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Abstract—Sparse, group-sparse and online channel estima-
tion is conceived for millimeter wave (mmWave) multiple-input
multiple-output (MIMO) orthogonal frequency division multi-
plexing (OFDM) systems. We exploit the angular sparsity of
the mmWave channel impulse response (CIR) to achieve im-
proved estimation performance. First a sparse Bayesian learning
(SBL)-based technique is developed for the estimation of each
individual subcarrier’s quasi-static channel, which leads to an
improved performance versus complexity trade-off in comparison
to conventional channel estimation. Then a novel group-sparse
Bayesian learning (G-SBL) scheme is conceived for reducing
the channel estimation mean square error (MSE). The salient
aspect of our G-SBL technique is that it exploits the frequency-
domain (FD) correlation of the channel’s frequency response
(CFR), while transmitting pilots on only a few subcarriers, thus
it has a reduced pilot overhead. A low complexity (LC) version
of G-SBL, termed LCG-SBL, is also developed that reduces the
computational cost of the G-SBL significantly. Subsequently, an
online G-SBL (O-SBL) variant is designed for the estimation of
doubly-selective mmWave MIMO OFDM channels, which has
low processing delay and exploits temporal correlation as well.
This is followed by the design of a hybrid transmit precoder and
receive combiner, which can operate directly on the estimated
beamspace domain CFRs, together with a limited channel state
information (CSI) feedback. Our simulation results confirms the
accuracy of the analysis.

Index Terms—mmWave, MIMO, OFDM, channel estimation,
sparse Bayesian learning, Cramer-Rao bound, hybrid signal
processing.

I. INTRODUCTION

Millimeter Wave (mmWave) wireless technology [1], [2],
has emerged as one of the promising candidates for next-
generation networks. Orthogonal frequency division multiplex-
ing (OFDM) [3] is eminently suitable for mmWave MIMO
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systems by providing resilience to the multipath distortion
and inter-symbol-interference (ISI), which are capable of ac-
commodating numerous antenna elements in a shirt-pocket-
sized handset. However, the large antenna arrays of mmWave
MIMO systems lead to a high hardware complexity and
power consumption due to the high sampling rate of ADC/
DACs and owing to the large number of power amplifiers
(PAs). For tackling this challenge, the hybrid MIMO signal
processing architecture that requires a much reduced number
of radio-frequency (RF) chains in comparison to the number of
antennas, has gained significant popularity as a viable solution
for mmWave MIMO OFDM systems [4]–[6]. In contrast to
conventional communication systems where the bulk of the
signal processing operations such as precoding and combining
are performed exclusively in the baseband, in such a hybrid
MIMO OFDM transceiver, the signal processing tasks are par-
titioned between the analog and digital domains. However, the
success of this novel architecture in mmWave MIMO OFDM
systems depends critically on the accuracy of the channel state
information (CSI). Hence, the accuracy of channel estimation
determines the attainable gains of mmWave MIMO OFDM
systems [4], [6]. A brief review of the contributions that
address this problem is described next.

A. Review of Existing Works in mmWave MIMO OFDM Chan-
nel Estimation

The conventional least squares (LS) and minimum mean
squared error (MMSE) approaches are not well-suited for
mmWave hybrid MIMO OFDM systems due to the low SNR
and large sizes of the antenna arrays at both the transmitter
and receiver. Furthermore, the conventional approaches are
also inefficient and lead to sub-optimal performance since
they ignore the angular-sparsity of the mmWave MIMO chan-
nel [1], which can be jointly attributed to the reduced scattering
and diffraction effects in the mmWave regime as well as to
the highly focused beam impinging from the large antenna
arrays. The authors of [7], [8] proposed various beam training
strategies for CSI acquisition, where pilot beams are used for
estimating the angles of arrival and departure (AoA/ AoD)
pairs of the multipath components. Although this technique has
an appealingly low complexity for a limited number of users
and for coarse angular resolutions, it requires a large amount
of feedback that increases substantially for finer angular reso-
lutions. Sparse signal estimation schemes, such as those in [9]–
[11], offer sophisticated CSI acquisition alternatives, and are
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well-suited for mmWave channel estimation. The foundation
of these propositions is the equivalent representation of the
mmWave MIMO channel in the beamspace domain, which is
known to be sparse, and is hence amenable to sparse signal
recovery using a low pilot overhead. This paradigm has only
recently been extended to frequency-selective channels in [6],
wherein the authors conceived a scheme for sparse estimation
of a wideband mmWave MIMO channel via sparse repre-
sentation of the concatenated frequency-selective mmWave
MIMO channel in a single-carrier system. The associated
sparse signal recovery problem therein is solved using the
orthogonal matching pursuit (OMP) scheme that performs
greedy selection of the columns of the dictionary matrix with
the aim of obtaining a sparse approximation of the pilot vector
observed [6]. This concept has then also been extended to
mmWave MIMO OFDM systems using the simultaneous OMP
(SOMP) technique of [4]. However, the performance of the
OMP technique, as well as of its offshoot, the SOMP, is
heavily reliant both on the choice of the dictionary matrix
and of the stopping criterion, which renders them susceptible
to convergence errors, in turn leading to performance erosion.
Furthermore, the framework of [4] advocates the transmission
of pilot beams on all the subcarriers, hence leading to spectral
inefficiency and to potentially excessive processing delays. In
this context, sparse Bayesian learning (SBL) [12] has been
shown to lead to improved sparse estimation performance over
several existing approaches, such as OMP [13], FOCUSS [14],
Basis Pursuit (BP) [15] etc. SBL has been subsequently ex-
tended in [16] and [17] to exploit simultaneous sparsity as well
as temporal correlation arising from multiple measurements.
SBL has been exploited for sparse channel estimation of a
quasi-static narrowband flat-fading mmWave hybrid MIMO
system in [18]. This has been subsequently extended to a
time-selective sparse mmWave MIMO channel using SBL-
based hierarchical Bayesian Kalman filtering in [10]. The
authors of [19] and [20] developed an SBL-based time-domain
(TD) sparse channel estimation schemes for a single-carrier
(SC) hybrid wideband mmWave MIMO system, considering
quasi-static frequency-selective and doubly-selective fading
scenarios. However, none of the existing contributions explore
the SBL paradigm for quasi-static frequency-selective and
doubly-selective mmWave MIMO OFDM systems, where the
channel’s frequency response (CFR) is group-sparse, and also
exhibits frequency- and time-domain (FD and TD) correlation.
This motivates the development of novel sparse mmWave
MIMO OFDM channel estimation techniques and hybrid pre-
coder/ combiner designs for circumventing the drawbacks of
the existing schemes listed above. The contributions of the
paper are succinctly summarized next. In Table-I, we boldly
contrast our contributions to the state-of-the-art.

B. Contributions

1) This work proposes an SBL-based group-sparse channel
estimation paradigm for channel estimation in mmWave
hybrid MIMO OFDM systems. The proposed G-SBL
scheme performs joint estimation of the mmWave MIMO
OFDM CFRs using only a few pilot subcarriers, which

leads to a reduced pilot overhead and improved spectral
efficiency. Furthermore, another interesting aspect of this
scheme is that it exploits the FD correlation of the
mmWave MIMO OFDM CFR, which is novel in the
context of the mmWave literature.

2) An efficient low complexity (LC) version of G-SBL
termed as LCG-SBL is also developed, which signifi-
cantly cuts down the computational cost of G-SBL by
replacing the inversion of a large-dimensional matrix by
the inversion of two smaller matrices. This results in a
substantial complexity reduction, because the complexity
of matrix inversion is related to the cube of its dimen-
sions.

3) Next, an online G-SBL (O-SBL)-based CSI estima-
tion scheme is developed for doubly-selective mmWave
MIMO OFDM systems, which exploits both the FD and
TD correlation, while simultaneously also guaranteeing
convergence to sparse estimates upon proper initial-
ization. In contrast to the family of block processing
schemes, such as SBL-KF [20] and HBKF [10], the
proposed O-SBL technique employs the sequential linear
MMSE (LMMSE) principle for updating the CSI in each
training frame. Thus, it has a low complexity as well
as low processing delay, which makes it appealing for
practical implementation. To the best of our knowledge,
the frame-wise CSI tracking aspect of the O-SBL is novel
in the context of mmWave MIMO OFDM systems.

4) Finally, a simplified technique is developed for joint
hybrid transceiver design across all the subcarriers,
which directly employs the beamspace channel estimates
obtained via the proposed estimation techniques. The
proposed algorithm requires only limited CSI of the
beamspace channel, namely the non-zero coefficients
and their respective indices, which substantially reduces
the feedback required. Furthermore, in contrast to the
existing SOMP [21] and MSBL [22] based designs, the
proposed hybrid transceiver design is non-iterative, and
hence computationally efficient.

5) Simulation results are presented for comparing the MSE
as well as the spectral efficiency of the proposed schemes
to the existing schemes and to the analytical benchmarks.

C. Notations

The following notation is used throughout the paper. Bold-
face small and capital alphabets are used to denote vectors and
matrices, respectively. X (S, :) and X (:,S) denote the subma-
trices formed by extracting the rows and columns respectively,
of the matrix X, corresponding to indices given in the set
S. CN (µ,Σ) denotes a complex Gaussian random vector
with mean vector µ and covariance matrix Σ. The vector
obtained by stacking the columns of matrix X is denoted by
vec (X) and vec−1(x) represents a matrix obtained by the
corresponding inverse vectorization operation. X⊗Y denotes
the Kronecker product of matrices X and Y. The following
property of the vec (·) operator and the Kroneker product [23]
is used in the paper:

vec (ABC) =
(
CT ⊗A

)
vec (B) . (1)
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TABLE I: Our contributions in contrast to the state-of-the-art

[9] [18] [10] [6] [4] [19] [20] Proposed
Wideband CSI acquisition × × × X X X X X
Multicarrier (OFDM) × × × × X × × X
Group/ block/ simultaneous sparsity × × X × X X X X
Pilots on a few subcarriers × × × × × × × X
Exploiting FD correlation × × × × × × × X
Time-frequency Interpolation × × × × × × × X
Quasi-static CSI acquisition X X X X X X × X
Time-selective CSI acquisition × × X × × × X X
Frame-wise CSI updation × × × × × × × X
Low processing delay × × × × × × × X
BCRLB bounds × X X × × X X X
Limited CSI feedback × × × × × × × X
Hybrid transceiver design based on
estimated beamspace domain CSI × × X × × × × X

II. MMWAVE MIMO OFDM SYSTEM MODEL

Consider a mmWave hybrid MIMO OFDM system having
NT transmit antennas (TAs), NR receive antennas (RAs) and
K subcarriers. The transmitter and receiver employ NT

RF and
NR
RF RF chains, respectively, in order to transmit Ns data

streams, where Ns ≤ min
(
NT
RF , N

R
RF

)
� min (NT , NR).

We consider a frequency-selective mmWave MIMO channel
having L delay taps, with the lth delay tap represented by
the matrix Hl ∈ CNR×NT ,∀ 0 ≤ l ≤ L − 1. On each
subcarrier k, the mmWave MIMO system, employs a cas-
cade of the frequency-selective baseband precoder FBB [k] ∈
CNTRF×Ns followed by the frequency-flat RF precoder FRF ∈
CNT×NTRF . Similarly, at the receiver, the received signal is
processed by a cascade of the frequency-flat RF combiner
WRF ∈ CNR×NRRF followed by the frequency-selective base-
band combiner WBB [k] ∈ CNRRF×Ns on each subcarrier. The
input symbols of each RF chain at the transmitter are pro-
cessed using K-point inverse fast Fourier transforms (IFFTs)
followed by zero-padding (ZP) of length L. Similarly, at the
receiver, the output block of length K+L of each RF chain is
processed using the overlap and add technique [24] followed
by a K-point FFT operation. The choice of ZP is preferred
instead of the traditional cyclic prefix (CP) in mmWave MIMO
OFDM systems in order to enable reconfiguration of the
analog circuitry [4], [6]. The signal y [k] ∈ CNs×1 at the
output of the baseband combiner is given as

y [k] = WH
BB [k] WH

RFH [k] FRFFBB [k] x [k]

+ WH
BB [k] WH

RFn [k] ,

where x [k] ∈ CNs×1 is the vector of transmit symbols
and n [k] ∈ CNR×1 denotes the complex additive white
Gaussian noise (AWGN) distributed as CN

(
0NR×1, σ

2INR
)
.

The matrix H [k] ∈ CNR×NT represents the mmWave MIMO
OFDM channel matrix corresponding to the kth subcarrier and
is determined by the K-point FFT of the channel taps as

H [k] =

L−1∑
l=0

Hl e
−j 2πk

K l. (2)

Let us now consider a quasi-static frequency-selective
mmWave MIMO channel that is assumed to be constant for a
block of several OFDM symbols. This is extended to doubly-
selective, i.e., time as well as frequency-selective channels,

in Section-V. For the purpose of channel estimation, the
transmitter is assumed to employ M training frames. Let
FRF,m ∈ CNT×NTRF , WRF,m ∈ CNR×NRRF and sm [k] ∈
CNTRF×1 denote the RF precoder, RF combiner and pilot
symbol vector, respectively, during the mth training frame for
the kth subcarrier. The pilot vector ym [k] ∈ CNRRF×1 at the
output of the RF combiner for the mth training frame is given
as

ym [k] = WH
RF,mH [k] FRF,msm [k] + WH

RF,mnm [k] , (3)

where the noise vector nm [k] ∈ CNR×1 ∼
CN

(
0NR×1, σ

2INR
)
. By exploiting the Kronecker property

of the vec (·) operator from (1), the model for ym [k] can be
recast as

ym [k] =
(
sTm [k] FTRF,m ⊗WH

RF,m

)︸ ︷︷ ︸
Φm[k]

vec (H [k])︸ ︷︷ ︸
h[k]

+nc,m [k] ,

(4)

where Φm [k] ∈ CNRRF×NRNT and nc,m [k] =

WH
RF,mnm [k] ∈ CNRRF×1 denotes the output noise

vector for the mth training frame that is distributed as
CN (0,Rm) with Rm = σ2WH

RF,mWRF,m ∈ CNRRF×NRRF .
Thus it can be seen that the noise at the output of the
RF combiner is colored. Naturally, one has to take this
into consideration in order to obtain a reliable estimate of
the mmWave MIMO OFDM channel, and has thus been
incorporated in the G-SBL, LCG-SBL and O-SBL schemes
proposed in Section-IV-A, Section-IV-B and Section-V,
respectively. The quantity h [k] ∈ CNRNT×1 denotes the
equivalent mmWave MIMO OFDM channel vector for the kth
subcarrier. Concatenating the vectors ym [k] for the various
training frames m, 1 ≤ m ≤M , the equivalent system model
can be obtained as y1 [k]

...
yM [k]


︸ ︷︷ ︸

y[k]

=

Φ1 [k]
...

ΦM [k]


︸ ︷︷ ︸

Φ[k]

h [k] +

 nc,1 [k]
...

nc,M [k]


︸ ︷︷ ︸

nc[k]

, (5)

where y [k] ∈ CMNRRF×1,Φ [k] ∈ CMNRRF×NRNT and
the additive noise nc [k] ∈ CMNRRF×1 is distributed as
nc [k] ∼ CN

(
0MNRRF×1,R

)
. The covariance matrix R ∈
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CMNRRF×MNRRF of the equivalent noise vector nc [k] is a block
diagonal matrix comprised of the matrices Rm,∀1 ≤ m ≤M,
on its principal diagonal. For the above estimation model,
the conventional ‘sparsity-agnostic’ techniques such as LS
and MMSE schemes require the sensing matrix Φ [k] to be
overdetermined, i.e., MNR

RF ≥ NRNT . This implies that
the minimum number of training frames required for the

conventional techniques is M =
NRNT
NR
RF

, which leads to a sig-

nificant overhead due to the fact that NR
RF � min (NT , NR),

and NT , NR are typically high in a mmWave MIMO sys-
tem. Moreover, these traditional approaches do not exploit
the sparsity of the mmWave MIMO channel [4], [6], even
though doing so typically lead to a substantial improvement
in the channel estimation performance. Given this motivation,
the next section develops our sparse channel model for a
frequency-selective mmWave MIMO channel.

III. SPARSE CHANNEL MODEL FOR THE MMWAVE MIMO
OFDM SYSTEM

Using the clustered channel model in [10], [21], the delay
tap Hl,∀ 0 ≤ l ≤ L − 1, of a typical frequency-selective
mmWave MIMO channel can be readily modeled as

Hl = β

Ncl∑
i=1

Nray,i∑
j=1

αijp (lTs − τij) aR (φij) aHT (θij) , (6)

where β =

√
NTNR∑Ncl

i=1Nray,i

, Ncl and Nray,i denote the number

of clusters and rays in the ith cluster, respectively. The
quantities θij , φij , αij and τij represent the AoD, AoA,
complex channel gain and delay, respectively, of the jth ray in
the ith cluster, and p (τ) is the response of the pulse shaping
filter. The quantity Ts denotes the sampling period. The vectors
aR (φij) ∈ CNR×1 and aT (θij) ∈ CNT×1 denote the receive
and transmit array response vectors corresponding to the AoA
φij and AoD θij , respectively, and are given by the following
expressions

aR
(
φij
)

=

1√
NR

[
1, e−j

2π
λ dR cosφij , . . . , e−j

2π
λ (NR−1)dR cosφij

]T
, (7)

aT
(
θij
)

=

1√
NT

[
1, e−j

2π
λ dT cos θij , . . . , e−j

2π
λ (NT−1)dT cos θij

]T
, (8)

where λ denotes wavelength of the mmWave signal, while dR
and dT are the antenna spacings of the arrays at the receiver
and transmitter, respectively. The lth mmWave MIMO channel
tap Hl can be expressed in the compact form of

Hl = ARHD,lA
H
T , (9)

where AR ∈ CNR×Nray , AT ∈ CNT×Nray denote the con-
catenated matrices of the receive and transmit array response
vectors, defined as AR =

[
{aR (φij)}Ncl,Nray,i

i=1,j=1

]
,AT =[

{aT (θij)}Ncl,Nray,i

i=1,j=1

]
, and Nray =

∑Ncl

i=1Nray,i. The diag-

onal matrix HD,l = diag
(
{Kij}Ncl,Nray,i

i=1,j=1

)
∈ CNray×Nray ,

where Kij = βαijp (lTs − τij) . The sparse channel model
for the mmWave MIMO OFDM system is developed next.

Let us consider partitions of the AoA and AoD spaces
spanning the interval [0, π) with grids ΦR and ΘT , which are
comprised of GR, GT ≥ max{NT , NR} angles, respectively.
These quantized angles {φg ∈ ΦR,∀ 1 ≤ g ≤ GR} and
{θg ∈ ΘT ,∀ 1 ≤ g ≤ GT } are chosen as per the following
conditions described in [9],

cos(φg) =
2

GR
(g − 1)− 1,∀ 1 ≤ g ≤ GR,

cos(θg) =
2

GT
(g − 1)− 1,∀ 1 ≤ g ≤ GT . (10)

The transmit and receive array response dictionary matri-
ces AT (ΘT ) ∈ CNT×GT and AR (ΦR) ∈ CNR×GR are
obtained by concatenating the array response vectors cor-
responding to angular grids ΘT and ΦR, respectively, as
AT (ΘT ) = [aT (θ1) ,aT (θ2) , . . . ,aT (θGT )] , AR (ΦR) =
[aR (φ1) ,aR (φ2) , . . . ,aR (φGR)] . The beamspace represen-
tation of the mmWave MIMO channel tap Hl can be obtained
as

Hl ≈ AR (ΦR) Hb,lA
H
T (ΘT ) , (11)

where Hb,l ∈ CGR×GT denotes the equivalent beamspace
channel matrix corresponding to Hl, as described in [9]. Using
the model above, the mmWave MIMO OFDM channel for the
kth subcarrier can be expressed as

H [k] = AR (ΦR) Hb [k] AH
T (ΘT ) , (12)

where Hb [k] ∈ CGR×GT denotes the beamspace channel
matrix of H [k] that is defined as

Hb [k] =

L−1∑
l=0

Hb,l e
−j 2πk

K l. (13)

As described in [1], [2], due to the weak scattering and
diffraction in the mmWave regime owing to increased atten-
uation from blockages, coupled with the highly directional
nature of signal propagation, typically there is only a few
spatial multipath components in the mmWave MIMO channel.
Therefore, the beamspace channel matrix Hb,l is sparse, i.e.,
only a few of its elements are significant, with the rest being
close to zero. Furthermore, from (11), since the AoAs/ AoDs
corresponding to all the delay taps Hl are identical, the
locations of these significant coefficients in their corresponding
beamspace representation Hb,l coincide. Another interesting
observation from (13) is that the subcarrier beamspace channel
matrix Hb [k] is also sparse, and share a common sparsity
profile with the TD beamspace channel matrix Hb,l.

From (12), using the well known property of the vec (·)
operator and matrix Kronecker product given in (1), the
vectorized channel h [k] = vec (H [k]) can be described as

h [k] = Ψhb [k] , (14)

where hb [k] = vec (Hb [k]) ∈ CGRGT×1 is the sparse
beamspace channel vector corresponding to the kth subcarrier
and Ψ = [A∗T (ΘT )⊗AR (ΦR)] ∈ CNRNT×GRGT is the
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sparsifying dictionary matrix. Substituting (14) into (5) yields
the sparse estimation model for the kth subcarrier as

y [k] = Φ̄ [k] hb [k] + nc [k] , (15)

where Φ̄ [k] = Φ [k] Ψ ∈ CMNRRF×GRGT denotes the equiva-
lent sensing matrix. To this end, the SBL-based per-subcarrier
approach conceived for channel estimation is highlighted first
briefly. While this is clearly suboptimal, it serves not only to
describe the preliminaries of SBL, but also to better motivate
the more sophisticated joint G-SBL, LCG-SBL and online G-
SBL (O-SBL) schemes developed in the later sections, which
exploit both the group-sparsity as well as the FD and TD
correlation.

IV. SBL-BASED SPARSE CHANNEL ESTIMATION IN
MMWAVE MIMO OFDM SYSTEMS

SBL is a Bayesian method conceived for sparse signal
recovery, which initially assigns the following parameterized
Gaussian prior to the beamspace channel vector hb [k] [12]

p (hb [k] ; Γ) =

GRGT∏
i=1

(πγi)
−1

exp

(
−
∣∣hb [k] (i)

∣∣2
γi

)
, (16)

where γi ∈ R+ denotes the hyperparameter of hb [k] (i),
the ith element of hb [k], and Γ ∈ RGRGT×GRGT+ denotes
the diagonal matrix that is comprised of the hyperparameters
γi on its principal diagonal. Using the standard results for
MMSE estimation from [25], the MMSE estimate µk ∈
CGRGT×1 and the corresponding error covariance matrix
Σk ∈ CGRGT×GRGT of the beamspace channel vector hb [k],
corresponding to the prior in (16), can be formulated as

µk = ΣΦ̄
H

[k] R−1y [k] ,

Σk =
(
Γ−1 + Φ̄

H
[k] R−1Φ̄ [k]

)−1
. (17)

Observe from above that the MMSE estimate µk depends on
the hyperparameter matrix Γ through the error covariance ma-
trix Σk. Hence, the beamspace channel estimation problem of
mmWave hybrid MIMO OFDM systems effectively reduces to
the estimation of the hyperparameters γi. As described in [12],
the iterative expectation-maximization (EM) is well-suited for
this task. The EM-based update equation for the estimation
of the hyperparameters is described next. Let Γ̂

(p−1)
denote

the estimate of the hyperparameter matrix Γ in the (p− 1)st
EM iteration. The update γ̂(p)i for the pth EM iteration can be
obtained as [10], [12]

γ̂
(p)
i =

∣∣∣µ(p)
k (i)

∣∣∣2 + Σ
(p)
k (i, i) , (18)

where the quantities µ
(p)
k and Σ

(p)
k is obtained by sub-

stituting Γ = Γ̂
(p−1)

into (17). The EM-update equation
described above is repeated until the Frobenius norm-square
of the difference of the hyperparameter matrix estimates for
successive iterations falls below a suitable threshold ε, i.e.∥∥∥∥Γ̂(p)

− Γ̂
(p−1)

∥∥∥∥2
F

< ε or the maximum number of EM

iterations pmax is reached. Upon convergence, the SBL-based

beamspace channel estimate ĥb [k] for the mmWave MIMO
OFDM system is given as ĥb [k] = µ̂k, where µ̂k denotes the
converged a posteriori mean. This can be finally employed to
obtain the mmWave MIMO channel matrix corresponding to
the kth subcarrier as Ĥ [k] = vec−1 (Ψµ̂k).

A. G-SBL based Group-Sparse Channel Estimation in
mmWave MIMO OFDM Systems

The SBL procedure developed above performs channel
estimation over each subcarrier k and leads to improved per-
formance by exploiting the sparsity in the beamspace domain
in comparison to the conventional LS/ MMSE estimators.
However, the performance of this scheme can be significantly
further improved via the joint estimation of the beamspace
channel vector over all the pilot subcarriers. Let Kp ={
k1, k2, · · · , kKp

}
denote the set of subcarrier indices loaded

with pilot symbols, where Kp ≤ K denotes the number of
pilot subcarriers. Furthermore, consider identical pilot symbols
across all the pilot subcarriers, i.e., sm [k] = sm,∀k ∈ Kp. It
follows from (4) that we have:

Φm [k] = Φm =
(
sTmFTRF,m ⊗WH

RF,m

)
, (19)

which, thanks to (5), implies that the dictionary matrix

obeys Φ [k] = Φ =
[
ΦT

1 ,Φ
T
2 , · · · ,Φ

T
M

]T
. Therefore,

the simultaneous-sparse channel estimation model for the
mmWave MIMO OFDM system can be formulated as

Y = Φ̄Hb + N, (20)

where the matrices Y ∈ CMNRRF×Kp , Hb ∈ CGRGT×Kp and
N ∈ CMNRRF×Kp are constructed as

Y =
[
y [k1] , . . . ,y

[
kKp

]]
,

Hb =
[
hb [k1] , . . . ,hb

[
kKp

]]
,

N =
[
nc [k1] , . . . ,nc

[
kKp

]]
,

and the dictionary matrix obeys Φ̄ = ΦΨ. As described
previously in Section-III, the columns of the concatenated
beamspace channel matrix Hb share a common sparsity-
profile. Hence, the matrix Hb is simultaneous-sparse in nature.
The equivalent model for the estimation of the simultaneous-
sparse matrix Hb above can be derived as

y = Φ̃hb + n, (21)

where y = vec
(
YT
)
∈ CMNRRFKp×1,n = vec

(
NT
)
∈

CMNRRFKp×1 and the dictionary matrix obeys Φ̃ =(
Φ̄⊗ IKp

)
∈ CMNRRFKp×GRGTKp . Furthermore, the covari-

ance matrix R̃ ∈ CMNRRFKp×MNRRFKp of the concatenated
noise vector n can be obtained as R̃ , E

{
nnH

}
=(

R⊗ IKp
)
. The concatenated beamspace channel vector hb =

vec
(
HT
b

)
∈ CGRGTKp×1 exhibits an interesting structure.

Let the ith group hib ∈ CKp×1,∀1 ≤ i ≤ GRGT , of hb
be expressed as hib = hb [(i− 1)Kp + 1 : iKp]. Owing to
the simultaneous-sparse structure of the beamspace channel
hb[k] across the Kp pilot subcarriers, it can be noted that
all the Kp coefficients within each group hib of the vector
hb are likely to be either all zero or all non-zero. There-
fore, the vector hb has a group-sparse structure. The G-SBL
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framework, which leverages the group-sparsity inherent in the
concatenated beamspace channel hb can now be developed as
follows. To this end, the prior corresponding to the beamspace
vector hb is formulated as [17]

p (hb; Γ,Gc) =

GRGT∏
i=1

p
(
hib; γi,Gc

)
, (22)

where the prior p
(
hib; γi,Gc

)
assigned to the ith group hib is

given by

p
(
hib; γi,Gc

)
=

1

(πγi)Kp det(Gc)
exp

(
−
(
hib
)H

G−1c hib
γi

)
.

(23)

In the above, the matrix Gc ∈ CKp×Kp represents the FD
correlation, and is assumed to be unknown along with the hy-
perparameters γi. The Bayesian evidence log p (y; Γ,Gc) can
once again be maximized using the EM framework in order
to estimate the hyperparameter matrix Γ and the correlation
matrix Gc. The key steps in this process are given below.

Let Γ̂
(p−1)

and Ĝ
(p−1)
c denote the estimate of the

hyperparameter matrix Γ and correlation matrix Gc in
the (p− 1)st EM iteration. The E-step in the pth itera-
tion determines the expected value of the log-likelihood

L
(

Γ,Gc | Γ̂
(p−1)

, Ĝ
(p−1)
c

)
of the complete data set {y,hb}

as

L
(

Γ,Gc | Γ̂
(p−1)

, Ĝ(p−1)
c

)
=

E
hb|y;Γ̂

(p−1)
,Ĝ

(p−1)
c

{
log p

(
y,hb; Γ,Gc

)}
. (24)

Upon applying Bayes’ rule in (24) and ignoring the term
log p

(
y | hb

)
that does not depend on the hyperparameter

matrix Γ and the correlation matrix Gc, the subsequent M-

step for maximization of L
(

Γ,Gc | Γ̂
(p−1)

, Ĝ
(p−1)
c

)
with

respect to Γ and Gc can be formulated as(
Γ̂
(p)
, Ĝ(p)

c

)
= arg max

Γ,Gc

E
{

log p
(
hb; Γ,Gc

)}
. (25)

It follows from (22) and (23) that the M-step with respect to
hyperparameter decouples for each γi, and is given as

γ̂
(p)
i = arg max

γi

E
hb|y;Γ̂

(p−1)
,Ĝ

(p−1)
c

{
log p

(
hib; γi, Ĝ

(p−1)
c

)}
.

≡ arg max
γi

E
hb|y;Γ̂

(p−1)
,Ĝ

(p−1)
c

{
−Kp log(γi)

− 1

γi
Tr

((
Ĝ(p−1)
c

)−1
hib
(
hib
)H)}

. (26)

Once again, upon differentiating the objective function in (26)
with respect to γi and setting it equal to zero, one obtains the
hyperparameter update equation for the pth EM iteration as

γ̂
(p)
i =

1

Kp
Tr

((
Ĝ(p−1)
c

)−1
E
{

hib
(
hib
)H})

. (27)

The a posteriori pdf p

(
hb | y; Γ̂

(p−1)
, Ĝ

(p−1)
c

)
=

CN
(
µ̃(p), Σ̃

(p)
)

can be evaluated using

µ̃(p) = Σ̃
(p)

Φ̃
H

R̃−1y,

Σ̃
(p)

=

((
Γ̂
(p−1)

⊗ Ĝ(p−1)
c

)−1
+ Φ̃

H
R̃−1Φ̃

)−1
. (28)

Employing the above a posteriori pdf of hb in (27) yields the
following estimate of the hyperparameter γ̂(p)i

γ̂
(p)
i =

1

Kp
Tr

((
Ĝ(p−1)
c

)−1(
Σ̃

(p)

i + µ̃
(p)
i

(
µ̃

(p)
i

)H))
,

(29)

where µ̃
(p)
i ∈ CKp×1 and Σ̃

(p)

i ∈ CKp×Kp are defined as

µ̃
(p)
i = µ̃(p) [(i− 1)Kp + 1 : iKp] ,

Σ̃
(p)

i = Σ̃
(p)

[(i− 1)Kp + 1 : iKp, (i− 1)Kp + 1 : iKp] .

Note that µ̃
(p)
i and Σ̃

(p)

i denote the a posteriori mean and
covariance of the ith group hib of the group-sparse beamspace
channel vector hb. Similarly, as shown in Appendix-A, the
update Ĝ

(p)
c of the correlation matrix is obtained as

Ĝ(p)
c =

1

GRGT

GRGT∑
i=1

Σ̃
(p)

i + µ̃
(p)
i

(
µ̃

(p)
i

)H
γ̂
(p)
i

. (30)

Upon convergence, the G-SBL estimate ĥb of the concate-
nated beamspace channel hb is given by the converged a
posteriori mean µ̃(p). The estimate ĥb[ki] of the beamspace
channel vector for the kith pilot subcarrier is given by the
ith row of the Kp ×GRGT -dimensional matrix ĤT

b obtained
by reshaping the vector ĥb, i.e., ĤT

b = vec−1
(
ĥb

)
. The

estimate Ĥ [ki] ∈ CNR×NT of the corresponding channel
matrix is obtained as Ĥ [ki] = vec−1

(
Ψĥb[ki]

)
. Finally, one

can estimate the mmWave MIMO OFDM channel matrices
on the remaining subcarriers as follows. Observe that using
the estimate Ĥb ∈ CGRGT×Kp of the beamspace channel
matrix Hb, the estimate ĤKp of the concatenated channel
matrix HKp =

[
h [k1] ,h [k2] , · · · ,h

[
kKp

]]
∈ CNRNT×Kp

for the pilot subcarriers can be derived as ĤKp = ΨĤb. Let
F ∈ CK×L denote the truncated DFT matrix obtained from the
K×K-element DFT matrix. Let Fp = F (Kp, :) ∈ CKp×L de-
note the submatrix of F containing only the rows correspond-
ing to the pilot subcarriers. The estimate Ĥ of the concatenated
channel H = [h [1] ,h [2] , · · · ,h [K]] ∈ CNRNT×K across

all the subcarriers can be obtained as Ĥ =
(
FF†pĤ

T
Kp

)T
.

Considering now the kth column of Ĥ, the estimate Ĥ [k] of
the channel matrix H [k] for any non-pilot subcarrier k can
be succinctly stated as Ĥ [k] = vec−1

(
Ĥ (:, k)

)
. A concise

summary of the sequence of steps in the G-SBL procedure
for mmWave MIMO OFDM channel estimation is presented
in Algorithm-1.
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B. Low Complexity (LC) G-SBL (LCG-SBL) based Group-
Sparse Channel Estimation

As seen from the detailed discussions in the previous
section, the G-SBL algorithm requires the inversion of a
[GRGTKp × GRGTKp]-size matrix Σ̃

(p)
for the evaluation

of the a posteriori covariance, which renders it computation-
ally complex. Therefore, in order to simplify the procedure,
inspired by the T-MSBL technique of [17], this subsection
derives the LCG-SBL algorithm for group-sparse channel
estimation. The covariance matrix Σ̃

(p)
of (28) can be ap-

proximated as [17]

Σ̃
(p)

=

((
Γ̂
(p−1)

)−1
⊗
(
Ĝ(p−1)
c

)−1
+
(
Φ̄
H

R−1Φ̄
)
⊗ IKp

)−1

≈

((
Γ̂
(p−1)

)−1
+ Φ̄

H
R−1Φ̄

)−1
⊗ Ĝ(p−1)

c , (31)

where the approximation above is close to equality ei-
ther at high SNR or at low FD correlation. Using this,
the quantity Σ̃

(p)

i of (29) and (30) can be approxi-
mated as Σ̃

(p)

i ≈ Σ(p)(i, i)Ĝ
(p−1)
c , where Σ(p) =((

Γ̂
(p−1)

)−1
+ Φ̄

H
R−1Φ̄

)−1
. Along the similar lines, the

quantity µ̃(p) of (28) can be approximated as [17]

µ̃(p) = Σ̃
(p)
[(

Φ̄
H

R−1
)
⊗ IKp

]
y

≈
[(

Σ(p)Φ̄
H

R−1
)
⊗ IKp

]
vec
(
YT
)

= vec

((
Ĥ

(p)
b

)T)
,

(32)

where Ĥ
(p)
b = Σ(p)Φ̄

H
R−1Y. Therefore, the quantity µ̃

(p)
i of

(29) and (30) can be approximated as µ̃(p)
i ≈ ĥ

(p)
b,i , where ĥ

(p)
b,i

denotes the ith row of the matrix Ĥ
(p)
b , i.e., ĥ

(p)
b,i = Ĥ

(p)
b (i, :).

Substituting these approximations in (29) and (30) yield

γ̂
(p)
i = Σ(p)(i, i) +

1

Kp

(
ĥ
(p)
b,i

)H (
Ĝ(p−1)
c

)−1
ĥ
(p)
b,i , (33)

Ĝ(p)
c =

1

GRGT

[
GRGT∑
i=1

Σ(p)(i, i)

γ̂
(p)
i

Ĝ(p−1)
c

+

GRGT∑
i=1

1

γ̂
(p)
i

ĥ
(p)
b,i

(
ĥ
(p)
b,i

)H ]
. (34)

However, we suggest following robust update rule for the
correlation matrix [17]:

G̃(p)
c =

GRGT∑
i=1

1

γ̂
(p)
i

ĥ
(p)
b,i

(
ĥ
(p)
b,i

)H
+ ηIKp , Ĝ

(p)
c =

G̃
(p)
c

‖ G̃
(p)
c ‖F

.

(35)

As described in our technical report [26], the BCRB for the
MSE of the estimate Ĥ can be expressed as

MSE
(
Ĥ
)
≥ Tr

{
Ψ̃J−1B Ψ̃

H
}
, (36)

Algorithm 1: G-SBL for mmWave hybrid MIMO
OFDM channel estimation
Input: Observation y ∈ CMNRRFKp×1, equivalent

sensing matrix Φ̃ ∈ CMNRRFKp×GRGTKp , noise
covariance matrix R̃ ∈ CMNRRFKp×MNRRFKp ,
stopping parameters ε and pmax

Output: Ĥ [k] ,∀0 ≤ k ≤ K − 1

1 Initialization: Γ̂
(0)

= IGRGT , Γ̂
(−1)

= 0GRGT×GRGT ,
Ĝ

(0)
c = IKp and counter p = 0

2 while

(∥∥∥∥Γ̂(p)
− Γ̂

(p−1)
∥∥∥∥2
F

> ε && p < pmax

)
do

3 p← p+ 1

4 E-step: Evaluate a posteriori mean µ̃(p) and

covariance Σ̃
(p)

using (28)
5 M-step: Evaluate estimate of the hyperparameters

γ̂
(p)
i and correlation matrix Ĝ

(p)
c using (29) and

(30)

6 Γ̂
(p)

= diag
(
γ̂
(p)
1 , γ̂

(p)
2 , . . . , γ̂

(p)
GRGT

)
7 end
8 ĥb = µ̃(p)

9 return: Obtain Ĥ [k] using the procedure described
after Eq. (30)

where we have Ψ̃ = (Ψ⊗ IK) ∈ CNRNTK×GRGTK and
JB = Φ̃

H
R̃−1Φ̃ + (Γ⊗Gc)

−1 [27].

C. Convergence Results of the SBL-based Algorithms

As shown in [12], the related sparse signal recovery tech-
niques, such as basis-pursuit [15] and FOCUSS [14], suffer
from significant shortcomings. For instance, for basis pursuit,
the global minimum of its cost function may not necessarily
coincide with the sparsest solution, which leads to structural
errors. On the other hand, the FOCUSS algorithm has the
tendency to frequently converge to suboptimal local minima,
leading to convergence deficiencies. By contrast, global con-
vergence is guaranteed with high probability for the SBL
technique due to the well-established properties of the SBL
cost function and using the EM algorithm. More specifically,
reference [12] demonstrates explicitly that for a noiseless
model, when the sensing matrix Φ̄ [k] satisfies the unique
representation property (URP), i.e., any subsets of MNR

RF

columns of Φ̄ [k] are linearly independent, the global minimum
of the SBL cost function is achieved at the sparsest solution.
Furthermore, interestingly, even for the noisy scenario, all the
local minima, termed as the degenerate solutions, are also
sparse. Thus, they are better than any non-sparse solution.
Furthermore, the convergence of G-SBL and LCG-SBL can be
confirmed as discussed below, thanks to the result in Theorem-
1 of [17]. In the limit, when the noise variance σ2 → 0

and
(∑Ncl

i=1Nray,i

)
< MNR

RF , the estimate ĥb equals to hb
with probability 1. Interestingly, this holds, regardless of the
estimated covariance Ĝc.
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V. ONLINE G-SBL (O-SBL) FOR DOUBLY-SELECTIVE
SPARSE MMWAVE MIMO OFDM CHANNEL ESTIMATION

The previous sections considered the estimation of a quasi-
static mmWave MIMO OFDM channel. However, practical
mmWave MIMO channels are temporally correlated in nature
[10], [20], which leads to time- and frequency-selectivity,
representing a doubly-selective mmWave MIMO OFDM chan-
nel. This section develops the pertinent model, followed by a
frame-wise online channel estimation procedure for the same.

A. Doubly-selective mmWave MIMO OFDM Channel Model

The model in (6) for a quasi-static channel, can now be
readily extended to model the time-selective channel matrix
Hl,n for the lth delay tap in the nth block, as shown below

Hl,n = β

Ncl∑
i=1

Nray,i∑
j=1

αij,np (lTs − τij) aR (φij) aHT (θij) ,

(37)

where αij,n denotes the complex channel gain corresponding
to the jth ray in the ith cluster and nth block. The time
evolution of the channel gain can be modeled using a first
order autoregressive (AR-1) process [20], [28]

αij,n = ραij,n−1 +
√

1− ρ2wij,n, (38)

where the quantity ρ denotes the TD correlation coefficient.
Similar to [28], the correlation coefficient ρ can be evaluated
from Jake’s well-established model for the wireless channel as
ρ = J0 (2πfDTB), where J0 is the zeroth order Bessel func-
tion of first kind and fD denotes the maximum Doppler fre-
quency. The model noise process obeys wij,n ∼ CN

(
0, σ2

w

)
,

which is also termed as the innovation noise and it is assumed
to be independent of αij,n−1,∀n. Similar to Hb of (20),
one can also define the concatenated time-selective mmWave
MIMO OFDM beamspace channel Hb,n ∈ CGRGT×Kp , the
time-variation of which can be modeled as

Hb,n = ρHb,n−1 +
√

1− ρ2Wn. (39)

The innovation noise matrix Wn ∈ CGRGT×Kp above and
the concatenated channel matrix Hb,n are both simultaneous-
sparse in nature and share a common sparsity-profile. Similar
to (3), let yn,m [ki] ∈ CNRRF×1 and nn,m [ki] ∈ CNR×1
denote the received output and noise vector for the kith pilot
subcarrier in the mth training frame and nth block. The
channel estimation model for the mth training frame in the
nth block is given as

Yn,m = Φ̄mHb,n + Nn,m, (40)

where Yn,m ∈ CNRRF×Kp denotes the concatenated
output matrix across all the pilot subcarriers in
the mth training frame, which is defined as
Yn,m =

[
yn,m [k1] ,yn,m [k2] , . . . ,yn,m

[
kKp

]]
and

Nn,m ∈ CNRRF×Kp is obtained by a similar concatenation
of the combined noise vectors WH

RF,mnn,m [ki] across all
the pilot subcarriers. Employing (19), the dictionary matrix
Φ̄m ∈ CNRRF×GRGT defined as Φ̄m = ΦmΨ, is designed to
be identical across all the pilot subcarriers in order to exploit

the group-sparsity. An equivalent model for the group-sparse
estimation can be derived as

yn,m = Φ̃mhb,n + nn,m, (41)

where yn,m = vec
(
YT
n,m

)
∈ CNRRFKp×1,nn,m =

vec
(
NT
n,m

)
∈ CNRRFKp×1 and the dictionary matrix

obeys Φ̃m =
(
Φ̄m ⊗ IKp

)
∈ CNRRFKp×GRGTKp . Fur-

thermore, the covariance matrix R̃m ∈ CNRRFKp×NRRFKp
of the concatenated noise vector nn,m can be obtained as
R̃m , E

{
nn,mnHn,m

}
=
(
Rm ⊗ IKp

)
, whereas the group-

sparse beamspace channel vector hb,n = vec
(
HT
b,n

)
∈

CGRGTKp×1. The online O-SBL procedure of estimating the
doubly-selective sparse mmWave MIMO OFDM channel hb,n
is developed next.

B. O-SBL for Online Doubly-selective Channel Estimation

The proposed O-SBL scheme begins with assigning the
following parameterized Gaussian prior to the doubly-selective
beamspace channel vector hb,n

p (hb,n; Γn,Gc,n) =

GRGT∏
i=1

1

(πγi,n)Kp det(Gc,n)
exp

−
(
hib,n

)H
G−1c,nhib,n

γi

 ,

(42)

where hib,n represents the ith group of the vector hb,n. Let
ĥm−1b,n ∈ CGRGTKp×1 and Σm−1

n ∈ CGRGTKp×GRGTKp
denote the LMMSE estimate of the beamspace channel matrix
hb,n and the associated error covariance matrix, respectively,
obtained from the (m− 1)st training frame in the nth block.
Using the sequential LMMSE procedure [25], the estimate
ĥmb,n and its error covariance Σm

n in the mth training frame
can be recursively updated as

ĥmb,n = ĥm−1b,n + Kn,m

(
yn,m − Φ̃mĥm−1b,n

)
,

Σm
n =

(
IGRGTKp −Kn,mΦ̃m

)
Σm−1
n , (43)

Kn,m = Σm−1
n Φ̃

H

m

(
Φ̃mΣm−1

n Φ̃
H

m + R̃m

)−1
. (44)

Thus, the quantity ĥMb,n denotes the estimate of the concate-
nated beamspace channel and ΣM

n represents the associated
error covariance matrix obtained by processing all the M
training frames in the nth block. The corresponding estimate
of the hyperparameter matrix Γ̂n = diag

(
{γ̂i,n}GRGTi=1

)
and

the correlation matrix Ĝc,n at the end of the nth block, similar
to (29) and (30), can be obtained using the following update
equation

γ̂i,n =
1

Kp
Tr

((
Ĝc,n−1

)−1(
ΣM
i,n + ĥMb,i,n

(
ĥMb,i,n

)H))
,

(45)

Ĝc,n =
1

GRGT

GRGT∑
i=1

ΣM
i,n + ĥMb,i,n

(
ĥMb,i,n

)H
γ̂i,n

, (46)
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Fig. 1: Block diagram showing steps involved in sequential LMMSE
based online O-SBL algorithm

where ĥMb,i,n = ĥMb,n [(i− 1)Kp + 1 : iKp] and ΣM
i,n =

ΣM
n [(i− 1)Kp + 1 : iKp, (i− 1)Kp + 1 : iKp]. Using the

principles of optimal linear prediction [25], the quantities
ĥ0
b,n+1 and Σ0

n+1 for the (n+ 1)st block can be initialized
as

ĥ0
b,n+1 = ρĥMb,n, Σ0

n+1 = ρ2ΣM
n +

(
1− ρ2

) (
Γ̂n ⊗ Ĝc,n

)
.

(47)

Note that in Σ0
n+1 above, the covariance matrix of the innova-

tion incorporates Γ̂n, which captures the spatial group-sparsity
inherent in the beamspace channel hb,n. Therefore, this leads
to faster convergence of the online algorithm for sparse
channel estimation. A block diagram of the proposed O-SBL
approach is given in Fig. 1. The various steps conceived for the
estimation of the sparse doubly-selective beamspace channel
along with a suitable initialization procedure are succinctly
stated in Algorithm-2. Finally, it is worth noting that the
proposed approach is MMSE-optimal, and more importantly,
of online nature, since it sequentially processes the output
pilot yn,m corresponding to each individual training frame
m. Therefore, it has a significantly lower computational com-
plexity and processing delay in comparison to the family of
block processing schemes such as SBL and G-SBL described
previously as well as those in the existing literature.

Let Hn and Ĥn denote the time-selective extensions of
the concatenated channel H and its estimate Ĥ, respectively.
As described in our technical report [26], the BCRB of the
estimate Ĥn can be formulated as

MSE
(
Ĥn

)
≥ Tr

(
Ψ̃J−1B,nΨ̃

H
)
, (48)

where JB,n can be computed recursively [29] as JB,n =((
1− ρ2

)
(Γ⊗Gc) + ρ2J−1B,n−1

)−1
+ Φ̃

H
R̃−1Φ̃. Further-

more, it follows from the established results of the existing
contributions [12], [16], [17] that the converged hyperparam-
eter vector γ̂(p) = diag

(
Γ̂(p)

)
employed in the initialization

procedure of the proposed O-SBL technique is guaranteed to
converge to a sparse vector, since the original techniques are
guaranteed to converge for arbitrary initialization of the hy-
perparameters. Furthermore, since the O-SBL technique essen-
tially computes the a posteriori mean ĥMb,n of the beamspace
channel hb,n in an online fashion, the sparse initialization of
the hyperparameter matrix Γ̂−1 and the covariance matrix ΣM

−1
also guarantees gleaning sparse estimates from O-SBL. To
justify this fact, let hib,n denote the ith group of hb,n, which

Algorithm 2: O-SBL for mmWave hybrid MIMO
OFDM systems

Input: Observation yn,m ∈ CNRRFKp×1, sensing matrix
Φ̃m ∈ CNRRFKp×GRGTKp , noise covariance
matrix R̃m ∈ CNRRFKp×NRRFKp , correlation
coefficient ρ, converged estimate Γ̂

(p)
and Ĝ

(p)
c

of the hyperparameter matrix Γn and Gc,n

obtained from the 0th block using LCG-SBL
Output: Ĥn [k] ,∀0 ≤ k ≤ K − 1

1 Initialization: Γ̂−1 = Γ̂
(p)

, Ĝc,−1 = Ĝ
(p)
c ,

ĥMb,−1 = 0GRGTKp×1, ΣM
−1 = Γ̂

(p)
⊗ Ĝ

(p)
c

2 for n = 0, 1, 2, . . . do
3 Initialize ĥ0

b,n and Σ0
n using (47)

4 for m = 1, 2, . . . ,M do
5 Compute Kn,m using (44), and update ĥmb,n

and Σm
n using (43)

6 end
7 Update γ̂i,n and Ĝc,n using (45) and (46),

respectively
8 Γ̂n = diag (γ̂1,n, γ̂2,n, . . . , γ̂GRGT ,n)

9 return: Obtain Ĥn [k] using the procedure
described after Eq. (30)

10 end

obeys hib,n = hb,n [(i− 1)Kp + 1 : iKp]. Mathematically, if
γ̂i,−1 = 0, i.e. if the prior variance is zero, one can readily
infer that

Prob
(
hib,n(k) = 0|y0, · · ·yn; γ̂i,−1 = 0

)
= 1,∀ 1 ≤ k ≤ Kp.

C. Computational Complexity Analysis

Due to lack of space, the detailed derivations of the com-
putational complexities of the proposed and existing mmWave
MIMO OFDM channel estimation techniques are given in our
technical report [26]. The key implications of the results are
discussed below. As shown in Table-I of the technical report
[26], the computation complexity of SBL is of the order
O
(
KG3

RG
3
T +KM

(
NR
RF

)3)
. It is evident from Table-II

of the technical report [26], the joint processing of the Kp

pilot subcarriers in the G-SBL procedure leads to a higher
complexity of the order O

(
G3
RG

3
TK

3
p +M

(
NR
RF

)3)
, which

arises due to the fact that it necessitates the inversion of the
[GRGTKp×GRGTKp]-dimensional matrix for the computa-

tion of Σ̃
(p)

. Thus, SBL has a lower complexity, but it also has
poor performance, as described in Section-VII, since it does
not exploit the group-sparsity of the mmWave MIMO OFDM
channel. It follows from Table-III of the technical report [26]
that the proposed LCG-SBL technique has a complexity order
of O

(
G3
RG

3
T +M

(
NR
RF

)3
+GRGTK

3
p

)
. This is due to the

fact that it requires inversion of a smaller [GRGT ×GRGT ]-
dimensional matrix for computing Σ(p). Moreover, as shown
in Section-VII, its NMSE performance is close to that of the
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G-SBL. Hence, the proposed LCG-SBL technique is efficient
as well as of low complexity. Finally, as derived in Table-V of
the technical report [26], the worst case complexity order of
the SOMP is O

(
G2
RG

2
TK +M3

(
NR
RF

)3)
, which is lower

compared to the SBL-based approaches. However, as shown
in our simulation results, its performance is significantly poor.

For doubly-selective sparse mmWave MIMO OFDM chan-
nel estimation, Algorithm-1 of the technical report [26] de-
velops the SBL-KF [20] technique. As it is evident from
Table-VI of the technical report [26], its computational cost
is O

(
G2
RG

2
TK

3
pMNR

RF +M3
(
NR
RF

)3
K3
p

)
, where the or-

der term O
(
M3

(
NR
RF

)3
K3
p

)
appears due to inversion of

[MNR
RFKp × MNR

RFKp]-element matrix while computing
Kn. The proposed O-SBL technique described in Section-
V-B of our paper completely obviates this through an online
estimation procedure, which requires the inversion of only an
[NR

RFKp ×NR
RFKp]-element matrix for the evaluation of the

Kalman gain Kn,m in (44). Thus, as evaluated in Table-IV
of the technical report [26], its block-wise complexity order
is O

(
G2
RG

2
TK

3
pMNR

RF +M
(
NR
RF

)3
K3
p

)
, which may be

deemed moderate, making it attractive for practical implemen-
tation.

VI. HYBRID PRECODER DESIGN FOR MMWAVE HYBRID
MIMO OFDM SYSTEMS

This section develops the framework for data transmission
in the mmWave MIMO OFDM system employing the CSI
estimate obtained using the various schemes presented in this
paper. The existing contributions, such as [21], [22], assume
perfect CSI for designing the RF precoder and combiner for
a frequency-flat channel. Furthermore, they either consider
the feasible array response vectors to be perfectly known or
employ an array response dictionary matrix constructed from
the quantized angular-grid for representing the RF precoder
FRF . To the best of our knowledge, none of the existing works
have directly employed the estimate ĥb of the underlying
beamspace channel to design the RF precoder in a mmWave
MIMO-OFDM system, which is naturally the most suitable
approach, given the availability of the beamspace domain
channel estimates. The proposed hybrid transceiver design
addresses this open problem.

To this end, the choice of a suitable criterion for the design
of optimal precoders and combiners, at the transmitter and re-
ceiver, respectively, is of significant importance. Let the trans-
mitted signal vector, denoted by t [k] ∈ CNT×1, be generated
as t [k] = FRFFBB [k] x [k], with the covariance matrix of the
baseband symbol vector x [k] normalized as E

[
x [k] xH [k]

]
=

1
Ns

INs , i.e., x [k] is comprised of independent and identically
distributed (i.i.d.) symbols with power 1

Ns
. Let the maximum

transmit power be denoted by Pt. It can be shown that, in order
to restrict the total transmit power after precoding to Pt, i.e.,∑K
k=1 Tr{E

[
t [k] tH [k]

]
} ≤ PtNs, we employ the equivalent

constraint
∑K
k=1 ‖FRFFBB [k] ‖2F ≤ PtNs. The optimal

transmit precoders Fopt
BB [k] ∈ CNTRF×Ns ∀k, and Fopt

RF ∈

CNR×NTRF can be designed via the maximization of the sum
of the mutual information, which is formulated as

({
Fopt
BB [k]

}K
k=1

,Fopt
RF

)
=

arg max({
FBB [k]

}K
k=1

,FRF

) K∑
k=1

log2

∣∣∣INR + H̃ [k] H̃H [k]
∣∣∣

subject to

K∑
k=1

‖FRFFBB [k] ‖2F ≤ PtNs, (49)

where H̃ [k] = H [k] FRFFBB [k] ∈ CNR×Ns denotes the
equivalent baseband channel. However, the optimization prob-
lem stated above is non-convex, hence it is challenging to solve
as the elements of FRF are constrained to have constant mag-
nitude [4], [10]. In order to obtain a computationally tractable
solution for the precoders, we may proceed as follows. Let
F [k] = FRFFBB [k] ∈ CNT×Ns denote the equivalent
digital precoder, with the constant magnitude constraint above
relaxed. The optimal equivalent digital precoder Fopt [k] can
now be obtained as the solution of the modified optimization
problem expressed as

{
Fopt [k]

}K
k=1

= arg max{
F[k]
}K
k=1

K∑
k=1

log2

∣∣∣INR + H̃ [k] H̃H [k]
∣∣∣

subject to

K∑
k=1

‖F [k] ‖2F ≤ PtNs.

(50)

The closed form solution for the above problem can be
obtained using the popular water-filling procedure as follows.
Let the singular value decomposition (SVD) of H [k] be given
as H [k] = U [k] Σ [k] VH [k] . The optimal equivalent digital
precoder Fopt [k] is given as

Fopt [k] = V1 [k] P1/2 [k] , (51)

where the matrix V1 [k] ∈ CNT×Ns is the submatrix com-
prised of the first Ns columns of V [k] and P [k] ∈ RNs×Ns+

represents a diagonal power allocation matrix with the di-
agonal elements pk,s,∀1 ≤ s ≤ Ns, given by: pk,s =

max

{
0,
(
λ− σ2

n

(Σ[k](s,s))2

)}
. The constant λ is chosen to

satisfy the constraint
∑K
k=1

∑Ns
s=1 pk,s ≤ PtNs. Similar to

[21] that considers a frequency-flat mmWave MIMO channel,
the hybrid precoders Fopt

BB [k] and Fopt
RF for the frequency-

selective mmWave MIMO OFDM system can now be chosen
to obtain the best possible approximation to the ideal precoder
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Algorithm 3: Design of hybrid precoders and combin-
ers from the estimated beamspace domain CSI

Input: Estimated beamspace channel matrix
Ĥb ∈ CGRGT×Kp , optimal equivalent digital
precoder Fopt [k] ∈ CNT×Ns and combiner
Wopt [k] ∈ CNR×Ns , number of receive and
transmit RF chains NR

RF and NT
RF

Output: FBB [k], WBB [k] ,∀1 ≤ k ≤ K, and FRF ,
WRF

1 Initialization: FRF = [ ], WRF = [ ], set

htemp = abs
(
Ĥb

)
× diag

(
IKp
)

2 Obtain the set S, which contains the indices of the
elements of htemp, when magnitude of elements of
htemp are sorted in descending order

3 for i = 1, 2, . . . , NT
RF do

4 g = b(S (i)− 1) /GRc+ 1; FRF = [FRF aT (θg)]
5 end
6 for i = 1, 2, . . . , NR

RF do
7 g = rem (S (i)− 1, GR) + 1;

WRF = [WRF aR (φg)]
8 end
9 for k = 1, 2, . . . ,K do

10 FBB [k] = (FRF )
†
Fopt [k];

WBB [k] = (WRF )
†
Wopt [k]

11 end
12 return: FBB [k], WBB [k] ,∀1 ≤ k ≤ K, and FRF ,

WRF

Fopt [k] via the optimization problem below({
Fopt
BB [k]

}K
k=1

,Fopt
RF

)
= arg min({

FBB [k]

}K
k=1

,FRF

)
K∑
k=1

‖Fopt [k]− FRFFBB [k] ‖F

subject to

K∑
k=1

‖FRFFBB [k] ‖2F ≤ PtNs. (52)

Note that, since the locations of the dominant components
of the mmWave MIMO OFDM beamspace CFR Hb [k] may
vary across the subcarriers, a straightforward subcarrier-wise
implementation of the precoder design procedures, such as
those described in [21], [22], may not result in frequency-flat
RF precoders FRF . Therefore, the RF precoder FRF has to
be jointly optimized across all the subcarriers of the mmWave
MIMO-OFDM system, as shown in the optimization problem
(52). One can now use the following theorem to simplify the
joint hybrid baseband-RF precoder design problem detailed
above.
Theorem 1: C (Fopt [k]) ⊆ C (AT ) ,∀k, where C (·) denotes
the column-space of a matrix.
Proof : Given in Appendix B.
The theorem above provides an important insight into the
choice of the ideal frequency-flat RF precoder FRF that
contains only NRF columns. It can be noted that employing

NT
RF = Nray number of RF chains and setting FRF = AT as

the RF precoder, the approximation error
∑K
k=1 ‖Fopt [k] −

FRFFBB [k] ‖F can be made zero. However, in practical
scenarios wherein the transmit array response matrix AT

is frequently unknown and the number of RF chains obeys
NT
RF < Nray, one can construct the RF precoder FRF by

choosing the NRF dominant array response vectors obtained
during the estimation of the beamspace channel hb. Moreover,
the transmit array response vectors are comprised of constant-
magnitude elements, as seen from (8). Thus, choosing the
columns of FRF as the transmit array response vectors also
satisfies the implicit non-convex constraint in the optimiza-
tion problem (52). Finally, the baseband precoder for the
kth subcarrier can be obtained using the LS solution of
FBB [k] = (FRF )

†
Fopt [k]. A concise step-by-step descrip-

tion of the proposed hybrid precoder design procedure for the
mmWave MIMO OFDM system is presented in Algorithm-
3. A similar approach can also be employed for deriving the
hybrid combiners WRF and WBB [k]. Note that the SOMP
technique, as described in [21], requires NRF iterations for
selecting the NRF dominant array response vectors via a
computationally intensive correlation method (Step-4 and 5
of Algorithm-1 in [21]), followed by an intermediate LS
solution in each iteration. By contrast, the proposed hybrid
precoder design framework is directly able to compute the final
baseband precoder of each subcarrier using the LS solution,
once the RF precoder is derived using the estimated beamspace
domain CSI. Thus, the proposed hybrid precoder design has
a significantly lower computational cost, while performing
very close to the SOMP, as demonstrated in our simulation
results of Fig. 3(c). Furthermore, the CSI has to be fed
back to the transmitter in a mmWave MIMO system. The
framework for beamspace domain CSI estimation, followed
by our hybrid precoder design developed requires significantly
lower feedback, since the receiver only has to feed back the
NRF indices of the dominant beamspace components together
with their quantized gains in order to construct the hybrid
precoder of the transmitter.

VII. SIMULATION RESULTS

This section presents simulation results for characterizing
the performance of the offline and online channel estimation
schemes proposed for mmWave hybrid MIMO OFDM systems
and compare them to that of the existing schemes. A mmWave
MIMO OFDM system is considered where the number of TAs
and RAs are set as NT = NR ∈ {8, 16, 32}, the number of RF
chains at transmitter and receiver set as NT

RF = NR
RF ∈ {4, 8}

and the number of subcarriers is K ∈ {16, 128, 256}. The
antenna spacings between the TA and RA arrays are set as

dT = dR =
λ

2
. The AoA/ AoD space is partitioned into

GR = GT ∈ {16, 32, 48} angular grid points. The frequency-
selective mmWave MIMO channel is assumed to be spatially
sparse with Ncl = 4 clusters, Nray,i ∈ {1, 4} rays per
cluster and L = 4 delay taps. The complex channel gain αij
corresponding to the jth ray in the ith cluster is modeled as
αij ∼ CN (0, 1) and the raised-cosine filter is set to have a

roll-off factor of 0.85 [4]. The SNR is defined as
1

σ2
. For
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Fig. 2: (a) NMSE vs SNR comparison in an on-grid scenario for NR = NT = 8, NR
RF = NT

RF = 4, M = 32, K = 256, Kp = 8,
GR = GT = 16, along with BCRB using Eq. (36). (b) NMSE vs SNR comparison in on-grid and off-grid scenarios for NR = NT = 32,
NR

RF = NT
RF = 8, M = 64, K = 64 and GR = GT = 48. (c) NMSE vs the number of training frames M for NR = NT = 16,

NR
RF = NT

RF = 4, K = 128, Kp = 8 and GR = GT = 16.

SBL based approaches, the stopping parameters are set as
ε = 10−6 and pmax = 100.

A. Quasi-static Offline mmWave MIMO OFDM Channel Es-
timation

Fig. 2(a) depicts the NMSE performance comparison of
the proposed SBL-based schemes with the existing multiple-
measurement-vectors (MMV)-based SOMP scheme of [4], in
terms of the normalized mean squared error (NMSE) defined
as NMSE ,

∑K
k=1 ‖Ĥ[k]−H[k]‖2F

KNRNT
, where Ĥ [k] denotes the

estimate of the channel. The performance is also benchmarked
against the BCRB derived in (36) for quasi-static scenarios.
The mmWave MIMO OFDM setup has the parameter values
of NR = NT = 8, NR

RF = NT
RF = 4 and GR = GT = 16.

The number of training frames and total number of subcarriers
are set to M = 32 and K = 256, respectively. The AoA/
AoDs corresponding to each spatial path for this scenario,
also termed on-grid, is obtained uniformly from the angular
grid by setting Nray,i = 1. The number of pilot subcarriers
for the SOMP-based scheme is set to Kp = K, while it is
set to Kp = 8 for the proposed G-SBL technique. Observe
from the figure that the proposed G-SBL scheme yields the
best NMSE performance in comparison to the SOMP and to
the single-measurement-vector (SMV)-based SBL scheme that
does not exploit the group-sparsity. This clearly demonstrates
the performance benefits achieved by exploiting the group-
sparsity. The performance of SOMP is poor in comparison to
the proposed G-SBL scheme due to the fact that it is sensitive
to both the choice of the dictionary matrix Φ̄ and to the
stopping criterion employed. On the other hand, as descried in
Section-V-C, the computational cost of SOMP is lower than
that of the SBL-based approaches. Thus, there is a trade-off
between the NMSE performance and the computational cost.
However, it can be readily observed that the proposed LCG-
SBL scheme is also as efficient as G-SBL, since its NMSE
performance is very close to that of the G-SBL, but with

a significantly lower computational cost. The performance is
also compared to that of the popular MMV-based group least
absolute shrinkage and selection operator (GRP-Lasso) [30]
and to the multiple focal underdetermined system solver (M-
FOCUSS) [31], which are based on l1 and lp, p < 1 norm min-
imization. The regularization parameter for the M-FOCUSS
is set to the value of the noise variance σ2, whereas for the
GRP-Lasso, it is empirically tuned for minimizing the NMSE.
Furthermore, for M-FOCUSS, the norm parameter is set to
p = 0.8, whereas the stopping threshold and the maximum
number of iterations are set to 10−5 and 800, respectively.
Since the performance of the GRP-Lasso critically depends
on the user-defined regularization parameter and that of the
M-FOCUSS suffers from convergence problems, their NMSE
is also inferior in comparison to that of the proposed G-SBL.
It is also worth noting that the proposed G-SBL based scheme
employs Kp = 8 pilot subcarriers, which is significantly
lower than that of the SOMP that employs all the K = 256
subcarriers for pilot transmission. Thus, the proposed G-SBL
technique is also bandwidth efficient, since it can employ the
remaining K −Kp subcarriers for data transmission. This is
of significant importance in 5G new radio (5G-NR) systems
for supporting ultra-high data rates. Finally, the NMSEs of the
G-SBL and LCG-SBL techniques are also seen to be close to
the corresponding BCRB, which strongly advocates the case
for G-SBL and LCG-SBL in practical scenarios.

Fig. 2(b) illustrates the NMSE comparison of various
schemes for the mmWave MIMO OFDM setup with parame-
ters NR = NT = 32, NR

RF = NT
RF = 8 and GR = GT = 48.

A trend similar to that of Fig. 2(a) can be discerned, wherein
the LCG-SBL was seen to achieve significantly better NMSE
performance in comparison to SOMP. The performance of
the LCG-SBL scheme upon increasing the number of pilot
subcarriers Kp is also shown progressively improving the
estimation accuracy, as expected. Another interesting aspect
of this plot is that it also shows the NMSE for an off-grid
scenario, in which the true AoAs/ AoDs for the Nray rays
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Fig. 3: (a) NMSE vs number of blocks n comparison for the doubly-selective scenario with NR = NT = 8, NR
RF = NT

RF = 4, M = 32,
GR = GT = 16. (b) NMSE vs SNR comparison for NR = NT = 16, NR

RF = NT
RF = 8, M = 48, GR = GT = 24 along with BCRB

using Eq. (48). (c) SE vs SNR comparison for NR = NT = 16, NT
RF = NR

RF = 6, Ns = 4, M = 32, GR = GT = 16.

differ from the quantized angles in the set of feasible AoA/
AoD space ΦR,ΘT that is used to construct the sparsifying
dictionary matrix Ψ. For this scenario, the AoA/ AoDs of all
the Nray,i = 4 rays associated with a cluster are assumed to
have a Laplacian distribution around the mean-angle of the
cluster with the standard deviation of σAS = 1/10 radian.
Furthermore, the mean-angles of all the clusters are assumed
to be uniformly distributed over the angular grid. We can
readily note the performance degradation of various schemes
for the off-grid scenario. However, even with this marginal
degradation, the performance of the LCG-SBL scheme with a
reduced number of pilot subcarriers is improved in comparison
to the existing SOMP. Fig. 2(c) compares the NMSE of
the G-SBL and SOMP techniques with varying the number
of training frames M . For this, a mmWave MIMO OFDM
setup is considered with parameters NR = NT = 16,
NR
RF = NT

RF = 4, GR = GT = 16, K = 128 and
Kp = 8. The NMSE performance of both the techniques
is naturally seen to improve upon increasing the number of
training frames, which can be attributed to the larger number
of measurements. However, it can also be observed that the
performance of the G-SBL scheme using M = 20 training
frames is better than that of its SOMP counterpart employing
M = 50. Thus, G-SBL achieves the desired level of estimation
accuracy at significantly lower training overheads.

B. Doubly-selective Online mmWave MIMO OFDM Channel
Estimation

To characterize the proposed estimation scheme in Section-
V for a doubly-selective mmWave MIMO OFDM channel, a
Q-band system is considered having a carrier frequency of
28 GHz. The user velocity is set to 5 km/h, which leads
to a sizable Doppler shift of fD = 130 Hz at this high
carrier frequency. The coherence time is set to Tc = 5 ms
with the block length of TB = Tc/10. Substituting these
values, the temporal correlation coefficient ρ of the doubly-
selective mmWave MIMO OFDM channel is obtained as

ρ = J0 (2πfDTB) ≈ 0.9983. Fig. 3(a) shows the NMSE per-
formance of the proposed online O-SBL scheme with respect
to the number of blocks n for the parameters NR = NT = 8
and NR

RF = NT
RF = 4. The SNR for the scenario is set to 0

dB, while the number of training frames is set to M = 32. It
can be observed that the NMSE of the O-SBL algorithm that
beneficially exploits the temporal correlation is significantly
better than that of the SOMP and G-SBL. Moreover, the
performance gap is seen to increase with the number of blocks
n, thanks to the improved estimation accuracy of the hyperpa-
rameter matrix Γ. Finally, it is also worth noting that while the
G-SBL performs several EM iterations per block, the online
O-SBL procedure performs only a single iteration. Thus, it
has a low complexity coupled with the ability to constantly
track the channel, which renders it eminently suitable for
practical implementation. Fig. 3(b) depicts our NMSE versus
SNR performance comparison of a 16 × 16 system having 8
RF chains at both ends and M = 48 training frames. This
lends additional credence to the trend observed previously,
wherein the O-SBL scheme was seen to lead in performance in
comparison to its quasi-static competitors, namely to G-SBL
and SOMP. Furthermore, the NMSE performance of O-SBL is
seen to be close to that of the recursive BCRB for the doubly-
selective scenario, as determined in (48).

C. Spectral-Efficiency (SE) performance

Fig. 3(c) presents the SE performance of the system
with the hybrid precoder/ combiner designed using the
proposed Algorithm-3 and existing SOMP [21] with the
mmWave MIMO channel estimates obtained from the
various sparse channel estimation schemes. The various
parameters of the system are set as NR = NT = 16,
NT
RF = NR

RF = 6, Ncl = 6, Ns = 4 and GR = GT = 16.
The expression used for evaluating the resultant SE
is SE =

∑K
k=1 log2

∣∣∣INs + 1
Ns

R−1n Heq [k] HH
eq [k]

∣∣∣,
where Heq [k] = W̄H

BB [k] W̄H
RFH [k] F̄RF F̄BB [k]

denotes the equivalent baseband channel and
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Fig. 4: (a)
∥∥∥Γ̂(p)

− Γ̂
(p−1)

∥∥∥2
F

vs number of EM iterations p for NR = NT = 8, NR
RF = NT

RF = 4, GR = GT = 16 and Kp = 8. (b)

Complexity comparison for NR = NT = GR = GT = 2NR
RF = 2NT

RF = M/2,Kp = 8,K = 64 in quasi-static scenario. (c) Complexity
comparison for NR = NT = 8, GR = GT = 10, NR

RF = NT
RF = 4,Kp = 8,K = 64 in doubly-selective scenario.

Rn [k] = σ2W̄H
BB [k] W̄H

RFW̄RFW̄BB [k] is the noise
covariance. The hybrid precoders F̄BB [k], F̄RF and combiners
W̄BB [k],W̄RF are obtained using the estimated CSI Ĥ [k].
The SE is benchmarked with respect to that of an ideal genie
receiver, wherein the optimal digital precoder/ combiner
matrices are designed assuming perfect knowledge of the
mmWave MIMO channel matrix H[k]. It can be readily
observed that the SE evaluated using the hybrid precoders and
combiners obtained from the proposed Algorithm-3 is very
close to that of the SOMP technique of [21] suitably extended
for mmWave MIMO OFDM systems. This shows the efficacy
of our proposed limited CSI based low complexity hybrid
transceiver design that employs the estimated channel of the
beamspace domain for designing the RF precoder, followed
by a simple LS solution for the baseband precoders. On the
other hand, the SOMP requires several iterations to yield
these quantities. The figure also reflects the fact that the
improved channel estimation accuracy of the proposed G-SBL
technique successfully translates into a corresponding gain in
the end-to-end SE.

D. Complexity and Convergence Rate

Fig. 4(a) plots the convergence criterion of the proposed
G-SBL based approach with respect to the number of EM
iterations for different values of the training frames M .
This signifies the number of EM iterations required for the

convergence of hyperparameters, i.e.,
∥∥∥∥Γ̂(p)

− Γ̂
(p−1)

∥∥∥∥2
F

< ε.

For a fixed ε = 10−6, it can be readily observed that the
number of iterations required for convergence decreases with
increasing number of training frames M . Fig. 4(b) and Fig.
4(c) demonstrate a numerical comparison of the complexities
in number of floating point operations (flops). As seen in
Fig. 4(b) for the quasi-static scenario, the complexities of the
various schemes can be ordered as O(G-SBL) > O(SBL) >
O(LCG-SBL) > O(SOMP). Interesting, it can be seen that
the LCG-SBL scheme has a complexity even lower than

that of the SBL, as described in Section-V-C. Similarly, for
the doubly-selective scenario of Fig. 4(c), O(SBL-KF) >
O(O-SBL). This validates the results derived in Section-V-C.

VIII. CONCLUSIONS

We initially presented an SBL approach for channel estima-
tion in mmWave hybrid MIMO OFDM systems that exploits
the sparsity of the beamspace mmWave channel for each
individual subcarrier. Subsequently, a G-SBL procedure has
also been derived for the joint estimation of the beamspace
channel vectors across all the pilot subcarriers, thus exploiting
the group-sparsity and the associated frequency-domain cor-
relation, which leads to a substantial performance improve-
ment. An online procedure, termed O-SBL, has also been
conceived for the estimation of a doubly-selective mmWave
MIMO OFDM channel, which is particularly appealing for
practical implementation due to its low processing delay and
complexity. The BCRBs that determine the lower bounds for
the achievable MSE were also derived for both the quasi-
static and doubly-selective channel estimation techniques. This
was followed by the development of a novel scheme for
hybrid precoder/ combiner design that successfully exploited
the knowledge of the beamspace domain limited CSI esti-
mated using the proposed techniques. Simulation results were
presented for demonstrating the improved performance of the
proposed techniques in comparison to similar schemes in the
existing literature, as well as the close agreement with various
performance bounds. Future extensions of this work may
explore the approximate message passing (AMP) [32] based
implementation of SBL and sparse adaptive channel estimation
schemes [33] to limit the complexity of channel estimation in
mmWave hybrid MIMO OFDM systems. Additionally, one
can also incorporate the effect of timing and synchronization
errors in the system model followed by suitable updates of the
SBL-based approaches.
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APPENDIX A
UPDATE OF CORRELATION MATRIX Gc [17]

Ignoring terms that do not depend on the correlation
matrix Gc, the quantity E{log p

(
hb; Γ,Gc

)
}

can be expressed as E{log p
(
hb; Γ,Gc

)
} ∝

−GRGT log det(Gc) −
∑GRGT
i=1

E
{
(hib)

H
G−1
c hib

}
γi

.
Gradient of the above term with respect to Gc yields
−GRGTG−1c +

∑GRGT
i=1

1
γi

G−1c E
{

hib
(
hib
)H}

G−1c . Next,

evaluating the gradient at γi = γ̂
(p)
i and setting the resultant

to zero gives the update of the correlation matrix Gc in

the pth iteration as Ĝ
(p)
c = 1

GRGT

∑GRGT
i=1

E
{

hib(hib)
H
}

γ̂
(p)
i

.
Employing the a posteriori pdf of hb parameterized by (28)
for computing the expectation in the above expression yields
the desired result.

APPENDIX B
PROOF OF Theorem 1

Using (9), the channel matrix H [k] for the kth subcar-
rier can be determined as H [k] =

∑L−1
l=0 Hl e

−j 2πk
K l =

ARHD [k] AH
T , where HD [k] =

∑L−1
l=0 HD,l e

−j 2πk
K l. This

implies that R (H [k]) = C (AT ), ∀ 0 ≤ k ≤ K − 1,
where R (·) denotes the row-space of a matrix. Furthermore,
from (51), it can be seen that C (Fopt [k]) ⊆ R (H [k])
when Ns ≤ rank (H [k]). Thus it can be readily seen that
C (Fopt [k]) ⊆ C (AT ) ,∀ 0 ≤ k ≤ K − 1.
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