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Abstract

On busy railway networks, exceeding station dwell times by only a few seconds

can adversely affect overall network performance. However, while these perfor-

mance impacts are well known, the causes of small dwell time perturbations are

not widely understood (or are not widely communicated at an operational level)

and exhibit a high level of spatial and temporal variation. A lack of information

and understanding makes it difficult to implement effective mitigation measures

to reduce the occurrence and impact of such delays.

For this paper On Train Monitoring Recorder (OTMR) data were obtained

for a large number of services over a 14-month period, which included the wheel

stop and wheel start timings associated with station stops at a one second res-

olution. These were combined with other relevant data sources in order to

investigate small fluctuations in station dwell time. An interface for commu-

nicating these variations to railway operating staff was developed, along with

models to predict future dwell time fluctuations, potentially enabling mitigation

measures to be implemented.
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1. Introduction

In any mode of public transportation, station dwell time is a key parameter

of system performance and service reliability [14]. Variations in station dwell
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times can have a significant effect on the capacity of a rail network; even small

delays of a few seconds can adversely affect overall network performance. As

with most other delays, as the network becomes busier they will have an in-

creasing impact on the punctuality of other services, leading to growing levels

of overall reactionary delay. Variations in dwell times can arise from a range of

factors, ranging from problems with door mechanisms to issues associated with

fast-changing weather conditions; although unplanned, such variation is not al-

ways random and even some that is can be understood and hence managed

[5]. Identification of ’hotspots’ (stations and/or services which may be prone

to dwell time variation which leads to delays) and an understanding of the

underlying cause(s) are important first steps in developing effective mitigation

strategies. Possible mitigation strategies include long-term planning (e.g. revis-

ing the timetable to make it more robust), short-term operational interventions

(e.g. ensuring that staff are prepared to manage an upcoming station dwell as

efficiently as possible) and improvements to station infrastructure (e.g. provid-

ing better weather protection to help encourage passengers to spread themselves

along the length of the train).

On the UK railway network, current delay attribution data only provide

causal information on delays of three minutes or more, even though shorter

initial delays can be quickly compounded across the network. These delays and

their knock-on impacts can have a significant impact on the quality of the rail

service which is offered to passengers, and therefore on passengers’ perceptions of

the quality of service offered by rail relative to other modes of transport. A lack

of information and understanding can make it difficult to implement effective

mitigation measures to reduce the occurrence and impact of such delays. Given

the strong case for encouraging mode shift to rail as part of efforts to reduce

the environmental impact of transport, there are clear societal benefits from the

development of methods to understand and reduce fluctuations in station dwell

times.

The aim of the research described in this paper was to develop models which

are capable of making real time predictions of expected variations in station
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dwell time, along with an interface for communicating these variations to railway

operating staff so that they can implement appropriate mitigation measures. In

order to achieve this aim, the research addressed the following three objectives:

1. Develop a model explaining the causes of small fluctuations in station

dwell time based on a range of datasets.

2. Explore the use of this model to forecast future fluctuations in station

dwell time, in real time.

3. Develop a system for alerting railway operating and planning staff to the

potential for extended dwell times, and suggesting potential mitigating

actions.

In order to achieve these objectives, data were obtained from a UK rail oper-

ator, covering the majority of their fleet over a 14 month period. Data included

records of wheel-stop and wheel-start timings (down to the second) for station

stops. This paper begins with some background, including a review of defini-

tions of station dwell time, before describing the methodology used in this case

to analyse the data and develop appropriate models. Results from the develop-

ment of regression models (used predominantly to identify the important factors

which influence station dwell time) and from classification models (designed to

support tools which could be provided to operational staff) are presented.

2. Background

2.1. Defining station dwell time

There appears to be a consensus that station dwell time can be defined

generally as the time for which a train remains stopped in a railway station for

the prime purpose of allowing passengers to board and/or alight (e.g. [7], [17]).

It is widely acknowledged that scheduled dwell time can be divided into several

components; they typically include the time required to open the doors, time

for passengers to alight and board, and the time required to close the doors and

dispatch the train.
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A lot of research has focussed on the passenger alighting and boarding phase,

with the phases either side being seen to comprise relatively fixed components

(e.g. [2]) or simply thought of as ’lost time’ [7]. However, variations in these

phases can also contribute to sub-threshold delays. Causes of such variation

can include mechanical issues (e.g. poorly performing door mechanisms) and

the actions of personnel involved in the processes. Depending on the context

and the mode of operation, the actual departure time could depend not just

on the reactions of a driver [6], but on the actions and reactions of a guard,

platform staff and signallers.

Scheduling can also have an impact on station dwell time. Strategies for im-

proving punctuality can include the use of buffers such as increased (scheduled)

station dwell time [11]. In some literature, buffer time is explicitly included as

a distinct component of station dwells (e.g. [6], [2]). Planned buffer times are

invariant [2] (for a given schedule), but the actual impact on dwell time overall

is less certain. Although a corresponding reduction in delays might be expected

from an increase in scheduled time, it is not necessarily the case in practice:

It is widely observed that if more time is allowed for an activity, then the ac-

tivity itself often takes longer to complete [11][1], and there is some evidence

that increasing the time for boarding and alighting may induce undesirable pas-

senger behaviour. For example, it may give the perception that deliberately

holding doors open is relatively inconsequential, leading to the recommenda-

tion that ”operators wishing to reduce the occurrence of user-induced delay for

scheduling or user safety purposes could consider minimising the time allotted

for boarding and alighting” [18].

Train and station design can also influence dwell time, particularly the board-

ing and alighting phase. Interior features of the train such as aisle width, the

presence of ’perch seats’ in the vestibule and the provision of luggage racks have

all been shown to have some impact on boarding and alighting flows [10], as

have door width, spacing between doors along the train and the step between

the platform and the train [4]. Platform width is also a consideration, whilst

the location of station entrances, canopies and customer information boards can
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lead to uneven distribution of passengers along a platform [10]. The duration

of a station stop (or at least, the boarding and alighting phase) can be deter-

mined by the busiest door along a train [4] and uneven distribution of passenger

movements and passenger loads between carriages is known to impact dwell

time estimation models [21]. Train design may also have some impact on other

phases of station dwell: For example, the time taken to open and close the doors

would be expected to vary between different rolling stock designs. Much of the

literature has focussed on how train design impacts the movement of passengers,

but there are aspects (e.g. the placement of door release controls) which could

potentially have an impact on tasks performed by operating staff.

Some of the key components of dwell time can be subdivided - for example,

the time required to open the doors includes both mechanical processes and

other human factors, such as the behaviour of the both the door operator and

the passengers. In other cases, some of the components overlap; reaction time

could also be a factor in the time required to open or close the doors, whilst any

buffer time could be absorbed across different phases. An advantage of defining

the phases quite broadly is that they can equally be applied to automated

systems where some of the human factors are not relevant.

This paper considers station dwell time as everything between wheel stop

and wheel start. Although the data provided were not sufficient to analyse any of

the individual components within this time, having an awareness of the different

elements is nonetheless important when seeking to understand the fluctuations

in dwell time and the reasons for them.

2.2. Factors which influence station dwell time

There are a number of factors which influence station dwell time, and they

may be grouped as follows:

• Passenger numbers

• Impact of train design
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• Train operation (this includes the actions of the driver and other staff,

such as the guard, and may be influenced by external operations, including

signalling).

• Network operation (including signalling rules and clearances)

• Station operation (including dispatch staff)

• Passenger characteristics (including their age, the amount of luggage and

their familiarity with the journey) and passenger behaviour

• Impact of station architecture on passenger movements

• External factors (including weather, traffic conditions and system failures)

• Train scheduling (including the use of buffer time, and any co-ordination

between services or rules about connections)

Although these groupings are largely based on existing literature [9][15],

they should not be taken as definitive. For example, it could be preferable

to separate the “train operation” category in to human factors and mechanical

factors. Some factors may span more than one grouping (e.g. “door opening and

closing time” is partly a characteristic of the train itself and partly influenced

by the operating staff and the passengers), whilst others may be seen as indirect

(e.g. poor weather may impact the behaviour of the passengers on the platform,

especially at stations where shelter is limited).

The groupings suggested here also implicitly consider a single station-stop in

isolation, although aspects of the train service as a whole could be considered as

“external factors.” One paper considered here was a notable exception, focussing

instead on predicting departure delays from arrival delays [3], including late

arrivals of connecting services. Given that the general definition of station

dwell time includes reference to the time for which a train is stopped, it does

not explicitly take in to account a late arrival, but it may nonetheless be an

influencing factor. In the case where multiple train services are co-ordinated,

transfer connections can be of particular importance [3]. Holding trains for
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connecting services leads to an increase in station dwell time, although this is

not currently standard practice on the British railway network (with some rare

exceptions, for example, to avoid leaving passengers stranded en route if it is

the last train at night).

2.3. The value of research in to station dwell time

It has been suggested that station dwell time is one of the biggest constraints

on maximising rail capacity [15], and there is often a trade-off between efficiency

of operations and punctuality [7]; a tight dwell time can be a source of delay,

whilst longer dwell times can lead to extended journey times and a low utilisa-

tion of platform track capacity [21]. Station dwells are an operational constraint

because a train is not typically permitted to enter a platform until the preceding

train has departed; when a rail system is operating close to its capacity, small

irregularities in service can lead to delays [8], and these can propagate through-

out the network. The risk of delays can be minimised by adding buffer time

(either through specific recovery time allowances, or ‘generous’ timings through-

out the journey), but this impacts capacity. Excessive dwell time is inefficient.

It could be argued that variation in actual train departure times is inevitable,

even if the scheduled dwell time includes some buffer time [3], but there is con-

sensus in the literature that understanding the causes of variation and working

to optimise dwell times is beneficial. From an operational perspective, “dwell

time studies give insight into the travel time and headway variations and can

produce effective timetables” [17]. In addition to being useful for long-term

timetable planning, the prediction of train dwell times at stations is important

for real-time rescheduling (for example during disruption) [9], whilst “analysing

the interaction between dwell time and the delays of crowded rail transit lines

is extremely useful toward effectively managing passengers during delays” [6].

It is clear that it is not just rail operators who stand to benefit from a bet-

ter understanding; passengers also benefit from increased capacity and reduced

delays. Indeed, the ability to achieve tight dwell times on a consistent basis

is “critically important for achieving the planned capacity, delivering the right
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passenger experience and end-to-end journey times” [19].

Much of the research into station dwell times to date has focussed on pas-

senger flow; given that station dwells exist to facilitate passenger movements (in

the form of boarding and alighting), this focus is perhaps not surprising. How-

ever, a key limitation of some of the models, including the widely referenced

Weston Model [20],is their dependence on data about passenger numbers, often

in some detail (including figures for boarding and alighting at every door). Pas-

senger counting data are becoming increasingly widespread, although not every

system used to capture passenger numbers is capable of providing the required

levels of accuracy and granularity for dwell time modelling. Some systems (for

example, those which infer passenger numbers from mobile network data) only

make estimates of whole train occupancy, whilst others (such as those which use

on-train electronic weighing equipment) can estimate carriage occupancy but do

not provide passenger flow at individual doors. One of the biggest challenges,

however, is ensuring that crowding information are provided in a timely enough

manner for key decisions to be taken [13]. This was a particularly important

consideration here, given the aim of developing a system which can alert staff to

the potential for extended dwell times. Some trains in the UK are now equipped

to provide passenger counts in real-time, and the proportion of such trains may

reasonably be expected to increase. However, the available data are not cur-

rently sufficient for widespread real-time decision support tools (especially given

that some operators are only fitting a subset of trains in their fleets with the

required systems).

A key study in the Netherlands [9] has shown that it might be possible to

predict station dwell times without detailed information about passenger flow,

using a range of operational metrics (such as dwell time of previous services)

which may be used as a proxy for e.g. high passenger numbers. Compared

with other work, this study also has the added benefit of being an example of

a non-metro system with less homogenous stations and rolling stock. There is

a need to understand whether such models could be more widely applicable,

and to ascertain their usefulness for e.g. improving operational practices. This
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paper aims to address both of these issues.

For this paper, data were obtained for a major UK rail operator, including

On Train Monitoring Recorder (OTMR) data which recorded wheel-stop and

wheel-start timings to the second for each scheduled station dwell. The data

were analysed and regression models were developed, based on the possible

predictors used in the study by Li et al. [9], in order to understand the fluc-

tuations in station dwell time. Classification models were also developed using

a Random Forest methodology. A visualisation application was also developed

(Section 4.4), in order to help operational staff visualise the issues. The ability

of the different models to provide useful future predictions (so that appropriate

mitigation measures could be taken) was tested.

3. Methodology

Data were obtained from several sources and were stored in a PostGreSQL

server with PostGIS geospatial extensions. A range of software tools were used

to access, process and visualise the data and to develop statistical and pre-

dictive models: these included database tools such as DataGrip, programming

languages such as Python and R, desktop Geographic Information System (GIS)

tools such as QGIS and ArcMap and interactive web tools for displaying dy-

namic charts and maps.

3.1. Data sources

Data for this project included:

• The Network Rail (NR) Rail Infrastructure Network Model, used to mon-

itor individual assets. (Data provided included additional lookups from

Network Rail, and involved some internal processing)

• Rail reference data from the Open Rail Data Wiki [12]

• Signalling and train movement data covering the first four months of 2018.
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• Selected OTMR data from a UK Train Operating Company (TOC), in-

cluding wheel-stop and wheel start timings at each station stop. The data

covered the majority of the operator’s fleet from April 2017 until August

2018.

• Additional data from the TOC, including train allocation data, in order

to ensure that the OTMR data could be linked to a particular train on a

particular service on the network

It was initially planned to incorporate historic and near-real time weather

and environmental data; however, the cost of receiving data at a sufficient spatial

resolution was prohibitive.

3.2. Initial regression models

Regression models for the variation of actual dwell time from scheduled

dwell time were developed in Python. The data obtained for this project were

concerned with train operation, not passenger flow, and the initial feature set

(Table 1) was chosen accordingly, based on existing research [9]. A backwards

linear regression method was used, which automatically eliminated any variables

not found to show significance (using a threshold of p = 0.01).

Table 1: Initial features selected for the models

Feature Related influence(s) on

dwell time

Expected relationship to

dwell time

The dwell time (in

seconds) of the same

service the previous week

Regular passenger

numbers or other regular

factors

Positive
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Boolean variable

denoting whether the

service in question was

at a weekend

Passenger numbers

(demand varies between

weekdays and the

weekend)

Negative (reduced

weekend demand leading

to a reduction in dwell

time)

Boolean variable

denoting whether the

service in question was a

peak time train

Passenger numbers

(demand varies between

peak and off-peak)

Positive (increased peak

demand leading to an

increase in dwell time)

Boolean variable

denoting whether the

order of preceding

services was as scheduled

External factors leading

to operational delays

Positive if disruption has

lead to high levels of

crowding on the

platform.

Negative if the schedule

contains slack for making

up time

The dwell time (in

seconds) of the service at

the previous station

Passenger numbers

(boarding time at the

previous station

dependent on passenger

flow)

The train operating the

service (any issues with

train operation - e.g.

slow door closing - will

likely be evident at

previous stops)

Positive

The dwell time (in

seconds) of the service at

the second previous

station

Passenger numbers

The train operating the

service

Positive
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The difference between

the actual time of

departure and the

scheduled time of

departure (in seconds) at

the previous station

Passenger numbers

(including the possibility

that a delay has lead to

an increased build up on

the platform)

External factors leading

to operational delays

Positive

The dwell time (in

seconds) of the previous

service in the same

service group

Passenger numbers Positive

The dwell time (in

seconds) of the previous

relevant service

Passenger numbers

Characteristics of the

station

Positive

The train length

(number of carriages,

based on actual

formation data)

Passenger numbers (at

each door)

Passenger behaviour (e.g.

where the passengers are

standing along the

platform)

Unclear. A longer train

might be expected to be

busier overall and may

take longer to dispatch,

but a shorter train may

lead to higher passenger

numbers at each door.

The length of the

preceding train

Passenger behaviour Unclear

The definition of a “peak” train can vary across between locations, but in

this case a peak-time train was defined as any train departing the station in

question on a weekday before 10am or between 5pm and 7pm. Service groups

were defined by ’headcode’ - a four digit alphanumeric identifier linked to a given

service schedule. For the network studied, the first two digits of the headcode are

typically assigned to a particular service pattern (for example, ’1Sxx’ headcodes
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may refer to express services between Station X and Station Y) and the data

were grouped accordingly. Busy stations may be served by a number of different

service groups heading in the same direction, and the previous relevant service

was defined as the previous service in the same direction. Train length data

were not contained within the OTMR data and had to be inferred separately

from train allocation data supplied by the TOC.

There are a some caveats associated with this initial approach, including:

• In some cases, the previous relevant service and the previous service in

the service group are the same thing

• Stopping patterns within a particular service group may not always be the

same (especially at the beginning or end of the day)

• The supplied train allocation data was not guaranteed to be accurate.

Furthermore, there are some cases of headcodes being assigned to more

than one service in a day (where there is enough separation in time and

space to guarantee no physical conflict on the network). In most cases,

there were sufficient additional data to avoid issues, but there remains

some potential for ambiguity when it comes to train formation.

Data were filtered to exclude cases where the (absolute) difference between

the actual and the scheduled dwell time exceeded 180 seconds. This was to:

1. Help exclude cases which may be based on erroneous data. For example,

data for some journey points suggests an early departure of several minutes

or more, which seems excessive even after allowing for a bit of discrepancy

between different timetables and data sources.

2. Help exclude cases where unusual external factors may have had a big

impact (e.g. widespread disruption, signal failure, train failure or medical

emergency).

The threshold of 180 seconds was chosen to reflect the fact that the focus of

this project is on delays below the current delay attribution threshold of three
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minutes; above this threshold, the cause of the delay is already investigated,

with associated costs attributed to the responsible parties.

The network operated by the TOC is diverse, and there is currently a lack

of data which would allow stations to be suitably characterised and categorized.

The factors which may influence dwell time, such as the position of a shelter

on the platform, are independent of the usual methods for grouping stations

(e.g. by size or by footfall). Hence models were developed for each station and

service group separately, in order to provide improved accuracy and minimise the

influence of unknown externalities, such as the design of a particular station, on

an overall model. Although this limits the generic applicability of any outputs

at this stage, such models are always going to be context-dependent. This

approach does enable stations and services of particular interest to be identified

and perhaps prioritised for further investigation.

3.3. Scenarios chosen for initial regression modelling

Three stations were selected for the initial analysis; they were chosen in order

to capture the diversity of services within the region studied and to help generate

outputs of relevance to large parts of the wider UK network. Two of the stations

lie within Greater London (where the network is congested and sub-threshold

delays can be a particular issue), whilst the third is a mainline interchange out-

side London served by longer-distance ’inter-urban’ services. Different service

groups were considered in each case, leading to six scenarios in total (Table

2). Service groups are typically bi-directional and the characteristics of each

direction of operation may differ. Each scenario therefore used data from a

single direction of operation: Table 2 uses the British convention of labelling

services towards London as ’Up’ and services originating at a London terminus

as ’Down.’ Scenarios C1 and C2 look at the same service group at the same

station, comparing trains in the ’Up’ and ’Down’ directions respectively.

Whilst dealing with a small subset of stations and services, it was possible

to explicitly specify scheduled dwell times, both for the stop in question and

for those which preceded it, when selecting the data for analysis. This reduced
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the impact of non-homogenous stopping patterns and ensured that the models

were not dominated by scheduling variations. It also enabled some scheduling

variations to be considered explicitly: For Station B, a single service group

was analysed, but the peak-time services with additional scheduled dwell (60s

instead of 30s) were considered separately.

In addition to excluding those services recorded as exceeding the scheduled

dwell time by more than 180s, the data were further filtered on arrival times.

Services recorded as arriving at the chosen station three minutes or more ahead

of schedule were excluded on the basis that these instances were either likely

to be erroneous or as a result of exceptional circumstances (for example, an

occurrence of planned engineering work resulting in an amended timetable with

very large amounts of buffer). Services recorded as arriving 20 minutes or more

behind schedule were excluded, partly to further reduce the potential of er-

roneous data and partly to exclude instances of extreme disruption. The 20

minute threshold allows for some impacts of perturbed operations to be consid-

ered whilst filtering out any instances of major disruption in which both trains

and staff could be badly displaced and passenger flows could be exceptionally

abnormal.

Table 2 shows some significant differences between scheduled dwell times

and observed dwell times. A major cause of this is likely to be scheduling

practices. Several routes converge at Station A, and the scheduled dwell times

typically include significant buffer time to help services regain time lost en route

before continuing along the increasingly congested line towards London. This is

reflected in the fact that the dwell times are significantly shorted than scheduled

for scenarios A1 and A2, and a significantly high proportion of trains arrived

behind schedule (87% of trains in A1 and 72% of trains in A2). The mean dwell

time for peak services in scenario A1 is also less than the mean dwell time for

off-peak services, which may indicate that more use is made of the buffer time

(due to earlier delays). It may also indicate that the operations during the peak

time are a bit slicker, perhaps because of a sense of pressure when the system

is busier (both in terms of throughput of trains and of people).
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Stations B and C are examples of stations where train planners work to 45s

dwell times whilst the working timetable is cast in 30s intervals. This is achieved

in practice by using a mix of 30s and 60s scheduled station stops along the route.

The observed dwell times for scenarios B1,2 and C1,2 are broadly consistent with

this, but the strategy is problematic when it comes to sub-threshold delays. If

the working assumption is that some level of excess dwell (with respect to the

timetable) will be absorbed elsewhere on the route, the case for addressing sub-

threshold delays is made harder. Scenario C1 is a good example of where there

may be insufficient slack in the system (even when assuming a planned 45s

dwell and not the scheduled 30s), with 62% of services classed as having lost

time at the station (defined as services which did not arrive ahead of schedule,

and where the departure delay was greater than the arrival delay). In line with

the observed increased mean dwell, this proportion increased to 67% during

peak times. The time lost may still be absorbed elsewhere on the route (for

example, the services in Scenario B2 take significantly less than 45s, which may

or may not be planned), but positioning slack effectively (including the location

of personnel or rolling stock reserves as well as the allocation of buffer time

en route) can be challenging at the best of times [11]. Further issues can arise

when the reason for the slack at a station is unclear - is it to absorb late running

from earlier in the route, to allow for significant passenger flows, or both? The

development of visualisation tools (Section 4.4) enabling operators to better

understand the whole picture could help them to improve their strategies.

A range of rolling stock types are operated by the TOC, some of which are

also used elsewhere on the UK network. Scenarios A1 and A2 were partly chosen

in order to help gain insight in to the potential impact of different rolling stock

types. It was difficult to make direct comparisons between different rolling stock

types because most services are operated by largely homogeneous fleets: There

is some variation in train length, but this is accounted for separately (Table

1). The services in scenario A1 originated on a different part of the network

to those in A2, but services in both scenarios had the same destination and a

comparable stopping pattern after Station A. There may be some confounding
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factors (for example, trains operating on one route may typically rely on more

buffer time to catch up at Station A than those operating on others), but the

longer dwell times observed for the diesel trains (A2) is consistent with the

fact that the dispatch process can be longer for diesel trains than for electric

trains. This is because diesel engines need to spool up before power reaches the

wheels, resulting in additional (often significant) lag between the moment the

driver engages power and the moment the wheels start to move. There are also

other differences between the diesel and electric fleets here which would also

help explain the increased dwell times in scenario A2. These include the width

of the doors (the diesel fleet has narrower doors, which could reduce passenger

throughput) and the respective age of the fleets: The diesel trains are older,

with door mechanisms which may be less efficient.

3.4. Network-wide regression models

After analysing the initial scenarios, the whole dataset was used to build and

test regression models using the same basic methodology, in order to provide

input in to a network-wide visualisation tool (Section 4.4). The set of features

was the same as those used for the regression modelling (Table 1).

To account for the diversity of station and service types, the data were first

grouped as follows:

• Station

• Headcode group (the first two characters of the headcode)

• Direction (1 or 2, based on the way the routes were described in the

Network Plan provided by the TOC)

There were 721 distinct station-headcode-direction groupings in the input

data, and individual regression models - henceforth known as ’predictors’ - were

built for each one. Not every predictor could be calibrated successfully, mainly

due to the fact that a minimum sample size was chosen (in addition to a subset

reserved for testing, a minimum of 100 data points were needed to calibrate
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each predictor). For the initial scenarios, care had been taken to maximise

the homogeneity of the schedules in question, by manually specifying scheduled

dwell times for the previous stops on the route. To have implemented this

across the whole network would have entailed more complex groupings (adding

scheduled dwell time at each of the two previous stations to the list above),

increasing both the number of potential models and the likelihood of insufficient

sample sizes. The trade-off is the risk that some of the outputs are adversely

impacted by scheduling variations, but this was deemed acceptable at the ’proof

of concept’ stage.

The coverage of the network represented by these distinct station-headcode-

direction groupings was not reviewed in detail at this stage, but it is known

that some services were not covered (due to the use of a type of rolling-stock for

which OTMR data were not provided). It was also discovered that the ’station’

field in the dwell time data provided by the operator contained at least one entry

which was not an actual station (in this case, it referred to scheduled pauses

at a passing loop). At this initial stage of developing a proof of concept, the

network data were not filtered to exclude such non-station stops, but they did

not impact the scenarios considered in detail.

As with the regression modelling for the initial scenarios, input data used for

calibration were filtered to exclude cases where the (absolute) difference between

the actual and the scheduled dwell time exceeded 180 seconds. In contrast to the

initial scenarios, the data were not filtered on arrival time. However, cases where

the dwell time exceeded 600 seconds (10 minutes) were excluded, as longer dwell

times were not felt to be representative of normal operations on the network or

important when considering sub-threshold delays.

To provide outputs for the visualisation tool, a second set of regression mod-

els was also calibrated for the same dataset, using actual dwell time, rather than

variation from the scheduled dwell time as the dependent variable. The set of

features and method of implementation remained unchanged.
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Table 3: Station dwell time categorisations

Dwell Category Description

0 Exact on-time arrival and departure

1 Early arrival with lower than scheduled dwell time

2 Early arrival with greater than scheduled dwell time

3 Late arrival with greater than scheduled dwell time

4 Late arrival with lower than scheduled dwell time

3.5. Dwell Time Categorisation

Regression models (3.2) are a potentially useful way of quantifying some

of the factors which cause variations in dwell time and of understanding how

perturbations may propagate. However, variations in dwell time alone are not

necessarily linked with sub-threshold delays; for example, greater than sched-

uled dwell times may be as a result of early arrivals (arising from slack in the

previous sectional running times) and not delayed departures. Furthermore,

when making operational decisions, it is not generally essential to predict sta-

tion dwell times to the nearest second. In many cases, it is desirable simply to

be able to predict overall trends and to identify potentially problematic services.

Figure 1 shows a snapshot for all services through Station B on a single day

in April 2017. Services which deviated from their scheduled dwell time fit in

to one of four quadrants, which can be used to categorise station dwell times.

These categories (including an additional one for services which arrived and

departed exactly on schedule) are given in Table 3.

By definition, trains in Category 1 leave the station ahead of schedule. A

previous study of trains in London observed a number of occurrences when

trains were dispatched and departed ’unduly early’ [5]. No data about the
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Figure 1: Difference from expected dwell time by arrival delay for Station B on a single day

dispatch process were available in this case, but trains were flagged as having

departed ’unduly early’ if wheelstart was 15 seconds or more before the public

scheduled departure time. Public timetables are given to the minute, in contrast

to the 30s granularity of the working timetable, which means that in many cases

these services would have left more than 45s before the scheduled time in the

working timetable. In some cases there is deliberate variation between the

working timetable and the public timetable, allowing working times to be flexed

for operational reasons whilst keeping the public timetable more consistent for

marketing purposes.

Table 4 shows how the data from each of the initial scenarios breaks down
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Table 4: Breakdown of the initial scenarios by dwell category

Scenario A1 A2 B1 B2 C1 C2

Proportion of trains in each dwell category

0 0% 2% 1% 4% 3% 1%

1 6% 18% 6% 3% 2% 0%

2 7% 8% 1% 13% 28% 18%

3 6% 4% 7% 70% 62% 77%

4 81% 68% 85% 10% 6% 4%

Proportion of trains which left unduly early 0.3% 1.3% 2.6% 2.4% 1.0% 0.4%

in to each of the dwell categories and gives the proportion of services flagged as

having departed unduly early.

3.6. Network-wide models to predict dwell classification

Being able to predict the different categories of station dwell (defined in

Table 3) in real time across a network could enable operators and planners

to identify potential problems and undesirable patterns. To achieve this aim,

two Random Forest classifiers were developed. The first classifier predicted the

classification of the dwell time according to Table 3. The second was a binary

classifier, flagging up whether the dwell time was likely to contribute to a delay;

for the purposes of this exercise a station stop was marked as contributing to

a delay if (i) the train departed late and (ii) the dwell time was greater than

scheduled.

Following the precedent set with the network-wide regression models (Section

3.4), data were grouped by station, headcode group and direction and individual

predictors were built for each group (with the data filtered in the same way, and

the same minimum sample size applied). The Random Forest classifiers were

based on the same set of features used for the regression modelling (Table 1).
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Table 5: Adjusted R2 values for the chosen scenarios

Scenario A1 A2 B1 B2 C1 C2

Adjusted R2 0.45 0.41 0.67 0.37 0.43 0.62

Adjusted R2 (peak trains only) 0.51 - - 0.42 0.46 0.72

Adjusted R2 (off-peak weekday only) 0.46 - - 0.33 0.39 0.6

Adjusted R2 (weekend trains only) 0.48 - - 0.45 0.45 0.56

4. Results

4.1. Initial Regression Models

4.1.1. Adjusted R2 values for each of the scenarios

Table 5 gives the adjusted R2 values for the linear regression models which

were generated for each of the scenarios. Where there were sufficient data,

models were additionally fitted separately for peak trains, off-peak weekday

trains and weekend trains.

4.1.2. Variation in R2 values between peak, off-peak and weekend services

In line with the literature taken as a basis for the models [9] it was found

that the adjusted R2 was greatest for peak services, reflecting the fact that these

services typically exhibited the least variation in station dwell (Table 2). Off-

peak weekday services tended to exhibit more variation in station dwell than

weekend services, and this is also reflected in the adjusted R2 values.

Although the core off-peak service patterns are similar throughout the week,

with Saturdays in particular mimicking the weekday off-peak pattern, there are

several reasons why more variation is observed in station dwell times during

the week. Firstly, those off-peak services which run immediately after peak

time trains during the week (sometimes referred to as the ’shoulder peak’) may

still be subject to perturbations due to earlier peak time congestion. Indeed,
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some of the services which are categorised here as off-peak trains may have

been classed as peak time trains earlier in their journey. Furthermore, shoulder

peak services on a weekday can be subject to particularly high passenger flows

as travellers choose to avoid paying much higher peak time fares when they

can. The period covered by the data included some school holidays, which have

more of an impact on weekday passenger flows than on weekend passenger flows,

and the general mix of passengers is also likely to be different between off-peak

weekday and weekend trains.

Weekend trains would be expected to be more dominated by leisure trav-

ellers, with much more business travel happening during the week. This will

have some impact on passenger flows, and the potential for particularly crowded

trains at certain times during the week. The passenger mix itself may also in-

fluence station dwell times, with leisure travellers being more likely to be en-

cumbered (for example, by having luggage or travelling with children as well as

being more likely to be elderly) and possibly less likely to be familiar with the

system. These impacts cannot explicitly be inferred from the models but may

be a reason for some of the unexplained variation.

Scenario C2 stands out as having a lower adjusted R2 value for weekend

services than for off-peak weekday services, despite the fact that the observed

variation in dwell time is still lower at weekends. This could be explained by

the fact that one of the preceding stations from which dwell time is an input

to the regression model serves a sporting venue which hosts large events at

weekends. It is likely that the station in question will have higher dwell times

as crowds are dispersed immediately after an event, whilst Station C itself will

not be impacted significantly by this crowding. Whereas crowding resulting

from peak time travel patterns or serious disruption can build up along a route,

the impact of a large weekend event can be more localised. In fact, other

demand for the service may well drop as travellers know to avoid these times,

and local people travelling home from an event may conceivably choose another

route. This example highlights the need to appreciate the whole context when

studying station dwell times, something which could be helped by the provision

24



of visualisations.

4.1.3. An overview of the feature coefficients

The feature coefficients (for the model applied to all trains in the data) and

associated p-values are given in Table 6 and Table 7 respectively. Some of the

features listed in Table 1 were not found to be significant in any of the scenarios

and hence are not included here; these factors include whether or not it was a

weekend, whether or not there had been changes to the planned order of ser-

vices, the dwell time of the previous service at the station and the dwell time

of the same service the previous week. There are two main reasons for the in-

significance of the boolean variable taking into account the impact of a weekend.

The first is that peak time trains are by definition weekday services only, and

so some of the weekday/weekend differences will instead be encapsulated by the

boolean variable differentiating between peak and off-peak services. The second

is that weekday services are subject to more variation than weekend services,

with variation being as likely - if not more so - between individual weekdays

than between weekdays as a whole and weekends (for example, more work trips

take place on Tuesdays, Wednesdays and Thursdays than they do on Monday

or Friday).

4.1.4. Further observations about peak and off-peak services

Table 7 shows that when considering all services together, scenario C1 is

the only case in which the boolean to differentiate between peak and off-peak

services is significant (although it should be noted that this is irrelevant for

scenarios A2 and B1 which only had data for peak time services). The relatively

large positive coefficient is consistent with the relatively large increase in dwell

time observed for peak time services. The lack of impact of the peak on services

in the other direction (scenario C2) can be explained by a number of factors:

Passenger flows out of London are relatively low in the morning peak, whilst

in the evening peak, crowding is predominantly due to people leaving London:

In this case, an increase in passengers alighting at Station C is expected, but
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Table 6: Regression model feature coefficients for the chosen scenarios

Scenario A1 A2 B1 B2 C1 C2

previous_stop_dwell_sec - -0.24 0.37 0.2 0.11 0.62

second_prev_stop_dwell_sec -0.07 - 0.06 0.03 0.29 -

previous_stop_dep_delay -0.01 - - - - -

prev_service_same_line_dwell_sec - 0.06 - - - -

actual_length -4.38 -2.67 - -0.46 - -1.19

previous_train_length - - -4.96 - - -

peak_train_True - - - - 3.3 -

Table 7: Regression model feature p-values for the chosen scenarios

Scenario A1 A2 B1 B2 C1 C2

previous_stop_dwell_sec - 0 0 0 0 0

second_prev_stop_dwell_sec 0.00628 - 0 0.00002 0 -

previous_stop_dep_delay 0.00003 - - - - -

prev_service_same_line_dwell_sec - 0.0053 - - - -

actual_length 0 0 - 0 - 0

previous_train_length - - 0 - - -

peak_train_True - - - - 0.00042 -
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large crowds of passengers on the platform waiting to board is not expected.

For ’down’ trains (scenario C2), Station C is closer to the origin of the service

than it is for ’up’ trains (scenario C1) and so there is less scope for peak time

congestion on the network to have already perturbed the schedule.

4.1.5. The impact of disruption to the timetable

The fact that changes to the planned order of services is not significant for

any of the scenarios may partly be due to the decision to exclude major delays

(services arriving 20 minutes or more late at the station) as this would have

minimised the likelihood of displacement of staff and other factors. Any impact

of disruption across the network on passenger numbers would also have been

captured by some of the other variables (such as the dwell at the previous stop).

It should also be noted that the chosen stations have multiple platforms, which

is likely to reduce the risk of platform crowding and congestion in the event

that the order of services is disrupted; similarly, previous departures from the

station may have left from other platforms, possibly explaining why they have

no significant impact here.

4.1.6. The propagation of dwell delays along a route

For stations B and C, the coefficients for actual dwell time at the previous

stations are positive (Table 6), which is consistent with the hypotheses that

increased dwell times earlier in the route can be indicative of factors such as

higher passenger loadings or a mechanical issue with the doors which would also

be expected to increase the dwell time at the station in question. This positive

correlation also demonstrates how dwell delays can propagate along a route,

noting that as the variables are in terms of actual dwell time and not variation

from scheduled dwell time, they can have a significant impact. Recasting the

models in terms of variation from scheduled dwell time could have presented

a confused picture here, given that (for example) scenario B1 appears to have

a planned dwell which is below the scheduled dwell. Obtaining planned dwell

timings (as opposed to scheduled dwell timings) from the operator for each
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service and station would allow enhancements to be made the model to better

quantify how delays can propogate.

It is notable that the dwell time at the second previous station is insignificant

for scenario C2 (Table 7), which is likely to be linked with the fact that the

scheduled dwell for the second previous station is 60s, not 30s and therefore

contains more buffer time to mask some of these impacts. For Station A, the

coefficients for the variables relating to performance at the previous stations on

the route are all negative, which is consistent with the having a large amount

of buffer time to make up for earlier delays: If a train loses time at a station

further down the line, this will be taken off the buffer time at Station A and

hence reduce the observed dwell at Station A. The fact that in scenario A1 it is

the delay departing the previous stop, not the dwell time, which is significant

supports this theory.

4.1.7. The impact of train length

Where train length is significant, the coefficient is negative: Longer trains

have reduced dwell times. One reason for this may be the positioning of the

train on the platform [9], although the idea that the position of the trains is

more ’rigid’ when they are longer does not apply here (stop boards are used

to ensure fixed stopping points for all types and length of rolling stock). The

impact instead is likely to be because longer trains cover more of the platform,

increasing the likelihood that passengers, especially unfamiliar travellers, are

close to a door when the train arrives. Another reason that longer trains reduce

dwell time is that fewer passengers board and alight at each door. Regular

passengers know to spread themselves out along the platform, whilst dispatch

staff can be good at encouraging less familiar passengers to spread out. This

has been informally observed at Station A, and others like it, where both the

guard and station staff are often proactive in ensuring that passengers use other

available doors instead of queuing on the platform to wait for someone with

luggage to board in front of them. The positive impact of the previous train

length in scenario B1 (which covers peak time trains only) may be to do with
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variation in passenger flow during the peak period: For example, trains just

before and at the beginning of the peak period may typically be shorter and

less busy than those later in the peak. Further work would need to be done to

investigate this.

4.2. Use of the regression models to make predictions across the whole network

4.2.1. Adjusted R2 values

When models were applied to the whole dataset (Section 3.4), there was sig-

nificant variation in the adjusted R2 values for the different station-headcode-

direction groupings. Thirteen station-headcode-direction groupings had an ad-

justed R2 value which was greater than 0.9. All of them were valid stations, but

majority of these had very small sample sizes, so it would be inappropriate to

draw too many conclusions without obtaining a larger dataset and re-running

the models. However, one station-headcode-grouping had a sample size of 2,465

and an adjusted R2 of 0.94, providing a great deal of confidence that the model

could explain most of the observed variation in station dwell time. Assessment

of the station and services in question suggests a number of reasons for this:

• It is a provincial station and although it is served by different services

from more than one TOC, there is limited scope for external factors (such

as a major event in the vicinity) to lead to a significant build-up of crowds

• Most services in the headcode group are operated by relatively short (two

carriage) trains, which is in keeping with the provincial nature of the route.

This limits the scope for issues caused by uneven passenger distribution,

especially given that the weather protection on the platform is ample for

such short trains

• The particular headcode group in question has an homogenous stopping

pattern throughout the day, meaning that there is no scope for variation

in service patterns not accounted for by the model to have an impact
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• Observed dwell delays tend to be confined to specific trains each day,

consistent with when passenger flows are generally known to be higher

along the whole route

• The station only has one platform in each direction, further limiting the

possible impact of external factors not considered by the model (such as

variation in facilities and weather protection between platforms, or the

impact on passenger flow of a very late platform change)

• The nature of the route means that there is limited need for buffer in the

schedule at this station to make up for lost time; there are no junctions

or other external reasons for services to be perturbed immediately prior

to this station stop

At the other end of the scale, some predictors had adjusted R2 values ap-

proaching zero. Small sample sizes were possibly a factor in some cases, but the

main reason for very low adjusted R2 values is the impact of external factors

which the models do not consider. The models do not include weather and

environmental data (despite plans to the contrary noted in Section 3.1) or data

about the degree of weather protection available at each station. An exception

to this is the fact that some universal impacts (e.g. the possibility that boarding

and alighting might take longer if everyone is wearing bulky clothes and coats)

will be taken into account by the use of values of dwell time at previous stations.

There are also passenger behavioural impacts which aren’t taken into account,

such as the ’late runners’ who arrive after the bulk of passengers have boarded

([4]) or those who for whatever reason choose to hold the doors open and delay

the dispatch process ([18]). Although dwell time at previous stations can indi-

cate a potential impact of large passenger flows, some of the effects may not be

captured at earlier stations en route. These include the fact that the increase in

marginal delay with respect to the number of standees is non-linear ([21]) and

there is a threshold above which the size of the step gap between the platform

and the train slows down passenger flow ([4]). As evidenced by Scenario C2,
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external factors such as large events in the vicinity can also influence passenger

numbers (Section 4.1.2).

The interaction between different services is also not taken into account in

the model. Possible impacts include an increase in passengers waiting on the

platform following the arrival of a connecting service, or a decrease in available

buffer time due to arrival delays caused by unfavourable signalling at a junc-

tion. The 50 predictors with the lowest adjusted R2 values all related to actual

stations (as opposed to the passing loop in the data). However, some of them

related to passing stations on single track sections of the network where waiting

for trains in the other direction is a potentially dominant factor in dwell time

variation not considered by the models.

4.2.2. Relative feature importance

When the individual predictive models were calibrated, the relative impor-

tance of the input features was automatically calculated by considering their

impact on the adjusted R2 value, and it was found that no single feature was

consistently the most important across the network. For example, for 24% of

station-headcode-direction groupings, the dwell time at the previous stop was

found to be the most influential feature, whilst for another 19% train length

came out on top.

4.2.3. Application of the regression models to separate test data

Although the R2 value is a useful measure of the performance of a model, a

better idea of the ability to predict dwell time variation was found by applying

the predictors to the separate test sample (20% of the data) for the whole

network, and the outputs are shown graphically in Figure 2. Although the

percentage variation seems to be quite high, it is important to note that the

timescales are very small, and the resolution of the data are comparatively low

(i.e. the model is predicting single second variations based on data with a

resolution of a single second). If the actual dwell time exceeds the scheduled

dwell time by a second, a prediction of two seconds is a 100% difference. It is
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also noted from Figure 2 that the distribution of results is negatively skewed;

indeed, the median difference between actual dwell variation and predicted dwell

variation is -26%. The fact that the model overall tends to under-predict dwell

time needs to be borne in mind and should be further investigated.

Figure 2: Variation between actual and predicted values across the test sample

4.3. Prediction of dwell time classification using Random Forests

4.3.1. Classifying station dwells by type

The dwell-time classifier models were applied to a separate test data set

comprising 140,873 station dwells. The first model classified the station dwells

according to Table 3, and the results are given in Table 8.

Table 8: Actual and predicted dwell classifications for test data across the whole network
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Dwell Classification Actual proportion in test

data set (%)

Predicted proportion in

test data set (%)

0 2 2

1 6 5

2 18 17

3 41 49

4 32 27

Although the predicted proportions seem to match the actual proportions

favourably, the figures in Table 8 make no allowances for mis-classifications.

Figure 3 illustrates the range of reported accuracies across all the individual

predictive models, and it is clear that there are some station-headcode-direction

groupings where the accuracy is very poor. As with the regression models, these

classifiers may suffer from a lack of contextual information (including weather

and platform crowding levels) and further work should be undertaken to review

the groups which perform most poorly and investigate how the model can be

improved.

4.3.2. Binary Classification

The results for the binary classifier, which flags instances where the dwell

time is likely to contribute to a delay to the service, were much more positive

(Figure 4). Analysis was undertaken, looking at how the data varied for different

stations and services. Whereas certain stations have a high rate of instances

where the dwell time exceeds the scheduled dwell time and contributes to a

delay, the data aggregated by headcode group are more neutral. It is therefore

suggested that investigating contextual factors at different stations, rather than

for different services should be the priority.

It is crucial to understand not just how accurate the system is across the
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Figure 3: Frequency plot of the accuracy of the individual classifiers

network, but also the propensity for the system to show false positives or false

negatives. If there is a tendency for the system to mainly show false positives,

for example, there is a risk that operators may start to ignore the alerts. A

review of the false positive and false negative rates showed significant variation

between stations, with some stations recording very high levels of false positives

and others very high levels of false negatives. This may be linked to the fact that

planned dwell times can differ from timetabled dwell times at certain stations,

and the actual allocation of buffer time is unclear from the data. In any case,

the initial outputs from the research can help the operator prioritise the stations

most in need of further investigation.

4.4. Visualisation tools

A web-mapping interface for visualisation was developed by the project team,

building upon previous work developed in collaboration with RSSB [16], based
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Figure 4: Frequency plot of the accuracy of the individual binary classifiers

on relevant open web standards and open source technologies and tools. The

application, illustrated in Figure 5, presents an attractive, interactive map in-

terface, allowing the user to explore, filter and visualise the dwell time data

overlaid on a UK map showing the Rail Network. The image shown demon-

strates the map interface used in ‘DEMO MODE’ where dwell values have been

randomised in order to restrict access to the TOC data, where necessary.

A data selection control allows a user to filter displayed data by a range of

dates; all days, weekdays (optionally including peak times only) or weekends;

exclude dwell times greater than a certain number of seconds (to remove obvious

outliers or extreme values); select one of the four dwell time/delay quadrants

(mentioned above in Section 3.5); and choose an aggregation method for visu-

alisation (mean, median, max, min).

Filtered values are displayed as coloured, scaled circles (green for negative

dwell difference to red for positive dwell difference), with an actively updated
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legend to interpret those values shown. Clicking a circle on the map reveals

more information about the dwell time data aggregated at that station, with an

option to show a detailed breakdown by headcode, with histogram illustration

of value ranges and frequencies.

Figure 5: Web-mapping interface for interactive data visualisation

The web mapping application provides an effective tool to illustrate the

spatial and temporal context of the dwell data, with potential to integrate other

geographic locations and additional rail data sources.

Though live OTMR data feeds were not available at the time of develop-

ment, the tool includes an Alerts module for displaying real-time dwell data

(implemented using a simulated feed), illustrated in Figure 6. When invoked,

the Alerts tool allows the user to choose from a list of Model Scenarios (a prede-

fined list, but retrieved dynamically from the live database), then simulate the
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running of the predictive model in near-real time, animating through the model

run period while displaying the model predictions as symbols on the map. The

model run can be controlled with play/pause/stop controls and map symbols

(coloured and sized in proportion to exceedance of predicted dwell values over a

chosen threshold) can be clicked to reveal more information about the predicted

dwell exceedance, actual dwell values (for previous stops), with potential in fu-

ture to also include confidence in modelled values and recommended mitigations

for a delay.

Figure 6: Alerts module for displaying real-time dwell data

An additional data analysis and visualisation application was developed us-

ing the open source “Shiny” R package, which allows a custom visual web in-

terface to be created to the R system for statistical computing. The application

includes a selection of useful tools for analysing the available dwell data and

visualising the journey data through dynamically created graphs and charts.

It also includes a more sophisticated (though experimental) Bayesian network

model. The tool includes a set of named tabs, with the following functions.
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Scheduled vs Actual Departure Times For a selected date, journey and

time, a graph is displayed showing both scheduled and actual departure

times, showing at a glance if a train ran to schedule (Figure 7 - top). A

helpful variation of this graph, for future development, would be to display

a comparision of departure time lateness against arrival time lateness,

enabling users to identify which services are losing time.

Dwell at a Station over a Day For a selected date and station, a graph is

shown of the dwell (difference from scheduled, so a negative time means

the dwell was less than scheduled) for all trains. The actual departure time

is given on the x-axis so it is possible to see patterns of dwell changing

throughout the day (Figure 7 - middle).

Dwell time vs Arrival Delay For a selected date and station, a graph is

shown which shows the arrival delay on the x-axis and the difference in

dwell from that scheduled. This is helpful in demonstrating that longer

and shorter dwell times can be for different reasons (Figure 7 - bottom).

Monthly Mean Dwell per Hour For a given station and year the mean dwell

difference from schedule is calculated for each month and for each hour

of the day, allowing users to identify times or periods with consistently

greater than expected dwell times.

Stations With Mean Dwell > 20s above Scheduled A series of graphs are

created for stations where the mean dwell of all trains through the station

over the time period is more than 20 seconds above the scheduled dwell -

indicating consistently high dwell. For each station there are two graphs.

A graph of the arrival time is displayed, which helps to indicate if the

dwell might just be because a train is arriving consistently early or if it

might be for some other reason. The second graph is of the dwell times.

Red lines on each graph show the scheduled dwell or arrival time.

Bayesian Modelling A proof of concept model was created linking all sta-

tions on a route in a Bayesian network, to enable users to dynamically
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investigate the propagation of delays through the rail network. A leaving

delay can be set for a specific station and the predicted effect on arrival

delay at subsequent stations is displayed, demonstrating how the effects

of the delay propagate through the system. There is great potential for

further development and more robust testing of this tool, which would be

a focus for future work.

5. Conclusions

Small fluctuations in station dwell time can have an impact on overall ser-

vice performance, but the scale of the impact and the possible causes of the

fluctuations are not always widely understood or well communicated. This is

partly because a number of different factors can influence station dwell time,

many of which (such as detailed passenger flows) can be hard to monitor on a

large scale. This paper built on previous research to investigate whether train

operation data can give some insight into dwell time fluctuations and whether it

can be used to provide sufficient information for railway operators to understand

where problems are likely to occur.

Models were developed to predict variation from scheduled dwell time, cat-

egorise the predicted variation and to flag where a station dwell time might

contribute to a delay. Encouraging results were obtained, demonstrating that

such models can help make predictions about station dwell times and can explain

some of the issues. Where services have limited exposure to external factors, it

was shown that particularly good model fits could be achieved.

Predicting the fluctuations alone can be of limited use because it is not pos-

sible to tell whether the train arrived early or left late, although the regression

models applied to a set of specific scenarios provided some insight into the fac-

tors which lead to variation. In the case of the London stations, it was clear

that dwell delays can propagate along a route, reinforcing the need to pay at-

tention to initial sub-threshold delays. Categorisation of the station dwell times
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Figure 7: R Shiny data analysis and visualisation interface (station names have been blurred

to restrict access to TOC data)

provided a way of identifying where sub-threshold variations might contribute

to delays, and could help operators prioritise stations of interest.
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Analysis of the scenarios showed the impact of buffer time (or ’slack’) and

highlighted the practice of allowing planned dwell times to differ from scheduled

dwell times, in order to maintain 45s dwells from a timetabling system devised

to the nearest 30s. This can mask sub-threshold delays; an adverse effect of

slack in the timetable is a reduction in pressure to keep to time, and a lack of

visibility of sub-threshold impacts may only serve to exacerbate this problem.

This research has shown the importance of considering the system as a whole and

demonstrated how visualisations could be provided to help operators do that.

The importance of contextual factors has also been shown, and visualising the

network may help operators identify and apply their own contextual knowledge

(such as the presence of a major events venue).

If data could be obtained from the operator giving planned dwell times for

each service and station (not just generic scheduled dwells), the outputs of the

models would be enhanced and they could be really used to show how delays

propagate through the system. There are a number of additional ways in which

the models could be enhanced. Firstly, more details about the rolling stock itself

(as well as train length) could be included. Although there are some caveats

when it comes to including train type and train length data, the data do exist

in some form. In theory, adding train type to the models is trivial; in practice,

there are only a few services where the stock type varies, and these would need

to be identified. Secondly, contextual factors including weather and passenger

numbers, should be considered. It is understood that work is ongoing with at

least one train operator to monitor passenger numbers, and if this data could be

obtained it would likely make a positive difference to model accuracy. It would

also help to discern exactly why some of the known factors, such as train length,

make a difference. Finally, it would be good to consider possible interactions

between different features.

Even at this early stage, without such enhancements, the models have shown

great potential to provide important insights for railway operators. The outputs

were used to support prototype visualisation tools which can help operators un-

derstand where dwell time delays cause particular problems on the network, and
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to make informed decisions about potential mitigation actions. These visuali-

sation tools have been designed to work with real-time data feeds, paving the

way for a real-time alert system, and demonstrating the potential for Bayesian

Modelling to simulate the effect of delay propagation within the network. For

busy and congested networks, where operators are under increasing pressure to

reduce dwell time delays, such systems could have a significant impact. The

model outputs can also be used to identify particularly problematic stations

and services; even cases where the model fit is poor can be used to prioritise

stations for further investigation and may lead to new insights about station

characteristics which help or hinder train dwells.
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