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8 

ABSTRACT 9 

Classical bearing capacity theory was developed mainly based on spatially 10 

uniform soil properties, which cannot account for the influence of inherent soil 11 

variability. If the soil strength is heterogenous, then using the average strength may 12 

overestimate the bearing capacity of foundations, because the failure mechanism may 13 

preferentially mobilise the weaker soils. This study aims to establish a theoretical 14 

model using upper-bound solutions applied to the bearing capacity analysis of shallow 15 

foundations on undrained clay considering spatial variability. The model is derived on 16 

the principle of least energy dissipation using a four-parameter variation on Prandtl’s 17 

mechanism. The developed theoretical model is verified by the random finite element 18 

method in spatially-varying soil conditions. The results show that the model can 19 

accurately capture the effect of spatially-varying strength on the shallow foundation 20 

failure mechanism. The difference of bearing capacity factor between the proposed 21 

model and the FE model is within 5%, which demonstrates that the four-parameter 22 

model has an accuracy that is comparable to finite element analysis with many 23 

hundreds of degrees of freedom. Another advantage of the theoretical model is that 24 

the possible non-convergence in finite element analysis can be avoided, and hence, 25 

the calculation efficiency is significantly enhanced. The model is therefore suitable for 26 

rapid quantification of bearing capacity in spatially-varying soils. 27 

28 
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INTRODUCTION 31 

The bearing capacity of a shallow foundation under vertical loading is a classical 32 

geotechnical problem. Several theoretical models for the bearing capacity of shallow 33 

foundations have been proposed. Prandtl (1920) first proposed an analytical solution 34 

for the shear failure mechanism using a limit equilibrium method, ignoring soil weight 35 

and the burial depth of a shallow foundation. Many well-known scholars (Terzaghi, 36 

1965; Meyerhof, 1951; Hansen, 1970; Vesić, 1973) subsequently revised the Prandtl 37 

model to account for variable situations in estimating bearing capacity. Key early 38 

contributions by Hill (1950) and Drucker and Prager (1952) established limit 39 

theorems of plasticity combining the lower bound methods based on a static stress 40 

field and the upper bound methods based on work done via a velocity field, which are 41 

now widely adopted in geotechnical engineering (e.g., Chen, 1975; Davis and 42 

Selvadurai, 2002; Knappett and Craig, 2012; Sloan, 2013). Solutions for shallow 43 

foundations involve a symmetrical shear failure mechanism in uniform soils (see Fig. 44 

1). According to the upper bound theorem of limit analysis techniques, the work done 45 

by external loads and the energy dissipation by internal stresses in an increment of 46 

displacement can be respectively expressed as 47 

 w ultE V v   (1) 48 

 
h a a aE S l v    (2) 49 

where Ew is the work done rate (per unit thickness) acting on the foundation soil, Eh is 50 

the energy dissipation rate (per unit thickness) in a homogeneous soil acting along a 51 

shear failure plane. Vult is the ultimate vertical bearing capacity (per unit thickness), v 52 

is the known vertical velocity of the shallow foundation, Sa is the undrained shear 53 

strength along shear failure plane a, la is the length of plane a, and νa is the slip 54 
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velocity on that plane. 55 

For a homogeneous soil, the undrained shear strength is the same everywhere. A 56 

bearing capacity factor of a shallow foundation on the homogeneous soil (Nh) is often 57 

defined as 58 

 ult
h

a

V
N

W S



 (3) 59 

where W is the width of the shallow foundation. According to the equation for the 60 

work shown in Eq. (1), the bearing capacity factor can be alternatively expressed as 61 

 w
h

a

E
N

v W S


 
 (4) 62 

If a kinematically admissible velocity field is postulated, the energy dissipation 63 

rate is equal to the work done rate (i.e., Eh = Ew), and it can be derived that, 64 

 h
h

a

E
N

v W S


 
 (5) 65 

The same bearing capacity factor as the Prandtl solution of 5.14 under undrained 66 

conditions in a homogeneous soil can be obtained using Eqs. (2) and (5). 67 

The previous theoretical results are mainly limited to homogeneous soils or 68 

uniform soils of strength increasing linearly with depth. However, soil is a natural 69 

material and shows variations in properties from point to point in the ground as a 70 

result of inherent variations in composition during formation. Lumb (1966) reported 71 

that the undrained strength of Hong Kong marine clay varied with depth. An 72 

autocorrelation function for the spatial series of depth versus undrained strength was 73 

recommended to study the correlation structure of the undrained strength (Matsuo and 74 

Asaoka, 1977; Asaoka and Grivas, 1982). The spatial variability of the undrained 75 

strength of clay was then characterized by various researchers (Chiasson et al., 1995; 76 

Dasaka and Zhang, 2012; Houlsby and Houlsby, 2013; Lloret-Cabot et al., 2014). This 77 
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variability may cause a reduction of the bearing capacity and the shear failure 78 

mechanism tends to follow the weakest path (Griffiths and Fenton, 2001; Griffiths et 79 

al., 2002; Fenton and Griffiths, 2003; Popescu et al., 2005; Cho and Park, 2010; Li et 80 

al., 2015). This effect is overlooked if the bearing capacity is calculated using the 81 

conventional bearing capacity factor combined with the spatial average value of the 82 

soil strength. The bearing capacity can therefore be overestimated if the inherent 83 

spatial variability of a soil is ignored. 84 

Vanmarcke and Fenton (Vanmarcke, 1977; Fenton and Vanmarcke, 1990) 85 

presented random field theory for modeling the natural variability of soil properties. 86 

Then, random finite element method (RFEM) was developed by combining random 87 

field theory and finite element method, which provides a rational framework for the 88 

analysis of complex uncertain problems (Griffiths and Fenton, 1997). Griffiths and 89 

Fenton (2001) investigated the influence of the spatial variability of the undrained soil 90 

strength on the bearing capacity by combining elasto-plastic finite element analysis 91 

with random field theory. They found that the mean bearing capacity of a shallow 92 

foundation can decrease by 20% for spatially variable soils compared with that of 93 

homogeneous soils. Griffiths & Fenton (2001) and Popescu et al. (2005) showed that 94 

the shear failure mechanism tends to pass through the weaker soil zones. Li et al. 95 

(2015) quantified this effect by showing the correlation between shear plane length 96 

and variability of bearing capacity in spatially-variable soils. Although the RFEM 97 

shows its capability on tackling with this problem, it is complex due to the tedious 98 

modeling process, high requirements on computing resources and tough convergence 99 

conditions. A theoretical model that can describe the bearing capacity on spatially 100 

variable soils is required. 101 

This study establishes a theoretical model using upper-bound solutions applied to 102 
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the bearing capacity analysis of shallow foundations on spatially variable soils. The 103 

proposed theoretical model is verified by the classical bearing capacity theory in 104 

homogeneous soils and by random finite element method in spatially variable soils. It 105 

is the first time that a simple theoretical analysis for bearing capacity problem in 106 

spatially variable soils has been proposed. The analysis provides insights into the 107 

influence of spatial heterogeneity and provides a practical tool for the quantification 108 

of these effects for specific heterogeneity conditions. 109 

THEORETICAL MODEL 110 

Kinematically admissible velocity field 111 

According to the Prandtl solution in homogeneous soils, there is a key point 112 

below the shallow foundation that controls the geometry of the failure plane, which is 113 

marked in Fig. 1 as point C. This point is the base of a triangular zone originating 114 

from the center of the foundation, which is marked as point O1. The angle ACB is a 115 

right angle for undrained soil. The shear failure mechanism for the shallow foundation 116 

is symmetric about a vertical plane through O1. The classical bearing capacity solution 117 

features three zones with different velocity fields and energy dissipation patterns, 118 

which include a wedge zone (triangle ACB), a radial shear zone (fan ACD and fan 119 

BCF) and a passive zone (triangle ADE and triangle BFG). 120 

When considering the spatial variability of the soil, the shear failure mechanism 121 

tends to become asymmetric (Griffiths and Fenton, 2001). The key point C is no 122 

longer beneath the midpoint of the foundation as shown in Fig. 2, and lies below the 123 

point marked as O'. The location of point C is controlled by the zones of weak soil 124 

beneath. In turn, the angle ACB is not necessarily 90°as in the homogeneous soil case. 125 
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As a result, the angle CAB (θ3) and CBA (θ4) can be different under this condition. 126 

The development of the shear failure plane in spatially variable soils is significantly 127 

affected by the spatial pattern of soils, which may lead to different angles of CAD (θ1) 128 

and CBF (θ2). Although the angles may change, the failure plane still contains three 129 

zones including the wedge zone (triangle ACB), radial shear zone (fan ACD and fan 130 

BCF) and passive zone (triangle ADE and triangle BFG). 131 

To allow for this potential asymmetry, we now set out a derivation of a 132 

generalized version of Prandtl’s solution, with variables angles 1 and 2. The 133 

foundation is regarded as a rigid body with a vertical downward velocity of v. The 134 

three zones will move accordingly. The energy dissipates along the sliding lines AC, 135 

BC, DE, FG and around the perimeter of the sliding fans ACD and BCF. It is noted 136 

that, the energy also dissipates within the fans ACD and BCF due to internal shearing. 137 

A potential failure mechanism for the spatially variable soil is shown in Fig. 3a, where 138 

the fan ACD (or fan BCF) is simplified to a cluster of infinitesimal wedges. In order 139 

to achieve compatibility, the velocity is uniform along each radial line, including the 140 

boundaries with the wedge zone. A kinematically admissible velocity field for the 141 

failure mechanism is postulated to define the relative velocities between each shear 142 

failure plane and the stationary soil mass, which is shown in Fig. 3b. Each 143 

infinitesimal wedge slips relative to the adjacent wedges with the velocity shown in 144 

Fig. 3c. 145 

The velocity of point C is v as the area surrounded by triangle ACB is assumed to 146 

be rigid. The slip velocity of the soil along the shear failure plane AC (vAC) is closely 147 

related with the velocity of point C,  148 

 AC 3sinv v    (6) 149 
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 CO'
3

AC

sin
l

l
   (7) 150 

 
0'COl y y   (8) 151 

    0 0

2
2

2
AC

W
l x x y y

 
     

 
 (9) 152 

where lCO' is the length of line CO', lAC is the length of line AC, (x, y) are the 153 

coordinates of point C, and (x0, y0) are the coordinates of point O1. 154 

Similarly, the slip velocity of the soil along the shear failure plane BC (vBC) is 155 

 BC 4sinv v    (10) 156 

 CO'
4

BC

sin =
l

l
  (11) 157 

    0 0

2
2

BC
2

W
l x x y y

 
     

 
 (12) 158 

where lBC is the length of line BC. 159 

The shear failure plane CD is a circular arc for ease of calculation. The slip 160 

velocity of the soil along the shear failure plane CD (vCD) is perpendicular to line AC 161 

at point C originally. As we move along arc CD, it changes direction until it is 162 

perpendicular to line AD at point D, but keeps values unchanged throughout which 163 

can be derived from the hodograph shown in Fig. 3b, 164 

 CD 3cosv v    (13) 165 

 AO'
3

AC

cos
l

l
   (14) 166 

  ' 0
2

AO

W
l x x    (15) 167 

where lAO' is the length of line AO'. 168 

Similarly, the slip velocity of the soil along the shear failure plane CF (vCF) is169 
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 CF 4cosv v    (16) 170 

 BO'
4

BC

cos =
l

l
  (17)171 

  0BO'
2

W
l x x    (18) 172 

where lBO' is the length of line BO'. 173 

The area surrounded by triangle ADE and triangle BFG is rigid. Hence the slip 174 

velocity of the soil along the shear failure plane DE (or FG) is equal to that of the 175 

shear failure plane CD (or CF) (see Fig. 3b). The mechanism leads to a kinematically 176 

admissible velocity field which includes the following shear failure planes between 177 

the soil zones, 178 
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 (19) 179 

The above shear failure mechanism is an extension of the classical Prandtl 180 

solution that adds variation associated with the position of point C, and the angles 1 181 

and 2. This simple variation turns out to be sufficient to capture a wide range of 182 

failure patterns that optimize the collapse load in spatially variable soil, as shown 183 

later. 184 
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Energy dissipation 185 

The shear failure mechanism for the shallow foundation is closely related to the 186 

spatial distribution of the soil strength. For a certain site, the shear failure mechanism 187 

will follow the path with the minimum energy dissipation. In order to determine the 188 

minimum energy dissipation, the site is considered as a combination of discrete 189 

elements and the undrained shear strength of these elements is regarded as a random 190 

field (as shown in Fig. 4). 191 

According to Eq. (2), the energy dissipation rate in a spatially variable soil (Es) 192 

can be expressed as 193 

 s

1

m

i i i

i

E S l v


    (20) 194 

where m is the number of the elements along the shear failure planes, namely the 195 

number of the elements that are crossed by the shear failure planes, Si is the undrained 196 

shear strength of the element i along the shear failure plane, li is the length of the part 197 

of the shear failure plane which is in element i, and νi is the slip velocity of the 198 

element i along the shear failure plane. The energy dissipation rate in each zone is 199 

derived in the following sections.  200 

The wedge zone of triangle ACB has two shear failure planes (i.e., line AC and 201 

line BC), which generates two sources of energy dissipation, 202 

 

 

 

1

AC ACAC
=1

2

BC BCBC
=1

m

jj
j

m

kk
k

E S l v

E S l v


  



   






 (21) 203 

where EAC is the energy dissipation rate in the soil elements acting along plane AC, 204 

m1 is the number of the elements along plane AC, SAC(j) is the undrained shear 205 

strength of element j along plane AC, lj is the length of the part of plane AC which is 206 
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in element j, EBC is the energy dissipation rate in the soil elements acting along plane 207 

BC, m2 is the number of the elements along plane BC, SBC(k) is the undrained shear 208 

strength of the element k along plane BC, and lk is the length of the part of plane BC 209 

which is in element k. 210 

 The radial shear zone contains two sliding fans (i.e., fan ACD and fan BCF). Each 211 

sliding fan has two sources of energy dissipation. Taking fan ACD as an example, the 212 

first source is the energy dissipation of the soil elements located in fan ACD due to 213 

the slip on the radial planes between adjacent soil elements. The energy dissipation 214 

rate in the soil elements located in fan ACD (EACD) is the summation of the energy 215 

dissipation due to the shearing occurring between the infinitesimal wedges (see Figs. 216 

3a and 3c), 217 

  

'

ACD WEDGE '
' 1

m

i
i

E E


  (22) 218 

        
'

CD 1WEDGE ' ACD ', ' ', '
' 1

n

i i j i j
j

E S l v 


    (23) 219 

where m' is the number of the infinitesimal wedges, EWEDGE(i') is the energy dissipation 220 

rate occurring between wedge i' and the next one, n' is the number of the elements 221 

along the contact plane between wedge i' and the next, SACD(i', j') is the undrained shear 222 

strength of the element j' along the contact plane between wedge i' and the next, l(i', j') 223 

is the length of the part of the contact plane between wedge i' and the next which is in 224 

element j', and δθ1 is the internal angle of the infinitesimal wedge from the 225 

segmentation of angle θ1 (see Fig. 3). 226 

As the energy dissipation occurring between each wedge and its next is similar 227 

throughout the fan, Eqs. (22) and (23) can be combined and further simplified as 228 

    
3

ACD CD 1ACD
1

m

ll
l

E S l v 


    (24) 229 
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where m3 is the total number of the elements along the contact planes between these 230 

wedges, SACD(l) is the undrained shear strength of the element l along the contact 231 

planes between two wedges, and ll is the length of the part of the contact plane 232 

between two wedges which is in element l. 233 

The other source of energy dissipation in fan ACD is from the shearing along 234 

plane CD (ECD), which can be expressed as 235 

 
 

4

CDCD
1

m

CD pp
p

E S l v


    (25) 236 

where m4 is the number of the elements along plane CD, SCD(p) is the undrained shear 237 

strength of the element p along the plane CD, and lp is the length of the part of plane 238 

CD which is in element p. It is noted that the length of a line segment is the length of 239 

a circular arc here since fan ACD is discretized into the infinitesimal wedges. 240 

As the energy dissipation in fan BCF is similar to that in fan ACD, its two 241 

components of energy dissipation can be written as 242 
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 (26) 243 

where the notation follows the convention set out for Eqs. (24) and (25). 244 

The passive zone also contains two shear failure planes (i.e., line DE and line 245 

FG), which generates two items of energy dissipation, 246 
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 (27) 247 

where the notation follows the convention set out for Eq. (21). 248 

Bearing capacity factor 249 
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When the energy dissipation in the wedge zone, radial shear zones and passive 250 

zones are all determined, the energy dissipation rate in spatially variable soil acting 251 

along a potential shear failure mechanism (Ep) can be expressed as 252 

 p AC BC ACD CD BCF CF DE FGE E E E E E E E E         (28) 253 

To bound the optimization process, point C is assumed to be confined to an area 254 

that is laterally between the edges of the foundation and less than 1W vertically 255 

beneath the foundation. Trials have shown that this zone is sufficiently large to 256 

capture the optimum mechanism. The optimum and therefore critical shear failure 257 

mechanism is that with the minimum energy dissipation rate. The optimisation model 258 

can therefore be defined as: 259 

 

1

2

min

0

0

0

s p

A B

E E

x x x

y W

 

 




 


 
  


 

 (29) 260 

where xA is the x-axis coordinate of point A and xB is the x-axis coordinate of point B. 261 

There are four independent unknowns in Eq. (29), namely θ1, θ2, x, and y, and a 262 

numerical search program is used to satisfy this optimization for a given set of inputs. 263 

According to Eq. (5), the bearing capacity factor of a shallow foundation on a 264 

spatially variable soil (Ns) can be expressed as 265 

 s
s

s

E
N

v W S


 
 (30) 266 

where Ss is the mean undrained shear strength of the spatially variable soil domain 267 

(Griffiths and Fenton, 2001). 268 

The proposed model can be verified by the classical bearing capacity theory as 269 

the Prandtl solution in homogeneous soils can be regarded as a special case of the 270 
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spatially variable field. The verification of the theoretical model is given in 271 

APPENDIX. 272 

SEARCH PROGRAM 273 

It is difficult to directly obtain the analytical solutions of the energy dissipation 274 

rate and the bearing capacity of a spatially variable soil from Eqs. (29) and (30) due to 275 

the random undrained shear strength applicable to each shear failure plane and fan 276 

zone. Hence a search program written in the FORTRAN language has been developed 277 

to solve this problem. 278 

To define the shape of the failure mechanism, point C, point E, and point G are 279 

taken as the control points (with the x coordinates of E and G being proxies for angles 280 

1 and 2, given the location of point C). Both the angle EDA and angle GFB are 281 

constrained as right angles. Point C can be located at any positions within a 282 

designated area (e.g., 1W × 1W) beneath the foundation. Point E (or point G) can be 283 

located from the left side (or right side) of the foundation to a designated distance 284 

horizontally (e.g., 3W). Point C is tried at many positions within the designated area 285 

and for each of those positions the E and G are varied to form potential shear failure 286 

planes. Then the minimum of each of these cases is identified as the critical case for 287 

any given positions of point C. The energy dissipation rate of these potential optimum 288 

mechanisms corresponding to all potential positions of point C is calculated and the 289 

overall minimum energy dissipation is identified. The details of the above operations 290 

can be outlined as the following steps: 291 

Step 1: Set up the input parameters including the foundation width, the dimension of 292 

the site, and the size of soil elements. 293 

Step 2: Map the undrained shear strength of the spatially variable soil into each soil 294 
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element. 295 

Step 3: Discretize each soil element into designated small cells in which the point C 296 

can be positioned.    297 

Step 4: Search the potential mechanisms through moving the control points (i.e., point 298 

C, point E, and point G) under the constraint conditions and calculate the 299 

energy dissipation rate along each potential mechanism based on Eq. (28). 300 

Step 5: Record the coordinates of the control points (i.e., point C, point D, point E, 301 

point F, and point G), the number of the elements along the shear failure 302 

planes, and the undrained shear strength of these mobilised soil elements. 303 

Step 6: Identify the shear failure mechanism with the minimum energy dissipation 304 

rate and the corresponding shear plane. Output the coordinates of the control 305 

points on the shear plane. 306 

Step 7: Calculate the bearing capacity factor using the minimum energy dissipation 307 

rate based on Eq. (30). 308 

The search program was first verified by confirming that it found the Prandtl 309 

solution in homogeneous soils, where all soil elements have the same undrained shear 310 

strength. The foundation width was set to 1 m. The dimension of the site is assumed to 311 

be 8 m long and 4 m deep, which is large enough to avoid any boundary effects. Three 312 

sizes of square elements (i.e., 0.5 m, 0.25 m, and 0.125 m) were simulated to 313 

investigate the effect of element size. The bearing capacity factors obtained from all 314 

of the three cases are 5.14, which is consistent with the theoretical Prandtl solution in 315 

uniform soils. The coordinates of the control point C are 4.0 m on the x-axis and - 0.5 316 

m on the y-axis, which are the same as the Prandtl solution. The results show that the 317 

program is accurate.  318 
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ILLUSTRATIVE EXAMPLE 319 

An illustrative example of a shallow foundation on a spatially variable soil is 320 

presented in this section. The foundation and domain size are the same as the previous 321 

example. The spatial variability of the site is represented by a random field of 322 

undrained shear strength. The random field is considered as log-normally distributed. 323 

The mean and standard deviation of the undrained shear strength are 20 kPa and 5 kPa, 324 

respectively. A squared exponential autocorrelation function is employed to describe 325 

the spatial correlation. The scale of fluctuation in the vertical direction and the 326 

horizontal direction is taken as 1.5 m. The element size of the field should be equal to 327 

or less than 0.18 times the scale of fluctuation to represent the spatial variation (Ching 328 

and Phoon, 2013). Hence, the element size is adopted as 0.25 m, giving a mesh of 512 329 

soil elements. One realization of the generated random field is mapped in these 330 

elements as shown in Fig. 5. To achieve a more accurate result each element was 331 

divided into 100 small cells in which the control points can be located. 332 

The proposed theoretical model along with the search program is used to analyze 333 

the shear failure mechanism and calculate the bearing capacity factor of the shallow 334 

foundation on the spatially variable soil shown in Fig. 5. 4,000,000 potential failure 335 

planes are tried for the field. Four mechanisms therein are extracted to illustrate the 336 

potential variations in the shear failure planes as shown in Fig. 6. As can be seen, 337 

these mechanisms exhibit significant differences with each other. Among these 338 

mechanisms, the case with minimum energy dissipation is shown by the thicker black 339 

line in Fig. 6. The shear failure plane shows an asymmetric characteristic which tends 340 

to pass through the relatively weak soil. The minimum energy dissipation rate is 341 

106.41 kJ/s. The bearing capacity factor can then be obtained using Eq. (30), which 342 

gives 5.32. 343 
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For the same statistical properties, the spatial pattern of the shear strength can be 344 

quite different. Given a lognormal undrained clay with mean strength of 20 kPa，345 

standard deviation of 5 kPa and scale of fluctuation of 1.5 m, Monte Carlo simulations 346 

are performed involving 100 realizations of the shear strength random field and the 347 

subsequent theoretical analysis of bearing capacity. The mean value and standard 348 

deviation of the bearing capacity factor are 4.86 and 0.52, respectively.  349 

COMPARISON WITH RANDOM FINITE ELEMENT METHODS 350 

Random finite element model 351 

To evaluate the accuracy of the proposed model, which is limited only to failure 352 

mechanisms of the form introduced in Fig. 2, a random finite element method (FEM) 353 

is used following the procedure set out by Li et al. (2015). The random FE approach 354 

simulates the same form of spatially random soil, but has the flexibility for a wider 355 

range of failure mechanisms to be mobilised. 356 

The site is simulated as a two-dimensional plane-strain model. The width of the 357 

shallow foundation, the dimension of the site, the size of soil elements, and the 358 

properties of the undrained shear strength are all the same as the previous illustrative 359 

example. To ensure the numerical accuracy of the simulation, each soil element in the 360 

illustrative example is further discretized into 100 small cells which have the same 361 

undrained shear strength as their parent element.  362 

The elastic response of soil is defined by the Young’s modulus and Poisson’s 363 

ratio. The Young’s modulus of each soil element is assumed as 200 times the local 364 

undrained shear strength (e.g. following Lambe and Whitman, 1969). The Poisson’s 365 

ratio is set slightly below 0.5 as 0.49 to simulate undrained conditions of no volume 366 
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change, but avoiding mesh locking. The failure of the soil is defined following the 367 

Tresca criterion. The interface between the soil and the foundation is fully bonded. 368 

The foundation is subjected to a vertical displacement at the foundation reference 369 

point, with rotation prevented, and the vertical reaction force is calculated. The 370 

bearing capacity factor of a shallow foundation solved by the random finite element 371 

method can be obtained referring to Eq. (3). 372 

Comparison of results 373 

For the first realization shown in illustrative example, the bearing capacity factor 374 

obtained from the random finite element method is 5.36, which is within 1% of that 375 

from the theoretical model in this study (i.e., 5.32). The bearing capacity factor for the 376 

homogeneous soil using the same FEM model is 5.21 which is 1.34% higher than the 377 

exact value of 5.14. The shear failure mechanism obtained from the FEM is shown in 378 

Fig. 7 (i.e., the grey region). The failure mechanism from the theoretical model (i.e., 379 

the black line) is also plotted on the figure for comparison purpose. In general, the 380 

failure mechanisms from the theoretical model demonstrate a similar pattern to that of 381 

the FEM. The failure plane is unsymmetrical and the identified failure mechanism 382 

tends to bypass the strong soils and develop along the weak soils, even at the expense 383 

of the shear failure planes extending further from the foundation. 384 

The next 100 realizations with different random fields of undrained shear 385 

strength were subsequently investigated for a broader comparison. The bearing 386 

capacity factor values obtained from the theoretical model and from the FEM for each 387 

random field are compared in Fig. 8. The difference between the two methods is 388 

within 5%, which indicates the theoretical model is reasonable. 72% of the cases with 389 

spatially variable soils have a lower bearing capacity than that of the homogeneous 390 

soils. The mean value of the bearing capacity factors from the analytical model and 391 
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the FEM are 4.86 and 4.95 respectively, compared to 5.14 and 5.21 for the 392 

homogeneous cases for each method respectively. These values show that the 393 

analytical method identified on average a 5.4% reduction in bearing capacity, whereas 394 

the average reduction from the FEM approach was 5.0%, which illustrates that on 395 

average there is a small effect of the mechanism ‘finding’ the weaker zones of soil to 396 

fail through (Griffiths and Fenton, 2001; Popescu et al., 2005; Cho and Park, 2010; Li 397 

et al., 2015). The slightly greater reduction in bearing capacity for the analytical 398 

method may attribute to the fact that the FEM method has greater flexibility in the 399 

form of the failure mechanism compared to the analytical method. The standard 400 

deviation of the bearing capacity factor is 0.52, and for this scale of fluctuation the 401 

foundation capacity is actually enhanced by the spatial variability in 28% of the cases, 402 

relative to the homogeneous strength case. 403 

The designated ranges of the control points C, E, and G in the 100 cases were 404 

examined by expanding their range in the theoretical calculation. The searching range 405 

for point C was set to 2W x 2W beneath the foundation. The horizontal distance for 406 

searching optimal point E and point G was set as from the side of the foundation to 407 

the boundary of the soil domain (i.e., 3.5W). The coordinates of these points are 408 

shown in Fig. 9. The coordinates of point C are all lying in the range of W x W area 409 

beneath the foundation. For the range of point E and G they are all within 2W distance. 410 

Therefore, the designated search ranges are appropriate.  411 

Regarding computation efficiency, the time used for the theoretical model is 412 

significantly less than that for the FEM, by a factor of 30. The theoretical model takes 413 

about 9.7 seconds and the FEM about 300 seconds on a computer with the CPU of 3.4 414 

GHz and the memory of 32GB. The results show the relative advantage of the 415 

proposed model for its combination of calculation accuracy and efficiency. Moreover, 416 
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the theoretical model can avoid the possible non-convergence in FEM. 417 

PARAMETRIC STUDIES 418 

To investigate the general effect of spatial variability on the bearing capacity of a 419 

shallow foundation, a series of Monte Carlo simulations using 1000 realizations were 420 

performed for a range of combinations of coefficient of variation (COVs) and scale of 421 

fluctuation (SOFs) of the undrained shear strength. The bearing capacity factor for 422 

each realization was calculated using the proposed theoretical method. The mean 423 

value (Ns), standard deviation and coefficient of variation (COVNs) of the bearing 424 

capacity factor for each combination were obtained.  425 

The variation of mean bearing capacity factor with the COV of the undrained 426 

shear strength is shown in Fig. 10a. The variation of mean bearing capacity factor 427 

with the SOF of the undrained shear strength is shown in Fig. 10b. When the variation 428 

in the undrained shear strength of soil (COVs) is small the mean bearing capacity 429 

factor is close to that of the homogeneous soil (i.e., 5.14). This is because for a small 430 

COV the soil is relatively uniform. As the COV of soil strength increases the mean 431 

bearing capacity factor decreases. The large variation means that weak soils exist in 432 

the domain, and the failure mechanism adapts so that the shear plane passes through 433 

the weak soils and results in smaller energy dissipation and a lower bearing capacity 434 

factor. This trend is similar to that reported by Griffiths and Fenton (2001), although 435 

the bearing capacity factor values are not identical due to different correlation 436 

functions used in the model. A Markov spatial correlation function was used in 437 

Griffiths and Fenton (2001), and a squared exponential correlation function (Li et al., 438 

2015) is adopted in this study. The two cases are therefore not directly comparable, 439 

and a separate question which requires further attention is the influence that different 440 
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spatial correlation functions have on the bearing capacity.  441 

The scale of fluctuation of undrained shear strength affects the mean bearing 442 

capacity as well. When the scale of fluctuation is between 0.5-2 times the foundation 443 

width the mean bearing capacity factor is the least, which is consistent with that 444 

reported by Li et al. (2016).  445 

The coefficient of variation of the bearing capacity factor (COVNs) is 446 

significantly affected by both the COV and the scale of fluctuation of the soil strength. 447 

Fig. 11 shows that COVNs is rather small as the scale of fluctuation is small (e.g., 448 

0.125 times the foundation width). This is because that a small scale of fluctuation 449 

indicates that the soil strength varies intensively from a location to another. The shear 450 

plane has to go through both the weak soil and the strong soil, so the bearing capacity 451 

factor converges towards the average result. When the scale of fluctuation is very 452 

large, the COVNs becomes large and would be identical to the coefficient of variation 453 

of soil shear strength at SOFs→∞. When the scale of fluctuation becomes very small, 454 

the COVNs also becomes small and insensitive to COVs. These results show that our 455 

analytical approach can replicate the forms of behavior first highlighted by Griffiths 456 

& Fenton (2001) using the FEM, but in this study the more rapid analytical method 457 

has been used. 458 

CONCLUSIONS 459 

A theoretical model is firstly proposed to describe the failure mechanism and the 460 

bearing capacity of a shallow foundation on spatially variable soils from the point 461 

view of energy dissipation. A simple four-parameter variation on Prandtl’s solution is 462 

proposed to represent the asymmetrical failure mechanism in undrained clay. The 463 

energy dissipation rate is derived for the mechanism, through which the bearing 464 
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capacity factor can be obtained. The developed theoretical model is carefully verified 465 

by the random finite element method in spatially variable soils. Results show that the 466 

model can accurately capture the asymmetrical failure mechanism of a foundation on 467 

spatially variable soils. The difference of bearing capacity factor between the 468 

proposed model and the FE model is within 5%, which demonstrates the proposed 469 

model is reasonable. A parametric study shows the general influence of the magnitude 470 

and length scale of strength spatial variability on bearing capacity. A notable 471 

contribution of this study is to show that a simple four-parameter variation on 472 

Prandtl’s solution can capture the effect of spatially-varying strength on the shallow 473 

foundation failure mechanism, to an accuracy that is comparable to FE analysis with 474 

many hundreds of degrees of freedom. 475 
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APPENDIX: VERIFICATION OF THEORETICAL MODEL 479 

The bearing capacity factor should equal to 5.14 if the soil elements all have the 480 

same undrained shear strength, 481 

 
       

       

AC BC ACD CD

sBCF CF DE FG

j k l p

q r s t

S S S S

S S S S S

   
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 (31) 482 

Combining Eq. (20) with Eq. (28), the energy dissipation rate along a potential 483 

shear failure mechanism can be reduced to 484 
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 (32) 485 

The following equation can then be obtained, 486 
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2

2
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     

 (33) 487 

where lDE is the length of line DE, and lFG is the length of line FG. 488 

Substituting the kinematically admissible velocity field (i.e., Eq. (19)) and the 489 

length of the shear failure plane (i.e., Eq. (9) and Eq. (12)) into Eq. (33)490 

Error! Reference source not found. yields  491 
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with 493 
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By simplifying Eq. (34), the following equation can be obtained, 495 
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When the energy dissipation rate along the potential shear failure mechanism 497 
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achieves a minimum, the following equation can be obtained. 498 
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with 500 

 

 

 

 

2 0
3 1

0

2 0
4 2

0

0
5 3 2

2

0 0

0
6 4 2

2

0 0

0

7 3 2
2

0 0

0

8 4 2

0

=sec π arctan

2

=sec π arctan

2

2

2

2

2

2

2

y y

W
x x

y y

W
x x

y y

W
x x y y

y y

W
x x y y

W
x x

W
x x y y

W
x x

W
x x y

 

 

 

 

 

 

 
 

  
  
 

 
 

  
  
 


 

 
    

 


 

 
    

 

 

 
 

    
 

 

 
 

   
 

 
2

0 y






























 


 (38) 501 

Solving Eq. (37)Error! Reference source not found., the results are obtained as 502 

follows, 503 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



25 

 

 

1

2

0

0

π

2

π

2

2

x x

W
y y









 

 

  


 (39) 504 

These results are consistent with the Prandtl solution for homogeneous soils. 505 

Substituting the solution of the four unknowns into Eq. (36)506 

Error! Reference source not found., the energy dissipation rate in a spatially 507 

variable soil can be derived as 508 

  s s2 πE v W S      (40) 509 

Based on Eq. (30), the bearing capacity factor of a shallow foundation on a 510 

spatially variable soil can be derived as 511 
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 (41) 512 

The results indicate that the coordinates of point C, the angle of CAD and CBF, 513 

as well as the bearing capacity factor obtained are all consistent with the Prandtl 514 

solution. 515 

NOTATION 516 

Ew work done rate acting on the foundation soil 517 

Eh  energy dissipation rate in a homogeneous soil 518 

Es  energy dissipation rate in a spatially variable soil 519 

Ep  energy dissipation rate in a spatially variable soil acting along a potential shear plane 520 

EAC  energy dissipation rate in the soil elements acting along plane AC 521 

EBC  energy dissipation rate in the soil elements acting along plane BC 522 

EACD  energy dissipation rate in the soil elements located in fan ACD 523 
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EBCF  energy dissipation rate in the soil elements located in fan BCF 524 

ECD  energy dissipation rate in the soil elements acting along plane CD 525 

ECF  energy dissipation rate in the soil elements acting along plane CF 526 

EDE  energy dissipation rate in the soil elements acting along plane DE 527 

EFG energy dissipation rate in the soil elements acting along plane FG 528 

EWEDGE(i')  energy dissipation rate occurring between wedge i' and the next 529 

Sa  undrained shear strength along shear failure plane a 530 

Ss mean undrained shear strength of the spatially variable soil 531 

Si  undrained shear strength of soil element i along the shear failure plane 532 

SAC(j)  undrained shear strength of element j along plane AC 533 

SBC(k)  undrained shear strength of element k along plane BC 534 

SACD(l)  undrained shear strength of element l along the contact plane between two wedges 535 

SCD(p)  undrained shear strength of element p along plane CD 536 

SBCF(q) undrained shear strength of element q along the contact plane between two wedges 537 

SCF(r)  undrained shear strength of element r along plane CF 538 

SDE(s)  undrained shear strength of element s along plane DE 539 

SFG(t)  undrained shear strength of element t along plane FG 540 

SACD(i', j')  undrained shear strength of element j' along the contact plane between wedge i' and the 541 

next 542 

la  length of shear failure plane a 543 

li  length of the part of the shear failure plane which is in soil element i 544 

lj length of the part of plane AC which is in element j 545 

lk  length of the part of plane BC which is in element k 546 

ll length of the part of the contact plane between two wedges which is in element l 547 

lp length of the part of plane CD which is in element p 548 

lq length of the part of the contact plane between two wedges which is in element q 549 

lr  length of the part of plane CF which is in element r 550 

ls  length of the part of plane DE which is in element s 551 

lt  length of the part of plane FG which is in element t 552 
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l(i', j')  length of the part of the contact plane between wedge i' and the next which is in element j' 553 

lAC  length of line AC 554 

lBC  length of line BC 555 

lDE  length of line DE 556 

lFG  length of line FG 557 

lAO'  length of line AO' 558 

lBO'  length of line BO' 559 

lCO'  length of line CO' 560 

v  vertical velocity of the shallow foundation 561 

vAC  slip velocity of the soil along plane AC 562 

vBC  slip velocity of the soil along plane BC 563 

vCD  slip velocity of the soil along plane CD 564 

vCF  slip velocity of the soil along plane CF  565 

vDE  slip velocity of the soil along plane DE 566 

vFG  slip velocity of the soil along plane FG 567 

νi  slip velocity of the soil element i along the shear failure plane 568 

m  number of the soil elements along the shear failure plane 569 

m1  number of the soil elements along plane AC 570 

m2  number of the soil elements along plane BC 571 

m3  total number of the soil elements along the contact planes between the infinitesimal wedges 572 

which are located in fan ACD 573 

m4  number of the soil elements along plane CD 574 

m5 total number of the soil elements along the contact planes between the infinitesimal wedges 575 

which are located in fan BCF 576 

m6  number of the soil elements along plane CF 577 

m7  number of the soil elements along plane DE 578 

m8  number of the soil elements along plane FG 579 

m'  number of the infinitesimal wedges 580 

n'  number of the elements along the contact plane between wedge i' and the next 581 
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θ1  angle CAD 582 

θ2  angle CBF 583 

θ3  angle CAB 584 

θ4  angle CBA 585 

δθ1  internal angle of the infinitesimal wedge from the segmentation of angle θ1 586 

δθ2  internal angle of the infinitesimal wedge from the segmentation of angle θ2 587 

(x, y)  coordinates of point C 588 

(x0, y0)  coordinates of point O1 589 

xA x-axis coordinate of point A 590 

xB  x-axis coordinate of point B 591 

Vult  ultimate vertical bearing capacity 592 

W  width of shallow foundation 593 

Nh  bearing capacity factor of a shallow foundation on a homogeneous soil 594 

Ns  bearing capacity factor of a shallow foundation on a spatially variable soil 595 

COVs  coefficient of variation of the undrained shear strength 596 

SOFs  scale of fluctuation of the undrained shear strength 597 

Ns  mean value of the bearing capacity factor 598 

COVNs  coefficient of variation of the bearing capacity factor   599 
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 666 
Fig. 1. Shear failure mechanism in a homogeneous soil 667 
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 670 

Fig. 2. Four-parameter variation on shear failure mechanism for spatially variable soil  671 
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 675 

(a) 676 

 677 

(b) 678 

 679 

(c) 680 

Fig. 3. Construction of kinematically admissible velocity field: (a) a potential shear failure 681 

mechanism in spatially variable soil; (b) hodograph for spatially variable soil; (c) hodograph 682 

for infinitesimal wedge 683 

684 
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 685 

Fig. 4. Generalized model of a site with spatially variable soil strength 686 
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 688 

Fig. 5. Random field of undrained shear strength 689 
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Fig. 6. Potential shear failure zones 693 
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 695 

 696 

Fig. 7. Shear failure zones obtained by theoretical model and FEM 697 
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 699 

Fig. 8. Comparison of bearing capacity factors from theoretical model and FEM 700 
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 703 

 704 

Fig. 9. Range of control point positions 705 
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      (a) 736 
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 738 

 739 

     (b) 740 

 741 

Fig. 10. Variation of mean bearing capacity factor with (a) COV of undrained shear strength 742 

for different scales of fluctuation; (b) scale of fluctuation for different COV values 743 
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 746 

Fig. 11. Variation of the COV of bearing capacity factor with COV of undrained shear 747 

strength for different scales of fluctuation 748 
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