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In the past few years, a large body of literature has been created on downlink Non-Orthogonal Multiple Access (NOMA),
employing superposition coding and Successive Interference Cancellation (SIC), in multi-antenna wireless networks. Furthermore,
the benefits of NOMA over Orthogonal Multiple Access (OMA) have been highlighted. In this paper, we take a critical and fresh look
at the downlink Next Generation Multiple Access (NGMA) literature. Instead of contrasting NOMA with OMA, we contrast NOMA
with two other multiple access baselines. The first is conventional Multi-User Linear Precoding (MU–LP), as used in Space-Division
Multiple Access (SDMA) and multi-user Multiple-Input Multiple-Output (MIMO) in 4G and 5G. The second, called Rate-Splitting
Multiple Access (RSMA), is based on multi-antenna Rate-Splitting (RS). It is also a non-orthogonal transmission strategy relying
on SIC developed in the past few years in parallel and independently from NOMA. We show that there is some confusion about
the benefits of NOMA, and we dispel the associated misconceptions. First, we highlight why NOMA is inefficient in multi-antenna
settings based on basic multiplexing gain analysis. We stress that the issue lies in how the NOMA literature, originally developed
for single-antenna setups, has been hastily applied to multi-antenna setups, resulting in a misuse of spatial dimensions and therefore
loss in multiplexing gains and rate. Second, we show that NOMA incurs a severe multiplexing gain loss despite an increased receiver
complexity due to an inefficient use of SIC receivers. Third, we emphasize that much of the merits of NOMA are due to the
constant comparison to OMA instead of comparing it to MU–LP and RS baselines. We then expose the pivotal design constraint
that multi-antenna NOMA requires one user to fully decode the messages of the other users. This design constraint is responsible
for the multiplexing gain erosion, rate and spectral efficiency loss, ineffectiveness to serve a large number of users, and inefficient
use of SIC receivers in multi-antenna settings. Our analysis and simulation results confirm that NOMA should not be applied
blindly to multi-antenna settings, highlight the scenarios where MU–LP outperforms NOMA and vice versa, and demonstrate the
inefficiency, performance loss, and complexity disadvantages of NOMA compared to RSMA. The first takeaway message is that,
while NOMA is suited for single-antenna settings (as originally intended), it is not efficient in most multi-antenna deployments.
The second takeaway message is that another non-orthogonal transmission framework, based on RSMA, exists which fully exploits
the multiplexing gain and the benefits of SIC to boost the rate and the number of users to serve in multi-antenna settings and
outperforms both NOMA and MU–LP. Indeed, RSMA achieves higher multiplexing gains and rates, serves a larger number of users,
is more robust to user deployments, network loads and inaccurate channel state information and has a lower receiver complexity
than NOMA. Consequently, RSMA is a promising technology for NGMA and future networks such as 6G and beyond.

Index Terms—Multiple antennas, downlink, non-orthogonal multiple access, superposition coding, rate-splitting multiple access,
broadcast channel, multiuser linear precoding, multiuser multiple-input multiple-output, space division multiple access, next
generation multiple access.
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MULTIPLE access is a crucial part of any communication
system and refers to techniques that make use of the

resources (e.g., time, frequency, power, antenna, code) to serve
multiple users, ideally in the most efficient way. In contrast
to Orthogonal Multiple Access (OMA) that assigns users to
orthogonal dimensions (e.g., Time-Division Multiple Access
- TDMA, Frequency-Division Multiple Access - FDMA),
(power-domain) Non-Orthogonal Multiple Access (NOMA)1

superposes users in the same time-frequency resource and
distinguishes them in the power domain [1]–[5]. By doing so,
NOMA has been promoted as a solution for 5G and beyond to
deal with the vast throughput, access (serving a large number
of users), and Quality-of-Service (QoS) requirements that are
projected to grow exponentially for the foreseeable future.

Giuseppe Caire is with the Communications and Information Theory
Group, Faculty of Electrical Engineering and Computer Science, Technische
Universität Berlin, 10587 Berlin, Germany (e-mail: caire@tu-berlin.de).

1Although there is a broad range of NOMA schemes in the power and code
domains, in this treatise, we focus only on power-domain NOMA and simply
use NOMA to represent power-domain NOMA. Readers are referred to [2]
for an overview of code-domain NOMA.
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In the downlink, NOMA refers to communication schemes
where at least one user is forced to fully decode the message(s)
of other co-scheduled user(s). This operation is commonly per-
formed through the use of transmit-side Superposition Coding
(SC) and receiver-side Successive Interference Cancellation
(SIC) in downlink multi-user communications. Such tech-
niques have been studied for years before being branded with
the NOMA terminology. NOMA has indeed been known in
the information theory and wireless communications literature
for several decades, under the terminology of superposition
coding with successive interference cancellation (denoted in
short as SC–SIC), as the strategy that achieves (and has
been used in achievability proofs for) the capacity region of
the Single-Input Single-Output (SISO) (Gaussian) Broadcast
Channel (BC) [6]. The superiority of NOMA over OMA was
shown in the seminal paper by Cover in 1972. It is indeed
well known that the capacity region of the SISO BC (achieved
by NOMA) is larger than the rate region achieved by OMA
(i.e. contains the achievable rate region of OMA as a subset)
[6], [8], [9]. The use of SIC receivers is a major difference
between NOMA and OMA, although it should be mentioned
that SIC has also been studied for a long time in the 3G and 4G
research phases in the context of interference cancellation and
receiver designs [10]. Unfortunately, despite the existence of
well-established textbooks on the topic in the past few decades
[7]–[9], the recent literature on NOMA has been the subject of
some confusion, misunderstandings, and misconceptions [11].

In today’s wireless networks, access points commonly em-
ploy more than one antenna, which opens the door to the
spatial domain and multi-antenna processing. The key building
block of the downlink of multi-antenna networks is the multi-
antenna (Gaussian) BC. Contrary to the SISO BC that is
degraded and where users can be ordered based on their
channel strengths, the multi-antenna BC is nondegraded and
users cannot be ordered based on their channel strengths [8],
[12]. This is why SC–SIC/NOMA is not capacity-achieving
in this case2, and Dirty Paper Coding (DPC) is the only
known strategy that achieves the capacity region of the multi-
antenna (Gaussian) BC with perfect Channel State Information
at the Transmitter (CSIT) [12]. Due to the high computational
burden of DPC, linear precoding is often considered the most
attractive alternative to simplify the transmitter design [13]–
[17]. Interestingly, in a multi-antenna BC, Multi-User Linear
Precoding (MU–LP) relying on treating the residual multi-
user interference as noise, although suboptimal, is often very
useful since the interference can be significantly reduced by
spatial precoding. This is the reason why it has received
significant attention in the past twenty years and it is the
basic principle behind numerous 4G and 5G techniques such
as Space-Division Multiple Access (SDMA) and multi-user
(potentially massive) Multiple-Input Multiple-Output (MIMO)
[17].

In view of the benefits of NOMA over OMA and multi-
antenna over single-antenna, numerous attempts have been
made in recent years to combine multi-antenna and NOMA

2NOMA is capacity achieving if the user channels are aligned but this is
not a realistic scenario in practice. Thus, throughout the paper we assume user
channels are not aligned. This matter is further discussed in Section VIII-E

schemes [1]–[5], [18]–[44] (and references therein). Although
there are a few contributions comparing NOMA with MU–LP
schemes, such as Zero-Forcing Beamforming (ZFBF) or
DPC [29], [41]–[44], much emphasis is put on comparing
(single/multi-antenna) NOMA and OMA, and showing that
NOMA outperforms OMA. But there is a lack of emphasis on
contrasting multi-antenna NOMA to other multi-user multi-
antenna baselines developed for the multi-antenna BC, such as
MU–LP (or other forms of multi-user MIMO techniques) and
Rate-Splitting Multiple Access (RSMA) [45]. RSMA is a form
of (power-domain) non-orthogonal transmission strategy based
on multi-antenna Rate-Splitting (RS). RS designed for the
multi-antenna BC also relies on SIC and has been developed
in parallel and independently from NOMA [45]–[51]. Such a
comparison is essential to assess the benefits and the efficiency
of NOMA, since all these communication strategies can be
viewed as different achievable schemes for the multi-antenna
BC and all aim in their own way for the same objective,
namely to meet the throughput, reliability, QoS, and con-
nectivity requirements of beyond-5G multi-antenna wireless
networks.

In this paper, we take a critical look at multi-antenna NOMA
and Next Generation Multiple Access (NGMA) techniques
for the downlink of communication systems and ask the
important questions “Is multi-antenna NOMA an efficient
strategy?” and “What are the important design principles
for NGMA techniques?” To answer those questions, we go
beyond the conventional NOMA vs. OMA comparison, and
contrast multi-antenna NOMA with MU–LP and RS strate-
gies. This allows us to highlight some misconceptions and
shortcomings of multi-antenna NOMA. Explicitly, we show
that in most scenarios the short answer to the first question is
no, and demonstrate based on first principles and numerical
performance evaluations why this is the case. Our discussions
and results unveil the scenarios where MU–LP outperforms
NOMA and vice versa, and demonstrate that multi-antenna
NOMA is inefficient compared to RS. By contrasting multi-
antenna NOMA to MU–LP and RS, we show that there is
some confusion about multi-antenna NOMA and its merits and
expose major misconceptions. Our results and discussions also
reveal new insights and perspectives for the design of NGMA
techniques.

The contributions of this paper are summarized as follows.
First, we analytically derive both the sum multiplexing gain

as well as the max-min fair multiplexing gain of multi-antenna
NOMA and compare them to those of MU–LP and RS.
The scenarios considered are very general and include multi-
antenna transmitter with single/multi-antenna receivers, perfect
and imperfect CSIT, and underloaded and overloaded regimes.
On the one hand, multi-antenna NOMA can achieve gains, but
can also incur losses compared to MU–LP. On the other hand,
multi-antenna NOMA always leads to a waste of multiplexing
gain compared to RS. This multiplexing gain loss translates
in a spectral efficiency loss and in an inability to serve a large
number of users. The multiplexing gain analysis provides a
firm theoretical ground to infer that multi-antenna NOMA is
not as efficient as RS in exploiting the spatial dimensions and
the available CSIT, and in serving a large number of users.
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TABLE I: Overview of the paper.

Section II. Two-User MISO NOMA with Perfect CSIT: The Basic Building Block
II-A. System Model II-B. Definition of Multiplexing Gain
II-C. Discussions

Section III. K-User MISO NOMA with Perfect CSIT
III-A. MISO NOMA System Model III-B. Multiplexing Gains

Section IV. K-User MISO NOMA with Imperfect CSIT
IV-A. CSIT Error Model IV-B. Multiplexing Gains

Section V. MIMO NOMA

Section VI. Baseline Scheme I: Conventional Multi-user Linear Precoding
VI-A. MU–LP System Model VI-B. Multiplexing Gains with Perfect CSIT
VI-C. Multiplexing Gains with Imperfect CSIT

Section VII. Baseline Scheme II: Rate-Splitting
VII-A. Rate-Splitting System Model VII-B. Multiplexing Gains with Perfect CSIT
VII-C. Multiplexing Gains with Imperfect CSIT

Section VIII. Shortcomings and Misconceptions of Multi-Antenna NOMA
VIII-A. NOMA vs. Baseline I (MU–LP) VIII-B. NOMA vs. Baseline II (RS)
VIII-C. Misconceptions of Multi-Antenna NOMA VIII-D. Illustration of the Misconceptions with an Example
VIII-E. Shortcomings of Multi-Antenna NOMA

Section IX. Numerical Results
IX-A. Perfect CSIT IX-B. Imperfect CSIT
IX-C. Discussions

Section X. Conclusions and Future Works

This analysis is instrumental to identify the scenarios where
the multiplexing gain gaps among NOMA, MU–LP, and RS
are the smallest/largest, therefore highlighting deployments
that are suitable/unsuitable for the different multiple access
strategies.

Second, we show that multi-antenna NOMA leads to a high
receiver complexity due to the inefficient use of SIC. For
instance, we show that the higher the number of SIC operations
(and therefore the higher the receiver complexity) in multi-
antenna NOMA, the lower the sum multiplexing gain (and
therefore the lower the sum-rate at high Signal-to-Noise Ratio
SNR). Comparison with MU–LP and RS show that higher
multiplexing gains can be achieved and a larger number of
users can be served at a lower receiver complexity and a
reduced number of SIC operations. Indeed, our results show
that NOMA requires K − 1 SIC layers to support K users
with M transmit antennas, while RS can support M − 1 +K
users with only one SIC layer.

Third, we show that most of the misconceptions behind
NOMA are due to the prevalent comparison to OMA instead
of comparing to MU–LP and RS. We show and explain
that the misconceptions, the multiplexing gain reduction, and
the inefficient use of SIC receivers in both underloaded and
overloaded multi-antenna settings relying on both perfect and
imperfect CSIT originate from a limitation of the multi-
antenna NOMA design philosophy, namely that one user is
forced to fully decode the messages of the other users. Hence,
while forcing a user to fully decode the messages of the other
users is an efficient approach in single-antenna degraded BC,
it may not be an efficient approach in multi-antenna networks.

Fourth, we stress that an efficient design of non-orthogonal

transmission and multiple access/NGMA strategies ensures
that the use of SIC never leads to a performance loss but
rather leads to a performance gain over MU–LP. We show
that such non-orthogonal solutions based on RS exist and truly
benefit from the multi-antenna multiplexing gain and from
the use of SIC receivers in both underloaded and overloaded
regimes relying on perfect and imperfect CSIT. In fact, multi-
antenna RS completely resolves the design limitations of
multi-antenna NOMA. Consequently, RS with only one SIC
layer can achieve higher spectral efficiency and support a
larger number of users than NOMA with multiple SIC layers.

Fifth, we depart from the multiplexing gain analysis and de-
sign the transmit precoders to maximize the sum-rate and max-
min rate for multi-antenna NOMA, followed by numerically
comparing the sum-rate and the max-min fair rate of NOMA
to those of MU–LP and RS. We show that the multiplexing
gain analysis is accurate and instrumental to predict the rate
performance of the multiple access strategies considered.

Sixth, our numerical simulations confirm the inefficiency
of multi-antenna NOMA in general settings. Multi-antenna
NOMA is shown to lead to performance gains over MU–LP
in some settings but also to losses in other settings despite the
use of SIC receivers and a higher receiver complexity. Our
results also highlight the significant benefits, performance-wise
and receiver complexity-wise, of RSMA and multi-antenna RS
over multi-antenna NOMA. It is indeed possible to achieve a
significantly better performance than MU–LP and NOMA with
just one layer of SIC by adopting RS so as to partially decode
messages of other users (instead of fully decoding them as in
NOMA).

Organization: The remainder of this paper is organized as
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follows. Section II introduces two-user Multiple-Input Single-
Output (MISO) NOMA (with single-antenna receivers) as a
basic building block (and toy example) for our subsequent
studies, compares to MU–LP, and raises some questions about
the efficiency of NOMA. Section III studies the multiplexing
gain of K-user MISO NOMA with perfect CSIT. Section
IV extends the discussion to imperfect CSIT. Section VI
and Section VII study the multiplexing gains of the baseline
schemes considered, namely MU–LP and RS, respectively.
Section VIII compares the multiplexing gains of all multiple
access schemes considered and exposes the misconceptions
and shortcomings of multi-antenna NOMA. Section IX pro-
vides simulation results. Section X concludes this paper,
discusses future research and pathways to 6G standardization.
An overview of the paper is shown in Table I.

Notation: |·| refers to the absolute value of a scalar or to the
cardinality of a set depending on the context. ‖·‖ refers to the
l2-norm of a vector. max{a1, ..., an} refers to the maximum
value between a1 to an. aH denotes the Hermitian transpose of
vector a. Tr(Q) refers to the trace of matrix Q. I is the identity
matrix. P ↗ means as P grows large. CN (0, σ2) denotes
the circularly symmetric complex Gaussian distribution with
zero mean and variance σ2. ∼ stands for “distributed as”.
O(·) refers to the big O notation. E

{
·
}

denotes statistical
expectation. A∩B and A∪B refer to the intersection (A and
B have to be satisfied) and the union (A or B to be satisfied)
of two sets/events A and B, respectively.

II. TWO-USER MISO NOMA WITH PERFECT CSIT:
THE BASIC BUILDING BLOCK

We commence by studying two-user MISO NOMA and
show that, by comparing NOMA to MU–LP instead of to
OMA, the potential merits of NOMA are less obvious. Limited
to two single-antenna users with perfect CSIT, this system
model illustrates the simplest though fundamental building
block of multi-antenna NOMA.

A. System Model

We consider a downlink single-cell multi-user multi-antenna
scenario with K = 2 users, also known as two-user MISO
BC, consisting of one transmitter with M ≥ 2 antennas3

communicating with two single-antenna users. The transmitter
aims to transmit simultaneously two messages W1 and W2

intended for user-1 and user-2, respectively.
The transmitter adopts the so-called multi-antenna NOMA

or MISO NOMA strategy, illustrated in Fig. 1, that encodes
one of the two messages using a codebook shared by both
users4 so that it can be decoded and cancelled from the
received signal at the co-scheduled user (following the same

3Throughout the paper, we will assume fully digital processing with M
antennas and M RF chains. This is standard in communication theoretic
studies but also in real multi-antenna deployments, even for massive mimo
with sub 6GHz deployments (e.g. Ericsson AIR 6468). For millimeter-wave
deployments, it is plausible that future systems will be fully digital too
eventually [52].

4This is not an issue in modern systems since, for example, in an LTE/5G
NR system, all codebooks are shared since all users use the same family of
modulation and coding schemes (MCS) specified in the standard.

Fig. 1: Two-user system architecture with NOMA (decoding
order: user-2→user-1).

principle as superposition coding for the degraded BC). Con-
sider W2 is encoded into s2 using the shared codebook and
W1 is encoded into s1. The two streams are then linearly
precoded by M × 1 precoders5 p1 and p2 and superposed at
the transmitter so that the transmit signal is given by

x = p1s1 + p2s2. (1)

Defining s = [s1, s2]T and assuming that E[ssH ] = I, the
average transmit (sum) power constraint is written as P1 +
P2 ≤ P where Pk = ‖pk‖2 with k = 1, 2.

The channel vector for user k is denoted by hk, and the
received signal at user k can be written as yk = hHk x + nk,
k = 1, 2, where nk ∼ CN (0, 1) is Additive White Gaussian
Noise (AWGN). We assume perfect CSIT and perfect Channel
State Information at the Receivers (CSIR).

At both users, stream s2 is decoded first into6 Ŵ2 by treating
the interference from s1 as noise. Using SIC at user-1, Ŵ2 is
re-encoded, precoded, and subtracted from the received signal,
such that user-1 can decode its stream s1 into Ŵ1. Assuming
proper Gaussian signaling and perfect SIC7, the achievable
rates of the two streams with MISO NOMA are given by8

R
(N)
1 = log2

(
1 +

∣∣hH1 p1

∣∣2) , (2)

R
(N)
2 = min (log2 (1 +A) , log2 (1 +B)) , (3)

where

A =

∣∣hH1 p2

∣∣2
1 +

∣∣hH1 p1

∣∣2 , B =

∣∣hH2 p2

∣∣2
1 +

∣∣hH2 p1

∣∣2 . (4)

In (3), log2 (1 +A) is the rate supportable by the channel of
user-1 when user-1 decodes s2 and treats its own stream s1
as noise. Similarly, log2 (1 +B) is the rate supportable by the
channel of user-2 when user-2 decodes its own stream s2 while
treating stream s1 of user-1 as noise. The min in (3) is due

5The precoders p1 and p2 can be any vectors that satisfy the power
constraint, though the best choice of precoders would depend on the objective
function.

6Though not expressed explicitly, Ŵ2 is receiver dependent since both
receivers decode s2 and the same estimate is not necessarily obtained at both
receivers. Hence, more rigorously, we could have written Ŵ2,k , k = 1, 2
to refer to the estimate at user-k. For simplicity of presentation, we have
nevertheless opted to drop the index k.

7Note there is no error in the SIC operation since the chosen rates are
achievable under Gaussian signaling and infinite block length.

8Superscript (N) stands for NOMA. Similarly we will user (M) for MU–LP,
(R) for Rate-Splitting, and ? for the information theoretic optimum.
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to the fact that s2, though carrying message W2 intended to
user-2, is decoded by both users and is therefore transmitted
at a rate decodable by both users.

The most common performance metric of a multi-user
system is the sum-rate. In this two-user MISO NOMA system
model, the sum-rate is defined as R(N)

s = R
(N)
1 +R

(N)
2 and can

be upper bounded9 as

R(N)
s ≤ log2

(
1 +

∣∣hH1 p2

∣∣2
1 +

∣∣hH1 p1

∣∣2
)

+ log2

(
1 +

∣∣hH1 p1

∣∣2) ,
= log2

(
1 +

∣∣hH1 p2

∣∣2 +
∣∣hH1 p1

∣∣2) . (5)

It is important to note that (5) can be interpreted as the
sum-rate of a two-user multiple access channel (MAC) with a
single-antenna receiver. Indeed, user-1 acts as the receiver of
a two-user MAC whose effective SISO channels for both links
are given by hH1 p2 and hH1 p1, respectively. This observation
will be revisited in the next few sections, and will be shown
very helpful to explain the performance of multi-antenna
NOMA.

A drawback of the sum-rate is that it does not capture rate
fairness among the users. Another popular system performance
metric is the Max-Min Fair (MMF) rate or symmetric rate
defined as R(N)

mmf = mink=1,2R
(N)
k . The MMF metric provides

uniformly good QoS since it aims for maximizing the mini-
mum rate among all users.

Throughout the manuscript, we will focus on the sum-rate
and the MMF rate as two very different metrics to assess the
system performance. We choose these two metrics as they
are commonly used in wireless networks, and in the NOMA
literature in particular (see, e.g., [20], [24], [30], [32], [33]
for the sum-rate and [34], [35], [39], [53], [54] for the MMF
rate). They are representative for two very different operational
regimes, with the former focusing on high system throughput
and the latter on user fairness.

In the sequel, we introduce some useful definitions and then
make some observations based on this two-user system model.

B. Definition of Multiplexing Gain

Throughout the paper, we will often refer to the multi-
plexing gain to quantify how well a communication strategy
can exploit the available spatial dimensions. We define the
multiplexing gain, also referred to as Degrees-of-Freedom
(DoF), of user-k achieved with communication strategy10 j
as

d
(j)
k = lim

P→∞

R
(j)
k (P )

log2(P )
, (6)

and the sum multiplexing gain as

d(j)s = lim
P→∞

R
(j)
s (P )

log2(P )
=

K∑
k=1

d
(j)
k , (7)

9This is an upper bound since when A < B, it is achieved with equality,
and when B < A, log2(1+B) < log2(1+A) and it is a strict upper bound.

10Throughout this paper, j will be either N for NOMA, M for MU–LP,
R for Rate-Splitting, or ? for the information theoretic optimum, i.e., j ∈
{N, M, R, ?}.
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Fig. 2: Illustration of the notion of multiplexing gain/DoF.

where R(j)
s =

∑K
k=1R

(j)
k is the sum-rate. We also define the

MMF multiplexing gain as

d
(j)
mmf = lim

P→∞

R
(j)
mmf(P )

log2(P )
= min
k=1,...,K

d
(j)
k , (8)

where R(j)
mmf = mink=1,...,K R

(j)
k is the MMF rate.

The multiplexing gain d
(j)
k is a first-order approximation

of the rate of user-k at high SNR. d(j)k can be viewed as
the pre-log factor of the rate of user-k at high SNR and
be interpreted as the number or fraction of interference-free
stream(s) that can be simultaneously communicated to user-
k by employing communication strategy j. The larger d(j)k ,
the faster the rate of user-k increases with the SNR. Hence,
ideally a communication strategy should achieve the highest
multiplexing gain possible.

The sum multiplexing gain d
(j)
s is a first-order approxi-

mation of the sum-rate at high SNR and therefore the pre-
log factor of the sum-rate and can be interpreted as the
total number of interference-free data streams that can be
simultaneously communicated to all K users by employing
communication strategy j. In other words, R(j)

s scales as
d
(j)
s log2(P )+δ where δ is a term that scales slowly with SNR

such that limP→∞
δ

log2(P ) = 0 (e.g., O(1), O(log2(log2(P )))

or O(
√

log2(P ))), and the larger d(j)s , the faster the sum-rate
increases with the SNR.

The MMF multiplexing gain d
(j)
mmf, also referred to as

symmetric multiplexing gain, corresponds to the maximum
multiplexing gain that can be simultaneously achieved by all
users, and reflects the pre-log factor of the MMF rate at high
SNR. In other words, R(j)

mmf scales as d(j)mmf log2(P ) + δ, and
the larger d(j)mmf, the faster the MMF rate increases with the
SNR.

Remark 1: Much of the analysis and discussion in this
paper emphasizes the (sum and MMF) multiplexing gain as a
metric to assess the capability of a strategy to exploit multiple
antennas. As it becomes plausible from its definition, the
multiplexing gain is an asymptotic metric valid in the limit of
high SNR, and hence, does not precisely reflect specific finite-
SNR rates. Nevertheless, it provides firm theoretical grounds
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for performance comparisons and has been used in the MIMO
literature for two decades [55]. Furthermore, the multiplexing
gain also impacts the performance at finite SNRs as shown in
numerous papers [47], [48], [56] and in our simulation results
in Section IX. Moreover, it enables to gain deep insights into
the performance limits and to guide the design of efficient
communications strategies, as we will see throughout this
paper. The notion of multiplexing gain is illustrated in Fig. 2
where the strategy characterized by the red curves is preferred
over the other strategy in blue. A larger slope/multiplexing
gain is indeed offered by the red strategy at high SNR which
translates into rate gains at finite SNR.

Remark 2: In this manuscript, we will derive the sum
multiplexing gain d

(j)
s and the MMF multiplexing gain d

(j)
mmf

for strategy j ∈ {N,M,R}. The corresponding proofs rely on
obtaining an upper bound (i.e., converse) on the (sum/MMF)
multiplexing gain and then showing that this upper bound is
tight since it is achievable by the strategy under study. In
other words, we show that d(j)s/mmf ≤ a (upper bound) and then
d
(j)
s/mmf ≥ a (achievability). Consequently, this paper charac-

terizes the exact (sum/MMF) multiplexing gains achieved by
each strategy, i.e., d(j)s/mmf = a. We confirm the multiplexing
gains by numerical simulations in evaluations.

C. Discussions

Note that (2) and (3), respectively, suggest that s1 is received
interference-free at user-1, and that s2 is always decoded in
the presence of interference from s1. We can now draw some
important conclusions from (2), (3), and (5).

The sum-rate bound (5) of this two-user MISO NOMA
strategy and user ordering user-2→user-1 can be further upper
bounded as

R(N)
s ≤ log2

(
1 + ‖h1‖2 P

)
, (9)

where the equality in (9) is achieved (i.e., upper bound is tight)
by choosing p1 =

√
P1h1/ ‖h1‖ and p2 =

√
P2h1/ ‖h1‖

with P1 + P2 = P . Note that the right hand side of (9) is the
rate achieved by OMA when serving user-1. In other words,
(9) is not just an upper bound on the sum-rate of MISO NOMA
but is actually the maximum achievable sum-rate of MISO
NOMA. This maximum achievable sum-rate of MISO NOMA
is the same as that of OMA (when serving user-1).

Had we considered the other decoding order where the
shared codebook is used to encode W1 and user-2 decodes
s1, the role of user-1 and user-2 in Fig. 1 would have been
switched (user-1→user-2) and we would have obtained

R(N)
s ≤ log2

(
1 + ‖h2‖2 P

)
. (10)

This sum-rate upper bound is achievable by choosing p1 =√
P1h2/ ‖h2‖ and p2 =

√
P2h2/ ‖h2‖ with P1 + P2 = P

and the maximum achievable sum-rate of MISO NOMA with
decoding order user-1→user-2 is the same as that of OMA
(when serving user-2 only).

Hence, from (9) and (10), the sum-rate of MISO NOMA
considering adaptive decoding order is upper bounded as

R(N)
s ≤ log2

(
1 + max{‖h1‖2 , ‖h2‖2}P

)
. (11)

Fig. 3: Two-user system architecture with MU–LP/SDMA.

This sum-rate is again achievable and is the same as that
of OMA when serving the strongest of the two users
arg maxk=1,2 ‖hk‖.

Importantly, (9), (10), and (11) reveal the strong result that
the sum-rate of MISO NOMA is actually no higher than that
of OMA for any SNR! This fact is not surprising in the SISO
case (M = 1) since it is well known that to achieve the
sum capacity of the SISO BC, one can simply transmit to the
strongest user all the time (i.e., OMA) [57]. The above result
shows that this also holds for the two-user MISO NOMA basic
building block.

Considering the high SNR regime, (9), (10), (11) all scale
at most as log2(P ), i.e.,

R(N)
s

P↗
= log2 (P ) + δ, (12)

which highlights that the sum multiplexing gain of two-user
MISO NOMA (irrespectively of the decoding order) is (at
most) one, i.e., d(N)

s = 1. Hence, MISO NOMA limits the
sum multiplexing gain to d

(N)
s = d

(N)
1 + d

(N)
2 = 1, i.e., the

same as OMA.
The sum multiplexing gain of one can be further split

equally between the two users, which leads to an MMF mul-
tiplexing gain of two-user MISO NOMA given by d(N)

mmf = 1
2 .

This is achieved by scaling the power allocated to user-1 as
O(P 1/2) and that to user-2 as O(P ). In other words, the MMF
rate of this two-user MISO NOMA scales at most as 1

2 log2(P )
at high SNR.

The above contrasts with the optimal sum multiplexing gain
d
(?)
s of the two-user MISO BC, that is equal to 2, i.e., two

interference-free streams can be transmitted11. This can be
achieved by performing conventional MU–LP, illustrated in
Fig. 3. Recall the MU–LP system model where W1 and W2 are
independently encoded into streams s1 and s2 and respectively
precoded by p1 and p2 such that the transmit signal is given
by

x = p1s1 + p2s2. (13)

At the receivers, yk = hHk x + nk, k = 1, 2, and s1 and s2
are respectively decoded by user-1 and user-2 by treating any
residual interference as noise, leading to MU–LP rates

R
(M)
1 = log2 (1 + C) , R

(M)
2 = log2 (1 +B) , (14)

11This assumes that the two channel directions are not aligned, or in other
words, that the rank of the concatenated matrix

[
h1 h2

]
is equal to 2.

Note that this condition on full-rank concatenated matrices is met in practice
with probability one.
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with

C =

∣∣hH1 p1

∣∣2
1 +

∣∣hH1 p2

∣∣2 , (15)

and B as specified in (4). It is then indeed sufficient12 to
transmit two streams using uniform power allocation and Zero-
Forcing Beamforming (ZFBF), so that hH1 p2 = hH2 p1 = 0,
to reap the sum multiplexing gain d

(M)
s = d

(?)
s = 2 and

the MMF multiplexing gain d
(M)
mmf = d

(?)
mmf = 1 (i.e., each

user gets one full interference-free stream). Indeed, with MU–
LP, the sum-rate scales as 2 log2(P ) and the MMF rate as
log2(P ) at high SNR [58]–[60]. Such sum-rate and MMF rate
would always strictly outperform that of NOMA (and OMA)
at high SNR. Since both OMA and NOMA achieve only half
the (sum/MMF) multiplexing gain of MU–LP in the two-user
MISO BC considered, it is not clear whether (and under what
conditions) multi-antenna NOMA can outperform MU–LP
and other forms of multi-user multi-antenna communication
strategies, and if it does, whether multi-antenna NOMA is
worth the associated increase in receiver complexity. The
above discussion exposes some weaknesses of multi-antenna
NOMA and highlights the uncertainty regarding the potential
benefits of multi-antenna NOMA. Hence, in the following
sections, we derive the multiplexing gains of generalized K-
user multi-antenna NOMA, so as to better assess its potential.

Remark 3: It appears from (1) and (13) that the transmit
signal vectors for 2-user MISO NOMA and 2-user MU–LP
are the same, therefore giving the impression that NOMA is
the same as MU–LP. This is obviously incorrect. Recall the
major differences in the encoding and the decoding of NOMA
and MU–LP:
• Encoding: In NOMA, W1 is encoded into s1 and W2 is

encoded into s2 at a rate such that s2 is decodable by
both users, while W1 and W2 are independently encoded
into streams s1 and s2 in MU–LP.

• Decoding: User-1 decodes s1 and s2 and user-2 decodes
s2 by treating s1 as noise in NOMA while s1 is decoded
by user-1 by treating s2 as noise and s2 is decoded by
user-2 by treating s1 as noise in MU–LP.

Consequently the rate expressions (2), (3) and (14) are differ-
ent, which therefore suggests that the best pair of precoders
p1 and p2 that maximizes a given objective function (e.g.,
sum-rate, MMF rate) would be different for NOMA and MU–
LP. Choosing p1 and p2 according to ZFBF would commonly
work reasonably well for MU–LP but would lead to R(N)

2 = 0
in (3) for NOMA. Nevertheless, the above discussion on
multiplexing gain loss of MISO NOMA always holds, even
in the event where MISO NOMA is implemented with the
best choice of precoders, since the above analysis for MISO
NOMA is based on an upper bound.

III. K-USER MISO NOMA WITH PERFECT CSIT

We now study K-user MISO NOMA relying on perfect
CSIT and derive the sum and MMF multiplexing gains.

12More complicated precoders (or communication strategies like non-linear
precoding and DPC) can be used to enhance the rate performance, but the
sum and MMF multiplexing gains will not improve in this 2-user setting.

A. MISO NOMA System Model

We consider a K-user MISO NOMA scenario where a
single transmitter equipped with M transmit antennas serves
K single-antenna users indexed by K = {1, . . . ,K}. The K
users are grouped into 1 ≤ G < K groups13 with groups
indexed by G = {1, . . . , G}. There are g users per group, i.e.,
we therefore assume for simplicity that K = gG. Users in
group i are indexed by Ki = {ig − g + 1, . . . , ig}. Hence,
K =

⋃
i∈G Ki and |Ki| = g. Without loss of generality, we

assume that users 1, g+1, 2g+1, . . . , K−g+1 are the “strong
users”14 respectively in group 1 to G, and perform g−1 layers
of SIC to fully decode the messages (and therefore remove
interference) from the other g−1 users within the same group.
Similarly, the second user in each group (i.e., ig − g + 2 in
group i) performs g−2 layers of SIC to fully decode messages
from other g − 2 users within the same group, and so on.
The two most popular MISO NOMA strategies employ either
G = 1 [20]–[23] or G = K/2 [26]–[31] but we keep here the
scenario general for any value of 1 ≤ G < K. The general
architecture of MISO NOMA is illustrated in Fig. 4. The two-
user building block in Section II can be viewed as a particular
instance with K = 2 and G = 1.

At the transmitter, the messages W1 to WK intended for
user-1 to user-K, respectively, are encoded into s1 to sK .
However, some of the messages in each group have to be
encoded using codebooks shared by a subset of the users in
that group so that they can be decoded and cancelled from
the received signals at the co-scheduled users in that group.
In particular, taking group 1 as an example, W2 to Wg are
encoded using codebooks shared with user-1 such that user-1
can decode all of these g − 1 messages. After encoding, the
K streams are linearly precoded by precoders15 p1 to pK ,
where pk ∈ CM is the precoder of sk, and superposed at the
transmitter. The resulting transmit signal is

x =

K∑
k=1

pksk. (16)

Defining s = [s1, ..., sK ]T and assuming that E[ssH ] = I, the
average transmit power constraint is written as

∑K
k=1 Pk ≤ P ,

where Pk = ‖pk‖2.

13 Note that 1 ≤ G < K is a widely considered option for MISO NOMA
in which there exists (at least) one user decoding the message of (at least)
one another user in each group. Importantly, G = K corresponds to MU–LP
as per Section VI and is not a MISO NOMA scheme since all K messages
are independently encoded into K streams and residual interference is treated
as noise at the receivers, i.e., there is no shared codebook and users therefore
do not decode the messages of other users.

14“Strong users" here refer to the users who decode the messages of other
users in a group. Given the nondegraded nature of the multi-antenna BC, the
strong users do not necessarily have to be the users with the largest channel
vector norm. The multiplexing gain analysis is general and holds for any
ordering. Nevertheless, following [22], [23], we consider in the simulation
section the decoding order in each group to be the ascending order of users’
channel strength such that “strong users" refer to the users with the largest
channel vector norm respectively in group 1 to G.

15Further constraints can be imposed on the precoder design such that
the same precoder is used for all users in the same group. This constraint
would however further reduce the optimization space and therefore the rate
performance.
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Fig. 4: K-user system architecture with MISO NOMA (con-
taining G user groups and g users within each group).

At the receiver side, the signal received at user-k is yk =
hHk x + nk, k ∈ K, where hk is the channel vector16 of
user-k, perfectly known at the transmitter and that user, and
nk ∼ CN (0, 1) is the AWGN. By employing SIC, user-j in
group i (i.e., j ∈ Ki) decodes the messages of users-{k | k ≥
j, k ∈ Ki} within the same user group in a descending order
of the user index while treating the interference from users in
different groups as noise. Under the assumption of Gaussian
signaling and perfect SIC, the rate at user-j, j ∈ Ki, to decode
the message of user-k, k ≥ j, k ∈ Ki, is given by

Rj,k = log2

(
1 +

|hHj pk|2

I
(in)
j,k + I

(ou)
j,k + 1

)
, (17)

where

I
(in)
j,k =

∑
m<k,m∈Ki

|hHj pm|2, I(ou)j,k =
∑

l 6=i,l∈G

∑
m∈Kl

|hHj pm|2

(18)
are the intra-group interference and inter-group interference
received at user-k, respectively. As the message of user-k, k ∈
Ki, has to be decoded by users-{j|j ≤ k, j ∈ Ki}, to ensure
decodability, the rate of user-k should not exceed

R
(N)
k = min

j≤k,j∈Ki
Rj,k. (19)

In the next subsection, we study the sum multiplexing gain
and the MMF multiplexing gain of K-user MISO NOMA.

B. Multiplexing Gains

The following proposition provides the sum multiplexing
gain of MISO NOMA for perfect CSIT.

Proposition 1: The sum multiplexing gain of K-user MISO
NOMA with M transmit antennas, G groups of g = K/G

users, and perfect CSIT is d(N)
s = min (M,G).

Proof: The proof is obtained by showing that an upper
bound on the sum multiplexing gain is achievable. The upper
bound is obtained by applying the MAC argument (used in

16The rank of matrix
[

h1 . . . hK

]
is assumed equal to

min{M,K} for simplicity. Note that this condition is met in practice and is
motivated by practical deployments. Ranks strictly smaller than min{M,K}
(due to, e.g., aligned channels) would not occur (zero probability) in real
wireless deployments with fading channels and are therefore not of practical
interest.

(5)) to the strong user in each group and noticing that the
sum-rate in groups 1 to G is upper bounded as

g∑
k=1

R
(N)
k ≤ log2

(
1 +

g∑
k=1

∣∣hH1 pk
∣∣2) , (20)

2g∑
k=g+1

R
(N)
k ≤ log2

1 +

2g∑
k=g+1

∣∣hHg+1pk
∣∣2 , (21)

...
K∑

k=K−g+1

R
(N)
k ≤ log2

1 +

K∑
k=K−g+1

∣∣hHK−g+1pk
∣∣2 .

(22)

Note that the left-hand sides of (20), (21), and (22) refer to
the sum of the rates of the messages in group 1, 2, and G,
respectively, but can also be viewed as the total rate to be
decoded by user 1, g + 1, and K − g + 1 (since those users
decode all the messages in their respective group). We now
notice that the right-hand sides of (20), (21), and (22) scale as
log2(P )+δ for large P (following the same argument as in the
two-user case). This implies that each group i achieves at most
a (group) sum multiplexing gain d

(N)
s,i =

∑ig
k=ig−g+1 d

(N)
k of

1, i.e., at most one interference-free stream can be transmitted
to each group. Summing up all inequalities, we obtain in the
limit of large P that

R(N)
s =

K∑
k=1

R
(N)
k

P↗
≤ G log2(P ) + δ, (23)

which shows that d(N)
s =

∑G
i=1 d

(N)
s,i ≤ G. Additionally, since

d
(N)
s ≤ d?s = min (M,K), we have d(N)

s ≤ min (M,G).
The achievability part shows that d(N)

s ≥ min (M,G). To
this end, it is indeed sufficient to perform ZFBF and transmit
min (M,G) interference-free streams to min (M,G) of the G
“strong users”. Combining the upper bound and achievability
leads to the conclusion that d(N)

s = min (M,G). 2

The following result derives the MMF multiplexing gain of
MISO NOMA with perfect CSIT.

Proposition 2: The MMF multiplexing gain of K-user
MISO NOMA with M transmit antennas, G groups of g =
K/G users and perfect CSIT is

d
(N)
mmf =

{
1
g , M ≥ K − g + 1,

0, M < K − g + 1.
(24)

For G = 1, i.e., g = K, d(N)
mmf = 1

K .
Proof: Let us first consider M ≥ K − g + 1. The MMF

multiplexing gain is always upperbounded by ignoring the
inter-group interference, i.e., the G groups are non-interfering.
Following again the MAC argument, the sum multiplexing
gain of one in each group can then be further split equally
among the g users, which leads to an upper bound on the
MMF multiplexing gain of 1

g . Achievability is simply obtained
by designing the precoders using ZFBF to eliminate all inter-
group interference, and allocating the power similarly to
Subsection II-C. Indeed let us consider group 1 for simplicity,
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and allocate the power to user k = 1, . . . , g as O(P k/g). This
leads to an SINR for user-k scaling as O(P 1/g) and to an
achievable MMF multiplexing gain of 1

g . For G = 1, one can
simply allocate the power to user k = 1, . . . ,K as O(P k/K),
which leads to an achievable MMF multiplexing gain of 1

K .
Let us now consider M < K−g+1. Take M = K−g (any

smaller M cannot improve the multiplexing gain). Precoder
pk of any user-k can be made orthogonal to the channel of at
most K − g − 1 co-scheduled users and will therefore cause
interference to at least one user in another group. As a result,
the MMF multiplexing gain collapses to 0. 2

Remark 4: For the MMF multiplexing gain analysis, it
should be noted that we consider one-shot transmission
schemes with no time-sharing between strategies. This is
suitable for systems with rigid scheduling and/or tight latency
constraints, and also allows for simpler designs. This assump-
tion is also commonly used in the NOMA literature [34], [35],
[39], [53], [54].

IV. K-USER MISO NOMA WITH IMPERFECT CSIT

We now go one step further and extend the multiplexing
gain analysis to the imperfect CSIT setting. The results in
this section therefore generalize the results in the previous
section (with perfect CSIT being a particular case of imperfect
CSIT). In this section, the achievable rates are defined in
the ergodic sense in a standard Shannon theoretic fashion,
and the corresponding sum and MMF mutiplexing gains are
defined similarly to Subsection II-B using ergodic rates. We
first introduce the CSIT error model before deriving the
multiplexing gains of MISO NOMA relying on imperfect
CSIT.

A. CSIT Error Model

For each user, the transmitter acquires an imperfect estimate
of the channel vector hk, denoted as ĥk. The CSIT imperfec-
tion is modelled by

hk = ĥk + h̃k, (25)

where h̃k denotes the corresponding channel estimation er-
ror at the transmitter. For compactness, we define H =
[h1 . . .hK ], Ĥ = [ĥ1 . . . ĥK ], and H̃ = [h̃1 . . . h̃K ], which
implies H = Ĥ+H̃. The joint fading process is characterized
by the joint distribution fH,Ĥ

(
H, Ĥ

)
of {H, Ĥ}, assumed to

be stationary and ergodic . The joint distribution fH,Ĥ
(
H, Ĥ

)
is continuous and known to the transmitter. The ergodic
rates capture the long-term performance over a long sequence
of channel uses {H, Ĥ} spanning almost all possible joint
channel states.

For each user-k, we define the average channel (power) gain
as Γk = E

{
‖hk‖2

}
. Similarly, we define Γ̂k = E

{∥∥ĥk∥∥2}
and Γ̃k = E

{∥∥h̃k∥∥2}. For many CSIT acquisition mechanisms
[61], ĥk and h̃k are uncorrelated according to the orthogonal-
ity principle [62]. By further assuming that ĥk and h̃k have
zero means, we have Γk = Γ̂k + Γ̃k, based on which we
can write Γ̂k = (1 − σ2

e,k)Γk and Γ̃k = σ2
e,kΓk for some

σ2
e,k ∈ [0, 1]. Note that σ2

e,k is the normalized estimation

error variance for user-k’s CSIT, e.g., σ2
e,k = 1 corresponds

to no instantaneous CSIT, while σ2
e,k = 0 represents perfect

instantaneous CSIT.
For simplicity, we assume identical normalized CSIT error

variances for all users, i.e., σ2
e,k = σ2

e for all k = 1, . . . ,K.
To facilitate the multiplexing gain analysis, we assume that
σ2
e scales with SNR as σ2

e = P−α for some CSIT quality
parameter α ∈ [0,∞) [46], [47], [60], [63], [64]. This is
a convenient and tractable model extensively used in the
information theoretic literature that allows us to assess the
performance of the system in a wide range of CSIT quality
conditions. Indeed, the larger α, the faster the CSIT error
decreases with the SNR. The two extreme cases, α = 0 and
α =∞, correspond to no or constant CSIT (i.e., that does not
scale or improve with SNR) and perfect CSIT, respectively. As
far as the multiplexing gain analysis is concerned, however,
we may truncate the CSIT quality parameter as α ∈ [0, 1],
where α = 1 amounts to perfect CSIT in the multiplexing
gain sense. The regime α ∈ (0, 1) corresponds to partial CSIT,
resulting from imperfect CSI acquisition. The CSIT quality
α can be interpreted in many different ways, but a plausible
interpretation of α is related to the number of feedback bits,
where α = 0 corresponds to a fixed number of feedback
bits for all SNRs, α = ∞ corresponds to an infinite number
of feedback bits, and 0 < α < ∞ reflects how quickly
the number of feedback bits increases with the SNR. As a
reference, a system like 4G and 5G use α = 0 when limited
feedback (or codebook-based feedback) is used to report the
CSI, since the number of feedback bits is constant and does
not scale with SNR, e.g., 4 bits of CSI feedback in 4G LTE
for M = 4.

B. Multiplexing Gains
The following result quantifies the sum multiplexing gain

of MISO NOMA for imperfect CSIT.
Proposition 3: The sum multiplexing gain of K-user

MISO NOMA with M transmit antennas, G groups of g =

K/G users, and CSIT quality 0 ≤ α ≤ 1 is d
(N)
s =

max (1,min (M,G)α).
Proof: Similar to the proof of Proposition 1, let us look at

the G strong users since they have to decode all messages. We
recall that d(N)

s,i =
∑ig
k=ig−g+1 d

(N)
k reflects the multiplexing

gain of the total rate to be decoded by the strong user ig −
g+ 1 in group i as a consequence that this user decodes all g
messages in group i. Making use of the results of MU–LP in
the G-user MISO BC with imperfect CSIT [47]17, we obtain
d
(N)
s =

∑G
i=1 d

(N)
s,i =

∑K
k=1 d

(N)
k ≤ max (1,min (M,G)α).

The achievability part shows that d
(N)
s ≥

max (1,min (M,G)α). It is indeed sufficient to perform
ZFBF and transmit min (M,G) streams, each at a power
level of Pα/min (M,G), to min (M,G) of the G “strong
users”. If min (M,G)α < 1, one can simply transmit a single
stream (i.e., perform OMA) and reap a sum multiplexing gain
of 1. Combining the upper bound and achievability leads to
the conclusion that we have d(N)

s = max (1,min (M,G)α).
2

17See also Proposition 7.
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For α = 1 (perfect CSIT from a multiplexing gain perspec-
tive), Proposition 3 boils down to the perfect CSIT result in
Proposition 1.

The following proposition provides the MMF multiplexing
gain of MISO NOMA with imperfect CSIT.

Proposition 4: The MMF multiplexing gain of K-user
MISO NOMA with M transmit antennas, G groups of g =
K/G users, and CSIT quality 0 ≤ α ≤ 1 is

d
(N)
mmf =


α
g , G > 1 andM ≥ K − g + 1,

0, G > 1 andM < K − g + 1,
1
K , G = 1.

(26)

The proof is relegated to Appendix A.
It is interesting to note that the sensitivity of the multiplex-

ing gain of MISO NOMA to the CSIT quality α is different
for G > 1 and G = 1. Indeed the sum and MMF multiplexing
gains of MISO NOMA with G > 1 decay as α decreases,
while the multiplexing gains of MISO NOMA with G = 1
are not affected by α. This can be interpreted in two different
ways. On the one hand, this suggests that MISO NOMA
G = 1 is inherently robust to CSIT imperfection since the
multiplexing gains are not affected by α < 1. On the other
hand, this also reveals that MISO NOMA with G = 1 is unable
to exploit the presence of CSIT since its multiplexing gains
are the same as in the absence of CSIT (α = 0).

V. MIMO NOMA

We now consider multi-antenna receivers and extend the
two-user MISO NOMA toy example of Section II to a two-
user MIMO NOMA setting with perfect CSIT.

We consider a two-user MIMO BC, consisting of one
transmitter with M antennas and two users equipped with N
antennas each. The signal vector yk ∈ CN×1 received at user-
k is written as yk = HH

k x + nk, where Hk ∈ CM×N is
the channel matrix18 of user-k and nk is the AWGN vector
at user-k. Following the NOMA principle, the transmit signal
vector x is generated such that the messages intended for user-
2 are encoded using a shared codebook so as to be decodable
by user-1. Defining the transmit covariance matrix of user-
k as Qk subject to the average transmit power constraint
Tr(Q1) + Tr(Q2) ≤ P , and assuming Gaussian signaling, the
achievable rates of both users are given by

R
(N)
1 =log2 det

(
IN + HH

1 Q1H1

)
, (27)

R
(N)
2 =min (log2 det (IN + R1) , log2 det (IN + R2)) , (28)

where Rk = HH
k Q2Hk

(
IN + HH

k Q1Hk

)−1
, k = 1, 2.

The sum-rate R(N)
s of the two-user MIMO NOMA can then

be bounded as

R(N)
s ≤ log2 det (IN + R1) + log2 det

(
IN + HH

1 Q1H1

)
,

= log2 det
(
IN + HH

1 Q1H1 + HH
1 Q2H1

)
. (29)

18We assume for simplicity that Hk is full rank.

The sum-rate bound achieved with this two-user MIMO
NOMA strategy can be further upper bounded as

R(N)
s ≤ log2 det

(
IN + HH

1 Q?
1H1

)
,

P↗
= min (M,N) log2 (P ) +O(1), (30)

where Q?
1 refers to the optimal covariance matrix for user-1

in a single-user (OMA) setup with Tr(Q1) = P , i.e., obtained
by transmitting along the dominant eigenvector of H1H

H
1 and

allocating power P according to the water-filling solution.
Similarly to the MISO case, the other decoding order

could also be considered and a similar analysis can be ob-
tained. Ultimately, the sum-rate of MIMO NOMA (irrespective
of the decoding order) is actually no larger than that of
OMA at any SNR. The sum multiplexing gain is limited by
d
(N)
s = min (M,N), which is smaller than the optimal sum

multiplexing gain of the MIMO BC d
(?)
s = min (M, 2N),

achieved by conventional MU-MIMO/MU–LP precoding [59].
This analysis highlights that MIMO NOMA incurs a sum
multiplexing loss whenever N < M , i.e., when the num-
ber of receive antennas at each device is smaller than the
number of transmit antennas at the base station, which would
occur in most realistic and practical MIMO deployments.
Similarly, the MMF multiplexing gain is also affected since
d
(N)
mmf = min (M,N) /2, obtained by equally splitting the sum

multiplexing gain amongst the two users, which again incurs a
loss whenever N < M . Taking for instance M = 6 and N = 4

leads to d
(N)
s = 4 and d

(N)
mmf = 2, though one could easily

transmit using multi-user MIMO (e.g., block diagonalization
[65], [66]) 6 interference-free streams with 3 streams per user.

Recall that the above MIMO NOMA scheme and analysis
were based on the principle that one user is forced to fully
decode the messages of the other co-scheduled user. Never-
theless other MIMO NOMA schemes have recently appeared
that may not satisfy this definition of MIMO NOMA and may
therefore achieve different (and hopefully superior) sum and
MMF multiplexing gains [67], [68].

VI. BASELINE SCHEME I:
CONVENTIONAL MULTI-USER LINEAR PRECODING

The first baseline to assess the performance of multi-antenna
NOMA is conventional Multi-User Linear Precoding. In the
sequel, we recall the multiplexing gains achieved by MU–LP.

A. MU–LP System Model

Following Subsection III-A, we consider a K-user MISO
BC with one transmitter equipped with M transmit antennas
and K single-antenna users. As per Fig. 5, the messages
W1, . . . ,WK respectively for user-1 to user-K are indepen-
dently encoded into s1 to sK , which are then mapped to the
transmit antennas through precoders p1, . . . ,pK . The resulting
transmit signal is x =

∑K
k=1 pksk.

The signal received at user-k is yk = hHk x+nk with nk ∼
CN (0, 1). Each user-k directly decodes the intended message
Wk by treating the interference from the other users as noise.
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Fig. 5: K-user system architecture with MU–LP. Receiver
architecture is illustrated for user-k though the same applies
to other users, i.e., all K users are equipped with a decoder
that maps the received signal into an estimated message by
treating residual interference as noise.

Under the assumption of Gaussian signaling, the rate of user-k
for k ∈ K is given by

R
(M)
k = log2

(
1 +

∣∣hHk pk
∣∣2

1 +
∑
q 6=k

∣∣hHk pq
∣∣2
)
. (31)

The sum-rate of MU–LP is therefore R
(M)
s =

∑K
k=1R

(M)
k ,

and the MMF rate of MU–LP is given as R
(M)
mmf =

mink=1,...,K R
(M)
k .

B. Multiplexing Gains with Perfect CSIT

We recall the sum multiplexing gain and the MMF multi-
plexing gain of MU–LP with perfect CSIT from [59] and [56],
respectively.

Proposition 5: The sum multiplexing gain of K-user MU–
LP with M transmit antennas and perfect CSIT is d(M)

s =
min (M,K).

This result19 is simply achieved by choosing the MU–
LP precoders based on ZFBF and transmitting min (M,K)
interference-free streams. Note that min (M,K) is also the
optimal20 sum multiplexing gain of the K-user MISO BC21

[59]. In other words, d(M)
s = d

(?)
s = min (M,K).

Proposition 6: The MMF multiplexing gain of the K-user
MU–LP with M transmit antennas and perfect CSIT is

d
(M)
mmf =

{
1, M ≥ K,
0, M < K.

(32)

When M ≥ K, ZFBF can be used to fully eliminate
interference. On the other hand, for M < K interference
cannot be eliminated anymore and d

(M)
mmf collapses, therefore

leading to a rate saturation at high SNR.

19It is implicitly assumed here that the coherence block is much larger than
min(M,K) such that the resource needed to estimate the channel vanishes.

20This is easily proved by showing that an upper bound on the sum multi-
plexing gain is equal to min (M,K), which is the same as the lower bound
achieved by MU–LP. The upper bound is obtained by noticing that enabling
full cooperation among receivers does not decrease the sum multiplexing gain
and leads to an effective point-to-point MIMO channel with M transmit and
K receive antennas, which has a sum multiplexing gain of min (M,K).

21More generally, in MIMO BC, d(M)
s = d

(?)
s = min (M,KN) [59].

C. Multiplexing Gains with Imperfect CSIT

We use the CSIT error model introduced in Subsection
IV-A. We recall the sum multiplexing gain and the MMF
multiplexing gain of MU–LP with imperfect CSIT from [47]
and [48], [69], respectively.

Proposition 7: The sum multiplexing gain of the K-user
MU–LP with M transmit antennas and CSIT quality 0 ≤ α ≤
1 is d(M)

s = max (1,min (M,K)α).
This result is simply achieved by choosing the MU–LP pre-

coders based on ZFBF and transmitting min (M,K) streams,
each with power level Pα/min (M,K). This enables each
stream to reap a multiplexing gain of α and therefore a sum
multiplexing gain of min (M,K)α. If min (M,K)α < 1, one
can simply transmit a single stream (i.e., perform OMA) and
reap a sum multiplexing gain of 1.

Comparing Propositions 5 and 7, we note that imperfect
CSIT leads to a reduction of the sum multiplexing gain. For
α = 1 (perfect CSIT in a multiplexing gain sense), Proposition
7 matches Proposition 5. Importantly, in contrast to the K-
user MISO BC with perfect CSIT setting where MU–LP
achieves the information theoretic optimal sum multiplexing
gain d(M)

s = d
(?)
s , in the imperfect CSIT setting, MU–LP does

not achieve the information theoretic optimal sum multiplexing
gain [47], [63].

Proposition 8: The MMF multiplexing gain of the K-user
MU–LP with M transmit antennas and CSIT quality 0 ≤ α ≤
1 is

d
(M)
mmf =

{
α, M ≥ K,
0, M < K.

(33)

This is achieved by performing ZFBF when M ≥ K. When
M < K, rate saturation occurs (similarly to the perfect CSIT
setting).

VII. BASELINE SCHEME II: RATE-SPLITTING

The second baseline to assess multi-antenna NOMA perfor-
mance is Rate-Splitting Multiple Access (RSMA), based on
multi-antenna Rate-Splitting (RS), for the multi-antenna BC
[45]–[51]. This approach leverages and extends the concept
of RS, originally developed in [70] for the two-user single-
antenna interference channel, to design multi-antenna non-
orthogonal transmission strategies for the multi-antenna BC.

A. Rate-Splitting System Model

We consider again a MISO BC consisting of one transmitter
with M antennas and K single-antenna users. As per Fig.
6, the architecture relies on rate-splitting of messages W1 to
WK intended for user-1 to user-K, respectively. To that end,
message Wk of user-k is split into a common part Wc,k and
a private part Wp,k. The common parts Wc,1, . . . ,Wc,K of all
users are combined into the common message Wc, which is
encoded into the common stream sc using a codebook shared
by all users. Hence, sc is a common stream required to be
decoded by all users and contains parts of messages W1 to
WK intended for user-1 to user-K, respectively. The private
parts Wp,1, . . . ,Wp,K , respectively containing the remaining
parts of messages W1 to WK , are independently encoded into
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Fig. 6: K-user system architecture with 1-layer rate-splitting.
Receiver architecture is illustrated for user-k though the same
applies to other users.

private stream s1 for user-1 to sK for user-K. From the K
messages, K + 1 streams sc, s1, . . . , sK are therefore created.
The streams are linearly precoded such that the transmit signal
is given by

x = pcsc +

K∑
k=1

pksk. (34)

Defining s = [sc, s1, . . . , sK ]T and assuming that E[ssH ] =
I, the average transmit power constraint is written as Pc +∑K
k=1 Pk ≤ P , where Pc = ‖pc‖2 and Pk = ‖pk‖2.
At each user-k, the common stream sc is first decoded

into Ŵc by treating the interference from the private streams
as noise. Using SIC, Ŵc is re-encoded, precoded, and sub-
tracted from the received signal, such that user-k can decode
its private stream sk into Ŵp,k by treating the remaining
interference from the other private stream as noise. User-k
reconstructs the original message by extracting Ŵc,k from Ŵc,
and combining Ŵc,k with Ŵp,k into Ŵk. Assuming proper
Gaussian signaling, the rate of the common stream is given
by

Rc = min
k=1,...,K

log2

(
1 +

∣∣hHk pc

∣∣2
1 +

∑K
q=1

∣∣hHk pq
∣∣2
)
. (35)

Assuming perfect SIC, the rates of the private streams are
obtained as

Rk = log2

(
1 +

∣∣hHk pk
∣∣2

1 +
∑
q 6=k

∣∣hHk pq
∣∣2
)
. (36)

The rate of user-k is given by Rk+Rc,k where Rc,k is the rate
of the common part of the kth user’s message, i.e., Wc,k, and
satisfies

∑K
k=1Rc,k = Rc. The sum-rate is therefore simply

written as R(R)
s =

∑K
k=1(Rk + Rc,k) = Rc +

∑K
k=1Rk, and

the MMF rate is written as R(R)
mmf = mink=1,...,K Rk +Rc,k.

The above RS architecture is called 1-layer RS since it only
relies on a single common stream and a single layer of SIC
at each user as illustrated in Fig. 6.

B. Multiplexing Gains with Perfect CSIT

We here summarize the sum and MMF multiplexing gains
achieved by 1-layer RS with perfect CSIT.

Proposition 9: The sum multiplexing gain of K-user 1-layer
RS with M transmit antennas and perfect CSIT is d(R)

s =
min (M,K).

Proof: Since MU–LP is a subscheme of 1-layer RS22, it is
sufficient23 to design the private precoders using ZFBF and
allocate zero power to the common stream at high SNR. Note
that d(R)

s = d
(M)
s = d

(?)
s = min (M,K). 2

Proposition 10: The MMF multiplexing gain of the K-user
1-layer RS with M transmit antennas and perfect CSIT is

d
(R)
mmf =

{
1, M ≥ K

1
1+K−M , M < K.

(37)

The MMF multiplexing gain of 1-layer RS was derived and
proved in [56]24, under the same assumption as in Remark 4.
Readers are referred to [56] for more details of the proof of
Proposition 10.

C. Multiplexing Gains with Imperfect CSIT

Again, we use the CSIT error model introduced in Subsec-
tion IV-A. We recall the sum multiplexing gain of RS with
imperfect CSIT from [47].

Proposition 11: The sum multiplexing gain of K-user 1-
layer RS with M transmit antennas and CSIT quality 0 ≤
α ≤ 1 is d(R)

s = 1 + (min (M,K)− 1)α.

Achievability of d(R)
s in Proposition 11 is obtained by using

random precoding to design pc with power level Pc = O(P ),
transmitting min(M,K) private streams and using ZFBF to
design the precoders of those min(M,K) private streams,
each with power level Pk = O(Pα). From the SINR expres-
sions at the right-hand side of (35), it follows that the received
SINR of the common stream at each user scales as O(P 1−α),
leading to the multiplexing gain of 1 − α achieved by the
common stream sc. By performing ZFBF, the transmitter
transmits min (M,K) interference-free private streams. The
received SINR of each private stream scales as O(Pα) leading
to multiplexing gain α. Hence, we obtain the sum multiplexing
gain of 1 + (min (M,K)− 1)α.

Importantly, for the underloaded regime M ≥ K, 1-layer
RS achieves the information theoretic optimal sum multiplex-
ing gain d

(M)
s = d

(?)
s in the imperfect CSIT setting [47],

[63]. Hence, 1-layer RS attains the optimal sum multiplexing
gain for both perfect CSIT and imperfect CSIT (underloaded
regime). Actually, for M ≥ K, 1-layer RS is optimal, achiev-
ing the maximum multiplexing gain region of the underloaded

22By allocating no power to the common stream, 1-layer RS boils down to
MU-LP.

23More complicated precoders for both the common and private streams
can be used to enhance the rate performance, but the multiplexing gain will
not improve.

24The MMF multiplexing gain derived in [56] considers a more complex
scenario involving the simultaneous transmission of distinct messages to
multiple multicast groups (each message is intended for a group of users),
known as multigroup multicasting. By considering the special case where
there is a single user per group, we obtain the MMF multiplexing gain of
1-layer RS in this section.
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K-user MISO BC25 with imperfect CSIT [71], [72].
This optimality of RS (including 1-layer RS), shown

through multiplexing gain analysis, is very significant since
it implies that one cannot find any other scheme achieving a
better multiplexing gain region in the multi-antenna BC. As
a consequence of this optimality, MU–LP and multi-antenna
NOMA will always incur a multiplexing gain loss or at best
will achieve the same multiplexing gain as RS for both perfect
and imperfect CSIT.

Proposition 12: The MMF multiplexing gain of K-user 1-
layer RS with M transmit antennas and CSIT quality 0 ≤ α ≤
1 is

d
(R)
mmf =


1+(K−1)α

K , M ≥ K
1+(M−1)α

K , M < K and α ≤ 1
1+K−M

1
1+K−M , M < K and α > 1

1+K−M .

(38)

The MMF multiplexing gain of 1-layer RS with imperfect
CSIT was derived in [69] (by considering the specific case
where there is a single user per group), under the same
assumption as in Remark 4. Readers are referred to [69] for
more details of the proof of Proposition 12.

This highlights that when M < K, the CSIT quality
α can be reduced to 1

1+K−M without impacting the MMF
multiplexing gain of 1-layer RS.

Following our discussion of Proposition 11, when M ≥ K,
the respective multiplexing gains of the common and each
private streams are 1 − α and α. The MMF multiplexing
gain when M ≥ K is achieved by evenly sharing the
common stream among users and is the sum of the evenly
allocated multiplexing gain of the common stream 1−α

K and the
multiplexing gain of one private stream α, yielding 1+(K−1)α

K .
When M < K, the achievability is obtained by parti-

tioning users into two subsets K1 and K2 with set sizes of
|K1| = M and |K2| = K − M . Users in K1 are served
via the common and private streams while users in K2 are
served using the common stream only. Random precoding
and ZFBF are respectively used for the common stream and
the private streams with power allocation Pc = O(P ) and
Pk = O(P β),∀k ∈ K1. It may be readily shown that the
respective multiplexing gains of the common stream and each
private stream are given by 1−β and min{α, β}, respectively.
By further introducing a fraction z ∈ [0, 1] to specify the
fraction of the rate of the common stream allocated to the
users in the two subsets, we obtain that the respective sum
multiplexing gains of the common stream for the users in K1

and K2 are z(1−β) and (1−z)(1−β), respectively. By equally
dividing the multiplexing gain of the common stream between

25The optimality of RS is not limited to MISO BC but also extends to
MIMO BC. Indeed, a more complicated form of RS is multiplexing gain
region-optimal for the two-user MIMO BC with imperfect CSIT in the general
case of an asymmetric number of receive antennas [73], [74]. Following [73],
in the symmetric MIMO setting with M ≥ KN , the system model of RS can
be extended as in [75] to the K-user scenario using x = Pcsc+

∑K
k=1 Pksk

where sc, sk ∈ CN×1 are vectors of common streams and private streams,
respectively. Pc,Pk ∈ CM×N are the corresponding precoding matrices.
The sum multiplexing gain of RS is N(1−α)+NKα which contrasts with
that of conventional MU-MIMO/MU–LP (obtained by turning off sc) given
by NKα and that of MIMO NOMA (G = 1) given by min(M,N) [75].
Further comparisons between RS and MIMO NOMA are provided in [75].

the users in the two subsets, the multiplexing gain of each
user in K2 is dk,2 = (1−z)(1−β)

K−M , and the multiplexing gain
of each user in K1 is dk,1 = min{α, β}+ z(1−β)

M . The MMF
multiplexing gain of the users is maxz min{dk,1, dk,2}. When
β = α, the optimal rate allocation factor z? is obtained when
(1−z)(1−α)
K−M = z(1−α)

M + α. We have z? = (1−α−αK+αM)M
(1−α)K

and the optimal MMF multiplexing gain is 1+(M−1)α
K . As

z? ∈ [0, 1], we have 1 − α − αK + αM ≥ 0. Hence, when
α ≤ 1

1+K−M , d(R)
mmf = 1+(M−1)α

K . When β < α and z = 0,
the optimal power allocation β? is obtained when 1−β

K−M = β.
We have β? = 1

1+K−M and the optimal MMF multiplexing
gain is 1

1+K−M . Hence, when α > 1
1+K−M , d(R)

mmf = 1
1+K−M .

For α = 1, the results in Propositions 11 and 12 boil
down to the perfect CSIT results in Propositions 9 and 10,
respectively.

VIII. SHORTCOMINGS AND MISCONCEPTIONS OF
MULTI-ANTENNA NOMA

In this section, we first compare the multiplexing gains of
multi-antenna NOMA to those of the MU–LP and 1-layer RS
baselines. The sum and MMF multiplexing gains of multi-
antenna NOMA, MU–LP, and 1-layer RS for both perfect
and imperfect CSIT are summarized in Table II. The objective
of this section is to identify under which conditions NOMA
provides performance gains/losses over the two baselines. We
then use these comparisons to reveal several misconceptions
and shortcomings of multi-antenna NOMA.

A. NOMA vs. Baseline I (MU–LP)

We show in the following corollaries that MISO NOMA
can achieve a performance gain over MU–LP but it may also
incur a performance loss, depending on the values of M , K,
G, and α.

The performance (expressed in terms of multiplexing gain)
gain/loss of multi-antenna NOMA vs. MU–LP is obtained by
comparing Propositions 3 and 7 (for sum multiplexing gain),
and Propositions 4 and 8 (for MMF multiplexing gain), and is
summarized in Corollaries 1, and 2 (G = 1), and 3 (G > 1),
respectively. For the MMF multiplexing gain with imperfect
CSIT, we consider G = 1 and G > 1 in two different
corollaries.

Corollary 1: The sum multiplexing gain comparison be-
tween MISO NOMA and MU–LP is summarized in (39).
MISO NOMA never achieves a sum multiplexing gain higher
than MU–LP.

Corollary 1 shows that MISO NOMA can achieve a lower
or the same sum multiplexing gain compared to MU–LP, but
cannot outperform MU–LP.

If α = 1 (perfect CSIT), Corollary 1 boils down to
d
(N)
s < d

(M)
s whenever M > G, and d

(N)
s = d

(M)
s whenever

M ≤ G. This is instrumental as it says that the slope of the
sum-rate of MISO NOMA at high SNR will be strictly lower
than that of MU–LP (i.e., the sum-rate of MISO NOMA will
grow more slowly than that of MU–LP) whenever the number
of transmit antennas is larger than the number of groups, and
hence in this case, MU–LP is guaranteed to outperform MISO
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TABLE II: Comparison of sum and MMF multiplexing gains of different strategies with perfect and imperfect CSIT

Strategy Sum/MMF
Multiplexing Gain Perfect CSIT Imperfect CSIT

MISO NOMA
d
(N)
s min (M,G) max (1,min (M,G)α)

d
(N)
mmf


1
g
, M ≥ K − g + 1

0, M < K − g + 1


α
g
, G > 1 andM ≥ K − g + 1

0, G > 1 andM < K − g + 1
1
K
, G = 1

MU–LP
d
(M)
s min (M,K) max (1,min (M,K)α)

d
(M)
mmf


1, M ≥ K

0, M < K


α, M ≥ K

0, M < K

1-layer RS
d
(R)
s min (M,K) 1 + (min (M,K)− 1)α

d
(R)
mmf


1, M ≥ K

1
1+K−M , M < K


1+(K−1)α

K
, M ≥ K

1+(M−1)α
K

, M < K and α ≤ 1
1+K−M

1
1+K−M , M < K and α > 1

1+K−M

d
(N)
s − d(M)

s

{
< 0, if ([min (M,G)α < 1] ∩ [min (M,K)α > 1]) ∪ ([M > G] ∩ [min (M,G)α ≥ 1])

= 0, if (min (M,K)α ≤ 1) ∪ ([min (M,G)α ≥ 1] ∩ [M ≤ G]).
(39)

NOMA at high SNR. Consequently, in the massive MIMO
regime where M grows large, MISO NOMA would achieve
a sum multiplexing gain strictly lower than MU–LP (and the
role of NOMA in massive MIMO is therefore questionable as
highlighted in [76]). If G = 1 as in, e.g., [20]–[23], MISO
NOMA always incurs a sum multiplexing gain loss compared
to MU–LP irrespective of M (except in single-antenna systems
when M = 1). In other words, from a sum multiplexing gain
perspective, one cannot find any multi-antenna configuration
at the transmitter, i.e., any value of M , that would motivate
the use MISO NOMA with G = 1 compared to MU–
LP. If G = K/2 as in [26]–[30], MISO NOMA incurs a
sum multiplexing gain loss compared to MU–LP whenever
M > K/2. In other words, from a sum multiplexing gain
perspective, the only multi-antenna deployments for which
MISO NOMA with G = K/2 would not incur a multiplexing
gain loss (but no improvement either) over MU–LP is when
M ≤ K/2. Note that these conclusions are not limited to
MISO NOMA. From Section V, we note that two-user MIMO
NOMA incurs a sum multiplexing gain loss compared to two-
user MU–LP whenever M > N . If M ≤ N , MIMO NOMA
and MU–LP achieve the same sum multiplexing gain.

If α < 1 (imperfect CSIT), a sum multiplexing gain loss of
MISO NOMA over MU–LP occurs in two different scenarios:
1) medium CSIT quality setting with 1

min(M,K) < α <
1

min(M,G) or 2) sufficiently large number of antennas and high
CSIT quality with M > G and α ≥ 1

min(M,G) . In other
scenarios where the CSIT quality is poor α ≤ 1

min(M,K) or
the CSIT quality is good α ≥ 1

min(M,G) but the number of
transmit antennas is low M ≤ G, MISO NOMA and MU–LP
achieve the same sum multiplexing gains.

Corollary 2: The MMF multiplexing gain comparison be-
tween MISO NOMA with G = 1 and MU–LP is summarized

as follows

d
(N)
mmf − d

(M)
mmf


< 0, if (M ≥ K) ∩ (α > 1

K )

= 0, if (M ≥ K) ∩ (α = 1
K )

> 0, if (M < K) ∪ ((M ≥ K) ∩ (α < 1
K )).
(40)

Corollary 3: The MMF multiplexing gain comparison be-
tween MISO NOMA with G > 1 and MU–LP is summarized
as follows

d
(N)
mmf − d

(M)
mmf


< 0, if M ≥ K
= 0, if M < K − g + 1

> 0, if K > M ≥ K − g + 1.

(41)

Corollaries 2 and 3 show that MISO NOMA can achieve
either a higher or a lower MMF multiplexing gain compared
to MU–LP, depending on the values of M , G, K, and α.

If α = 1 (perfect CSIT), with G = 1 as in, e.g., [20]–
[23], d(N)

mmf > d
(M)
mmf whenever M < K, and incurs an MMF

multiplexing loss otherwise (M ≥ K). With G = K/2 as in
[26]–[30], d(N)

mmf < d
(M)
mmf whenever M ≥ K, and d(N)

mmf > d
(M)
mmf

whenever K > M ≥ K − 1, and d
(N)
mmf = d

(M)
mmf whenever

M < K−1. In other words, from an MMF multiplexing gain
perspective, the multi-antenna deployments for which MISO
NOMA with G = 1 and G = K/2 can outperform or achieve
the same performance as MU–LP when M < K.

If α < 1 (imperfect CSIT), we note from Corollary 3, that
for G > 1, CSIT quality α does not affect the operational
regimes where MISO NOMA outperforms/incurs a loss com-
pared to MU–LP. This is different from G = 1 where the
condition for d(N)

mmf < d
(M)
mmf is a function of α in Corollary 2.

MISO NOMA incurs an MMF multiplexing loss whenever the
number of antenna and the CSIT quality are sufficiently large,
i.e., M ≥ K and α > 1

K .
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B. NOMA vs. Baseline II (RS)

We show in the following corollaries that, for all M , K, α,
1-layer RS (that relies on a single SIC at each user) achieves
the same or higher (sum and MMF) multiplexing gains than
the best of the MISO NOMA schemes (i.e., whatever G and
the number of SICs). In other words, 1-layer RS outperforms
(multiplexing gain-wise) MISO NOMA and simultaneously
requires fewer SICs (only one) than MISO NOMA. Hence,
employing MISO NOMA over 1-layer RS can only cause
a multiplexing gain loss and/or a complexity increase at the
receiver.

The performance loss of MISO NOMA vs. RS is obtained
by comparing Propositions 3 and 11 (for the sum multiplexing
gain), and Propositions 4 and 12 (for the MMF multiplexing
gain), and is summarized in Corollaries 4, and 5 (G = 1), and
6 (G > 1), respectively.

Corollary 4: The sum multiplexing gain comparison be-
tween MISO NOMA and 1-layer RS is summarized as follows

d(N)
s − d(R)

s

{
< 0, if (0 < α < 1) ∪ ([α > 0] ∩ [M > G])

= 0, if (α = 0) ∪ ([α = 1] ∩ [M ≤ G]).
(42)

MISO NOMA never achieves a sum multiplexing gain higher
than 1-layer RS.

If α = 1 (perfect CSIT), Corollary 4 boils down to d(N)
s <

d
(R)
s , whenever M > G, and d(N)

s = d
(R)
s whenever M ≤ G.

Corollary 5: The MMF multiplexing gain comparison be-
tween MISO NOMA with G = 1 and 1-layer RS is summa-
rized as follows

d
(N)
mmf − d

(R)
mmf

{
< 0, if (α > 0) ∩ (M > 1)

= 0, if (α = 0) ∪ (M = 1).
(43)

MISO NOMA with G = 1 never achieves an MMF multiplex-
ing gain higher than 1-layer RS.

Corollary 6: The MMF multiplexing gain comparison be-
tween MISO NOMA with G > 1 and 1-layer RS is summa-
rized in (44). MISO NOMA with G > 1 never achieves an
MMF multiplexing gain larger than 1-layer RS.

If α = 1 (perfect CSIT), Corollaries 5 and 6 simply boil
down to d(N)

mmf < d
(R)
mmf, whenever M 6= K− g+ 1, and d(N)

mmf =

d
(R)
mmf, whenever M = K − g + 1.
We recall again from [71]–[74] that RS achieves the op-

timal multiplexing gain region in the multi-antenna BC with
imperfect CSIT and multi-antenna NOMA (and MU–LP/MU-
MIMO) will therefore always incur a multiplexing gain loss
compared to RS.

C. Misconceptions of Multi-Antenna NOMA

The comparisons with the MU–LP and 1-layer RS baselines
reveal that depending on the particular setting NOMA may
incur a multiplexing gain loss at the additional expense of an
increased receiver complexity, as detailed in the following.

First, NOMA is an inefficient strategy to exploit the spatial
dimensions. This issue could already be observed from the
two-user MISO case with perfect CSIT, where NOMA limits
the sum multiplexing gain to one, same as OMA, which is

only half of the sum multiplexing gain obtained with MU–
LP. Moreover, even when considering a fair metric such as
MMF, NOMA limits the MMF multiplexing gain to 1

2 , which
is again only half of the MMF multiplexing gain obtained by
MU–LP. Similarly, in the two-user MIMO case, NOMA limits
the sum multiplexing gain to min(M,N), again the same as
OMA, and the MMF multiplexing gain to min(M,N)

2 , which
are lower than what is achievable with MU–LP.

In the general K-user case, it is clear from Corollaries 1
and 4 that NOMA incurs a loss in sum multiplexing gain
in most scenarios, and the best NOMA can achieve is the
same sum multiplexing gain as the baselines in some specific
configurations. NOMA with G = 1 achieves d

(N)
s = 1

irrespectively of the number of transmit antennas M , i.e.,
it achieves the same sum multiplexing gain as OMA and
the same as a single-antenna transmitter (hence, wasting the
transmit antenna array). NOMA with G = K/2 achieves
d
(N)
s = min (M,K/2) with α = 1. On the other hand, MU–

LP and 1-layer RS achieve the full sum multiplexing gain
d
(M)
s = min (M,K) with α = 1.

Considering the MMF multiplexing gain of the general
K-user case, the situation appears to be better for NOMA.
Assuming α = 1, from Corollaries 2 and 3, we observe that
NOMA incurs a loss compared to MU–LP in the underloaded
regime M ≥ K but outperforms MU–LP in the overloaded
regime. In particular, NOMA with G = 1 achieves a higher
MMF multiplexing gain than NOMA with G = K/2 and
MU–LP whenever M < K − 1. Hence, though the receiver
complexity increase of NOMA does not pay off in the un-
derloaded regime, it appears to pay off in the overloaded
regime (since G = 1 with more SICs outperforms G = K/2
with fewer SICs). Nevertheless, the MMF multiplexing gain
of NOMA with G = 1 is independent of M , suggesting
again that the spatial dimensions are not properly exploited.
This can indeed be seen from Corollary 5 where NOMA is
consistently outperformed by 1-layer RS, i.e., the increase
in MMF multiplexing gain attained by NOMA (G = 1)
over MU–LP is actually marginal in light of the complexity
increase, and is much lower than what can be achieved by
1-layer RS with just a single SIC operation. In other words,
while NOMA has some merits over MU–LP in the overloaded
regime, NOMA makes inefficient use of the multiple antennas,
and fails to boost the MMF multiplexing gain compared to the
1-layer RS baseline.

We note that the above observations hold for both the perfect
and imperfect CSIT settings. Nevertheless, it is interesting to
stress that the sensitivity to the CSIT quality α differs largely
between MU–LP, NOMA with G > 1, NOMA with G = 1,
and 1-layer RS. Indeed the sum and MMF multiplexing gains
of MU–LP, NOMA with G > 1, and 1-layer RS decay as
α decreases, while the multiplexing gains of NOMA with
G = 1 are not affected by α. This can be interpreted in two
different ways. On the one hand, this implies that NOMA
with G = 1 is inherently robust to CSIT imperfections since
the multiplexing gains are unchanged. On the other hand,
this means that NOMA with G = 1 is unable to exploit the
available CSIT since the resulting multiplexing gain is the
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d
(N)
mmf − d

(R)
mmf

{
< 0, if (M 6= K − g + 1) ∪ ([M = K − g + 1] ∩ [α < 1])

= 0, if (M = K − g + 1) ∩ (α = 1).
(44)

same as in the absence of CSIT (α = 0). One can indeed see
from the above Propositions and Corollaries that the sum and
MMF multiplexing gains for 1-layer RS with imperfect CSIT
are clearly larger than those of MU–LP and NOMA. In other
words, NOMA and MU–LP are inefficient in fully exploiting
the available CSIT in multi-antenna settings.

We conclude from the theoretical results and above discus-
sions that NOMA fails to efficiently exploit the multiplexing
gain of the multi-antenna BC and is an inefficient strategy
to exploit the spatial dimensions and the available CSIT,
especially compared to the 1-layer RS baseline. The first
misconception behind NOMA is to believe that because NOMA
is capacity achieving in the single-antenna BC, NOMA is an
efficient strategy for multi-antenna settings. As a consequence,
the single-antenna NOMA principle has been applied to multi-
antenna settings without recognizing that such a strategy
would waste the primary benefit of using multiple antennas,
namely the capability of transmitting multiple interference-
free streams. In contrast to NOMA, other non-orthogonal
transmission strategies such as 1-layer RS do not lead to
any sum multiplexing gain loss. On the contrary, 1-layer RS
achieves the information theoretic optimal sum multiplexing
gain in both perfect and imperfect CSIT scenarios (and there-
fore has the capability of transmitting the optimal number
of interference-free streams). 1-layer RS also achieves higher
MMF multiplexing gains than NOMA and MU–LP.

Second, the multiplexing gain loss of NOMA is encountered
despite the increased receiver complexity26. In the two-user
MISO BC with perfect CSIT, MU–LP does not require any
SIC receiver to achieve the optimal sum multiplexing gain of
two (assuming M > 1) and an MMF multiplexing gain of
one, while NOMA requires one SIC and only provides half
the (sum and MMF) multiplexing gains of MU–LP. This is
surprising since one would expect a performance gain from
an increased architecture complexity. Here instead, NOMA
causes a complexity increase at the receivers and a (sum and
MMF) multiplexing gain loss compared to MU–LP, therefore
highlighting that the SIC receiver is inefficiently exploited.

This inefficient use of SIC in NOMA also persists in the
general K-user scenario. Recall that NOMA with G groups
requires g − 1 layers of SIC at the receivers. Among the two
popular NOMA architectures G = 1 and G = K/2, the former
requires an even higher number of SIC layers than the latter
(namely K − 1 for G = 1 and 1 for G = K/2) and has an
even lower sum multiplexing gain (d(N)

s = 1 for G = 1 and
d
(N)
s = min (M,K/2) for G = K/2 with α = 1). On the

other hand, MU–LP achieves the full sum multiplexing gain
d
(M)
s = min (M,K) with α = 1 without any need for SIC.

This highlights the inefficient (and detrimental) use of SIC

26Note that the hardware cost is the same for all schemes since we assume
conventional digital processing with M antennas and M RF chains. The
computational cost (digital processing) on the other hand is primarily related
to the receiver complexity and is measured by the number of SIC layers.

receivers in NOMA: the higher the number of SICs, the lower
the sum multiplexing gain!

Comparing to the 1-layer RS baseline further highlights
the inefficient use of SIC in NOMA. We note that 1-layer
RS causes a complexity increase at the receivers (due to the
one SIC needed) but also an increase in the (sum and MMF)
multiplexing gains compared to MU–LP (i.e., it is easy to
see from Propositions 7, 8, 11, and 12 that the sum and
MMF multiplexing gains with RS are always either identical
to or higher than those with MU–LP). Hence, in contrast to
NOMA, the SIC in 1-layer RS is beneficial since it boosts the
(sum and MMF) multiplexing gains and therefore introduces
a performance gain compared to (or at least maintains the
same performance as) MU–LP. Actually, 1-layer RS achieves
the information theoretic optimal sum multiplexing gain for
imperfect CSIT, and does so with a single SIC per user. This
shows that to achieve the information theoretic optimality, it is
sufficient to use a single SIC per user27. This is in contrast to
NOMA whose sum multiplexing gain is far from optimal and
for which the sum multiplexing gain decreases as the number
of SICs increases. The inefficient use of SIC in NOMA is
also obvious from the MMF multiplexing gain. Indeed, from
Propositions 2 and 10 and Corollary 5, the single SIC in 1-
layer RS achieves a much larger MMF multiplexing gain than
the K − 1 layers of SIC needed for NOMA with G = 1.
This again illustrates how inefficient the use of SIC in NOMA
often is. It also shows that there exists a non-orthogonal
transmission strategy based on RS with better performance
and lower receiver complexity requiring just a single SIC per
user.

We conclude from the theoretical analysis and above discus-
sion that NOMA often does not make efficient use of the SIC
receivers compared to the considered baselines. The second
misconception regarding multi-antenna NOMA is to believe
that adopting SIC receivers always boosts the rate since the
interference is fully cancelled at the receiver. Considering
the two-user toy example, and comparing (2) and (14), the
interference power term

∣∣hH1 p2

∣∣2 appearing in the SINR of
user-1 in the MU–LP rate has indeed disappeared in NOMA
thanks to the SIC receiver, such that RM,1 ≤ RN,1. However,
this comes at the cost of a reduced rate for user-2 since
RN,2 = min (log2 (1 +A) , RM,2) ≤ RM,2. In other words,
for a given pair of precoders p1 and p2, NOMA increases
the rate (or maintains the same rate) of user-1 but decreases
the rate (or maintains the same rate) of user-2 compared to
MU–LP.

Third, reflecting on the above two misconceptions, the
NOMA design philosophy does not leverage the extensive
research in multi-user MIMO, which has been fundamental

27Actually, though the analysis here is limited to 1-layer RS, all RS
schemes (from 1-layer to generalized RS) in [51] guarantee the optimal sum
multiplexing gain and a higher MMF multiplexing gain than MU–LP and
NOMA, and provide an improved rate performance as the number of SIC
increases [50], [51], [78].
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to 4G and 5G in achieving the optimal sum multiplexing
gain of the multi-antenna BC with perfect CSIT and low-
complexity transmitter and receiver architectures. The third
misconception behind multi-antenna NOMA is to believe that,
since NOMA is routinely compared to OMA in SISO BC, it
is also sufficient to compare NOMA to OMA in multi-antenna
settings to demonstrate its merits. In fact, the Corollaries in
Sections VIII-A and VIII-B show that NOMA is far from
being an efficient strategy if NOMA is compared to alternative
baselines. Unfortunately, simply comparing with OMA has led
the NOMA literature to the misleading conclusion that multi-
antenna NOMA is an efficient strategy. It should therefore be
stressed that comparing NOMA to OMA does not demonstrate
the merits of NOMA in multi-antenna settings and most
importantly, the baseline for any multi-antenna NOMA design,
optimization, and evaluation should be MU–LP and RS, not
simply OMA28! In contrast to MISO NOMA, the gain of 1-
layer RS over MU–LP is guaranteed, i.e., the rate of 1-layer
RS is equal to or higher than that of MU–LP, since MU–LP
is a particular instance of RS when no power is allocated to
the common stream.

Fourth, the SISO BC is naturally overloaded (more users
than the number of transmit antennas, namely one), and
NOMA was therefore concluded to be suitable for overloaded
scenarios. The fourth misconception behind multi-antenna
NOMA is to believe that MISO NOMA is an efficient strategy
for overloaded regimes, namely whenever K > M . The
Corollaries in Subsections VIII-A and VIII-B nevertheless
expose that this is incorrect. It is clear that NOMA incurs
a sum multiplexing gain erosion compared to MU–LP and 1-
layer RS whenever M > G. Such a loss can occur also in the
overloaded regime, namely whenever we have K > M > G.
Moreover, NOMA incurs an MMF multiplexing gain loss
compared to 1-layer RS whenever M 6= K−g+1. Here again,
such a loss occurs also in the overloaded regime. In contrast to
NOMA (and MU–LP), 1-layer RS is an efficient strategy for
both the underloaded and overloaded regimes. Though NOMA
with G = 1 was shown in Proposition 2 to achieve a non-
vanishing MMF multiplexing gain of 1/K in the overloaded
regime, this MMF multiplexing gain is considerably smaller
than that of 1-layer RS, therefore highlighting the inefficiency
of NOMA in the overloaded regime. In particular, we note that
the MMF multiplexing gain of 1-layer RS increases with M
in contrast to that of NOMA with G = 1 which is constant
regardless of M .

D. Illustration of the Misconceptions with an Example

To illustrate the above discussion and make the statements
more explicit based on numbers, we consider a MISO BC
with K = 6, and compare in Table III the sum multiplexing
gains d(N)

s of NOMA with G = 1 and G = 3 and the sum
multiplexing gain of MU–LP d(M)

s and 1-layer RS d(R)
s (recall

that d(M)
s = d

(R)
s = d

(?)
s ) as a function of M for perfect

CSIT. We observe that NOMA incurs a sum multiplexing gain
reduction (highlighted in red in Table III) in the underloaded

28Recall also 4G and 5G are both based on MU–LP, and not simply on
OMA.

TABLE III: Sum multiplexing gain with K = 6 - perfect CSIT.

M regime d
(N)
s (G=1) d

(N)
s (G=3) d

(M)
s , d

(?)
s , d

(R)
s

1 O 1 1 1

2 O 1 2 2

3 O 1 3 3

4 O 1 3 4

5 O 1 3 5

≥ 6 U 1 3 6
O: Overloaded (K > M ), U: Underloaded (K ≤M )

TABLE IV: MMF multiplexing gain with K=6-perfect CSIT.

M regime d
(N)
mmf (G=1) d

(N)
mmf (G=3) d

(M)
mmf d

(R)
mmf

1 O 1⁄6 0 0 1⁄6

2 O 1⁄6 0 0 1⁄5

3 O 1⁄6 0 0 1⁄4

4 O 1⁄6 0 0 1⁄3

5 O 1⁄6 1⁄2 0 1⁄2

≥ 6 U 1⁄6 1⁄2 1 1
O: Overloaded (K > M ), U: Underloaded (K ≤M )

regime but also in the overloaded regime depending on the
values of M and G. Specifically, in this example with K = 6,
G = 1 incurs a sum multiplexing erosion compared to MU–
LP and 1-layer RS whenever M ≥ 2 and G = 3 whenever
M ≥ 4. This shows that in an overloaded regime associated
with M < K, although M is the limiting factor of the sum
multiplexing gain in MU–LP and 1-layer RS, min (M,G)
is the limiting factor in NOMA. Morever, Table III clearly
illustrates that the higher the number of SICs in NOMA, the
lower the sum multiplexing gain. NOMA with G = 1 requires
5 layers of SIC to achieve a multiplexing gain d

(N)
s = 1,

NOMA with G = 3 requires 1 layer of SIC and achieves at
most d(N)

s = 3. On the other hand, MU–LP does not require
any SIC and achieves the optimal sum multiplexing gain d(?)s

(that can be as high as 6). 1-layer RS achieves the same (and
optimal) sum multiplexing gain as MU–LP.

Table IV highlights the MMF multiplexing gains of NOMA,
MU–LP, and 1-layer RS for K = 6 with perfect CSIT and
stresses the significant benefit of 1-layer RS over NOMA and
MU–LP. The entries highlighted in red relate to configurations
for which 1-layer RS provides a multiplexing gain strictly
higher than that of NOMA and MU–LP. Recall that 1-layer
RS provides these multiplexing gains with a single SIC per
user!

In Fig. 7, we further illustrate the tradeoff between the
multiplexing gains and the number of SIC layers for M = 4,
K = 6 and perfect CSIT. We observe that 1-layer RS enables
higher performance and lower receiver complexity compared
to NOMA, stressing that the non-orthogonal transmission
enabled by RS is much more efficient than NOMA. We see that
NOMA with different G is suited for very different settings in
this M = 4, K = 6 configuration, namely NOMA with G = 3
performs better in terms of sum multiplexing gain, whereas
NOMA with G = 1 achieves a higher MMF multiplexing
gain. The baseline 1-layer RS achieves a higher performance
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Fig. 7: Multiplexing gains with single-antenna receivers and
perfect CSIT vs. number of SIC layers for M = 4, K = 6.
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Fig. 8: Multiplexing gains with single-antenna receivers and
imperfect CSIT vs. number of SIC layers for M = 4, K = 6,
α = 0.5.

for both metrics and entails a lower receiver complexity29.
Though the above example was provided for perfect CSIT

(α = 1), it is easy to calculate from the above propositions the
multiplexing gains for the imperfect CSIT setting for a given
CSIT quality α. For imperfect CSIT, the strict superiority of
1-layer RS over MU–LP and NOMA will become much more
apparent, as illustrated in Fig. 8 for α = 0.5.

In Figs. 9 and 10, the sum and MMF multiplexing gains
are illustrated for M = 6 when we vary the number of
users K under the assumption of perfect and imperfect CSIT.
Results here again confirm that NOMA achieves a lower sum
multiplexing gain than MU-LP and 1-layer RS and a lower
MMF multiplexing gain than 1-layer RS.

Recall that the MMF multiplexing gain reflects how fast the
minimum rate among all K users increases with SNR. A zero
MMF multiplexing gain means that the rate of the worst user
does not scale with the SNR, which is something to avoid if
one wants to simultaneously serve many users and maintain
fairness and QoS among users. Hence, we can also interpret
the results in Fig. 10 differently in terms of the number of users
that a given strategy can serve while maintaining a target MMF
multiplexing gain (and hence a certain QoS). We note from

29The reader is also invited to consult [51] for some more discussions on
the complexity of RSMA, NOMA, and MU-LP.
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Fig. 9: Sum multiplexing gain vs. number of users K for M =
6.

Fig. 10 that NOMA (G = 1) with its K−1 SIC layers is more
suitable than NOMA (G = K/2) and MU-LP to serve a large
number of users when K > M . Indeed for K ≥ 8, the MMF
multiplexing gains of NOMA (G = K/2) and MU-LP collapse
(are equal to 0), while that of NOMA (G = 1) is strictly
positive. However, it is still outperformed by 1-layer RS which
can support a larger number of users than any other strategy
(and any combination thereof) despite using one single SIC
layer. Indeed, assuming perfect CSIT and taking for instance
a target MMF multiplexing gain of 0.1, NOMA (G = 1) can
serve at most 10 users by using 9 SIC layers while 1-layer RS
can serve 15 users with just 1 SIC layer. This can be indeed
inferred from Table II. Indeed, considering perfect CSIT and
a target MMF multiplexing gain dmmf, NOMA (G = 1) can
serve K = 1/dmmf users while 1-layer RS can serve K = M−
1+1/dmmf users (assuming M < K). Hence, 1-layer RS with
one SIC layer can serve M−1 extra users compared to NOMA
(G = 1) with K − 1 SIC layers while guaranteeing the same
MMF multiplexing gain. As the target dmmf decreases and both
strategies can accommodate more users, NOMA requires an
increasing number of SIC layers while 1-layer RS can still
operate with a single SIC layer. In conclusion, 1-layer RS is
significantly more efficient than NOMA since RS with only one
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Fig. 10: MMF multiplexing gain vs. number of users K for
M = 6.

SIC layer can support a larger number of users than NOMA
with many SIC layers. This demonstrates the inefficiency of
NOMA to support a large number of users.

E. Shortcomings of Multi-Antenna NOMA

The previous subsections have highlighted that comparing
multi-antenna NOMA to MU–LP and 1-layer RS, instead of
OMA, provides a completely different picture of the actual
merits of multi-antenna NOMA. In view of the previous results
highlighting the waste of multiplexing gain and the inefficient
use of the SIC receivers by multi-antenna NOMA, we can
ask ourselves multiple questions, which help to pinpoint the
shortcomings and limitations of the multi-antenna NOMA
design philosophy.

The first question is “What prevents multi-antenna NOMA
from reaping the multiplexing gain of the system?” The answer
lies in (5), and similarly in (20), (21), and (22). Equation (5)
can be interpreted as the sum-rate of a two-user MAC with
a single antenna receiver. Indeed, in (5), user-1 acts as the
receiver of a two-user MAC whose effective SISO channels
of both links are given by hH1 p2 and hH1 p1. Similarly, in
(20), user-1 acts as the receiver of a g-user MAC whose
effective SISO channels of the g links are given by hH1 pk for

k = 1, . . . , g. Such a MAC is well known to have a sum mul-
tiplexing gain of one [8], [17]. The multiplexing gain losses
compared to the MU–LP and 1-layer RS baselines therefore
come from forcing one user to fully decode all streams in a
group, i.e., its intended stream and the co-scheduled streams
in the group. This is radically different from MU–LP where
streams are encoded independently and each receiver decodes
its intended stream treating any residual interference as noise.
By contrast, in 1-layer RS, no user is forced to fully decode
the co-scheduled streams since all private streams are encoded
independently and each receiver decodes its intended private
stream treating any residual interference from the other private
streams as noise.

The second question is “Does an increase in the number of
SICs always come with a reduction in the sum multiplexing
gain?” The answer is clearly no. This anomaly is deeply rooted
in the way MISO NOMA was developed by applying the
single-antenna NOMA principle to multi-antenna settings. The
proof of Proposition 1 indeed tells us that the fundamental
principle of NOMA consisting in forcing one user in each
group to fully decode the messages of g−1 co-scheduled users
is an inefficient design in multi-antenna settings that leads to
a sum multiplexing gain reduction in each group.

The third question is “Are non-orthogonal transmission
strategies inefficient for multi-antenna settings?” The answer
is no. As we have seen, there exist frameworks of non-
orthogonal transmission strategies also relying on SIC, such
as RS, that do not incur the limitations of multi-antenna
NOMA and make efficient use of the non-orthogonality and
SIC receivers in multi-antenna settings. The key for the design
of such non-orthogonal strategies is not to fall into the trap of
blindly applying the SISO NOMA principle to multi-antenna
settings, and therefore constraining the strategy to always fully
decode the message of other users. Non-orthogonal transmis-
sion strategies and multiple access need to be re-thought for
multi-antenna settings and one such strategy is based on the
multi-antenna Rate-Splitting (RS) and Rate-Splitting Multiple
Access (RSMA) literature for the multi-antenna BC .

The fourth question is “Since NOMA and RS both rely on
SIC, is there any relationship between NOMA and RS?” The
answer is yes in a two-user setting, but not necessarily in the
general K-user case as it would depend on the specifc RS
scheme used. In the two-user case, 1-layer RS is a superset
of MU–LP, NOMA, and multicasting, i.e., MU–LP, NOMA,
and multicasting are particular instances of 1-layer RS, as
shown in [77] and in Table V and Fig. 11. Indeed, MU–LP
is obtained as a special case from 1-layer RS by allocating
no power to the common stream (Pc = 0) such that Wk

is encoded directly into sk. No interference is decoded at
the receiver using the common message, and the interference
between s1 and s2 is fully treated as noise. NOMA is obtained
by encoding W2 entirely into sc (i.e., Wc = W2) and W1
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TABLE V: Messages-to-streamsmappingintwo-userMISOBC.

s1 s2 sc

MU–LP W1 W2 –

NOMA W1 – W2

OMA W1 – –

Multicasting – – W1,W2

RS Wp,1 Wp,2 Wc,1,Wc,2

decoded by its intended user and decoded by
treated as noise by the other user both users

into s1, and turning off s2 (P2 = 0)30. In this way, user-
1 fully decodes the interference created by the message of
user-2. OMA is a sub-strategy of MU–LP and NOMA, which
is encountered when only user-1 (with the stronger channel
gain) is scheduled (Pc = 0, P2 = 0). Multicasting is obtained
when both W1 and W2 are entirely encoded into sc. In the
K-user case, 1-layer RS is a superset of MU–LP since by
turning off (i.e., allocating no power to) the common stream,
1-layer RS boils down to MU–LP. On the other hand, 1-layer
RS is not a superset of NOMA. 1-layer RS and NOMA are
particular instances/schemes of the RSMA framework based
on the generalized RS relying on multiple layers of SIC at
each receiver [50], [51], [78], [89]31, as illustrated in Fig. 12.
As stated in the introduction, NOMA refers to communication
schemes where at least one user is forced to fully decode the
message(s) of other co-scheduled user(s). MU-LP and RSMA
do not do that since they both do not force users to fully decode
the messages of other co-scheduled users. MU-LP actually
treats any residual interference as noise, and RSMA is built
upon the principle of splitting the messages so as to partially
treat interference as noise and partially decode the remaining
interference. Consequently, RSMA is a superset of MU-LP
and NOMA as per Fig. 12.

The fifth question is “How does 1-layer RS achieve si-
multaneously higher multiplexing gains and a lower receiver
complexity than NOMA?” In view of the previous sections, the
key is to build non-orthogonal transmission strategies upon
MU–LP (and therefore SDMA/multi-user MIMO) such that
the performance benefits (including sum multiplexing gain) of
MU–LP are guaranteed but extra performance (e.g., in MMF
multiplexing gain) is observed by the use of SIC receivers.
Indeed, a performance gain over MU–LP should be expected
from a more complex receiver architecture in the multi-antenna
BC. To achieve this, one should enable the flexibility at
the transmitter to encode messages such that parts of them

30To better relate to the system model in Section II, note that NOMA also
has a common message/stream, though commonly not denoted using such
terminology. Indeed, the stream of the weakest user, namely s2 in Section II,
is a common stream since it is decoded by both users. s2 in Section II carries
information, namely W2, intended for user-2 but is decoded by both user-1
and user-2. Hence, the common message is not a message that is originally
intended for all users. It is required to be decoded by all users but is not
necessarily intended for all users.

312-layer hierarchical RS (HRS) in Fig. 12 is proposed in [50] for massive
MIMO. Besides one common message decoded by all users as in 1-layer
RS, 2-layer HRS relies on multiple group-specific common messages being
decoded by different groups of users to further manage inter-user interference.
RSMA is a generalized framework that subsumes both 1-layer RS and 2-layer
HRS as subschemes [51].

Fig. 11: The relationship between existing strategies and 1-
layer RS in two-user case. Each set illustrates the optimiza-
tion space of the corresponding communication strategy. The
optimization space of 1-layer RS is larger such that MU–LP,
NOMA, and multicasting are just subsets.

Fig. 12: The relationship between existing strategies and the
K-user RSMA framework.

can be decoded by all users using SIC while the remaining
parts are decoded by their intended receivers and treated
as noise by non-intended receivers. Hence, we provide the
flexibility to partially decode interference and partially treat
the remaining interference as noise. This contrasts with MU–
LP where interference is always treated as noise, and with
NOMA where interference is fully decoded. This flexibility is
achieved by extending the concept of RS, originally developed
in [70] for the two-user single-antenna interference channel, to
the multi-antenna BC. To manage multi-user interference by
partially decoding the interference and treating the remaining
interference as noise, RS facilitates a complete message-to-
streams mapping flexibility for each user to have part of its
message transmitted in the common stream and the remaining
part in one of the K private streams. By adjusting the power
levels of the common and private streams, one can adjust the
amount of interference caused to the private streams such
that its level is weak enough to be treated as noise. This
contrasts with MU–LP where the communication strategy is
fundamentally constrained such that the messages are mapped
to private streams only (i.e., there is no common stream, and
multi-user interference between private streams is treated as
noise even when its level is not weak enough to be treated as
noise), and with NOMA where the constraint is that the entire
message of one of the users is mapped onto a common stream
(e.g., W2 mapped to s2 decoded by both user-1 and user-2 in
Section II). These constraints imposed by MU–LP and NOMA
are well illustrated by the message-to-stream mapping in Table
V [77] and by the following example.

Example 1: To further illustrate the split of the messages and
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the flexibility of RS, let us consider a two-user scenario. Let
us imagine that the message of user-1 W1 = (a1 a2 a3 a4) ∈
W1 = {0000, 0001, 0010, . . . , 1111}, where |W1| = 16.
Similarly, the message of user-2 is W2 = (b1 b2 b3) ∈ W2 =
{000, 001, 010, . . . , 111}, where |W2| = 8. In SDMA/MU–
LP, W1 would be encoded into s1 and W2 into s2. In
NOMA, W1 would be encoded into s1 and W2 into sc.
In RS, we split user-1’s message in, e.g., Wc,1 = (a1 a2),
Wp,1 = (a3 a4), and user-2’s message in, e.g., Wc,2 = (b1),
Wp,2 = (b2 b3). The common message is then constructed as
Wc = (Wc,1 Wc,2) = (a1 a2 b1), which is then encoded into
sc. Wp,1 and Wp,2 are encoded into s1 and s2, respectively.

A consequence of the above flexibility is that by decreasing
the amount of power allocated to the common stream, K-
user 1-layer RS progressively converges to K-user MU–LP
and in the limit where no power is allocated to the common
stream, K-user 1-layer RS swiftly boils down to K-user MU–
LP. Hence, 1-layer RS really builds upon MU–LP and MU–
LP is a subscheme of 1-layer RS, which provides a guarantee
to 1-layer RS that its rate and multiplexing gains are always
the same or better than those of MU–LP. This is completely
different from MISO NOMA. MISO NOMA does not build
upon MU–LP. With G groups, K-user MISO NOMA can
boil down to G-user MU–LP by turning off the power to the
weaker users in each group, but K-user MISO NOMA can
mathematically never boil down to K-user MU–LP (recall
footnote 13). The rate/multiplexing gains of K-user MISO
NOMA can therefore be worse than that of K-user MU–LP.

Another interpretation arises by noting that MU–LP (and
other forms of multi-user MIMO), as one extreme, can
be viewed as a full transmit-side interference management
strategy. On the other extreme, NOMA can be seen as a
full receiver-side interference cancellation strategy. In be-
tween stands RS that can be viewed as a smart combina-
tion of transmit-side and receive-side interference manage-
ment/cancellation strategies where the contribution of the com-
mon stream is adjusted according to the level of interference
that can be canceled by the receiver.

Consequently, RS is an enabler of a general class of commu-
nication strategies and can cover a wider set of communication
strategies than SDMA and NOMA, which leads to significant
multiplexing gain and complexity reduction benefits.

The sixth question is “Can we use other types of receivers
than SIC for NOMA and RS and would the multiplexing gains
be improved?” We can indeed use other types of receivers
but the multiplexing gains will not improve. Instead of using
stream-by-stream SIC, we can use any other joint (Maximum
Likelihood) decoder. Hence, a strong user in NOMA could
use a joint decoder to decode its intended stream jointly with
all other streams intended for its co-scheduled users in the
same group. The multiplexing gains would not improve since
the strong user would still act as the receiver of an effective
MAC (as discussed in relationship with (5), (20), (21), and
(22) and the first question) which limits the multiplexing gains.
Similarly, in 1-layer RS, each user could use a joint decoder
to decode its private stream jointly with the common stream
and the multiplexing gains would not improve (recall that 1-
layer RS already achieves the information theoretic optimal

multiplexing gain region, hence any other scheme, receiver or
multi-layer RS would not increase the multiplexing gains any
further).

The seventh question is “When does it make sense to
use NOMA?” As we have seen from the multiplexing gain
analysis, RS achieves the same or higher multiplexing gains
than NOMA with a lower number of SIC layers. Hence,
it is difficult to motivate the use of NOMA based on the
above analysis. Nevertheless, recall that our analysis relies
on having the concatenated matrix of the user channels being
full rank, or in other words that the user channels are not
aligned, as per footnotes 11 and 16. Whenever the channels
are aligned (though aligned channels are unlikely to occur in
real wireless settings) and CSIT is perfect, NOMA can achieve
the same performance as DPC, and could therefore be used
as an alternative to DPC32 in that outlier scenario [41], [42],
[44]. This should not appear as a surprise since a multi-antenna
setting with aligned channel vectors can effectively be seen as
a SISO setting where users are distinguished only based on
their channel strengths. In such a SISO setting (i.e., degraded
BC), it is well-known that both NOMA and DPC are capacity
achieving [8], [9], [17].

Once the channels are not aligned, our results show that
NOMA generally incurs a multiplexing gain loss. This corrob-
orates our previous results [77] that showed that in a 2-user
MISO BC, RS always outperforms NOMA. In particular, RS
was shown to boil down to NOMA and achieve the same rate
performance as NOMA whenever the following conditions are
met: 1) the SNR is low, 2) the channels are closely aligned, 3)
there is a sufficiently large disparity of channel gains, and 4)
the CSIT is perfect. In this regime, all NOMA, RS, and DPC
schemes achieve very similar performance (if not the same
performance). As we depart from that regime, NOMA incurs
a loss over RS (and DPC) due to its inferior multiplexing gain.

IX. NUMERICAL RESULTS

Through numerical evaluation, we illustrate the misconcep-
tions and the shortcomings of MISO NOMA. Moreover, we
show that, by adopting 1-layer RS, the optimal sum multiplex-
ing gain of the MISO BC is guaranteed in both underloaded
and overloaded deployments for both perfect and imperfect
CSIT scenarios. Furthermore, results also demonstrate that
the MMF multiplexing gain (and MMF rate) is significantly
enhanced when using 1-layer RS compared to MU–LP and
MISO NOMA, and the complexity of the receivers is reduced
compared to MISO NOMA. In other words, our evaluations
show that 1-layer RS makes a more efficient use of the spatial
dimensions (multiplexing gains) and of the SIC receivers than
MISO NOMA, and it is more robust to CSIT inaccuracy.

The following two precoder optimization problems are
solved in the simulation for the K-user MISO NOMA system

32Another detail missing and misleading in the comparison between NOMA
and DPC is that the whole capacity region is achieved with DPC and time-
sharing between the precoding orders [12]. In the NOMA literature [44],
the optimality of NOMA is only shown with respect to one fixed precoding
order in DPC. The true capacity is achieved with time-sharing between the
precoding orders and is larger.
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model specified in Section III-A. The first problem is maxi-
mizing the sum-rate of MISO NOMA subject to the transmit
power constraint, which is given by

max
P

∑
k∈K

R
(N)
k (45a)

s.t. tr(PPH) ≤ P (45b)

where R(N)
k is the rate of user-k in the MISO NOMA system

as specified in (17)–(19). The second problem is maximizing
the minimum rate subject to the transmit power constraint,
which is formulated as

max
P

min
k∈K

R
(N)
k (46a)

s.t. tr(PPH) ≤ P. (46b)

The Weighted Minimum Mean Square Error (WMMSE) opti-
mization framework proposed in [80] (originally developed
for MU–LP) is extended to solve both problems (45) and
(46). The details of the algorithm are specified in Appendix
B. The optimization problems requiring interior-point methods
are solved using the CVX toolbox [79].

We will assume K = 6 in the simulations, so as to be
able to relate the numerical results to the theoretical results of
Tables III and IV. The channel hk of user-k has i.i.d. complex
Gaussian entries drawn from the distribution CN (0, σ2

k). The
presented results are averaged over 100 channel realizations.

The following five strategies are compared and analyzed for
both perfect and imperfect CSIT:
• MISO NOMA (G = 3): MISO NOMA (G = 3) is the

MISO NOMA strategy specified in Section III-A when
G = 3. Each user requires K

3 −1 = 1 layer of SIC (since
each user can be selected as the “strong user" in the corre-
sponding user group). Ideally, the sum-rate (or max-min)
rate is maximized by solving (45) (or (46)) for all possible
user grouping methods and decoding orders within each
group. Due to the high computational complexity of
jointly optimizing the precoders, grouping, and decoding
order, we assume that the user grouping is fixed33 while
the decoding order in each group i is the ascending order
of users’ channel strength ‖hk‖,∀k ∈ Ki in the following
results. To keep aligned with the system model in Section
III-A, user indices are updated within each group such
that ‖hk‖ ≤ ‖hj‖,∀k < j and k, j ∈ Ki. When the
CSIT is imperfect, the decoding order follows the same
method but based on ‖ĥk‖,∀k ∈ Ki.

• MISO NOMA (G = 1): MISO NOMA (G = 1) is the
MISO NOMA strategy in Section III-A when G = 1.
Each user requires K − 1 = 5 layers of SIC (since
each user can potentially be selected as the “strong

33For a given K and G (with g = K
G

), there are in total 1
G!

∏G−1
i=0

(K−ig
g

)
user grouping methods. When K = 6, the number of grouping methods for
MISO NOMA (G = 3) is 15. To optimize the user grouping (for a fixed
decoding order), the optimization problem (45) (or (46)) has to be solved
15 times. The computational complexity is 15-fold increase compared with
MU–LP/1-layer RS/OMA. To consider the complexity fairness among all the
studied strategies, we fix the grouping method to be user-1 and user-2 in
Group 1, user-3 and user-4 in Group 2, and user-5 and user-6 in Group 3.
Recall however that the multiplexing gain analysis is general and holds for
any decoding order and any grouping method.

user"). There is no user grouping optimization issue at
the transmitter since all users are assumed to be in the
same user group. However, the decoding order at users
should be jointly optimized with the precoders in order
to maximize the sum-rate (or the max-min rate), which
however, is computationally prohibitive. Following the
literature of single-cell MISO NOMA [22], [23], we
assume that the decoding order is the ascending order of
the users’ channel strength ‖hk‖,∀k ∈ K. User indices
are updated such that ‖hk‖ ≤ ‖hj‖,∀k < j and k, j ∈ K.
Similarly, the decoding order follows the same method
but based on ‖ĥk‖,∀k ∈ K when the CSIT is imperfect.

• MU–LP: MU–LP is the baseline strategy studied in Sec-
tion VI. Each user directly decodes the intended stream
by fully treating the interference as noise. The WMMSE
algorithm specified in Appendix B can be applied and
extended to solve the corresponding sum-rate and max-
min problems of MU–LP [56], [80]. The transmitter and
receiver complexity of MU–LP is low since there is no
SIC deployed at each user and no user grouping and
decoding order optimization issue at the transmitter.

• Orthogonal Multiple Access (OMA): This is the single-
user transmission where only the user with the highest
channel strength is served.

• 1-layer RS: 1-layer RS is the RS strategy we specified
in Section VII. The corresponding sum-rate and max-
min rate maximization problems are solved by using the
WMMSE algorithm proposed in [47], [56]. Compared
with MISO NOMA, the transmitter and receiver complex-
ities of 1-layer RS are much reduced. Similarly to MU–
LP, no user grouping and decoding order optimization is
needed. Each user only requires a single layer of SIC.

A. Perfect CSIT

Following [47], the initialization of the precoding matrix
P in Algorithm 1 is designed by using Maximum Ratio
Transmission (MRT) combined with Singular Value Decom-
position (SVD). Specifically, the precoder for the message to
be decoded by a group of users is designed based on the SVD
of the channel matrix formed by the channel vectors of the
corresponding users while the precoder for the message to be
decoded by a single user is designed based on MRT. For ex-
ample, when considering MISO NOMA (G = 3), the message
for user-k, k ∈ Ki, is decoded by users-{j | j ≤ k, j ∈ Ki}.
The precoders are initialized as pk =

√
pkp̂k, where p̂k is

the largest left singular vector of the channel estimate Hk

formed by channels {hj | j ≤ k, j ∈ Ki}. The precoder pk
of the stream to be decoded at last in each group is initialized
as pk =

√
pk

hk
||hk|| , where pk is the power allocated to the

corresponding precoder pk and it satisfies that
∑K
k=1 pk = P .

Fig. 13 illustrates the sum-rate vs. SNR comparison of the
five strategies considered when there are K = 6 users and
the number of transmit antennas is M = 3 and M = 6.
In Fig. 13(a) and Fig. 13(b), all users have equal channel
variances, i.e., σ2

k = 1,∀k ∈ K while the users’ channel
variances are randomly generated from [0.1, 1] in Fig. 13(c)
and Fig. 13(d), i.e., σ2

k ∈ [0.1, 1],∀k ∈ K. In other words, the
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Fig. 13: Sum-rate vs. SNR comparison of different strategies,
K = 6.

average channel strength disparities among users are randomly
generated between 0 and 10 dB34 in Fig. 13(c) and Fig. 13(d).
In the high SNR regime of each subfigure, the multiplexing
gains of all strategies are found to match the theoretical sum
multiplexing gains specified in Table III. Specifically, when
M = 3,K = 6, the sum multiplexing gains of 1-layer RS,
MU–LP, and MISO NOMA (G = 3) in Fig. 13(a) and Fig.
13(c) approach d

(?)
s = 3 (which is optimal). In Fig. 13(c)

and Fig. 13(d) where M = K = 6, the sum multiplexing
gains of 1-layer RS and MU–LP are d

(?)
s = 6. The sum

multiplexing gain of MISO NOMA (G = 3) remains 3. The
sum multiplexing gains of MISO NOMA (G = 1) and OMA
are limited to 1 in all subfigures of Fig. 13. Therefore, MISO
NOMA has a reduced sum multiplexing gain, inefficiently
makes use of the available multiple antennas, and incurs a
significant rate loss, especially at medium and high SNRs. It
is not an efficient strategy for multi-antenna settings. The first
misconception behind multi-antenna NOMA is confirmed.

As pointed out earlier in this section, the complexity of
MISO NOMA at both the transmitter and the receiver is
the highest among all strategies studied in this work. At
the transmitter, the scheduling complexity is high since the
user grouping and decoding order are required to be jointly
optimized with the precoders. At the receivers, each user
requires multiple layers of SIC and the number of SIC layers at

34As a reference, at a carrier frequency of 2 GHz, the typical macro
cell propagation model of [81] states that the path loss [dB] is equal to
128.1 + 37.6 log10(R) where R is the transmitter-receiver distance in km.
Considering a macro cell deployment with an inter-site distance of 750m
[81], a 0 to 10 dB channel gain disparity implies that users are distributed
between, e.g., 160m to 300m or between 200m and 375m from their serving
base station, i.e., a user located at 300m (375m) will experience 10dB extra
path loss compared to a user at 160m (200m).
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Fig. 14: Max-min rate vs. SNR comparison of different
strategies, K = 6, σ2

k = 1,∀k ∈ K.

each user increases with the number of users K in the system.
In addition to such a high complexity, as evident from Fig. 13,
the sum-rate performance of MISO NOMA is worse than that
of MU–LP35 which exhibits a much lower complexity at the
transmitter and each receiver. Adopting SIC receivers does
not always boost the rate performance. On the contrary, an
inefficient and inappropriate use of SIC as in MISO NOMA
can make the rate performance worse than simply not using
SIC (as in MU–LP). This illustrates the second misconception
behind multi-antenna NOMA.

We also observe from Fig. 13 that the sum-rate performance
of OMA and MISO NOMA (G = 1) is the worst, which is also
reflected in their sum multiplexing gains. Hence, comparing
MISO NOMA with OMA is not sufficient in multi-antenna
settings. Both MU–LP and 1-layer RS should be considered
as the baselines for all MISO NOMA schemes. This verifies
the third misconception behind multi-antenna NOMA.

In Fig. 14 and Fig. 15, we focus on the MMF rate
performance when there are K = 6 users and the number
of transmit antennas is varied from M = 3 to M = 6.
All users have equal channel variances in Fig. 14 while the
users’ channel variances are randomly generated from [0.1, 1]
in Fig. 15. The MMF multiplexing gains of all the strategies in
both Fig. 14 and Fig. 15 match the corresponding theoretical
MMF multiplexing gain results specified in Table IV. In the
overloaded regime when M = 3/4/5, the corresponding MMF
multiplexing gains of MISO NOMA (G = 3) and MISO
NOMA (G = 1) are d(N,G=3)

mmf = 0/0/ 1
2 , and d(N,G=1)

mmf = 1
6/

1
6/

1
6 ,

35Though multiplexing gain analysis holds for any antenna configuration,
simulations are here conducted for small MIMO systems. For larger antenna
regimes, the same observation can be obtained and NOMA has an even less
role to play as shown in [76] for massive MIMO.
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Fig. 15: Max-min rate vs. SNR comparison of different
strategies, K = 6, σ2

k ∈ [0.1, 1],∀k ∈ K.

respectively. In contrast, the MMF multiplexing gain of 1-
layer RS is d

(R)
mmf = 1

4/
1
3/

1
2 when M = 3/4/5, which is

significantly higher. The low MMF multiplexing gains of
the MISO NOMA strategy translates into a poor MMF rate
performance as illustrated in Fig. 14 and Fig. 15. Though
MISO NOMA has been promoted as a strategy to enhance
user fairness and to deal with overloaded regimes, its MMF
rate in the overloaded regime is actually worse than that of
1-layer RS. MISO NOMA is not an efficient strategy for
overloaded regimes. This underscores the validity of the fourth
misconception behind multi-antenna NOMA.

B. Imperfect CSIT

Let us now consider ergodic sum-rate and minimum ergodic
rate maximization problems when the CSIT is imperfect. The
two problems are solved by extending the WMMSE algorithm
specified in Section B to the corresponding imperfect CSIT
setting [47]. This is achieved by using the Sample Average
Approximation (SAA) method [82] to transform the original
ergodic problem to its deterministic counterpart and then using
WMMSE to solve the corresponding deterministic problem. In
the following results, for a given channel estimate ĥk, k ∈ K,
M = 1000 channel samples are generated. The ergodic sum-
rate or max-min ergodic rate is obtained by averaging over
100 channel estimates. The channel estimate ĥk and chan-
nel estimation error h̃k have i.i.d. complex Gaussian entries
respectively drawn from the distributions CN (0, σ2

k − σ2
e,k),

CN (0, σ2
e,k), where σ2

e,k = σ2
kP
−α. As only channel estimate

ĥk, k ∈ K, is known at the transmitter, the precoders are
initialized using the same method as in the perfect CSIT
scenario but based on realistic channel estimates. Figs. 16,
17, and 18 are the imperfect CSIT results corresponding to
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Fig. 16: Sum-rate vs. SNR comparison of different strategies
with imperfect CSIT, α = 0.5, K = 6.

Fig. 13, 14, and 15, respectively. The unspecified parameters
in this subsection remain the same as the corresponding ones
used for perfect CSIT.

Fig. 16 illustrates the sum-rate vs. SNR comparison of the
five strategies for imperfect CSIT. The sum multiplexing gains
of all strategies in Fig. 16 match the theoretical sum multiplex-
ing gains in Table II. When α = 0.5 and M = 3/6, the sum
multiplexing gains of the five strategies are d(R)

s = 2/3.5 for
1-layer RS, d(M)

s = 1.5/3 for MU–LP, d(N,G=3)
s = 1.5/1.5

for MISO NOMA (G = 3), and d
(N,G=1)
s = d

(O)
s = 1/1

for MISO NOMA (G = 1) and OMA. As suggested by the
multiplexing gain results, where MISO NOMA (G = 1) has
the lowest multiplexing gain, we also observe from Fig. 16
that though MISO NOMA (G = 1) has the highest receiver
complexity, its ergodic sum rate performance is the worst even
in the preferred NOMA overloaded setting when the users have
channel strength disparities. MISO NOMA (G = 1) always
achieves a worse sum-rate than MU–LP. It is not beneficial for
enhancing the sum-rate of multi-antenna scenarios regardless
of whether perfect or imperfect CSIT is used. In comparison,
1-layer RS achieves explicit sum multiplexing gains and sum-
rate improvement over all other strategies.

Figs. 17 and 18 illustrate the MMF ergodic rate results. In
general, the MMF multiplexing gains of all strategies in both
figures match the theoretical MMF multiplexing gain results
specified in Table II. When M = 3/4/5/6, the corresponding
MMF multiplexing gains of MISO NOMA (G = 3) and MISO
NOMA (G = 1) when α = 0.5 are d

(N,G=3)
mmf = 0/0/ 1

4/
1
4

and d(N,G=1)
mmf = 1

6/
1
6/

1
6/

1
6 , respectively, and the corresponding

MMF multiplexing gain of MU–LP and RS are d
(M)
mmf =
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Fig. 17: Max-min rate vs. SNR comparison of different strate-
gies with imperfect CSIT, α = 0.5, K = 6, σ2

k = 1,∀k ∈ K.

0/0/0/ 1
2 , and d

(R)
mmf = 1

4/
1
3/

1
2/

1
2 . We observe that 1-layer

RS achieves significantly higher multiplexing gains, which is
also reflected in the MMF ergodic rate performance in Figs.
17 and 18. In both the perfect and imperfect CSIT settings,
user fairness cannot be improved by MISO NOMA. The MMF
ergodic rate performance of MISO NOMA is much worse than
that of 1-layer RS.

Therefore, the four misconceptions behind multi-antenna
NOMA are further verified for imperfect CSIT. Higher sum-
rate and MMF rate gaps between RS and MU–LP/multi-
antenna NOMA are generally observed by comparing the
corresponding perfect and imperfect CSIT results. By partially
decoding the interference and treating the remaining interfer-
ence as noise, 1-layer RS is more robust to CSIT inaccuracy.
The large performance gain of RS makes it an appealing
strategy for application in future communication networks.

C. Discussions

The presented simulations fully validate the theoretical
multiplexing gain analysis and confirm the inefficiency of
MISO NOMA. We therefore conclude that the fundamental
design principle of NOMA, namely forcing one user to decode
the message(s) of other user(s), should be reconsidered or very
carefully used for multi-antenna settings.

Thanks to its ability to partially decode interference and
partially treat interference as noise, 1-layer RS achieves equal
or higher sum-rate and MMF rate performance than all other
strategies in both underloaded and overloaded regimes, es-
pecially when it comes to metrics that favor user fairness
(e.g., MMF rate) in an overloaded regime. This is due to the
fact that the inter-user interference becomes stronger in the
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Fig. 18: Max-min rate vs. SNR comparison of different strate-
gies with imperfect CSIT, α = 0.5, K = 6, σ2

k ∈ [0.1, 1],∀k ∈
K.

setting when all users are active and the number of transmit
antennas is limited. The superiority of 1-layer RS in managing
multi-user interference becomes more pronounced when users
suffer from stronger interference. Most importantly, 1-layer RS
requires no user grouping and decoding order optimization
at the transmitter and only one layer of SIC at each user.
Compared with MISO NOMA, the sum-rate and MMF rate
performance gain of RS comes at a much reduced transmitter
and receiver complexity. 1-layer RS enables a better trade-off
between the rate performance gains and the number of SIC
layers. Hence, we conclude that 1-layer RS is a more powerful
and promising strategy for multi-antenna networks.

Though the evaluations have been limited to 1-layer RS
as the basic RSMA scheme, further rate enhancements over
1-layer RS can be obtained with multi-layer RS where the
message of a user is split multiple times and multiple SIC
layers are implemented at the receivers, as demonstrated in
[50], [51], [78], [89], [90].

X. CONCLUSIONS, FUTURE RESEARCH, AND PATHWAYS
TO 6G STANDARDIZATION

This paper provides a broad, different, and useful perspec-
tive on multi-antenna NOMA and non-orthogonal transmission
to the community working on NOMA and multiple access, and
to the future generations of researchers working on multi-user
multi-antenna communications. Although NOMA in single-
antenna settings has been well understood for a long time, the
paper shows that the design of non-orthogonal transmission
strategies for multi-antenna settings should be done with care
so as to benefit from the multi-antenna dimensions and SIC
receivers.
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The paper showed in Section II that two-user multi-antenna
NOMA increases the receiver complexity and at the same
time incurs a loss in multiplexing gain (and therefore rate
at high SNR) compared to conventional multiuser precoding
(as in used in 4G and 5G), therefore raising concerns on the
efficiency of multi-antenna NOMA. Subsequently, a general
K-user setting with perfect CSIT and imperfect CSIT were
studied in Section III and Section IV, respectively and various
multiplexing gains of multi-antenna NOMA were derived.
Then, we introduced two baseline schemes, namely K-user
conventional multiuser precoding in Section VI and K-user
multi-antenna rate-splitting in Section VII, and studied the
multiplexing gains of those schemes. Section VIII compares
the multiplexing gains of all considered schemes and pro-
vides strong theoretical grounds for performance comparisons
among all schemes. In particular, it identifies the scenarios
where NOMA incurs a gain and a loss compared to multiuser
linear precoding and demonstrates how NOMA always leads
to lower multiplexing gains than rate-splitting though it makes
use of a larger number of SIC layers at the receivers. This
section is instrumental and exposes various misconceptions
and shortcomings of multi-antenna NOMA. Simulation results
are then used in Section IX to confirm our findings and
predictions from the multiplexing gain analysis.

Our results show that NOMA is not an efficient solution
to cope with the high throughput, reliability, heterogeneity
of QoS, and connectivity requirements of the downlink of
future 5G and beyond multi-antenna wireless networks. This
is due to the fact that the fundamental principle of NOMA
consisting in forcing one user in each group to fully decode
the messages of other co-scheduled users is an inefficient
design in multi-antenna settings. Consequently, the benefits
to the research community and future standards and networks
of multi-antenna NOMA for downlink communications (e.g.,
MISO/MIMO techniques for NOMA, NOMA for massive
MIMO and cell-free massive MIMO, multi-antenna NOMA
for millimetre and terahertz communications, NOMA for
multi-beam satellite communications, multi-antenna NOMA
in reconfigurable intelligent surfaces, multi-antenna in Mul-
tiuser Superposition Transmission (MUST) in 3GPP, etc) are
questionable and should be considered carefully in light of the
results in this paper.

Instead, non-orthogonal transmission strategies for multi-
antenna settings should be designed such that interference is
partially decoded and partially treated as noise based on the
rate-splitting (multiple access) literature so as to truly benefit
from multi-antenna transmitters (and potentially multi-antenna
receivers) and SIC receivers.

In this paper, we limited the multiplexing gain analysis
and the numerical evaluations to two metrics, namely sum
multiplexing gain/sum-rate and MMF multiplexing gain/MMF
rate, and to the MISO BC. Nevertheless, the results can
be extended to other metrics such as the weighted sum-
rate (WSR) and to other scenarios. Readers are invited to
check [51] that confirms the inefficiency of NOMA and the
superiority of RS from a WSR perspective, and are encouraged
to consult the growing literature on RS (and RSMA) demon-
strating the superiority of RS over NOMA and MU-LP in

numerous scenarios and applications, namely multi-user multi-
antenna communications [51], [77], [83], multigroup multicast
[39], [56], energy efficiency [78], [84], [85], multi-cell joint
transmission [86], non-orthogonal unicast and multicast trans-
mission [78], wireless information and power transfer [87],
cooperative communication with user relaying [88], imperfect
CSIT [89], [90], link-level simulations [91], C-RAN [92],
secrecy rate [93], [94], aerial networks [85], [95], imperfect
CSIT and CSIR [96], visible light communications [97], [98],
network performance analysis [99], reconfigurable intelligent
surface [100]. It would also be of interest for future work to
understand how more recent MIMO NOMA schemes such as
[67], [68] compare to RS [73], [75].

The emphasis of the paper was on downlink multi-user
communications. Results suggest that future downlink multi-
user multi-antenna communications would strongly benefits
from RSMA. Indeed, RSMA achieves higher multiplexing
gains and rates. It is capable of serving a larger number
of users and is more robust to user deployments, network
loads and inaccurate CSI. Moreover, RSMA has a lower
receiver complexity than NOMA. RSMA is a gold mine
of research problems for academia and industry with issues
spanning numerous areas: RSMA to achieve the fundamen-
tal limits of wireless networks; RSMA for multi-user/multi-
cell multi-antenna networks; RSMA-based robust interference
management; RSMA in MU-MIMO, coordinated multi-point
(CoMP), Massive MIMO, millimetre wave and higher fre-
quency bands, relay, cognitive radio, caching, physical layer
security, cooperative communications, cloud/fog-enabled plat-
forms and Radio Access Networks (RAN) (such as cloud-
RAN and fog-RAN), intelligent reflecting surfaces; RSMA to
unify, generalize and outperform SDMA and NOMA; physical
layer design of RSMA-based network; coding and modulation
for RSMA; cross-layer design, optimization and performance
analysis of RSMA; implementation and standardization of
RSMA; RSMA in B5G services such as enhanced Mobile
Broadband (eMBB), enhanced Ultra-Reliable Low Latency
Communications (URLLC), enhanced Machine-Type Commu-
nications (MTC), massive MTC, massive Internet-of-Things
(IoT), Vehicle-to-everything (V2X), cellular, Unmanned Aerial
Vehicle (UAV) and satellite networks, wireless powered com-
munications, integrated communications and sensing, etc.

RSMA can also be used in the uplink, as originally shown
for single-antenna systems in [101]. The key benefit of RSMA
in the uplink is its ability to achieve the capacity region of
the MAC without the need for time sharing. Nevertheless,
much is left to be done to identify the benefits of RSMA
for general uplink multi-user multi-antenna communications.
The performance benefits of RSMA vs. NOMA vs. OMA vs.
other multiple access techniques in the uplink, beyond the
existing NOMA vs. OMA comparison [102], is also much
worth investigating. It should however be mentioned that
thanks to the polymatroid structure of the Gaussian MAC
capacity region, the solution to the max weighted sum rate
problem is always at a vertex of the original region, i.e., RS
is not needed.

Standardization is very important for a widespread adoption
of multiple access techniques. MU-LP has been heavily dis-
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cussed and standardized in 4G and 5G as part of MU-MIMO
and Massive MIMO. NOMA was also investigated as part of
a study item in 5G but was not considered any further in 5G
because its gains compared to MU-MIMO were not found
convincing [103]. Hence, in 5G New Radio (NR), NOMA
was seen as a competing technology to MU-MIMO and an
unwanted add-on technology. The standardization of RSMA
has not been considered by 3GPP yet but is receiving a grow-
ing interest from academia and industry36. Parts of the features
required by RSMA are already being studied, discussed and
developed. Some current work items and features in 5G, i.e.,
MU-MIMO/Massive MIMO/CoMP, multiuser superposition
transmission (MUST), network-assisted interference cancella-
tion and suppression (NAICS), multicast functionality can be
leveraged for RSMA. However, some more work is needed to
realize the full potential of RSMA. On-going activities consist
in investigating the potential benefits of RSMA for 6G [104]
and demonstrating the significant benefits of RSMA over 5G
NR design [105].

APPENDIX A
PROOF OF PROPOSITION 4

Let us first consider G > 1 and M ≥ K − g+ 1. Recalling
from the proof of Proposition 3 that the sum multiplexing
gain of Gα can be split equally among the G groups so that
each group gets a (group) sum multiplexing gain of α, and
following the MAC argument, the (group) sum multiplexing
gain of α in each group can then be further split equally among
the g users, which leads to an upper bound on the MMF
multiplexing gain of αg . Achievability is obtained by designing
precoders using ZFBF, and allocating power (consider group
1 for simplicity) to user k = 1, . . . , g as O(P 1− g−kg α), which
causes the SINR for user-k to scale as O(Pα/g) and an
achievable MMF multiplexing gain of α

g .
To illustrate the achievability in more detail, we consider

a simple example for K = 4, G = 2, g = 2, and M ≥ 3.
First, we design the precoders p1 and p2 in group 1 to be
orthogonal to the channel estimates ĥ3 and ĥ4 of users 3 and
4. Similarly, p3 and p4 in group 2 are made orthogonal to ĥ1

and ĥ2. Second, allocate power O(P b) with b = 1 − α/2 to
users 1 and 3, and O(P−P b) = O(P ) to users 2 and 4. Using
these precoders and power allocations, the received signals in
group 1 can be written as

y1 = hH1 p1s1︸ ︷︷ ︸
P b

+hH1 p2s2︸ ︷︷ ︸
P

+ h̃H1 p3s3︸ ︷︷ ︸
P b−α

+ h̃H1 p4s4︸ ︷︷ ︸
P 1−α

+ n1︸︷︷︸
P 0

, (47)

y2 = hH2 p1s1︸ ︷︷ ︸
P b

+hH2 p2s2︸ ︷︷ ︸
P

+ h̃H2 p3s3︸ ︷︷ ︸
P b−α

+ h̃H2 p4s4︸ ︷︷ ︸
P 1−α

+ n2︸︷︷︸
P 0

, (48)

where the quantities under the brackets refer to how the power
level of each term scales. From (47) and (48), s2 can be
decoded at an SINR level scaling as P

P b+P 1−α+P b−α+P 0 =
P
P b

= Pα/2 (since b ≥ 1−α ≥ b−α and b ≥ 0). Using SIC,
s2 is cancelled in (47), and s1 can be decoded at an SINR level
scaling as P b

P 1−α+P b−α+P 0 = Pα/2. Similar expressions hold

36See the special interest group on RSMA at
https://sites.google.com/view/ieee-comsoc-wtc-sig-rsma/home

for group 2, and we note that all four streams have an SINR
scaling as Pα/2, therefore achieving an MMF multiplexing
gain of α

2 .
Let us now consider G > 1 and M < K − g + 1. Since

the MMF multiplexing gain collapses to 0 in the perfect CSIT
setting, the same holds for imperfect CSIT.

Let us now consider G = 1. The situation here is the
same as in the perfect CSIT setting. There is no inter-group
interference and the sum multiplexing gain of one in the single
group can be split equally among the K users, which leads
to an upper bound on the MMF multiplexing gain of 1

K .
Achievability is obtained by choosing the powers of users
k = 1, . . . ,K as O(P k/K), which causes the SINR of user-
k to scale as O(P 1/K) and results in an achievable MMF
multiplexing gain of 1

K .

APPENDIX B
WMMSE OPTIMIZATION FRAMEWORK

The WMMSE optimization framework to solve both prob-
lems (45) and (46) is specified as follows.

At user-j, j ∈ Ki, equalizer gj,k is employed to decode
stream sk, k ∈ {k | k ≥ j, k ∈ Ki}. The estimate of
sk at user-j is obtained as ŝj,k = gj,kyj,k, where yj,k =∑
m≤k,m∈Ki h

H
j pmsm +

∑
l 6=i,l∈G

∑
m∈Kl h

H
j pmsm + nj

is the signal received at user-j after removing the streams
decoded before sk. The corresponding Mean Square Error
(MSE) is given by

εj,k = E{|ŝj,k − sk|2}
= |gj,k|2Tj,k − 2<{gj,khHj pk}+ 1,

(49)

where Tj,k = |hHj pk|2 + I
(in)
j,k + I

(ou)
j,k is the power received

at user-j when decoding sk. Furthermore, I(in)j,k and I(ou)j,k are
respectively the intra-group and inter-group interference power
defined in (18).

By solving ∂εj,k
∂gj,k

= 0, the optimal Minimum MSE (MMSE)
equalizer is calculated as

gMMSE
j,k = pHk hj(Tj,k)−1. (50)

Substituting (50) back to (49), the corresponding MMSE is
then obtained as

εMMSE
j,k = min

gj,k
εj,k = T−1j,k (I

(in)
j,k + I

(ou)
j,k ). (51)

With the introduced εMMSE
j,k , the rate at user-j to decode the

message of user-k in (17) is equivalently written as Rj,k =
− log2(εMMSE

j,k ). Defining the Weighted MSE (WMSE) of εj,k
with a weight uj,k > 0 as

ξj,k = uj,kεj,k − log2(uj,k), (52)

and defining its Weighted MMSE (WMMSE) by minimizing
ξj,k over uj,k and gj,k as

ξMMSE
j,k = min

uj,k,gj,k
ξj,k, (53)

we then establish the rate-WMMSE relationship, which is
given by

ξMMSE
j,k = 1−Rj,k. (54)
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The rate-WMMSE relation in (54) is obtained as follows. The
optimum equalizer is calculated as g∗j,k = gMMSE

j,k from ∂ξj,k
∂gj,k

=

0. Substituting gMMSE
j,k back to (52) yields ξj,k(gMMSE

j,k ) =

uj,kε
MMSE
j,k − log2(uj,k). By solving

∂ξj,k(g
MMSE
j,k )

∂gj,k
= 0, we then

obtain the optimal MMSE weight, which is given as

u∗j,k = uMMSE
j,k = (εMMSE

j,k )−1. (55)

Substituting uMMSE
j,k back to ξj,k(gMMSE

j,k ), we have
minuj,k,gj,k ξj,k = 1 − Rj,k. Following (53), we obtain
(54).

Motivated by the rate-WMMSE in (54), we find that the
achievable rate of user-k in (19) is equal to Rk = 1− ξMMSE

k ,
where ξMMSE

k = maxj≤k,j∈Ki ξ
MMSE
j,k . By defining the WMSE

of user-k as
ξk = max

j≤k,j∈Ki
ξj,k, (56)

and the respective set of equalizers and weights as g = {gj,k |
j ≤ k, k, j ∈ Ki, i ∈ G}, u = {uj,k | j ≤ k, k, j ∈ Ki, i ∈ G},
the sum-rate WMMSE problem is formulated as

min
P,u,g

∑
k∈K

ξk (57a)

s.t. tr(PPH) ≤ P. (57b)

Following the proof of [47], we find that the MMSE solutions
of the equalizers gMMSE = {gMMSE

j,k | j ≤ k, k, j ∈ Ki, i ∈ G}
and weights uMMSE = {uMMSE

j,k | j ≤ k, k, j ∈ Ki, i ∈ G}
satisfy the KKT optimality conditions of (57). Substituting
(gMMSE,uMMSE) back to (57) with affine transformations ap-
plied to the objective function, (57) boils down to (45). In fact,
for any point (P∗,u∗,g∗) satisfying the KKT optimality con-
ditions of (57), the solution P∗ satisfies the KKT optimality
conditions of (45). Hence, (57) yields a solution for (45).

Although the transformed problem (57) is still non-convex,
it is block-wise convex with respect to P and (g,u). For a
given P, the optimal solution of the weights and equalizers are
gMMSE(P),uMMSE(P). When (g,u) are fixed, problem (57)
becomes convex and can be solved by interior-point methods.
Motivated by the block-wise convexity, we use the Alternating
Optimization (AO) algorithm as illustrated in Algorithm 1 to
solve (57). In each iteration, the equalizers and weights are
first updated by (gMMSE(P),uMMSE(P)) for a given P. The
updated equalizers and weights (gMMSE(P),uMMSE(P)) are
substituted back to (57). Precoder P is then updated by solving
(57). P and (g,u) are updated in an alternating manner until
the convergence of the sum-rate. Algorithm 1 is guaranteed
to converge and it converges to the KKT solution of problem
(45). Readers are referred to [47] for the proof.

Following the same procedure, we are able to obtain the
transformed WMMSE problem for max-min rate maximiza-
tion, which is given by

min
P,u,g

max
k∈K

ξk (58a)

s.t. tr(PPH) ≤ P. (58b)

By substituting problem (57) in Algorithm 1 with problem
(58), we obtain the corresponding AO Algorithm to achieve
the KKT solution of the max-min rate problem (46).

Algorithm 1: AO algorithm

1 Initialize: t← 0, P;
2 repeat
3 t← t+ 1, P[t−1] ← P;
4 g← gMMSE(P[t−1]); u← uMMSE(P[t−1]);
5 Substitute (g,u) back to (57) and update P by

solving (57);
6 until convergence;

REFERENCES

[1] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, K. Higuchi,
“Non-orthogonal multiple access (NOMA) for cellular future radio
access,” Proc. IEEE 77th Veh. Technol. Conf. (VTC Spring), 2013

[2] L. Dai, B Wang, Y Yuan, S Han, C-l I, Z Wang, “Non-orthogonal
multiple access for 5G: solutions, challenges, opportunities, and future
research trends,” IEEE Commun. Mag., vol. 53, no. 9, pp. 74–81, 2015.

[3] Z. Ding, Y. Liu, J. Choi, Q. Sun, M Elkashlan, C-l I, H.V. Poor, “Ap-
plication of non-orthogonal multiple access in LTE and 5G networks,”
IEEE Commun. Mag., vol. 55, no. 2, pp. 185–191, 2017.

[4] Y. Liu, Z. Qin, M. Elkashlan, Z. Ding, A. Nallanathan, and L. Hanzo,
“Nonorthogonal multiple access for 5G and beyond,” Proceedings of the
IEEE, Vol. 105, No. 12, Dec. 2017.

[5] W. Shin, M. Vaezi, B. Lee, D.J. Love, J. Lee, H.V. Poor, “Non-
orthogonal multiple access in multi-cell networks: theory, performance,
and practical challenges,” IEEE Commun. Mag., vol. 55, no. 10,
176–183, Oct. 2017.

[6] T. Cover, “Broadcast channels,” IEEE Trans. Inf. Theory., vol. 18, no.
1, pp. 2–14, 1972.

[7] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd
ed. New York, NY, USA: Wiley, 2006.

[8] D. Tse, P. Viswanath, Fundamentals of wireless communication, Cam-
bridge University Press, Cambridge, 2005.

[9] A. Goldsmith, Wireless Communications, Cambridge University Press,
Cambridge, 2005.

[10] Q. Li, G. Li, W. Lee, M. Lee, D. Mazzarese, B. Clerckx, Z. Li,
“MIMO techniques in WiMAX and LTE: a feature overview,” IEEE
Communication Magazine, Vol.48, No.5, pp. 86-92, May 2010.

[11] M. Vaezi, R. Schober, Z. Ding, and H.V. Poor, “Non-orthogonal multiple
access: Common myths and critical questions,” IEEE Wireless Commu-
nications, Vol. 26, No. 5, pp. 174-180, 2019.

[12] H. Weingarten, Y. Steinberg, S.S. Shamai, “The capacity region of
the Gaussian multiple-input multiple-output broadcast channel,” IEEE
Trans. Inf. Theory, vol. 52, no. 9, pp. 3936–3964, 2006.

[13] Q. Spencer, A.L. Swindlehurst, and M. Haardt, “Zero-forcing methods
for downlink spatial multiplexing in multi-user MIMO channels,” IEEE
Trans. Signal Process., vol. 52, no. 2, pp. 462–471, February 2004.

[14] M. Stojnic, H. Vikalo, and B. Hassibi, “Rate maximization in mul-
tiantenna broadcast channels with linear preprocessing,” IEEE Trans.
Wireless Commun., vol. 5, no. 9, pp. 2338–2342, Sep. 2006.

[15] A. D. Dabbagh and D. J. Love, “Precoding for multiple antenna gaussian
broadcast channels with successive zero-forcing,” IEEE Trans. Signal
Process., vol. 55, no. 7, pp. 3837-3850, July 2007.

[16] A. D. Dabbagh and D. J. Love, “Multiple antenna MMSE based
downlink precoding with quantized feedback or channel mismatch,”
IEEE Trans. Commun., vol. 56, no. 11, pp. 1859-1868, Nov. 2008.

[17] B. Clerckx, C. Oestges, MIMO wireless networks: channels, techniques
and standards for multi-antenna, multi-user and multi-cell systems,
Academic Press, Cambridge, 2013.

[18] Y. Liu, H. Xing, C. Pan, A. Nallanathan, M. Elkashlan, L. Hanzo,
“Multiple-antenna-assisted non-orthogonal multiple access,” IEEE Wire-
less Commun., vol. 25, no. 2, pp. 17–23, 2018.

[19] M. Vaezi, H.V. Poor, “NOMA: An Information-Theoretic Perspective”
In: Vaezi M., Ding Z., Poor H. (eds) Multiple Access Techniques for
5G Wireless Networks and Beyond, Springer, 2019.

[20] M.F. Hanif, Z. Ding, T. Ratnarajah, G.K. Karagiannidis, “A
minorization-maximization method for optimizing sum rate in the down-
link of non-orthogonal multiple access systems,” IEEE Trans. Signal
Process., vol. 64, no. 1, pp. 76–88, 2016.

[21] J. Choi, “Minimum power multicast beamforming with superposition
coding for multiresolution broadcast and application to NOMA systems,”
IEEE Trans. Commun., vol. 63, no. 3, pp. 791–800, 2015.



29

[22] Q. Sun, S. Han, C-l I, Z. Pan, “On the ergodic capacity of MIMO NOMA
systems,” IEEE Wirel. Commun. Lett., vol. 4, no. 4, pp. 405–408, 2015.

[23] Q. Zhang, Q. Li, J. Qin, “Robust beamforming for nonorthogonal
multiple-access systems in MISO channels,” IEEE Trans. Veh. Technol.,
vol. 65, no. 12, pp. 10231–10236, 2016.

[24] M. Zeng, A. Yadav, O. A. Dobre, G. I. Tsiropoulos, and H. V. Poor,
“On the sum rate of MIMO-NOMA and MIMO-OMA systems,” IEEE
Wireless Commun. Lett., Vol. 6, No. 4, Aug. 2017.

[25] Z. Ding, R. Schober, and H. V. Poor, “A general MIMO framework for
NOMA downlink and uplink transmission based on signal alignment,”
IEEE Trans. Wireless Commun., vol. 15, no. 6, pp. 4438–4454, Jun.
2016

[26] Z. Ding, F. Adachi, and H.V. Poor, “The application of MIMO to non-
orthogonal multiple access,” IEEE Trans. Wirel. Commun., vol. 15, no.
1, pp. 537–552, 2016.

[27] J. Choi, “On generalized downlink beamforming with NOMA,” J.
Commun. Netw., vol. 19, no. 4, pp. 319–328, 2017.

[28] W. Shin, M. Vaezi, B. Lee, D.J. Love, J. Lee, and H.V. Poor, “Co-
ordinated beamforming for multi-cell MIMO-NOMA,” IEEE Commun.
Lett., vol. 21, no. 1, pp. 84–87, 2017.

[29] V.D. Nguyen, H.D. Tuan, T.Q. Duong, H.V. Poor, and O.S. Shin,
“Precoder design for signal superposition in MIMO-NOMA multicell
networks,” IEEE J. Sel. Areas Commun., vol. 35, no. 12, pp. 2681–2695,
2017.

[30] M. Zeng, A. Yadav, O.A. Dobre, G.I. Tsiropoulos, and H.V. Poor,
“Capacity comparison between MIMO-NOMA and MIMO-OMA with
multiple users in a cluster,” IEEE J. Sel. Areas Commun., vol. 35, no.
10, pp. 2413–2424, 2017.

[31] X. Chen, Z. Zhang, C. Zhong, and D. W. K. Ng, “Exploiting multiple
antenna techniques for non-orthogonal multiple access,” IEEE J. Sel.
Areas Commun., vol. 35, no. 10, pp. 2207-2220, Oct. 2017

[32] F. Zhu, Z. Lu, J. Zhu, J. Wang, and Y. Huang, “Beamforming design for
downlink non-orthogonal multiple access systems,” IEEE Access, vol.
6, pp. 10956–10965, 2018.

[33] C. Chen, W. Cai, X. Cheng, L. Yang, and Y. Jin, “Low complexity
beamforming and user selection schemes for 5G MIMO-NOMA sys-
tems,” IEEE J. Sel. Areas Commun., vol. 35, no. 12, pp. 2708–2722,
Dec. 2017.

[34] Y. Liu, M. Elkashlan, Z. Ding, and G. K. Karagiannidis, “Fairness of
user clustering in MIMO non-orthogonal multiple access systems,” IEEE
Commun. Lett., vol. 20, no. 7, pp. 1465-1468, Jul. 2016.

[35] F. Alavi, K. Cumanan, Z. Ding, and A. G. Burr, “Beamforming tech-
niques for nonorthogonal multiple access in 5G cellular networks,” IEEE
Trans. Veh. Technol., vol. 67, no. 10, pp. 9474–9487, Oct. 2018.

[36] Y. Jeong, C. Lee, and Y. H. Kim, “Power minimizing beamforming and
power allocation for MISO-NOMA systems,” IEEE Trans. Veh. Technol.,
vol. 68, no. 6, pp. 6187–6191, Jun. 2019.

[37] J. Zhang, Y. Zhu, S. Ma, X. Li, and K.-K. Wong, “Large system
analysis of downlink MISO-NOMA system via regularized zero-forcing
precoding With imperfect CSIT” IEEE Commun. Letters, vol. 24, no.
11, pp. 2454-2458, Nov. 2020.

[38] Jianhang Chu, Xiaoming Chen, Caijun Zhong, and Zhaoyang Zhang,
“Robust design for NOMA-based multi-Beam LEO satellite internet of
things,” https://arxiv.org/abs/2008.03868.

[39] A.Z. Yalcin, and M. Yuksel, “Max-min fair precoder design for non-
orthogonal multiple access,” https://arxiv.org/abs/1911.09402.

[40] Y. Liu, X. Mu, X. Liu, M. Di Renzo, Z. Ding, and R. Schober,
“Reconfigurable intelligent surface (RIS) aided multi-user networks:
interplay between NOMA and RIS,” arXiv:2011.13336.

[41] Z. Chen, Z. Ding, P. Xu and X. Dai, “Optimal precoding for a
QoS optimization problem in two-user MISO-NOMA downlink,” IEEE
Commun. Lett., vol. 20, no. 6, pp. 1263-1266, June 2016

[42] Z. Chen, Z. Ding, X. Dai and G. K. Karagiannidis, “On the application
of quasi-degradation to MISO-NOMA downlink,” IEEE Trans. Signal
Processing, vol. 64, no. 23, pp. 6174-6189, Dec., 2016

[43] L. Dai, B. Wang, M. Peng and S. Chen, “Hybrid precoding-based
millimeter-wave massive MIMO-NOMA with simultaneous wireless
information and power transfer,” IEEE J. Sel. Areas Commun., vol. 37,
no. 1, pp. 131-141, Jan. 2019.

[44] J. Zhu, J. Wang, Y. Huang, K. Navaie, Z. Ding and L. Yang, “On
Optimal Beamforming Design for Downlink MISO NOMA Systems,”
IEEE Trans. Veh. Technol., vol. 69, no. 3, pp. 3008-3020, March 2020.

[45] B. Clerckx, H. Joudeh, C. Hao, M. Dai and B. Rassouli, “Rate splitting
for MIMO wireless networks: A promising PHY-layer strategy for LTE
evolution,” IEEE Commun. Mag., pp. 98-105, May 2016.

[46] S. Yang, M. Kobayashi, D. Gesbert and X. Yi, “Degrees of Freedom of
Time Correlated MISO Broadcast Channel With Delayed CSIT,” IEEE
Trans. Inf. Theory, vol. 59, no. 1, pp. 315-328, Jan. 2013.

[47] H. Joudeh et al., “Sum-rate maximization for linearly precoded downlink
multiuser MISO systems with partial CSIT: A rate-splitting approach,”
IEEE Trans. Commun., vol. 64, no. 11, pp. 4847-4861, Nov. 2016.

[48] H. Joudeh and B. Clerckx, “Robust transmission in downlink multiuser
MISO systems: A rate-splitting approach,” IEEE Trans. Signal Process.,
Vol. 64, No. 23, pp. 6227-6242, Dec. 2016.

[49] C. Hao, Y. Wu, and B. Clerckx, “Rate analysis of two-receiver MISO
broadcast channel with finite rate feedback: A rate-splitting approach,”
IEEE Trans. Commun., vol. 63, no. 9, pp. 3232-3246, Sept. 2015.

[50] M. Dai, B. Clerckx, D. Gesbert, and G. Caire, “A rate splitting
strategy for massive MIMO with imperfect CSIT,” IEEE Trans. Wireless
Commun., vol. 15, no. 7, pp. 4611-4624, July 2016.

[51] Y. Mao, B. Clerckx, and V.O.K. Li, “Rate-splitting multiple access for
downlink communication systems: bridging, generalizing and outper-
forming SDMA and NOMA,” EURASIP J. Wireless Commun. Netw.,
May 2018.

[52] E. Bjornson, L. Sanguinetti, H. Wymeersch, J. Hoydis, T. L. Marzetta,
“Massive MIMO is a reality—What is next? Five promising research
directions for antenna arrays,” Digital Signal Processing, vol. 94, pp.
3-20, 2019.

[53] S. Timotheou and I. Krikidis, “Fairness for non-orthogonal multiple
access in 5G systems,” IEEE Signal Process. Lett., vol. 22, no. 10, pp.
1647–1651, Oct. 2015.

[54] J. Choi, “Power allocation for max-sum rate and max-min rate propor-
tional fairness in NOMA,” IEEE Commun. Lett., vol. 20, no. 10, pp.
2055-2058, Oct. 2016.

[55] L. Zheng and D. Tse, “Diversity and multiplexing: a fundamental
tradeoff in multiple antenna channels,” IEEE Trans. Inf. Theory, vol.
49, no. 5, pp. 1073–1096, May 2003.

[56] H. Joudeh and B. Clerckx, “Rate-splitting for max-min fair multigroup
multicast beamforming in overloaded systems,” IEEE Trans. Wireless
Commun., vol. 16, no. 11, pp. 7276-7289, Nov. 2017.

[57] R. Knopp and P. A. Humblet, “Information capacity and power control in
single-cell multiuser communications,” Proc. IEEE Int. Conf. Commun.
(ICC), 1995.

[58] G. Caire and S. Shamai (Shitz), “On the achievable throughput of a
multiantenna Gaussian broadcast channel,” IEEE Trans. Inf. Theory, vol.
49, no. 7, pp. 1691–1706, Jul. 2003.

[59] N. Jindal and A. Goldsmith, “Dirty-paper coding versus TDMA for
MIMO broadcast channels,” IEEE Trans. Inf. Theory, vol. 51, no. 5, pp.
1783–1794, May 2005.

[60] P. Ding, D. J. Love, and M. D. Zoltowski, “Multiple antenna broadcast
channels with shape feedback and limited feedback,” IEEE Trans. Signal
Process., vol. 55, no. 7, pp. 3417-3428, July 2007.

[61] M. Kobayashi, N. Jindal and G. Caire,“Training and feedback optimiza-
tion for multiuser MIMO downlink," IEEE Trans. on Commun., vol. 59,
no. 8, pp. 2228-2240, August 2011.

[62] H. V. Poor, “An Introduction to Signal Detection and Estimation,”
Springer Science & Business Media, 2013.

[63] A.G. Davoodi and S.A. Jafar, “Aligned image sets under channel
uncertainty: Settling conjectures on the collapse of degrees of freedom
under finite precision CSIT,” IEEE Trans. Inf. Theory, vol. 62, no. 10,
pp. 5603–5618, Oct. 2016.

[64] N. Jindal, “MIMO broadcast channels with finite-rate feedback,” IEEE
Trans. Inf. Theory, vol. 52, no. 11, pp. 5045–5060, Nov. 2006.

[65] L.-U. Choi and R.D. Murch, “A transmit preprocessing technique for
multi user MIMO systems using a decomposition approach,” IEEE
Trans. Wireless Commun., vol. 3, no. 1, pp. 20–24, Jan. 2004.

[66] Z. Pan, K.K. Wong, and T.-S. Ng, “Generalized multiuser orthogonal
space-division multiplexing,” IEEE Trans. Wireless Commun., vol. 3, no.
6, pp. 1969–1973, Nov. 2004.

[67] A. Krishnamoorthy and R. Schober, “Uplink and Downlink MIMO-
NOMA with Simultaneous Triangularization,” IEEE Trans. Wireless
Commun., in press.

[68] A. Krishnamoorthy, Z. Ding and R. Schober, “Precoder Design and
Statistical Power Allocation for MIMO-NOMA via User-Assisted Si-
multaneous Diagonalization,” IEEE Trans. on Commun., vol. 69, no. 2,
pp. 929-945, Feb. 2021.

[69] L. Yin and B. Clerckx, “Rate-splitting multiple access for multigroup
multicast and multibeam satellite systems,” IEEE Trans. on Commun.,
in press.

[70] T. Han and K. Kobayashi, “A new achievable rate region for the
interference channel,” IEEE Trans. Inf. Theory, vol. 27, no. 1, pp. 49–60,
Jan. 1981.



30

[71] E. Piovano and B. Clerckx, “Optimal DoF region of the K-user MISO
BC with partial CSIT,” IEEE Commun. Lett., vol 21, no 11, pp 2368-
2371, Nov 2017.

[72] H. Joudeh and B. Clerckx, “DoF region of the MISO BC with partial
CSIT: proof by inductive Fourier-Motzkin elimination,” Proc. IEEE Int.
Workshop Signal Process. Adv. Wireless Commun. (SPAWC), 2019.

[73] C. Hao, B. Rassouli, and B. Clerckx, “Achievable DoF regions of MIMO
networks with imperfect CSIT,” IEEE Trans. on Inf. Theory, vol. 63, no.
10, pp. 6587-6606, Oct 2017.

[74] A.G. Davoodi, and S. Jafar, “Degrees of freedom region of the (M ,
N1, N2) MIMO broadcast channel with partial CSIT: An application
of sum-set inequalities based on aligned image sets,” IEEE Trans. Inf.
Theory, vol. 66, no. 10, pp. 6256 - 6279, Oct. 2020.

[75] A. Mishra, Y. Mao, O. Dizdar, and B. Clerckx, "Rate-Splitting Multiple
Access for Downlink Multiuser MIMO: Precoder Optimization and
PHY-Layer Design," in submission.

[76] K. Senel, H. V. Cheng , E. Bjornson, and E. G. Larsson, “What role can
NOMA play in massive MIMO?” IEEE J. Sel. Topics in Signal Process.,
vol. 13, no. 3, pp. 597-611, June 2019.

[77] B. Clerckx, Y. Mao, R. Schober, and H. V. Poor, “Rate-splitting unifying
SDMA, OMA, NOMA, and multicasting in MISO broadcast channel:
A simple two-user rate analysis,” IEEE Wireless Commun. Lett., vol. 9,
no. 3, pp. 349–353, Mar. 2020.

[78] Y. Mao, B. Clerckx and V.O.K. Li, “Rate-splitting for multi-antenna
non-orthogonal unicast and multicast transmission: spectral and energy
efficiency analysis,” IEEE Trans. on Commun., vol 67, no 12, pp. 8754-
8770, Dec 2019.

[79] M. Grant, S. Boyd, and Y. Ye. (2008), “CVX: MATLAB soft-
ware for disciplined convex programming,” [Online]. Available:
http://www.stanford.edu/ boyd/cvx

[80] S.S. Christensen, R. Agarwal, E.D. Carvalho, and J.M. Cioffi, “Weighted
sum-rate maximization using weighted MMSE for MIMO-BC beam-
forming design,” IEEE Trans. Wireless Commun., vol. 7, no. 12, pp.
4792–4799, Dec 2008.

[81] 3GPP TR 36.931 “LTE; Evolved universal terrestrial aadio access (E-
UTRA); radio frequency (RF) requirements for LTE pico node B," May
2011.

[82] A. Shapiro, D. Dentcheva, and A. Ruszczyński. “Lectures on Stochastic
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