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Abstract 19 

Coronavirus disease 2019 (COVID-19) was detected in China during the 20 

2019–2020 seasonal influenza epidemic. Non-pharmaceutical 21 

interventions (NPIs) and behavioural changes to mitigate COVID-19 could 22 

have affected transmission dynamics of influenza and other respiratory 23 

diseases. By comparing 2019–2020 seasonal influenza activity through 24 

March 29, 2020 with the 2011–2019 seasons, we found that COVID-19 25 

outbreaks and related NPIs may have reduced influenza in Southern and 26 

Northern China and the United States by 79.2% (lower and upper bounds: 27 

48.8%–87.2%), 79.4% (44.9%–87.4%) and 67.2% (11.5%–80.5%). 28 

Decreases in influenza virus infection were also associated with the timing 29 

of NPIs. Without COVID-19 NPIs, influenza activity in China and the 30 

United States would likely have remained high during the 2019-2020 31 

season. Our findings provide evidence that NPIs can partially mitigate 32 

seasonal and, potentially, pandemic influenza.  33 



Introduction 34 

Wuhan Municipal Health Commission reported a cluster of cases 35 

of pneumonia on December 31, 2019. A novel coronavirus, later named 36 

SARS-CoV-2, was identified on January 7, 2020 as the cause of the cluster1. 37 

In the US, the first case was reported on January 20, 2020. WHO named 38 

the disease coronavirus disease 2019 (COVID-19) and characterized it as 39 

a pandemic in March 2020. COVID-19 is the first pandemic known to be 40 

caused by a coronavirus1,2; it spread rapidly worldwide, causing great 41 

health and socioeconomic damage due to its clinical severity and ease of 42 

transmission3,4. In the absence of readily-available, effective 43 

pharmaceutical agents against the emerging virus, countries implemented 44 

non-pharmaceutical interventions (NPIs) to contain or slow SARS-CoV-2 45 

transmission. These measures included social distancing and reductions of 46 

personal movement (e.g., canceling mass gatherings, closing public 47 

entertainment venues, closing schools, restricting domestic and 48 

international travel, and issuing stay-at-home orders); use of individual 49 

protection (e.g., wearing masks, practicing good hand hygiene and 50 

respiratory etiquette); and social mobilization (e.g., publicity, education, 51 

and risk communication)5,6. People may have adopted more hygienic 52 

lifestyles to avoid COVID-19 infection. 53 

Wuhan city was “locked down” on January 23, 2020 by sharply 54 

curtailing in and out traffic. Soon afterwards, all provinces in mainland 55 



China initiated first-level (highest) emergency responses and adopted 56 

stringent NPIs - especially inter-city traffic controls, wearing face masks, 57 

and issuing stay-at-home orders7. The COVID-19 epidemic was controlled 58 

and sustained local SARS-CoV-2 transmission stopped in mainland China 59 

by April 2020 with NPIs alone8. In the United States (the US), following a 60 

national emergency declaration issued on March 13, 2020, state 61 

governments used NPIs to reduce COVID-19 transmission9. By April 1, 62 

four US metropolitan areas - Seattle, San Francisco, New York City, and 63 

New Orleans - documented significant reductions of new COVID-19 cases 64 

after implementing COVID-19 mitigation measures9. 65 

Influenza and COVID-19 have similar clinical symptoms and 66 

transmission routes10-12. Influenza activity is carefully monitored in the US 67 

and China through sensitive, laboratory-based surveillance systems13, 14. In 68 

most provinces of China and in the US, rates of influenza laboratory test 69 

positivity declined sharply during the winter-spring season of 2019-70 

20206,15. For example, the percent of influenza-positive tests among US 71 

respiratory specimens decreased from over 20% between January 20, 2020 72 

and March 13, 2020 to 2.3% during the week of March 22, 2020, and 73 

remaining at historically low inter-seasonal levels after April 515. In 74 

contrast, during the same epidemic weeks of the eight influenza seasons 75 

during 2011-2019, influenza activity had remained at moderate or high 76 

levels. 77 



NPI-based prevention and control of COVID-19 provided an 78 

opportunity to observe the real-world effectiveness of NPIs at mitigating 79 

seasonal influenza virus transmission using a comparison study design. 80 

Preliminary studies have reported that COVID-19 NPIs may have reduced 81 

the spread of influenza viruses16, but evidence was obtained largely from 82 

observational modeling studies17-19. Comparative studies of the impact of 83 

COVID-19 outbreaks and interventions on the intensity of influenza 84 

activity are needed to augment current understanding. 85 

In our study, we extracted national sentinel surveillance data on 86 

influenza-like-illness (ILI) and virological testing results of respiratory 87 

specimens across the 31 provinces of mainland China from 2011 to 2020. 88 

We also used publicly available data on influenza test results from the US 89 

Centers for Disease Control and Prevention (CDC). To quantify the impact 90 

of COVID-19 NPIs on influenza, we built time series models to fit 91 

historical influenza data20 and compared observed influenza activity in the 92 

2019-2020 season with predicted influenza epidemic levels under a 93 

counterfactual scenario of no COVID-19 pandemic and related NPIs. The 94 

findings of this study improve our understanding of the effectiveness of 95 

COVID-19 NPIs at mitigating other respiratory diseases and provide 96 

evidence for tailoring control strategies for future epidemic or pandemic 97 

influenza. 98 

Results 99 



Influenza activity intensity during the 2019-2020 season in China. 100 

Based on influenza virological surveillance test positivity rates from 101 

Southern and Northern China during winter-springs of 2011–2019, we 102 

classified influenza activity intensity into three levels – high, medium, and 103 

low – corresponding to ≥ 25% laboratory-test-positive, 20% – 25% 104 

positive, and <20% positive across all epidemic weeks of each monitoring 105 

year (see Methods for details). Polynomial curves were fit for each 106 

influenza activity level by year (Supplementary Table 1). Northern and 107 

Southern China had winter-spring epidemic peaks each year from 2011 to 108 

2019. Peak times of the epidemic week in the South were approximately 109 

two or more weeks later than in the North (Supplementary Figure 1). 110 

Before SARS-CoV-2 was confirmed as the cause of the viral 111 

pneumonia of unknown etiology cluster in China (January 7, 2020) and 112 

NPIs were widely implemented, influenza activity levels in the North and 113 

the South were similar to the high epidemic levels observed during the 114 

same epidemic weeks in previous years (Figure 1a and 1b). Starting 115 

January 23, 2020, all provinces initiated their highest level public health 116 

emergency response to the COVID-19 outbreak. Influenza activity levels 117 

subsequently decreased from high, during epidemic week 10 (Wuhan 118 

lockdown) in the South (test positivity rate, 33.8%) and week 8 (Wuhan 119 

lockdown) in the North (test positivity rate, 26.5%), to low, during weeks 120 



13-19 in the South (average positive rate: 0.6%) and weeks 11-17 in the 121 

North (3.2%) (Figure 1).   122 

Influenza activity intensity during the 2019-2020 season in the US. 123 

Based on the influenza activity intensity classification criteria above, there 124 

were only high and moderate levels found in the US during the 2011–2019 125 

seasons. The US had winter-spring epidemic peaks every year from 2011 126 

to 2019, with stable peak times across years (Supplementary Figure 1). 127 

Before the US declaration of a state of emergency on March 13, 2020, 128 

influenza activity in the US was at high or moderate epidemic levels as 129 

were observed during the same epidemic weeks in previous years. 130 

Influenza activity decreased soon after the declaration (Figure 1c). 131 

Impact of COVID-19 and NPIs on influenza in China. We built 132 

autoregressive integrated moving average (ARIMA) models to fit 133 

influenza activity from 2011-2019 and predict influenza epidemic levels 134 

during 2019-2020 under a counterfactual scenario in which the COVID-19 135 

pandemic did not occur and therefore strict NPIs were not used 136 

(Supplementary Figures 2-9 and Table 2). In both Southern and Northern 137 

China, observed influenza activity levels in the 2019-2020 season were 138 

significantly lower than predicted (Figure 2). In terms of test positivity 139 

rates, compared with predicted rates under the counterfactual scenario, 140 

influenza activity in Southern China declined by 8.1% (lower and upper 141 



bounds: 0%–21.3%) during epidemic week 8–9 – the time from 142 

identification of the novel coronavirus to the week before Wuhan lockdown 143 

- but activity markedly decreased by 79.2% (48.8%–87.2%) in week 10-19 144 

- the time of widespread NPI implementation (Figures 3–4, Table 1). A 145 

similar pattern was found in Northern China, with a slight decrease of 146 

influenza activity of 21.7% (6.3%–32.8%) before massive NPIs, followed 147 

by a marked decline by 79.4% (44.9%–87.4%) during widespread NIP 148 

implementation. ARIMA analyses showed that 59.7% (49.1%–66.6%) and 149 

50.0% (31.6 %–60.6%) of ILI cases were prevented in Southern and 150 

Northern China, respectively (Figures 2d–2e). 151 

Impact of NPIs and timing of influenza in the US. We used ARIMA 152 

models to analyze variation in influenza activity in the US during the same 153 

epidemic weeks we used in our Southern China analysis. Prior to March 154 

13, 2020 - the US declaration of a state of emergency (epidemic week 17), 155 

there were no significant changes in the intensity of influenza activity in 156 

the 2019-2020 winter-spring season when compared to the seasonal levels 157 

of influenza determined from the US historical data (Figure 1c). Influenza 158 

test positivity during the three weeks following epidemic week 17 159 

decreased by 67.2% (lower and upper bounds: 11.5%–80.5%) from 160 

predicted levels under the counterfactual scenario, and declined by only 161 

6.0% (0%–23.9%) during epidemic week 10–16 (Figures 2c and 2f and 162 

Table 1). 163 



Model validation. To evaluate accuracy and reliability of our model 164 

predictions, we used the data of test positivity rates from 2011 through the 165 

2017-2018 season to predict seasonal influenza activity in the 2018–2019 166 

season - the actual situation, and prior to COVID-19. Based on variation 167 

between observed and predicted values, we found that ARIMA models had 168 

good predictive performances for test positivity rates in Southern China 169 

(mean absolute percentage error: 19.5%), Northern China (mean absolute 170 

percentage error: 37.7%), and the US (mean absolute percentage error: 171 

16.9%) (Supplementary Figure 2). 172 

Discussion 173 

Our study found that decreases in influenza infections were associated with 174 

the implementation and timing of COVID-19-related NPIs in China and 175 

the US. The model accurately and reliably predicted the 2011-2018 season, 176 

lending confidence to our findings. Influenza activity decreased by 67.2% 177 

to 79.4% compared with pre-COVID-19 influenza seasons. Had NPIs 178 

against COVID-19 not been implemented, influenza activity in China 179 

would likely have remained high during the entire 2019–2020 season, as 180 

shown in Figure 2. US virologic surveillance15 and similar surveillance in 181 

the northern hemisphere19 showed a consistent, seasonal pattern of 182 

influenza before COVID-19. In the absence of readily available and 183 

effective pharmaceutical interventions, adoption of NPIs may be a feasible 184 

and effective method to mitigate transmission of emerging respiratory 185 



infections, including pandemic influenza21. 186 

The rapid decrease and sustained low level of influenza in China during 187 

the COVID-19 outbreak could largely be attributed to widespread 188 

implementation of NPIs during and after the Wuhan lockdown that started 189 

January 23, 2020 (epidemic week 10 in Southern China and epidemic week 190 

8 in Northern China). Influenza activity decreased in similar fashion in the 191 

US after epidemic week 17, and the decrease may be related to the adoption 192 

of NPIs after the national emergency declaration on March 13, 2020. It is 193 

also plausible that people began to use self-protective behaviours and 194 

improved personal hygiene to avoid COVID-19, and that these habits may 195 

have contributed to the observed reduction of influenza activities - 196 

especially before government-driven NPIs. For example, the gradual 197 

decline of influenza activities during weeks 2 to 3 in 2020, before the 198 

Wuhan lockdown, might be related to changes in personal behaviour - 199 

wearing masks, for example - based on government guidelines and 200 

recommendations22. Additionally, COVID-19 first occurred in Southern 201 

China, and COVID-19 NPIs were implemented earliest there22. The peak 202 

of season influenza epidemic usually arrives earlier in Southern China than 203 

in Northern China (Supplementary Figure 1), providing another plausible 204 

reason for the coincidence of the decline in influenza with the rise in NPIs 205 

in China. 206 

Other COVID-19 research can help illuminate the relation between NPIs 207 



and virus transmission. Several interventions have been shown to reduce 208 

spread of COVID-19 by substantially mitigating spread of the 209 

coronavirus23-26. Human mobility may have played a critical role in the 210 

transmission dynamics of COVID-19, while strict restrictions on 211 

international travel have substantially reduced importation of the 212 

coronavirus21. Physical distancing, such as canceling mass gatherings, 213 

closing schools, and extending holidays, as implemented in China during 214 

the outbreak, appeared to have a major impact on containment of the first 215 

wave of COVID-1927. Proactive school closures reduced the peak 216 

incidence of COVID-19 by 40–60% and slowed the pace of the epidemic27. 217 

Combinations of interventions, implemented early, achieved the strongest 218 

and most rapid effect8, demonstrating a synergistic effect among stringent 219 

NPIs to lower the effective reproduction number of the coronavirus28.  220 

Studies in Asia, the US, and Europe have shown that influenza activity 221 

declined in 2020 after the first set of measures to fight COVID-19 were 222 

implemented19,29. The number of ILI cases in China decreased with 223 

implementation of NPIs and further declined with increased intensity of 224 

intervention measures. Reduction of symptom-based ILI could also be due 225 

to decreases in clinic and hospital visits during the COVID-19 outbreak. 226 

Compared with China, the somewhat smaller apparent impact of COVID-227 

19 NPIs on influenza seen in the US data may be due to differences in 228 

implementation of COVID-19 interventions between the two countries; to 229 



the later arrival of COVID-19 in the US so that that a smaller proportion 230 

of the seasonal influenza epidemic (week 17–19) overlapped with COVID-231 

19, thus weakening the observed NPI-influenza relationship during the 232 

2019–2020 influenza season; to inclusion of data from public health 233 

laboratories, which are often used for influenza confirmation and may 234 

artificially increase the percent positive for influenza; or that a larger 235 

proportion of the US population receives seasonal influenza vaccine than 236 

the China population, thus lessening influenza more in the US than China 237 

and therefore lowering potential impact of NPIs. Further study is indicated9.  238 

There are several limitations of our study. First, virological surveillance 239 

was affected by factors such as specimen collection rates and case selection 240 

biases, and symptom-based surveillance of ILI could have been affected by 241 

circulating virus strains, clinical diagnosis, and healthcare-seeking 242 

behaviours, unpredictably changing the observed test positivity rate. 243 

Second, our study was limited to the 2019–2020 influenza season through 244 

March 29, 2020. Longer inter-seasonal virological and ILI influenza data 245 

during COVID-19 outbreaks could be used to further explore the COVID-246 

19 NPI-influenza relationship. Third, the genetic diversity of influenza 247 

viruses and their antigenic characteristics were not considered in this study. 248 

For example, the influenza virus that circulated in the northern hemisphere 249 

from October 2018 to May 2019 was dominated by influenza A(H1N1), 250 

but the proportion of A(H3N2) viruses increased over time30. Fourth, 251 



although ARIMA, as used to forecast infectious disease, is a mature and 252 

applicable technology, infectious diseases transmission factors such as the 253 

type of influenza strain, genetic factors, control measures, and personal 254 

activities and behaviours cannot be separately distinguished. ARIMA may 255 

not be optimal for a long-term prediction, limiting our confidence beyond 256 

short term predictions.  257 

Evidence from our study improves the understanding of the impact of 258 

COVID-19 and COVID-19 NPIs on transmission of influenza virus. It will 259 

be critically important to assess independent and synergistic impact of 260 

specific NPI measures on influenza activity, especially since some NPIs 261 

have great socioeconomic costs and may not be acceptable to the public or 262 

government for mitigating seasonal or pandemic influenza.  263 



Methods 264 

Case and epidemic period definitions. Individuals considered to 265 

have influenza-like illness (ILI) had a temperature ≥38.0°C and either 266 

cough or sore throat. The average weekly test positive rate was calculated 267 

as the number of samples positive for influenza divided by the total number 268 

of samples tested during the week. Our study defined influenza epidemic 269 

and nonepidemic periods using the same thresholds as previous studies31-270 

33. The start of an influenza epidemic period was defined as the first week 271 

during which the average weekly test positive rate was above 10% and 272 

remained above 10% for at least two consecutive weeks. The end of an 273 

influenza epidemic period was defined as the last week during which the 274 

positive rate was less than 10% and remained less than 10% for at least two 275 

consecutive weeks. The duration of an epidemic season was defined as the 276 

number of weeks between the start and the end of an influenza epidemic 277 

period. In the 2019-2020 influenza season, the epidemic period started on 278 

the 47th week in Southern China and 49th week in Northern China.  279 

Data and sample sources. We obtained virological and ILI 280 

surveillance data in China from the National Influenza Surveillance 281 

Network in 2011–2020. The National Influenza Surveillance Network in 282 

mainland China, led by China CDC, has 554 sentinel hospitals and 407 283 

network laboratories. Influenza activity levels and trends are monitored 284 

using ILI data from surveillance units collected at sentinel hospitals. The 285 



Influenza Network Laboratory monitors the etiology of influenza virus 286 

from respiratory specimens, which not only include ILI patients from 287 

influenza surveillance sentinel hospitals but also include samples collected 288 

during influenza outbreaks. In China, weekly virological and ILI data, 289 

based on influenza sentinel surveillance, are systematically collected as a 290 

proxy of influenza activity. Every 12-month interval, from the 14th week in 291 

one year to the 13th week of the following year constitute a surveillance 292 

year14,34. 293 

We also obtained publicly available influenza virological data in 2011–294 

2020 released by US CDC13. In the US, the Influenza Surveillance Network, 295 

led by US CDC, contains about 100 public health laboratories and over 300 296 

clinical laboratories13. Clinical laboratories primarily test respiratory 297 

specimens for diagnostic purposes and provide information on the timing 298 

and intensity of influenza activity. Public health laboratories test specimens 299 

from clinical laboratories for surveillance purposes to understand influenza 300 

virological information such as the virus types, subtypes, and lineages that 301 

are circulating. The total number of respiratory specimens tested for 302 

influenza and the number positive for influenza viruses are reported from 303 

public health and clinical laboratories to CDC each week35. 304 

The positive test rate of influenza in China was calculated from a total 305 

of 3,728,252 samples; the positive test rate for the US was determined from 306 

a total of 8,349,337 samples over 9 years. 307 

https://www.cdc.gov/flu/weekly/fluactivitysurv.htm).In


Influenza activity level definitions. Based on influenza test positivity 308 

rates, we categorized the average positivity across all epidemic weeks of a 309 

monitoring year into high (positive rate ≥25%), moderate (20%–25%), 310 

and low (<20%) levels. We developed epidemic curves for each level in 311 

the winter-spring seasons. Because influenza epidemiologic characteristics 312 

differ between Southern and Northern China10,32, we analyzed data by 313 

region. We fit polynomial curves for each influenza epidemic level prior to 314 

COVID-19 in 2011-2019 for Southern and Northern China 315 

(Supplementary curve fitting, and Supplementary Figure 1 and 316 

Supplementary Table 1).  317 

We compared fitted activity levels in 2011-2019 with observed activity 318 

in the winter-spring epidemic weeks in 2019-2020 before the COVID-19 319 

outbreaks and the implementation of NPIs. We then determined the 320 

predicted influenza activity by intensity level under a counterfactual 321 

scenario of no COVID-19 and NPIs. We investigated influenza infections 322 

based on key dates for NPIs in China and the US: January 23, 2020 – 323 

Wuhan’s lockdown – as the start of strict and combined NPIs in China; 324 

March 13, 2020 – when a state of national emergency was declared by the 325 

US–as the start of NPIs in the US. 326 

Time series models. The ARIMA (p, d, q) model is a time series 327 

forecasting method that extends the autoregressive (AR), moving average 328 

(MA), and ARMA (autoregressive moving average) models20,36. It aims to 329 



solve two problems: one is to decompose randomness, stationarity, and 330 

seasonality of time series; the other is to select an appropriate model for 331 

forecasting based on analysis of time series. ARIMA has been widely used 332 

to forecast short-term effects and trends of acute infectious diseases36. The 333 

parameters p, d, and q represent the order of autoregressive (AR), the 334 

degree of differencing of the original time series, and the order of the 335 

moving average (MA), respectively. Due to the seasonality of influenza, 336 

we utilized a seasonal ARIMA (SARIMA [p, d, q][P, D, Q]s) model. In 337 

SARIMA, P, D, Q, and s refer to seasonal autoregression, seasonal 338 

integration, seasonal moving average, and seasonal period length.  339 

a) Sequence stationarity. Time sequences (test positivity rates in 340 

Southern and Northern China and the U.S., and the number of ILI cases in 341 

Southern and Northern China) were nonstationary (Supplementary Figure 342 

3). Sequence stationarity was tested with the augmented Dickey–Fuller 343 

(ADF) test. If lags were outside the confidence intervals after the first three 344 

lags, the time sequence was considered nonstationary. After 1-time 345 

difference and 1-time seasonal difference, the data sequence is stable with 346 

the mean value fluctuating around the indication. (Supplementary Figure 347 

4). 348 

b) Sequence randomness. According to the Box-Ljung statistical test 349 

results (p<0.05), the hypotheses of independence of the 5-time sequences 350 

were all rejected.  351 



c) Identification. Depending on the seasonal decomposition, SAF 352 

(seasonal adjustment factors), referring to factors of the seasonal cycle that 353 

affect the sequence (Supplementary Figure 5). ERR (error sequence), 354 

referring to the sequence remaining after removing seasonal factors, long-355 

term trends, and cyclic changes from the time series, was around zero 356 

(within 5) and distributed as white noise (Supplementary Figure 6).  357 

Through observing the autocorrelation function (ACF) (Supplementary 358 

Figure 7) and partial autocorrelation function (PACF) (Supplementary 359 

Figure 8) to recognize and analyze the characteristics of the sequence, we 360 

first listed the parameters that met the characteristic of ACF and PACF, and 361 

then optimized the parameters in accordance with Akaike information 362 

criterion (AIC) and R2. Additionally, autoregressive model (AR) describes 363 

the relationship between the current value and the historical value. Since 364 

the positive rate of influenza is related to the characteristics of the virus in 365 

the epidemic season and the serial interval of influenza is 2-3 days7, AR 366 

was selected as order 1. Generally, as the duration of influenza immunity 367 

antibody is less than one year37, it may affect the intensity of influenza 368 

activity in the next year. We chose 0-1 for seasonal autocorrelation, but we 369 

only presented the top three candidate models in the Supplementary Table 370 

2.  371 

d) Estimation and validation. Rationality of the model was assessed 372 

by examination of standard model fitting residuals. If fitting residuals of a 373 



model for sequences of this study were normally distributed with zero as 374 

the mean, and the lag order residuals of ACF and PACF were within 375 

confidence intervals (Supplementary Figure 9), the model was regarded as 376 

qualified. To further validate the predictive ability of the model, we also 377 

used the influenza data from 2011 to 2018 as a training set to build models 378 

and predict the influenza activities for the 2018-2019 season. Results were 379 

assessed by comparing the test dataset of observed values in 2018-2019 380 

and the mean absolute percentage errors. (Supplementary Figure 2). 381 

e) Application forecasting. We used these models with data from 2011-382 

2019 to estimate the weekly influenza positivity rate for the winter-spring 383 

season in 2019-2020 under a counterfactual scenario with no COVID-19 384 

outbreaks and no COVID-19 NPIs. For China, forecasting started from the 385 

week of January 7, 2020 when the SARS-CoV-2 was first identified, 386 

corresponding to epidemic week 8 in Southern China and epidemic week 387 

6 in Northern China. For the US, the first week for estimating was the week 388 

beginning on January 20, 2020, corresponding to epidemic week 10 in the 389 

US. The overall impact of COVID-19 outbreaks and interventions on 390 

influenza was defined as the difference in the area between the observed 391 

epidemic curve and the model-predicted curve. The upper/lower bounds of 392 

estimates were defined as the difference between the observed curve and 393 

the model-predicted upper/lower bound curve of confidence intervals. We 394 

also assessed the effectiveness of COVID-19 outbreaks and interventions 395 



by time period (Table 1), according to the timings of first identification of 396 

SARS-CoV-2 and the implementation of strict NPIs in China, and the dates 397 

of the first COVID-19 confirmed case reported and the national emergency 398 

declared in the US. Descriptive statistics and time series analyses were 399 

conducted using SAS JMP Pro 14 and SPSS 22.0. The 2019-2020 curve 400 

area difference for assessing the NPIs effectiveness used Graphpad prism 401 

8.0. R version 3.6.1 (R Foundation and Origin 2019 for Statistical 402 

Computing, Vienna, Austria) was used to plot figures. 403 

Data availability. 404 

The influenza virological surveillance data in the US used in this study are 405 

publicly available at: https://www.cdc.gov/flu/weekly/fluactivitysurv.htm. 406 

All other data associated with this work are available at 407 

https://zenodo.org/record/4573183#.YD5JWGgzZdg. All relevant data are 408 

available from the authors. 409 

Code availability.  410 

R code for plotting figures in this study is available at 411 

https://zenodo.org/record/4573183#.YD5JWGgzZdg 412 

  413 

https://www.cdc.gov/flu/weekly/fluactivitysurv.htm
https://zenodo.org/record/4573183#.YD5JWGgzZdg
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 522 

Figure 1. Observed seasonal influenza activity in 2019-2020 and predicted 523 

levels using 2011-2019 historical data. a Southern China. b Northern China. 524 

c The US. The intensity of influenza activity was divided into three levels in 525 

China: high, moderate, and low, corresponding to high (≥25%), moderate 526 

(20%- 25%) and low (<20%) average test positivity rates for all epidemic weeks 527 

within a monitoring year from 2011 to 2019, while that of was two levels (high 528 

and moderate) in the US under the same classification standard. The fitted 529 

curve for each intensity level is presented with lower and upper bounds (shaded 530 

color). The pink vertical line indicates when China (a-b) first identified SARS-531 

CoV-2 and the United States (c) first reported COVID-19 cases. The red vertical 532 

dashed lines indicate the start of the Wuhan lockdown. The orange vertical line 533 

indicates the national emergency declaration by the US. The abscissa 534 

represents the epidemic week of winter-spring seasons. The influenza test 535 

positivity rates = the number of positive samples of influenza virus test / the 536 

number of test samples * 100%.  537 

Figure 2. Observed seasonal influenza activity in mainland China and the 538 

US in 2019–2020, compared to estimates by ARIMA models under a 539 

counterfactual scenario of no COVID-19 and related interventions. a 540 

Positive rate of influenza tests in Southern China. b Positive rate of influenza 541 

tests in Northern China. c Positive rate of influenza tests in the US. d Number 542 

(No.) of influenza-like cases reported in Southern China. e No. of influenza-like 543 

cases reported in Northern China. Lower and upper bounds of estimates are 544 

provided. The pink vertical line indicates when China (a-b and d-e) first 545 

identified SARS-CoV-2 and the US (c) first reported case of COVID-19. The red 546 

vertical dashed lines indicate the start of the lockdown in Wuhan, January 23, 547 

2020. The orange vertical dashed line indicates the declaration of a national 548 

emergency by the US on March 13, 2020. 549 



  550 

Figure 3. Potential impact of COVID-19 outbreaks and interventions on 551 

seasonal influenza intensities in mainland China and the US, 2019-2020. 552 

a–c Comparisons of observed influenza activities with the upper bounds 553 

predicted with 2011-2019 expectations under a counterfactual scenario of no 554 

COVID-19 outbreaks and related interventions in Southern China (a), Northern 555 

China (b), and the US (c). d–f Comparisons of observed influenza activities 556 

with the upper bounds of estimates under the counterfactual scenario in 557 

Southern China (d), Northern China (e), and the US (f). The pink vertical lines 558 

indicate when China identified SARS-CoV-2 and the US first reported cases of 559 

COVID-19. The red vertical dashed lines indicate the start of the lockdown in 560 

Wuhan, January 23, 2020. The orange vertical dashed lines indicate the 561 

declaration of a national emergency by the US on March 13, 2020. Potentially-562 

prevented cases of influenza = (area under the predicted epidemic curve 563 

without COVID-19 outbreaks and NPIs - area under the observed epidemic 564 

curve) / area under the predicted epidemic curve without COVID-19 outbreaks 565 

and NPIs * 100%. 566 

Figure 4. Observed, fitted, and predicted influenza test positivity rate from 567 

2011 to 2020. a Southern China. b Northern China. c the US. The blue shaded 568 

part indicates the estimates under normal seasonal influenza activities and 569 

shows 95% confidence intervals of estimates.   570 



Table. 1 Potential impact of COVID-19 outbreaks and non-571 

pharmaceutical interventions on seasonal influenza activities. 572 

Week Southern China Northern China The United States  

Period I
†
 8.1 (0-21.3) 21.7 (6.3-32.8) 6.0 (0-23.9) 

Period II
††
  79.2 (48.8-87.2) 79.4 (44.9-87.4) 67.2 (11.5-80.5) 

Overall 63.5 (30.4-76.0) 66.4 (29.6-78.0) 18.0 (1.5-40.8) 

Note: The numbers presented here are the decreases in the positive rate of influenza 573 

tests (%), to reflect the impact of COVID-19 outbreaks and interventions on influenza 574 

activities. The numbers in brackets represent the lower and upper bounds of estimates. 575 

†Period I: for China, it was the time period from the week when the novel coronavirus 576 

was first identified, to the week before the Wuhan lockdown on January 23, 2020; for 577 

the United States (US), it was the time period from the week when the first COVID-19 578 

case in the US was reported on January 20, to the week before the national emergency 579 

declared on March 13, 2020. 580 

††Period II: for China, it was the time period from the week when Wuhan was ‘locked 581 

down’ on January 23, to the week ending on March 29, 2020; for the US, it was the 582 

time period from the week when the national emergency was declared on March 13, 583 

to the week ending on March 29, 2020. 584 
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