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Abstract

This paper proposes an ensemble predictor for the weekly increase in the number
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Bayesian model averaging framework, the baseline is a Poisson regression for count

data. The set of covariates includes autoregressive terms, spatial effects, and de-

mographic and socioeconomic variables. Our results for the second wave of the

coronavirus pandemic show that these regressors are more significant to predict the

number of new confirmed cases as the pandemic unfolds. Both pointwise and interval

forecasts exhibit strong predictive ability in-sample and out-of-sample.
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1 Introduction

In the winter of 2019-2020 the new SARS-CoV-2 virus started spreading from Wuhan

(China), causing a new disease called COVID-19 characterized by a virulent pneumonia

and a high infection rate. The global impact of COVID-19 has been profound, and the

public health threat it represents is the most serious seen in a virus since the 1918 H1N1

influenza pandemic. Since 31 December 2019 and as of 28 February 2021, in accordance

with the applied case definitions and testing strategies in the affected countries, more

than 113 million confirmed cases of COVID-19 have been reported to the World Health

Organization (WHO), including 2,517,964 deaths.

The coronavirus pandemic has spread worldwide affecting, to a greater or lesser extent,

most countries. It has hit hardest big cities such as Delhi, London, Madrid, Melbourne,

New York, Paris or Rio de Janeiro. These cities are characterized not only by having a

large number of inhabitants but also by being highly densely populated, owning a com-

plex network of public transport, and accommodating large concentrations of workers in

the services sector: education, healthcare, entertainment, retail, and finance. Individuals

also suffer long commuting times to work, staggering income inequalities, and heteroge-

nous living standards across districts, see Cheshire et al. (2014) and Nijman and Wei

(2020). Urban agglomerations are also known to be very heterogeneous with respect to

the composition of the population, including individuals from different races and cultural

backgrounds (Shertzer and Walsh, 2019; Wei et al., 2018).

One of the cities that has been hit hardest by the coronavirus pandemic is New York

(NYC). The impact of COVID-19 in this city during the first wave that took place in the

spring of 2020 has been widely studied in the literature, see Almagro et al. (2021), Almagro

and Orane-Hutchinson (2020), Borjas (2020), Glaeser et al. (2021), and Schmitt-Grohé

et al. (2020), among others. These important contributions focus on different aspects

of the effects and transmission of the disease for the population of NYC, and generally
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consider data at zip code level. More specifically, Almagro and Orane-Hutchinson (2020)

explore different channels to explain the disparities in COVID-19 incidence across NYC

neighborhoods. These authors estimate several linear regression models to assess the

statistical relevance of variables reflecting neighborhood characteristics and occupations,

finding that the latter are important for explaining observed incidence patterns. Their

results show that those occupations with a higher degree of human interaction are more

likely to be exposed to the virus. A second contribution of Almagro and Orane-Hutchinson

(2020) is to suggest a selection on testing, whereby those residents in worse conditions are

more likely to get tested, with such selection decreasing over time as tests become more

widely available.

Borjas (2020) merges information on the number of tests and the number of infections

at the zip code level with demographic and socioeconomic information from the decennial

census and the American Community Survey. This author finds that people residing in

poor or immigrant neighborhoods were less likely to be tested; but the likelihood that a

test was positive was higher in these areas, as well as in those with larger households or

predominantly black populations. The dependent variable in this study is the rate of infec-

tion in the population, which depends on both the frequency of tests and on the fraction of

positive tests among those tested. One important contribution of Borjas (2020) is to show

that the non-randomness in testing across NYC neighborhoods partly invalidates standard

statistical inferences between the rate of infection and the socioeconomic characteristics.

Schmitt-Grohé et al. (2020) investigate access to COVID-19 testing across incomes using

zip code level data on the number of tests, test results, and income per capita. These

authors find that the distribution of tests across income levels is significantly more egali-

tarian than the distribution of income itself. Glaeser et al. (2020) analyze the efficiency

of mobility restrictions in limiting COVID-19 spread. Using zip code data for five U.S.

cities, including New York, these authors find that total cases per capita decrease by 19%

for every ten percentage point fall in mobility. Using panel data for NYC with week and
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zip code fixed effects, the decline increases to 30%.

This paper aims to extend the studies described above in several directions. First, we

go beyond the spring of 2020, and analyze data on the number of COVID-19 infections

in NYC at zip code level from 1 September 2020 to 2 February 2021. Second, and most

importantly, we focus on the prediction of the number of weekly new confirmed cases of the

disease. Third, we include temporal and spatial effects in our set of explanatory variables.

Temporal effects are captured by an autoregressive lag of the response variable and the

lagged incidence rate, and spatial effects are accommodated by including their averages in

contiguous neighborhoods. Fourth, we apply Bayesian model averaging (BMA) techniques

using a generalized linear regression for count data as benchmark. The implementation of

this methodology allows us to derive the posterior distribution of the parameters associated

to the covariates. Thus, we shed light on the sensitivity of the increase in confirmed cases to

demographic and socioeconomic factors, as well as autoregressive and spatial terms, under

a potentially large number of specifications of the regression model. Fifth, we provide

pointwise and interval forecasts for each week of the evaluation period and across NYC

neighborhoods. By doing so, we model the uncertainty about our pointwise predictions.

Finally, by fitting our empirical framework to cross-sectional weekly data, we are able to

accommodate the presence of a time-varying intensity rate of the disease that is reflected

in changes in the slope parameters. These dynamics can be associated to policy-induced

changes related to social distancing and the effect of the vaccine, among a few others, see

Fernández-Villaverde and Jones (2020).

The motivation of this paper is twofold. On the one hand, we acknowledge that stan-

dard linear models are not suitable for predicting the number of confirmed cases of the

COVID-19 disease as it is a count variable. To correct for this feature, we propose econo-

metric frameworks that are more suitable for count data. In particular, our benchmark is

a Poisson regression model with intensity parameter given by a linear function of a large

set of demographic and socioeconomic variables, as well as temporal and spatial effects.
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On the other hand, we are not aware of econometric models for prediction of the COVID-

19 disease beyond Li and Linton (2021), Liu et al. (2021) and Fernández-Villaverde and

Jones (2020). Li and Linton (2021) fit a time series model based on a quadratic trend

specification to country level data. Liu et al. (2021) use a panel data model to generate

density forecasts for daily COVID-19 infections for a sample of countries/regions. In this

setup, the growth rate of active infections can be represented by autoregressive fluctuations

around a downward sloping deterministic trend function with a break. Although Liu et al.

(2021) also adopt a Bayesian approach, their methodology and objectives are very differ-

ent from those in the present paper. Importantly, our model accommodates a large set of

covariates, whereas these authors build on a stochastic version of the susceptible-infected-

recovered (SIR) model of Kermack and McKendrick (1927, 1932, 1933) that incorporates

dynamics in the model parameters and a structural break. Another recent important con-

tribution focused on prediction that extends the SIR formulation is Fernández-Villaverde

and Jones (2020). These authors apply a standard epidemiological model to estimate and

simulate the expansion of the coronavirus disease with data on deaths from several cities

and countries around the world.

Two main conclusions can be drawn from our empirical analysis. First, the proposed

set of covariates are more significant to predict the number of new COVID-19 confirmed

cases in NYC as the pandemic unfolds. Second, the factors with predictive power are dif-

ferent from those in the first wave. In contrast to income, household size, and occupational

variables, we find that the persistence of the incidence rate, spatial effects, population size,

and age-related variables gain traction in this period compared to demographic and socioe-

conomic covariates. That is, the dynamic component of the proposed Poisson regression

model is more relevant for prediction purposes than the static component given by the

exogenous regressors reflecting neighborhood characteristics. The predictive performance

of these models is assessed in-sample and out-of-sample. Both Poisson regression and

BMA frameworks report low mean square prediction errors from one-period-ahead point-
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wise forecasts. Interestingly, the baseline Poisson regression model reports very good fit

in-sample and out-of-sample, and its performance is comparable to the Bayesian ensemble

predictor. In order to capture the uncertainty associated to the pointwise predictions, we

also construct interval forecasts. The reliability and accuracy of these predictions is eval-

uated by computing empirical coverage probabilities at 90%. The information content of

the intervals varies across periods but, in general, they are significantly narrower than dur-

ing the first wave of the coronavirus pandemic, see Olmo and Sanso-Navarro (2020). The

autoregressive factors and the spatial effects seem to carry most of the predictive content

compared to the spring of 2020. To illustrate further the reliability of our predictions, we

use choropleth maps showing that our framework is able to capture the dynamics in the

evolution of the pandemic and to predict the heterogeneity of new confirmed COVID-19

cases across neighborhoods on a weekly basis.

The present paper is also related to the recent epidemiological studies by Cordes and

Castro (2020) and DiMaggio et al. (2020). The first authors, in a descriptive analysis

using zip code level data for NYC, identify areas with low access to testing and high case

burden. Cordes and Castro (2020) analyze testing rates, positivity rates, and the propor-

tion of positive tests, and relate them to socioeconomic variables. They find that clusters

with less testing and low proportion of positive tests are characterized by higher income,

education, and a dominant presence of white population. On the contrary, clusters with

higher testing rates and shares of positive tests were disproportionately black and without

health insurance. Simple correlation measures show inverse associations of the proportion

of positive tests with white race, education, and income, and positive links with black

race, Hispanic ethnicity, and poverty. DiMaggio et al. (2020) also claim that there is

increasing evidence that, in addition to individual clinical factors, demographic, socioe-

conomic and racial characteristics of COVID-19 infections play an important role. These

authors analyze positive testing results counts within NYC neighborhoods with Bayesian

hierarchical Poisson spatial models using integrated nested Laplace approximations. This
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study shows that spatial clustering accounts for approximately 32% of the variation in the

data, with hot spots in all five boroughs. However, the strongest univariate association

with positive testing rates is a clinical factor given by the proportion of residents with

chronic obstructive pulmonary disease.1

The rest of the paper is structured as follows. Section 2 discusses the dataset used for

the study and describes the set of covariates. Section 3 introduces the forecast models,

briefly reviewing Poisson regressions and BMA techniques for prediction. Section 4 shows

the application of these methods to data from NYC at the zip code level. Suitable choices

of variables with power to explain the cross-sectional increase in the number of confirmed

COVID-19 cases are discussed, and a forecast evaluation exercise comparing the perfor-

mance of several competing models is presented. Section 5 concludes. Tables and figures

are collected in an appendix. A separate online appendix presents the results of the full

analysis for all the weeks over the evaluation period.

2 Data

The NYC Department of Health and Mental Hygiene (DOH) compiles, since 31 March

2020, the cumulative count of confirmed COVID-19 cases at the zip code level.2 Although

this information is available on a daily basis, and in line with most of the related studies

discussed in the introductory section, the main variable of interest is the number of new

confirmed COVID-19 cases reported on a given week. Figure 1 displays the evolution of

this variable in NYC until 2 February 2021. The peak of the first wave of the coronavirus

pandemic took place in the second week of April, when the increase in the cumulative

1Another related literature is concerned with the actual number of infections, suggesting that confirmed
COVID-19 cases may be only the tip of the iceberg. Hortacsu et al. (2021) and Manski and Molinari
(2021) have developed approaches to estimating (or at least bounding) the number of unreported cases.
Although we do not pursue this strategy in the present study, it is worth noting that our prediction models
might be applied in this setting under appropriate inference methods to obtain insights into the extent of
the actual rate of infections in a given geographical area.

2https://github.com/nychealth/coronavirus-data/
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number of confirmed cases was 40, 061, and the average number of cases per neighborhood

reached 226. From that week onwards, this average number decreased steadily to 15 in the

second of week of June, and remained below these levels until the beginning of September.

After that moment, the number of weekly cases started to build up again reaching a

maximum of 33, 392 cases in the second week of January 2021.

This study exploits the information compiled during the second wave of the coronavirus

pandemic in NYC, considering that it began in September 2020. Table 1 shows descriptive

statistics of weekly new confirmed COVID-19 cases in modified zip code tabulation areas

(ZCTAs) on a 3-week basis. In what follows, and for the sake of clarity, we are reporting

the results using this frequency. The complete tables with the full set of results are shown

in the online appendix. The figures reported in Table 1 reflect a steady increase in the

cross-sectional mean of new cases ranging from 11 in the second week of September 2020

to roughly 189 cases in the second week of January 2021. The dispersion in the number

of cases has also increased during the period analyzed.

The information of the demographic and socioeconomic characteristics of the neigh-

borhoods have been extracted from the American Community Survey (ACS). This data

correspond to 5-year estimates for the period from 2014 to 2018. Table 2 describes the

variables that have been used in our study. A first group of regressors reflects the impor-

tance of demographic factors in explaining the cross-sectional variation of the increase in

confirmed COVID-19 cases at the zip code level, see Borjas (2020) and Schmitt-Grohé et

al. (2020). These variables are total population, its percentage of males, and the average

household size. The shares of Blacks and African Americans, and of Hispanics or Latinos

are intended to capture the racial composition of the population. The age structure is

measured using the median age, the percentage of population 64 years and over, and the

schooling enrollment rate.

Economic conditions have been proxied by income per capita, the employment rate, the

percentage of households with self-employment income, and the share of full-time workers.
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As pointed out by Harris (2020) and Hamidi and Hamidi (2021), public transport may

have contributed to the spread of the coronavirus pandemic in NYC. We try to capture

this influence by including as regressors the percentage of workers 16 years and over, the

use of public transportation, excluding taxicab, and average travel time to work. Almagro

and Orane-Hutchison (2020) find that occupations are important in explaining the differ-

ential incidence of COVID-19 across NYC neighborhoods. For this reason, we have also

considered the share of workers in sectors highly exposed to the virus as explanatory vari-

ables: retail trade; transportation, warehousing, and utilities; educational services, health

care and social assistance; arts, entertainment, and recreation; and accommodation and

food services. Living conditions have been reflected using the percentage of housing units

that are occupied, the median number of rooms, the percentage of households with an

Internet subscription, and the share of population lacking health insurance coverage.

The persistence in confirmed COVID-19 cases is captured by two different variables:

the number of new weekly confirmed cases and the incidence rate (ratio of confirmed cases

per 100,000 inhabitants), both being lagged one period. These regressors are aimed at

controlling for self-reinforcing effects of the pandemic above and beyond the explanatory

power of our set of demographic and socioeconomic variables. Spatial, neighboring, effects

are also introduced into the model by including two additional regressors constructed as

the weighted average of lagged new confirmed cases and of lagged incidence rates across

contiguous locations. These spatial lags have been calculated using a row-standardized

contiguity spatial weights matrix,3 constructed using the geographic information for mod-

ified ZCTAs provided by the U.S. Census Bureau.

3This row-standardization implies that the contribution of the incidence rate from contiguous neigh-
borhoods to central neighborhoods is smaller than in neighborhoods that share borders with just a few
other neighborhoods.
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3 Methodology

This section outlines the model used to describe the weekly evolution of the coronavirus

pandemic in NYC neighborhoods. Standard regression models estimated using ordinary

least squares (OLS) are not suitable in this context because they assume that the response

variable is continuous. To apply an OLS estimation framework, the recent extant litera-

ture on the topic considers the incidence rate as the dependent variable, see Almagro and

Orane-Hutchinson (2020) and Borjas (2020) for linear regression and a group logit model,

respectively. As an alternative, we directly model the number of weekly new confirmed

cases. Therefore, as our response variable is count data, we consider as benchmark a

generalized linear model (GLM) given by a Poisson regression. In order to accommodate

a large set of potential covariates, we embed this specification within a BMA approach.

It is characterized by an ensemble of predictors obtained from a battery of different Pois-

son regression models including different combinations of the covariates. This ensemble

approach is known to reduce the forecast error and, more importantly, account for model

uncertainty. In doing so, we are able to obtain posterior inclusion probabilities (PIPs) for

each regressor, as well as posterior distributions for both the model parameters and the

response variable.

3.1 Baseline model

The evolution of the number of new COVID-19 cases in NYC at the zip code level is mod-

eled as a Poisson regression, see McCullagh and Nelder (1989). This estimation framework

allows us to use a count variable as response variable and model, directly, the increase in

the number of confirmed cases per period. This variable is assumed to follow a Poisson

distribution P(λ), with λ denoting the intensity parameter. This function is convenient

for modeling the expected number of arrivals of a random event for a fixed period of time,

and is closely related to the exponential distribution that would model the interarrival

10



times. In this setting, we assume that the number of new confirmed COVID-19 cases is

the number of arrivals to the neighborhood with confirmed cases from a given population,

and λ is the average number of arrivals. Our predictions will be based on the estimates of

this coefficient.

The Poisson regression model allows the intensity parameter to evolve over time and

to depend on a set of m covariates. Mathematically, the number of confirmed cases per

period is a Poisson random variable yit, with i = 1, . . . , N , where N is the number of

neighborhoods, and t = 1, . . . , T , with T the number of periods. The expected value of

this random variable is λit, which we consider to depend on an intercept αt and three

types of regressors. The first one is an autoregressive dynamic component given by the

lagged values of the number of new confirmed cases (yit−1) and of the incidence rate (zit−1).

The second type of covariate contains a linear combination of p exogenous demographic

and socioeconomic variables {xij}pj=1. These regressors are assumed to be constant over

time because neighborhood characteristics are persistent variables that do not significantly

change in the short run. As explained in the previous section, this information corresponds

to the observational period 2014-2018. The third type of covariate tries to capture spatial

effects, and is defined using a contiguous adjacency matrix W that assigns ones to those

zip codes that are contiguous and zeros, otherwise. For consistency with the spatial

econometrics literature, we row-standardize the matrix by normalizing the rows to sum

to one. Therefore, the spatial lag of a given variable is its average value in contiguous

neighborhoods. The model is as follows:

log λit = αt + γtyi,t−1 + ρtzi,t−1 +
m∑
j=1

θjtxij + γ̃twiyt−1 + ρ̃twizt−1, (1)

with γt and ρt are the autoregressive parameters associated to the dynamic component; θjt

are the parameters corresponding to each regressor j = 1, . . . , p; ρ̃t and γ̃t are the param-

eters capturing the spatial effects; wi is a row vector of the row-standardized contiguity
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spatial weights matrix W; zt−1 = (z1,t−1, . . . , zN,t−1)
′, and yt−1 = (y1,t−1, . . . , yN,t−1)

′. The

econometric specification of the spatial effects in model (1) is reminiscent of spatial au-

toregressive (SAR) model, see Anselin (2003); however, in contrast to this model, we avoid

the presence of endogeneity by considering the spatial terms to be lagged one period. This

specification is plausible in our dynamic context and convenient for predictive purposes.

3.2 Bayesian model averaging

Model averaging techniques – available both in frequentist and Bayesian contexts – con-

sist of estimating all candidate models and then computing a weighted average of their

estimates, taking into account the implicit uncertainty conditional on a given model and

across different models. This approach was originally developed for linear regression mod-

els, see Raftery (1995) and Raftery et al. (1997), and subsequently extended to more

general frameworks. An early contribution to BMA with GLMs is Raftery (1996), who

proposes to use approximations for the Bayes factors, based on the Laplace method for

integrals. This author also suggests a way to elicit reasonable, but data-dependent, proper

priors.

In general, BMA assigns a prior probability to a set of models, and to a set of parame-

ters associated to each model. These prior distributions are updated once we incorporate

the information obtained from the data to obtain the posterior distributions. Therefore,

BMA is able to deal simultaneously with model selection, estimation, and inference. There

are K = 2m models comprised by all possible combinations of the m covariates in the Pois-

son regression (1). Each model is denoted as Mk, with k = 1, ..., K, and depends on a

vector of parameters βk with a conditional posterior probability given by:

g(βk | y,Mk) =
f(y | βk,Mk)g(βk | Mk)

f(y | Mk)
, (2)

where f(y | βk,Mk) and g(βk | Mk) denote, respectively, the likelihood function of the
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observations, and the prior density function of the parameters, conditional on model Mk.

The literature on BMA models has studied extensively the suitability of prior density

functions. Reviews of the most popular options, both in linear and GLM frameworks, can

be found in Forte et al. (2018), Li and Clyde (2018), and Steel (2020).

For a given prior model probability P (Mk), its posterior probability can be calculated

applying Bayes’ rule:

P (Mk | y) =
f(y | Mk)P (Mk)

f(y)
, (3)

with f(y | Mk) and f(y) the conditional and marginal likelihood functions, respectively.

Leamer (1978) assumes that the true parameters β associated to the regression variables

are a function of βk, from a specific model Mk. This author proposes to obtain the

posterior density function of β, conditional on the data {yi}Ni=1 and model candidates

{Mk}Kk=1, using the law of total probability:

g(β | y) =
K∑
k=1

P (Mk | y)g(βk | y,Mk). (4)

When m is moderate to large, posterior probabilities of individual models can be very

small and their interpretation loses appeal. In such situations, inclusion probabilities are

very useful. Formally, the PIP for variable xj, with j = 1, . . . ,m, is:

P (dj = 1 | y ) =
K∑
k=1

P (dk = 1 | Mk,y )P (Mk | y) =
K∑
k=1

xk∈Mk

P (Mk | y), (5)

where dj = 1 if variable j is included in the model, zero otherwise. Using these models we

can obtain the predictive distribution of the quantity of interest. For the response variable

y, this distribution, denoted as ŷ, is computed as:

p(ŷ | y ) =
K∑
k=1

[∫
Bk

p(ŷ | βk,Mk,y )g(βk | Mk,y )dβk

]
P (Mk | y), (6)
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where the quantity in square brackets is the predictive distribution given Mk, obtained

using the posterior density function defined in (2). This function is integrated over the

space of parameters βk ∈ Bk, for each k = 1, . . . , K. In practice, the BMA approach can

be simplified using Monte-Carlo simulation methods or algorithms to rule out models with

low probability of generating the observations such as the Occam’s window, see Madigan

and Raftery (1994) and Raftery et al. (1997), among others.

4 COVID-19 in NYC neighborhoods

This section presents the findings of our empirical study for weekly data on the number of

new confirmed COVID-19 cases in NYC. We divide the analysis into two exercises. First,

we discuss model selection and focus on the relevance of the set of covariates presented in

Section 2 to explain the differential evolution of the coronavirus pandemic across neigh-

borhoods. Second, we assess the predictive power of these variables both in-sample and

out-of-sample.

4.1 Poisson regression

Table 3 reports the estimation results of the Poisson regression model (1) for selected weeks

in our sample period separately.4 The variables that exhibit statistical significance across

most periods are the dynamic terms given by increase in the number of confirmed cases

and the incidence rate in the previous week. Both variables display a positive coefficient

and gain statistical significance as the number of cases accelerates through the wave. The

spatial terms are also significant in most periods, highlighting the influence of neighboring

ZCTAs in the evolution of the pandemic. As can be observed in Table A1 of the online

appendix, this effect is particularly important in the last two weeks of the sample period

4As noted before, we report the results on a 3-week basis for the sake of clarity and due to space
constraints. The full set of results for the period from 1 September 2020 to 2 February 2021 are included
in the online appendix.
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analyzed when the pandemic gains traction. This finding also suggests that the presence

of positive spillovers in the spread of COVID-19 across neighborhoods helps to predict the

evolution of the disease in NYC.

Population size is strongly significant and displays a positive relationship with the

response variable. This result is not surprising because total population can be considered

to proxy for other fundamental factors reflecting living standards, population density, and

deprivation levels. In contrast to the findings reported for the first wave (Almagro et al.,

2021; Olmo and Sanso-Navarro, 2020), household size is negatively related to the number of

new confirmed cases, but the magnitude of the parameter decreases over time. It is worth

noting that contagion at the household level may be captured by the median number of

rooms. The percentage of male population is hardly significant during our sample period.

Interestingly, and in clear contrast to the results obtained for the spring of 2020 (Choi and

Unwin, 2020), the racial composition of the neighborhoods does not have a prominent role

in explaining differences in the number of new confirmed cases across zip codes during the

second wave.

Age-related variables have a strong predictive power in this model specification. The

median age of the population is negatively associated to the number of weekly COVID-19

cases. Nonetheless, those neighborhoods with a large proportion of people over 64 years

old tend to exhibit a higher number of new confirmed cases. Whereas age may be a

proxy for other socioeconomic variables such as income, the share of the elderly reflects

the strong influence of the coronavirus pandemic on this age group. During the first wave,

income and the number of cases had a negative relationship that was highly significant, see

Olmo and Sanso-Navarro (2020). However, income per capita is hardly significant in our

sample period, suggesting that the number of infections is not very related to the income

of the neighborhood. Similarly, and in contrast to existing findings for the spring of 2020,

occupational variables lose most of their significance. The main exceptions are the self-

employment rate and some variables reflecting the sectoral composition of employment.
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In particular, those measuring the importance of the transport, education and health, and

entertainment sectors. In all these three cases the effects are quite significant, reflecting

that those neighborhoods with a large fraction of individuals working on these sectors are

more affected by the disease. Access to Internet also has an effect during the last weeks of

the study that, as expected, is negative. Other variables such as average commuting time,

and having a full-time job lose any statistical significance during this second wave of the

coronavirus pandemic.

4.2 Bayesian model averaging

The estimation results of the Poisson regressions displayed in Table 3 may vary if only

a subset of the covariates is included. For this reason, and in order to control for model

uncertainty, the same analysis has been carried out adopting a BMA approach.5 That

is to say, we do not impose any specification a priori and let data speak. The sampling

method combines a random walk Metropolis-Hastings algorithm with a random swap

between included and excluded variables, see Raftery et al. (1997) and Clyde et al. (2011),

with one million iterations. We have specified6 a uniform prior over the model space,

and a benchmark prior – which displays a good performance for both estimation and

prediction purposes – for model-specific parameters (Li and Clyde, 2018). In addition

to the implementation of BMA, we use the posterior means under model selection. This

corresponds to a decision rule that combines estimation and selection. In particular, we

consider the highest probability (HPM) and the best prediction (BPM) models. From

a Bayesian decision theory perspective, the latter is the model that is closest to BMA

predictions under squared error loss. Liang et al. (2008) discuss these alternative Bayesian

methods in some detail.

5These methods have been implemented using the BAS R package (Clyde, 2020; The R Core Team,
2021).

6Our empirical results are not very sensitive to the choice of the prior. The robustness check is available
from the authors upon request.
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Table 4 reports the PIP (5) for each covariate in selected periods. This analysis com-

plements the preceding one on the statistical significance of the regressors based on t-tests.

In this case, the relevance of the covariates in the ensemble predictor relies on the proba-

bility that they are included in the model specification. The discussion of the results can

be separated by the type of covariate. The inclusion probabilities associated to the tem-

poral lag of the response variable are very low in most periods, suggesting that this term

does not contain much predictive power. In contrast, the lagged incidence rate receives

a PIP close to one in most periods. The variables that capture the spatial effects are

very significant, what corroborates their importance for prediction purposes. The racial

composition and age-related variables are other important factors that are picked up by

the ensemble predictor. On the contrary, variables related to labor market conditions are

hardly relevant in this setting. The predictive performance of the variables reflecting the

sectoral composition of employment is mixed. During the first weeks of our sample period

these regressors receive very low PIPs, however, during the last weeks, most of these vari-

ables achieve very high values of these probabilities. This is particularly the case of the

percentages of workers in the transport, education and health, and entertainment sectors.

Two main conclusions can be drawn from this analysis. On the one hand, the inclusion

probabilities increase over time as the pandemic unfolds, implying that the covariates are

more significant to predict the number of new confirmed cases at the end of the sample

period. On the other hand, the factors with predictive power are different from those

in the first wave when the self-employment rate and income per capita were important

covariates. During the second wave of the coronavirus pandemic these variables lose their

predictive power. Instead, we find that the persistence of the incidence rate, captured

by its first lag, the spatial effects, population size, and age-related variables gain traction

compared to socioeconomic variables. That is, the dynamic component of the Poisson

regression model is more relevant for prediction purposes than the static component given

by the exogenous regressors.
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To gain a better insight into the nature of the relationship between the predictors

and the response variable with the BMA model, we plot in Figure 2 the posterior density

functions of the model parameters (4) associated to a selection of regressors, according

to their high PIPs during the sample period analyzed, for the second week of January

2021, when the peak of the second wave was reached. The density functions, from left

to right and then going down, correspond to the lagged incidence rate, its average over

contiguous neighborhoods, total population, the racial composition (black and hispanic),

median age, the share of the elderly, and the percentages of workers in the transport and

entertainment sectors. The plots are very informative about the sign of the relationship

between these variables and the increase in the number of confirmed COVID-19 cases. The

density functions also show the presence of uncertainty about the parameters associated

to each regressor. The probability that the covariates are not correlated to the response

variable, characterized by β = 0, is represented by the height of a vertical line. These

density functions reinforce the previous findings: the incidence rate, the spatial effects of

contiguous neighborhoods, and population size are strongly significant predictors in the

BMA specification. In contrast, the other variables are far less relevant.

4.3 Predictive performance

This subsection carries out an exercise to assess the predictive performance of the models

implemented above. We consider five competing forecast methods. The first one is based

on a Poisson random variable with intensity parameter given by the cross-sectional sample

average yt. This model corresponds to fitting the data on the number of infections in each

period to a Poisson regression model using maximum likelihood. The second model is

the Poisson regression with intensity parameter introduced in (1). The remaining three

methods are different versions of the BMA approach, discussed before: a pure model

averaging (BMA), the model that receives the highest probability (HPM), and the model

with the best predictive performance (BPM).
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The loss function that is used to evaluate the in-sample predictions of the models is

the root mean square error, calculated as RMSEt = N−1/2
[
N∑
i=1

(yit − ŷit)2
]1/2

, with yit the

realized number of new confirmed cases in each neighborhood i = 1, . . . , N for a given time

period t = 1, . . . , T ; and ŷit the associated predictions obtained from the different methods.

Similarly, the performance of the out-of-sample predictions is assessed with the root mean

square prediction error, obtained as RMSPEt+1|t = N−1/2
[
N∑
i=1

(yi,t+1 − ŷit+1)
2

]1/2
, with

yi,t+1 the realized number of weekly new cases in each neighborhood i = 1, . . . , N at period

t+ 1. The in-sample predictions are obtained with data from period t− 1 and tested with

the data in t; whereas the out-of-sample predictions are obtained combining previous

estimated parameters with data from period t and tested with data from period t+ 1. For

completeness, we also report the relative counterparts of the RMSE and RMSPE statistics,

obtained from a loss function defined for the prediction error over the realized observation.

For the in-sample exercise we have RMSEr
t = N−1/2{

N∑
i=1

[(yit − ŷit) /yit]2}1/2, and for the

out-of-sample predictions we obtain RMSPEr
t+1|t = N−1/2{

N∑
i=1

[(yi,t+1 − ŷit+1) /yi,t+1]
2}1/2.

There is a well-established literature indicating the predictive advantages of ensemble

predictions with respect to simple specifications of the data. Madigan and Raftery (1994)

state that BMA methods predict at least as well as any single model in terms of logarithmic

probability score. Min and Zellner (1993) show that the expected squared error loss

of point forecasts is always minimized by BMA, provided the model space includes the

one that generated the data. These important results highlight the superiority of BMA

predictions in linear settings. Nonetheless, our problem concerns the predictions of a

GLM for count data. In this setting it is not clear that the findings of the above authors

naturally carry forward to ensembles of Poisson regression models. Therefore, the empirical

forecasting evaluation exercise that we implement in this subsection is of independent

value.

Table 5 presents both RMSE and RMSPE statistics for the five competing forecast

methods. The comparison of the loss functions across them suggests that the naive Poisson
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regression model performs worse than the other competitors. By contrast, the predictions

of the other four methods are comparable in-sample in terms of RMSE and out-of-sample in

terms of RMSPE. The Poisson regression model shows a very good performance compared

to the three Bayesian methods. In particular, the predictions of the Poisson regression are

comparable to, and in some periods even outperform, those of the other three ensemble

predictors. This is the case for all periods except the week starting on 12 January 2021,

when the number of infections reaches a peak. These empirical findings are robust across

evaluation periods, and for the in-sample and out-of-sample exercises.

The second main conclusion derived from the results reported in Table 5 is about the

accuracy of the predictions. The magnitude of the loss functions for the absolute RMSE

and RMSPE is smaller than that of the response variable. As it can be observed in Table

1, the average number of new infections across neighborhoods during the first week of our

sample period is 11.254. The in-sample predictions for that week yield a RMSE ranging

between 4.781 and 4.889, suggesting a very good in-sample fit. The predictive performance

is not as good for the corresponding out-of-sample exercise at the bottom panel of Table

5. Nevertheless, the results of the loss function across models show the value of the model

predictions. The performance of the different methods improves in the second period,

when the average number of infections is 19.887 and the in-sample RMSE is between

7.629 and 7.900. The corresponding RMSPE is around 10, which shows the ability of the

models to predict the number of cases one period ahead.

Similar results are obtained as we move along the pandemic wave. The loss functions

are steadily increasing, what reflects the steep rise in the number of infections across

neighborhoods. In the last week under evaluation the average number of positive cases

is 188.655. The in-sample RMSE ranges between 31.966 and 32.744, whereas the out-

of-sample RMSE ranges between 55.294 and 56.040. These figures show that the four

prediction models are able to capture the positive trend in the number of infections.

Importantly, the comparison of the loss functions with the naive Poisson regression model
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also highlights the value of incorporating the covariates in the model specification. The

model that simply fits the count data to the number of new confirmed cases reports

a RMSPE of 127.625. However, the models that exploit the information contained in

autoregressive and spatial terms, as well as in demographic and socioeconomic variables,

reduce the loss function by half.

The empirical loss functions can also be used to construct confidence intervals for the

pointwise predictions of each model. The intervals of the in-sample predictions are cal-

culated as ŷit ± z1−α/2RMSEt, with z1−α/2 being the critical value of a standard normal

distribution for an α significance level, and a sample size N sufficiently large. Simi-

larly, the predictive intervals for the out-of-sample exercise are constructed as ŷit+1 ±

z1−α/2RMSPEt+1|t. To assess the accuracy of these intervals in capturing the actual ob-

servations we calculate their corresponding empirical coverage probability. This quantity

is obtained as the fraction of the number of observations yit, for a given t, that lie inside the

interval forecasts. More formally, the empirical coverage probability for the in-sample pre-

diction analysis is defined as N−1
N∑
i=1

1
(
|yit − ŷit| ≤ z1−α/2RMSEt

)
, with 1(·) an indicator

function that takes a value of one if the argument is true, zero otherwise. The out-of-

sample empirical coverage probability is N−1
N∑
i=1

1
(
|yi,t+1 − ŷit+1| ≤ z1−α/2RMSPEt+1|t

)
.

Table 6 reports the empirical coverage probabilities obtained for predictive intervals

constructed with a 90% confidence. These figures show empirical coverages that are close

to the nominal ones across methods and periods. The accuracy of the intervals slightly

varies between the in-sample and out-of-sample exercises, and also across periods, but not

much across methods. As expected, the empirical coverage probability of the predictive

intervals in-sample is closer to the nominal one than that for those out-of-sample. Overall,

the analysis in Table 6 presents a very satisfactory performance of the predictive intervals

for the Poisson regression and the three Bayesian models. The only exceptions are the

BMA methods during the week starting on 10 November, 2020 which present an inflated

coverage probability. The good performance of the interval forecasts allows us to interpret
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the RMSE and RMSPE as reliable estimators of their width. For example, the interval

forecast for the average value associated to the Poisson regression model for the in-sample

exercise for the week starting on 8 September 2020 is (3.41, 19.09). This interval is obtained

as 11.254 ± 1.64 × 4.781. Similarly, the corresponding interval forecast for the last week

reported in Table 5 is (136.20, 241.07), calculated as 188.655± 1.64× 31.966.

To illustrate further the predictive ability of our proposed framework we show the

evolution of the pandemic graphically. With this aim, Figure 3 presents choropleth maps

for the modified ZCTAs of NYC comparing, for three selected weeks, the observed number

of new confirmed COVID-19 cases (left panel) with the predicted number by the BPM

estimator (right panel). In line with the results reported in tables 5 and 6, the maps show a

strong similarity between the predictions and the observed values in most neighborhoods

and periods. Interestingly, and although the model does not catch up with the rapid

increase in the number of cases that took place in mid-October, it replicates the cross-

sectional differences across neighborhoods. In contrast, the predictive framework works

quite well at the end of the sample period, when the model captures both the momentum

in the number of cases and the cross-sectional variability.

5 Conclusion

We present a model based on Poisson point processes to study the evolution of the coron-

avirus pandemic in the city of New York. Our study makes use of information on the num-

ber of confirmed COVID-19 cases at the zip code level from September 2020 to February

2021. The aim of the study has been twofold. First, we are interested in determining the

demographic, socioeconomic, and spatial factors that have ability to explain the differences

in the number of new confirmed cases across neighborhoods. Second, we have assessed the

in-sample and out-of-sample predictive performance of alternative models. To do this, we

consider a benchmark given by a Poisson random variable, modeling the intensity rate of
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the increase in weekly confirmed cases, that is extended in several dimensions by (i) adding

a large set of regressors containing autoregressive components, exogenous covariates, and

spatial effects; and (ii) controlling for model uncertainty by averaging the predictions of

all possible combinations of regressors using a Bayesian approach.

Our results show that the proposed predictive framework displays a good performance

both in-sample and out-of-sample during the second wave of the coronavirus pandemic in

NYC. Importantly, the main predictors are the autoregressive component of the model

given by the first lag of the incidence rate, population size, age-related variables, and

spatial effects capturing spillovers between neighborhoods. The shares of employment

in the transport, education and health, and entertainment sectors also exhibit predictive

ability. These results contrast with those findings for the first wave reported in the related

literature that highlight the role of occupational variables, household size, and income.

The associated prediction intervals obtained from estimates of the mean square error

and mean square prediction error display very good coverage probabilities, allowing us

to construct interval forecasts. The econometric methodology proposed in this paper,

and the insights obtained from the empirical study, can be applied as useful tools for

policy evaluation to assess the effectiveness of specific policies such as social distancing

measures, the use of face masks, and other non-pharmaceutical interventions implemented

at neighbourhood or regional level. Our cross-sectional analysis and prediction exercise

would allow policy makers with information on these measures to gauge their impact across

regions and over time.
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Table 1: Weekly new confirmed COVID-19 cases in modified zip code tabulation areas
(ZCTAs, N=177): Descriptive statistics.

Period Total Mean Standard deviation Minimum Maximum

8 Sep–15 Sep 1,992 11.254 10.251 0 66
29 Sep–6 Oct 3,520 19.887 25.033 0 187

20 Oct–27 Oct 3,891 21.983 16.340 0 79
10 Nov–17 Nov 8,533 48.209 32.627 0 164

1 Dec–8 Dec 10,277 58.062 63.942 0 400
22 Dec–29 Dec 22,123 124.989 87.499 6 435
12 Jan–19 Jan 33,392 188.655 126.137 3 624
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Table 3: Poisson regression: Weekly new confirmed COVID-19 cases.

8 Sep–15 Sep 29 Sep–6 Oct 20 Oct–27 Oct 10 Nov–17 Nov 1 Dec–8 Dec 22 Dec–29 Dec 12 Jan–19 Jan
lcases 0.033*** -0.005* 0.003 0.005*** 0.005*** 0.003*** 3.46e-04*

(0.007) (0.003) (0.003) (0.001) (5.02e-04) (2.91e-04) (1.76e-04)
lincid -0.004 0.014*** 0.002 0.001*** 0.001*** -3.74e-05 0.001***

(0.004) (0.002) (0.002) (3.54e-04) (02.62e-04) (1.50e-04) (1.18e-04)
lwcases -0.009 0.002 0.008*** -0.002** 0.003*** 0.001*** 3.78e-04***

(0.008) (0.004) (0.002) (0.001) (4.43e-04) (1.85e-04) (1.03e-04)
lwincid 0.021*** 0.001 -0.007** 0.005*** 4.09e-04 4.63e-04*** 2.66e-04**

(0.006) (0.004) (0.003) (0.001) (2.86e-04) (1.43e-04) (1.06e-04)
popul 1.49e-05*** 1.38e-05*** 1.75e-05*** 1.15e-05*** 9.91e-06*** 7.96e-06*** 1.18e-05***

(3.03e-06) (2.44e-06) (2.28e-06) (1.54e-06) (1.40e-06) (9.27e-07) (9.51e-07)
hhsize -0.839*** -0.176 -0.322*** -0.279*** -0.583*** -0.066 -0.096***

(0.148) (0.114) (0.104) (0.074) (0.068) (0.044) (0.035)
male -0.041** -0.014 0.018* -0.012 0.035*** -0.005 -0.002

(0.017) (0.013) (0.011) (0.008) (0.007) (0.005) (0.004)
black -0.003 -0.006*** -0.008*** -0.006*** -0.015*** -0.005** -0.001**

(0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (0.001)
hispanic 0.006** -0.001 0.001 0.004*** -0.005*** 0.001* 2.40e-04

(0.002) (0.002) (0.002) (0.001) (0.001) (0.001) (5.49e-04)
age -0.045*** -0.064*** -0.037*** -0.023*** -0.069*** -0.017*** -0.018***

(0.014) (0.011) (0.010) (0.007) (0.006) (0.004) (0.003)
over64 -1.04e-05 4.49e-05*** 2.56e-05* 2.75e-05*** -6.55e-07 2.58e-05*** 3.69e-05***

(1.98e-05) (1.59e-05) (1.40e-05) (9.02e-06) (9.01e-06) (6.28e-06) (4.74e-06)
enroll -0.002 -0.016* -0.008 -0.007 -0.065*** -0.019*** -0.004

(0.012) (0.010) (0.008) (0.006) (0.006) (0.004) (0.003)
income -9.47e-06*** -5.95e-06** 2.41e-06 -1.06e-06 -2.23e-06 -2.24e-06** -1.05e-06

(3.31e-06) (2.62e-06) (2.19e-06) (1.51e-06) (1.51e-06) (1.01e-06) (8.28e-07)
selfemp 0.045*** 0.029*** 0.010 0.034*** -0.011** 0.007** 0.010***

(0.011) (0.009) (0.008) (0.005) (0.005) (0.003) (0.003)
empl 0.026 0.027** -0.007 0.032*** -0.023*** -0.001 -0.004

(0.016) (0.013) (0.012) (0.008) (0.007) (0.005) (0.0045)
fulltime 0.003 -0.003 -1.93e-04 0.006 -0.007* 0.001 0.002

(0.010) (0.008) (0.007) (0.005) (0.004) (0.003) (0.002)
pubtrans -0.004 -0.006* -0.006** 3.46e-04 0.022*** -2.42e-04 -0.003***

(0.004) (0.003) (0.003) (0.002) (0.002) (0.001) (0.001)
travtime -4.70e-06 6.16e-06 -4.51e-05 3.30e-05 -3.77e-04*** 1.79e-05 6.99e-05***

(9.38e-05) (7.58e-05) (7.17e-05) (4.75e-05) (4.85e-05) (3.06e-05) (2.46e-05)
retail 0.015 0.012 0.032** 0.050*** 0.018** -0.001 0.003

(0.018) (0.015) (0.013) (0.009) (0.008) (0.006) (0.004)
transp 0.056*** 0.034** 0.066*** 0.041*** 0.132*** 0.034*** 0.039***

(0.017) (0.014) (0.012) (0.008) (0.008) (0.005) (0.004)
eduheal 0.018* 0.031*** 0.011 0.025*** 0.044*** 0.013*** 0.006**

(0.010) (0.008) (0.007) (0.005) (0.004) (0.003) (0.002)
entert -0.016 0.036*** 0.036*** 0.023*** -0.008 0.009** 0.015***

(0.015) (0.012) (0.010) (0.007) (0.006) (0.004) (0.003)
occup 0.005 0.002 0.002 -0.005 -0.009** 0.004 0.015***

(0.008) (0.006) (0.005) (0.003) (0.004) (0.003) (0.002)
rooms 0.203*** 0.039 0.103* 0.157*** 0.602*** 0.113*** -0.023

(0.073) (0.060) (0.053) (0.036) (0.035) (0.023) (0.019)
internet 0.009 0.004 -0.001 -0.009*** -0.013*** -0.010*** -0.002

(0.007) (0.006) (0.005) (0.003) (0.003) (0.002) (0.002)
nocov -0.003 -0.021*** -0.018*** -0.006 -0.016*** -0.001 -7.84e-06

(0.010) (0.007) (0.007) (0.004) (0.004) (0.003) (0.002)
constant 1.541 1.320 2.843** -0.084 7.737*** 4.516*** 3.092***

(1.950) (1.602) (1.372) (0.921) (0.871) (0.606) (0.468)
Log likelihood -601.626 -589.701 -597.097 -764.797 -2,741.613 -926.591 -1,064.428
Note: The number of observations is 177. Standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.10.
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Figure 1: Weekly new confirmed COVID-19 cases in New York City, 31 March 2020 – 2
February 2021.
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Figure 2: Bayesian model averaging: Posterior density functions for the coefficients of
selected regressors, 12 Jan – 19 Jan.
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Figure 3: Predictive performance: Choropleth maps of observed and predicted (BPM)
weekly new confirmed COVID-19 cases in selected periods.
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Figure captions

Figure 1. Weekly new confirmed COVID-19 cases in New York City, 31 March 2020 – 2

February 2021.

Figure 2. Bayesian model averaging: Posterior density functions for the coefficients of

selected regressors, 12 Jan – 19 Jan.

Figure 3. Predictive performance: Choropleth maps of observed and predicted (BPM)

weekly new confirmed COVID-19 cases in selected periods.
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