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1 Introduction

In the winter of 2019-2020 the new SARS-CoV-2 virus started spreading from Wuhan
(China), causing a new disease called COVID-19 characterized by a virulent pneumonia
and a high infection rate. The global impact of COVID-19 has been profound, and the
public health threat it represents is the most serious seen in a virus since the 1918 HIN1
influenza pandemic. Since 31 December 2019 and as of 28 February 2021, in accordance
with the applied case definitions and testing strategies in the affected countries, more
than 113 million confirmed cases of COVID-19 have been reported to the World Health
Organization (WHO), including 2,517,964 deaths.

The coronavirus pandemic has spread worldwide affecting, to a greater or lesser extent,
most countries. It has hit hardest big cities such as Delhi, London, Madrid, Melbourne,
New York, Paris or Rio de Janeiro. These cities are characterized not only by having a
large number of inhabitants but also by being highly densely populated, owning a com-
plex network of public transport, and accommodating large concentrations of workers in
the services sector: education, healthcare, entertainment, retail, and finance. Individuals
also suffer long commuting times to work, staggering income inequalities, and heteroge-
nous living standards across districts, see Cheshire et al. (2014) and Nijman and Wei
(2020). Urban agglomerations are also known to be very heterogeneous with respect to
the composition of the population, including individuals from different races and cultural
backgrounds (Shertzer and Walsh, 2019; Wei et al., 2018).

One of the cities that has been hit hardest by the coronavirus pandemic is New York
(NYC). The impact of COVID-19 in this city during the first wave that took place in the
spring of 2020 has been widely studied in the literature, see Almagro et al. (2021), Almagro
and Orane-Hutchinson (2020), Borjas (2020), Glaeser et al. (2021), and Schmitt-Grohé
et al. (2020), among others. These important contributions focus on different aspects
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consider data at zip code level. More specifically, Almagro and Orane-Hutchinson (2020)
explore different channels to explain the disparities in COVID-19 incidence across NYC
neighborhoods. These authors estimate several linear regression models to assess the
statistical relevance of variables reflecting neighborhood characteristics and occupations,
finding that the latter are important for explaining observed incidence patterns. Their
results show that those occupations with a higher degree of human interaction are more
likely to be exposed to the virus. A second contribution of Almagro and Orane-Hutchinson
(2020) is to suggest a selection on testing, whereby those residents in worse conditions are
more likely to get tested, with such selection decreasing over time as tests become more
widely available.

Borjas (2020) merges information on the number of tests and the number of infections
at the zip code level with demographic and socioeconomic information from the decennial
census and the American Community Survey. This author finds that people residing in
poor or immigrant neighborhoods were less likely to be tested; but the likelihood that a
test was positive was higher in these areas, as well as in those with larger households or
predominantly black populations. The dependent variable in this study is the rate of infec-
tion in the population, which depends on both the frequency of tests and on the fraction of
positive tests among those tested. One important contribution of Borjas (2020) is to show
that the non-randomness in testing across NYC neighborhoods partly invalidates standard
statistical inferences between the rate of infection and the socioeconomic characteristics.
Schmitt-Grohé et al. (2020) investigate access to COVID-19 testing across incomes using
zip code level data on the number of tests, test results, and income per capita. These
authors find that the distribution of tests across income levels is significantly more egali-
tarian than the distribution of income itself. Glaeser et al. (2020) analyze the efficiency
of mobility restrictions in limiting COVID-19 spread. Using zip code data for five U.S.
cities, including New York, these authors find that total cases per capita decrease by 19%
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zip code fixed effects, the decline increases to 30%.

This paper aims to extend the studies described above in several directions. First, we
go beyond the spring of 2020, and analyze data on the number of COVID-19 infections
in NYC at zip code level from 1 September 2020 to 2 February 2021. Second, and most
importantly, we focus on the prediction of the number of weekly new confirmed cases of the
disease. Third, we include temporal and spatial effects in our set of explanatory variables.
Temporal effects are captured by an autoregressive lag of the response variable and the
lagged incidence rate, and spatial effects are accommodated by including their averages in
contiguous neighborhoods. Fourth, we apply Bayesian model averaging (BMA) techniques
using a generalized linear regression for count data as benchmark. The implementation of
this methodology allows us to derive the posterior distribution of the parameters associated
to the covariates. Thus, we shed light on the sensitivity of the increase in confirmed cases to
demographic and socioeconomic factors, as well as autoregressive and spatial terms, under
a potentially large number of specifications of the regression model. Fifth, we provide
pointwise and interval forecasts for each week of the evaluation period and across NYC
neighborhoods. By doing so, we model the uncertainty about our pointwise predictions.
Finally, by fitting our empirical framework to cross-sectional weekly data, we are able to
accommodate the presence of a time-varying intensity rate of the disease that is reflected
in changes in the slope parameters. These dynamics can be associated to policy-induced
changes related to social distancing and the effect of the vaccine, among a few others, see
Fernandez-Villaverde and Jones (2020).

The motivation of this paper is twofold. On the one hand, we acknowledge that stan-
dard linear models are not suitable for predicting the number of confirmed cases of the
COVID-19 disease as it is a count variable. To correct for this feature, we propose econo-
metric frameworks that are more suitable for count data. In particular, our benchmark is
a Poisson regression model with intensity parameter given by a linear function of a large
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On the other hand, we are not aware of econometric models for prediction of the COVID-
19 disease beyond Li and Linton (2021), Liu et al. (2021) and Fernandez-Villaverde and
Jones (2020). Li and Linton (2021) fit a time series model based on a quadratic trend
specification to country level data. Liu et al. (2021) use a panel data model to generate
density forecasts for daily COVID-19 infections for a sample of countries/regions. In this
setup, the growth rate of active infections can be represented by autoregressive fluctuations
around a downward sloping deterministic trend function with a break. Although Liu et al.
(2021) also adopt a Bayesian approach, their methodology and objectives are very differ-
ent from those in the present paper. Importantly, our model accommodates a large set of
covariates, whereas these authors build on a stochastic version of the susceptible-infected-
recovered (SIR) model of Kermack and McKendrick (1927, 1932, 1933) that incorporates
dynamics in the model parameters and a structural break. Another recent important con-
tribution focused on prediction that extends the SIR formulation is Fernandez-Villaverde
and Jones (2020). These authors apply a standard epidemiological model to estimate and
simulate the expansion of the coronavirus disease with data on deaths from several cities
and countries around the world.

Two main conclusions can be drawn from our empirical analysis. First, the proposed
set of covariates are more significant to predict the number of new COVID-19 confirmed
cases in NYC as the pandemic unfolds. Second, the factors with predictive power are dif-
ferent from those in the first wave. In contrast to income, household size, and occupational
variables, we find that the persistence of the incidence rate, spatial effects, population size,
and age-related variables gain traction in this period compared to demographic and socioe-
conomic covariates. That is, the dynamic component of the proposed Poisson regression
model is more relevant for prediction purposes than the static component given by the
exogenous regressors reflecting neighborhood characteristics. The predictive performance
of these models is assessed in-sample and out-of-sample. Both Poisson regression and

BMA frameworks report low mean square prediction errors from one-period-ahead point-



wise forecasts. Interestingly, the baseline Poisson regression model reports very good fit
in-sample and out-of-sample, and its performance is comparable to the Bayesian ensemble
predictor. In order to capture the uncertainty associated to the pointwise predictions, we
also construct interval forecasts. The reliability and accuracy of these predictions is eval-
uated by computing empirical coverage probabilities at 90%. The information content of
the intervals varies across periods but, in general, they are significantly narrower than dur-
ing the first wave of the coronavirus pandemic, see Olmo and Sanso-Navarro (2020). The
autoregressive factors and the spatial effects seem to carry most of the predictive content
compared to the spring of 2020. To illustrate further the reliability of our predictions, we
use choropleth maps showing that our framework is able to capture the dynamics in the
evolution of the pandemic and to predict the heterogeneity of new confirmed COVID-19
cases across neighborhoods on a weekly basis.

The present paper is also related to the recent epidemiological studies by Cordes and
Castro (2020) and DiMaggio et al. (2020). The first authors, in a descriptive analysis
using zip code level data for NYC, identify areas with low access to testing and high case
burden. Cordes and Castro (2020) analyze testing rates, positivity rates, and the propor-
tion of positive tests, and relate them to socioeconomic variables. They find that clusters
with less testing and low proportion of positive tests are characterized by higher income,
education, and a dominant presence of white population. On the contrary, clusters with
higher testing rates and shares of positive tests were disproportionately black and without
health insurance. Simple correlation measures show inverse associations of the proportion
of positive tests with white race, education, and income, and positive links with black
race, Hispanic ethnicity, and poverty. DiMaggio et al. (2020) also claim that there is
increasing evidence that, in addition to individual clinical factors, demographic, socioe-
conomic and racial characteristics of COVID-19 infections play an important role. These
authors analyze positive testing results counts within NYC neighborhoods with Bayesian
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study shows that spatial clustering accounts for approximately 32% of the variation in the
data, with hot spots in all five boroughs. However, the strongest univariate association
with positive testing rates is a clinical factor given by the proportion of residents with
chronic obstructive pulmonary diseasell]

The rest of the paper is structured as follows. Section 2 discusses the dataset used for
the study and describes the set of covariates. Section 3 introduces the forecast models,
briefly reviewing Poisson regressions and BMA techniques for prediction. Section 4 shows
the application of these methods to data from NYC at the zip code level. Suitable choices
of variables with power to explain the cross-sectional increase in the number of confirmed
COVID-19 cases are discussed, and a forecast evaluation exercise comparing the perfor-
mance of several competing models is presented. Section 5 concludes. Tables and figures
are collected in an appendix. A separate online appendix presents the results of the full

analysis for all the weeks over the evaluation period.

2 Data

The NYC Department of Health and Mental Hygiene (DOH) compiles, since 31 March
2020, the cumulative count of confirmed COVID-19 cases at the zip code level.ﬂ Although
this information is available on a daily basis, and in line with most of the related studies
discussed in the introductory section, the main variable of interest is the number of new
confirmed COVID-19 cases reported on a given week. Figure 1 displays the evolution of
this variable in NYC until 2 February 2021. The peak of the first wave of the coronavirus

pandemic took place in the second week of April, when the increase in the cumulative

! Another related literature is concerned with the actual number of infections, suggesting that confirmed
COVID-19 cases may be only the tip of the iceberg. Hortacsu et al. (2021) and Manski and Molinari
(2021) have developed approaches to estimating (or at least bounding) the number of unreported cases.
Although we do not pursue this strategy in the present study, it is worth noting that our prediction models
might be applied in this setting under appropriate inference methods to obtain insights into the extent of
the actual rate of infections in a given geographical area.

Znttps://github.com/nychealth/coronavirus-data/
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number of confirmed cases was 40, 061, and the average number of cases per neighborhood
reached 226. From that week onwards, this average number decreased steadily to 15 in the
second of week of June, and remained below these levels until the beginning of September.
After that moment, the number of weekly cases started to build up again reaching a
maximum of 33,392 cases in the second week of January 2021.

This study exploits the information compiled during the second wave of the coronavirus
pandemic in NYC, considering that it began in September 2020. Table 1 shows descriptive
statistics of weekly new confirmed COVID-19 cases in modified zip code tabulation areas
(ZCTAs) on a 3-week basis. In what follows, and for the sake of clarity, we are reporting
the results using this frequency. The complete tables with the full set of results are shown
in the online appendix. The figures reported in Table 1 reflect a steady increase in the
cross-sectional mean of new cases ranging from 11 in the second week of September 2020
to roughly 189 cases in the second week of January 2021. The dispersion in the number
of cases has also increased during the period analyzed.

The information of the demographic and socioeconomic characteristics of the neigh-
borhoods have been extracted from the American Community Survey (ACS). This data
correspond to 5-year estimates for the period from 2014 to 2018. Table 2 describes the
variables that have been used in our study. A first group of regressors reflects the impor-
tance of demographic factors in explaining the cross-sectional variation of the increase in
confirmed COVID-19 cases at the zip code level, see Borjas (2020) and Schmitt-Grohé et
al. (2020). These variables are total population, its percentage of males, and the average
household size. The shares of Blacks and African Americans, and of Hispanics or Latinos
are intended to capture the racial composition of the population. The age structure is
measured using the median age, the percentage of population 64 years and over, and the
schooling enrollment rate.

Economic conditions have been proxied by income per capita, the employment rate, the

percentage of households with self-employment income, and the share of full-time workers.



As pointed out by Harris (2020) and Hamidi and Hamidi (2021), public transport may
have contributed to the spread of the coronavirus pandemic in NYC. We try to capture
this influence by including as regressors the percentage of workers 16 years and over, the
use of public transportation, excluding taxicab, and average travel time to work. Almagro
and Orane-Hutchison (2020) find that occupations are important in explaining the differ-
ential incidence of COVID-19 across NYC neighborhoods. For this reason, we have also
considered the share of workers in sectors highly exposed to the virus as explanatory vari-
ables: retail trade; transportation, warehousing, and utilities; educational services, health
care and social assistance; arts, entertainment, and recreation; and accommodation and
food services. Living conditions have been reflected using the percentage of housing units
that are occupied, the median number of rooms, the percentage of households with an
Internet subscription, and the share of population lacking health insurance coverage.
The persistence in confirmed COVID-19 cases is captured by two different variables:
the number of new weekly confirmed cases and the incidence rate (ratio of confirmed cases
per 100,000 inhabitants), both being lagged one period. These regressors are aimed at
controlling for self-reinforcing effects of the pandemic above and beyond the explanatory
power of our set of demographic and socioeconomic variables. Spatial, neighboring, effects
are also introduced into the model by including two additional regressors constructed as
the weighted average of lagged new confirmed cases and of lagged incidence rates across
contiguous locations. These spatial lags have been calculated using a row-standardized
contiguity spatial weights matrixﬁ constructed using the geographic information for mod-

ified ZCTAs provided by the U.S. Census Bureau.

3This row-standardization implies that the contribution of the incidence rate from contiguous neigh-
borhoods to central neighborhoods is smaller than in neighborhoods that share borders with just a few
other neighborhoods.



3 Methodology

This section outlines the model used to describe the weekly evolution of the coronavirus
pandemic in NYC neighborhoods. Standard regression models estimated using ordinary
least squares (OLS) are not suitable in this context because they assume that the response
variable is continuous. To apply an OLS estimation framework, the recent extant litera-
ture on the topic considers the incidence rate as the dependent variable, see Almagro and
Orane-Hutchinson (2020) and Borjas (2020) for linear regression and a group logit model,
respectively. As an alternative, we directly model the number of weekly new confirmed
cases. Therefore, as our response variable is count data, we consider as benchmark a
generalized linear model (GLM) given by a Poisson regression. In order to accommodate
a large set of potential covariates, we embed this specification within a BMA approach.
It is characterized by an ensemble of predictors obtained from a battery of different Pois-
son regression models including different combinations of the covariates. This ensemble
approach is known to reduce the forecast error and, more importantly, account for model
uncertainty. In doing so, we are able to obtain posterior inclusion probabilities (PIPs) for
each regressor, as well as posterior distributions for both the model parameters and the

response variable.

3.1 Baseline model

The evolution of the number of new COVID-19 cases in NYC at the zip code level is mod-
eled as a Poisson regression, see McCullagh and Nelder (1989). This estimation framework
allows us to use a count variable as response variable and model, directly, the increase in
the number of confirmed cases per period. This variable is assumed to follow a Poisson
distribution P(X), with A denoting the intensity parameter. This function is convenient
for modeling the expected number of arrivals of a random event for a fixed period of time,

and is closely related to the exponential distribution that would model the interarrival
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times. In this setting, we assume that the number of new confirmed COVID-19 cases is
the number of arrivals to the neighborhood with confirmed cases from a given population,
and A is the average number of arrivals. Our predictions will be based on the estimates of
this coefficient.

The Poisson regression model allows the intensity parameter to evolve over time and
to depend on a set of m covariates. Mathematically, the number of confirmed cases per
period is a Poisson random variable y;;, with « = 1,..., N, where N is the number of
neighborhoods, and t = 1,...,T, with T" the number of periods. The expected value of
this random variable is \;;, which we consider to depend on an intercept a; and three
types of regressors. The first one is an autoregressive dynamic component given by the
lagged values of the number of new confirmed cases (y;;—1) and of the incidence rate (z;;_1).
The second type of covariate contains a linear combination of p exogenous demographic
and socioeconomic variables {z;;},_,. These regressors are assumed to be constant over
time because neighborhood characteristics are persistent variables that do not significantly
change in the short run. As explained in the previous section, this information corresponds
to the observational period 2014-2018. The third type of covariate tries to capture spatial
effects, and is defined using a contiguous adjacency matrix W that assigns ones to those
zip codes that are contiguous and zeros, otherwise. For consistency with the spatial
econometrics literature, we row-standardize the matrix by normalizing the rows to sum
to one. Therefore, the spatial lag of a given variable is its average value in contiguous

neighborhoods. The model is as follows:

log Ait = a¢ + V¥ii—1 + pezig—1 + Zejtl“ij + VWY1 + prwiz—1, (1)
j=1

with 1 and p; are the autoregressive parameters associated to the dynamic component; 6;;
are the parameters corresponding to each regressor j = 1,...,p; p; and 7; are the param-

eters capturing the spatial effects; w; is a row vector of the row-standardized contiguity
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spatial weights matrix W; z¢_1 = (214-1,...,28¢-1), and ye—1 = (Y14-1,- .-, Yns—1)". The
econometric specification of the spatial effects in model is reminiscent of spatial au-
toregressive (SAR) model, see Anselin (2003); however, in contrast to this model, we avoid
the presence of endogeneity by considering the spatial terms to be lagged one period. This

specification is plausible in our dynamic context and convenient for predictive purposes.

3.2 Bayesian model averaging

Model averaging techniques — available both in frequentist and Bayesian contexts — con-
sist of estimating all candidate models and then computing a weighted average of their
estimates, taking into account the implicit uncertainty conditional on a given model and
across different models. This approach was originally developed for linear regression mod-
els, see Raftery (1995) and Raftery et al. (1997), and subsequently extended to more
general frameworks. An early contribution to BMA with GLMs is Raftery (1996), who
proposes to use approximations for the Bayes factors, based on the Laplace method for
integrals. This author also suggests a way to elicit reasonable, but data-dependent, proper
priors.

In general, BMA assigns a prior probability to a set of models, and to a set of parame-
ters associated to each model. These prior distributions are updated once we incorporate
the information obtained from the data to obtain the posterior distributions. Therefore,
BMA is able to deal simultaneously with model selection, estimation, and inference. There
are K = 2™ models comprised by all possible combinations of the m covariates in the Pois-
son regression . Each model is denoted as M;, with k = 1,..., K, and depends on a

vector of parameters By with a conditional posterior probability given by:

(y | By, My.)g(Bx | M)

o ) = B A

(2)

where f(y | Bk, My) and ¢g(Bx | My) denote, respectively, the likelihood function of the
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observations, and the prior density function of the parameters, conditional on model Mj,.
The literature on BMA models has studied extensively the suitability of prior density
functions. Reviews of the most popular options, both in linear and GLM frameworks, can
be found in Forte et al. (2018), Li and Clyde (2018), and Steel (2020).

For a given prior model probability P(M}), its posterior probability can be calculated

applying Bayes’ rule:
fly | My)P(My)
f(y) ’

with f(y | M) and f(y) the conditional and marginal likelihood functions, respectively.

P(My |y) =

(3)

Leamer (1978) assumes that the true parameters 3 associated to the regression variables
are a function of By, from a specific model M. This author proposes to obtain the
posterior density function of 3, conditional on the data {y;}», and model candidates

{ M} || using the law of total probability:

K
9B ly) =Y P(M|y)g(Bc |y, M) (4)
k=1

When m is moderate to large, posterior probabilities of individual models can be very

small and their interpretation loses appeal. In such situations, inclusion probabilities are

very useful. Formally, the PIP for variable z;, with j =1,...,m, is:
K
P(d;j=1|y)=) Pld,=1| M.,y )P(M|y)= ZPMk\y (5)
k=1
LI?kGMk

where d; = 1 if variable j is included in the model, zero otherwise. Using these models we
can obtain the predictive distribution of the quantity of interest. For the response variable

y, this distribution, denoted as y, is computed as:

b 13) =30 | [ 631 B dy Bty )8 POL 1Y), @

k=1
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where the quantity in square brackets is the predictive distribution given My, obtained
using the posterior density function defined in (2). This function is integrated over the
space of parameters By € By, for each k = 1,..., K. In practice, the BMA approach can
be simplified using Monte-Carlo simulation methods or algorithms to rule out models with
low probability of generating the observations such as the Occam’s window, see Madigan

and Raftery (1994) and Raftery et al. (1997), among others.

4 COVID-19 in NYC neighborhoods

This section presents the findings of our empirical study for weekly data on the number of
new confirmed COVID-19 cases in NYC. We divide the analysis into two exercises. First,
we discuss model selection and focus on the relevance of the set of covariates presented in
Section 2 to explain the differential evolution of the coronavirus pandemic across neigh-
borhoods. Second, we assess the predictive power of these variables both in-sample and

out-of-sample.

4.1 Poisson regression

Table 3 reports the estimation results of the Poisson regression model (|1f) for selected weeks
in our sample period separatelyﬁ The variables that exhibit statistical significance across
most periods are the dynamic terms given by increase in the number of confirmed cases
and the incidence rate in the previous week. Both variables display a positive coefficient
and gain statistical significance as the number of cases accelerates through the wave. The
spatial terms are also significant in most periods, highlighting the influence of neighboring
ZCTAs in the evolution of the pandemic. As can be observed in Table Al of the online

appendix, this effect is particularly important in the last two weeks of the sample period

4As noted before, we report the results on a 3-week basis for the sake of clarity and due to space
constraints. The full set of results for the period from 1 September 2020 to 2 February 2021 are included
in the online appendix.
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analyzed when the pandemic gains traction. This finding also suggests that the presence
of positive spillovers in the spread of COVID-19 across neighborhoods helps to predict the
evolution of the disease in NYC.

Population size is strongly significant and displays a positive relationship with the
response variable. This result is not surprising because total population can be considered
to proxy for other fundamental factors reflecting living standards, population density, and
deprivation levels. In contrast to the findings reported for the first wave (Almagro et al.,
2021; Olmo and Sanso-Navarro, 2020), household size is negatively related to the number of
new confirmed cases, but the magnitude of the parameter decreases over time. It is worth
noting that contagion at the household level may be captured by the median number of
rooms. The percentage of male population is hardly significant during our sample period.
Interestingly, and in clear contrast to the results obtained for the spring of 2020 (Choi and
Unwin, 2020), the racial composition of the neighborhoods does not have a prominent role
in explaining differences in the number of new confirmed cases across zip codes during the
second wave.

Age-related variables have a strong predictive power in this model specification. The
median age of the population is negatively associated to the number of weekly COVID-19
cases. Nonetheless, those neighborhoods with a large proportion of people over 64 years
old tend to exhibit a higher number of new confirmed cases. Whereas age may be a
proxy for other socioeconomic variables such as income, the share of the elderly reflects
the strong influence of the coronavirus pandemic on this age group. During the first wave,
income and the number of cases had a negative relationship that was highly significant, see
Olmo and Sanso-Navarro (2020). However, income per capita is hardly significant in our
sample period, suggesting that the number of infections is not very related to the income
of the neighborhood. Similarly, and in contrast to existing findings for the spring of 2020,
occupational variables lose most of their significance. The main exceptions are the self-

employment rate and some variables reflecting the sectoral composition of employment.
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In particular, those measuring the importance of the transport, education and health, and
entertainment sectors. In all these three cases the effects are quite significant, reflecting
that those neighborhoods with a large fraction of individuals working on these sectors are
more affected by the disease. Access to Internet also has an effect during the last weeks of
the study that, as expected, is negative. Other variables such as average commuting time,
and having a full-time job lose any statistical significance during this second wave of the

coronavirus pandemic.

4.2 Bayesian model averaging

The estimation results of the Poisson regressions displayed in Table 3 may vary if only
a subset of the covariates is included. For this reason, and in order to control for model
uncertainty, the same analysis has been carried out adopting a BMA approaChE] That
is to say, we do not impose any specification a priori and let data speak. The sampling
method combines a random walk Metropolis-Hastings algorithm with a random swap
between included and excluded variables, see Raftery et al. (1997) and Clyde et al. (2011),
with one million iterations. We have speciﬁedﬁ a uniform prior over the model space,
and a benchmark prior — which displays a good performance for both estimation and
prediction purposes — for model-specific parameters (Li and Clyde, 2018). In addition
to the implementation of BMA, we use the posterior means under model selection. This
corresponds to a decision rule that combines estimation and selection. In particular, we
consider the highest probability (HPM) and the best prediction (BPM) models. From
a Bayesian decision theory perspective, the latter is the model that is closest to BMA
predictions under squared error loss. Liang et al. (2008) discuss these alternative Bayesian

methods in some detail.

5These methods have been implemented using the BAS R package (Clyde, 2020; The R Core Team,
2021).

60ur empirical results are not very sensitive to the choice of the prior. The robustness check is available
from the authors upon request.
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Table 4 reports the PIP for each covariate in selected periods. This analysis com-
plements the preceding one on the statistical significance of the regressors based on t-tests.
In this case, the relevance of the covariates in the ensemble predictor relies on the proba-
bility that they are included in the model specification. The discussion of the results can
be separated by the type of covariate. The inclusion probabilities associated to the tem-
poral lag of the response variable are very low in most periods, suggesting that this term
does not contain much predictive power. In contrast, the lagged incidence rate receives
a PIP close to one in most periods. The variables that capture the spatial effects are
very significant, what corroborates their importance for prediction purposes. The racial
composition and age-related variables are other important factors that are picked up by
the ensemble predictor. On the contrary, variables related to labor market conditions are
hardly relevant in this setting. The predictive performance of the variables reflecting the
sectoral composition of employment is mixed. During the first weeks of our sample period
these regressors receive very low PIPs, however, during the last weeks, most of these vari-
ables achieve very high values of these probabilities. This is particularly the case of the
percentages of workers in the transport, education and health, and entertainment sectors.

Two main conclusions can be drawn from this analysis. On the one hand, the inclusion
probabilities increase over time as the pandemic unfolds, implying that the covariates are
more significant to predict the number of new confirmed cases at the end of the sample
period. On the other hand, the factors with predictive power are different from those
in the first wave when the self-employment rate and income per capita were important
covariates. During the second wave of the coronavirus pandemic these variables lose their
predictive power. Instead, we find that the persistence of the incidence rate, captured
by its first lag, the spatial effects, population size, and age-related variables gain traction
compared to socioeconomic variables. That is, the dynamic component of the Poisson
regression model is more relevant for prediction purposes than the static component given

by the exogenous regressors.
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To gain a better insight into the nature of the relationship between the predictors
and the response variable with the BMA model, we plot in Figure 2 the posterior density
functions of the model parameters (4) associated to a selection of regressors, according
to their high PIPs during the sample period analyzed, for the second week of January
2021, when the peak of the second wave was reached. The density functions, from left
to right and then going down, correspond to the lagged incidence rate, its average over
contiguous neighborhoods, total population, the racial composition (black and hispanic),
median age, the share of the elderly, and the percentages of workers in the transport and
entertainment sectors. The plots are very informative about the sign of the relationship
between these variables and the increase in the number of confirmed COVID-19 cases. The
density functions also show the presence of uncertainty about the parameters associated
to each regressor. The probability that the covariates are not correlated to the response
variable, characterized by § = 0, is represented by the height of a vertical line. These
density functions reinforce the previous findings: the incidence rate, the spatial effects of
contiguous neighborhoods, and population size are strongly significant predictors in the

BMA specification. In contrast, the other variables are far less relevant.

4.3 Predictive performance

This subsection carries out an exercise to assess the predictive performance of the models
implemented above. We consider five competing forecast methods. The first one is based
on a Poisson random variable with intensity parameter given by the cross-sectional sample
average 7/,. This model corresponds to fitting the data on the number of infections in each
period to a Poisson regression model using maximum likelihood. The second model is
the Poisson regression with intensity parameter introduced in . The remaining three
methods are different versions of the BMA approach, discussed before: a pure model
averaging (BMA), the model that receives the highest probability (HPM), and the model

with the best predictive performance (BPM).
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The loss function that is used to evaluate the in-sample predictions olf/‘;he models is
the root mean square error, calculated as RMSE, = N~1/? {g)(yit — ;/g}t)Q] , with y;; the
realized number of new confirmed cases in each neighborhoodzzz'l: 1,..., N for a given time
periodt = 1,...,T; and y;; the associated predictions obtained from the different methods.
Similarly, the performance of the out-of-sample predictions is assessed with the rol%c mean
square prediction error, obtained as RMSPE,; = N-1/2 [i(yi,tﬂ — @\it+1)2} , with
Yi1+1 the realized number of weekly new cases in each neighborzlj(iod 1=1,..., N at period
t+ 1. The in-sample predictions are obtained with data from period ¢ — 1 and tested with
the data in t; whereas the out-of-sample predictions are obtained combining previous
estimated parameters with data from period ¢ and tested with data from period ¢+ 1. For
completeness, we also report the relative counterparts of the RMSE and RMSPE statistics,

obtained from a loss function defined for the prediction error over the realized observation.

N
For the in-sample exercise we have RMSE! = N=Y2{3" [(yy — ) /ya)*}/?, and for the
i=1

out-of-sample predictions we obtain RMSPE],,, = N1/2{§ [(Yirs1 — Tiesr) [Yinra) F72.

There is a well-established literature indicating the preéli_ctive advantages of ensemble
predictions with respect to simple specifications of the data. Madigan and Raftery (1994)
state that BMA methods predict at least as well as any single model in terms of logarithmic
probability score. Min and Zellner (1993) show that the expected squared error loss
of point forecasts is always minimized by BMA, provided the model space includes the
one that generated the data. These important results highlight the superiority of BMA
predictions in linear settings. Nonetheless, our problem concerns the predictions of a
GLM for count data. In this setting it is not clear that the findings of the above authors
naturally carry forward to ensembles of Poisson regression models. Therefore, the empirical
forecasting evaluation exercise that we implement in this subsection is of independent
value.

Table 5 presents both RMSE and RMSPE statistics for the five competing forecast

methods. The comparison of the loss functions across them suggests that the naive Poisson
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regression model performs worse than the other competitors. By contrast, the predictions
of the other four methods are comparable in-sample in terms of RMSE and out-of-sample in
terms of RMSPE. The Poisson regression model shows a very good performance compared
to the three Bayesian methods. In particular, the predictions of the Poisson regression are
comparable to, and in some periods even outperform, those of the other three ensemble
predictors. This is the case for all periods except the week starting on 12 January 2021,
when the number of infections reaches a peak. These empirical findings are robust across
evaluation periods, and for the in-sample and out-of-sample exercises.

The second main conclusion derived from the results reported in Table 5 is about the
accuracy of the predictions. The magnitude of the loss functions for the absolute RMSE
and RMSPE is smaller than that of the response variable. As it can be observed in Table
1, the average number of new infections across neighborhoods during the first week of our
sample period is 11.254. The in-sample predictions for that week yield a RMSE ranging
between 4.781 and 4.889, suggesting a very good in-sample fit. The predictive performance
is not as good for the corresponding out-of-sample exercise at the bottom panel of Table
5. Nevertheless, the results of the loss function across models show the value of the model
predictions. The performance of the different methods improves in the second period,
when the average number of infections is 19.887 and the in-sample RMSE is between
7.629 and 7.900. The corresponding RMSPE is around 10, which shows the ability of the
models to predict the number of cases one period ahead.

Similar results are obtained as we move along the pandemic wave. The loss functions
are steadily increasing, what reflects the steep rise in the number of infections across
neighborhoods. In the last week under evaluation the average number of positive cases
is 188.655. The in-sample RMSE ranges between 31.966 and 32.744, whereas the out-
of-sample RMSE ranges between 55.294 and 56.040. These figures show that the four
prediction models are able to capture the positive trend in the number of infections.

Importantly, the comparison of the loss functions with the naive Poisson regression model
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also highlights the value of incorporating the covariates in the model specification. The
model that simply fits the count data to the number of new confirmed cases reports
a RMSPE of 127.625. However, the models that exploit the information contained in
autoregressive and spatial terms, as well as in demographic and socioeconomic variables,
reduce the loss function by half.

The empirical loss functions can also be used to construct confidence intervals for the
pointwise predictions of each model. The intervals of the in-sample predictions are cal-
culated as Uiy & 21_a/2 RMSE;, with 2,_,/2 being the critical value of a standard normal
distribution for an « significance level, and a sample size N sufficiently large. Simi-
larly, the predictive intervals for the out-of-sample exercise are constructed as i 1 +
21—ap2RMSPE; ;. To assess the accuracy of these intervals in capturing the actual ob-
servations we calculate their corresponding empirical coverage probability. This quantity
is obtained as the fraction of the number of observations y;;, for a given ¢, that lie inside the
interval forecasts. More formally, the empirical coverage probability for the in-sample pre-
diction analysis is defined as N _1§:1 (\ylt — Uit| < 21202 RM SEt), with 1(-) an indicator
function that takes a value of onleZIif the argument is true, zero otherwise. The out-of-
sample empirical coverage probability is N‘lgjl (|yi,t+1 — Y] < zl_a/gRMSPEtH‘t).

Table 6 reports the empirical coverage pgi)abilities obtained for predictive intervals
constructed with a 90% confidence. These figures show empirical coverages that are close
to the nominal ones across methods and periods. The accuracy of the intervals slightly
varies between the in-sample and out-of-sample exercises, and also across periods, but not
much across methods. As expected, the empirical coverage probability of the predictive
intervals in-sample is closer to the nominal one than that for those out-of-sample. Overall,
the analysis in Table 6 presents a very satisfactory performance of the predictive intervals
for the Poisson regression and the three Bayesian models. The only exceptions are the
BMA methods during the week starting on 10 November, 2020 which present an inflated

coverage probability. The good performance of the interval forecasts allows us to interpret
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the RMSE and RMSPE as reliable estimators of their width. For example, the interval
forecast for the average value associated to the Poisson regression model for the in-sample
exercise for the week starting on 8 September 2020 is (3.41, 19.09). This interval is obtained
as 11.254 + 1.64 x 4.781. Similarly, the corresponding interval forecast for the last week
reported in Table 5 is (136.20,241.07), calculated as 188.655 + 1.64 x 31.966.

To illustrate further the predictive ability of our proposed framework we show the
evolution of the pandemic graphically. With this aim, Figure 3 presents choropleth maps
for the modified ZCTAs of NYC comparing, for three selected weeks, the observed number
of new confirmed COVID-19 cases (left panel) with the predicted number by the BPM
estimator (right panel). In line with the results reported in tables 5 and 6, the maps show a
strong similarity between the predictions and the observed values in most neighborhoods
and periods. Interestingly, and although the model does not catch up with the rapid
increase in the number of cases that took place in mid-October, it replicates the cross-
sectional differences across neighborhoods. In contrast, the predictive framework works
quite well at the end of the sample period, when the model captures both the momentum

in the number of cases and the cross-sectional variability.

5 Conclusion

We present a model based on Poisson point processes to study the evolution of the coron-
avirus pandemic in the city of New York. Our study makes use of information on the num-
ber of confirmed COVID-19 cases at the zip code level from September 2020 to February
2021. The aim of the study has been twofold. First, we are interested in determining the
demographic, socioeconomic, and spatial factors that have ability to explain the differences
in the number of new confirmed cases across neighborhoods. Second, we have assessed the
in-sample and out-of-sample predictive performance of alternative models. To do this, we

consider a benchmark given by a Poisson random variable, modeling the intensity rate of
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the increase in weekly confirmed cases, that is extended in several dimensions by (i) adding
a large set of regressors containing autoregressive components, exogenous covariates, and
spatial effects; and (ii) controlling for model uncertainty by averaging the predictions of
all possible combinations of regressors using a Bayesian approach.

Our results show that the proposed predictive framework displays a good performance
both in-sample and out-of-sample during the second wave of the coronavirus pandemic in
NYC. Importantly, the main predictors are the autoregressive component of the model
given by the first lag of the incidence rate, population size, age-related variables, and
spatial effects capturing spillovers between neighborhoods. The shares of employment
in the transport, education and health, and entertainment sectors also exhibit predictive
ability. These results contrast with those findings for the first wave reported in the related
literature that highlight the role of occupational variables, household size, and income.

The associated prediction intervals obtained from estimates of the mean square error
and mean square prediction error display very good coverage probabilities, allowing us
to construct interval forecasts. The econometric methodology proposed in this paper,
and the insights obtained from the empirical study, can be applied as useful tools for
policy evaluation to assess the effectiveness of specific policies such as social distancing
measures, the use of face masks, and other non-pharmaceutical interventions implemented
at neighbourhood or regional level. Our cross-sectional analysis and prediction exercise
would allow policy makers with information on these measures to gauge their impact across

regions and over time.
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Table 1: Weekly new confirmed COVID-19 cases in modified zip code tabulation areas
(ZCTAs, N=177): Descriptive statistics.

Period Total Mean  Standard deviation Minimum Maximum

8 Sep—15 Sep 1,992 11.254 10.251 0 66

29 Sep—6 Oct 3,520  19.887 25.033 0 187
20 Oct—27 Oct 3,891  21.983 16.340 0 79
10 Nov—17 Nov 8,533  48.209 32.627 0 164

1 Dec—8 Dec 10,277 58.062 63.942 0 400
22 Dec—29 Dec 22,123 124.989 87.499 6 435

12 Jan—19 Jan 33,392 188.655 126.137 3 624
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Table 3: Poisson regression: Weekly new confirmed COVID-19 cases.

8 Sep-15 Sep

29 Sep—6 Oct

20 Oct—27 Oct

10 Nov—17 Nov 1 Dec—8 Dec

22 Dec—29 Dec

12 Jan—19 Jan

lcases 0.033%%* -0.005* 0.003 0.005%%* 0.005%** 0.003%** 3.46e-04*
(0.007) (0.003) (0.003) (0.001) (5.02e-04)  (2.91e-04) (1.766-04)
lincid -0.004 0.014%%* 0.002 0.001%%* 0.001*%* -3.74e-05 0.001%**
(0.004) (0.002) (0.002) (3.54e-04)  (02.62e-04)  (1.50e-04) (1.18¢-04)
Iwcases -0.009 0.002 0.008%** -0.002%* 0.003*** 0.001%%* 3.78e-04***
(0.008) (0.004) (0.002) (0.001) (443e-:04)  (L.85e-04) (1.03¢-04)
Iwincid 0.021%** 0.001 -0.007** 0.005%** 4.09e-04 4.63e-04*** 2.66e-04**
(0.006) (0.004) (0.003) (0.001) (2.86e-04)  (1.43e-04) (1.06¢-04)
popul 1.49e-05*** 1.38e-05*** 1.75e-05%*** 1.15e-05*** 9.91e-06*** 7.96e-06%** 1.18e-05***
(3.03¢-06)  (2.44¢-06) (2.28¢-06) (1.54¢-06) (1.40-06)  (9.27¢-07) (9.51e-07)
hhsize -0.839*** -0.176 -0.322%** -0.279*** -0.583*** -0.066 -0.096***
(0.148) (0.114) (0.104) (0.074) (0.068) (0.044) (0.035)
male -0.041** -0.014 0.018* -0.012 0.035%** -0.005 -0.002
(0.017) (0.013) (0.011) (0.008) (0.007) (0.005) (0.004)
black -0.003 -0.006*** -0.008*** -0.006*** -0.015%** -0.005** -0.001**
(0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001)
hispanic 0.006** -0.001 0.001 0.004%** -0.005%** 0.001* 2.40e-04
(0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (5.49¢-04)
age -0.045%** -0.064%%* -0.037*** -0.023%%* -0.069%** -0.017%%* -0.018%**
(0.014) (0.011) (0.010) (0.007) (0.006) (0.004) (0.003)
over64 -1.04e-05 4.49e-05%** 2.56e-05* 2.75e-05%** -6.55e-07 2.58e-05%** 3.69e-05%**
(1.98e-05) (1.59¢-05) (1.40e-05) (9.02e-06) (9.01e-06) (6.28e-06) (4.74e-06)
enroll -0.002 -0.016* -0.008 -0.007 -0.065%** -0.019%** -0.004
(0.012) (0.010) (0.008) (0.006) (0.006) (0.004) (0.003)
income -9.47e-06%** -5.95e-06** 2.41e-06 -1.06e-06 -2.23e-06 -2.24e-06** -1.05e-06
(3.31-06)  (2.62¢-06) (2.19¢-06) (1.51e-06) (1.51e-06)  (1.01-06) (8.28¢-07)
selfemp 0.045%** 0.029%*** 0.010 0.034*** -0.011** 0.007** 0.010***
(0.011) (0.009) (0.008) (0.005) (0.005) (0.003) (0.003)
empl 0.026 0.027** -0.007 0.032*** -0.023*** -0.001 -0.004
(0.016) (0.013) (0.012) (0.008) (0.007) (0.005) (0.0045)
fulltime 0.003 -0.003 -1.93e-04 0.006 -0.007* 0.001 0.002
(0.010) (0.008) (0.007) (0.005) (0.004) (0.003) (0.002)
pubtrans -0.004 -0.006* -0.006** 3.46e-04 0.022%%* -2.42e-04 -0.003***
(0.004) (0.003) (0.003) (0.002) (0.002) (0.001) (0.001)
travtime -4.70e-06 6.16e-06 -4.51e-05 3.30e-05 -3.TTe-04*** 1.79e-05 6.99e-05%**
(9.38¢-05)  (7.58¢-05) (7.17¢-05) (475¢-05)  (4.850-05)  (3.06e-05) (2.46¢-05)
retail 0.015 0.012 0.032** 0.050%** 0.018%* -0.001 0.003
(0.018) (0.015) (0.013) (0.009) (0.008) (0.006) (0.004)
transp 0.056%** 0.034** 0.066%** 0.041%%* 0.132%%* 0.034%%* 0.039%**
(0.017) (0.014) (0.012) (0.008) (0.008) (0.005) (0.004)
eduheal 0.018* 0.031%** 0.011 0.025*** 0.044%** 0.013*** 0.006**
(0.010) (0.008) (0.007) (0.005) (0.004) (0.003) (0.002)
entert -0.016 0.036*** 0.036*** 0.023*** -0.008 0.009** 0.015***
(0.015) (0.012) (0.010) (0.007) (0.006) (0.004) (0.003)
occup 0.005 0.002 0.002 -0.005 -0.009** 0.004 0.015***
(0.008) (0.006) (0.005) (0.003) (0.004) (0.003) (0.002)
rooms 0.203*** 0.039 0.103* 0.157*** 0.602*** 0.113*** -0.023
(0.073) (0.060) (0.053) (0.036) (0.035) (0.023) (0.019)
internet 0.009 0.004 -0.001 -0.009%** -0.013%** -0.010%** -0.002
(0.007) (0.006) (0.005) (0.003) (0.003) (0.002) (0.002)
nocov -0.003 -0.021%%* -0.018*** -0.006 -0.016%** -0.001 -7.84e-06
(0.010) (0.007) (0.007) (0.004) (0.004) (0.003) (0.002)
constant 1.541 1.320 2.843%* -0.084 7.T3TERE 4.516%** 3.092%**
(1.950) (1.602) (1.372) (0.921) (0.871) (0.606) (0.468)
Log likelihood -601.626 -589.701 -597.097 -764.797 -2,741.613 -926.591 -1,064.428

Note: The number of observations is 177. Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10.
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Figure 1: Weekly new confirmed COVID-19 cases in New York City, 31 March 2020 — 2
February 2021.
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Figure 2: Bayesian model averaging: Posterior density functions for the coefficients of
selected regressors, 12 Jan — 19 Jan.
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Figure 3: Predictive performance: Choropleth maps of observed and predicted (BPM)
weekly new confirmed COVID-19 cases in selected periods.
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Figure captions

Figure 1. Weekly new confirmed COVID-19 cases in New York City, 31 March 2020 — 2

February 2021.

Figure 2. Bayesian model averaging: Posterior density functions for the coefficients of

selected regressors, 12 Jan — 19 Jan.

Figure 3. Predictive performance: Choropleth maps of observed and predicted (BPM)

weekly new confirmed COVID-19 cases in selected periods.
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