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Nuclear long-lived spin states represent spin density operator configurations that are exceptionally well pro-
tected against spin relaxation phenomena. Their long-lived character is exploited in a variety of Nuclear
Magnetic Resonance (NMR) techniques. Despite growing importance of long-lived spin states in modern
NMR strategies for their identification have changed little over the last decade. The standard approach heav-
ily relies on a chain of group theoretical arguments. In this paper we present a more streamlined method
for the calculation of such configurations. Instead of focusing on the symmetry properties of the relaxation
superoperator, we focus on its corresponding relaxation algebra. This enables us to analyse long-lived spin
states with Lie algebraic methods rather than group theoretical arguments. We show that the centralizer of
the relaxation algebra forms a basis for the set of long-lived spin states. The characterisation of the centralizer
on the other hand does not rely on any special symmetry arguments and its calculation is straightforward.
We outline a basic algorithm and illustrate advantages by considering long-lived spin states for some spin-1/2
pairs and rapidly rotating methyl groups.

I. INTRODUCTION

Nuclear Magnetic Resonance (NMR) experiments in-
vestigate molecular properties through an interplay of
nuclear spins and externally applied radio-frequency
fields1,2. During this process the external fields inevitable
perturb the nuclear spins from their thermal equilibrium
position. The equilibration process may be described by
a quantum master equation3–7

d

dt
|ρ(t)) = L̂|ρ(t)) = (L̂coh + Γ̂)|ρ(t)). (1)

The current state of the spin ensemble is described by
the density operator ρ(t). The superoperator L̂ repre-
sents the generator of motion and may be subdivided
into a coherent contribution L̂coh and a dissipative con-
tribution Γ̂. The coherent Liouvillian L̂coh is given by
the commutation superoperator of the coherent part of
the Hamiltonian7,8

L̂coh|ρ(t)) = −iĤcoh|ρ(t)) = −i[Hcoh, ρ(t)], (2)

The dissipative contribution Γ̂ entails information about
the fluctuating part of the spin Hamiltonian, but does in
general not admit such a simple form. A more detailed
discussion of Γ̂ is therefore deferred to section II A.

The tendency of the nuclear spins to return to their
thermal equilibrium position limits the duration of NMR
experiments. At high magnetic fields for example, this
tendency is captured by two important constants, the
transverse relaxation time T2 and the longitudinal relax-
ation time T1. Several modern NMR experiments circum-
vent these time restrictions by utilising spin density oper-
ator configurations that are particular resilient to nuclear
spin relaxation phenomena. These configurations decay
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with time constants which may greatly exceed typical T1

and T2 values9–42.
In hindsight it is somewhat unfortunate that these den-

sity operator configurations have been referred to as “nu-
clear long-lived spin states”, when in fact the original
work by Carravetta et al. 9 explored the relaxation prop-
erties of long-lived quantum mixtures rather than pure
states. The term nuclear long-lived spin states should
thus be interpreted in a broader sense, not referring to
the relaxation properties of particular pure states, but
instead to the relaxation properties of a particular state
(configuration) of the physical system at hand. In order
to avoid any such confusion we will instead refer to these
density operator configurations as nuclear long-lived spin
operators. This convention encompasses both quantum
mixtures and quantum pure states.

The majority of long-lived spin operators may be found
in systems with internal symmetry43–54. Typical exam-
ples include symmetric arrangements of the spin interac-
tion network with respect spin permutations. To a first
approximation the symmetric interaction network causes
the relaxation process to be equally symmetric. Formally
speaking the relaxation superoperator remains invariant
under conjugation by some unitary superoperator ĝ

ĝΓ̂ĝ† = Γ̂ with ĝĝ† = 1. (3)

The set of superoperators {ĝ} forms the symmetry group
GΓ̂ of the relaxation superoperator.

The symmetry group of the relaxation superoperator
plays a central role in the theory of long-lived spin oper-
ators. The characterisation of long-lived spin operators
may then be based on group theoretical techniques55–57.
Symmetry projection operators have been particularly
useful in the characterisation of long-lived spin opera-
tors43–48,50–54. Nonetheless, some small caveats remain.
For example, construction of symmetry projection opera-
tors can be tricky at times. Additionally, for several cases
of practical relevance symmetry projection operator tech-
niques leave large gaps between group theoretical predic-
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tions and the actual number of long-lived spin operators.
Most notably for rapidly rotating methyl groups31,32,52.
For such systems group theoretical arguments need to
be complemented by taking rotational and permutation
dual symmetries into account53.

In order to avoid some of these complications we
present an alternative method for the calculation of long-
lived spin operators. Our approach is based on Lie
algebraic methods rather than group theoretical argu-
ments. Similar approaches have been used in the analy-
sis of decoherence-free subspaces, which is the quantum
information processing analog of long-lived spin opera-
tors58–61. The main idea is to shift the focus from the
symmetry group of the relaxation superoperator onto its
relaxation algebra. A precise definition will be given be-
low, but the relaxation algebra is closely related to the
fluctuating spin interactions driving the relaxation pro-
cess.

A central concept for our method will be the central-
izer of the relaxation algebra. The centralizer is the set
of operators that commute with all elements of the relax-
ation algebra simultaneously. The elements of the cen-
tralizer therefore represent spin operator configurations
that are immune to relaxation. Moreover, the centralizer
is closed under commutation and its elements generate
a Lie subalgebra. This means that there may not exist
any additional spin operators that are immune to relax-
ation. With this we are able to show that any long-lived
spin operator may be written as a linear combination of
the various elements of the centralizer. The connection
between long-lived spin operators and the centralizer of
the relaxation algebra offers several advantages. Most
notably, a) this approach avoids any intricate symme-
try arguments and b) the calculation of the centralizer
is straightforward. Systems displaying symmetries and
dual symmetries are therefore handled in a unified man-
ner. We outline an algorithm based on pair-wise inter-
sections of a certain class of null spaces and illustrate the
procedure by considering some simple example cases for
spin-1/2 pairs and rapidly rotating methyl groups.

II. THEORY

A. Generators of Motion

The quantum master equation (equation 1) builds the
basis for most of NMR relaxation theory. In order to pro-
ceed with a characterisation of long-lived spin operators
a more detailed analysis of the generators L̂coh and Γ̂ is
necessary.

Equation 2 defines the coherent Liouvillian L̂coh as the
commutation superoperator of the coherent part of the
spin Hamiltonian. The coherent spin Hamiltonian itself
may be expressed as a linear combination of some spin
operators Xm

Hcoh =
∑
m

xmXm. (4)

For simplicity we assume the coefficients xm to be inde-
pendent of time and the operators Xm to be orthogonal
with respect to the standard trace inner product

(Xm|Xn) = Tr{X†mXn} = δmn. (5)

The coherent Liouvillian is therefore given by a linear
combination of the corresponding commutation superop-
erators X̂m

7,8

L̂coh = −i
∑
m

xmX̂m. (6)

By definition, the coherent part of the Liouvillian is the
same for each member of the spin ensemble. For exam-
ple, in liquid state NMR the various Xm may describe the
scalar spin coupling network of the system or the interac-
tion with a static magnetic field, whereas the coefficients
xm describe the scalar coupling constants or the external
magnetic field strength1,2.

The relaxation superoperator Γ̂ is typically derived
from a microscopic model. On a microscopic scale the co-
herent evolution of individual ensemble members is per-
turbed by a fluctuating spin Hamiltonian Hfluc(t). The
fluctuating Hamiltonian may be expanded as follows4–7

Hfluc(t) =
∑
m

ym(t)Ym. (7)

The corresponding fluctuating Liouvillian is then simply
given by

L̂fluc(t) = −i
∑
m

ym(t)Ŷm. (8)

In contrast to the coherent case the expansion coefficients
ym(t) are allowed to vary randomly in time while keep-
ing the spin operators Ym fixed. In solution state NMR
the various Ym typically describe scalar spin-spin inter-
actions, dipolar spin interactions, etc4–7. The stochastic
time dependence of the expansion coefficients ym(t) origi-
nates from thermal fluctuations within the liquid. For ex-
ample, the distance and relative orientation of two spins
may be modulated as individual molecules undergo ro-
tational and translation Brownian motion. This in turn
leads to a stochastic modulation of their dipolar coupling
strength62–64.

Although the fluctuating contributions are in general
different for each ensemble member at a given point in
time, the arguments summarised in appendix B show
that the perturbed ensemble dynamics may approxi-
mately be described by the following evolution equa-
tion4–7

d

dt
|ρ(t)) = {L̂coh −

∑
mn

∫ +∞

0

kmn(τ)
˜̂
Ym(0)

˜̂
Y †n (τ)dτ}|ρ(t)).

(9)
The randomness within the system is quantified by (sta-
tionary) correlation functions kmn(τ) which describe the
correlations between any two couplings parameters

kmn(τ) = ym(0)y∗n(τ), (10)
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whereas the tilde indicates a transformation into the in-
teraction frame of the coherent Liouvillian

˜̂
Lfluc(t) = exp{−L̂coht}L̂fluc(t) exp{+L̂coht}. (11)

A comparison with equation 1 identifies the relaxation
superoperator Γ̂ as a time correlated product of the fluc-
tuating Liouvillian3,6,7

Γ̂ = −
∑
mn

∫ +∞

0

kmn(τ)
˜̂
Ym(0)

˜̂
Y †n (τ)dτ

=

∫ +∞

0

˜̂
Lfluc(0)

˜̂
Lfluc(τ)dτ.

(12)

A computationally convenient representation of Γ̂ may
be formulated by assuming that the operators Ym satisfy
the relation

L̂cohYm = [Hcoh, Ym] = ΩmYm. (13)

In this case, the operators Ym represent so-called eigen-
operators of the coherent Liouvillian and the associated
eigenvalues Ωm may be interpreted as the transition fre-
quencies of the system6,7. Ignoring small dynamical fre-
quency shifts (well justified for most NMR experiments
as shown in appendix C) the relaxation superoperator in
equation 12 reduces to

Γ̂ = −
∑
mn

Re{Jmn(Ωn)}ŶmŶ †n , (14)

where we have introduced the noise spectral densities

Jmn(Ω) =

∫ +∞

0

kmn(τ) exp(+iΩτ)dτ. (15)

The action of Γ̂ onto the density operator ρ(t) then re-
duces to a nested double commutator of the form

Γ̂|ρ(t)) = −
∑
mn

Re{Jmn(Ωn)}[Ym, [Y †n , ρ(t)]]. (16)

There are several things to note about the relaxation
superoperator given by equation 14.
1) Efficient spin relaxation may only occur for cases with
spectral noise densities with sufficiently strong ampli-
tudes at the transition frequencies of the system. This
captures the fact that noise driven spin transitions are
possible if the stochastic fluctuations vary on the same
time scale as one of the possible transitions frequencies
of the system.
2) The correlation functions kmn(τ), and hence the noise
spectral densities Jmn(Ω), are of classical nature. The

relaxation superoperator Γ̂ therefore represents a semi-
classical approximation to the relaxation process. As
a result, the spectral densities do not explicitly de-
pend upon the temperature of the environment. Strictly
speaking Γ̂ describes equilibration at infinite tempera-
ture, and should be thermally corrected to account for

spin relaxation at finite temperatures65–68. However, as
discussed below, it is not too difficult to show that long-
lived spin operators at infinite temperature remain long-
lived within the high-temperature and high-entropy ap-
proximation. This situation applies to many conventional
NMR experiments, so that we will restrict our attention
to the infinite temperature case.
3) The double commutator formulation of dissipative spin
dynamics may be familiar to NMR spectroscopists, but
less familiar to other fields which describe open quantum
systems in terms of a Lindblad equation69–71. The ap-
parent failure of Γ̂ to satisfy a Lindblad equation may be
traced back to a classical treatment of the environments
degrees of freedom. In particular reducing the interac-
tion of the system and the environment to a stochastic
modulation of the spin coupling parameters without any
reference to the temperature of the environment. How-
ever, as discussed in reference 68 for example, it may be
shown that the Lindblad equation at infinite temperature
may alternatively be represented as a nested double com-
mutator. Equation 14 should therefore be interpreted as
a Lindblad equation at infinite temperature.

B. Long-lived Spin Operators

The Liouvillian L̂ may be characterised by a set of
(generalised) right eigenoperators |Φj) with correspond-
ing eigenvalues Λj

L̂|Φj) = Λj |Φj) = (+iωj − λj)|Φj). (17)

Both ωj and λj are real, with λj ≥ 0 additionally being
non-negative. The coherent behaviour of |Φj) is char-
acterised by its oscillation frequency ωj , the dissipative
behaviour by its decay constant λj .
Exact long-lived spin operators, denoted by Φ0

j , have
eigenvalues with a vanishing real part (λj = 0)

L̂|Φ0
j ) = Λ0

j |Φ0
j ) = +iωj |Φ0

j ). (18)

This definition includes long-lived populations and long-
lived coherences. Our definition of long-lived coherences
varies from the definition given in reference 19. Sarkar
et al. define long-lived coherences as coherent superpo-
sitions between different symmetry manifolds. Such co-
herences are in general neither eigenoperators of L̂ nor
do they display eigenvalues with a vanishing real part.

Obtaining information about the eigenoperators of a
generic Liouvillian is difficult. A common starting point
is therefore to instead consider the eigenoperators of Γ̂

Γ̂|Ψj) = −ζj |Ψj), (19)

where ζj is purely real and non-negative. Eigenoperators

Ψ0
j with eigenvalue ζj = 0 form the null space, null(Γ̂),

of the relaxation superoperator43,48,53

Γ̂|Ψ0
j ) = 0 ⇐⇒ |Ψ0

j ) ∈ null(Γ̂). (20)
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Typically the elements of null(Γ̂) are assumed to approxi-
mately retain their long-lived behaviour under the action
of L̂. For example Ψ0

j remains an approximate eigenop-

erator of L̂ with its eigenvalue having a vanishing real
part

L̂|Ψ0
j ) ≈ +iω

′

j |Ψ0
j ). (21)

Generally speaking this is not true and L̂ will mix differ-
ent eigenoperators of Γ̂. But for the infinite temperature
case (Γ̂ = Γ̂†) we may show that eigenoperator mixing
obeys the following rule.

Proposition 1. The eigenoperators Φ0
j of L̂ with a van-

ishing real part may be written as a linear combination
of eigenoperators Ψ0

j of Γ̂ = Γ̂† with ζj = 0.

Proposition 1 implies that the generic form of the long-
lived spin operators of L̂ is already determined by the
structure of Γ̂, and that their number may never exceed
the number of long-lived spin operators of Γ̂.

Proof. It is sufficient to show that none of the Φ0
j have

components along any of the Ψk with ζk > 0. To see this,
consider the following inner product

(Ψk|L̂+ L̂†|Φ0
j ) = +iωj(Ψk|Φ0

j ) + (Ψk|L̂†Φ0
j )

= (Ψk|(−iĤcoh + Γ̂) + (−iĤcoh + Γ̂)†|Φ0
j )

= 2(Ψk|Γ̂|Φ0
j )

= −2ζk(Ψk|Φ0
j ),

(22)

To evaluate the action of L̂† onto Φ0
j we consider its in-

teraction with an arbitrary operator Q. The operator Q
may be decomposed as follows

Q = Q⊥ + aΦ0
j , (23)

where Q⊥ is orthogonal to Φ0
j and a the projection of Q

along Φ0
j . The inner product of L̂†|Φ0

j ) with Q is then
given by

(Q|L̂†Φ0
j ) = (L̂Q|Φ0

j )

= (L̂Q⊥|Φ0
j ) + (aL̂Φ0

j |Φ0
j )

(24)

We utilise the fact that the eigenoperators Φ0
j are ordi-

nary eigenoperators of L̂ (see appendix A). This implies

that L̂Q⊥ remains orthogonal to Φ0
j , leading to the fol-

lowing equality

(Q|L̂†Φ0
j ) = (L̂Q⊥|Φ0

j ) + (aL̂Φ0
j |Φ0

j )

= (aL̂Φ0
j |Φ0

j )

= (+iωjaΦ0
j |Φ0

j )

= −iωj(aΦ0
j |Φ0

j )

= −iωj(Q⊥ + aΦ0
j |Φ0

j ) since (Q⊥|Φ0
j ) = 0

= −iωj(Q|Φ0
j ) for Q arbitrary.

(25)

Replacing Q by Ψk shows that the first line of equation
22 vanishes, so that the components of Φ0

j along Ψk are
constrained by

(Ψk|L̂+ L̂†|Φ0
j ) = −2ζk(Ψk|Φ0

j ) = 0. (26)

But since we have assumed that ζk > 0 it follows that
(Ψk|Φ0

j ) = 0 for any k.

As shown in appendix D, these arguments are not
spoiled by considering relaxation at finite temperature
as long as the system fulfills the high-temperature and
high-entropy condition. The majority of the remaining
discussion we will therefore focus on the characterisation
of the null space of Γ̂ instead of L̂.

C. Lie Algebras

Unitary evolution of a spin ensemble is generated by a
set of hermitian traceless spin operators Q in the sense
that any Hamiltonian H may be represented as a linear
combination of the various Q ∈ Q. We may assign matrix
representations to the elements of Q. These may be com-
bined via the matrix commutator [A,B] = AB −BA.

Definition II.1. A set of spin operators Q together with
the commutator [A,B] that fulfills the following condi-
tions for any combination of the various Q’s

• Bilinearity:
[aA+ bB,C] = a[A,C] + b[B,C].
[C, aA+ bB] = a[C,A] + b[C,B].

• Jacobi identity:
[A, [B,C]] + [C, [A,B]] + [B, [C,A]] = 0.

• Alternativity:
[A,A] = 0.

is called a Lie algebra L(Q)72,73.

A simple example is the set of Cartesian angular mo-
mentum operators {Lx, Ly, Lz} with its cyclic commuta-
tion relations55–57

[Lx, Ly] = Lz, [Lz, Lx] = Ly, [Ly, Lz] = Lz. (27)

This set is closed under commutation and fulfills the for-
mal requirements of a Lie algebra.

The set Q however does not need to exhaust all ele-
ments of the corresponding Lie algebra. For example, the
set {Lx, Ly} also generates the Lie algebra of the Carte-
sian angular momentum operators since we may generate
Lz through commutation of Lx and Ly. Such a set is
called a generating set of the Lie algebra72,73. So to be
more precise, by L(Q) we refer to the set of all linearly
independent operators generated by all possible nested
commutators of the various elements of Q.

The Lie algebra L(Q) may contain a smaller subset O
that fulfills the conditions of a Lie algebra on its own72,73.
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Definition II.2. A subset O ⊂ L(Q) that is closed un-
der commutation

[O1, O2] ∈ O, (28)

is called a Lie subalgebra L(O) ⊂ L(Q).

D. Centralizer of a Lie Algebra

An important concept for our characterisation of long-
lived spin operators is the centralizer C(L(O)) of a Lie
subalgebra L(O) ⊂ L(Q)72.

Definition II.3. The centralizer C(L(O)) is the set of
elements Q ∈ L(Q) that commute with all elements in
L(O).

C(L(O)) = {Q ∈ L(Q) | [Q,O] = 0 ∀ O ∈ L(O)}. (29)

Additionally, we would like to avoid the necessity of
specifying the whole Lie subalgebra L(O). Instead we
would like to work with one of the possible generating
sets. In later applications this generating set will typi-
cally be determined by the components of the relaxation
superoperator Γ̂. Thankfully the centralizer is completely
determined by any of the generating sets O of L(O).

Proposition 2. A Lie algebra L(O) and any of
its generating sets O have the same centralizer,
C(L(O)) = C(O).

Proof. This follows from the Jacobi identity, suppose that
C ∈ C(O) and O1, O2 ∈ O

[C, [O1, O2]] + [O2, [C,O1]] + [O1, [O2, C]] = 0

[C, [O1, O2]] = 0.
(30)

Similarly, every possible nested commutator of O1, O2

and C vanishes by repeated application of the Jacobi
identity. But sinceO is a generating set of L(O) it follows
that C(O) ⊂ C(L(O)). The inclusion C(L(O)) ⊂ C(O)
follows from the definition of the centralizer.

Consider for example the coherent Hamiltonian given
by equation 4 and the set of operators {C} that commute
with Hcoh

[Hcoh, C] =
∑
m

xm[Xm, C] = 0. (31)

The vanishing commutator indicates that the expecta-
tion value 〈C〉 of any operator C remains conserved dur-
ing the evolution. These expectation values are the con-
stants of motion of the system. But since the coefficients
xm are arbitrary, individual commutators must vanish
identically

[X1, C] = 0, [X2, C] = 0, . . . , [XN , C] = 0. (32)

The question of ”Which operators commute with Hcoh?”
is therefore equivalent to finding all operators that com-
mute with every element in the set {Xm}. But this is pre-
cisely the centralizer of {Xm}. The constants of motions
are therefore related to the elements of the centralizer

C ∈ C({Xm}) ⇐⇒ 〈C〉 = constant of motion. (33)

E. Centralizer of the Relaxation Algebra

According to proposition 1, long-lived spin operators,
at least to a first approximation, may be identified as
the elements of the null space of Γ̂. Drawing analogy
to the coherent case long-lived spin operators represent
“constants of relaxation”. It therefore seems reasonable
to explore if long-lived spin operators may also be char-
acterised by some type of centralizer.

In order to make that connection more apparent we
abbreviate the real part of the spectral densities by

wmn = Re{Jmn(Ωn)} (34)

and consider a relaxation superoperator of the form

Γ̂ = −
∑
mn

wmnŶmŶ
†
n , (35)

For any valid relaxation superoperator the coefficients
wmn form a hermitian positive semidefinite matrix74,75

v†Wv =
∑
mn

v∗mwmnvn ≥ 0 for arbitrary v, (36)

so that W may be diagonalised. The eigenvalues and
eigenvectors of W

Wzk = dkzk (37)

are used to define a new set of relaxation operators

Vk = [zk]mYm. (38)

This ”diagonalised” set of operators {V } eliminates the
double sum of equation 35

Γ̂ = −
∑
k

dkV̂k V̂
†
k . (39)

Motivated by this observation, we define the set of op-
erators V = {V } as the generating set of the relaxation
algebra L(V). We note that if V is not hermitian, then
both V and V † are elements of V since the fluctuating
Hamiltonian is hermitian at all points in time.

Theorem II.1 (Centralizer and LLS correspondence).

The set of long-lived spin operators {Ψ0
j} of Γ̂ coincides

with the centralizer of the relaxation algebra C(V).
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Proof. Suppose C ∈ C(V), since any of the V †k ’s is an
element of V, the inner commutator of the double com-
mutator vanishes by definition

V̂ †kC = [V †k , C] = 0 ∀k. (40)

We therefore have C(V) ⊂ null(Γ̂).

Now suppose that Ψ0 ∈ null(Γ̂). Due to the hermiticity

of Γ̂ for conjugate pairs k and k∗ one has

dkV̂k V̂
†
k + dk∗ V̂

†
k V̂k = dk(V̂k V̂

†
k + V̂ †k V̂k ). (41)

Apart from that the relaxation coefficients dk ≥ 0 are
arbitrary. For any operator φ and fixed Ψ0 one then has

(φ|(V̂k V̂
†
k + V̂ †k V̂k )|Ψ0) = 0 ∀k, φ. (42)

The particular choice φ = Ψ0 leads to

(Ψ0|V̂k V̂
†
k Ψ0) + (Ψ0|V̂ †k V̂k Ψ0) = 0

(V̂ †k Ψ0|V̂ †k Ψ0) + (V̂k Ψ0|V̂k Ψ0) = 0∥∥∥V̂ †k Ψ0
∥∥∥2

+
∥∥∥V̂k Ψ0

∥∥∥2

= 0∥∥∥[V †k ,Ψ
0]
∥∥∥2

+
∥∥∥[Vk ,Ψ

0]
∥∥∥2

= 0 ∀k.

(43)

The last equality implies that [V †k ,Ψ
0] = [Vk,Ψ

0] = 0
for every k. The vanishing commutators on the other
hand imply that Ψ0 ∈ C(V), so that the null space of

Γ̂ is included in the centralizer of the relaxation algebra
null(Γ̂) ⊂ C(V).

Theorem II.1 represents the main result of our paper
establishing a rigorous relation between long-lived spin
operators and the centralizer of the relaxation algebra.

The mathematical relationship between long-lived spin
operators in NMR and the centralizer concept in Lie Al-
gebra is of conceptual value. Furthermore, the Lie al-
gebra approach to long-lived spin operators leads to an
efficient computational method for the identification of
long-lived spin operators, as discussed further below.

F. Centralizer for the Symmetric Algebra

Analytic results for the centralizer of generic relaxation
algebra are challenging. But it is well known that long-
lived spin operators predominantly arise whenever the
coherent and fluctuating contributions display some type
of internal symmetry43–54. The relaxation algebra then
consists of a set spin operators invariant under some sym-
metry group G. For such cases it is possible to give an
explicit characterisation of the centralizer. As a special
case of this we consider spin permutation symmetry.

A spin system displays spin permutation symmetry if
its coherent Hamiltonian remains invariant under conju-
gation by a spin permutation operator P

PHcohP
† = Hcoh. (44)

Since spin permutations represent unitary operations

P †P = 1, (45)

it follows that the set of all such permutations {P}
forms the permutation group Gcoh = {P} of the coherent
Hamiltonian55,56. The Hamiltonian then possesses Gcoh

symmetry or is invariant underGcoh. We will denote such
a Hamiltonian by H?

coh omitting any specific reference to
the group Gcoh.

A simple example is the coherent Hamiltonian for a
strongly coupled spin-1/2 pair in the presence of an ex-
ternal magnetic field

H?
coh = ω0(I1z + I2z) + 2πJ12I1 · I2, (46)

where ω0 = −2πB0γ represents the Larmor frequency of
the spins and J12 their scalar coupling constant. This
Hamiltonian is invariant under exchange of spins 1 and
2. Its symmetry properties may be described by the sym-
metric group of order two76

S2 = {1, P12}. (47)

Generalisations to larger spin systems are straightfor-
ward47,49–51.

Similarly, the relaxation superoperator may be invari-
ant under conjugation by a spin permutation superoper-
ator P̂

P̂ Γ̂?P̂ † = Γ̂?. (48)

The collection of all such permutations forms the symme-
try group GΓ̂ of the relaxation superoperator. In general,

the symmetry groups Gcoh of H?
coh and GΓ̂ of Γ̂? are not

the same. But in practice it often turns out GΓ̂ ⊂ Gcoh is
a subgroup of the symmetry group of the coherent Hamil-
tonian50,51. A first approximation to the relaxation su-
peroperator is then given by50–53

Γ̂? = −
∑
k

dkV̂
?
k V̂

?†
k , (49)

where the set {V ?} is a collection of symmetric spin oper-
ators. We call this set the symmetric relaxation algebra
and denote it by V?.

On the Hilbert space (H) of our system we may assign
a matrix representation D(P ) to each spin permutation
operator P . According to standard results from group
theory there exists a unitary transformation T that si-
multaneously block diagonalises all elements of GΓ̂

55–57

TD(P )T † =

NΓ⊕
j=1

mΓ
jD

Γj (P ) ∀P ∈ GΓ̂. (50)

The matrices DΓj (g) are the irreducible representations
of GΓ̂ and may be labelled by some index Γj . For a
given group GΓ̂ there may exist NΓ irreducible represen-
tations in total, each representation is of dimensionality
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dΓ
j . Depending on the Hilbert space H each irreducible

representation Γj may occur with a multiplicity mΓ
j . The

dimension of H may therefore be expressed as follows

dH =

NΓ∑
j=1

mΓ
j d

Γ
j . (51)

The spin states that generate the irreducible representa-
tions of GΓ̂ form a symmetry adapted basis B. In order
to fully specify the basis elements of B we make use of
three ”quantum” numbers or group labels

B = {|Γj , γ, µ〉}. (52)

The first label Γj specifies the irreducible representation
a spin state belongs to. The second label γ distinguishes
between basis elements belonging to the same irreducible
representation but different ”sub-representations” (ap-
plies to dΓ

j > 1). The third label µ is necessary to
distinguish between spin states of identical symmetry
(Γj , γ), but belonging to different copies of Γj (applies
to mΓ

j > 1).
According to the Schur orthogonality relations (see ap-

pendix E) transition elements involving symmetric oper-
ators Q? = PQ?P † and elements of B obey the following
symmetry constraints

〈Γj , γ, µ|Q?|Γk, η, ν〉 ∝ δjkδγη. (53)

Symmetric operators are therefore unable to induce tran-
sitions between spin states belonging to different ir-
reducible representations. Within a symmetry mani-
fold symmetric operators additionally preserve the sub-
representation of a given spin state.

Equation 53 indicates that the matrix representation
D(V ?) of any operator of the relaxation algebra V? splits
into the following components

D(V ?) =KΓ1(V ?)⊕ · · · ⊕KΓ1(V ?)︸ ︷︷ ︸
dΓ

1

⊕ . . .

⊕KΓNΓ (V ?)⊕ · · · ⊕KΓNΓ (V ?)︸ ︷︷ ︸
dΓ
NΓ

,
(54)

where eachKΓj is of dimensionmΓ
j×mΓ

j . We deliberately

chose the symbol KΓj to distinguish these matrices from
the irreducible representations DΓj .

The centralizer C(V?) may now be determined by ex-
plicitly considering the resulting commutator relations.
For simplicity we consider an irreducible representation
Γk with dimensionality dΓ

k = 2 and multiplicity mΓ
k . The

commutator in block diagonal matrix form reads as fol-
lows [

KΓk(V ?) 0
0 KΓk(V ?)

] [
A B
C D

]
−[

A B
C D

] [
KΓk(V ?) 0

0 KΓk(V ?)

]
= 0.

(55)

Carrying out block matrix multiplication leads to the fol-
lowing set of equations[

[KΓk(V ?), A] [KΓk(V ?), B]
[KΓk(V ?), C] [KΓk(V ?), D]

]
= 0. (56)

If the symmetric relaxation algebra exhausts the set of
all symmetric operators, then the only matrix that fulfils
these conditions for every V ? ∈ V? is given by[

A B
C D

]
=

[
a1mΓ

k
b1mΓ

k

c1mΓ
k
d1mΓ

k

]
=

[
a b
c d

]
⊗ 1mΓ

k

= MdΓ
k
⊗ 1mΓ

k
,

(57)

where 1mΓ
k

represents an mΓ
k ×mΓ

k dimensional identity

matrix and MdΓ
k

a generic dΓ
k × dΓ

k dimensional matrix.

A similar analysis is applicable to any other irreducible
representation Γj . The centralizer C(V?) of the symmet-
ric relaxation algebra is thus given by

C(V?) =

NΓ⊕
j=1

MdΓ
j
⊗ 1mΓ

j
. (58)

(Although different in interpretation, these matrices re-
semble the center of the symmetric group76.)

From equation 58 it follows that the number of long-
lived spin operators is given by

NLLS =

NΓ∑
j=1

dΓ
j × dΓ

j . (59)

This number may be split into the number of long-lived
spin populations and coherences

NP
LLS =

NΓ∑
j=1

dΓ
j ,

NC
LLS =

NΓ∑
j=1

dΓ
j × (dΓ

j − 1).

(60)

This result agrees with our previous analysis on the num-
ber of long-lived spin operators based on symmetry pro-
jection operator techniques53. This is not too surprising,
expressing the symmetry projection operators in terms
of symmetry adapted spin states, it is easy to verify that
the elements of the centralizer C(V?) span the same op-
erator space as the corresponding symmetry projection
operators.

G. Centralizer for a generic Algebra

In some cases the symmetric relaxation algebra V?
displays symmetry constraints beyond permutation sym-
metry31,32,52,53. An example of such a case would be
a rapidly ”rotating” methyl group dominated by dipo-
lar relaxation. The rapid methyl rotation imposes S3
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symmetry onto the relaxation superoperator, but the as-
sumption of predominately dipolar relaxation further re-
stricts the symmetric relaxation algebra V? to irreducible
tensor operators of spherical rank k = 2.

For CH3 groups a full characterisation of its long-lived
operators may be given by utilising the Schur-Weyl du-
ality theorem53. In more general cases however, such as
rapidly reorienting CD3 for example, an analysis based on
rotational-permutational dual-pairings becomes increas-
ingly difficult and has only been partially resolved53,54.

To calculate the centralizer for a general relaxation al-
gebra we note the following relation between the cen-
tralizer of the combined Lie algebra L(Oa ∪ Ob) and its
constituents L(Oa), L(Ob).

Proposition 3. The centralizer for the combined Lie al-
gebra L(Oa∪Ob) is given by C(Oa∪Ob) = C(Oa)∩C(Ob).

Proof. Consider an element C ∈ C(Oa) ∩ C(Ob) and
O12 ∈ L(Oa ∪ Ob). If the operator O12 is an element
of L(Oa) or L(Ob) it commutes with C by definition,
otherwise O12 is the result of a (possibly) nested commu-
tator. Repeated application of the Jacobi identity shows
that [C,O12] = 0, this implies that C(Oa) ∩ C(Ob) ⊂
C(Oa ∪Ob). The inclusion C(Oa ∪Ob) ⊂ C(Oa)∩C(Ob)
follows from the fact that L(Oa),L(Ob) ⊂ L(Oa ∪ Ob)
and the definition of the centralizer.

If we consider elements Vk ∈ V of the relaxation al-
gebra on their own, then repeated application of propo-
sition 3 shows that the centralizer C(V) is given by a

pair-wise intersection of the null spaces null(V̂k)

C(V) = null(V̂1) ∩ null(V̂2) ∩ · · · ∩ null(V̂N ). (61)

The calculation of all long-lived spin operators is there-
fore reduced to a simple linear algebra problem. A par-
ticularly simple procedure for the calculation of a general
centralizer is given by Algorithm 1.

Algorithm 1: Centralizer for a relaxation
algebra V.

function Centralizer (V);
Input : A generating set of matrices for the

relaxation algebra L(V)
Output: C(V)
for i = 1; i ≤ N do

V̂i = Vi ⊗ 1− 1⊗ V T
i

end

Centralizer = null(V̂1)
for i = 2; i ≤ N do

Centralizer = Centralizer ∩ null(V̂i)
end
return Centralizer

III. ILLUSTRATIVE NMR EXAMPLES

A. Spin-1/2 pairs

1. Isotropic random fields

The simplest non-trivial long-lived spin operator may
be found in coupled spin-1/2 pairs. Consider for example
a coupled spin-1/2 pair at sufficiently low magnetic fields.
The coherent Hamiltonian is then given by

H?
coh = 2πJ12I1 · I2. (62)

The star indicates S2 spin permutation symmetry of the
Hamiltonian.

Let us further assume that the relaxation process is
driven by perfectly correlated random fields acting sym-
metrically on spins 1 and 2. The fluctuating Hamiltonian
is then also S2 symmetric and given by

H?
fluc(t) =

∑
µ∈{x,y,z}

ωµ(t)(I1µ + I2µ) =
∑

µ∈{x,y,z}

ωµ(t)Iµ.

(63)
Following equation 12 the resulting relaxation superop-
erator may be expressed as follows

Γ̂? = −
∑

µ,µ′∈{x,y,z}

∫ +∞

0

ωµ(0)ω∗µ′(τ)ÎµÎ
†
µ′dτ

= −
∑

µ,µ′∈{x,y,z}

∫ +∞

0

kµµ′(τ)ÎµÎ
†
µ′dτ

= −
∑

µ,µ′∈{x,y,z}

wµµ′ ÎµÎ
†
µ′ .

(64)

The matrix W may be identified as a collection of cross-
correlation integrals

W =

∫ +∞

0

 kxx(τ) kxy(τ) kxz(τ)
kxy(τ) kyy(τ) kyz(τ)
kxz(τ) kyz(τ) kzz(τ)

 dτ. (65)

By definition W is symmetric W = W † and positive
semidefinite W ≥ 0.

If the fluctuations are additionally spatially isotropic
W may be expressed as follows43

W = τrand(γBrms
rand)2

 1 ξ ξ
ξ 1 ξ
ξ ξ 1

 . (66)

Here, τrand and Brms
rand describe the correlation time and

amplitude of the fluctuations, whereas 0 ≤ ξ ≤ 1 de-
scribes the correlations between fluctuations along two
orthogonal axes.

The matrix W is readily orthogonalised, its eigenvalues
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and eigenvectors are given by

[
d1 d2 d3

z1 z1 z2

]
=


1 + 2ξ 1− ξ 1− ξ

1√
3
− 1√

6
− 1√

2

1√
3

√
2
3 0

1√
3
− 1√

6
1√
2

 . (67)

Following equation 38 the generating set V? of the sym-
metric relaxation algebra L(V?) is given by

V? = { 1√
3

(Ix + Iy + Iz),
1√
6

(2Iy − Ix − Iz),
1√
2

(Iz − Ix)}.

(68)
Since any V ∈ V? is invariant under elements of

the symmetric group S2, it is simple enough to calcu-
late the centralizer C(V?) analytically. The symmetric
group S2 is characterised by its gerade (g) and ungerade
(u) irreducible representations. Both g and u are one-
dimensional representations so that according to equa-
tion 59 the centralizer C(V?) is two-dimensional. As may
be verified by direct calculation, the centralizer elements
are the projectors (ΠΓ) onto the different symmetry man-
ifolds

C(V?) = {Πg,Πu} = {1+ P12,1− P12}. (69)

Choosing Πg and Πu to be orthonormal with respect to
the trace inner product transforms the centralizer C(V?)
into a more familiar form

C(V?) = {1

2
1,

2√
3
I1 · I2}. (70)

The first element represents the conservation of all pop-
ulations as required by any reasonable physical process.
The second centralizer element is the well-known singlet
order operator representing a population difference across
the (g, u) symmetry manifolds of the system77,78.

2. Anti-correlated random fields

We now consider a slightly less intuitive example of
random field relaxation. We leave the coherent Hamilto-
nian unchanged, but instead consider the following fluc-
tuating Hamiltonian

Hfluc(t) = ωz(t)(I1z + I2z) +
∑

µ∈{x,y}

ωµ(t)(I1µ − I2µ).

(71)
The two spins experience identical fluctuations along the
z-axis, but fluctuations along the x-and y-axis are per-
fectly anti-correlated.

The fluctuating Hamiltonian 71 does not possess any
definite symmetry and is in fact a mixture of symmet-
ric and anti-symmetric contributions. As a result typical
symmetry arguments would either lead to a) the conclu-
sion that no long-lived spin operator exists, or b) at best

acknowledge the possibility of a long-lived spin operator
without explicit means of calculation. The centralizer
approach on the other hand gives a definite answer.

Taking W to equal the cross-correlation matrix of
equation 66 the generating set of the relaxation algebra
V is given by

V = { 1√
3

((I1x − I2x) + (I1y − I2y) + (I1z + I2z)),

1√
6

(2(I1y − I2y)− (I1x − I2x)− (I1z + I2z)),

1√
2

((I1z + I2z)− (I1x − I2x))}.

(72)
An implementation of algorithm 1 then returns the fol-
lowing centralizer

C(V) ={C1, C2}

={1

2
1,

2√
3

(I1x · I2x + I1y · I2y − I1z · I2z)}.
(73)

In contrast to conventional symmetry arguments, the
centralizer approach does indeed return one non-trivial
long-lived spin operator. This operator is clearly not
given by pure singlet order, which is a consequence of
the symmetry breaking fluctuating Hamiltonian. Little
thought however shows that C2 is a mixture of singlet
order and dipolar order.

B. Methyl rotor

Long-lived spin operators in rapidly rotating methyl
groups are of great practical relevance, due to their con-
nection to quantum rotor induced polarisation (QRIP) ef-
fects, for example31–37,52,54,79,80. Extensive discussions of
long-lived spin operators in rotating methyl groups have
been given in references 52–54. However, as previously
mentioned, a complete characterisation of long-lived spin
operators in rotating methyl groups requires careful con-
sideration of rotational-permutational dual symmetries.
As we will show now, this is in stark contrast to the sim-
plicity of the centralizer approach.

Consider a CH3 methyl rotor consisting of three cou-
pled spin-1/2 particles. The coherent Hamiltonian is
given by

H?
coh = ω0(I1z + I2z + I3z) + 2πJHH

3∑
i<j

Ii · Ij . (74)

Due to the three-fold symmetry axis of the methyl rotor
the coherent spin Hamiltonian displays S3 spin permuta-
tion symmetry.

If the methyl group is rotating sufficiently fast, the
fluctuating Hamiltonian is subjected to dynamical aver-
aging effects. These dynamical averaging effects impose
approximate S3 symmetry onto the fluctuating Hamil-
tonian. We further assume that spin interactions with
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spherical rank k 6= 2 do not significantly contribute to the
relaxation process. In this case the fluctuating Hamilto-
nian for a rapidly rotating methyl group is dominated by
dipolar relaxation mechanisms

H?
fluc(t) =

2∑
m=−2

ym(t)

3∑
i<j

T ij2m. (75)

The operators T ij2m are irreducible spherical tensor opera-
tors resulting from angular momentum coupling of spins
i and j (see appendix F). The fact that the fluctuat-
ing coefficients ym(t) are independent of the indices (i, j)
reflects the S3 symmetry of the problem.

At sufficiently high magnetic fields one may apply the
so-called secular approximation to Γ̂4–7. The dipolar
relaxation superoperator for a rapidly rotating methyl
group may then be expressed as follows52,53

Γ̂? = −
2∑

m=−2

wmm(

3∑
i<j

T̂ ij2m)(

3∑
i<j

T̂ ij2m)† (76)

with

wmm =

∫ +∞

0

ym(0)y∗m(τ) cos(mω0τ)dτ. (77)

The secularization procedure essentially removes all con-
tributions wmn with m 6= n. As a result there is no need
to diagonalise the relaxation operators and the generat-
ing set of the relaxation algebra consists of symmetrised
dipolar interaction terms

V? = {
3∑
i<j

T ij2−2,

3∑
i<j

T ij2−1,

3∑
i<j

T ij20,

3∑
i<j

T ij2+1,

3∑
i<j

T ij2+2}.

(78)
This relaxation algebra displays dual symmetry. Firstly
the elements of V? are invariant under conjugation by
elements of the symmetric group S3, but secondly the
restriction to spherical interactions with k = 2 imposes
rotational symmetry onto V?.

A calculation of the corresponding centralizer C(V?)
with algorithm 1 returns several long-lived spin opera-
tors. When expressed in terms of S3 symmetry adapted
basis states (see appendix G) the centralizer C(V?) takes
the form

C(V?) =



c1 0 0 0 0 0 0 0
0 c1 0 0 0 0 0 0
0 0 c1 0 0 0 0 0
0 0 0 c1 0 0 0 0
0 0 0 0 c2 c3 c4 c5
0 0 0 0 c6 c7 c8 c9
0 0 0 0 c10 c11 c12 c13

0 0 0 0 c14 c15 c16 c17


, (79)

as may be verified by direct calculation. The number of
independent long-lived spin operators is therefore given
by NLLS = 17.

To the best of our knowledge, such an increase in the
number of long-lived spin operators of rapidly rotating
methyl groups has first been noted by Stevanato (per-
sonal communication). Following reference 53 a physical
explanation of this effect may be given in terms of ro-
tational and permutational dual symmetries. According
to the Schur-Weyl duality theorem there exists a one-to-
one correspondence between irreducible representations
of the symmetric group SN and irreducible representa-
tions of the unitary group U(n)81,82. This implies that
for a protonated methyl rotor we may always choose a set
of symmetry adapted spin states with definite S3 permu-
tation symmetry Γj and total angular momentum I. The
rotational permutational pairing for these states may be
expressed as follows

4× (A1, 3/2)⊕ 4× (E, 1/2), (80)

where A1 refers to the trivial and E to the standard ir-
reducible representation of S3

76. Transition elements in-
volving the fluctuating Hamiltonian of equation 75 and
any of the dual symmetry adapted spin states are there-
fore not only constrained by the Schur orthogonality rela-
tions, but also by the Wigner-Eckart theorem. One may
then show that matrix elements involving the E states
and H?

fluc(t) vanish

〈E, 1/2,m1|H?
fluc(t)|E, 1/2,m2〉 =

2∑
m=−2

ym(t)

3∑
i<j

〈E, 1/2,m1|T ij2m|E, 1/2,m2〉 = 0.
(81)

The 4×4 = 16 operators of the E symmetry manifold are
therefore immune to dipolar relaxation. This property
accounts for the unusual increase in the number of long-
lived spin operators.

As should be apparent from the discussion above an
extension of dual symmetry arguments to generic spin
systems can be a challenging process. The centralizer
approach on the other hand does not require any sophis-
ticated dual symmetry arguments to arrive at identical
results. Instead dual symmetries are naturally incorpo-
rated into the calculation process. All it takes is an appli-
cation of algorithm 1 to the (dual) symmetric relaxation
algebra of equation 78.

IV. SUMMARY

Nuclear long-lived spin operators represent an integral
part of modern NMR. At first, collective efforts largely
explored and exploited the various relaxation proper-
ties of long-lived spin operators9–13,44–46,83–85. Nowa-
days however applications of nuclear long-lived spin
operators go well beyond that with noticeable im-
pact on NMR imaging techniques, zero- to ultralow-
field (ZULF) NMR and nuclear hyperpolarisation tech-
niques14–18,86–100. But despite a multitude of long-lived
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operators applications, the screening procedure for long-
lived spin operators has changed little over the years and
still relies on tricky group theoretical arguments.

In this work we have presented a fundamentally dif-
ferent approach to the calculation of long-lived spin op-
erators. The concept of a relaxation algebra enabled us
to apply Lie algebraic methods to the characterisation of
long-lived spin operators. The relaxation algebra itself
is generated by the set of diagonalised relaxation oper-
ators of Γ̂. We have established a rigorous connection
between the centralizer of the relaxation algebra and the
set of long-lived spin operators. For practical purposes
we have outlined a simple algorithm for its calculation. In
contrast to group theoretical methods however, the cen-
tralizer approach does not require any intricate symmetry
arguments and several advantages have been illustrated
by considering some simple example cases.

Due to its striking simplicity and straightforward au-
tomation we believe that the centralizer approach repre-
sents a powerful tool in the relaxation analysis of spin op-
erators and other related fields. For example, the study
of non-decaying quantum equilibrium correlations has re-
cently sparked some interest101–104. The work by Uhrig
et al. 102 for example derived a generalisation of Mazur’s
inequality setting a lower bound on the amplitude of per-
sisting quantum correlations105,106. Their approach relies
on several important assumptions, most importantly the
ability to fully specify the system-environment interac-
tion and the ability to specify the constants of motion
of the system. For several practical situations this is im-
possible due to the complexity of the environment. As a
result the dynamics of a system in contact with a thermal
environment are described by a quantum master equa-
tion. Since long-lived spin operators may qualitatively
be interpreted as constants of relaxation of such mas-
ter equations, it seems reasonable to expect that similar
statements about persisting quantum correlations may
be made by replacing Hamiltonian constants of motion
with long-lived spin operators.

In the future we therefore hope to incorporate a full im-
plementation of the centralizer approach into our Math-
ematica107 based software package SpinDynamica108 and
extend its capabilities to arbitrarily thermalised spin sys-
tems.
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Appendix A: Ordinary eigenoperators of the Liouvillian

Lemma A.1. Eigenoperators of the Liouvillian L̂ cor-
responding to eigenvalues with a vanishing real part are
ordinary eigenoperators.

Proof. Take X to be a matrix with generalised right
eigenoperators |Ψj) of L̂ as its columns. The matrix X

transforms L̂ into Jordan canonical form

X−1L̂X = J =

M⊕
i=1

Ji. (A1)

Each Ji represents a Jordan block

Ji =


Λi 1

Λi
. . .

. . . 1
Λi

 = Λi1+Ni, (A2)

where Ni is nilpotent (Nk
i = 0) for some integer k. The

order of the eigenvalues is arbitrary and we may set
Λ1 = 0. For infinite temperature we further have

(Q|L̂|1) = 0 ∀Q. (A3)

The identity is disconnected from all other elements and
we may set JM = 0 with |ΨNL) = |1) as the correspond-
ing eigenoperator.

Suppose now that the Jordan block J1 is not diagonal,
for example

J1 =


0 1

0
. . .

. . . 1
0

 = N1. (A4)

The evolution generated by J1 is given by

exp(J1t) =

k−1∑
m=0

tm

m!
Nm

0 =


1 t t2

2 . . . tk−1

(k−1)!

. . .
. . .

. . .
...

1 t t2

2
1 t

1

 .
(A5)

Without loss of generality we may assume that
X|e1) = |Ψ0

1) is hermitian. If this is not the case the

adjoint |Ψ0†
1 ) must follow the dynamics of |Ψ0

1) since L̂ is
hermiticity preserving and the following arguments may
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easily be adjusted. Choose the initial density operator to
be given by

|ρ(0)) = N−1
H
|1) + c(0)|Ψ0

1). (A6)

The initial condition c(0) is chosen so that ρ(0) represents
a valid probability distribution. This is always possible
since Ψ0

1 is hermitian. For example one may choose

c(0) = (NHσmax)−1, (A7)

where σmax is the largest singular value of Ψ0
1. The evo-

lution of ρ(0) is then given by

|ρ(t)) = exp(L̂t)|ρ(0))

= N−1
H
|1) + c(0)|Ψ0

1) + c(0)|Ψ0
2)t.

(A8)

But since (1|Ψ0
2) = 0 the operator Ψ0

2 is traceless and
must possess at least one negative eigenvalue χ < 0. The
probability of observing the eigenstate |χ〉 is given by

p|χ〉(t) = 〈χ|ρ(t)|χ〉
= N−1

H
+ c(0)〈χ|Ψ0

1|χ〉 − |χ|c(0)t.
(A9)

Clearly for sufficiently long times t the probability p|χ〉(t)
attains negative values. The Jordan block J1 would
therefore break the positivity of ρ(t) unless the first row
of J1 equals 0

J1 =


0 · · · 0

0 1
... 0

. . .
...

. . . 1
0 0

 . (A10)

But this implies that |Ψ0
1) represents the ordinary eigen-

operator

L̂|Ψ0
1) = 0× |Ψ0

1) = 0. (A11)

Continuing in this fashion leads to the conclusion that J1

is given by

J1 = diag(0, 0, · · · , 0, 0). (A12)

This means that every eigenoperator belonging to the
J1 Jordan block represents an ordinary eigenoperator.
A similar analysis may be applied to Jordan blocks Jn
with Λn = −iωn and their corresponding conjugate block
Jn∗ by observing the density operator stroboscopically at
times tm = 2πm/ωn.

Appendix B: Semi-classical master equation

As described in section II A the fluctuating contribu-
tions are in general different for each ensemble member

at a given point in time. Consider therefore the equa-
tion of motion of a single ensemble member as described
within the interaction frame of the coherent Liouvillian

d

dt
|σ̃(t)) =

˜̂
Lfluc(t)|σ̃(t)). (B1)

Here, σ(t) describes the density operator of a single en-
semble member and the tilde indicates the interaction
frame transformation defined by

|σ̃(t)) = exp{−L̂coht}|σ(t)),

˜̂
Lfluc(t) = exp{−L̂coht}L̂fluc(t) exp{+L̂coht}.

(B2)

Following standard NMR literature (see references 4–7
for example) equation B1 up to second order in time-
dependent perturbation theory is given by

d

dt
|σ̃(t)) =

˜̂
Lfluc(t)|σ̃(0)) +

∫ t

0

˜̂
Lfluc(t)

˜̂
Lfluc(t1)|σ̃(t1))dt1.

(B3)
An effective evolution equation for the spin dynamics in-
cluding the collective effects of the fluctuations may be
derived by averaging equation B3 over the ensemble

d

dt
|σ̃(t)) =

˜̂
Lfluc(t)|σ̃(0)) +

∫ t

0

˜̂
Lfluc(t)

˜̂
Lfluc(t1)|σ̃(t1))dt1,

(B4)
where the overline indicates the ensemble average.
Although equation B4 does not appear to be much
of a simplification, it builds the basis for subsequent
approximation schemes. Following the excellent discus-
sion by van Kampen3 we make use of the following key
assumptions.

1) We may assume that fluctuating Liouvillian has
a zero mean across the spin ensemble

L̂fluc(t) = −i
∑
m

ym(t)Ŷm = 0. (B5)

Any non-vanishing contributions may always be incor-
porated into the definition of L̂coh. The first term in
equation B4 therefore vanishes

d

dt
|σ̃(t)) =

∫ t

0

˜̂
Lfluc(t)

˜̂
Lfluc(t1)|σ̃(t1))dt1. (B6)

2) The ensemble average involving the fluctuating con-
tributions and the density operator may be split into a
product of averages

d

dt
|σ̃(t)) =

∫ t

0

˜̂
Lfluc(t)

˜̂
Lfluc(t1)|σ̃(t1))dt1. (B7)

3) The density operator varies sufficiently slowly in time

so that it is permissible to replace σ̃(t1) by σ̃(t) in equa-
tion B7

d

dt
|σ̃(t)) =

∫ t

0

˜̂
Lfluc(t)

˜̂
Lfluc(t1)|σ̃(t))dt1. (B8)
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4) There exists a correlation time τc � t short compared
to the times we are interested in so that the limit of
integration in equation B8 may be extended to infinity

d

dt
|σ̃(t)) =

∫ +∞

0

˜̂
Lfluc(t)

˜̂
Lfluc(t1)|σ̃(t))dt1. (B9)

Expanding the fluctuating Liouvillian according to equa-
tion 8 leads to

d

dt
|σ̃(t)) =

∫ +∞

0

˜̂
Lfluc(t)

˜̂
Lfluc(t1)dt1|σ̃(t))

= −
∑
mn

∫ +∞

0

kmn(t, t1)
˜̂
Ym(t)

˜̂
Y †n (t1)dt1|σ̃(t))

(B10)
with kmn(t, t1) denoting the correlation functions of the
fluctuations

kmn(t, t1) = ym(t)y∗n(t1). (B11)

For a stationary random process the correlation functions
only depend upon the time difference τ = t− t1

kmn(t, t1) = kmn(t− t1, 0) := kmn(τ). (B12)

If we define the ensemble averaged density operator as
σ(t) = ρ(t) equation B10 may be expressed as follows
within the original frame

d

dt
|ρ(t)) = {L̂coh −

∑
mn

∫ +∞

0

kmn(τ)
˜̂
Ym(0)

˜̂
Y †n (τ)dτ}|ρ(t)),

(B13)
and is identical to equation 9.

Appendix C: Typical NMR correlation functions

As discussed in section II A the relaxation superopera-
tor Γ̂ may be shown to depend upon the one-sided Fourier
transformation of the correlation functions kmn(τ)

Jmn(ω) =

∫ +∞

0

kmn(τ) exp(+iωτ)dτ. (C1)

In solution state NMR the most dominant contribution
to nuclear spin relaxation originates from the stochastic
modulation of nuclear spin interactions due to rotational
Brownian motion. If the molecule undergoes isotropic
rotational Brownian motion it may be shown that the
correlation function between any two coupling parame-
ters decays exponentially

kmn(τ) ∝ exp(−|τ |/τc), (C2)

where τc represents the rotational correlation time of the
molecule. The spectral density of such an exponential
correlation function is given by

Jmn(Ω) ∝ τc
1 + (Ωτc)2

(1 + iΩτc). (C3)

The real part of Jmn(Ω) is responsible for the dissipative

character of Γ̂. The imaginary part leads to a higher-
order correction of the coherent Liouvillian, the so-called
dynamic frequency shift4–7.

The rotational correlation time τc for small molecules
is typically on the order of nanoseconds to picoseconds.
The transition frequencies Ω on the other hand are on the
order several MHz for modern NMR spectrometers. As
a result, a broad class of relevant NMR systems satisfies
the so-called fast motion limit6,7

Ωτc � 1. (C4)

Within the fast-motion limit the spectral density of an
exponential correlation function is well approximated by

Jmn(Ω) ' τc
1 + (Ωτc)2

' τc, (C5)

so that dynamic frequency shifts may be safely neglected
(at least to a first approximation).

Appendix D: Long-lived operators at high-temperature and
high-entropy

For spin systems in contact with a thermal environ-
ment the quantum master equation ( equation 1) should
be replaced by a ”thermally corrected” master equation.
Within the high-temperature and high-entropy approxi-
mation it is permissible to describe the evolution of the
spin ensemble by the so-called inhomogeneous master
equation4,68,109. This amounts to replacing |ρ) with its
thermal deviation

d

dt
|ρ) = L̂(|ρ)− |ρeq)) = (L̂coh + Γ̂)(|ρ)− |ρeq)), (D1)

where ρeq describes the equilibrium position of the den-
sity operator at some finite temperature T .

Following references 65–67 the inhomogeneous charac-
ter of equation D1 may be removed by defining a ther-
malisation superoperator Θ̂

Θ̂ = 1̂− |ρeq)(1|. (D2)

The projection operator |ρeq)(1| projects any non-
traceless operator onto the thermal equilibrium state.
Since the trace of any density operator is given by unity
(Tr(ρ) = 1), the dissipative part of equation D1 may be
rearranged as follows

Γ̂(|ρ)− |ρeq)) = Γ̂(1̂− |ρeq)(1|)|ρ)

= Γ̂θ|ρ),
(D3)

with the ”thermalized” relaxation superoperator Γ̂θ given
by

Γ̂θ = Γ̂(1̂− |ρeq)(1|). (D4)

With these definitions in place it is straightforward to
show that the following statement holds true.
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Proposition 4. Any long-lived spin operator
Ψ0
j ∈ null(Γ̂) is an element of Ψ0

j ∈ null(Γ̂θ) apart
from the unity operator 1, which is being replaced by
ρeq ∈ null(Γ̂θ).

Proof. Consider any long-lived operator Ψ0
j ∈ null(Γ̂) and

consider its interaction with Γ̂θ

Γ̂θ|Ψ0
j ) = Γ̂(1̂− |ρeq)(1|)|Ψ0

j )

= Γ̂|Ψ0
j )− |ρeq)(1|Ψ0

j )

= 0− |ρeq)Tr(Ψ0
j )

= 0 since Tr(Ψ0
j ) = 0.

(D5)

We therefore have Ψ0
j ∈ null(Γ̂θ). Similarly consider the

interaction of Γ̂θ with a normalised unity operator N−1
H
1

N−1
H

Γ̂θ|1) = N−1
H

Γ̂(1̂− |ρeq)(1|)|Ψ0
j )

= N−1
H
|ρeq)Tr(1)

= |ρeq) since Tr(1) = NH.
(D6)

The unity operator is therefore not an element of
null(Γ̂θ), but the thermal equilibrium density operator
is

Γ̂θ|ρeq) = Γ̂(1̂− |ρeq)(1|)|ρeq)

= Γ̂(|ρeq)− |ρeq)Tr(ρeq))

= 0 since Tr(ρeq) = 1.
(D7)

As a result the thermalisation procedure given by equa-
tion D4 preserves the long-lived character of any operator
Ψ0
j .

Appendix E: Schur Orthogonality Relations

Proofs of the Schur orthogonality relations may be
found in standard text books on group theory55–57, we
simply summarise the result. Both the columns and rows
of an irreducible matrix representation DΓ are orthogo-
nal with respect to the group average

|G|∑
g∈G

DΓj∗
γµ (g)DΓk

ην (g) =
|G|
dΓ
j

δjkδγηδµν , (E1)

whereas the group average between different irreducible
matrix representations (j 6= k) vanishes.

Appendix F: Spherical Tensor Operators

An overview of dipolar spherical tensor operators for
a spin pair (i,j) is given in table I. Each spherical tensor
operator is characterised by its superscripts (ij) and its

subscripts (km). The superscripts indicate angular mo-
mentum coupling of spins i and j, whereas the subscripts
indicate its total angular momentum k and z-angular mo-
mentum m.

m\k 2

±2 1
2
I±i I±j

±1 ∓ 1
2

(
I±i Ijz + IizI

±
j

)
0 − 1

2
√
6

(
I+i I−j + I−i I+j − 4IizIjz

)
Table I. Dipolar spherical tensor operators for a coupled spin
pairs i and j.

Appendix G: S3 Symmetry Adapted Basis

Equation G1 summarises an S3 symmetry adapted ba-
sis of spin states for three identical spin-1/2 particles.
Each basis state is characterised by a definite permuta-
tion symmetry under elements of the symmetric group
S3. A convenient algorithm for the calculation of such
bases has been outlined in reference 53.

BS3
=



|1〉 = |βββ〉
|2〉 = 1√

3
(|ββα〉+ |βαβ〉+ |αββ〉)

|3〉 = 1√
3
(|ααβ〉+ |αβα〉+ |βαα〉)

|4〉 = |ααα〉
|5〉 = 1√

3
(|ββα〉+ ε|βαβ〉+ ε∗|αββ〉)

|6〉 = 1√
3
(|ββα〉+ ε∗|βαβ〉+ ε|αββ〉)

|7〉 = 1√
3
(|ααβ〉+ ε|αβα〉+ ε∗|βαα〉)

|8〉 = 1√
3
(|ααβ〉+ ε∗|αβα〉+ ε|βαα〉)

with ε = exp(−i 2π

3
).

(G1)
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