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Abstract

OpenSBLI is an open-source code-generation system for compressible fluid dynamics (CFD) on heterogeneous computing ar-
chitectures. Written in Python, OpenSBLI is an explicit high-order finite-difference solver on structured curvilinear meshes.
Shock-capturing is performed by a choice of high-order Weighted Essentially Non-Oscillatory (WENO) or Targeted Essentially
Non-Oscillatory (TENO) schemes. OpenSBLI generates a complete CFD solver in the Oxford Parallel Structured (OPS) domain
specific language. The OPS library is embedded in C code, enabling massively-parallel execution of the code on a variety of high-
performance-computing architectures, including GPUs. The present paper presents a code base that has been completely rewritten
from the earlier proof of concept (Jacobs et al, JoCS 18 (2017), 12-23), allowing shock capturing, coordinate transformations for
complex geometries, and a wide range of boundary conditions, including solid walls with and without heat transfer. A suite of vali-
dation and verification cases are presented, plus demonstration of a large-scale Direct Numerical Simulation (DNS) of a transitional
Shockwave Boundary Layer Interaction (SBLI). The code is shown to have good weak and strong scaling on multi-GPU clusters.
We demonstrate that code-generation and domain specific languages are suitable for performing efficient large-scale simulations of
complex fluid flows on emerging computing architectures.
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PROGRAM SUMMARY
Program Title: OpenSBLI code-generation framework for compress-
ible fluid dynamics on heterogeneous architectures
Licensing provisions: GPLv3
Programming languages: Python, C/C++, OPS DSL
Nature of problem: The compressible 3D Navier-Stokes equations are
solved via Implicit Large Eddy Simulation (ILES) or Direct Numerical
Simulation (DNS).
Solution method: OpenSBLI [1,2] is a Python-based code-generation
system that uses symbolic algebra to generate a complete CFD solver
in C/C++. The basic algorithm is a stencil-based finite-difference
solver on structured curvilinear meshes. Shock-capturing is per-
formed by a selection of high-order Weighted/Targeted Essentially
Non-Oscillatory (WENO/TENO) schemes. Explicit low-storage
Runge-Kutta schemes are used for time-advancement.
Additional comments: The generated code is compliant with the Ox-
ford Parallel Structured (OPS) [3] software library. OpenSBLI/OPS
executables can be generated for the OpenMP, MPI, CUDA, OpenCL,
and OpenACC parallel programming paradigms. Multi-GPU support
is available via combinations of MPI with CUDA, OpenCL or
OpenACC.
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1. Introduction

The role of Computational Fluid Dynamics (CFD) in mod-
ern aerospace research is well established [1]. CFD has be-
come an integral part of the aeronautical research and design
process. CFD can complement the data obtained from wind
tunnels and in-flight testing, at potentially a fraction of the cost.
Furthermore, high-fidelity Large Eddy Simulations (LES) or
Direct Numerical Simulations (DNS) can reveal physical in-
sights that would be difficult to investigate experimentally. The
dramatic increase in computational power over the past few
decades has broadened the scope of problems that can be tack-
led by LES/DNS. Two of the main challenges in this field today,
are the efficient utilization of computational hardware, and the
development of accurate and reliable numerical methods.

A recent trend in high-performance computing (HPC), has
been a shift to ever-increasing levels of heterogeneity [2].
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Graphical Programming Units (GPUs) and other types of ac-
celerators are now being applied to many diverse areas of com-
putational science [3]. In addition to the vast available com-
pute capacities, these emerging architectures can offer substan-
tial improvements in power efficiency for large systems. One of
the drawbacks limiting their uptake compared to conventional
CPU-based platforms however, is the need for programming
models suited to these architectures. Existing CFD solvers de-
signed for CPUs often contain large amounts of legacy code,
and can be inflexible to changes in computational hardware.
Porting existing codes to new architectures can be a very time
consuming process. One potential solution to this problem
is the ‘separation of concerns’ philosophy [4], applied in the
present work. This approach separates the physical problem
and numerical methods from their parallel implementation, al-
lowing the researcher to focus solely on modelling the physical
problem at hand, while benefiting from performance optimisa-
tions and hardware-specific knowledge from computer science
[5].

The present work describes the Python-based OpenSBLI au-
tomatic code-generation system for compressible fluid dynam-
ics. OpenSBLI is a high-order stencil-based finite-difference
solver on structured meshes. The symbolic algebra library
SymPy [6], is used to generate a CFD solver tailored to the
equations and schemes specified by the user in a high-level
Python script. An initial proof-of-concept version of this ap-
proach was presented in [7], to demonstrate the basic feasibil-
ity of code-generation for CFD. The demonstrator version was
limited to smooth (shock free) subsonic problems on triply pe-
riodic domains. Given the substantial changes needed to de-
velop the concept into a more generally useful research code
for shock-wave boundary-layer interactions, the new version of
OpenSBLI described in this work was started from a separate
code base. It is capable of simulating complex wall-bounded
flows with shockwaves, for supersonic and hypersonic CFD ap-
plications on curvilinear meshes. The purpose of this work is to
describe the OpenSBLI software package and its use of code-
generation techniques, present a set of a validation and verifi-
cation cases, and demonstrate a 3D shockwave boundary-layer
interaction representative of ongoing research [8, 9, 10].

OpenSBLI generates a complete CFD solver in the Oxford
Parallel Structured (OPS) Embedded Domain Specific Lan-
guage (EDSL) [11, 12]. The OPS library enables execution
of the code on multiple massively-parallel computing architec-
tures. Performance of the automatically generated OPS code
has been shown to as good as, or better than, hand-coded ver-
sion of the same application [13, 14].

Recent examples of comparable CFD codes on GPUs in-
cludes: Hydra [15], HiPSTAR [16], PyFR [17], the HTR
solver [18], and STREAmS [19]. Hydra is an unstructured
mesh solver that has been widely used commercially for turbo-
machinery applications. It uses the OP2 EDSL [20] from the
same authors as the OPS library used in this work. HiPSTAR
is a high-order curvilinear finite-difference code that also origi-
nated from the University of Southampton. It has been applied
to large-scale simulations of both low and high-pressure tur-
bine cascades. PyFR [17] is a Python-based unstructured mesh

framework, to solve advection-diffusion problems on streaming
architectures. The code utilises a domain specific language that
uses Mako templates for platform portability, allowing PyFR
to be compatible with both the CUDA and OpenCL program-
ming languages, and with OpenMP in C. HTR [18] is a hy-
personic aero-thermodynamics code that includes temperature-
induced thermochemical effects, and a 6th order Targeted Es-
sentially Non-Oscillatory (TENO) scheme for shock-capturing.
The code is written in the Regent programming language, using
the task-based Legion system to execute the code on GPUs. Fi-
nally, STREAmS [19] is a compressible DNS solver that uses
a hybridised Weighted Essentially Non-Oscillatory (WENO)
scheme for wall-bounded turbulent flows. Based on an exist-
ing CPU-solver, the code uses CUDA-Fortran90 kernels to run
large-scale DNS on modern GPU clusters.

One of the novel features of OpenSBLI is the use of sym-
bolic code-generation to write the simulation code from Python.
The OPS library is then used to create parallel versions of the
code for a number of parallel programming paradigms. At
present this includes MPI, OpenMP, OpenMP+MPI, CUDA,
OpenCL, and OpenACC. Code-generation allows for a large
number of numerical schemes to be contained within a com-
pact code-base. OpenSBLI has a number of high-order accurate
spatial discretization schemes. These include various orders of
WENO/TENO shock-capturing [21, 22, 23, 24], and central-
differencing which can be cast in split skew-symmetric forms
to improve numerical stability [25]. Time-advancement is per-
formed by low-storage explicit 3rd and 4th order Runge-Kutta
schemes [26]. The ability to define equations compactly in in-
dex notation in a high-level Python script, gives the user the
flexibility to control core aspects of the solver.

Code-generation techniques have been applied to a wide
range of areas within computational science, such as space-
systems, robotics, and control [27], weather-modelling [28],
and computational neuroscience [29]. A recent example of
a comparable project to this work is Devito [30], a code-
generation system aimed at geophysical applications. Devito
also uses the SymPy Python library to generate finite-difference
stencils. The symbolic library has been used to manipulate
and optimise expressions to improve computational efficiency
[31]. While initially targeting the Intel Xeon-Phi platform, De-
vito has recently utilised the OPS DSL used in this work to
target GPU clusters [32]. Patus [33] is another example of
code-generation being used to optimise stencil-based compu-
tations for multi- and many-core architectures. Examples of
code-generation applied to finite-element frameworks include
the Discontinuous Galerkin methods described in [34], and the
widely-used FeNICS package for solving PDEs.

The purpose of this work is to describe the main fea-
tures of the OpenSBLI design, with presentation of a suite
of validation and verification test cases. The work is struc-
tured as follows: Section 2 gives an overview of the nu-
merical methods used in OpenSBLI. This includes a charac-
teristic flux reconstruction, high-order WENO/TENO shock-
capturing, central-differencing with one-sided boundary clo-
sures, and time-advancement schemes. Section 3 describes
the OpenSBLI code implementation, with discussion of the
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core components and an example problem script. Section
3.3 shows examples of the OPS C code that results from the
code-generation process. A selection of validation and verifi-
cation cases are shown in section 4, plus demonstration of a
large-scale transitional Shockwave Boundary-Layer Interaction
(SBLI) DNS in section 5. Finally, section 6 gives a brief dis-
cussion of computational performance in the OPS DSL.

2. Numerical methods

Scale-resolving simulations of turbulence benefit from the
use of high-order accurate numerical methods, which can al-
leviate the excessive levels of numerical diffusion associated
with lower-order approximations [35, 36]. In the context of
compressible turbulence with shockwaves, there are two con-
trasting requirements placed on the numerical methods. Shock-
capturing schemes stabilise the solution by adding numerical
dissipation in the vicinity of flow discontinuities, but have the
detrimental effect of damping small-scale turbulence [37]. This
creates a requirement for very fine grids to achieve acceptable
resolution of small-scale flow structures, exacerbating the al-
ready high computational cost of LES/DNS.

Common approaches include the hybrid pairing of non-
dissipative central schemes with shock-capturing schemes via
a shock-sensor [36]. While these have been successful, it is
difficult to design shock-sensors suitable for every type of flow
conditions [37]. WENO schemes [21] are family of robust high-
order shock-capturing methods that have seen widespread use
in compressible CFD and Magneto-Hydrodynamics (MHD).
Examples of their use for SBLI includes [38]. WENO schemes
have previously been shown to be superior to lower-order
shock-capturing methods [39, 40]. TENO schemes [23, 24],
are a more recent development designed for reduced numerical
dissipation compared to WENO [41]. Alternative approaches
includes the framework of [42], which pairs skew-symmetric
central and Dispersion Relation Preserving (DRP) schemes to
a dissipative WENO scheme applied as a non-linear filtering
step. The non-dissipative part of the framework can be written
in either the Ducros-split [25], or entropy-split [43] forms to
enhance numerical stability. The present section describes the
high-order numerical methods in OpenSBLI, beginning with
the WENO/TENO flux reconstruction procedure for the com-
pressible Navier-Stokes equations.

2.1. Governing equations

OpenSBLI uses numerical indices to distinguish between
variables that have a dependence on dimension. For exam-
ple, the Cartesian coordinate base (x, y, z) and their respective
velocity components (u, v,w), are taken to be (x0, x1, x2), and
(u0, u1, u2) respectively in the code. This approach allows the
code-generation to be more flexible; all of the indexed quan-
tities and loops are generated dynamically, based on the num-
ber of dimensions set in the problem script. The base govern-
ing equations in this work are the dimensionless compressible
Navier-Stokes equations for a Newtonian fluid. Applying con-
servation of mass, momentum, and energy, in the three spatial

directions xi (i = 0, 1, 2), results in a system of five partial dif-
ferential equations to solve. These equations are defined for a
density ρ, pressure p, temperature T , total energy E, and veloc-
ity components uk as

∂ρ

∂t
+

∂

∂xk
(ρuk) = 0, (1)

∂

∂t
(ρui) +

∂

∂xk
(ρuiuk + pδik − τik) = 0, (2)

∂

∂t
(ρE) +

∂

∂xk

(
ρuk

(
E +

p
ρ

)
+ qk − uiτik

)
= 0, (3)

with heat flux qk and stress tensor τi j defined as

qk =
−µ

(γ − 1) M2
ref PrRe

∂T
∂xk

, (4)

τik =
µ

Re

(
∂ui

∂xk
+
∂uk

∂xi
−

2
3
∂u j

∂x j
δik

)
. (5)

Pr, Re, and γ are the Prandtl number, Reynolds number and
ratio of heat capacities respectively. The equations are non-
dimensionalized by a reference velocity, density and temper-
ature

(
U∗ref , ρ

∗
ref ,T

∗
ref

)
. For the SBLI cases, the characteristic

length is the displacement thickness δ∗ of the boundary layer
imposed at the inlet. Pressure is normalised by ρ∗refU

∗
ref

2. For
cases with temperature dependent dynamic viscosity, µ (T ) is
evaluated using Sutherland’s law

µ (T ) = T
3
2

 1 +
T ∗s
T ∗ref

T +
T ∗s
T ∗ref

 , (6)

for a reference temperature T ∗ref . The Sutherland temperature
constant is set to be T ∗s = 110.4K. For a reference Mach number
Mref , pressure and local speed of sound are defined as

p = (γ − 1)
(
ρE −

1
2
ρuiui

)
=

1
γM2

ref

ρT and a =

√
γp
ρ
.

(7)
For the SBLI cases, the skin friction C f is calculated from the
wall shear stress τw as

τw = µ
∂u
∂y y=0

, C f =
τw

1
2ρrefU2

ref

. (8)

The high-level Python interface in OpenSBLI allows users
to modify the equations to be solved in the simulation. Ex-
amples of this are given in the code repository for the turbu-
lent channel flow applications, where the governing equations
are recast in split skew-symmetric formulations to improve nu-
merical stability. It is expected that this flexibility will enable
OpenSBLI to be extended to equations beyond the compress-
ible Navier-Stokes equations presented in this work. The next
section outlines the flux reconstruction applied to the convec-
tive terms in equations (1-3), for problems requiring the use of
the WENO/TENO shock-capturing schemes. Heat-flux (4) and
stress-tensor (5) terms are computed with central differences, as
described in section 2.6. The system of equations is advanced
in time using the explicit Runge-Kutta methods in section 2.7.
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2.2. Flux reconstruction
The convective terms of the Navier-Stokes equations form a

set of conservation laws that can be approximated by flux re-
construction methods. For a given physical dimension, a finite-
difference method creates discrete representations of derivatives
on a set of i grid points as in figure 1. Taking the example of a
scalar conservation equation

∂U
∂t

+ f (U)x = 0, (9)

the flux term f (U)x can be approximated by computing two
half-node reconstructions

[
f̂i+ 1

2
, f̂i− 1

2

]
, such that the flux f (U)x

is replaced by

1
∆x

(
f̂i+ 1

2
− f̂i− 1

2

)
, (10)

for a grid spacing of ∆x. For a general flux f (U), splitting
methods are applied to account for upstream and downstream
propagating information

f (U) = f +(U) + f −(U), (11)

where the plus and minus superscripts represent the cases [44]

∂ f +(U)
∂U

> 0 and
∂ f −(U)
∂U

< 0. (12)

The most common flux-splitting method is the Local Lax-
Friedrich (LLF) flux

f ±(U) =
1
2

( f (U) ± αU) , (13)

for a given wave-speed α. For systems of equations, the flux
can be applied to each component in succession. To improve
the robustness of the shock-capturing [40], the reconstructions
are performed in characteristic space as described in [21]. The
algorithm is summarised as follows for a system of j equations.

1. Construct the flux f (U j) and solution vector U j terms at
every i grid point.

2. At each half-node xi+ 1
2

perform the following:
(a) Compute the average Ui+ 1

2
state with either simple or

Roe averaging.
(b) Obtain the eigensystem R(Ui+ 1

2
), R−1(Ui+ 1

2
) and

Λ(Ui+ 1
2
) to diagonalize the equations.

(c) Transform the solution and flux vector into charac-
teristic space as V j = R−1U j, and g j = R−1 f (U j).

(d) Apply the flux-splitting g±j = 1
2

(
g j ± α jV j

)
, where

α j = maxk

∣∣∣λ j

∣∣∣, are the characteristic wave-speeds
over the local stencil points k.

(e) Perform the high-order WENO/TENO reconstruc-
tion at xi+ 1

2
.

(f) Transform the flux back to physical space Rĝ±
i+ 1

2
.

3. Build the finite-difference approximation as in (10).
4. Repeat for all other dimensions in the problem.

The half-node flux reconstructions
[
f̂i+ 1

2
, f̂i− 1

2

]
can take many

forms, allowing for the construction of high-order approxima-
tions of the interface fluxes. OpenSBLI uses the WENO and
TENO high-order reconstruction methods described in the next
sections.

i-2 i-1 i i+1 i+2 i+3

i+1/2

𝑆"

𝑆#

𝑆$

Figure 1: Schematic of the finite-difference WENO stencils.

2.3. Weighted Essentially Non-Oscillatory (WENO) schemes

WENO schemes construct a high-order approximation for
the half-node fluxes

[
f̂i+ 1

2
, f̂i− 1

2

]
, by building up a convex com-

bination of a set of smaller candidate stencils (figure 1). The
candidate stencils are weighted based on the local smoothness
of the flow. This mechanism avoids differencing over flow dis-
continuities, resulting in essentially non-oscillatory behaviour
around shocks [21]. For a WENO reconstruction of order 2k−1,
k candidate stencils are required. In each candidate stencil an
interpolation is applied such that

f̂ (r)
i+ 1

2
=

k−1∑
j=0

cr j fi−r+ j, r = [0, k − 1] , (14)

where cr j are the standard ENO coefficients given in [21]. The
WENO reconstruction is then formed as

f̂i+ 1
2

=

k−1∑
r=0

ωr f̂ (r)
i+ 1

2
, (15)

for a non-linear weighting ωr. The choice of ωr differs be-
tween the various WENO formulations. OpenSBLI uses both
the original WENO-JS weightings [21], and those of the im-
proved WENO-Z scheme [22].

The fundamental aspect of ENO/WENO reconstructions is
the mechanism to select certain candidate stencils. The scheme
must be capable of identifying discontinuities in the flow, to re-
move discontinuity-crossing stencils from the final reconstruc-
tion. The most commonly used smoothness indicator was in-
troduced by [44], defined as

βk =

r−1∑
l=1

∫ x j+ 1
2

x j− 1
2

∆x2l−1
(
q(l)

k

)2
dx, (16)

where q(l)
k is the l-th derivative of the (r − 1)-th order interpolat-

ing polynomial qk(x) over a candidate stencil S k. This smooth-
ness indicator forms the sum of L2 norms of the interpolating
polynomial derivatives over a cell width. OpenSBLI generates
the expressions for the smoothness indicators dynamically dur-
ing code-generation, for the order specified by the user. The
code supports generation of WENO schemes for any arbitrary
odd order. As an example, for a 5th order WENO scheme the
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smoothness indicators are given by

β0 =
13
12

( fi − 2 fi+1 + fi+2)2 +
1
4

(3 fi − 4 fi+1 + fi+2)2 , (17)

β1 =
13
12

( fi−1 − 2 fi + fi+1)2 +
1
4

( fi−1 − fi+1)2 , (18)

β2 =
13
12

( fi−2 − 2 fi−1 + fi)2 +
1
4

( fi−2 − 4 fi−1 + 3 fi)2 , (19)

where f is one of the discrete flux terms from the governing
equations.

To construct the (2k− 1)-th order WENO approximation, the
non-linear WENO weights are normalized for r = [0, k − 1] as

ωr =
αr∑k−1

n=0 αn
, (20)

with the smoothness indicators βr forming part of the alpha
terms as

αr =
dr

(ε + βr)p , (21)

for optimal weights dr and constants, p, ε. The standard value
of p = 2 is used, and ε set to a small non-zero number (10−6) to
avoid division by zero. Optimal weights dr are taken from [21].

2.4. WENO-Z formulation

The WENO-Z formulation [22], [45], is a substantial im-
provement over the base scheme in terms of achieving lower
numerical dissipation [46], while retaining robust shock-
capturing. Non-linear weights ωr from the improved formu-
lation are

ωz
r =

αz
r∑k−1

n=0 α
z
n
, αz

r = dr

1 +

(
τ

σr + ε

)2 , (22)

with (ε ∼ 10−16). Smoothness indicators βr and optimal weights
dr are unchanged. WENO-Z introduces a global smoothness
measure τ, representing the absolute difference in the smooth-
ness indicators over the full reconstruction stencil. As an ex-
ample, at 5th order (k = 3) the global smoothness measure is
calculated from [45] as τ = |β0−β2|. As only minor changes are
required compared to the base scheme, the performance impact
of WENO-Z is almost negligible [46].

2.5. Targeted Essentially Non-Oscillatory (TENO) schemes

A more significant improvement was introduced by the
TENO schemes of [23, 24]. TENO schemes fit into the same
flux reconstruction framework as WENO, with identical flux-
splitting and characteristic decompositions. TENO schemes
differ from WENO however in three fundamental ways: a stag-
gered ordering of candidate stencils as in figure 2, the com-
plete removal of candidate stencils deemed to be non-smooth,
and modified non-linear weights optimized for low numerical
dissipation. For a K-th order TENO scheme with r candidate
stencils, the non-linear weights take the form

ωr =
drδr∑K−3

r=0 drδr
, (23)

i-2 i-1 i i+1 i+2 i+3

i+1/2

𝑆"

𝑆#

𝑆$

𝑆%

Figure 2: Schematic of the finite-difference TENO stencils.

where δr is a discrete cut-off function

δr =

0 if χr < CT

1 otherwise

for a tunable cut-off parameter CT . The smoothness mea-
sures χr are the same as the weight normalization process as
in WENO

χr =
γr∑K−3

r=0 γr
, (24)

comprised of the WENO-Z inspired form of non-linear TENO
weights [23]

γr =

(
C +

τK

βr + ε

)q

, r = 0, . . . ,K − 3, (25)

with C = 1, and q = 6. Smoothness indicators βr are unchanged
from the standard Jiang-Shu formulation [44], and ε ∼ 10−16.
The global smoothness indicator τK measures smoothness over
the entire stencil, and is given for 5th and 6th order TENO
schemes as

τ5 = |β0 − β2|, (26)

τ6 = |β3 −
1
6

(β0 + β2 + 4β1)|. (27)

CT is the user-specified parameter which determines whether a
given candidate stencil is rejected or contributes to the flux re-
construction. Lower values of CT are suitable for compressible
turbulence simulations where minimal numerical dissipation is
required, but this comes at the cost of increased spurious os-
cillations around shockwaves. CT is typically taken to be be-
tween 10−5 and 10−7, depending on the physical problem. The
computational cost of the TENO schemes is approximately 15-
20% greater than a WENO scheme of equivalent order [46],
but offers significantly lower dissipation while retaining sharp
shock capturing. OpenSBLI has both 5th and 6th order TENO
schemes available.

2.6. Central schemes for heat-flux, viscous, and metric terms

Diffusive terms in OpenSBLI are computed by central-
differences. Central schemes are also applied to smooth prob-
lems that do not require shock-capturing. The code-generation
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can produce central-difference approximations for any even-
ordered central scheme. A fourth order central scheme is used
throughout this work. For a grid spacing of ∆x, the formula for
first and second derivatives are

f ′i =
− fi−2 + 8 fi−1 − 8 fi+1 + fi+2

12∆x
, (28)

f ′′i =
− fi−2 + 16 fi−1 − 30 fi + 16 fi+1 − fi+2

12∆x2 . (29)

At non-periodic domain boundaries, the central-differences
are replaced by one-sided derivatives. There are two 4th order
boundary schemes available in OpenSBLI, to maintain a con-
sistent order throughout the domain. The first is the scheme of
[47], which uses a [-5,5] stencil at domain boundaries. The sec-
ond scheme [35] modifies two points at each boundary with a
[-4,4] stencil such that

f ′0 =
1

12∆x
(−25 f0 + 48 f1 − 36 f2 + 16 f3 − 3 f4) , (30)

f ′1 =
1

12∆x
(−3 f0 − 10 f1 + 18 f2 − 6 f3 + f4) , (31)

f ′N−2 =
1

12∆x
(− fN−5 + 6 fN−4 − 18 fN−3 + 10 fN−2 + 3 fN−1) ,

(32)

f ′N−1 =
1

12∆x
(3 fN−5 − 16 fN−4 + 36 fN−3 − 48 fN−2 + 25 fN−1) .

(33)

For both boundary schemes the second derivatives are com-
puted for the final two interior points from [47] using the for-
mula

f ′′0 =
35 f0 − 104 f1 + 114 f2 − 56 f3 + 11 f4

12∆x2 , (34)

f ′′1 =
11 f0 − 20 f1 + 6 f2 + 4 f3 − f4

12∆x2 . (35)

OpenSBLI also contains a metric transformation class to
symbolically transform derivatives to a set of curvilinear coor-
dinates ξ(x, y, z), η(x, y, z), and ζ(x, y, z). These are used for sim-
ulations containing stretched and curved meshes. The metric
terms are evaluated by the same central interior and boundary
schemes described in this section. Metric terms are computed
once at the start of the simulation, to be multiplied into deriva-
tive terms to perform the coordinate transformation. Further
discussion of the metric transformation in OpenSBLI is given
in [10].

2.7. Explicit Runge-Kutta time-stepping
Large-scale DNS of the compressible Navier-Stokes equa-

tions has considerable memory requirements, making low-
storage time-advancement schemes an attractive option to
tackle challenging flows [48]. Furthermore, explicit methods
avoid having to compute the expensive inversion of systems re-
quired by implicit schemes. Explicit methods with structured
meshes are well suited to modern computational hardware op-
tions such as GPUs, as they avoid performance issues related

to poor data locality. OpenSBLI currently has two low-storage
time-stepping schemes available: a standard 3rd order Runge-
Kutta scheme in the form proposed by [49], and one follow-
ing the work of [50]. The second formulation is used through-
out this work, and has been implemented in OpenSBLI for 3rd
and 4th order, plus a 3rd order strong-stability-preserving (SSP)
version to improve stability for flows containing discontinuities.
Low-storage Runge-Kutta schemes require only two additional
storage arrays per equation. For an m-stage scheme, time ad-
vancement of the solution vector U from time level Un to Un+1

is performed at stage i = 1, . . . ,m such that

dU(i) = AidU(i−1) + ∆tR
(
U(i−1)

)
, (36)

U(i) = U(i−1) + BidU(i), (37)

Un+1 = U(m), (38)

for a constant time-step ∆t, initial conditions U(0) = Un and
dU(0) = 0, and residual R(U(i−1)). The 3rd and 4th order
schemes have three and five sub-stages per iteration respec-
tively. The coefficients Ai and Bi are taken from [26] for 3rd
and 4th order, and [51] for the SSP version of the 3rd order
scheme.

3. OpenSBLI code implementation

This section outlines the main design principles of the
OpenSBLI code-generation system, with examples from the
high-level Python user interface. The purpose of OpenSBLI
is to generate a complete, customizable, CFD solver in the OPS
domain specific language [11, 12, 13, 14]. OPS is a program-
ming abstraction for massively-parallel computation on struc-
tured multi-block meshes. The OpenSBLI/OPS workflow is
summarised in figure 3. In step 1, OpenSBLI is used to generate
an OPS C code for a given physical problem. The OPS trans-
lator is then used to perform a source-to-source translation of
the base code to a number of parallel programming paradigms.
The parallel code can then be compiled and executed on a target
architecture. This allows the code to be executed on a range of
different hardware from a single source code.

Figure 3: The code-generation process in OpenSBLI/OPS.

It is important to note that a code-generation system is not
a prerequisite to write OPS C code. As we will see in section
3.3 however, the standardised parallel templates of OPS code
lend themselves well to a code-generation approach. Code-
generation also enables far greater control of the resulting sim-
ulation code, leading to performance optimisations [52] that
would be difficult in hand-written code. In addition, code-
generation can improve code maintainability, by utilising an
object-oriented design to share common functionality between
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classes. This approach allows for a large number of scheme
options to be implemented in a relatively compact code base.

The simulation code is tailored to the options selected by the
user in the Python interface. Python was selected because it is
an extremely versatile general-purpose programming language,
with a rich ecosystem of external scientific libraries. One such
example is the symbolic algebra library SymPy [6], which pro-
vides the fundamental building blocks of OpenSBLI. OpenS-
BLI has a number of symbolic data structures that inherit the
functionality provided by SymPy. This functionality enables us
to define, manipulate, and simplify symbolic expressions, using
symbolic objects that follow the fundamental rules of mathe-
matics.

OpenSBLI parses and expands user-defined equations, be-
fore performing a symbolic discretization procedure for the se-
lected numerical schemes. There are classes for boundary con-
ditions, initial conditions, and handling of simulation input/out-
put, which are all controlled by the user in the high-level prob-
lem script. Much of the complexity of code-generation comes
from the need to make the abstraction as general as possible, so
that it is flexible enough to target a wide range of applications
within the domain of fluid dynamics.

As the system has no inherent knowledge of the algorithms
required by CFD, we have to apply sorting procedures to ensure
dependencies are satisfied in the correct order in the generated
simulation code. For example, the evaluation of speed of sound
a =

√
γp/ρ requires the equation of state for pressure (7), p, to

have already been calculated. Similarly, a constant declaration
∆x = Lx/Nx must come after declaration of constants Lx,Nx.
The sorting procedure ensures that evaluations are written to the
simulation code in the correct order. Users are also able to add
their own components to the algorithm from within the Python
layer [10]. The next section discusses the core components that
make up the system.

3.1. Creating an OpenSBLI problem script
OpenSBLI is comprised of a number of Python classes that

provide the core functionality needed to generate a CFD solver.
Figure 4 illustrates these core components. A complete descrip-
tion of all of the source code files is contained in the user man-
ual that accompanies this work. In the following sections, the
core components of the system are described in the order that
they would appear in a user-defined problem script.

3.1.1. Defining and expanding equations

1 ndim , scheme = 3, "**{\’ scheme\’:\’Teno\’}"

2 # Define the compresible Navier -Stokes equations

in Einstein notation.

3 mass = "Eq(Der(rho ,t), - Conservative(rhou_j ,x_j

,%s))" % scheme

4 momentum = "Eq(Der(rhou_i ,t) , -Conservative(

rhou_i*u_j + KD(_i ,_j)*p,x_j , %s) + Der(

tau_i_j ,x_j) )" % scheme

5 energy = "Eq(Der(rhoE ,t), - Conservative ((p+rhoE)

*u_j ,x_j , %s) - Der(q_j ,x_j) + Der(u_i*

tau_i_j ,x_j) )" % scheme

6 stress_tensor = "Eq(tau_i_j , (mu/Re)*(Der(u_i ,x_j

)+ Der(u_j ,x_i) - (2/3)* KD(_i ,_j)* Der(u_k ,

x_k)))"

OpenSBLI Framework

OPS library

SimulationBlock

schemes

Equations

User sets

Boundary conditions

IO

Discretise

Discretise spatial

Discretise temporal

Algorithm

Kernels

Program

Symbolic manipulation
LatexWriter

OPSC Source code generation
SimulationDataType

C/Fortran
other backends

OPS

Sequetial/
OpenMP(CPU)

CUDA/OpenCL
(GPU)

OpenACC Future
backends

MPI versions

Figure 4: Schematic of the major components in the OpenSBLI automatic
source code generation framework.

7 heat_flux = "Eq(q_j , (-mu/(( gama-1)*Minf*Minf*Pr*

Re))*Der(T,x_j))"

8 substitutions = [stress_tensor , heat_flux]

9 constants = ["Re", "Pr", "gama", "Minf"]

The first step when creating a simulation in OpenSBLI is to
specify the equations to be solved. The code listing shows how
this is done for the compressible Navier-Stokes equations de-
fined in section 2.1. Taking the example shown in line 3, the
SymPy equation class Eq is used with the OpenSBLI derivative-
handling classes Der and Conservative, to define the conti-
nuity equation

∂ρ

∂t
+

∂

∂x j

(
ρu j

)
= 0. (39)

Note that there is an optional argument ‘scheme’ passed to the
spatial derivative, to specify that this derivative should be com-
puted with the TENO scheme. Alternatively the user could
have specified the use of a ‘WENO’ or ‘Central’ scheme here.
If no scheme is passed, the derivative class defaults to a cen-
tral derivative. Additionally, there is a Skew class available for
skew-symmetric formulations of the central schemes. Lines 4-
7 defines the momentum, energy, stress tensor, and heat flux
equations in the same manner. In the first line the user selected
the number of dimensions to be 3, which will be used when ex-
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panding these equations over the repeated index j. The symbol
t is reserved to denote temporal derivatives. In line 8, the stress
tensor and heat flux equations are stored in a list to be substi-
tuted into the momentum and energy equations. This optional
substitution step is used to simplify the form of the equations.
Note that if a term has more than one index, these should be
separated by an underscore (e.g. τi j is written as tau i j). Fi-
nally, a list of simulation constants are defined in line 9, includ-
ing Reynolds number, Prandtl number and the ratio of specific
heat capacities.

1 # Expand the continuity equation

2 EE = EinsteinEquation ()

3 continuity = EE.expand(mass , ndim , "x",

substitutions , constants)

The next step is to instantiate the EinsteinEquation class,
which contains the functionality for parsing and expanding of
equations. The class contains an expand method, which ex-
pands the equation over the number of dimensions of the prob-
lem. A coordinate base symbol of x is given, along with any
substitutions and constants as necessary. This parsing and ex-
pansion step is repeated for each of the governing equations.

1 # Define and expand the pressure and viscosity

relations

2 pressure = "Eq(p, (gama-1)*(rhoE - rho *(1/2) *(KD(

_i,_j)*u_i*u_j)))"

3 viscosity = "Eq(mu, T**(1.5)*(1+ SuthT/RefT)/(T+

SuthT/RefT))"

4 P = EE.expand(pressure , ndim , coordinate_symbol ,

substitutions , constants)

5 mu = EE.expand(viscosity , ndim , coordinate_symbol

, substitutions , constants)

Next we have to define any relations that are required by the
base equations, such as the dynamic viscosity relation (6), or
the equation of state (7). In this example, Sutherland’s law
(6) and the pressure evaluation (7) are defined in the same
manner as before, before being parsed and expanded by the
EinsteinEquation class. A Kronecker Delta class KD is ap-
plied here for the pressure calculation, to sum over the square
of the velocity components. OpenSBLI contains other objects
providing index functionality, such as the Levi-Civita symbol.

1 # Store the expanded equations and relations

2 SE = SimulationEquations ()

3 CR = ConstituentRelations ()

4 SE.add_equations(continuity), CR.add_equations(P)

The governing equations and their relations have now
been defined, parsed, and expanded. To distinguish be-
tween time-advanced equations and the supporting relations,
we must now group them as either SimulationEquations,
or ConstituentRelations. To do this, the two OpenSBLI
classes are instantiated, and each of the previously expanded
equations are added by the add equation method. Here we
are only adding one equation to each for brevity, but the method
accepts lists of multiple equations at once.

3.1.2. Selection of numerical schemes

1 # Set the numerical schemes

2 schemes = {}

3 LLF = LLFTeno(order=6, averaging = RoeAverage ([0,

1]))

4 cent = Central (4)

5 rk = RungeKuttaLS (3, formulation=’SSP’)

6 schemes[LLF.name], schemes[cent.name], schemes[rk

.name] = LLF , cent , rk

Having defined all of the base equations, the user must now
select the numerical schemes they wish to use. A standard
Python dictionary is created in line 2 to hold the schemes. Lines
3-5 instantiate the 6th order LLF TENO scheme for shock-
capturing with Roe-averaging, the 4th order Central scheme
for viscous/heat-flux terms, and a 3rd order SSP Runge-Kutta
scheme for time-advancement. The final step in line 6 is to store
the schemes in the Python dictionary in the key-value syntax,
where the name of the scheme is used as the key. At this point
no symbolic discretization of the equations has been performed,
the schemes have only been initialized.

3.1.3. Setting boundary and initial conditions

1 # Setting an initial condition

2 initial = GridBasedInitialisation ()

3 initial.add_equations(initial_equations)

4 # Selecting a boundary condition

5 boundaries = [[0, 0] for t in range(ndim)]

6 direction , side = 1, 0

7 boundaries[direction ][side] = IsothermalWallBC(

direction , side , wall_condition)

To generate a complete CFD solver, we must also specify the
initial and boundary conditions for the problem. The sim-
plified code extract shows how this is done. Line 2 instan-
tiates the GridBasedInitialisation class, which will be
executed once at the start of the simulation (t = 0). The
initial equations variable would be a list of conditions
written in the same manner as the equations in section 3.1.1.
The add equations method is then used in line 3 to add this
set of initial conditions to the class.

Line 5 creates a list of lists to store the boundary condition
classes for the problem. For a problem of dimension ndim,
there are ndim*2 boundary conditions that must be set. These
are distinguished by having a side of 0 or 1. In the example,
an isothermal wall boundary condition has been selected for
the 0th (bottom) side in the 1st (y) direction of the problem.
Boundary conditions are enforced on conservative variables by
using the ghost (halo) points required by the shock-capturing
schemes. In the case of the isothermal wall boundary shown
here, the no-slip condition is first enforced on the boundary
plane as

ρu = ρv = ρw = 0. (40)

The wall condition variable is an expression for the total en-
ergy ρE, set depending on the thermal properties of the wall in
question. For a constant temperature Tw isothermal wall the
energy is set for a wall density ρw as

ρE =
ρwTw

M2
refγ (γ − 1)

, (41)
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where the wall density is obtained from solving the continuity
equation (1). The ghost flow in the halo points (i < 0) is en-
forced by extrapolating temperature from the interior and wall
as

T−i = (i + 1)Tw − iT1. (42)

Density in the halos is evaluated using the extrapolated temper-
ature values and the wall pressure pw as

ρ−1 =
M2

refγpw

T−i
. (43)

Momentum components in the halos are set by reflecting the
velocity components from the interior flow with a reversed sign
such that

ρu−i = −ρ−iui, (44)
ρv−i = −ρ−ivi, (45)
ρw−i = −ρ−iwi, (46)

where ρ−i is the halo density calculated in equation (43). In the
case of an adiabatic wall, the formula for a one-sided 4th order
approximation of ∂T/∂y = 0 is rearranged using the interior
points to calculate the unknown wall temperature Tw, to enforce
the zero heat-flux condition. This wall temperature is then used
to set the wall energy as in equation (41). In both cases the
value of the wall density is left to float by letting the scheme
solve the continuity equation, which avoids over-specifying the
boundary condition.

In addition to boundary conditions implemented for Navier-
Stokes applications, OpenSBLI also offers a DirichletBC op-
tion which allows users to enforce their own custom conditions
on a given boundary plane. The user specifies the equations to
evaluate in the same manner as the equation definitions shown
in section 3.1.1. These conditions can contain time-dependence
and branching conditional expressions, which can be used to
add variable forcing, or to enforce multiple spatially-dependent
conditions on a single boundary plane. Alternatively, source
terms localised to a boundary region can be added to the gov-
erning equations at the Python level. Further examples and a
full listing of the available boundary conditions is given in [10].

3.1.4. Selecting HDF5 file I/O options

1 kwargs = {’iotype ’: "Write"}

2 h5 = iohdf5(save_every=10000, ** kwargs)

3 h5.add_arrays(SE.time_advance_arrays)

4 h5.add_arrays ([ DataObject(’T’)])

All input/output of simulation data in OpenSBLI is han-
dled by the parallel Hierarchical Data Format (HDF5) library
[53]. HDF5 enables large data files to be stored and organ-
ised into groups containing multiple named datasets. In lines
1-2 of the example code, the OpenSBLI iohdf5 class is instan-
tiated with the write (output) argument. This class will con-
trol all of the output writing to disk. An optional argument
save every is specified, to write intermediate simulation data,
for example every 10,000 iterations. The iohdf5 class has an
add arrays method, which can be used to set which flow vari-
ables to write to disk. In this example the time-advance arrays

(ρ, ρu, ρv, ρw, ρE), and temperature T , have been selected for
the output. Restarting of simulations or the reading of a co-
ordinate mesh is also handled by this class, with the iotype

‘Read’.

3.1.5. Creating a block and generating the C code

1 # Create a simulation block

2 block = SimulationBlock(ndim , block_number = 0)

3 # Set the user options on the block

4 block.set_discretisation_schemes(schemes)

5 block.set_block_boundaries(boundaries)

6 block.setio(h5)

7 block.set_equations ([CR , SE , initial ])

8 # Begin the symbolic discretisation process

9 block.discretise ()

10 # Create an algorithm to order the computations

11 alg = TraditionalAlgorithmRK(block)

12 SimulationDataType.set_datatype(Double)

13 # Generate the OPS C code and write it to file

14 OPSC(alg)

Up until this point in the script, no symbolic discretization
has been performed. The user has simply been selecting the op-
tions they require for the simulation. The core component that
links everything together is called the SimulationBlock. A
SimulationBlock is created in line 2, with the number of di-
mensions of the problem. We then set the numerical schemes,
boundary conditions, HDF5 I/O, and all of the equations on
the block. To begin the symbolic discretisation, we call the
block.discretise() method. This method loops over all of
the equations to be solved, and calls discretisation routines in
each of the numerical methods where applicable. The continu-
ous derivatives in the equations are converted into discrete rep-
resentations, constructed from the symbolic objects that will be
discussed in section 3.2.1. These discrete equations are stored
in computational Kernels, that are discussed in section 3.2.2.

Line 11 initialises an algorithm class based on the block. The
algorithm class sets out the order that individual components
should appear in the simulation code. For example, precedence
is given to components involved in initialising the simulation,
such as the declaration of global constants and memory allo-
cation for storage arrays. Next would be the initial conditions
to set from the GridBasedInitialisation class, before dec-
laration of the main iteration and Runge-Kutta sub-stage loops
and their components. At the end of the algorithm would be the
calls to the HDF5 library to write the simulation output to disk.

The final stages in lines 12 and 14 are to set the numeri-
cal precision of the simulation and begin the code-writing pro-
cess with the OPSC class. The OPSC class is derived from the
C99CodeWriter contained in SymPy [6]. It contains meth-
ods that return C-compliant expressions for the discrete sym-
bolic equations stored in the computational Kernels. Addi-
tionally, the OPSC class contains templates of calls to the OPS
library functions, which are populated based on the computa-
tions stored in the Kernels. Examples of these OPS library
functions in C are given in section 3.3. Users would also input
numerical values for simulation constants at this stage. Once
the OPSC procedure is complete, a set of C/C++ codes are writ-
ten out for translation and compilation with OPS as in figure
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3. In practice, execution of the entire code-generation process
takes less than a minute for the most demanding cases. The
count ops function in SymPy can be used to monitor operation
counts for each symbolic expression. This feature can aid op-
timisation efforts by applying simplifications and checking the
updated operation count [31]. The 3D research-representative
case in section 5 has 1.5 × 104 internal representations for the
discrete form of the equations.

3.2. Key OpenSBLI features and data structures

In this section we briefly discuss the OpenSBLI data struc-
tures that are used internally during the code-generation pro-
cess. A more complete guide is given in the accompanying user
manual and in [10]. The final part of this section highlights
some of the optimisations that are possible in the symbolic en-
gine.

3.2.1. Data structures
Equations in OpenSBLI are constructed using the Eq class

and the data structures outlined in this section. Equations can
be defined either as strings to parse (as shown in section 3.1.1),
or by manually calling the following classes.

1. DataObject: Variables to be stored as global arrays on
the entire grid. These objects are not indexed, they repre-
sent terms in the continuous symbolic equations.

2. DataSet (e.g. T[0,0,0]): SimulationBlock-
specific versions of DataObjects. These objects have
‘ndim’ indices, which are incremented per direction to
create discrete finite-difference representations.

3. GridVariable: Temporary local variables that are used
for intermediate calculations inside computational kernels.
They contain a single value at a given grid point, to per-
form intermediate calculations.

4. CoordinateObject: Direction based coordinate objects.
Used for defining derivatives and metric handling of the
continuous equations.

5. ConstantObject: Used to define constant parameters.
Examples would include Reynolds number, Prandtl num-
ber, and reference quantities.

3.2.2. OpenSBLI Kernels

1 # Create an OpenSBLI Kernel

2 kernel = Kernel(block , computation_name="%s

boundary direction%d side%d" % (bc_name ,

direction , side))

3 kernel = self.set_kernel_range(kernel , block)

4 kernel.add_equation(BC_equations)

A key concept in OpenSBLI is that of the Kernel. The
Kernel class is a way of holding the information required to
perform a certain computation over a specified grid range. They
are converted during the code-writing process into the OPS ker-
nels discussed in section 3.3. Kernels are created internally as
shown in the example code, where a Kernel object is created in
line 2 for a named boundary condition. In line 3 the spatial grid
range for this computation is set using grid information stored

in the SimulationBlock. The equations to evaluate over this
grid range can then be added with the add equation method.

Each instance of the Kernel class extracts and stores infor-
mation from its equations. This includes determining which of
the terms in the equations require read, write, or read-write data
access patterns. It must also inspect the relative data access of
each quantity, to build up a set of numerical finite-difference
stencils. For example, a Kernel for a 4th order central differ-
ence would detect that it requires read access at {−2,−1, 1, 2} in
a certain direction. The Kernel would also contain a work ar-
ray with write access at {0}, to store the value of the derivative at
each grid location. The Kernel performs all of the ‘bookkeep-
ing’ work, that enables us to automatically generate the paral-
lel OPS loops and C functions described in section 3.3. All
of this information would otherwise have to be maintained and
updated manually for each computation in a static hand-written
code, which can be time consuming and error prone.

3.3. Oxford Parallel Structured (OPS) library

As previously mentioned, automated parallel abstractions
can offer researchers an easy way to utilise modern hardware.
In addition to x86-CPU and GPU-based architectures, ARM-
based CPUs [54], Field Programmable Gate Arrays (FPGAs),
and many-core accelerator cards such as the Intel Xeon Phi have
all been cited as possible architectures of the future [55]. As the
recent discontinuation of the Intel Xeon Phi product line [56]
has highlighted however, it is not clear at this stage which, if
any, of these architectures will ultimately prevail in the coming
decades. As such, codes using cross-platform standardised li-
braries agnostic to the computational architecture, may be bet-
ter placed to respond to future changes in the computational
landscape.

This section provides brief examples of OPS code that was
automatically generated by OpenSBLI. Full descriptions of the
OPS abstraction have been reported in [11, 12]. Unlike some
black-box solvers, the OPS C code can be modified directly by
the user. As a result, modifications can be made at either the
Python, or C level, depending on the situation. New features
will often be tested first in C, before being incorporated into the
Python code-generation framework.

1 // Example OPS parallel loop

2 int iteration_range_43_block0 [] = {0, block0np0 ,

0, block0np1 , 0, block0np2};

3 ops_par_loop(opensbliblock00Kernel043 , "

Convective CD p_B0 x1", opensbliblock00 , 3,

iteration_range_43_block0 ,

4 ops_arg_dat(p_B0 , 1, stencil_0_02 , "double",

OPS_READ),

5 ops_arg_dat(wk20_B0 , 1, stencil_0_00 , "double",

OPS_WRITE));

The core component of OPS is the ops par loop shown in
the code example. This function provides a template to cre-
ate a parallel region in OPS, based on the minimum amount of
required information. Referring once more to figure 3, these
templates are parsed by the OPS translator before compilation.
The OPS translator is a Python script that reads and translates
the base code to a range of parallel programming languages.
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For each individual Kernel, the computation is wrapped into
parallel versions for each of the computational back-ends. The
user gives OPS full control of the data, to decompose and exe-
cute the data most efficiently for a given platform. The example
shown here is a kernel to perform a central derivative of ∂p/∂y
at 4th order.

In line 2 we specify the iteration range to be the entire(
Nx,Ny,Nz

)
grid. Line 3 begins the call to the parallel loop with

an input function Kernel043, that contains the calculations to
perform. The next arguments are a name for the computation,
an OPS block that holds grid information, the dimensions of
the problem, and the iteration range. Lines 4 and 5 specify
the input/output arrays which are of type ‘ops dat’. We must
provide the names, floating point precision, and access patterns
for each of the arrays. Additionally, each array has a corre-
sponding stencil argument, which is a list of integers for the
relative stencil access. All of this information is generated auto-
matically by the OpenSBLI Kernel class discussed in section
3.2.2.

1 // Example OPS kernel function

2 void opensbliblock00Kernel043(const double *p_B0 ,

double *wk20_B0){

3 wk20_B0[OPS_ACC1 (0,0,0)] = inv_1*(-rc7*p_B0[

OPS_ACC0 (0,2,0)] - rc8*p_B0[OPS_ACC0(0,-1,0)]

+ (rc8)*p_B0[OPS_ACC0 (0,1,0)] + (rc7)*p_B0[

OPS_ACC0(0,-2,0)]);}

The second example is the corresponding C function that was
called within the ops par loop. The first thing to note here
is the relative indexing for the computation. The code loops
over the entire grid range in parallel, where the (0, 0, 0) location
refers to the current grid point. The pressure array ‘p B0’ is be-
ing indexed in four points in the y direction, to build the finite-
difference approximation. The result is stored to the generic
work array ‘wk20 B0’. Work arrays are re-used where possi-
ble during the algorithm, to reduce the memory requirements
of the code. The OPS ACCX macros correspond to the ordering
of the input arguments to the function. These are another fea-
ture of OPS that would have to be maintained manually with-
out code-generation. The code-generator also extracts all ratio-
nal constant factors (p/q for p, q ∈ Z) found in the computa-
tional kernels, and defines them as global placeholder constants
in the preamble of the simulation code. Having explained the
design of OpenSBLI and the resulting OPS code, the next sec-
tion shows a selection of test simulations.

4. Validation and verification

In this section, a selection of test cases are presented to
demonstrate the capabilities of the OpenSBLI code for differ-
ent flow configurations. The code repository contains other
applications that are not discussed in detail here, as they have
been covered in previous work. These applications include su-
personic laminar SBLI [57], laminar duct SBLI with sidewalls
[9], transitional duct SBLI with sidewalls [8], and hypersonic
roughness-induced transition at Mach 6 [58]. The numerical
schemes in OpenSBLI have also been assessed and validated
for supersonic Taylor-Green vortex cases [41], and supersonic

turbulent channel flows [59]. The code is in active use for re-
search problems by the authors and the collaborators mentioned
in the acknowledgements of this work.

A set of verification and validation cases are documented in
this section for problems that test specific parts of the code
implementation. The Sod shock-tube problem in section 4.1
shows the correctness of the shock-capturing and characteris-
tic decomposition for a simple 1D case. The Shu-Osher shock-
density wave interaction in section 4.2 highlights the benefits of
high-order WENO shock-capturing schemes, in the context of
resolving high-frequency waves. The order of convergence for
the WENO-Z schemes is shown for a smooth propagating den-
sity wave in section 4.3. This case is performed on a sinusoidal
mesh to verify the curvilinear coordinate transformation against
an exact solution. Section 4.4 verifies the central and one-sided
boundary schemes against an analytic solution for a 2D com-
pressible laminar channel flow, for which a channel with one
isothermal wall and one adiabatic wall are selected to concisely
verify two no-slip wall conditions in the same problem. The
2D viscous shock-tube in section 4.5 highlights the ability of
the code to capture a propagating normal shockwave, with sub-
sequent vortex roll-ups and unsteady flow separation. Compar-
ison is made to a reference solution at Re = 200. The third
order explicit Runge-Kutta time-stepping scheme is used for all
test cases. The following section 5 demonstrates a larger 3D
SBLI DNS that contains acoustic-source body forcing, shock-
reflection, flow-separation, and shock-induced transition to tur-
bulence.

4.1. Sod shock-tube

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

1.2

ρ

OpenSBLI
Exact

Figure 5: Density profile for the Sod shock-tube case on N = 200 grid points.
Comparison is made to an exact solution, plotting every other point.

The Sod shock-tube [60] is a classic test of shock-capturing
ability for an ideal gas in one dimension. The test case con-
sists of a Riemann problem specified by the initial left and right
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states separated at x = 0.5 by

(ρ, u, p) =

(1.0, 0.0, 1.0) if x < 0.5
(0.125, 0.0, 0.1) otherwise.

The test acts as validation of the characteristic decomposition
implementation in OpenSBLI. The initial state is advanced to
a non-dimensional time of t = 0.2, with constant time-step
∆t = 1 × 10−4. The TENO-5 scheme is selected with N = 200
uniformly-spaced grid points. Figure 5 shows good agreement
to the exact solution. There is an expected smearing of the steep
discontinuities by the flux-splitting method at this resolution,
similar to previous studies performed with these schemes [18].

4.2. Shu-Osher shock-density wave interaction

4 2 0 2 4
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Figure 6: Shu-Osher density distribution at a non-dimensional simulation time
of t = 1.8, for WENO orders: 3Z (blue), 5Z (green) and 7Z (red). Reference
fine mesh solution (continuous, black). Every third data point is displayed, with
consecutive data shown in the 2x zoom inset.

The Shu-Osher problem is a one-dimensional inviscid test
case involving the interaction of a Mach 3 shock with a smooth
density wave. Three different orders of the WENO-Z scheme
are used in this section to highlight the benefits of higher-order
shock-capturing schemes. The simulation is initialized with the
discontinuous conditions given in [61? ], such that

(ρ, u, p) =

(3.857143, 2.629369, 10.33333) if x < −4
(1 + 0.2 sin (5x) , 1.0, 0.0) if x ≥ −4

with Dirichlet conditions enforced at the domain boundaries
x = [−5, 5]. The simulation is advanced to a non-dimensional
time of t = 1.8, with a time-step of ∆t = 2 × 10−4. A reference
solution was computed with a WENO-7Z scheme and a fine
mesh of N = 3200 grid points. Figure 6 shows a comparison of
results for the WENO-3Z, WENO-5Z, and WENO-7Z schemes
on an N = 320 grid.

The normal-shock propagates in the positive x direction from
its start location at x = −4, interacting with the smooth imposed
initial density perturbation. Shocklets are formed from the in-
teraction in the region of −2 < x < 1, with a series of high-
frequency waves present behind the normal-shock at 0 < x < 2.
The qualitative features of the solution are consistent with pre-
vious work such as figure 4 of [? ]. While all three of the
WENO-Z schemes match the reference solution for the shock-
lets and smooth regions of the flow, the lowest order WENO-3Z
scheme struggles to resolve the high-frequency waves behind
the main shock. The zoomed-inset highlights the benefits of
using higher-order schemes.

4.3. Curvilinear Euler 2D-wave propagation

WENO and TENO schemes are adaptive in the sense that
the number of candidate stencils (figure 1) used for the flux re-
construction will vary depending on the local flow conditions.
The schemes will reduce to lower order approximations around
shocks, and maintain the full numerical stencil in smooth re-
gions of the flow. To be able to test the formal order of conver-
gence of the schemes, it is therefore necessary to apply them
to a smooth flow. The selected case is a smooth travelling 2D
density perturbation for the Euler equations. The initial pertur-
bation takes the form

ρ(x, y, t) = 1 + 0.2 sin (π (x + y − t (u + v))) , (47)

with constant velocity components u = 1.0, v = −0.5, and a
pressure of p = 1.0. Periodic boundaries are applied on all
sides of the domain, with a time-step of ∆t = 5 × 10−4. To ver-
ify the implementation of the Euler equations and characteristic
decomposition on curvilinear meshes, a comparison is made to
the analytical solution after a non-dimensional time of t = 2.5.
A sinusoidal grid is generated such that

xi, j = i∆x + A sin
(

6π j∆y
Ly

)
, (48)

yi, j = j∆y + A sin
(

6πi∆x
Lx

)
, (49)

for A = 0.04, and Lx = 2/Lx, Ly = 2/Ny. The solution is shown
on the curvilinear mesh in figure 7.

At each grid resolution, the L1 and L∞ error norms are com-
puted as

L1 =

∑
i, j

∣∣∣ρexact − ρi, j

∣∣∣
NxNy

, (50)

L∞ =
∣∣∣ρexact − ρi, j

∣∣∣
max . (51)

Figure 8 shows the rate of convergence for WENO-Z schemes
of 5th and 7th order on N =

[
322, 642, 1282

]
grids. In both cases

the schemes converge towards the exact solution with grid re-
finement, verifying the implementation of the curvilinear coor-
dinate transformation. Both the L1 and L∞ convergence rates
are within 10% of the formal order of accuracy for these shock-
capturing schemes.
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Figure 7: Travelling 2D density wave, for the Euler equations simulated on a
sinusoidal curvilinear mesh (48).
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4.4. Laminar compressible channel with mixed adiabat-
ic/isothermal wall boundaries

To verify the implementation of the isothermal and adiabatic
no-slip wall boundary conditions, a compressible laminar chan-
nel flow is compared to an analytical solution. The channel is
comprised of a constant temperature wall at y = −1, and a zero
heat-flux wall at y = 1. For constant viscosity, the streamwise
velocity and temperature profiles for the analytic solution are
given by

u =
Re(1 − y2)

2
, (52)

T = 1 −
Re2M2

ref Pr(γ − 1)(y4 − 4y − 5)
12

. (53)

Simulation parameters are taken to be Re = 90, Pr = 0.72,
and Mref = 0.01. The isothermal wall temperature is set to
1. At these physical values, the analytical solution predicts an
adiabatic wall temperature at y = 1 of Taw = 1.155520 (7 s.f.).
The simulation is advanced until a non-dimensional time of t =

1000, with a time-step of ∆t = 1 × 10−4. This test case was run
as a 2D problem in a domain with size Lx = 2π, Ly = 2, with a
uniform grid distribution of

(
Nx,Ny

)
= (32, 64).

Figure 9 shows the results for both a 4th order central scheme
and a 6th order TENO scheme. Excellent agreement is ob-
served to the analytical result for both the streamwise veloc-
ity and temperature profiles. The correct near-wall behaviour
is produced for both of the schemes. At this grid resolution,
the central and TENO adiabatic wall temperatures are 1.155510
and 1.155508 respectively. This corresponds to relative per-
centage errors for Taw of 0.8× 10−3 % and 1.0× 10−3 % for the
central and TENO schemes respectively.

4.5. 2D Viscous shock-tube

The viscous shock-tube is a demanding case for shock-
capturing schemes and tests the ability of the code to simu-
late a propagating shockwave interacting with a no-slip wall.
The problem combines complex shock structures, shock re-
flection from a solid wall, and regions of unsteady boundary-
layer separation. An in-depth study of the inviscid and viscous
2D shock-tubes was given by [63], from which the flow con-
ditions in this section are taken. The computational domain
(x, y) = ([0, 1], [0, 0.5]) is partitioned by an initial diaphragm
located at x = 0.5. A discontinuous initial profile is imposed
which generates a normal shock that propagates in the posi-
tive x direction. The initial states to the left and right of the
diaphragm are given by

(ρ, u, v, p) =

(120, 0, 0, 120/γ) if x < 0.5
(1.2, 0, 0, 1.2/γ) if x ≥ 0.5.

The reference Mach number is set to Mref = 1, with Reynolds
number Re = 200, and a Prandtl number of Pr = 0.73. The
viscosity is assumed to be constant. A symmetry condition is
enforced on the upper boundary of the domain, with adiabatic
no-slip viscous wall conditions set on all other boundaries. The
simulation is advanced with time-step of ∆t = 1 × 10−5 until
a non-dimensional time of t = 1. The grid consists of a uni-
form distribution of

[
x, y

]
= [1500, 750] points, following the

resolution of [62].
Figure 10 shows the instantaneous density contours at t = 1.

We observe that the shock has propagated to the x = 1 adiabatic
wall, and reflected back to a position of x = 0.58. The rela-
tive motion of the shock generates a thin boundary-layer which
separates after the shock reflects from the side wall. Above
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Figure 9: Comparison of the 2D mixed-wall condition laminar channel flow to
the analytical solution in equation (52). Showing profiles for the (top) stream-
wise velocity and (bottom) temperature.
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Figure 10: Instantaneous density contours for the viscous shock-tube problem
at Re = 200, on a
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= (1500, 750) mesh at a time of t = 1.
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Figure 11: Wall density for the viscous shock-tube problem at Re = 200, on a(
Nx,Ny

)
= (1500, 750) mesh. Compared to a reference solution [62] at a time

of t = 1.

Figure 12: An x-y slice of instantaneous density for the transitional
shockwave/boundary-layer interaction.

form. Good agreement is found to the results of [62] (figure 3),
with the lambda-shock triple point located at (x, y) (0.58, 0.13).
Figure 11 shows a comparison of the bottom wall density pro-
file compared to the reference data of [62]. Good agreement is
observed relative to the reference solution, aside from a small
overshoot in the density peak located at x = 0.85.

5. 3D transitional shockwave/boundary-layer interaction

As a demonstration of a complex large-scale computation, a
DNS of a Mach 1.5 transitional SBLI is performed. The case
consists of a modified version of the simulations presented in
[64]. Compared to the original case, the domain is elongated
in the streamwise direction to observe more of the breakdown
process, and a different off-wall forcing method is used to seed
the instability.

A Mach 1.5 freestream is initialized throughout the domain,
with the similarity solution for a laminar boundary-layer [65]
in the near-wall region. A Reynolds number based on an in-
let boundary-layer displacement thickness of Reδ∗ = 750 is
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Figure 13: (a) Streamwise distribution of the time-averaged skin-friction coef-
ficient for the 3D SBLI case. (b) Amplification of the w velocity RMS of the
disturbance along the line y = 1, z = Lz/4. The dashed lines indicate the start
and end of the separation bubble.

used, with a reference temperature of T∞ = 202.17K. Details
of the laminar boundary-layer similarity solution are given in
[57, 9]. The similarity solution generates profiles for tempera-
ture, streamwise velocity, and wall-normal velocity, which are
then used to set the conservative variables throughout. The do-
main has dimensions of Lx = 375, Ly = 140, and Lz = 27.32.
Rankine–Hugoniot shock-jump conditions are enforced on the
upper Dirichlet boundary at x = 20, corresponding to a flow
deflection of 2.5◦ and pressure ratio p2/p1 = 1.132. Extrap-
olation methods are used at the inlet (for pressure) and outlet,
while the span is periodic. Isothermal no-slip conditions are set
on the bottom wall using the non-dimensional wall temperature
of Tw = 1.381 (4 s.f.) from the similarity solution.

For low-supersonic boundary-layers, it has been shown that
the dominant transition mechanism is the breakdown of oblique
first-mode waves [66, 67]. To introduce upstream disturbances
to the otherwise laminar SBLI, modal time-dependent forcing
is applied as an acoustic body-forcing term in the continuity

equation (1). The forcing takes the form

ρ′ = A exp
(
−

(
(x − xF)2 + (y − yF)2

))
cos (βz) sin (ωt) , (54)

for an amplitude A = 2.5 × 10−3, frequency ω = 0.1011,
and wavenumber β = 0.23. This single mode corresponds
to the most unstable mode obtained from linear stability anal-
ysis of a laminar separation bubble [64]. The wavenumber
β = 2π/Lz, corresponds to one wavelength across the width
of the span. The acoustic source is located in the freestream
above the boundary-layer at xF = 20, yF = 4. The simula-
tion was performed with the 6th order TENO scheme, 4th order
central-differencing for diffusive terms, and 3rd order Runge-
Kutta time-stepping. The number of grid points is taken to be(
Nx = 2050,Ny = 325,Nz = 200

)
. The grid is stretched in the

streamwise and wall-normal directions such that

xi = Lx

(
1 −

sinh (sx∆x (Nx − 1 − i)) /Lx

sinh (sx)

)
, (55)

y j = Ly

sinh
(
sy∆y j/Ly

)
sinh

(
sy

) , (56)

for grid indices i, j, and stretch factors of sx = 1.5, and sy = 5.
In wall units this corresponds to ∆x+ = 4.2, ∆y+ = 0.95, and
∆z+ = 4.5, based on time-averaged skin-friction in the early
turbulent region. A non-dimensional time-step of ∆t = 1×10−2

was used. The simulation was initially advanced in time for 7
flow-through times of the domain to allow the SBLI to develop.
Statistics were gathered every iteration for a further 60 periods
of the forcing.

Figure 12 shows an (x-y) slice of instantaneous den-
sity contours, to highlight the main features of the
shockwave/boundary-layer interaction. The initial oblique
shockwave impinges on the flow developing over the wall,
causing a thickening of the target boundary-layer. A series
of compression waves are observed at x = 100, as the super-
sonic freestream adjusts to the curvature of the boundary-layer.
A separation bubble is present beneath the foot of the shock
reflection. This feature is clearer to see in the time-averaged
skin-friction in figure 13 (a). Due to the adverse pressure gradi-
ent applied by the shockwave, the flow detaches from the wall
at x = 115.5, and reattaches at x = 192.4. A transition to tur-
bulence is observed in figure 12, downstream of the separation
bubble. At x = 200 in figure 13 (a) there is a sharp increase in
skin-friction, as the flow undergoes the early stages of transi-
tion. The skin-friction decreases close to the outlet, in the later
stages of the turbulent breakdown. The exit skin-friction is ap-
proximately an order of magnitude higher than for a laminar
version of the SBLI (e.g. figure 4.8 of [64]).

Figure 13 (b) shows the RMS value of the w velocity com-
ponent induced by the freestream acoustic forcing. The dis-
turbance is evaluated within the boundary-layer, along the line
y = 1, z = Lz/4. The two vertical dashed lines denote the start
and end of the separation bubble on the line z = Lz/4. The SBLI
amplifies the disturbance waves exponentially by two orders of
magnitude, triggering a non-linear breakdown of the flow for
x > 210. This feature is better visualized in the 3D-view of
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Figure 14: Q-criterion of Q = 5 × 10−3 coloured by w velocity, showing the
initial oblique mode breakdown of the transitional SBLI. A slice of w velocity
is shown at y = 0.5, with the separation bubble (u < 0) in this plane outlined in
black.

figure 14, where vortical structures are shown for a Q-criterion
of Q = 5 × 10−3, coloured by the instantaneous spanwise w ve-
locity. Beneath the Q surfaces is a slice of w velocity at y = 0.5,
with the black line representing the u = 0 boundary of the sepa-
ration bubble in this plane. A pair of symmetric streamwise vor-
tices are present behind the reattachment line, which generate
smaller vortex structures that remain symmetric for the range
shown. Consistent with previous studies (e.g. figure 4.6 [64],
figure 17 [67]), the dominant transition mechanism is observed
to be an oblique-mode breakdown. This section has demon-
strated that the code is capable of performing high-fidelity DNS
of transitional SBLI problems, involving shock reflections, flow
separation, and breakdown to turbulence.

6. Performance and scaling

In this section, the performance and scaling of the OpenS-
BLI/OPS code is demonstrated on multi-GPU clusters. In par-
ticular, we highlight scaling differences between two of the
main schemes in the current version of the code. The perfor-
mance of the OPS library has been documented extensively in
previous studies, over a wide range of computational platforms.
These include comparison of each of the computational back-
ends to hand-written code [13], performance on ARM-based
systems [54], and an in-depth comparison against a compara-
ble structured-mesh DNS code [14]. The results in this sec-
tion use a standalone OpenSBLI performance benchmark con-
figured for scaling tests. For consistency with previous studies,
the benchmark is configured to perform DNS of the 3D Taylor-
Green Vortex (TGV) problem. The problem contains the transi-
tion and turbulent breakdown of an initial vortex condition on a
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Figure 15: Relative runtime speed-up factor of the low-memory inten-
sity central-differencing algorithm. Simulations are performed on N =[
1923, 5123, 10243

]
grids on 1, 8, and 64 GPUs respectively.

triply periodic domain. A full description of the TGV case has
been given in the context of OpenSBLI in [7, 41, 14]. Mudalige
et al [14] studied the performance of the Taylor-Green problem
on multiple architectures using Intel’s Advisor profiler. A con-
siderable variation in the fraction of peak performance was ob-
served, from 3% to 46% depending on the architecture and the
coding strategy. The performance based on time-to-solution for
different choices of storage and computational effort was anal-
ysed in [52], pointing more clearly to the value of low memory
intensity algorithms that are further discussed here.

6.1. Low memory intensity algorithms

In recent decades, increases in available compute capabil-
ity (FLOPS) have greatly outpaced increases in memory band-
width [17]. This has led to many CFD codes being limited on
performance by memory access. Minimising access to global
memory by re-computing quantities locally on the fly is one
way to alleviate this issue. Furthermore, high-order algorithms
performing a large number of operations per-byte are well
suited to modern hardware. For all of the simulations shown
in this section, MPI+CUDA executables were generated using
the OPS library discussed in section 3.3. Run-times were com-
pared for 100 iterations of the main time loop in each case,
omitting the input/output time of the simulation. Scaling results
were obtained for Nvidia P100 GPU partitions on the CSD3
high-performance-computing cluster at the University of Cam-
bridge. CUDA version 10.1 was used with -O3 optimization,
and the Intel compiler (2017) and OpenMPI for inter-GPU and
inter-node MPI communication.

Code-generation enables manipulation of the equations and
solution algorithm that would be difficult to achieve in a hand-
written code. To demonstrate the benefit of reduced memory
access, we show the StoreSome optimisation [52] that is avail-
able in OpenSBLI for the central schemes. The standard prac-
tice in CFD is to store derivatives globally on the entire grid, to
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be re-accessed at later stages in the algorithm. The StoreSome
algorithm in contrast, computes most of the derivatives locally
in the kernel (section 3.2.2). Based on previous work [52],
only the first derivatives of the velocity components (u, v,w) are
stored in global arrays. Figure 15 shows the runtime improve-
ment of the StoreSome algorithm. Compared to the baseline
version, the low-memory intensity algorithm is 1.7x faster on
a single GPU. The improvement drops to 1.45x on multi-GPU
configurations, as part of the total runtime is now taken up by
inter-node MPI exchanges over the CPU hosts.

A secondary benefit of the algorithm that is especially per-
tinent on GPUs, is the reduced consumption of memory on
the GPU devices. All of the storage arrays required by the
simulation must be declared within the device memory on the
GPU. The 16GB memory capacity of the Nvidia P100 GPUs
is roughly an order of magnitude smaller than that found on a
modern CPU node. This is a significant restriction in the con-
text of large-scale DNS. The StoreSome algorithm reduces the
total number of storage arrays from 65 to 32 for the TGV prob-
lem. This effectively doubles the maximum allowed grid size
for a given number of GPUs.

6.2. Parallel GPU scaling
Once the memory capacity of a single GPU is exceeded, the

problem must be split across multiple devices. The host CPU
nodes are then responsible for performing MPI halo exchanges
between the decomposed memory blocks. This must be imple-
mented efficiently to achieve good performance scaling over a
large number of devices. In this section the weak and strong
scaling of OpenSBLI/OPS is demonstrated for the TGV prob-
lem with the 4th order central and 6th order TENO schemes.

Figure 16 (a) shows the weak scaling of OpenSBLI on 4 to 64
GPUs. The base grid of N = 5123 points on 4 GPUs is doubled
with each doubling in GPU count. The central scheme achieves
good weak scaling, with around 85% parallel efficiency at the
largest grid size. There is a dip at the 16 GPU point, likely
caused by the (4 × 2 × 2) MPI decomposition proving subopti-
mal for the cubic grid distribution. The TENO6 scheme shows
excellent weak scaling of 95%, due to the increased operation
counts of shock-capturing schemes. Figure 16 (b) shows the
strong scaling of OpenSBLI on 4 to 64 GPUs. The runtime im-
provement is measured for increasing system resources, from
an initial grid of N = 5123 on 4 GPUs. The central scheme
achieves a 50% speed-up on the largest GPU configuration, and
shows a similar dip in scaling at 16 GPUs as observed in the
weak scaling test. The 6th order TENO scheme scales well,
reaching 75% of the perfect linear strong scaling.

7. Conclusions

This work has described the OpenSBLI code-generation sys-
tem for compressible fluid dynamics on heterogeneous com-
puting architectures. Based on an earlier proof of concept [7],
the new code incorporates high-order shock-capturing schemes,
curvilinear coordinate transformations, and a wide range of
boundary conditions. The Python-based code-generation sys-
tem generates code in the OPS domain specific language [12],
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Figure 16: OpenSBLI scaling results for the 4th order central and 6th order
TENO schemes on up to 64 GPUs with MPI+CUDA. (a) Weak scaling from 4
to 64 GPUs (b) Strong scaling from 4 to 64 GPUs for a N = 5123 grid.
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enabling parallel execution on a wide range of computational
hardware. The design and main components of the system
have been discussed, with code examples demonstrating how
the code is used in practice.

A suite of validation and verification cases has been pre-
sented, selected to demonstrate specific parts of the solver. A
3D DNS of a transitional shockwave/boundary-layer interaction
was used to highlight the feasibility of code-generation for com-
plex fluid flow problems. OpenSBLI was shown to exhibit good
weak and strong scaling on multiple GPUs, highlighting its suit-
ability for large-scale DNS. Additionally, a low-memory inten-
sity algorithm in the code demonstrated the performance bene-
fit of reduced global memory access. Future work will use the
multi-block capability of the OPS library to extend OpenSBLI
for more complex domains with multiple connected grids, and
to applications beyond the compressible Navier-Stokes equa-
tions.
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