the
solution with lowest F̂ is the preferred thermal phase. So, as anticipated above, there is a
first-order phase transition at T̂ = T̂c ≈ 0.3958945. This critical temperature is indicated
with a vertical dashed line in the plots of figures 3 and 4, as well as in subsequent ones
whenever appropriate. For T̂ < T̂c the light uniform branch (the lower branch in the
left panel of figure 3) is the preferred thermal phase, while for fixed T̂ > T̂c the heavy
uniform branch (the upper branch in the left panel) dominates the canonical ensemble.
In particular, the intermediate uniform branch (between A and B) is never the preferred
thermal phase.

For completeness, in figure 4 we show how the dimensionless expectation value 〈Oφ〉/Λ3

of the operator with source Λ changes with the dimensionless temperature T̂ (left panel)
and how the value of the scalar field at the horizon φH varies with T̂ (right panel).

In the microcanonical ensemble, the relevant phase diagram is the average entropy
density ŝ ≡ s/Λ3 as a function of the average energy density Ê ≡ E/Λ4. It is important
to consider averaged quantities (which involve integration along the x direction) because
inhomogeneous state will play a role. The qualitative form of the function ŝ(Ê) is shown
in figure 5. The key features are as follows. ŝ is convex (ŝ′′ > 0) in the region between A
and B. This indicates local thermodynamical instability, since the system can increase its
total entropy by rising the energy slightly in part of its volume and lowering in another
so as to keep the total energy fixed. In the regions EB and AD the entropy function is
concave (ŝ′′ < 0) but there are states with the same total energy and higher total entropy,
namely phase-separated configurations in which the phases E and D coexist at the critical
temperature. These states are characterised by the fractions 0 ≤ ν, (1− ν) ≤ 1 of the total
volume occupied by each phase, so their total entropy is of the form ŝE + (ŝD − ŝE)ν, as
indicated by the red segment in figure 5. Therefore the regions EB and AD are locally
but not globally thermodynamically stable. Finally, all states outside the region ED are
globally stable. For our system, these qualitative features are difficult to appreciate directly
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Figure 5. Qualitative form of the entropy density in the microcanonical ensemble. The solid red
segment corresponds to the average entropy density of phase-separated configurations, as explained
in the text. The dashed red segment indicates that the slope of the tangent at point C is the same
as that of the solid red segment. This follows from the fact that the temperature at point C is
precisely Tc.

on a plot of ŝ versus Ê because the curve ŝ(Ê) is very close to a straight line. For this reason
we show the convexity/concavity property (the second derivative) in figure 6(left) and the
difference between the phase-separated configurations and the homogeneous solutions in
figure 6(right).

2.4.2 Gregory-Laflamme physics: O(ε1) solution and the spinodal zero-mode

The intermediate uniform branes with ÊB < Ê < ÊA (see left panel of figure 3), and only
these, can be Gregory-Laflamme (GL) unstable. Roughly speaking, we expect this to hap-
pen if their dimensionless length LΛ (along the x direction) is bigger than the dimensionless
thermal scale Λ/T of the system. This linear instability is ultimately responsible for the
nonlinear existence of the lumpy solutions. Therefore, our second step is to consider static
perturbations about the uniform branes, qj(x, y) = Qj(y)+ε q

(1)
j (x, y), that break the U(1)

symmetry along x (see section 2.7 for time-dependent perturbations). Here, ε � 1 is the
amplitude of the linear perturbation and, ultimately, it will be the expansion parameter of
our perturbation theory to higher order.

We adopt a perturbation scheme that is consistent with our nonlinear ansatz (2.18) —
where we recall that x ∈ [0, 1] — since we want to simply linearize the nonlinear equations of
motion that we already have (section 2.2) to get the perturbative EoM. In this perturbation
scheme we assume an ansatz for the perturbation of the form10

q
(1)
j (x, y) = q

(1)
j (y) cos(π x). (2.60)

10The superscript (n)here and henceforth always denotes the order n of the perturbation theory, not order
of derivatives.
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Figure 6. (Left) Second derivative ŝ′′(Ê) of the entropy density with respect to the energy den-
sity, showing the convexity/concavity properties discussed in the text. (Right) Difference between
the average entropy density of the phase-separated configurations and the entropy density of the
homogeneous solutions, showing that the former are preferred in the region between A and B.

This means that the length L of the periodic coordinate x is given in terms of the wavenum-
ber k of the perturbation by L = 2π/k, and it will change as we climb the perturbation
ladder (this is because k, and thus L, will be corrected at each order; see section 2.4.3).
Since the EoM depend on L, this relation L = 2π/k introduces the zero mode wavenumber
k in the problem.11

Under these circumstances the linearized EoM become a simple eigenvalue problem
in k2 of four coupled ODEs. Henceforth, we denote this leading-order wavenumber by
kGL. So we need to solve our eigenvalue problem to find the eigenvalue kGL as well as
the associated four eigenfunctions q(1)

j (y). Note however that we “just” need to solve
an ODE system of four coupled equations (not PDEs) subject to the linearized versions
of the boundary conditions (2.23)–(2.27). For example, when we linearize (2.23) using
qj |y=0 = Qj |y=0 + ε q

(1)
j |y=0 we find that the linear perturbations q(1)

j (y) must obey the UV
Dirichlet boundary conditions q(1)

j

∣∣
y=0 = 0. On the other hand, linearizing the IR boundary

conditions (2.27) we find that the linear perturbations q
(1)
j (y) must obey the condition

q
(1)
1
∣∣
y=1 = 1

2αΛ
q

(1)
2
∣∣
y=1 and mixed boundary conditions for q

(1)
2,3,4

∣∣
y=1. Of course, in this

11We have some freedom in the choice of the perturbation scheme. For example, an alternative perturba-
tion scheme would be to keep the length L fixed by absorbing the L factor in the metric component gxx of
the ansatz (2.18) into a new coordinate x̃. That is to say, we would change the x ∈ [0, 1] coordinate of (2.18)
into x̃ = xL2 ∈ [0, L2 ]. In this case, the U(1) dependence of the perturbation would be cos(k x̃) which would
introduce the wavenumber k = 2π

L
in the problem. These two schemes are equivalent. This follows from the

observation that the two sets of Fourier modes are equivalent: cos(η k x̃) = cos
(
η 2π
L
L
2 x
)

= cos(η π x). Fur-
ther recall from the discussion above (2.8) that our solutions have Z2 symmetry: the solution in x̃ ∈ [−L/2, 0[
can be obtained by simply flipping our solution over the x = 0 axis (computationally this is useful/efficient
since we deploy a given number of grid points to study the range [0, L/2] instead of [−L/2, L/2]). This is
why we have just a factor of π and not 2π in the arguments of our Fourier cosines.
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Figure 7. Zero mode of the GL or spinodal instability, i.e. its onset wavenumber k̂GL as a func-
tion of the temperature T̂ . For reference (T̂ , k̂GL, L̂GL)C ' (0.3958945, 1.322508, 4.750961), and the
maximum of the instability occurs for (T̂ , k̂GL, L̂GL)K ' (0.397427, 1.332306, 4.716021).

linearization procedure about the uniform brane, we insert the boundary conditions (2.23)
and (2.28) of the leading solution; in particular, we impose Q1

∣∣
y=1 = 1 and Q2

∣∣
y=1 = αΛ.

Summarizing this second step, the above perturbation procedure at O(ε) finds the
critical zero mode of the Gregory-Laflamme (GL) instability of uniform branes with
energy densities ÊB < Ê < ÊA. That is to say, it finds the dimensionless critical
wavenumber k̂GL = kGL/Λ for the onset of the GL instability, and thus the minimum
length LGLΛ = 2π/k̂GL above which the uniform brane is unstable. This critical value
k̂GL = k̂GL(T̂ ) is only a function of the dimensionless temperature T̂ = T/Λ and is plotted
in figure 7. We see that k̂GL = 0 at the endpoints A and B of the intermediate uniform
branch where T̂ = T̂A and T̂ = T̂B. These two branes are effectively stable since L̂GL →∞
at these two temperatures. However, intermediate branes with T̂A ≤ T̂ ≤ T̂B are unstable
if their length satisfies L̂ > L̂GL = 2π/k̂GL.

So L̂GL is parametrized by T̂ , and the energy density of uniform branes is also only
a function of the temperature, Ê = Ê(T̂ ). It follows that we can identify the onset GL
curve of uniform branes in a plot Ê vs L̂. This is done in figure 8. This plot is effectively
a stability phase diagram for the uniform branes since the black dotted GL onset curve
separates the region where the uniform branes are unstable — namely, the parabola-like
shaped interior region ÊB < Ê < ÊA with L̂ > L̂GL — from its complementary region where
branes are stable against the spinodal instability. In this figure note that the energy density
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Figure 8. Stability diagram for uniform nonconformal branes. The interpretation of the
two yellow square points Σ1 and Σ2 will be given when discussing figure 10. For reference,
(T̂ , L̂GL, Ê)Σ1 ' (0.390817, 5.618133, 0.950579) and (T̂ , L̂GL, Ê)Σ2 ' (0.404645, 6.592316, 0.717060)
and (T̂ , L̂GL, Ê)K ' (0.397427, 4.716021, 0.846337).

Ê = ÊA and Ê = ÊB corresponds to the energy densities of the uniform solutions A and B
in figure 3 and note that L̂GL →∞ when the energy density of the black dashed GL onset
curve approaches ÊA or ÊB.

To summarize, figure 8 shows that intermediate uniform branes with a given energy
density ÊB < Ê < ÊA are unstable if their dimensionless length is higher that the GL
critical length, L̂ > L̂GL. Not less importantly, in a phase diagram of solutions, the GL
onset curve also signals a bifurcation to a new family of solutions that describes nonuniform
or lumpy branes. That is to say, the GL onset curve is a merger line between the uniform
and lumpy nonconformal branes. Perturbation theory at order O(ε) identifies this merger
or intersection line (see figure 8) of two distinct surfaces in a 3D phase diagram but it
cannot describe the properties of the lumpy brane surface as we move away from the
merger line (roughly speaking, it cannot describe the “slope of the lumpy surface” in a 3D
phase diagram). For that, we need to proceed to higher order O(εn) in the perturbation
theory, as we do in the next subsection.
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2.4.3 Lumpy branes: perturbative solution at O(εn)

To find the solution at order O(εn) we expand the metric functions and wavenumber in
powers of ε:

qj(x, y) = Qj(y) +
∞∑
n=1

εn q
(n)
j (x, y); (2.61a)

k =
∞∑
n=1

εn−1k(n−1) ≡ kGL +
∞∑
n=2

εn−1k(n−1), with L = 2π
k
. (2.61b)

In this expansion we have made the identification k(0) ≡ kGL and we have already found
the n = 1 contribution in the previous section. Recall that this {kGL, q

(1)
j } contribution

was found by solving a homogeneous eigenvalue problem for kGL. The expansion (2.61) is
such that at order O(εn) we solve the BVP to find the coefficients {k(n−1), q

(n)
j }.

Further note that, as explained above, our choice of perturbation scheme is such that
the length L is corrected at each order n (see also footnote 11). That is, one has

L = LGL +
∞∑
n=2

εn−1L(n−1) , (2.62)

where the coefficients L(n−1) can be read straightforwardly from (2.61b). This also means
that in our choice of scheme, the periodicity of the x circle allows us to introduce a sep-
aration ansatz for the perturbation coefficients q(n)

j (x, y) whereby they are expressed as a
sum of Fourier modes (with harmonic number η) in the x direction as

q
(n)
j (x, y) =

n∑
η=0

q
(n,η)
j (y) cos(η π x). (2.63)

So here and onwards, 0 ≤ η ≤ n identifies a particular Fourier mode (harmonic) of our
expansion at order O(εn).

At orderO(εn), n ≥ 2, the perturbation EoM are no longer homogeneous. Instead, they
describe an inhomogeneous boundary value problem with a source S(n,η). Not surprisingly,
this source is a function of the lower order solutions {k(i−1), q

(i)
j }, i = 1, . . . , n − 1 (and

their derivatives): S(n,η)(k(i−1), q
(i)
j ). This source can always be written as a sum of Fourier

modes of the system. We find that at order O(εn), n ≥ 2, the maximum Fourier mode
harmonic that is excited in the source is η = n. This is due to the fact that at linear order
we start with the single η = 1 Fourier mode and the nth polynomial power of this linear
mode, after using trigonometric identities to eliminate powers of trigonometric functions,
can be written as a sum of Fourier modes with the highest harmonic being η = n. This
property of our source implies that the solution of the O(n) EoM can only excite harmonics
up to η = n and this explains why we capped the sum in (2.63) at η = n.

To proceed, at each order O(n), we have to distinguish the Fourier modes η = 1 from
the other, η 6= 1. This is because this particular Fourier mode η = 1 is the only one that
is already excited at linear order n = 1.

Start with the generic case η 6= 1. Then the differential operator — call it LH —
that describes the associated homogeneous system of equations, LH q

(n,η)
j = 0, is the same
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at each order O(εn) and for any Fourier mode η: it only depends on the uniform brane
Qj(y) we expand about and kGL. The ODE system of 4 inhomogeneous equations is thus
of the form

LH q
(n,η)
j = S(n,η), if n ≥ 2 and η 6= 1. (2.64)

It follows that the complementary functions of the homogeneous system are the same at
each order O(εn), n ≥ 2 and η. But, we also need to find the particular integral of the
inhomogeneous system and this is different for each pair (n, η) since the sources S(n,η) differ.
The general solution q

(n,η)
j (y) is found by solving (2.64) subject to vanishing UV Dirichlet

boundary conditions q
(n,η)
j

∣∣
y=0 = 0 — since the full solution (2.61) must obey (2.23) —

and regularity at the horizon y = 1. This gives mixed boundary conditions for q
(n,η)
2,3,4 and

a Dirichlet condition for q(n,η)
1 , all of which follow from (2.27).

Consider now the exceptional case η = 1. In this case, at order O(εn), n ≥ 2, our BVP
becomes a (non-conventional12) eigenvalue problem in k(n−1). That is to say, the ODE
system of 4 inhomogeneous equations is now of the form

LH q
(n,1)
j = k(n−1) kGLKjmq

(1)
m

2y(1− y2)Q2
2Q3

+ S(n,1), if n ≥ 2 and η = 1. (2.65)

where Kjm is a diagonal matrix whose only non-vanishing components are K11 = 1 = K44.
Recall that LH is an operator that describes two second-order ODEs for q1, q4 and two first-
order ODEs for q2, q3 and this justifies the presence of this particular Kjm in our eigenvalue
term. We now have to solve (2.65) (subject to boundary conditions that are motivated as
in the η 6= 1 case) to find the eigenvalue k(n−1) and the eigenfunctions q(n,1)

j (y).
To have a full understanding of the EoM of our perturbation problem one last ob-

servation is required. As pointed out above, the highest Fourier harmonic that is excited
in our system at order O(εn) is η = n. This is because the nth polynomial power of the
single Fourier mode that is present at linear order, after using trigonometric identities to
eliminate powers of trigonometric functions, can be written as a sum of Fourier modes with
the highest harmonic being η = n. But this trigonometric operation also indicates (as we
explicitly confirmed) that not all Fourier modes with η ≤ n are excited. More concretely,
for even n ≥ 2 we find that only even 0 ≤ η ≤ n modes are present in our system. And for
any odd n ≥ 3, only odd 0 ≤ η ≤ n modes are excited. Therefore, up to order n = 5 we
find that the modes that are excited in our system are:

q
(2)
j (x, y) = q

(2,0)
j (y) + q

(2,2)
j (y) cos(2π x), (2.66a)

q
(3)
j (x, y) = q

(3,1)
j (y) cos(π x) + q

(3,3)
j (y) cos(3π x), (2.66b)

q
(4)
j (x, y) = q

(4,0)
j (y) + q

(4,2)
j (y) cos(2π x) + q

(4,4)
j (y) cos(4π x), (2.66c)

q
(5)
j (x, y) = q

(5,1)
j (y) cos(2π x) + q

(5,3)
j (y) cos(3π x) + q

(5,5)
j (y) cos(5π x). (2.66d)

12It is not a standard eigenvalue problem because the eigenvalue k(n−1) is not multiplying the unknown
eigenfunction q

(n,η)
j . Instead, it multiplies an eigenfunction that was already determined at previous n = 1

order.
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This last property of our system, together with the previous observation — see the dis-
cussion of (2.65) — that Fourier modes with η = 1 are those that give the wavenumber
correction k(n−1) at order O(εn), immediately allows us to conclude that k(n−1) = 0 if n is
even. At even n order the cos (π x) Fourier mode is not excited by the source and thus the
only solution of (2.65) is the trivial solution.

Finally, note that the η = 0 harmonics are of particular special interest. Indeed note
that modes with η 6= 0 do not contribute (since the integral of a cosine vanishes) to the
total thermodynamic quantities of the solution such as the energy E, the entropy S, etc. It
follows from the discussion of (2.66) that odd order n modes do not contribute to correct
these thermodynamic quantities.

We can finally summarize the key aspects of the general flow of our perturbation theory
as the order O(εn) grows:

1. even orders O(εn) introduce perturbative corrections to thermodynamic quantities
like energy, entropy, pressure, etc., but they do not correct the wavenumber, k(n−1) =
0 (and thus do not correct L).

2. odd orders O(εn) give the wavenumber corrections k(n−1) but do not change the
energy, entropy and pressure.

We complete this perturbation scheme up to order O(ε5): this is the order required to find a
deviation between the relevant thermodynamics of the lumpy branes and the uniform phase.

Once we have found all the Fourier coefficients q
(n,η)
j (y) and wavenumber corrections

k(n−1) up to n = 5, we can reconstruct the four fields qj(x, y) using (2.61). We can
then substitute these fields in the thermodynamic formulas of section 2.2 to obtain all the
thermodynamic quantities of the system up to O(ε5). We find that all of them, as well as
the wavenumber, have an even expansion in εn, with the only exception of the temperature
that is simply given by (2.42).

Now that we have the thermodynamic description of lumpy branes up to O(ε5), we
can compare it against the thermodynamics of uniform branes and find which of these
two families is the preferred phase. We are particularly interested in the microcanonical
ensemble, so the dominant phase is the one that has the highest σ̂ for a given pair (L̂, ρ̂). Let
Qu and Qnu denote thermodynamic quantities Q for the uniform and nonuniform branes,
respectively. When comparing these two solutions in the microcanonical ensemble, one
must have

L̂nu = L̂u, and ρ̂nu = ρ̂u. (2.67)

Given a lumpy brane with (L̂nu, ρ̂nu) we must thus identify a uniform brane whose Killing
density ρ̂u satisfies (2.67). Equivalently, we can impose that the energy density of the
uniform brane obeys

Eu = ρ̂nu

L̂nu
. (2.68)

Both sides of this equation are known as a perturbative expansion in ε. This is because the
energy density Eu is a function of the dimensionless temperature T̂u which is corrected at
each order as T̂u = T̂0 + ε2 T̂(2) + ε4 T̂(4) +O(ε6) in our perturbation expansion. Similarly,
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the Killing energy density ρ̂nu(ε) and the length L̂nu(ε) of lumpy branes are also known as
a Taylor expansion in ε. Therefore, in practice equation (2.68) becomes

Eu(τ̂0) + ε2 τ̂(2) E ′u(τ0) + ε4
(
τ̂(4) E ′u(τ0) + 1

2 τ̂
2
(2) E

′′
u (τ0)

)
+O(ε6) = ρ̂nu(ε)

L̂nu(ε)
. (2.69)

Taking the Taylor expansion of ρu(T̂u) we must impose

ρnu = ρu(T̂0) + ε2 T̂(2) ρ
′
u(T0) + ε4

(
T̂(4) ρ

′
u(T0) + 1

2 T̂
2
(2) ρ

′′
u(T0)

)
+O(ε6) , (2.70)

Given a lumpy brane with known L̂nu(ε) and ρ̂nu(ε), equation (2.70) allows us to find the
temperature coefficients T(i) of the uniform brane that has the same length and Killing
energy density as the lumpy solution, i.e. the temperature of the uniform brane T̂u up to
O(εn) that satisfies (2.67).

Having this T̂u we can now compute the entropy density of the uniform brane ŝu(Tu)
and the Killing entropy density σ̂u(Tu) = L̂u ŝu(Tu). More concretely, a Taylor expansion
in ε of this equality yields

σ̂(0)
u + ε2 σ̂(2)

u + ε4 σ̂(4)
u +O(ε6) (2.71)

=
[
L̂nu(0) + ε2 L̂nu(2) + ε4 L̂nu(4) +O(ε6)

]
×
[
ŝu(T̂0) + ε2 T̂(2) ŝ

′
u(T0) + ε4

(
T̂(4) ŝ

′
u(T0) + 1

2 T̂
2
(2) ŝ

′′
u(T0)

)
+O(ε6)

]
,

which allows us to find the entropy correction coefficients σ̂(i)
u and thus the Killing entropy

density σ̂u(T̂u) up to order O(ε6) of the uniform brane that has the same (L̂, ρ̂) as the
particular lumpy brane we selected. This procedure (2.67)–(2.70) can now be repeated for
all lumpy branes.

We are now ready to discuss our higher-order perturbative findings. First, in figure 9
we plot the wavenumber corrections k(2) (left panel) and k(4) (right panel), as defined
in (2.61b). The fact that these higher order quantities grow large as one approaches T̂A
and T̂B tells us that our perturbation theory breaks down in these regions. We will come
back to this below.

Second, in order to determine the dominant phase, we are interested in the entropy
difference between a nonuniform and a uniform brane when the two have the same length
L̂ and Killing energy density ρ̂. This is given by

∆σ̂(ε)
∣∣
sameL̂,ρ̂ =

[
σ̂nu(ε)− σ̂u(ε)

]
sameL̂,ρ̂

=
(
σ̂(0)

nu − σ̂(0)
u

)
+ ε2

(
σ̂(2)

nu − σ̂(2)
u

)
+ ε4

(
σ̂(4)

nu − σ̂(4)
u

)
+O(ε6) (2.72)

≡ ∆σ̂(0) + ε2∆σ̂(2) + ε4∆σ̂(4) +O(ε6) .

By construction ∆σ̂(0) ≡ 0 since the leading order of our perturbation theory describes the
merger line of lumpy branes with uniform branes. Moreover, the first law for the Killing
densities (2.59) can be rewritten, in the perturbative context, as ∂ερ̂ = T̂ ∂εσ̂ + p̂L ∂εL̂
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Figure 9. Wavenumber corrections k(2) (left panel) and k(4) (right panel), as defined in (2.61b),
as a function of the uniform brane temperature. For reference, T̂C ' 0.3958945 and the maximum
of the instability occurs for T̂K ' 0.397427.

and has itself an expansion in ε that must be obeyed at each order. The leading-order
term of this expansion implies that ∆σ̂(2) ≡ 0, a condition that we actually use to test our
numerical results. Therefore the first non-trivial contribution to ∆σ̂(ε) occurs at fourth
order, namely

∆σ̂(ε)
∣∣
sameL̂,ρ̂ =

[
σ̂nu(ε)− σ̂u(ε)

]
sameL̂,ρ̂

= ε4∆σ̂(4) +O(ε6) . (2.73)

This is the reason why we have to extend our perturbation analysis up to O(ε5).
We conclude that, for given (L̂, ρ̂), if ∆σ̂(4) > 0 then the lumpy branes are the preferred

phase; otherwise the uniform branes are the dominant phase. We should thus plot the
coefficient ∆σ̂(4) of (2.72) as a function of L̂ and ρ̂. However, we find it clearer to plot
instead ∆σ̂(4) as a function of the temperature T̂u of the uniform brane that has the same
(L̂, ρ̂) as the lumpy brane we compare it with. This is done in figure 10. Recall that
uniform branes can be GL-unstable only in the range T̂A ≤ T̂ ≤ T̂B and ÊB < Ê < ÊA,
see figure 3. It follows that lumpy branes bifurcate from the uniform branch at the GL
zero mode for temperatures in the range T̂A ≤ T̂ ≤ T̂B. Figure 10 plots this range of
temperature and shows that for T̂Σ1 < T̂ < T̂Σ2 , where the values of T̂Σ1 and T̂Σ2 are
identified in the caption, the lumpy branes are the preferred thermodynamic phase since
∆σ̂(4) > 0. However, for T̂A < T̂ < T̂Σ1 and T̂Σ2 < T̂ < T̂B, we have ∆σ̂(4) < 0 and thus
uniform branes dominate over the lumpy phase when they have the same dimensionless
length L̂ and Killing energy density ρ̂. Going back to figure 8, for completeness we have
also identified these points Σ1 and Σ2 in the associated GL merger curve.

Figures 9 and 10 also illustrate the regime of validity of our perturbative expansion.
For example, in figure 10 we see that ∆σ̂(4) grows arbitrarily negative as we approach
the endpoints A and B of the intermediate branes with temperature T̂A ' 0.387944 and
T̂B ' 0.405724 (see also figure 3). But once the associated entropy correction becomes of
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Figure 10. Perturbative identification of the dominant microcanonical phase. The horizon-
tal axis shows the temperature T̂u of the uniform brane that has the same (L̂, ρ̂) as the lumpy
brane we compare it with. The vertical axis shows the difference between the Killing entropy
densities of the lumpy and the uniform branes. Thus lumpy branes (uniform branes) domi-
nate if ∆σ̂(4) > 0 (∆σ̂(4) < 0). For reference, T̂c ' 0.3958945 (vertical black dashed line),
(T̂ , Ê , L̂GL)Σ1 ' (0.390817, 0.950579, 5.618133) and (T̂ , Ê , L̂GL)Σ2 ' (0.404645, 0.717060, 6.592316).

the order of our expansion parameter, ∆σ̂(4)ε4 ∼ ε, perturbation theory breaks down. So
we should not trust our perturbative results close to the endpoints A and B.

Even away from T̂A and T̂B, our perturbation theory is certainly valid only for ε� 1.
Therefore we expect it to describe accurately the properties of lumpy branes close to their
GL merger line with the uniform branes (where ε = 0) but not far away from this merger. To
learn what happens further away, we need to solve the full nonlinear BVP using numerical
methods. This is what we do in the next subsection.

2.5 Full nonlinear solutions and phase diagram of nonconformal branes

To find accurately the lumpy branes and thus their thermodynamics in the full phase space
where they exist, one needs to resort to numerical methods to solve nonlinearly the associ-
ated BVP, which was set up in section 2.2. It consists of a coupled set of four quasilinear
PDEs — two second-order PDEs for q1,4(x, y) and two first-order PDEs for q2,3(x, y) — that
allow us to find the brane solutions (2.18) that obey the boundary conditions (2.20)–(2.27).

We solve our BVP using a Newton-Raphson algorithm. For the numerical grid dis-
cretization we use a pseudospectral collocation with a Chebyshev-Lobatto grid and the
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Newton-Raphson linear equations are solved by LU decomposition. These methods are
reviewed and explained in detail in the review [20] and used in e.g. [21–25]. As explained
in sections 2.1 and 2.2 (see in particular footnote 2 and the associated discussion) our
gauge was judiciously chosen to guarantee that our solutions have analytical polynomial
expansions at all the boundaries of the integration domain. In these conditions the pseu-
dospectral collocation guarantees that our numerical results have exponential convergence
with the number of grid points. We further use the first law and the Smarr relations (2.59)–
(2.58) to check our numerics. In the worst cases, our solutions satisfy these relations with
an error that is smaller than 1%. As a final check of our full nonlinear numerical results,
we compare them against the perturbative expansion results of section 2.4.

As usual, to initiate the Newton-Raphson algorithm one needs an educated seed. We
use the perturbative solutions of section 2.4 as seeds for the lumpy branes near the GL
merger line with the uniform branes. The uniform branes are a 1-parameter family of solu-
tions parametrized by the dimensionless temperature T/Λ. In contrast, the lumpy branes
are a 2-parameter family of solutions that we can take to be T/Λ and the dimensionless
length LΛ. This means that we need to scan a 2-dimensional parameter space. Our strat-
egy to do so follows two routes. In one of them we follow lines of constant-temperature
lumpy branes as their length LΛ changes. The temperature T is given by (2.42) where
the constant αΛ and Λ (to build the dimensionless ratio T/Λ) are read from the uniform
solution at the GL merger. The minimum length of these branes is the GL length L̂GL

computed in section 2.4.2, and constant-temperature branes exist for arbitrarily large LΛ.
In a second route, we generate curves of lumpy branes that have fixed dimensionless length
LΛ. In this path the temperature T/Λ of the branes changes but at the GL merger with
the uniform branes, see e.g. figure 7, we know both the temperature T̂ and the associated
GL length L̂GL(T̂ ). Altogether these two solution-generating procedures allow us to con-
struct a grid of two “orthogonal-like” lines of solutions that span the phase space of lumpy
branes. Further, recall that once we have the numerical solutions qj(x, y), the thermo-
dynamic quantities of the lumpy branes are read straightforwardly from the expressions
discussed in section 2.3.

After these preliminaries we are ready to discuss our numerical nonlinear findings. A
first important plot is shown in figure 11, where we show the dimensionless average energy
density Ê = E/Λ4 as a function of the dimensionless temperature T̂ = T/Λ. Recall that
for uniform branes Ê coincides with the dimensionless energy density, Ê , which is constant
across the entire system. This plot contains again the uniform-brane spinodal curve (blue
circles) already shown in figure 3 but this time we also show some representative examples
of lumpy brane solutions (all other lines/curves).

As illustrated in figure 11, a first non-trivial conclusion of our study is that lumpy
branes exist only in the temperature window T̂A ≤ T̂ ≤ T̂B where T̂A ' 0.387944 and
T̂B ' 0.405724. That is, they exist only in the temperature range where the GL-unstable,
intermediate branch of uniform solutions (the curve ACB) exists. Of course, we should
have anticipated that lumpy branes merge with the uniform branes of the intermediate
branch and thus in the window T̂A ≤ T̂ ≤ T̂B. However, it was a logical possibility that,
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Figure 11. Phase diagram of figure 3 now with both uniform branes (blue circles) and
some nonuniform brane solutions at constant temperature T̂ (orange circles) or constant
length L̂. The eleven constant-temperature vertical lines have (from left to the right):
T̂ ' {0.388292, 0.389219, 0.390711, 0.392677, 0.394948, 0.397308, 0.399547, 0.401511, 0.403112,
0.404320, 0.405141}. The six lumpy-brane curves at constant L̂ have (from bottom to top on
the left): L̂O ' 5.299674, L̂� ' 6.004224, L̂� ' 6.900924, L̂© ' 11.501849, L̂4 ' 17.906849,
L̂⊗ ' 24.311849. The inset plot is a zoom in around the region that contain C and K (see
also figure 7) and here we plot the uniform-brane curve and just the four constant-L̂ curves
{L̂O, L̂�, L̂�, L̂©}. For reference, (T̂ , Ê)Σ1 ' (0.390817, 0.950579), (T̂ , Ê)Σ2 ' (0.404645, 0.717060)
and (T̂ , Ê)K ' (0.397427, 0.846337).

away from this merger, lumpy branes might exist also for temperatures outside the range
T̂ ∈ [T̂A, T̂B]. We have generated considerably more solutions than those shown in figure 11
in order to test this possibility and, as stated above, we have found that it is not realised.

To continue interpreting figure 11, it is convenient to discuss separately the regions
T̂A ≤ T̂ < T̂c and T̂c < T̂ ≤ T̂B, i.e. the regions to the left and to the right, respectively,
of the vertical dashed line DCE. Recall that this auxiliary line identifies the critical
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temperature T̂ = T̂c at which the first-order phase transition for uniform branes takes
place (see right panel of figure 3).

So consider first lumpy branes that exist in the window T̂A ≤ T̂ < T̂c:

1. For a given temperature T̂ in this range, lumpy branes exist with a dimensionless
length that satisfies L̂GL ≤ L̂ ≤ ∞. In particular, the vertical lines of orange cir-
cles of figure 11 are lumpy branes at constant T̂ that have L̂ = L̂GL(T̂ ) when they
bifurcate from the intermediate uniform-brane branch AC. Then they extend for
arbitrarily large L̂. More precisely, for T̂ < T̂c, constant-T̂ lumpy branes extend
upwards (i.e. towards higher Ê) as L̂ grows. However, we find that for a given step
increase in L̂, the increase in Ê gets smaller and smaller as L̂ grows, i.e. (∂Ê/∂L̂)

∣∣
T̂
is

a monotonically decreasing function of L̂. This is explicitly observed in the vertical
lines that we display: away from the merger each two consecutive orange circles are
separated by the same step in L̂ but the step increase in Ê is significantly decreasing
as we move upwards. Due to the large hierarchy of scales that develops it is difficult
to construct lumpy branes with L̂→∞. But the above behaviour strongly suggests
that lumpy branes with T̂ < T̂c are precisely bounded by the heavy uniform branch
segment AD when L̂→∞, i.e. we conjecture that

lim
L̂→∞

∂Ê
∂L̂

∣∣
T̂
→ 0 and lim

L̂→∞
Ê
∣∣
const T̂

→ ÊADu (T̂ ) . (2.74)

2. The other six curves (with O, �, �,©,4,⊗) in figure 11, that intersect the vertical
lines, describe six families of lumpy branes at constant L̂. Concretely, the chosen
fixed L̂ increases as the curves go from the bottom to the top (for T̂ < T̂c), i.e. L̂O <
L̂� < L̂� < L̂© < L̂4 < L̂⊗. We find that constant-L̂ lumpy branes always bifurcate
from the intermediate uniform brane branch AC at a temperature/point that matches
the temperature already found independently in figure 7, {T̂ , L̂} = {T̂ , L̂GL(T̂ )}. This
is thus a test of our numerics. In particular, curves with (constant) higher L̂ bifurcate
from the intermediate uniform brane with lower T̂ , i.e. the merger is closer to the
endpoint A. In the limit L̂→∞, this bifurcation occurs exactly at {T̂ , Ê} = {T̂A, ÊA}
i.e. at point A, in agreement with the GL linear results of figure 7. As L̂ decreases,
the bifurcation occurs at temperatures that are increasingly closer to T̂ = T̂c. For
T̂ < T̂c, constant-L̂ curves do not intersect further the uniform branch AC.

Let us now follow these constant-L̂ curves as they flow into the second relevant region,
namely T̂ > T̂c. Figure 11 shows that, if this was not already happening for smaller T̂ , all
these curves have a drop in their Ê as they approach T̂c from the left. For very large L̂ this
drop is dramatic with an almost vertical slope (see e.g. the magenta, ⊗ curve). Therefore,
as best illustrated in the inset plot of figure 11 that zooms in the region around point C,
all constant-L̂ curves pile up around point C in a way such that:

1. As T̂ → T̂−c (approaching from the left) all curves have Ê > ÊC . In particular, this
means that these curves do not intersect the uniform branch AC near C.
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2. Once at T̂ > T̂c, all constant-L̂ curves that bifurcated from the uniform branes in
the trench AC cross the uniform brane branch curve between C and K. Recall that
K describes the uniform brane solution that has the largest GL wavenumber kGL or,
equivalently, that has the lowest L̂GL = 2π/kGL; see figure 7. After this crossing, the
constant-L̂ lumpy branes keep extending to higher T̂ with an energy density lower
that the intermediate uniform brane with the same T̂ . This keeps happening until
they merge again with the uniform brane in the trench KB at a critical temperature
that is again the one predicted by the GL zero-mode analysis, i.e. at the highest T̂
that satisfies the condition L̂ = L̂GL(T̂ ), see again figure 7. Lumpy-brane curves with
higher constant L̂ merge with the uniform branch KB at a point that is closer to B.
In the limit where L̂ → ∞ this merger occurs precisely at point B in figure 11, in
agreement with the GL linear results of figure 7.

3. There are constant-L̂ lumpy branes with very small L̂ that bifurcate from the uniform
brane branch only in the trench CK (instead of AC). Then they extend to higher
T̂ , initially with Ê higher that the uniform branes with same T̂ before they cross
the uniform branch CK at a temperature T̂ < T̂K and proceed to higher T̂ below
point K until they merge again with the uniform brane branch but this time in the
trench KB (at a point very close to K). This happens for fixed-L̂ branes whenever
L̂GL(T̂K) < L̂ < L̂GL(T̂C).

The three features of the lumpy branes just listed are compatible with the following
interpretation that merges our nonlinear findings, summarized in figure 11, with the GL
linear results of section 2.4.2, summarized in figure 7. Indeed, let us go back to figure 7
and consider an auxiliary horizontal line at constant k̂GL, i.e. at constant L̂GL. This line
intersects the curve k̂GL(T̂ ) at two points. These are the two merger points of constant L̂
lumpy branes with the uniform brane that we identify in figure 11. One of the mergers
— let us denote it simply as the “left” merger — has T̂A ≤ T̂ ≤ T̂K and the other — the
“right” merger — has T̂K ≤ T̂ ≤ T̂B. Since the maximum of the GL wavenumber occurs
at a temperature that is higher than the one of the first-order phase transition of the
uniform system, T̂K > T̂c, it follows that the “left” mergers of lumpy branes with constant
L̂GL(T̂K) < L̂ < L̂GL(T̂C) are in the trench CK of figure 11. But, for L̂ > L̂GL(T̂C), the
“left” merger is located in the trench AC, with the L̂ → ∞ “left” merger being at A. On
the other hand, the “right” merger is always located in the trench KB of figure 11, with the
“right” merger of the L̂→∞ lumpy branes being at B. Our nonlinear results summarized
in figure 11 further conclude that there are no lumpy branes with L̂ < L̂GL(T̂K). As L̂
approaches L̂GL(T̂K) from above, lumpy branes exist only in a small neighbourhood around
point K in figure 11, with the characteristics described in item 3 in the list above.13

13Note that for other values of the (super)potential parameters φM and φQ in (2.2) (we have picked
φM = 1 and φQ = 10), or in similar spinodal systems, it might well be the case that T̂c > T̂K or, for a
fine-tuned choice of potential, even T̂c = T̂K . If that is the case our conclusions should still apply with the
appropriate shift of K to the left of C in figures 7 and 11. Note that for this exercise we only need to find
the uniform branes of the system and solve for static linear perturbations of these branes which determine
the zero-mode GL wavenumber and thus the location of its maximum K with respect to T̂c. That is to say,
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We stress again that lumpy branes exist only in the temperature range T̂A ≤ T̂ ≤ T̂B.
Our nonlinear results of figure 11 give strong evidence that constant-T̂ < T̂c branes extend
to arbitrarily large L̂ with

lim
L̂→∞

Ê
∣∣
const T̂

→ ÊADu (T̂ ) , (2.75)

see the heavy uniform brane trench AD in figure 11. On the other hand, our results also
strongly indicate that constant-T̂ > T̂c branes extend to arbitrarily large L̂ with

lim
L̂→∞

Ê
∣∣
const T̂

→ ÊEBu (T̂ ) , (2.76)

see the light uniform brane trench ED in figure 11. Moreover, as L̂ grows arbitrarily large,
the constant-L̂ lumpy branes intersect (without merging with) the intermediate uniform
brane branch AB at a point that is arbitrarily close (from the right) to point C in figure 11
and with a slope (∂Ê/∂T̂ )

∣∣
T̂c

that grows unbounded, that is

lim
L̂→∞

∂Ê
∂T̂

∣∣∣∣∣∣
T̂c

→∞ . (2.77)

In the limit L̂→∞ we thus conjecture that lumpy branes are limited by the curve ADCEB
with two cusps connected by the vertical DCE line in figure 11. To argue further in favour
of this conjecture, it is important to explore better the properties of the system in this
L̂→∞ limit and the associated limiting curve ADCEB. For that it is instructive to look
at the energy density profile Ê(x) of the lumpy branes as a function of the inhomogeneous
direction x.

In figure 12 we first consider lumpy branes with the same T̂ but different lengths L̂.14

In the left panel we have the profile of 3 lumpy branes with T̂ ' 0.394948 < T̂c; in the
middle panel we have the profile of 3 lumpy branes with T̂ ' 0.395894 . T̂c (i.e. almost
at T̂c ' 0.3958945); and, finally, in the right panel we show the profile of 3 lumpy branes
with T̂ ' 0.397308 > T̂c. In all panels, the blue diamond lines have a length only slightly
above L̂GL(T̂ ). Therefore, the profile of these lumpy branes is almost flat and very close
to the horizontal dashed line that represents the intermediate uniform brane with ÊACu (T̂ )
(left/middle panels) or ÊCBu (T̂ ) (right panel). Then, the green square curves have a length
of roughly L̂ ∼ 1.25L̂GL(T̂ ). We see that the profile starts becoming considerably deformed
with one of the “halves” pulling well above (below) the uniform brane profile with the
same T̂ . Finally, the red disk curves represent lumpy branes that have a length L̂(T̂ ) that
is considerably higher than L̂GL(T̂ ) (exact values in the caption). We see that the profile
of lumpy branes with T̂ ' 0.394948 < T̂c (left panel) is, in a wide range of x (x . 0.7),
very flat with Ê(x) ∼ ÊADu (T̂ ), i.e. with an energy density that is the same as the one of
the heavy uniform brane in the trench AD that has the same T̂ (upper horizontal dashed
line). Then, for x & 0.7, Ê(x) falls considerably towards the energy density Ê lightu (T̂ ) of the

we just need to complete the tasks described in sections 2.4.1 and 2.4.2.
14When interpreting these figures recall, from the discussion above (2.8), that our solutions have Z2

symmetry: the range x ∈ [0, 1] describes only the brane’s half x̃ = xL/2 ∈ [0, L/2]. To get the other half
extension, x̃ ∈ [−L/2, 0], we just need to flip the profiles of figures 12–13 along their vertical axis.
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Figure 12. Energy density profile Ê(x) for three lumpy branes at the same temperature T̂ .14

(Left) Lumpy branes at constant T̂ ' 0.394948 (this is the first vertical line of orange circles to
the left of C in figure 11). For reference, at the merger the lumpy brane with this temperature
has L̂ = L̂GL ' 4.808993 and L̂� ' 4.819793, L̂� ' 5.996993, L̂• ' 37.208993. For this temper-
ature the heavy, intermediate and light uniform branes have energy densities Êheavy ' 1.350615,
Ê inter ' 0.881537 and Ê light ' 0.443756, respectively. These energy densities are indicated by the
dashed horizontal lines in the plot. (Middle) Lumpy branes at constant T̂ ' 0.395894 . T̂c (so, very
close to T̂c ' 0.3958945). For reference, L̂ = L̂GL ' 4.750995 and L̂� ' 4.761845, L̂� ' 5.944495,
L̂• ' 46.523495, and the energy densities of the relevant uniform branes (dashed horizontal lines)
are Êheavy ' 1.373843, Ê inter ' 0.867966, Ê light ' 0.452747. (Right) Lumpy branes at constant
T̂ ' 0.397308 (this is the first vertical line of orange circles to the right of C in figure 11). For
reference, at the merger the lumpy brane with this temperature has L̂ = L̂GL ' 4.716232 and
L̂� ' 4.727157, L̂� ' 5.917982, L̂• ' 34.759982, and the energy densities of the relevant uniform
branes (dashed horizontal lines) are Êheavy ' 1.407521, Ê inter ' 0.848014, Ê light ' 0.467119.

light uniform brane that has the same temperature (lower horizontal dashed line). Still in
figure 12, the middle panel shows that as T̂ approaches T̂c and for large L̂ (red disks), the
profile Ê(x) describes a domain-wall solution that interpolates between ÊADu (T̂ ) (for small
x) and Ê lightu (T̂ ) (for large x). On the other hand, for T̂ ' 0.397308 > T̂c (right panel of
figure 12) the roles of the heavy and light uniforms get reversed: for x . 0.7 the red disk
lumpy curve is almost flat with an energy density close to the one of the light uniform
brane with the same T̂ , Ê(x) ∼ ÊEBu (T̂ ) (lower horizontal dashed line), while for x & 0.7,
Ê(x) starts increasing towards the energy density Êheavyu (T̂ ) of the heavy uniform brane
with the same T̂ (upper dashed horizontal line).

The L̂→∞ limit of lumpy branes and its association with the limiting curve ADCEB
is further revealed when we complement figure 12 with an analysis of the energy density
profile Ê(x) of a constant-L̂ family of branes for different values of the temperature. One
such analysis is done in figure 13 where we fix L̂ ' 11.501849: this picks the fourth constant-
L̂© curve (from bottom-left) in the plot of figure 11. For clarity we single out this curve
and reproduce it — this time only the relevant zoomed in region of figure 11 — in the left
panel of figure 13. We pinpoint a total of seven solutions with seven different temperatures
(each one with its own distinctive plot marker shape and colour). The first (4) and the
last (O) solutions are the two mergers with the intermediate uniform brane, the second (N)
and sixth (H) solutions are the two extrema of Ê(T̂ )

∣∣
L̂
, and the third (�), fourth (◦) and

fifth (�) plot markers identify three solutions with T̂ at or very close to T̂c. As in figure 12,
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Figure 13. Lumpy branes at constant L̂ ' 11.501849. (Left) Ê as a function of T̂ . This figure repro-
duces figure 11 but this time it singles out only the relevant lumpy brane with L̂ = L̂© ' 11.501849
(orange circles) and the uniform branes (blue circles) and zooms in on the relevant region. It
also identifies 7 solutions whose energy density profiles are then plotted on the right panel. From
left to right these are given by: (T̂ , Ê)4 ' (0.388085, 1.047078), (T̂ , Ê)N ' (0.393560, 1.123216),
(T̂ , Ê)� ' (0.395846, 0.988820), (T̂ , Ê)© ' (0.3958945, 0.914833), (T̂ , Ê)� ' (0.395941, 0.831460),
(T̂ , Ê)H ' (0.400765, 0.637410), (T̂ , Ê)O ' (0.405648, 0.667817). (Right) Energy density profile Ê(x)
for the 7 lumpy branes pinpointed in the left panel.14 The same shape/colour code is used.

we see that the profile of the two lumpy branes at the merger is flat: they coincide with
the uniform branes. As we move to the “extrema” solutions with plot markers N and H we
see, like for similar solutions in figure 12, that the profile is considerably deformed. More
important for our purposes are the solutions with T̂ ∼ T̂c, e.g. �, ◦, �. We see that for such
cases the profile reaches its maximum deformation in the sense that the solution clearly
interpolates between to regions that are fairly flat. Importantly, the small-x flat region is
approaching the energy density ÊDu (T̂c) of the heavy uniform brane that has T̂ = T̂c (see
the upper, horizontal, dashed, blue line labelled by D). Similarly, the large-x flat region is
approaching the energy density ÊEu (T̂c) of the light uniform brane that has T̂ = T̂c (see the
lower, horizontal, dashed, blue curve labelled by E). We further see that the closer we are
to T̂−c (T̂+

c ), the closer we get to ÊDu (T̂ ) (ÊEu (T̂ )). The plot of figure 13 is for a moderate
value of L̂. Combined with the findings of the discussion of figure 12 we conclude that as
L̂ grows large and T̂ → T̂c, the flat regions get more extended in x and the domain wall
that interpolates between them at Ê ∼ ÊDu (T̂c) and Ê ∼ ÊEu (T̂c) gets narrower.

Altogether, the findings summarized in figure 12 and figure 13 lead to the following
conclusion/conjecture. In the double limit L̂ → ∞ and T̂ → T̂c our results support the
conjecture that

lim
L̂→∞

∂Ê
∂T̂

∣∣∣∣∣
T̂c

→∞ . (2.78)

That is, in this double limit we have a family of lumpy branes that fills up the segment DCE
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of figure 11. All this segment describes infinite-length lumpy branes that are sharp/narrow
domain wall solutions interpolating (along 0 ≤ x̃ ≤ ∞) between two flat regions: one
with Ê(x̃) = ÊDu (T̂c) and the other with Ê(x̃) = ÊEu (T̂c). These are the phase-separated
configurations discussed above. As we move up from C toD, the region of x̃ with Ê(x̃) = ÊDu
increases while as we move down from C to E, the region of x̃ with Ê(x̃) = ÊEu increases. We
have infinite domain wall solutions that interpolate between the two uniform phases of the
system at T = Tc. Moreover, keeping the limit L̂→∞, but relaxing the condition T̂ → T̂c,
the results summarized in figures 12 and 13 give evidence to conjecture that infinite-length
lumpy branes exist only for T̂A ≤ T̂ ≤ T̂B and are exactly at the line ADCEB of figure 11.

We will now discuss the thermal competition between lumpy and uniform nonconformal
branes in the microcanonical ensemble. Recall that we keep the dimensionless length L̂

and the Killing energy density ρ̂ fixed and the relevant thermodynamic potential is the
Killing entropy density σ̂. Again, uniform and lumpy branes co-exist for temperatures
T̂A ≤ T̂ ≤ T̂B. So in the microcanonical ensemble, given a lumpy brane with (L̂, ρ̂), our
first task is to find the uniform brane (i.e. the temperature T̂ which parametrizes this
family) that has the same (L̂, ρ̂) as the chosen lumpy brane. Once this is done, we can
compare the Killing entropy densities σ̂ of the two solutions at the same selected (L̂, ρ̂)
pair. As for the perturbative analysis of section 2.4.3 — see e.g. the discussion of (2.72)
— we compute the entropy difference between the two phases when they have the same L̂
and ρ̂:

∆σ̂
∣∣
sameL̂,ρ̂ =

[
σ̂nu − σ̂u

]
sameL̂,ρ̂

. (2.79)

As before, the subscript “nu” stands for the nonuniform (lumpy) brane and “u” denotes
the uniform brane. From our perturbative analysis recall that at the merger curve (ACB in
figure 11 or the black dotted line in figure 8) between uniform and lumpy branes one must
have ∆σ̂

∣∣
sameL̂,ρ̂ = 0. Moreover, in the perturbative analysis leading to figure 10 we found

that lumpy branes that bifurcate from uniform branes in the trench Σ1Σ2 of figures 11 or 8
do so with a positive entropy difference slope. In other words, slightly away from the
merger curve we have ∆σ̂

∣∣
sameL̂,ρ̂ > 0. This means that lumpy branes emanating from the

GL merger dominate over the uniform branes with the same L̂, ρ̂, at least “initially”. On the
other hand, in the complement of Σ1Σ2, i.e. for lumpy branes bifurcating from AΣ1 or Σ2B

in figure 11, the perturbative analysis of figure 10 shows that ∆σ̂
∣∣
sameL̂,ρ̂ < 0. That is, in

this case for a given (L̂, ρ̂) lumpy branes have less Killing entropy density than the uniform
solutions and thus the latter are the preferred phase in the microcanonical ensemble.

Now that we have the full nonlinear solutions, our first task is to naturally compare
these results with the perturbative results of section 2.4.3 that led to figure 10. On the
one hand this will check our numerical results. On the other hand it will identify the
regime of validity of the perturbative analysis, i.e. how “far away” from the merger curve
it holds. To illustrate this comparison, in figure 14 we show ∆σ̂

∣∣
sameL̂,ρ̂ as a function of ρ̂

for a family of lumpy branes that have a fixed temperature T̂ . Note that, as ρ̂ changes, so
does L̂ in order to keep T̂ fixed (this effect is better illustrated in figure 15, as we explain
below). The plots in the top row of figure 14 illustrate what happens for T̂ < T̂Σ1 (left) and
T̂ > T̂Σ2 (right). In these cases the perturbative analysis summarized in figure 10 predicts
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that lumpy branes bifurcate from the GL merger with ∆σ̂
∣∣
sameL̂,ρ̂ < 0, as indicated by

the dashed red curves in figure 14. The numerical nonlinear results, shown as blue dots,
indeed confirm this, and they are in excellent agreement with the perturbative results
near the merger with the uniform brane. The numerical nonlinear results then show the
regime where the perturbative analysis ceases to be valid and that ∆σ̂

∣∣
sameL̂,ρ̂ decreases

monotonically with ρ̂ (we have extended the computation to much higher values of ρ than
those shown in the plot). The plot in the bottom row of figure 14 illustrates what happens
for a constant-T̂ lumpy brane family that bifurcates from an intermediate uniform brane
with T̂Σ1 < T̂ < T̂Σ2 . In this case the perturbative analysis (see figure 10) tells us that
the bifurcation occurs with ∆σ̂

∣∣
sameL̂,ρ̂ > 0. Again the full nonlinear analysis confirms this

is the case and is in excellent agreement with the perturbative results near the merger.
However, in this case the nonlinear analysis provides new crucial information away from
the merger: it shows that, although ∆σ̂

∣∣
sameL̂,ρ̂ initially grows away from the GL merger,

at a certain point it reaches a maximum and then it starts to decrease until it becomes
negative. We have extended the computation to much larger values of ρ̂ than those shown
in the plot and we have found that, beyond this point, ∆σ̂

∣∣
sameL̂,ρ̂ becomes more and more

negative as ρ̂ becomes larger and larger. Since both σ̂nu and σ̂u are non-negative, the reason
for this is clearly that σ̂u becomes arbitrarily large. In turn, this is due to the fact that,
on a constant-T curve, L̂ becomes larger and larger as ρ̂ increases (see figure 15), which
causes the integral over the x-direction of the entropy density ŝ to diverge. At the value
of (ρ̂, L̂) where ∆σ̂ crosses zero, there is a phase transition between lumpy and uniform
branes. This is a first-order phase transition since, for example, the temperature changes
discontinuously. We emphasize that, at the qualitative level, this behaviour is the same
for all constant-T̂ families of lumpy branes that bifurcate from uniform branes in between
points Σ1 and Σ2 in figure 11.

To further understand this phase transition, in figures 15 and 16 we reproduce again
the stability diagram of figure 8, but this time we also plot a few constant-T̂ or constant-L̂
lumpy branes that depart from the GL merger curve. We use two plot marker codes: the
solid blue markers, no matter their shape, represent the trench where ∆σ̂

∣∣
sameL̂,ρ̂ > 0, while

the empty orange markers, no matter their shape, describe the region where ∆σ̂
∣∣
sameL̂,ρ̂ <

0. For reference, recall that

(T̂ , L̂GL, Ê)Σ1 ' (0.390817, 5.618133, 0.950579) ,
(T̂ , L̂GL, Ê)Σ2 ' (0.404645, 6.592316, 0.717060) ,
(T̂ , L̂GL, Ê)K ' (0.397427, 4.716021, 0.846337) . (2.80)

For brevity, henceforth we will use the notation

L̂Σ1 ≡ L̂GL

∣∣
Σ1
, L̂Σ2 ≡ L̂GL

∣∣
Σ2
, L̂K ≡ L̂GL

∣∣
K
. (2.81)

The main conclusions from figures 15 and 16 are as follows:

1. Recall that lumpy branes that bifurcate from the GL merger line at a temperature
T̂ < T̂Σ1 (i.e. above Σ1 in the figures) or at a temperature T̂ > T̂Σ2 (i.e. below Σ2

– 39 –



J
H
E
P
0
2
(
2
0
2
1
)
0
6
1

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

��� ��� ��� ��� ��� ���

-�������

-��������

-�������

-��������

-�������

-��×��-�

�
●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

●●●●●●●●●●●●●●●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●

●

●

���� ���� ���� ���� ���� ���� ���� ����

-��×��-�

-���×��-�

-��×��-�

-���×��-�

-��×��-�

-��×��-�

�

●●●●●●●●●●●●
●●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●
●

●

●

●

●

●

●

●
●
●
●
●
●●

●●●●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

●●●●●●●●●●●●
●●●●●●
●●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●
●●●
●

●

●

●

●

●

●

●
●
●
●
●
●●

●●●●●●●●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●

��� ��� ��� ��� ��� ��� ���

-�����

-�����

�����

�����

�����

�����

�����

Figure 14. Difference ∆σ̂
∣∣
sameL̂,ρ̂ between the Killing entropy densities of lumpy and uniform

branes with the same (L̂, ρ̂) as a function of the Killing energy density ρ̂ for three constant-T̂
families of lumpy branes with T̂ ' 0.390711 < T̂Σ1 (top-left), T̂ ' 0.405141 > T̂Σ2 (top-right) and
T̂Σ1 < T̂ ' 0.399547 < T̂Σ2 (bottom). Recall that T̂Σ1 ' 0.390817 and T̂Σ2 ' 0.404645. The blue
dots are the numerical results for the lumpy branes. The dashed, red curves are the perturbative
result (2.72). The horizontal blue line indicates the uniform-brane family.

in the figures) have ∆σ̂
∣∣
sameL̂,ρ̂ < 0 no matter how large L̂ is, as pointed out when

discussing figure 14 (recall that Σ1 and Σ2 were introduced in figure 10). In figure 15
we display one family of lumpy branes in each of these classes. One has constant
T̂× ' 0.390711 < T̂Σ1 and is always described by empty orange colour markers,
which means that the solutions indeed have ∆σ̂

∣∣
sameL̂,ρ̂ < 0. All the curves that

bifurcate from the GL merger above Σ1 have this feature and they always bifurcate
towards higher Ê and higher L̂ with respect to the merger point (ÊGL, L̂GL). The other
family has constant T̂⊗ ' 0.405141 > T̂Σ2 and is again always described by empty
orange markers, which means that the solutions indeed have ∆σ̂

∣∣
sameL̂,ρ̂ < 0. All the
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Figure 15. Same stability diagram as in figure 8 with the inclusion of some lumpy-brane
curves that bifurcate from the GL merger curve. These curves have constant T̂ given by
{T̂×, T̂⊗, T̂�, T̂•, T̂�, T̂N} ' {0.390711, 0.405141, 0.395420, 0.395894, 0.396367, 0.397307}. Solid blue
markers (empty orange markers), no matter their shape, indicate positive (negative) ∆σ̂

∣∣
sameL̂,ρ̂.

curves that bifurcate from the GL merger below Σ2 have this feature and they always
bifurcate towards lower Ê and higher L̂ with respect to the merger point (ÊGL, L̂GL).

2. The situation is less monotonous for lumpy branes that bifurcate from a point on
the GL merger curve that lies between Σ1 and Σ2. Recall that these have, close
to the merger, ∆σ̂

∣∣
sameL̂,ρ̂ > 0. In figure 15 we display four curves in this class,

namely: the family with constant T̂� ' 0.395420 < T̂c; the family with constant
T̂• ' 0.395894 . T̂c (so, very close to T̂c ' 0.3958945); the family with constant
T̂� ' 0.396367 > T̂c; and the family with constant T̂N ' 0.397307 > T̂c (slightly
below T̂K ' 0.397427). These curves with T̂Σ2 < T̂ < T̂Σ2 bifurcate towards L̂ > L̂GL

with ∆σ̂
∣∣
sameL̂,ρ̂ > 0. Then, if T̂Σ1 < T̂ < T̂c (e.g. the curve with diamond plot

markers �) they typically move to higher Ê as L̂ increases and ∆σ̂
∣∣
sameL̂,ρ̂ changes

from positive into negative when the plot markers change from solid blue � into
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Figure 16. Same stability diagram as in figure 8 with the inclusion of some lumpy-brane lines
that bifurcate from the GL merger curve. These lines have constant L̂ given by {L̂H, L̂�, L̂�, L̂•} '
{5.299674, 6.004224, 6.900924, 11.501849}. Solid blue markers (empty orange markers), no matter
their shape, indicate positive (negative) ∆σ̂

∣∣
sameL̂,ρ̂. Note that some orange circles are on top of

some blue disks. This describes the region around the cusps of figure 17 and 18.

empty orange �. On the other hand, if T̂c < T̂ < T̂Σ2 (e.g. the curves initially with
� and N), the constant T̂ -curves typically plunge into lower Ê as L̂ increases and
∆σ̂
∣∣
sameL̂,ρ̂ changes from positive into negative when the plot markers change from

solid blue into empty orange (i.e. � → � or N→4).

3. When T̂ ∼ T̂c the properties described in the two previous points hold but the
constant-T̂ curves do not escape to large Ê (if T̂ . T̂ ) or small Ê (if T̂ & T̂ ) so quickly
as L̂ grows. A good example is given by the dotted (•) curve with T̂• ' 0.395894 . T̂c.
The closer one is of T̂c the longer L̂ must be for the constant-T̂ curve to cross the GL
merger line again and then acquire ∆σ̂

∣∣
sameL̂,ρ̂ < 0. Our results suggest that in the

exact limit T̂ → T̂c the curve extends to L̂→∞ without ever leaving the window of
energy densities [ÊB, ÊA].
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Figure 17. Microcanonical phase diagram: Killing entropy density difference ∆σ̂
∣∣
sameL̂,ρ̂ between

lumpy and uniform branes with the same (L̂, ρ̂) as a function of the Killing energy density ρ̂

for 3 families of lumpy branes that have constant L̂ given by L̂ ' 5.299674 < L̂Σ1 (top-left),
L̂ ' 6.004224 which is in the range L̂Σ1 < L̂ < L̂Σ2 (top-right) and L̂ ' 11.501849 > L̂Σ2 (bottom).
For reference, L̂Σ1 ' 5.618133 and L̂Σ2 ' 6.592316. The three families are those with constant
{L̂H, L̂�, L̂•} already displayed in figure 11; we use the same shape/colour coding for the markers
execpt that here they are all solid. The horizontal blue line with ∆σ̂

∣∣
sameL̂,ρ̂ = 0 describes the

uniform brane family.

To complete our understanding of the microcanonical phase diagram, in figure 17 we
plot the Killing entropy density difference ∆σ̂

∣∣
sameL̂,ρ̂ between lumpy and uniform branes

with the same (L̂, ρ̂) as a function of the Killing energy density ρ̂ for three families of
lumpy branes that have constant L̂. Note that L̂K < L̂Σ1 < L̂Σ2 (see e.g. figure 16). The
three panels of figure 17 describe representative examples of the following three possible
cases: (1) L̂K < L̂ < L̂Σ1 (top-left panel), (2) L̂Σ1 < L̂ < L̂Σ2 (top-right panel), and (3)
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L̂ > L̂Σ2 (bottom panel). Together with those in figure 14, the plots in figure 17 are the
most important ones in our analysis of the phase diagram. The three panels of figure 17
encode the following conclusions:

1. The top-left panel is for constant L̂ ' 5.299674 solutions and illustrates what happens
in the three-dimensional microcanonical phase diagram ∆σ̂

∣∣
sameL̂,ρ̂ versus (ρ̂, L̂) when

the lumpy branes have L̂K < L̂ < L̂Σ1 . We see that in this range of L̂, lumpy branes
(yellow inverted triangles) bifurcate from the uniform brane (blue line) at low ρ̂ with
∆σ̂
∣∣
sameL̂,ρ̂ > 0 and, as ρ̂ increases, the entropy difference grows until it reaches a

maximum and then it decreases monotonically until the lumpy brane merges again
with the uniform brane at higher ρ̂. Since in this range of (L̂, ρ̂) one always has
∆σ̂
∣∣
sameL̂,ρ̂ > 0, lumpy branes are the preferred phase in the microcanonical ensemble.

2. The top-right panel is for constant L̂ ' 6.004224 solutions and illustrates what hap-
pens in the 3-dimensional microcanonical phase diagram ∆σ̂

∣∣
sameL̂,ρ̂ versus (ρ̂, L̂)

when the lumpy branes have L̂Σ1 < L̂ < L̂Σ2 . As in the previous case, in this range
of L̂, lumpy branes (brown diamonds) also bifurcate from the uniform brane (blue
line) at low ρ̂ with ∆σ̂

∣∣
sameL̂,ρ̂ > 0 and, as ρ̂ increases, the entropy difference grows

until it reaches a maximum. Then it again decreases monotonically but, this time,
∆σ̂
∣∣
sameL̂,ρ̂ becomes negative at a certain ρ̂. This first-order phase transition point

is best seen in the inset plot that zooms into this region. The entropy difference
keeps decreasing as ρ grows until it reaches a cusp. Then, as ρ̂ decreases, ∆σ̂

∣∣
sameL̂,ρ̂

becomes less negative until the lumpy brane with constant L̂ merges again with the
uniform brane.

3. Finally, the bottom panel is for constant L̂ ' 11.501849 solutions (whose energy
density profile was discussed in figure 13). It illustrates how the 3-dimensional mi-
crocanonical phase diagram ∆σ̂

∣∣
sameL̂,ρ̂ versus (ρ̂, L̂) looks like when the lumpy branes

have L̂ > L̂Σ2 . In this range of L̂, at both GL mergers with the uniform brane (blue
line), lumpy branes (orange disks) bifurcate with ∆σ̂

∣∣
sameL̂,ρ̂ < 0. Then, as we move

along the constant-L̂ line away from the merger points, there are first two cusps (the
left one is shown in more detail in the inset plot) and two first-order phase transition
points where ∆σ̂

∣∣
sameL̂,ρ̂ changes sign and becomes positive. For ρ̂ in between these

two transition points, one has a lumpy brane with ∆σ̂
∣∣
sameL̂,ρ̂ > 0 and thus these

lumpy branes are the preferred microcanonical phase. Otherwise, uniform branes
dominate the microcanonical ensemble.

To complement this discussion, it is useful to plot the Killing entropy density difference
∆σ̂
∣∣
sameL̂,ρ̂ between lumpy and uniform branes with the same (L̂, ρ̂) as a function of the

average energy density Ê for some families of lumpy branes that have constant L̂. Recall
that the average energy density and the Killing energy density are related through Ê = ρ̂/L̂.
This means that comparing the entropy of uniform and nonuniform brane at the same (L̂, ρ̂)
is the same as comparing them at the same (L̂, Ê). Figure 18 shows this comparison for
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Figure 18. Killing entropy density difference ∆σ̂|sameL̂,ρ̂ between lumpy and uniform branes
with the same (L̂, ρ̂) or, equivalently, with the same (L̂, Ê), as a function of the aver-
age energy density Ê . We show the same four families of lumpy branes with constant
{L̂H, L̂�, L̂�, L̂•} ' {5.299674, 6.004224, 6.900924, 11.501849} already displayed in figure 11. We
use the same shape/colour coding for the markers as in figure 11 except that here they are all solid.
The families with H,�, • were also shown in figure 17, but the family � was not. The horizontal blue
line with ∆σ̂

∣∣
sameL̂,ρ̂ = 0 describes the uniform brane family. The grey vertical lines indicate the

turning points A and B in the phase diagram of figure 3. The labels “a” and “b” indicate the lumpy
solutions with L̂• ' 11.501849 that lie away from the merger curve but have the same entropy
density as the corresponding uniform branes. In other words, these are the points away from the
merger curve at which ∆σ̂

∣∣
sameL̂,ρ̂ crosses zero. The average energy densities at these points are

Êa ' 1.09879 > ÊA and Êb ' 0.645861 < ÊB .

the four constant-L̂ families {L̂H, L̂�, L̂�, L̂•} that were plotted in figure 16. Figure 18,
together with the projections to the (L̂, Ê)-plane shown in figure 16, is the key figure to
understand the microcanonical phase diagram because it provides four representative slices
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Figure 19. Canonical phase diagram: dimensionless Killing free energy density difference
∆f̂
∣∣
sameL̂,T̂ as a function of the dimensionless temperature T̂ for the six lumpy-brane families

at constant L̂ already shown in figure 11 (with the same colour/shape code). Namely, from the bot-
tom to the top the length of the curves are: L̂O ' 5.299674, L̂� ' 6.004224, L̂� ' 6.900924,
L̂© ' 11.501849, L̂4 ' 17.906849, L̂⊗ ' 24.311849. The black dashed vertical line with
T̂ = T̂D = T̂E ≡ T̂c ∼ 0.3958945 represents the critical temperature first identified in the right panel
of figure 3 and the grey vertical dashed lines represent T̂ = T̂A ∼ 0.387944 and T̂ = T̂B ∼ 0.405724
between which lumpy branes coexist with uniform branes. The horizontal blue line with ∆f̂ = 0
represents the light uniform brane for T̂ < T̂c, and the heavy uniform brane for T̂ > T̂c.

of this plot at constant L̂. Gluing slices of this type together along the Ê-axis one obtains
the three-dimensional plot of ∆σ̂

∣∣
sameL̂,ρ̂ versus (L̂, Ê). The L̂ → ∞ limit of the curves of

figure 18 is the curve in figure 6(right).
So far we have discussed the lumpy branes only in the microcanonical ensemble. This

is the most interesting ensemble because nonuniform branes can dominate this ensemble
for certain windows of the parameter space and in a time evolution we typically fix the
length and the average energy density of the solutions (i.e. the latter is conserved). But
we may also ask about the role played by the lumpy branes in the canonical ensemble. In
this case, we want to fix the length LΛ and the temperature T/Λ of the solutions and the
dominant solution is the one that has the lowest Killing free energy density f/Λ3.

To address this question it is useful to first recall what happens when we consider only
the uniform brane solutions. In the right panel of figure 3 we have already seen that the
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light uniform branch (the lower branch in the left panel of figure 3) is the preferred thermal
phase for T̂ < T̂c, while for fixed T̂ > T̂c the heavy uniform branch (the upper branch in the
left panel of figure 3) dominates the canonical ensemble. The intermediate uniform branch
(between A and B in figure 3) is never a preferred thermal phase of the canonical ensemble.
For this reason it is sometimes stated in textbooks that, at T̂ = T̂c ∼ 0.3958945, there is
a first-order phase transition at which the system jumps discontinuously between the light
and heavy uniform branes. However, at infinite volume there is actually a degeneracy of
states at T̂ = T̂c because the average free energy density of any phase separated state
is the same as that of the homogeneous states at T̂ = T̂c. The reason for this is that
the interface between the two phases in a phase-separated configuration gives a volume-
independent contribution. This contribution is therefore subleading in the infinite-volume
limit with respect to those of the two coexisting phases, whose free energy densities are
equal to each other and to those of homogeneous states at T̂ = T̂c. Therefore, in the
infinte-volume limit the system can transition between points D and E along a sequence of
constant-temperature, constant free-energy, phase-separated states. The fact that all these
states have the same free energy is the content of Maxwell’s construction.

In contrast, at finite volume the inhomogenous, phase-separated states are never
thermodynamically favoured. To show this, in figure 19 we compare the free energy of
lumpy branes with the light uniform branes if T̂ < T̂c, and with the heavy uniform
branch if T̂ > T̂c. More concretely, we compute the difference between the Killing free
energy of the nonuniform brane f̂nu and the light (heavy) uniform Killing free energy
f̂u when T̂ < T̂c (T̂ > T̂c) that has the same length LΛ and temperature T/Λ, i.e.
∆f̂
∣∣
sameL̂,T̂ =

(
f̂nu − f̂u

)
sameL̂,T̂ . figure 19 shows that for any temperature T̂A ≤ T̂ ≤ T̂B

where nonuniform branes exist, one always has ∆f̂
∣∣
sameL̂,T̂ > 0. That is to say, the Killing

free energy density of the lumpy branes is always higher than the free energy of the rele-
vant (light or heavy) uniform brane and thus lumpy branes never dominate the canonical
ensemble.15

2.6 Excited static lumpy branes: beyond the ground state solutions

So far we have discussed only the “ground state” lumpy branes of our spinodal system. The
profile, for example that of the energy density E(x), of these fundamental branes has a single
maximum and a single minimum, see figures 12 and 13. The phase diagram of the theory
also contains infinitely many more lumpy brane phases whose profiles E(x) have η maxima
and η minima for natural integer η. However, these are “excited states” of the theory
in the sense that, as we will show below, for given (L̂, ρ̂) they always have lower Killing
entropy density σ̂ than the ground state lumpy branes that we have constructed above.
In other words, lumpy branes with η > 1 are subdominant phases of the microcanonical
ensemble. In particular, this suggests that they should be dynamically unstable and evolve

15For completeness, we have verified that the Killing free energy density f̂ of lumpy branes is always
lower than the Killing free energy density of the intermediate branes AB, and that they become equal to
one another precisely when the merger of these two branches occurs. In any case neither branch is ever
preferred at finite volume in the canonical ensemble.
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towards the fundamental lumpy brane if slightly perturbed. In the case of large L̂ this was
explicitly verified in [2].

In principle, excited lumpy branes can be constructed using the perturbative method
of sections 2.4.2 and 2.4.3. At linear order we would have to start with a Fourier mode
that describes the ηth harmonic of the system, namely with

q
(1)
j (x, y) = q

(1)
j (y) cos(η π x) , for η = 2, 3, 4, · · · (2.82)

instead of the η = 1 case of (2.60). However, without performing this construction we
can obtain a specific subsector of these solutions by using extensivity.16 Indeed, given a
solution with η = 1 in a box of size L̂ we can obtain a solution with η > 1 in a box of
size ηL̂ by taking η copies of the initial solution. Clearly, if the Killing energy and entropy
densities of the initial solution are ρ̂ and σ̂, respectively, then those of the new solution are
ηρ̂ and ησ̂. In contrast, the average energy density Ê = ρ̂/L̂ remains invariant. We must
now compare the Killing entropy density of the solution with η maxima and minima with
that of the corresponding η = 1 brane in a box of size ηL̂. Since the average energy density
is invariant when taking copies of the initial solution, this comparison is most easily done
by considering σ̂ as a function of Ê and L̂. Therefore we must compare the entropy of
the excited brane σ̂η(Ê , ηL̂) ≡ η× σ̂(Ê , L̂) with that of the fundamental brane σ̂(Ê , ηL̂). It
follows that if the entropy at fixed Ê grows with L̂ faster than linearly then the fundamental
brane always has higher entropy than the excited brane. This is indeed the case, as can
be seen by taking constant-Ê slices of figure 18. For example, in figure 20 we do this for
Ê = 0.85 and we compare ∆σ̂η=1 of the fundamental (η = 1) nonuniform brane (orange •)
against ∆σ̂η=2 and ∆σ̂η=3 of the η = 2 (blue �) and η = 3 (green �) excited branes. For
a given (L̂, ρ̂) or, equivalently, for a fixed (L̂, Ê), we see that the Killing entropy density
decreases as η grows: in agreement with the most naive intuition, the fundamental lumpy
brane has the highest Killing entropy density and therefore it dominates the microcanonical
ensemble over any excited brane.

The discussion above applies to excited states that can be obtained as copies of a
single configuration. Therefore states of this type with η maxima and minima have a Zη
discrete symmetry. There exist more general excited states with maxima and minima of
different heights, but we expect these to be subdominant too. In the case of large L̂ this
was explicitly verified in [2].

2.7 The spinodal (Gregory-Laflamme) timescale

In section 2.4.2 we saw that intermediate uniform branes with ÊB < Ê < ÊA (see left
panel of figure 3) can be GL-unstable. To find when the instability appears, we took
the uniform branes Qj(y) of section 2.4.1 and considered static Fourier perturbations of
the form (2.60) about this background, namely qj(x, y) = Qj(y) + ε q

(1)
j (y) cos(πx). This

16Similar arguments where used to find the thermodynamics of excited nonuniform black strings of the
original GL system [26, 27]). We can also start our linear order analysis with two (or more) harmonics with
different amplitudes. This allows to construct lumpy branes with two (or more) maxima that have different
amplitudes (in the spirit of [28]).
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Figure 20. Killing entropy density difference ∆σ̂
∣∣
sameL̂,ρ̂ (between lumpy and uniform branes with

the same (L̂, ρ̂)) as a function of the length L̂ for solutions with Ê = 0.85 for: (1) the fundamental
(η = 1) lumpy brane (orange disks), (2) the η = 2 excited lumpy brane (blue diamonds), and (3)
η = 3 excited lumpy branes (green squares).

allowed us to find the minimum length LGLΛ = 2π/k̂GL (see figures 7 and 8) above which
the uniform brane is unstable. This was enough for our purposes of section 2, where we
were just interested in finding the static lumpy branes. In particular, we found large regions
of the microcanonical phase diagram where lumpy branes coexist with and are favoured
over uniform branes. This suggests that, if we start with initial data that consists of a
uniform brane that is GL unstable plus a perturbation, the system should evolve towards
a lumpy brane with the same length L̂ and Killing energy density ρ̂, and hence also the
same Ê = ρ̂/L̂. The initial stages of this time evolution should be well described by the
linear GL frequencies. It is thus important to compute the GL timescales of the system.

Consider again the uniform branes constructed in section 2.4.1 in the regime ÊB < Ê <
ÊA (see left panel of figure 3). Denote the collective fields by ψ̄(y) = {ḡµν(y), φ̄(y)}. We
will now allow for time-dependent perturbations of this background. More concretely, we
will use the fact that ∂t and ∂x̃ are Killing vector fields of the uniform brane background
to Fourier decompose the time dependent perturbations as

ψ(t, x, y) = ψ̄(y) + ε δψ(1)(y)ei k x̃e−i ω t . (2.83)

This introduces the wavenumber k conjugate to the spatial direction x̃ = xL2 ∈ [0, L/2]
and the frequency ω of the perturbation. Let δgµν ≡ hµν be the metric perturbations and
δφ the scalar field perturbation. Perturbations δψ(1)(y) = {hµν(y), δφ(y)} that break the
symmetries indicated in (2.83) excite a total of 8 fields, namely: δφ, htt, hty, htx̃ hyy, hx̃y,
hx̃x̃ and hx2x2 = hx3x3 .
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Figure 21. Dispersion relation of GL modes for a uniform brane with (τ̂ , Ê) ' (0.395894, 0.867966).
Red circles, blue diamonds and green squares correspond to harmonics with η = 1, 2 and 3, respec-
tively. For reference the maximum of the instability occurs for (τ̂ , k̂GL)K ' (0.397427, 1.332306),
i.e. (τ̂ , L̂GL)K ' (0.397427, 4.716021). The GL zero mode was identified in figure 7.

We have not yet fixed the gauge freedom of the problem. Instead of doing so we
construct two gauge invariant-quantities that encode the most general perturbations of
the form (2.83) as described in [29]. The linearized Einstein equations then reduce to
(and are closed by) a coupled system of two linear, second-order ODEs for these two
gauge-invariant variables. The perturbations must be regular at the horizon in ingoing
Eddington-Finkelstein coordinates and preserve the asymptotic AdS structure of the uni-
form background. This is a non-polynomial eigenvalue problem for the frequency ω where
we give the uniform background and the wavenumber k and find ω. The GL modes of the
uniform brane system have purely imaginary frequency.

In figure 21, as an illustrative example, we plot the dimensionless dispersion relation
ω̂(k̂) for a particular uniform brane with (τ̂ , Ê) ' (0.395894, 0.867966) that is very close
to point C in figure 3, for which (τ̂ , Ê)C ' (0.3958945, 0.867956).17 In figure 21, the
red circle © curve describes the dispersion relation of the fundamental harmonic η = 1.
Not surprisingly, this curve starts at (k̂, ω̂) = (0, 0) and, as k̂ increases, the dimension-
less frequency Imω/Λ first grows until it reaches a maximum and then starts decreasing.
Precisely at the GL critical wavenumber k̂ = k̂GL = 1.322499, as computed indepen-
dently in figure 7, one has Imω/Λ = 0 and for k̂ > k̂GL the uniform brane is stable. For
0 < k̂ < k̂GL the uniform brane is GL unstable and the maximum of the instability occurs
at (k̂, ω̂)|max ' (0.626902, 0.120249 i).

Besides the fundamental GL mode, the uniform brane has an infinite tower of integer

17This corresponds to the same temperature used in the lumpy branes of the top-right panel of figure 12
and in the disk lumpy curve Ê(L̂) of figure 15.
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η spatial Fourier harmonics. Uniform branes are also unstable to these higher harmonics
but the minimum unstable GL length L̂GL,η for the ηth harmonic increases with η or,
equivalently, the critical GL wavenumber k̂GL,η decreases with η. As examples, in figure 21
we also plot two other curves that describe the dispersion relation of the second (η = 2,
blue �) and third (η = 3, green �) harmonics. Note that the dispersion relation of these
higher harmonics can be obtained straightforwardly from that of the fundamental harmonic.
Indeed, note that we can unwrap the S1 and change the periodicity of its coordinate x̃ from
L to Lη = η L, for integer η [26, 27]. This also changes the wavenumber from k = 2π

L into
kη = k

η . Altogether this leaves the phase of the Fourier mode eikx̃ invariant. But this means
that the frequency ωη of the ηth harmonic is related to the frequency of the fundamental
harmonic simply by ωη(k) = ω(k/η) and that the critical GL zero mode of the ηth harmonic
is L̂GL,η = η L̂GL or k̂GL,η = k̂GL/η. These properties, namely

ωη(k) = ω(k/η) , k̂GL,η = k̂GL/η , (2.84)

are indeed observed in figure 21.
The linear results of figure 21 also provide a guide to the full nonlinear time evolution

of nonconformal branes. In a microcanonical ensemble experiment, imagine that we start
with a uniform brane in the regime ÊB < Ê < ÊA where it can co-exist with lumpy branes,
for example with Ê ' 0.867966. We want to perturb it to drive it towards a lumpy brane
with the same L̂ and ρ̂ and thus same Ê . What should we do? We certainly have to consider
a Fourier perturbation with k̂ < k̂GL as read from figure 21 or from figures 7 and 8. In
these circumstances we still have different options that will result in substantially different
time evolutions. Indeed, if we start with a k̂GL,2 < k̂ < k̂GL where only the fundamental
harmonic is unstable then the system will evolve “quickly” towards an η = 1 lumpy brane
(the quickest evolution should occur if k̂ ∼ k̂|max). More generically this will still be the
case also for a k̂ < k̂GL,2 as long as it is higher than the critical k̂ ∼ 0.4205 where the curves
for η = 1 (•) and η = 2 (�) meet, see the right-most dotted vertical line in figure 21. (In
this discussion we assume that the initial amplitudes of all modes are similar.) If instead
0.2513 . k̂ . 0.4205, i.e. in between the two vertical dotted lines of figure 21, then the
time evolution of the uniform brane should first approach an η = 2 lumpy brane before
finally moving towards the fundamental η = 1 lumpy brane, which has a higher Killing
entropy density. Finally, if the uniform brane is perturbed with a k̂ . 0.2513 mode then
the system will first evolve towards an η ≥ 3 lumpy brane before being driven towards its
fundamental lumpy brane endpoint. These expectations were explicitly verified in the case
of large boxes in [2].

3 Real-time dynamics

Above we have constructed inhomogeneous static solutions using purely static methods
to solve the Einstein equations. We will now examine several aspects of these solutions
using real-time dynamical methods. We will first reproduce the static solutions obtaining
excellent agreement. Then we will use the dynamical methods to address two novel aspects
not studied above: the local dynamical stability of the inhomogeneous static solutions, and
the full time evolution, including the end state, of the unstable solutions. The reader
interested in the numerical methods that we use can consult e.g. [1, 2, 10, 30, 31].
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Figure 22. Comparison of the entropy density of the static inhomogeneous solutions obtained
with dynamical methods (black dots) and with static methods (orange dots) for a system with
L̂ ' 11.501849. Blue (red) curves indicate locally stable (unstable) solutions. Orange dots are
exactly as in figure 17(bottom). Grey vertical lines indicate the location of the mergers and the
cusps. The representative solutions Xa,Xb and Xc have average energies Êa ' 0.831460, Êb ' 1.091
and Ê ' 0.651, respectively.

3.1 Reproducing the static solutions from real-time dynamics

In figure 22 we compare the Killing entropy density of the static inhomogeneous solutions
obtained with dynamical methods (black dots) and with static methods (orange dots) for
a system with L̂ ' 11.501849. In figure 23 we compare the average energy density-versus-
temperature relation. As is clear from the figures we find excellent agreement.

The process that we follow to reproduce the static inhomogeneous solutions from real-
time dynamical evolution makes it natural to distinguish three cases:

(I) Lumpy branes whose (L̂,ρ̂) lies inside the GL merger curve of figures 15 and 16. An
example is given by the solution labelled as Xa in figure 22.
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Figure 23. Average energy density versus temperature for static inhomogeneous solutions obtained
with dynamical methods (black dots) and with static methods (orange dots) for a system with
L̂ ' 11.501849. Blue (red) curves indicate locally stable (unstable) solutions. Orange dots are
exactly as in figure 13(left).

(II) Lumpy branes that are outside the merger curve and have the largest entropy among
lumpy branes with the same (L̂,ρ̂). An example is given by the solution labelled as
Xb in figure 22.

(III) Lumpy branes outside the merger curve with the smallest entropy for a given (L̂,ρ̂).
An example is given by the solution labelled as Xc in figure 22.

We follow different strategies to find each of these types of solutions. Solutions of type
I are reproduced by following the full evolution of the spinodal instability, as in [1, 2].
The initial state is a homogeneous brane with the same (L̂,ρ̂) of the lumpy brane that we
want to obtain plus a small sinusoidal perturbation corresponding to the lowest Fourier
mode that fits in the box. As this solution lies inside the GL merger, this perturbation is
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unstable and grows with time.18 Upon dynamical evolution the system eventually enters
the nonlinear regime and finally relaxes to the inhomogeneous solution. In figure 24 we
show an example of one of these evolutions (top-left) and the comparison of the solution at
asymptotically late times with the solution obtained via static methods (top-right), with
excellent agreement.

The previous procedure fails to produce solutions of type II because the homogeneous
system is locally stable, so small perturbations decay in time and the system returns to the
initial homogeneous state. Indeed, we consider a uniparametric family of perturbations, not
necessarily sinusoidal, with the parameter given by the amplitude A of the perturbation,
and find that if A is smaller than a certain critical value A∗ then the system evolves back
to the homogeneous state. In order to obtain a lumpy brane as a final state we must start
with a homogenous brane plus a perturbation that is so large that the system finds itself
directly in the non-linear regime. This is indeed what happens if A > A∗. In this case
the system evolves in time towards the globally preferred state, namely towards a lumpy
brane like the one labelled Xb in figure 22. An example of this evolution is illustrated in
figure 24(middle-left).

Finally, if the amplitude of the perturbation is tuned to be exactly A∗ then the system
evolves in time towards a type III solution like the one labelled as Xc in figure 22. An
example of this evolution is illustrated in figure 24(bottom-left). The fact that A must
be precisely tuned in order to reach the type III solution suggests that these solutions are
locally dynamically unstable. We will verify this explicitly below. Since numerically it
is impossible to tune A with infinite precision, this means that if we were to evolve the
configuration in figure 24(bottom-left) for sufficiently long times we would see that either it
falls back to the homogeneous state (if A is slightly smaller than A∗) or it evolves towards
a type II configuration (if A is slightly larger than A∗). We will confirm this in figure 28.

3.2 Local stability

In this section we study the local stability of the static inhomogeneous solutions by using
real-time dynamical methods. We consider an initial state given by the static inhomoge-
neous solution plus a small perturbation and study its time evolution. The system is said
to be locally stable if all possible linear perturbations decay in time. If at least one of
the perturbations grows in time, then the system is said to be locally unstable. In order
to establish which is the case one must decouple, i.e. diagonalise, the full set of linearized
equations around the inhomogeneous solution (note that all Fourier modes are indeed cou-
pled to one another because the inhomogenous state breaks translational invariance). Each
eigenmode then evolves in time as e−iωt, with ω the corresponding eigenfrequency. If the
imaginary part of all the eigenfrequencies is negative the system is locally stable. If at least
one of the eigenfrequencies has a positive imaginary part then it is locally unstable.

Rather than performing the exercise above, we will use our numerical code to obtain the
time evolution of a generic small initial perturbation of the inhomogeneous state. Since the

18There could be other unstable harmonics. However, by considering a sufficiently large amplitude for
the first mode the system can always be driven to the fundamental lumpy brane with η = 1.
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Figure 24. Real-time evolution leading to a type I (top-left), a type II (middle-left) and a type
III (bottom-left) lumpy brane with L̂ ' 11.501849, labelled Xa,Xb and Xc in figure 22, respectively.
On the right panels we compare the energy density profiles at late times (continuous black lines)
with those obtained by static methods (orange dots).
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perturbation is generic we expect that it will be a linear combination of all the eigenmodes of
the system. Thus, after some characteristic time, the eigenmode with the largest imaginary
part of omega will dominate the evolution leading to a well defined exponential evolution.
We have identified this region of exponential behaviour in all the time evolutions of the
perturbed system that we have studied, and we have obtained the real and imaginary
parts of omega for the dominant mode by performing fits. Note that this will not result
in a mathematical proof of local stability. For example, our generic perturbations may
accidentally have a very small projection on some unstable mode, or the positive imaginary
part of the frequency of this mode may be exceedingly small and hence go unnoticed, etc.
While these possibilities cannot be excluded with absolutely certainty, the detailed searches
that we have performed, together with the consistent emergent physical picture, make us
confident that they are highly unlikely.

Let us illustrate the procedure with the two examples in figure 25. The top panel
corresponds to the relaxation to equilibrium at late times of the simulation presented in
figure 24(top-left). Specifically, we take the spatial profile of the energy density at some
late time, we subtract from it the profile of the inhomogeneous static solution (which we
denoted as Xa in figure 22), and we decompose this difference into Fourier modes. The
time-dependent amplitude of the first few of these Fourier modes is shown in figure 25(top).
We see that all of these modes oscillate and decay exponentially in time with the same
frequency. This is as expected since the evolution is dominated by the single eigenmode
with the slowest decay. The fact that there is no growing mode indicates that the type
I, inhomogeneous, static solution to which this configuration asymptotes at late times
(namely, Xa in the current simulation) is locally dynamically stable.

The second example shown in figure 25(bottom) corresponds to the evolution presented
in figure 24(bottom-left), but extended to longer times. Here we plot the Fourier modes
corresponding to the difference between the spatial energy profile at a given time and the
spatial energy profile of the inhomogeneous, static configuration that we denoted as Xc in
figure 22. We observe a first relaxation in which the stable modes decay but, this time, at
later times the system is dominated by an exponential growth of an unstable mode. This
confirms that the type III lumpy branes such as Xc are locally dynamically unstable, as
anticipated above. Recall that the initial state in this time evolution is a homogeneous
brane plus a large perturbation of amplitude A that is tuned to be close to a critical
value A∗. This tuning is what suppresses the initial amplitude of the unstable mode, hence
allowing the time evolution to drive the system close to Xc for some time. Thus, intuitively,
this solution behaves like a saddle point in configuration space with some stable and some
unstable directions (i.e. a metastable configuration).

We have performed a scan to determine the real and imaginary parts of omega for
the dominant mode of static inhomogeneous solutions with L̂ ' 11.501849 and varying
energy densities. The result is shown in figure 26. We find that type I and II solutions
have negative imaginary parts of omega, and so they are locally stable, while the type III
solutions have positive imaginary parts of omega, and so they are locally unstable. The
imaginary part of omega crosses zero precisely at the “cusps” of figure 22, that is, at the
static solutions lying precisely at the boundary between type II and III solutions. The real
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Figure 25. (Top) Time evolution of some Fourier modes of a perturbation around the type I,
inhomogeneous, static configuration Xa of figure 24(top-right) with Ê ' 0.831460, L̂ ' 11.501849.
The dashed horizontal line indicates the average energy density of the box. The region with clear
exponentially damped oscillations corresponds to times where the subdominant modes have decayed
sufficiently, and the dominant mode has leading amplitude. The dotted line corresponds to a fit
to the envelope, from which we extract the imaginary part of omega. The fact that no mode
grows in time indicates that Xa is locally dynamically stable. (Bottom) Time evolution of some
Fourier modes of a perturbation around the type III, inhomogeneous, static configuration Xc of
figure 24(bottom-right) with Ê ' 0.651, L̂ ' 11.501849. In this case the leading mode grows
exponentially in time, indicating that Xc is locally dynamically unstable.
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Figure 26. Real part (top) and imaginary part (bottom) of the frequency of the dominant linear
mode of the perturbations around static inhomogeneous solutions with L̂ ' 11.501849 and varying
energy densities. The real part of omega goes to zero at the cusps and vanishes for locally unstable
solutions. The imaginary part of omega goes to zero at the cusps and at the mergers. Vertical lines
indicate the location of the mergers and the cusps, as in figure 22. Blue (red) curves correspond to
locally stable (unstable) solutions.
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part of omega is non-vanishing in the locally stable cases, whereas it vanishes in the locally
unstable cases, going to zero also at the cusps. In figures 22, 23 and 26 we show locally
stable solutions in blue and locally unstable solutions in red.

In this section we have discussed the (in)stability of what we called “ground-state” or
“fundamental” solutions in section 2.6, namely of solutions whose spatial energy density
profile has a single maximum and a single minimum. Here we have not explicitly inves-
tigated the case of “excited” solutions, namely those with multiple maxima and minima.
However, some configurations of this type were studied in [2], and in all cases they were
found to be locally dynamically unstable. As discussed in section 2.6 and section 2.7 the
reason is that the entropy density can be continuously increased by moving two of these
maxima or minima towards each other. Since this seems to be a generic feature, we expect
all excited configurations to be locally dynamically unstable.

3.3 Full time evolution of the unstable solutions

In the previous section we studied the local stability properties of the inhomogeneous static
solutions, finding some regions of local instability. A natural question is therefore what
is the end state of the evolution if these locally unstable solutions are perturbed. In this
section we perform the full time evolution of the system and determine the end state.

Given a locally unstable solution there are two natural possibilities for the end state of
the evolution. In figure 27 we present a concrete example where we show the three static
solutions with the same (L̂,Ê) ' (11.501849, 0.651): Xc, Xd and Xe, where Xc is the static
solution presented in figure 24(bottom-right). For the locally unstable solution Xc, the two
possible candidates for the end state of the evolution are the homogeneous solution Xd
and the inhomogeneous solution Xe, since both of these have larger entropy than Xc. By
performing full time evolution we confirm that both solutions Xd and Xe can be the end
state of the evolution, and that which one is reached depends on the initial perturbation.

In order to illustrate this we essentially extend the range of the time evolution shown
in figure 24(bottom-left). Recall that in that figure we dynamically generated a solution
very close to Xc by fine-tuning the amplitude of the initial perturbation to be close to
the critical value A∗. Since the amplitude we choose is close but not exactly equal to
A∗, the result of this time evolution at intermediate times is not exactly the solution Xc
but Xc plus a small perturbation. Since the perturbation is small the system spends a
sizeable amount of time in a very slowly evolving configuration close to Xc, as can be
seen from the intermediate-time behaviour in figure 28. However, if the exact amplitude
is slightly smaller than the critical one then further time evolution eventually drives the
system back to the homogeneous solution labelled as Xd in figure 27. This is the case in
figure 28(left). If instead the amplitude is slightly larger than the critical one then the
system eventually evolves towards the stable, inhomogeneous solution labelled as Xe in
figure 27. This is the case in figure 28(right). Note that the evolution from the unstable
to the stable solutions can be viewed as a long, approximately linear regime (when the
unstable solution is perturbed), followed by a fast non-linear regime, further followed by
another long, approximately linear regime (when the system relaxes to the corresponding
stable solution). We have verified that, at the qualitative level, these results apply to all the
unstable solutions with L̂ ' 11.501849 and varying energy densities that we have studied.
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Figure 27. Zoom-in on the left region of figure 22, where L̂ ' 11.501849. Xc, Xd and Xe are the
three static solutions with the same average energy density Ê ' 0.651. The nonlinear time evolution
of figure 28(left) corresponds to an evolution from Xc to Xd, and figure 28(right) corresponds to an
evolution from Xc to Xe.
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Figure 28. Extension to longer times of the time evolution shown in figure 24(bottom-left),
whose initial state is a homogeneous configuration plus a large perturbation of amplitude A. At
intermediate times this generates the unstable solution Xc plus a small perturbation. (Left) If
the amplitude of the initial perturbation A is slightly smaller than the critical value A∗ then the
system eventually evolves back to the homogeneous solution labelled as Xd in figure 27. (Right)
If the amplitude of the initial perturbation A is slightly larger than the critical value A∗ then the
system eventually evolves towards the stable, inhomogeneous solution labelled as Xe in figure 27.
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4 Discussion

We have considered a bottom-up, five-dimensional gravity model that, at infinite volume,
possesses a first-order, thermal phase transition in the canonical ensemble. As usual, we
expect this model to be holographically dual to a strongly coupled, large-N gauge theory in
four dimensions. We have placed the system in a box and, for simplicity, we have imposed
translational invariance along two sides of the box. We have varied the volume by varying
the size L̂ = ΛL of the third side, where Λ is the microscopic scale of the gauge theory.
We have then constructed what we believe is the complete set of all possible homogeneous
or inhomogeneous equilibrium states at finite L̂. On the gravity side these correspond to
uniform or lumpy branes, respectively. Although we do not have a mathematical proof that
this set is indeed complete, we have found no evidence to the contrary in our extensive
investigations based both on static and dynamical methods.

The first effect of the finite volume is that some homogeneous states between points
A and B in figure 1 become locally dynamically stable, as illustrated in figure 8. The
reason for this is that the spinodal instability is a long-wavelength instability. If L̂ is below
a certain energy-dependent value, then the potentially unstable mode does not fit in the
box and the corresponding homogeneous state is actually stable. The unstable states are
those in the region inside the parabola in figure 8. We see that as L̂ → ∞ we recover
the fact that all states with energy densities between A and B are unstable, but that at
finite L̂ some of them are stable. In particular, there is a value L̂ = L̂K below which all
homogeneous states are locally dynamically stable since none of them can accommodate
an unstable mode.

The parabola in figure 8 is a curve of marginal stability. Therefore we expect a branch
of static, inhomogeneous states to emanate from each point on this curve. One should think
of the extra direction in which these branches emanate as the entropy relative to that of
the homogeneous state, ∆σ̂. The union of all such inhomogeneous branches is therefore
a surface in the three-dimensional space parametrized by the average energy density in
the box E , the size of the box L̂, and the entropy ∆σ̂. We will refer to this surface as the
“entropy surface”. The intersection of this surface with the Ê-L̂ plane contains the parabola
in figure 8 (as well as other points such as the points a and b of figure 18). The curves
in figure 15 are the projections on this plane of constant-T̂ slices of the entropy surface.
Similarly, the vertical lines in figure 16 are the projections on this plane of constant-L̂ slices.
The same slices projected onto the Ê-T̂ plane are shown in figure 11. This last figure makes
it clear that inhomogeneous states only exist in the range of temperatures T̂A ≤ T̂ ≤ T̂B.

The structure of the entropy surface is most easily understood by thinking of it as the
union of constant-L̂ slices for all L̂ > L̂K . The shape of each of these slices as a function of
the energy density is shown in figures 17 and 18. We see that, at the qualitative level, there
are three possibilities depending on the value of L̂ in relation to the following hierarchy

L̂K < L̂Σ1 < L̂Σ2 . (4.1)

These three length scales are an intrinsic property of the theory at finite volume and their
values are given in (2.80). If L̂K < L̂ < L̂Σ1 < L̂Σ2 , then ∆σ̂ is always positive for all the
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values of the energy for which inhomogeneous states exist. This is the case illustrated by
figure 17(top-left) and by the bottom curve with beige inverted triangles in figure 18. If
instead L̂K < L̂Σ1 < L̂ < L̂Σ2 then the ∆σ̂ curve becomes negative and develops a cusp
near its endpoint on the right-hand side. This is the case illustrated by figure 17(top-right)
and by the second-from-the-bottom curve with brown diamonds in figure 18. Finally, if
L̂K < L̂Σ1 < L̂Σ2 < L̂ then the ∆σ̂ curve becomes negative and develops cusps near both
of its endpoints. This is the case illustrated by figure 17(bottom) and by the two top curves
with orange circles and green squares, respectively, in figure 18.

The shape of the entropy surface that we have just described determines the structure
of phase transitions in the microcanonical ensemble. Recall that in the limit L̂ → ∞
the set of globally preferred, maximum-entropy states are those indicated by the black
curves (with arrows) in figure 1 (see also the discussion around figures 5 and 6). The
direction of the arrows in figure 1 indicates what happens as the energy decreases from an
arbitrarily high value. As the energy density decreases towards point D the preferred states
are homogeneous branes of decreasing temperature. At D there is a phase transition into
inhomogeneous states of constant temperature Tc. Since L̂→∞ these are phase-separated
configurations in which the homogeneous phases D and E coexist. At E there is another
phase transition, in this case from inhomogeneous to homogeneous states. The fact that
the fraction of the total volume occupied by each phase varies continuously between 0
and 1 as the energy density varies between D and E suggests that these transitions are
continuous in the microcanonical ensemble. Continuity can also be seen more formally as
follows. For fixed length and source, the first law (2.49) takes the form

1
T

= dS

dE
. (4.2)

In the microcanonical ensemble the total entropy S is the relevant thermodynamic poten-
tial, the total energy E is the control parameter and T is a derived quantity. At the points
D and E the temperature is continuous, but its derivative dT/dE is not, because this is
positive on the homogeneous branch but it vanishes on the inhomogeneous one.

This picture is modified at finite L̂. Note that in this case the system may still exhibit
phase transitions since the planar limit that we work in, N → ∞, acts effectively as a
thermodynamic limit. Consider first figure 29 which illustrates the structure of phase
transitions for a length L̂ ' 11.501849 such that L̂K < L̂Σ1 < L̂Σ2 < L̂ (this is the value
corresponding to the orange circles in figure 11). In this case the preferred states lie on
the homogeneous branch until the energy density reaches that of point a in figure 18. At
this point a first-order phase transition takes place between the homogeneous state and
the state a on the inhomogeneous branch, as indicated by the top horizontal arrow in
figure 29. Note that this transition can take place before (as in the case of the orange
circles in figure 11) or after (as in the case of the green squares figure 11) the turning
point A is reached. The reason that this is a first-order transition is that the temperature
changes discontinuously. As the energy decreases further, the preferred states are those on
the inhomogeneous branch until the energy density reaches that of point b in figure 18. At
this point another first-order phase transition takes place between the inhomogeneous state
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Figure 29. Phase diagram in the microcanonical ensemble for a length L̂ ' 11.501849 such
that L̂K < L̂Σ1 < L̂Σ2 < L̂. The blue and the orange curves correspond to homogeneous and
inhomogeneous states, respectively. The orange curve is the same as the curve of orange circles
in figure 11. Solid segments indicate locally dynamically stable states; dashed segments indicate
unstable ones. The black curves with arrows indicate the sequence of globally preferred, maximum-
entropy states as the average energy density decreases. The points a and b corrrespond to those
in figure 18. The first and fourth (from top to bottom) dashed horizontal lines indicate the energy
densities at these points, whereas the second and third lines indicate the energy densities at the
turning points A and B. The phase transitions between the homogeneous and the inhomogeneous
branches, indicated by the horizontal arrows, are first-order.

and a state on the homogeneous branch with the same average energy density, as indicated
by the bottom horizontal arrow in figure 29. Note that this state is below the turning point
B (i.e. Êb < ÊB). As the energy is further decreased the preferred state remains on the
homogenous branch.

Thinking of the infinite-volume case as the limit L̂→∞ of the situation described in
figure 29 sheds light on the order of the phase transition at infinite volume. As L̂ increases
the point a in figure 29 moves up and to the right. This means that the homogeneous and
the inhomogeneous states between which the transition takes place become closer to one
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Figure 30. Phase diagram in the microcanonical ensemble for a length L̂ ' 5.299674 such that
L̂K < L̂ < L̂Σ1 < L̂Σ2 . The blue and the beige curves correspond to homogeneous and inhomoge-
neous states, respectively. The beige curve is the same as the curve of beige inverted triangles in fig-
ure 11. Solid segments indicate locally dynamically stable states; dashed segments indicate unstable
ones. The black curves with arrows indicate the sequence of globally preferred, maximum-entropy
states as the average energy density decreases. The phase transitions between the homogeneous
and the inhomogeneous branches take place at the points where these branches merge and they are
second-order.

another. In the limit L̂ → ∞ the point a tends to the point D (of figures 1 or 3) and
the transition takes place between two states at the same temperature T̂ = T̂c. Since the
discontinuity in T̂ disappears the phase transition becomes second-order.

Consider now figure 30, which illustrates the structure of phase transitions for a length
L̂ ' 5.299674 such that L̂K < L̂ < L̂Σ1 < L̂Σ2 (this is the value corresponding to the
inverted beige triangles in figure 11). In this case the preferred states lie on the homoge-
neous branch until the merger point with the inhomogeneous branch is reached. At this
point a transition between the homogeneous and the inhomogeneous branches takes place.
Since the transition happens at the merger point, the temperature is continuous and the
transition is second-order. As the energy is further decreased the preferred states remain
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on the inhomogeneous branch until this merges again with the homogeneous branch. At
this point another second-order phase transition takes place. Below this point the preferred
state lies on the homogeneous branch.

In the intermediate range of lengths L̂K < L̂Σ1 < L̂ < L̂Σ2 the structure of transitions
is a hybrid between those described in figures 29 and 30. As the energy decreases there is
first a first-order phase transition between the homogeneous branch and the inhomogeneous
branch. In our model the point on the homogeneous branch lies between A and Σ1, and
the point on the inhomogeneous branch is the analog of point a in figure 29. As the energy
is further decreased the preferred state remains on the inhomogeneous branch until this
merges with the homogeneous one. At this point a second-order phase transition occurs
in which the preferred state becomes the one on the homogeneous branch. This second
transition is analogous to that in figure 30. Below this point the preferred state remains
on this branch.

Finally, for lengths such that L̂ < L̂K < L̂Σ1 < L̂Σ2 , no inhomogeneous states exist
and all the homogeneous ones are dynamically stable. In this case no phase transitions
occur as the energy decreases from infinity to zero, as illustrated in figure 31.

In the figures above we have used continuous and dashed segments to distinguish
between locally dynamically stable and locally dynamically unstable states. In the case
of homogeneous states these properties can be established via a perturbative analysis. In
the case of inhomogeneous states we used a numerical code for time evolution to study the
behaviour of small perturbations. The results are shown in figure 22 and can be succinctly
summarised as follows: all states on the upper part of the curve, shown in blue, are stable,
whereas those on the lower part, shown in red, are unstable (see also a relevant zoom
in figure 27). Once an unstable state is slightly perturbed, its full time evolution and
its end state depend on the perturbation. For example, the locally dynamically unstable
state Xc in figure 22 and figure 27 can decay to either of the stable states Xd or Xe. The
corresponding time evolutions are shown in figures 28(left) and 28(right), respectively.

For completeness, note that, unlike in the microcanonical ensemble, at finite volume
lumpy branes are never the dominant thermodynamic phase in the canonical ensemble, as
illustrated by figure 19.

In our analysis we have benefited from two simplifying assumptions. The first one is
that we imposed translational invariance along two of the three spatial directions of the
box. Lifting this restriction will generically allow for inhomogeneities to develop in all
three directions. It would be interesting to study this more general setup, in particular
the possible interplays between different length scales in different directions. The physics
studied in this paper is relevant for the subset of solutions for which two spatial directions
are homogeneous and compactified on circles of length lower than LK . For lengths greater
than LK the possible existence of instabilities in these two directions should be taken into
consideration. Hopefully, the “one-dimensional building blocks” that we have investigated
will be useful to understand the three-dimensional case.

The second simplifying assumption is the fact that we have worked in the N →∞ limit,
which ensures that the system is in the thermodynamic limit despite the finite volume. In
particular, it guarantees that true phase transitions may occur. At finite N these transitions
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Figure 31. Phase diagram in the microcanonical ensemble for a length L̂ such that L̂ < L̂K <

L̂Σ1 < L̂Σ2 .

will turn into cross-overs. However, the latter can be made arbitrarily rapid by making
N sufficiently large. This means that our results should be a good approximation to the
physics at finite but large N .
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