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Abstract 

Background 

No well validated and contemporaneous tools for personalised prognostication of gastric adenocarcinoma exist. This 

study aimed to derive and validate a prognostic model for overall survival after surgery for gastric adenocarcinoma 

using a large national dataset and a non-linear Random Survival Forest (RSF) methodology. 

Patients and methods 

National audit data from England and Wales were used to identify patients who underwent a potentially curative 

gastrectomy for adenocarcinoma of the stomach. A total of 2931 patients were included and 29 clinical and 

pathological variables considered for their impact on survival. A RSF was then trained and validated internally using 

bootstrapping with calibration and discrimination (time dependent AUC) assessed. 

Results 

The median survival of the cohort was 69 months, with a 5-year survival of 53.2%. Ten variables were found to 

significantly influence survival and included in the final model, with the most important being lymph node positivity, 

pT stage and achieving an R0 resection. Patient characteristics including ASA grade and age were also influential. On 

validation the model achieved excellent performance with a five-year tAUC of 0.80 (95%CI 0.78-0.82) and good 

agreement between observed and predicted survival probabilities. A wide spread of predictions for three- (14.8-

98.3%, IQR 43.2-84.4%) and five-year (9.4-96.1%, IQR 31.7-73.8%) survival were seen. 

Conclusions 

A prognostic model for survival after a potentially curative resection for gastric adenocarcinoma was derived and 

exhibited excellent discrimination and calibration of predictions. After appropriate external validation, it could 

provide utility in both prognostication for patients and for benchmarking of treatment responses. 

 

  



Highlights 

• No well validated contemporaneous prognostic model for Gastric Adenocarcinoma is in widespread clinical 

use 

• This study describes the derivation of a random survival forest model using routine data from a large 

population dataset 

• The model performed well on internal validation with a tAUC of 0.80 and excellent calibration 

• A wide range of predictions were yielded for each TNM stage 

• After appropriate external validation, it could provide utility in both prognostication for patients and for 

benchmarking of treatment responses. 

  



Introduction 

Gastric cancer is among the most common causes of cancer and cancer mortality worldwide, with an estimated 

1,000,000 cases and 783,000 deaths in 2018.(1) Similar to oesophageal cancer, gastric cancer is more common 

among men than women, and the majority of cases occur in East Asia, where an incidence of up to 32 per 100,000 is 

seen overall. In comparison, in Northern Europe, the incidence is to 6.2 per 100,000 in men and 3.1 per 100,000 in 

women. In England and Wales there is a significant burden of disease, with 5,972 cases of gastric adenocarcinoma 

diagnosed between April 2017 and March 2019,(2) and among those only around one third suitable for curative 

treatment at presentation.  

Among western populations, stratification of patient outcomes is limited to TNM stage, with tools for personalised 

prognostication which incorporate other variables known to influence survival lacking. In a recent systematic review 

of prognostic tools in oesophageal and gastric cancer(3) only one model suitable for gastric cancer was considered to 

be methodologically sound,(4) however this study was conducted in 2003 before the widespread use of neoadjuvant 

treatment and was limited to patients undergoing R0 resection. A further review(5) reached similar conclusions, 

identifying generally poor methodology and poor validation strategies among studies. Accurate postoperative 

prognostication is important as it allows personalised planning of both follow up and potential adjuvant treatment in 

addition to accurate comparison of different treatment regimens between groups of patients. No such tool to 

achieve this exists to date. 

It is likely that in the future in-depth analysis of patients’ cancers will allow for a high level of accuracy of 

prognostication both in the pre- and post- treatment settings, however these methodologies are not yet widely 

available, are time consuming and expensive. Optimal use of clinical data is therefore key. Machine learning 

techniques which incorporate non-linear effects, interactions between variables and time-varying effects have the 

potential to capture additional information from routine clinical data that may be missed by traditional prognostic 

models such as the Cox proportional hazards.  

Recently, data from the England and Wales National Oeosophago-gastric Cancer Audit (NOGCA) has been used to 

derive a Random Survival Forest(6) model for prognosis after oesophagectomy with considerable accuracy in excess 

of a Cox Proportional Hazards model(7). This study aims to apply a similar methodology to patients diagnosed with 

gastric adenocarcinoma in England and Wales between 2012-2018 with the goal of deriving an accurate prediction 

tool for overall survival after surgery.  



Methods 

Patient population 

This study used a dataset of cases identified from the National Oesophago-gastric Cancer audit (NOGCA) as has been 

described previously(7). Data entry into the NOGCA has been compulsory for all patients diagnosed with epithelial 

cancer of the stomach or oesophagus since 2012, with named clinicians responsible for its collection as part of the 

multidisciplinary team. Each year, centres and surgeons are sent their results prior to publication and are asked to 

update incomplete or inaccurate data Case ascertainment is evaluated using the national administrative hospital 

databases (Hospital Episode Statistics/HES in England and its Welsh equivalent), and is estimated to exceed 99% for 

patients who undergo curative surgery. The dataset used for this study included patients diagnosed between April 

2012 and March 2018 (8). Details of neoadjuvant and adjuvant treatment were cross-referenced with the Systemic 

Anti-Cancer Therapy dataset (SACT). A total of 4,238 cases who underwent a gastrectomy for adenocarcinoma of the 

stomach or gastro-oesophageal junction (Siewert III) were identified. Exclusion criteria included overt metastatic 

disease at resection (pM1), death prior to discharge from hospital or if fewer than 15 lymph nodes were examined 

from the resection specimen (suggesting the patient may have been incompletely staged).(9) A comparison of these 

patients to the main study cohort is provided in Table S.1 and Figure S.1 A complete list and details of exclusions to 

reach the final sample size of 2931 cases is given in Figure S.2. The primary outcome was defined as overall survival 

from time of hospital discharge, with survival confirmed using the Office for National Statistics (ONS) death register. 

Variables collected in the audit were considered for inclusion if there was a plausible relationship with survival, 

completeness in excess of 50% and a frequency of at least 1% in the cohort. For this study a total of 29 variables 

were identified as potential predictors (Table S.2), including patient characteristics, preoperative tumour staging, 

complications of surgery, postoperative pathology and neoadjuvant/ adjuvant treatment. Type of operation (e.g., 

Distal Gastrectomy, Total Gastrectomy, Extended total gastrectomy) was considered but omitted as it was almost 

exclusively correlated with site of tumour. Anastomotic leak was defined as severe disruption to the anastomosis 

(detected clinically or radiologically) including those patients managed actively and conservatively. An R0 resection 

was defined as complete macro/microscopic resection of tumour with negative longitudinal and circumferential 

resection margins. We considered unit volume as combination of major upper gastrointestinal resections per year 

(major gastrectomy and oesophagectomy) as per published research(10) and in line with NHS commissioning 

guidelines(11) and also separately for gastrectomy alone. 

 TNM staging was conducted using the 8th edition staging manual. There was at least one data point missing in 671 

cases (22.9%). The most frequently missing characteristics were return to theatre (15.1%), cT stage (12.4%) and 

differentiation grade (6.5%). All other variables had <5% missing data. Missing data was assumed to be missing at 

random and handled using multiple imputation by chained equations(12) with 10 imputed datasets. 

In order to produce a more concise model with increased generalisability, a variable selection step was conducted 

using the Boruta method.(13) Boruta identifies core variables by comparing the importance of candidate variables in 

a Random Forest to a corresponding set of ‘shadow’ variables, which are versions of each variable with their data 



randomised. Variables with importance significantly greater than all of the shadow variables are selected as 

important and retained, and variables with importance significantly less than the highest shadow variable are 

selected as unimportant and removed. This process is repeated with the decreasing number of uncertain variables 

until all are sorted into important or unimportant. It has been found to be more accurate than other approaches in 

variable selection in high dimensional data,(14) particularly in large datasets,(15) and has been used in a variety of 

settings.(16–18) In this study variables were selected from complete cases only (n=2304). 

Identified important variables were then used to train a Random Survival Forest (RSF) using the Ranger(19) package 

in R. A random forest here is comprised of several hundred survival trees, each derived from different 

subpopulations of the cohort. Within each tree the binary split (e.g., zero positive lymph nodes vs one or more 

positive lymph nodes) that gives the biggest difference in survival (as measured by the Log-Rank test) is identified. 

The tree undergoes progressively more splits until a predetermined end point is reached. The random forest is then 

the mean output of all the decision trees. Parameters of the RSF that influence how it generates predictions i.e., 

number of trees, number of variables per tree and minimum node size were selected to minimise out-of-sample 

error within the random forest. As multiple imputation was employed to address missing data, a means of pooling 

the outcomes from the imputed datasets is required. Here, as previously(7), models were generated on each 

imputed dataset and predictions from each were combined after a log-log transformation(20,21). 

As the model incorporates both variable interaction and non-linear time effects, expressing the effect of individual 

variables is difficult. The hazard ratio is less appropriate as it assumes an exponential survival distribution and 

proportional hazards (i.e. consistency of effect of variables over time)(22). Use of the restricted mean survival time 

(RMST) has been proposed to address scenarios where the proportional hazards assumption does not hold true(23), 

allowing for comparisons by absolute difference or ratio(24) and is increasingly thought to be a more appropriate 

means of comparing survival outcomes and treatment effects(25–28). Survival curves are first generated for each 

variable as the average predictions yielded for that variable. The RMST is then the area under each survival curve, 

the absolute difference in RMST between two factors (e.g., R0 vs R1) is termed the life expectancy difference (LED) 

and the ratio between them the life expectancy ratio (LER). The LED and LER readily provide the absolute or relative 

gain/loss of life for each variable for the period of follow up. 

The internal validity of the model was quantified using 1000 replications of the bootstrap with replacement and the 

0.632 estimator.(29) Discrimination was assessed using the time dependent area under the receiver operator curve 

(tAUC),(30) which corresponds to the proportion of random pairs of cases where one patient is alive and one dead at 

a specified time point where the model has correctly ordered their probability of survival having weighted for 

censoring. Calibration was assessed quantitatively using the integrated Brier score,(31,32) as a measure of overall 

error of predictions with a value closer to zero being better. Visual assessment of calibration was conducted by 

comparing predicted survival to observed (Kaplan-Meier) survival at specified time points.  All analyses were 

conducted in R,(33) and the study was conducted to comply with the TRIPOD criteria(34). Complete code to 

reproduce the analysis is available on request, and instructions for external validation provided in the supplementary 

materials.  



Results 

The study population included 2931 patients who underwent a gastrectomy with a histologically proven diagnosis of 

adenocarcinoma. Patients were followed up for a median of 44 months, there were 1071 recorded deaths and the 

median survival was 69 months. At 3- and 5-years, survival was 63.5% and 53.2% respectively (Figure 1). 

A median of 27 lymph nodes were examined (range 15-109) and at least one node contained tumour in the majority 

of cases (1635/2931, 55.8%). Extent of nodal dissection was recorded as D2 in 2425 cases (82.7%). Neoadjuvant 

chemotherapy was used in 48.0%. Demographics of the population were as expected with 65.3% males and a 

median age at diagnosis of 71. The vast majority of cases were undertaken in high volume centres, with 91.6% 

occurring in centres performing >30 major upper gastrointestinal resections per year. These characteristics are 

summarised in Table 1. 

A total of ten variables were identified as important and included in the final model. These were Age, cT stage, cN 

stage, WHO Performance Status, ASA grade, pT/ypT, Total number of positive lymph nodes, grade of differentiation 

(good, moderate, poor/anaplastic), completeness of resection (R0/R1) and neoadjuvant treatment received (Figure 

S.3). 

The model demonstrated excellent discrimination on internal validation, with a tAUC of 0.80 (95% CI 0.78-0.82) at 5 

years and a C-index of 0.76 (95% CI 0.75-0.77). The tAUC using pTNM stage alone was 0.75. Agreement between 

predicted and observed survival was also excellent, with a wide spread of predictions observed for both three-year 

(14.8-98.3%, IQR 43.2-84.4%) and five-year (9.4-96.1%, IQR 31.7-73.8%) survival (Figure 2, Figure S.4). The integrated 

brier score was 0.137 (95% CI 0.133-0.140). Importantly, the discrimination of the model exceeds that achieved 

using TNM stage (tAUC 0.81 vs 0.76 p<0.001). A wide range of survival estimates are also seen for each TNM stage 

group (Figure S.5). 

 

  



Table 1 Clinical and Pathological Characteristics of study cohort 

Characteristic Count (%) Survival at 5 
years (%)   Characteristic Count (%) Survival at 5 

years (%) 

Age 

18-50   263 (9.0)  64  Annual volume 
of major upper 
gastrointestinal 
resections* 

1 to 30   245 (8.4)  50.5 

51-60   417 (14.2)  55.9  31 to 60  1563 (53.3)  52.5 

61-70   741 (25.3)  55.9  60+  1123 (38.3)  54.6 

71-80  1169 (39.9)  49.7  Annual volume 
of major 
gastrectomy 

1 to 15 834 (28.1) 52.6 

80+   341 (11.6)  48.3  16 to 30 1654 (55.7) 51.2 

Female 1017 (34.7) 55.8  30+ 383 (12.9) 60.9 

 Male  1914 (65.3)  51.7  Surgical 
Approach 

Laparoscopic 439 (15.0) 60.2 

Site of 
Tumour 

Siewert III   416 (14.2)  41.1  Open  2492 (85.0)  52 

Fundus   195 (6.7)  56.2  
Surgical 
Complication 

No  2240 (76.4)  53.9 

Body  1250 (42.6)  55.4  Yes   679 (23.2)  50.8 

Antrum   689 (23.5)  56.9  Missing    12 (0.4)  37.5 

Pylorus   381 (13.0)  50.7  
Anastomotic 
Leak 

No  2826 (96.4)  53.5 

cT 

T0/is/1   295 (10.1)  79.9  Yes    93 (3.2)  45.4 

T2   579 (19.8)  59.1  Missing    12 (0.4)  37.5 

T3  1218 (41.6)  46  

pT/ypT Stage 

T0   116 (4.0)  79.4 

T4   476 (16.2)  44.6  T1   591 (20.2)  81.2 

Missing   363 (12.4)  55.2  T2   454 (15.5)  66.7 

cN 

N0  1460 (49.8)  59.8  T3  1004 (34.3)  47.4 

N1   882 (30.1)  48.2  T4   766 (26.1)  27.5 

N2   369 (12.6)  44.7  

pN/ypN Stage 

N0  1296 (44.2)  75.2 

N3   108 (3.7)  28.7  N1   495 (16.9)  55.4 

Missing   112 (3.8)  53.4  N2   513 (17.5)  38.6 

WHO 
Performance 
Status 

0  1409 (48.1)  56.6  N3   627 (21.4)  19.4 

1  1201 (41.0)  52.4  R0 resection 
Yes 2663 (90.1) 56.6 

2   288 ( 9.8)  42.1  No 268 (9.1) 22 

3    31 ( 1.1)  36.7  

Grade of 
differentiation 
(worst) 

Well (G1)    69 ( 2.4)  70.6 

ASA Grade 

1   359 (12.2)  56.9  Moderate (G2)   730 (24.9)  56.4 

2  1604 (54.7)  55.9 
 

Poor/Anaplastic 
(G3/G4)  1674 (57.1)  50.6 

3   935 (31.9)  48.3 
 

Unable to 
determine (GX)   268 ( 9.1)  57.4 

4    33 ( 1.1)  18.9  Missing   190 ( 6.5)  50.2 

Neoadjuvant 
Treatment 

None  1525 (52.0)  55.3  Adjuvant 
Treatment 

No 2280 (77.8) 53.8 

Chemotherapy 1406 (48.0) 50.5  Yes   651 (22.2)  51.5 

Data given as absolute number (%), Anastomotic Leak defined as severe disruption to anastomosis, regardless of method of detection or 
intervention. Major gastrointestinal resections including oesophagectomy and gastrectomy 

 

 

The most important variables were number of positive lymph nodes, pT stage and completeness of resection, as 

visualised in survival curves shown in Figure 3. The mean predicted survival (across combinations of other variables) 

to five years (the restricted means survival time/RMST) varied significantly for different characteristics, for example 

for pN0 the RMST was 46.4 months compared to 29.3 months for N3b patients. This corresponded to a life 

expectancy reduction (LED) of 17.1 months and a life expectancy ratio (LER) of 0.63. Table S.3 illustrates the RMST, 

LED and LER for all variables. Although the magnitude of effect overall is small for several of the variables, in 

individual cases this may not be the case due to the nature of variable interactions.  Advanced pN/pT (pN2/3a/3b & 



pT3/4) and a R1 resection exhibited an LER that clearly increases throughout the period of follow up, indicating 

diverging survival trajectories and a persistent effect on prognosis for at least four years for pN/pT and the entirety 

of follow up for R1 resection (Figure S.6). Notably, a Cox model trained using the same variables clearly violates the 

proportional hazards assumption (p=0.013). One limitation of traditional estimates of importance is that variable 

interactions that are modelled in the RSF are ignored. To address this, Figure 4 gives an overview of the average 

predicted five-year survival for combinations of the most important variables in addition to patient age. The 

importance of age can be seen to diminish with increasing tumour burden. 

  



Example Cases 

To illustrate the utility of the model, four example cases are described below. 

Case 1 

A 50-year-old female patient, ASA 1, with a cT3N1 tumour, undergoes and completes neoadjuvant chemotherapy 

followed by a gastrectomy. Post-operative pathology reveals a pT4 well differentiated tumour with one positive 

lymph node and a complete resection margin (R0). 

Case 2 

A 60-year-old male patient, ASA 3, with a cT3N1 tumour, undergoes but does not complete neoadjuvant 

chemotherapy followed by a gastrectomy. Post-operative pathology reveals a pT4 poorly differentiated tumour with 

three positive lymph nodes and an involved resection margin (R1). 

Case 3 

A 50-year-old female patient, ASA 1, with a cT3N1 tumour, undergoes and completes neoadjuvant chemotherapy 

followed by a gastrectomy. Post-operative pathology reveals a pT1 well differentiated tumour with no positive 

lymph nodes and a complete resection margin (R0). 

Case 4 

A 60-year-old male patient, ASA 3, with a cT3N1 tumour, undergoes but does not complete neoadjuvant 

chemotherapy followed by a gastrectomy. Post-operative pathology reveals a pT1 poorly differentiated tumour with 

no positive lymph nodes and a complete resection margin (R0). 

 

Both cases 1 and 2 fall into the same pTNM stage group (3a), however their predicted survival trajectories show 

considerable differences (Figure 5) with 45.7% five-year survival for case 1 and 17.0% for case 2 (compared to a 

stage average survival of 34.4% at five-years). Similarly, Cases 3 and 4 are both stage 1a, but exhibit substantial 

variation in five-year survival at 88.7% and 66.5% respectively. 

  



Discussion 

This study describes the derivation and validation of a robust machine learning model for prediction of overall 

survival for surgically treated non-metastatic gastric adenocarcinoma. The model utilises routine clinicopathological 

data which should be available for every case without additional investigations, to deliver predictions of survival to 

five years. The model provides accuracy in excess of traditional TNM staging to enable the delivery of personalised 

survival predictions, with a large spread of predictions within each TNM staging group that allows discrimination in 

excess of TNM staging.  

Strengths of this study include the large population-based dataset used to derive the model, which is larger than 

those used in many previously published prognostication tools. The data are reflective of modern practice, including 

only patients diagnosed since 2012, with a high rate of neoadjuvant treatment (48%) and D2 nodal dissection (83%), 

with surgery performed in high-volume specialist centres. Observed overall survival exceeded recent trials, with 

more than 1 in 2 patients surviving to 5 years(35,36). A machine learning non-linear approach (RSF) allowed more 

accuracy than otherwise could be achieved, is technically novel and has generated insight into how the importance 

of variables varies over time. The tripod criteria for predictive modelling were also adhered to. Limitations include 

the retrospective nature of the study and lack of external validation cohort.  An internal validation process was 

conducted using a bootstrap technique(37) to assess the degree of optimism in the model’s discrimination and 

calibration, and its performance was maintained.  External validation is still required to demonstrate its 

generalisability, but the importance of the T stage and Nodal positive variables suggest the model is likely to be 

transportable to another population. There was a moderate amount of missing data within the dataset which may 

introduce bias into the analysis, however this effect was minimised using multiple imputation. Lauren histological 

classification(38), a well-recognised and prognostic variable in gastric cancer(39), was not available for this study and 

may provide additional information above differentiation grade if added in the future, although as the diffuse type 

are poorly differentiated by definition, there will be extensive overlap with the classification employed here. 

This model provides a broad range of survival estimates, with substantially more variability than TNM stage both 

overall and within each staging group, as is clearly illustrated in the example cases. The precision facilitates use of 

the model in several clinical settings. Firstly, more reliable information on long-term prognosis can be given to 

patients. Research to understand how to best to relay data to patients is ongoing and this is undoubtedly an ethically 

complex area, particularly when the prognosis is poor. However, withholding accurate information from patients is 

unlikely to be prudent. Secondly, targeting follow up and/or additional treatment to those who most require it is 

vital to improving outcomes and accurate prognostication with low burden of data collection (as is the case with 

clinicopathological models) vital to achieve that. This is particularly important when introducing novel agents or 

when effect sizes appear small, as they are with current agents. 

The most important variables identified (lymph node status, pT stage, resection margin) are well recognised as highly 

prognostic(40–42). The demonstration of effects for these variables that persist throughout follow-up is however 

novel and informative in the context of a modelling strategy that allows for time-varying effects. In this study, only a 



small overall magnitude of effect of neoadjuvant treatment was identified, with no benefit seen for cases where 

chemotherapy was not completed. This is in contrast to the Medical Research Council Adjuvant Gastric Infusional 

Chemotherapy (MAGIC)(43)  and Actions Concertées dans les Cancer Colorectaux et Digestifs (ACCORD) trials(44), 

which demonstrated a substantial survival benefit of neoadjuvant treatment, establishing the rationale for the 

widespread use of neoadjuvant chemotherapy for gastric adenocarcinoma in Western countries. In reality, the effect 

of chemotherapy varies at an individual level, with some patients gaining a substantial benefit from the treatment 

(i.e. those who respond) and the majority gaining no benefit at all. The non-linear nature of the RSF which includes 

interactions with other variables allows response (as reflected in e.g. pT stage or the resection margin) to be 

accurately incorporated into prognostication, which would be challenging in a linear model and not assessed by TNM 

stage alone. This may also be an explanation for the counterintuitive finding of pT0 tumour having both a slightly 

worse observed prognosis than pT1 tumours (five-year survival 79.5% pT0 vs 81.9% pT1, Table 1) and life expectancy 

difference of -1.65 months (Table S.2) although the number of patients with pT0 tumours was small (n=116). 

We excluded patients in whom less than 15 lymph nodes were examined at resection. The purpose of this study was 

to derive an accurate predictive model for the most common stages of disease witnessed in clinical practice, rather 

than assess the prognostic importance of lymph node harvest which is of sufficient interest and complexity to 

warrant a separate study. After discussion we elected to exclude patients with an ‘inadequate’ lymph node resection 

because including these patients would introduce unreliable data into the model derivation process (due to possible 

under-staging) and make predictions on patients who were treated as per national/international standards less 

reliable. We were also mindful that some patients with an apparent ‘inadequate’ lymph node harvest would have 

received a planned D1 dissection for early-stage disease.  Our model is not designed to be used in this patient group, 

rather for the classical presentation of locally advanced gastric cancer and limited to those patients with an 

adequate lymphadenectomy. 

The variable selection method excluded variables that may have been expected to significantly influence survival, 

notably site of tumour and receipt of adjuvant therapy. It is reasonable to extrapolate that the difference in survival 

observed for different tumour sites (e.g. five-year survival 40.7% for pyloric tumours compared to 56.7% for Siewert 

III GOJ tumours, Table 1) is largely due to differences in tumour stage at these sites, however it is surprising to see no 

improvement of survival with the administration of adjuvant treatment. There are several possible explanations for 

this, including insensitivity of the modelling approach (particularly as survival is worse after adjuvant treatment on 

univariate analysis; as it is more often given only to cases with more advanced disease), however the margin of 

effect of adjuvant treatment seen in randomised trials does appear modest(45), particularly in the context of a 

cohort in which the majority of patients underwent neoadjuvant treatment(46).  



Conclusions 
A robust tool for prediction of overall survival after gastrectomy for adenocarcinoma has been derived using a 

random survival forest methodology. It provides accurate predictions of outcome in excess of TNM staging using 

routinely collected clinicopathological data. It is available at: uoscancer.shinyapps.io/AugisSurvG. Future work to 

validate our findings in external cohorts would be beneficial, and prospective validation before use to stratify 

treatment and follow-up important. 

  

https://uoscancer.shinyapps.io/AugisSurvG/
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Figure Captions 

 

Figure 1 Kaplan-Meier survival of study cohort. Shaded area represents 95% confidence interval. The vertical dotted 

line represents the median survival, 69 months.  

 



Figure 2 Calibration of predictions at (A) Three years and (B) Five years post-surgery. The dotted line represents the 

ideal and the solid line the model’s performance on internal validation 

 

Figure 3 Variable effects on survival. Average predicted survival is shown from 0-60 months for (A) pN Stage, (B) pT 

Stage and (C) Resection Margin 

 



 

Figure 4 Predicted 5-year survival for combinations of selected variables. Colours represent differing prognosis, with 

green more favourable, and red less favourable. 

 

  



Figure 5 Predicted Survival for (A) stage 3A and (B) stage 1A example cases (green/red lines) and mean survival (blue 

line)  

 
 

 

 

 

 

 

 

 

 

 



Supplementary 

Table S.1 Characteristics of study cohort in comparison to patients with inadequate lymph node harvest 

  Lymph node Harvest     Lymph node Harvest   

Characteristics ≥15 <15 p§ Characteristics ≥15 <15 p§  

    2931 754       2931 754   

Age 71 [61, 77] 73 [64, 79] <0.001*¶ Annual volume of 
major upper 
gastrointestinal 
resections* 

1 to 30   245 (8.4)     91 (12.1)   0.002* 

Site of 
Tumour 

Siewert III   416 (14.2)     68 (9.0)  <0.001* 31 to 60  1563 (53.3)    365 (48.4)  
 

Fundus   195 (6.7)     41 (5.4)  
 

>60  1123 (38.3)    298 (39.5)  
 

Body  1250 (42.6)    308 (40.8)  
 

Annual volume of 
major gastrectomy 

1 to 15 834 (28.1) 211 (27.6) <0.001* 

Antrum   689 (23.5)    210 (27.9)  
 

16 to 30 1654 (55.7) 479 (62.7) 
 

Pylorus   381 (13.0)    127 (16.8)  
 

30+ 483 (16.3) 74 (9.7) 
 

cT T0/is/1   295 (11.5)    141 (22.3)  <0.001* Laparoscopic Approach   439 (15.0)    151 (20.0)  0.001* 

 
T2   579 (22.5)    195 (30.9)  

 
Any Complication   679 (23.3)    143 (19.0)   0.015* 

 
T3  1218 (47.4)    231 (36.6)  

 
Anastomotic Leak    93 (3.2)     18 (2.4)  0.311 

 
T4   476 (18.5)     64 (10.1)  

 

pT/ypT 

T0   116 (4.0)     41 (5.4)  <0.001* 

cN N0  1460 (51.8)    486 (68.3)  <0.001* T1   591 (20.2)    252 (33.4)  
 

 N1   882 (31.3)    155 (21.8)  
 

T2   454 (15.5)    128 (17.0)  
 

 N2   369 (13.1)     57 (8.0)  
 

T3  1004 (34.3)    183 (24.3)  
 

 N3   108 (3.8)     14 (2.0)  
 

T4   766 (26.1)    150 (19.9)  
 

Performance 
Status 

0  1409 (48.1)    361 (47.9)  0.126 R1   268 (9.1)     72 (9.5)  0.785 

1  1201 (41.0)    288 (38.2)  
 

Grade of 
differentiation 

G1    69 (2.5)     30 (4.4)   0.002* 

2   288 (9.8)     90 (11.9)  
 

G2   730 (26.6)    199 (29.4)  
 

3    31 (1.1)     14 (1.9)  
 

G3/4  1674 (61.1)    368 (54.4)  
 

4     2 (0.1)      1 (0.1)  
 

GX   268 (9.8)     80 (11.8)  
 

ASA 1   359 (12.2)    118 (15.6)   0.002* Adjuvant Treatment   872 (29.8)    165 (21.9)  <0.001* 

 
2  1604 (54.7)    369 (48.9)  

 

Extent of Nodal 
Dissection 

None   234 (8.0)     98 (13.0)  <0.001* 

 
3   935 (31.9)    250 (33.2)  

 
D0    21 (0.7)     12 (1.6)  

 

 4    33 (1.1)     17 (2.3)  
 

D1   240 (8.2)    169 (22.4)  
 

Female Gender  1017 (34.7)    254 (33.7)  0.633 D2  2425 (82.7)    474 (62.9)  
 

Neoadjuvant Treatment  1406 (48.0)    256 (34.0)  <0.001* D3    11 (0.4)      1 (0.1)  
 

Data presented as absolute number (%) and median (IQR), *<0.05, § χ2 test, except ¶ Mann–Whitney U test **Major gastrointestinal resections including 
oesophagectomy or gastrectomy 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure S.1 Kaplan Meier estimation of survival, stratified by lymph node yield

 



 

 

Figure S.2 Study Flow Diagram 

 
  



Table S.2 Candidate Predictors 

Preoperative Operative Pathological/Post-operative 
Gender Approach pT/ypT 
Age Number of Procedures Total number of positive lymph nodes 
Site of Tumour Any Complications Grade of differentiation 
cT Anastomotic Leak Completeness of resection (R0/R1) 
cN Cardiac Complications Adjuvant Treatment 
IHD Respiratory Complications   
COPD Pleural Effusion  
CKD Pneumonia   
DM Extent of Nodal Dissection  
CVD     
PS   
ASA     
Hospital Volume 
(Major Upper GI 
Resection)   
Hospital Volume 
(Gastrectomy Alone)     
Neoadjuvant 
Treatment   

 

  



Figure S.3 Boruta variable importance. Candidate variables are compared to a set of variables that have been 

randomised in a Random Forest model and those with an importance to survival significantly higher 

than all randomised (shadow) variables are selected for inclusion. 

 
  



Figure S.4 Agreement between observed and predicted survival, grouped into quintiles by predicted survival at five-

years post-surgery 

 



Figure S.5 Interquartile range of predictions within pTNM staging groups 

 

 

  



Table S.3 Predicted mean survival time according to covariate selection, restricted to five years 

Characteristic   
Predicted mean 

survival time (Months) 
Life Expectancy Difference 

(Months 95% CI) Life Expectancy Ratio (95% CI) 

Age 18-50 43.3 Reference  1  

  51-60 43.1 -0.17 (-3.99 to 3.65) 1 (0.91 to 1.08) 

  61-70 42.7 -0.55 (-4.37 to 3.27) 0.99 (0.9 to 1.07) 

  71-80 41.5 -1.8 (-5.62 to 2.02) 0.96 (0.87 to 1.04) 

  80+ 41.0 -2.25 (-6.07 to 1.57) 0.95 (0.86 to 1.03) 

cT T0/is/1 42.5 Reference 1  

 T2 42.3 -0.14 (-3.21 to 2.92) 1 (0.92 to 1.07) 

 T3 41.8 -0.72 (-3.78 to 2.34) 0.98 (0.91 to 1.05) 

 T4 42.3 -0.14 (-3.2 to 2.93) 1 (0.92 to 1.07) 

cN N0 42.4 Reference  1   

  N1 42.2 -0.27 (-3.33 to 2.79) 0.99 (0.92 to 1.07) 

  N2 41.4 -0.97 (-4.02 to 2.08) 0.98 (0.91 to 1.05) 

  N3 40.6 -1.81 (-4.85 to 1.23) 0.96 (0.89 to 1.03) 

ASA 1 42.3 Reference 1  

 2 42.6 0.25 (-2.82 to 3.32) 1.01 (0.93 to 1.08) 

 3 41.3 -1.01 (-4.06 to 2.04) 0.98 (0.9 to 1.05) 

Performance Status 0 42.9 Reference   1  

  1 41.8 -1.1 (-4.17 to 1.97) 0.97 (0.9 to 1.05) 

  2 40.3 -2.59 (-5.64 to 0.46) 0.94 (0.87 to 1.01) 

  3 40.6 -2.25 (-5.31 to 0.8) 0.95 (0.88 to 1.02) 

Neoadjuvant Treatment None 42.2 Reference 1  

 Chemotherapy-Completed 42.0 -0.23 (-3.28 to 2.83) 0.99 (0.92 to 1.07) 

 Chemotherapy-not completed 
   

Completeness of 
Resection R0 42.6 Reference  1   

  R1 37.9 -4.71 (-7.71 to -1.7) 0.89 (0.82 to 0.96) 

pT Stage T0 47.2 Reference 1  

 T1 48.8 1.69 (-1.55 to 4.93) 1.04 (0.97 to 1.11) 

 T2 46.5 -0.66 (-3.85 to 2.54) 0.99 (0.92 to 1.05) 

 T3 41.4 -5.8 (-8.91 to -2.68) 0.88 (0.82 to 0.94) 

 T4 33.9 -13.25 (-16.29 to -10.2) 0.72 (0.66 to 0.77) 

pN Stage N0 46.4  Reference  1  

  N1 44.4 -1.96 (-5.78 to 1.86) 0.96 (0.88 to 1.04) 

  N2 39.1 -7.26 (-11.08 to -3.44) 0.84 (0.77 to 0.92) 

  N3a 32.6 -13.8 (-17.62 to -9.98) 0.7 (0.63 to 0.77) 

  N3b 29.3 -17.09 (-20.91 to -13.27) 0.63 (0.56 to 0.7) 

Grade of Differentiation G1 42.7 Reference 1  

 G2 42.5 -0.19 (-3.26 to 2.87) 1 (0.92 to 1.07) 

 G3/4 42.0 -0.71 (-3.77 to 2.35) 0.98 (0.91 to 1.05) 

  GX 42.5 -0.17 (-3.24 to 2.89) 1 (0.92 to 1.07) 

All values restricted to five years. The Life expectancy difference (LED) is the change in mean survival (months) from the reference value, and the Life 
expectancy ratio (LER) is the corresponding ratio of this. 



Figure S.6 Life expectancy ratio (LER) over time. Persistent effects are seen for positive resection margin. pT/pN effects plateau at about 4 years 
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External Validation Instructions 

 

A basic knowledge of R is required to conduct the external validation. As the model does not 

generate coefficients, access to the model itself is required.  

First, download the file packet from the web application in the ‘Model Details’ tab. This contains the 

models themselves and the manner in which dummy coding was conducted.  

An example blank dataframe is also included showing the structure in which data must be presented 

to the model. Care should be taken to match the variables/names/factor-levels in this file. If the 

model fails to generate predictions, it is probably due to a discrepancy here. 

Then access and download the R script from github:  

https://github.com/saqibrahmanUGI/AUGIS-Surv 

Running this script will firstly install and load the needed R packages, then batch generate 

predictions, calculate the tAUC and C-index, plot annual calibration curves and plot quintiles of 

prediction against observed KM estimates. 

 

 

https://github.com/saqibrahmanUGI/AUGIS-Surv
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