
ORIGINAL PAPER

A Cheeger Cut for Uniform Hypergraphs

Raffaella Mulas1,2

Received: 12 December 2020 / Revised: 25 May 2021 / Accepted: 1 June 2021
� The Author(s) 2021

Abstract
The graph Cheeger constant and Cheeger inequalities are generalized to the case of

hypergraphs whose edges have the same cardinality. In particular, it is shown that

the second largest eigenvalue of the generalized normalized Laplacian is bounded

both above and below by the generalized Cheeger constant, and the corresponding

eigenfunctions can be used to approximate the Cheeger cut.

Keywords Hypergraphs � Normalized Laplacian � Cheeger inequalities � Spectral

clustering

Mathematics Subject Classification 05C65 � 05C50 � 05C69

1 Introduction

1.1 Historical Note

Cheeger constants and Cheeger inequalities have a long history. The now-called

Cheeger constant of a simple graph G ¼ ðV ;EÞ was introduced in 1951 by Pólya

and Szeg}o [23], who called it the isoperimetric constant and defined it as

hðGÞ :¼ min
;6¼S(V

jEðS; �SÞj
minf vol ðSÞ; vol ð �SÞg ;

where EðS; �SÞ denotes the set of edges between S and its complement �S :¼ V n S,

while the volume of S, denoted vol ðSÞ, is the sum of the vertex degrees in S.
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Finding a set S realizing the Cheeger constant means finding a small edge cut

EðS; �SÞ such that, if removed from G, it divides the graph into two disconnected

components that have roughly equal volume (Fig. 1). Therefore, h measures how

different G is from a disconnected graph, and it is largest for the complete graph.

The continuous analogue of h(G) was then defined by Cheeger [10] in 1970, in

the context of spectral geometry, as follows. Given a compact n-dimensional

manifold M, let

hðMÞ :¼ inf
D

vol n�1ðdDÞ
vol nðDÞ

;

where D � M is a smooth n-submanifold with boundary dD and

0\ vol nðDÞ� vol ðMÞ=2. Cheeger proved that the first nonvanishing eigenvalue

kminðMÞ of the Laplace-Beltrami operator is such that

kminðMÞ� 1

4
h2ðMÞ

and, as shown by Buser [5] in 1978, for each compact manifold there exist Rie-

mannian metrics for which the inequality becomes sharp. In a later work in 1982,

Buser [6] also proved that, if the Ricci curvature of a compact unbordered Rie-

mannian n-manifold M is bounded below by �ðn� 1Þa2, for some a� 0, then

kminðMÞ� 2aðn� 1Þhþ 10h2:

Therefore, h(M) can be used to estimate kminðMÞ and vice versa.

In 1984–1985, Dodziuk [12] and Alon and Milman [1] derived analogous

estimates for the graph Cheeger constant and for the first nonvanishing eigenvalue

of the Kirchhoff Laplacian associated to a connected graph. Similarly, in 1992,

Chung [11] proved the Cheeger inequalities for the symmetric normalized Laplacian
of a graph G on n nodes, that she defined as

LðGÞ :¼ Id � DðGÞ�1=2AðGÞDðGÞ�1=2;

where Id is the n� n identity matrix, D(G) is the diagonal degree matrix and A(G)

is the adjacency matrix of G. Chung proved that LðGÞ has n real, nonnegative

Fig. 1 The Cheeger cut on a graph
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eigenvalues, denoted k1ðGÞ� � � � � knðGÞ, that encode many qualitative properties

of G. In particular, she proved that, for a connected graph, the first two eigenvalues

are such that k1ðGÞ ¼ 0 and

1

2
hðGÞ2 � k2ðGÞ� 2hðGÞ: ð1Þ

Therefore, as well as in the continuous case, h(G) can be used to estimate k2ðGÞ and

vice versa. Moreover, the eigenvectors corresponding to k2ðGÞ can be used in order

to approximate the Cheeger cut, as follows. An eigenvector for LðGÞ can be seen as

a function f : V ! R and, if f is an eigenfunction with eigenvalue k2ðGÞ, then f must

achieve both positive and negative values, and the edges between the sets

fv 2 V : f ðvÞ� 0g and fv 2 V : f ðvÞ\0g

approximate the Cheeger cut. Since solving the Cheeger cut problem is NP-hard

[26], while the eigenvalues and the eigenvectors of LðGÞ can be found quickly,

spectral clustering based on these results is a very common tool and have found

many applications, see for instance [7, 9, 19, 25]. Citing [18] ‘‘In recent years,

spectral clustering has become one of the most popular modern clustering algo-

rithms. It is simple to implement, can be solved efficiently by standard linear

algebra software, and very often outperforms traditional clustering algorithms such

as the k-means algorithm’’.

Note that the normalized Laplacian or random walk Laplacian

LðGÞ :¼ Id � DðGÞ�1AðGÞ ¼ DðGÞ�1=2LðGÞDðGÞ1=2

is similar to LðGÞ, therefore these two matrices have the same spectrum. Moreover,

f is an eigenfunction for LðGÞ with eigenvalue k if and only if D1=2f is an eigen-

function for L(G) with eigenvalue k. Hence, the above statements for LðGÞ can be

equivalently stated for L(G), on which we will focus throughout this paper.

1.2 Aim of this Work

The aim of this work is to generalize the graph Cheeger inequalities and Cheeger cut

to the case of uniform hypergraphs. Hypergraphs are a generalization of graphs in

which vertices are joined by sets of any cardinality, and a hypergraph is said to be k-

uniform if all its edges have cardinality k. Hypergraphs find applications in many

real networks (e.g. cellular networks [15], social networks, [27], neural net-

works [21], opinion formation [16], epidemic networks [4]) and a hypergraph

Cheeger cut could be applied to clustering problems on such networks.

The fundamental idea used here is the following. Given a connected simple graph

G, its signless normalized Laplacian is

LþðGÞ :¼ Id þ DðGÞ�1AðGÞ ¼ 2 Id � LðGÞ:

It is such that
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k is an eigenvalue for LðGÞ () 2 � k is an eigenvalue for LþðGÞ

with the same eigenfunctions and, moreover, LþðGÞ ¼ LðGþÞ, where Gþ is the

signed graph obtained from G by letting each edge have a positive sign. Since,

furthermore, hðGÞ ¼ hðGþÞ, the Cheeger inequalities in (1) can be equivalently

reformulated in terms of the second largest eigenvalue of LðGþÞ, as

1

2
hðGþÞ2 � 2 � kn�1ðGþÞ� 2hðGþÞ: ð2Þ

Also, the Cheeger cut can be approximated based on the sign of a given eigen-

function of kn�1ðGþÞ. We shall use this equivalent formulation of the Cheeger

inequalities in order to prove a generalization for uniform hypergraphs.

In particular, given a connected, k-uniform hypergraph C, we will see it as an

oriented hypergraph [24] with only positive signs and we will consider the

corresponding hypergraph normalized Laplacian LðCÞ defined in [14]. We will

define a generalized Cheeger constant hðCÞ for C that coincides with the classical

one in the particular case of graphs and we will prove, in Theorem 1 below, that

1

2ðk � 1Þ hðCÞ
2 � k � kn�1ðCÞ� 2ðk � 1ÞhðCÞ:

Clearly, the above inequalities generalize (2), therefore (1). Moreover, the proof will

suggest that the eigenfunctions of kn�1ðCÞ can be used to approximate the Cheeger

cut.

1.3 Related Work

It is worth mentioning some related work that is present in literature. In [22], some

Cheeger-like inequalities are shown for the smallest nonzero eigenvalue of LðCÞ, for

restricted classes of hypergraphs which satisfy either only a generalized Cheeger

upper bound or only a generalized Cheeger lower bound. In [3, 8, 13, 17], Cheeger-

type inequalities are shown for other operators on hypergraphs.

1.4 Structure of the Paper

In Sect. 2 we give the preliminary definitions and in Sect. 3 we present the main

results. In Sect. 4 we prove the upper Cheeger inequality and in Sect. 5 we prove

the lower bound.

2 Preliminary Definitions

Definition 1 [24] An oriented hypergraph is a triple C ¼ ðV;E;wCÞ such that V is a

finite set of vertices, E is a finite multiset of elements e 2 PðVÞ n f;g called edges,
while wC : ðV;EÞ ! f�1; 0;þ1g is the incidence function and it is such that
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wCðv; eÞ 6¼ 0 () v 2 e:

Two vertices i 6¼ j are co-oriented in e if wCðv; eÞ ¼ wCðw; eÞ 6¼ 0 and they are anti-
oriented in e if wCðv; eÞ ¼ �wCðw; eÞ 6¼ 0.

We fix, from here on, an oriented hypergraph C ¼ ðV ;E;wCÞ on n vertices

v1; . . .; vn.

Definition 2 The degree of a vertex v, denoted degðvÞ, is the number of edges

containing v. The cardinality of a edge e, denoted |e|, is the number of vertices that

are contained in e. C is d-regular if degðvÞ ¼ d is constant for all v 2 V ; it is k-

uniform if jej ¼ k is constant for all e 2 E.

Remark 1 Signed graphs can be seen as 2-uniform oriented hypergraphs such that E
is a set. Simple graphs can be seen as signed graphs such that, for each e 2 E, there

exists a unique v 2 V with wCðv; eÞ ¼ 1 and there exists a unique w 2 V with

wCðw; eÞ ¼ �1. Classical hypergraphs (the ones we are going to consider) can be

seen as oriented hypergraphs such that

wCðv; eÞ ¼ 1 () v 2 e:

Definition 3 C is connected if, for every pair of vertices v;w 2 V , there exists a

path that connects v and w, i.e., there exist w1; � � � ;wm 2 V and e1; . . .; em�1 2 E
such that:

– w1 ¼ v;

– wm ¼ w;

– fwi;wiþ1g � ei for each i ¼ 1; . . .;m� 1.

For simplicity, we shall assume that C is connected and has no vertices of degree

zero. These assumptions are not restrictive, since the spectrum of a hypergraph is

given by the union of the spectra of its connected components [20], while each

vertex of degree zero simply produces 0 as eigenvalue [11]. We also assume that,

for all v 2 V ,

degðvÞ�
X

w 6¼v

degðwÞ: ð3Þ

This is always true in the case of graphs and we will need this assumption in the

proof of the main theorem.

Definition 4 [14] The degree matrix of C is the n� n diagonal matrix

D ¼ DðCÞ :¼ diag
�
degðv1Þ; . . .; degðvnÞ

�
:

The adjacency matrix of C is the n� n matrix A ¼ AðCÞ :¼ ðAijÞij; where Aii :¼ 0

for each i ¼ 1; . . .; n and, for i 6¼ j,

123

Graphs and Combinatorics



Aij :¼
����fedges in which vi and vj are anti-orientedg

����þ

�
����fedges in which vi and vj are co-orientedg

����:

The normalized Laplacian of C is the n� n matrix

L ¼ LðCÞ :¼ Id � D�1A:

Remark 2 If C is a simple graph, the adjacency matrix has (0, 1)-entries while, if C
is a classical hypergraph (seen as an oriented hypergraph such that the incidence

function has values in f0;þ1g), then the adjacency matrix has nonpositive entries.

From here on we shall assume that C is a k-uniform, classical hypergraph, seen as

an oriented hypergraph such that the incidence function has values in f0;þ1g.

As shown in [14], L has n real, nonnegative eigenvalues, counted with

multiplicity. We denote them as

k1 � � � � � kn:

Moreover, as shown in [20], since C is connected and k-uniform, kn ¼ k and the

constant functions are the corresponding eigenfunctions. By the Courant-Fischer-

Weyl min-max principle (cf. [14]), the second largest eigenvalue of L can be

characterized in terms of the Rayleigh quotient of a nonzero function f : V ! R,

RQ ðf Þ :¼
P

e2E
P

v2e f ðvÞ
� �2

P
v2V degðvÞf ðvÞ2

:

In particular,

kn�1 ¼ max
f?1

RQ ðf Þ; ð4Þ

where the condition f ? 1 denotes the orthogonality to the constants,
X

v2V
degðvÞf ðvÞ ¼ 0;

derived from the fact that the eigenfunctions corresponding to kn are the constant

functions (cf. [14]).

We now introduce the generalized Cheeger constant that will be used for

bounding k � kn�1.

Definition 5 Given S � V , we let �S :¼ V n S, vol ðSÞ :¼
P

v2S degðvÞ and

ErðSÞ :¼ fe 2 E : je \ Sj ¼ rg;

for r 2 f1; . . .; kg.
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Remark 3 Clearly, for each r 2 f1; . . .; rg, ErðSÞ ¼ Ek�rð �SÞ. Moreover,

EkðSÞ ¼ fe 2 E : e � Sg;

E0ðSÞ ¼ fe 2 E : e � �Sg

and

vol ðSÞ ¼
X

v2S
degðvÞ ¼

Xk

r¼1

rjErðSÞj:

Definition 6 Given ; 6¼ S(V ,

hðSÞ :¼
Pk�1

r¼1 jErðSÞjrðk � rÞ
minf vol ðSÞ; vol ð �SÞg :

The Cheeger constant of C is

h :¼ min
;6¼S(V

hðSÞ:

Remark 4 Observe that the quantity

Xk�1

r¼1

jErðSÞjrðk � rÞ

appearing in the numerator of h(S) counts the number of pairwise connections

between S and �S. Furthermore, if C is a graph, then k ¼ 2, E1ðSÞ is the set of edges

between S and �S, and the Cheeger constant defined above coincides with the one

introduced by Pólya and Szeg}o.

3 Main Results

3.1 Cheeger Inequalities

Our main result is the following theorem.

Theorem 1 Let C be a connected, k-uniform hypergraph. Then,

1

2ðk � 1Þ h
2 � k � kn�1 � 2ðk � 1Þh:

Remark 5 Theorem 1 generalizes (2) which is, on its turn, equivalent to the

classical Cheeger inequalities in (1).
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We split the proof of Theorem 1 into two parts: in Sect. 4 we prove the upper

bound and in Sect. 5 we prove the lower bound. Our proofs are inspired by the

graph case and in particular by the proof method in [11, Lemma 2.1] for the upper

bound; by the proof method in [11, Theorem 2.2] for the lower bound. However, the

proofs presented here for hypergraphs are much longer and more complicated than

those for graphs. Both proofs make use of the fact that the eigenfunctions

corresponding to kn�1 are orthogonal to the constants and, as we already observed,

this is a consequence of the fact that C is uniform.

3.2 Cheeger Cut

The proof of Theorem 1 will also suggest that, as in the graph case, the Cheeger cut

of C can be approximated by the sets

fv 2 V : f ðvÞ� 0g and fv 2 V : f ðvÞ\0g;

for a given eigenfunction f : V ! R of kn�1. This gives a generalized method of

spectral clustering for uniform hypergraphs.

Example 1 Let C be the hypergraph in Fig. 2, with vertex set V ¼ fv1; . . .; v6g and

edge set E ¼ fe1; e2; e3g such that:

– e1 ¼ fv1; v2; v3g;

– e2 ¼ fv3; v4; v5g;

– e3 ¼ fv4; v5; v6g.

Then, D ¼ diagð1; 1; 2; 2; 2; 1Þ,

A ¼ �

0 1 1 0 0 0

1 0 1 0 0 0

1 1 0 1 1 0

0 0 1 0 2 1

0 0 1 2 0 1

0 0 0 1 1 0

0

BBBBBBBB@

1

CCCCCCCCA

and

Fig. 2 The hypergraph in
Example 1
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L ¼ Id � D�1A ¼

1 1 1 0 0 0

1 1 1 0 0 0

0:5 0:5 1 0:5 0:5 0

0 0 0:5 1 1 0:5

0 0 0:5 1 1 0:5

0 0 0 1 1 1

0
BBBBBBBB@

1
CCCCCCCCA

:

One can check that kn�1 ¼ 3þ
ffiffi
3

p

2
and a corresponding eigenfunction is

f ¼
�
� 1 þ

ffiffiffi
3

p

2
;� 1 þ

ffiffiffi
3

p

2
;� 1

2
;
1 þ

ffiffiffi
3

p

4
;
1 þ

ffiffiffi
3

p

4
; 1

�
:

Using f for approximating the Cheeger cut gives

fv1; v2; v3g and fv4; v5; v6g;

as one would expect.

3.3 Key Idea

As we argued in Sect. 1, the key idea used in this paper is to first reformulate the

graph Cheeger inequalities in terms of the signless normalized Laplacian and then

generalize them for the second largest eigenvalue of the hypergraph normalized

Laplacian. The first step is fundamental. In [22], for instance, an attempt to

formulate generalized Cheeger inequalities in terms of the first nonzero eigenvalue

of the hypergraph normalized Laplacian was made, but it led to generalizations for

restricted classes of hypergraphs, either only for the Cheeger upper bound or only

for the Cheeger lower bound. The reason is that the properties of the smallest

eigenvalues of the graph Laplacian are preserved, in the general case, by the largest

eigenvalues of the Laplacian.

This change of point of view can allow us also to generalize, to the case of

uniform hypergraphs, the fact that the multiplicity of 0 for L counts the number of

connected components of a simple graph [11]. In terms of the signless Laplacian,

this is equivalent to saying that the multiplicity of 2 for Lþ counts the number of

connected components of a simple graph and, on its turn, this is equivalent to saying

that the multiplicity of 2 of L equals the number of connected components in the

case of a signed graph in which each edge has a positive sign. While this property

cannot be generalized for hypergraphs in terms of the multiplicity of 0 (cf. [14]), it

can be generalized in terms of the multiplicity of kn, as follows.

Theorem 2 If C is a k-uniform hypergraph, then the multiplicity of k equals the
number of connected components of C.
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Proof It follows from the fact that, as shown in [20], a connected k-uniform

hypergraph has eigenvalue kn ¼ k and the corresponding eigenfunctions are exactly

the constant functions. h

3.4 Vertex Cut for Regular Hypergraphs

Given a hypergraph C ¼ ðV;EÞ on n nodes v1; . . .; vn and m edges e1; . . .; em, its

dual hypergraph is C	 :¼ ðV	;E	Þ, where:

– V	 :¼ fv	1; . . .; v	mg;

– E	 :¼ fe	1; . . .; e	ng;

– v	j 2 e	j in C	 if and only if vi 2 ej in C.

Therefore, the vertices of C correspond to the edges of C	 and vice versa. In

particular, if C is d-regular, then C	 is d-uniform. In this case, we can apply

Theorem 1 to C	 and the edge cut on C	 can be translated into a vertex cut on C, as

follows.

Definition 7 Let C ¼ ðV ;EÞ be a d-regular hypergraph. Given ; 6¼ F(E, let
�F :¼ E n F, vol ðFÞ :¼

P
e2F jej and

VrðFÞ :¼ fv 2 V : v belongs to r edges in Fg;

for r 2 f1; . . .; dg. Let also

h	ðFÞ :¼
Pd�1

r¼1 jVrðFÞjrðd � rÞ
minf vol ðFÞ; vol ð �FÞg :

The vertex Cheeger constant of C is

h	 :¼ min
;6¼F(E

h	ðFÞ:

Corollary 1 Let C be a connected, d-regular hypergraph. Then,

1

2ðd � 1Þ h
2
	 � d � km�1ðC	Þ� 2ðd � 1Þh	:

Proof It follows from Theorem 1 applied to C	.

In particular, using the signs of an eigenfunction of km�1ðC	Þ, one can give an

edge cut for C	 corresponding to a vertex cut for C.

3.5 Bipartite Uniform Hypergraphs

For future directions, it will be interesting to see whether the results presented here

could be extended to classical hypergraphs that are not necessarily uniform and,
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more generally, to oriented hypergraphs. We can already say something for bipartite
hypergraphs: oriented hypergraphs whose vertex set can be partitioned into two

disjoint subsets as V ¼ V1 t V2, such that each edge contain all its positive

incidences in V1 and all its negative incidences in V2, or vice versa. Bipartite

hypergraphs generalize bipartite graphs and, as shown in [2], a bipartite hypergraph

C ¼ ðV;E;wCÞ has the same spectrum as Cþ :¼ ðV;E;wCþÞ, where wþ is such that

wCþðv; eÞ ¼ 1 () v 2 e:

This implies that the Cheeger inequalities in Theorem 1 also hold for bipartite k-

uniform hypergraphs. However, since the eigenfunctions of C and Cþ differ by

changes of signs, in this case we cannot approximate the Cheeger cut by

fv 2 V : f ðvÞ� 0g and fv 2 V : f ðvÞ\0g;

for a given eigenfunction f : V ! R of kn�1.

4 Proof of the Upper Bound

Theorem 3 Let C be a connected, k-uniform hypergraph. Then,

k � kn�1 � 2ðk � 1Þh:

Proof Let ; 6¼ S(V be such that h ¼ hðSÞ ¼ hð �SÞ, and assume, without loss of

generality, that vol ðSÞ� vol ð �SÞ. Let

a :¼ vol ðSÞ
vol ð �SÞ � 1

and let f be a function on V defined by

f ðvÞ :¼
1 if v 2 S

�a if v 2 �S:

�

By construction of f,
P

v2V degðvÞf ðvÞ ¼ 0, that is, f is orthogonal to the constants.

Thus, by (4),
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kn�1 � RQ ðf Þ

¼
P

e2E
�P

v2e f ðvÞ
�2

P
v2V degðvÞf ðvÞ2

¼
P

e2E
�P

v2e\S 1 �
P

v2e\ �S a
�2

vol ðSÞ þ a2 vol ð �SÞ
�
by a2 vol ð �SÞ ¼ a vol ðSÞ

�
¼
P

e2E
�
je \ Sj � aje \ �Sj

�2

ðaþ 1Þ vol ðSÞ
�
by jej ¼ k 8e 2 E

�
¼
P

e2E
�
k � je \ �Sj � aje \ �Sj

�2

ðaþ 1Þ vol ðSÞ

¼
P

e2E
�
k � je \ �Sj � ðaþ 1Þ

�2

ðaþ 1Þ vol ðSÞ

¼ jEjk2

ðaþ 1Þ vol ðSÞ þ
P

e2E je \ �Sj2ðaþ 1Þ
vol ðSÞ � 2k �

P
e2E je \ �Sj
vol ðSÞ

�
by
X

e2E
je \ �Sj ¼ vol ð �SÞ

�
¼ jEjk2

ðaþ 1Þ vol ðSÞ þ
P

e2E je \ �Sj2ðaþ 1Þ
vol ðSÞ � 2k

a

¼ jEjk2

ðaþ 1Þ vol ðSÞ þ
Pk

r¼1

P
e2E:je\ �Sj¼r r

2ðaþ 1Þ
vol ðSÞ � 2k

a

�
by jEjk ¼ vol ðVÞ

�
¼ k � vol ðVÞ

ðaþ 1Þ vol ðSÞ þ
ðaþ 1Þ �

Pk
r¼1 jErð �SÞjr2

vol ðSÞ � 2k

a
:

Now, observe that

k � vol ðVÞ
ðaþ 1Þ vol ðSÞ ¼

k � ð vol ðSÞ þ vol ð �SÞÞ
ðaþ 1Þ vol ðSÞ ¼ k

aþ 1
þ k

aðaþ 1Þ

and we have that

k

aþ 1
þ k

aðaþ 1Þ �
2k

a
¼ kðaþ 1 � 2a� 2Þ

aðaþ 1Þ ¼ � k

a
:

Therefore, by putting everything together,
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kn�1 � RQ ðf Þ

¼ k � vol ðVÞ
ðaþ 1Þ vol ðSÞ þ

ðaþ 1Þ �
Pk

r¼1 jErð �SÞjr2

vol ðSÞ � 2k

a

¼ ðaþ 1Þ �
Pk

r¼1 jErð �SÞjr2

vol ðSÞ � k

a

¼ ðaþ 1Þ �
Pk�1

r¼1 jErð �SÞjr2

vol ðSÞ þ ðaþ 1Þ � jEkð �SÞjk2

vol ðSÞ � k

a

� ðaþ 1Þ �
Pk�1

r¼1 jErð �SÞjr
vol ðSÞ þ ðaþ 1Þ � jEkð �SÞjk

vol ðSÞ þ ðaþ 1Þ � jEkð �SÞjkðk � 1Þ
vol ðSÞ � k

a

¼ ðaþ 1Þ �
Pk

r¼1 jErð �SÞjr
vol ðSÞ þ ðaþ 1Þ � jEkð �SÞjkðk � 1Þ

vol ðSÞ � k

a
:

Now, since vol ð �SÞ ¼
Pk

r¼1 jErð �SÞjr,

jEkð �SÞjk ¼ vol ð �SÞ �
Xk�1

r¼1

jErð �SÞjr:

Hence,

kn�1 �
ðaþ 1Þ vol ð �SÞ

vol ðSÞ þ ðaþ 1Þ � ðk � 1Þ �
 
jEkð �SÞjk
vol ðSÞ

!
� k

a

¼ ðaþ 1Þ vol ð �SÞ
vol ðSÞ þ ðaþ 1Þ � ðk � 1Þ �

 
vol ð �SÞ
vol ðSÞ �

Pk�1
r¼1 jErð �SÞjr

vol ðSÞ

!
� k

a

¼ ðaþ 1Þ
a

� k

a
þ ðaþ 1Þ � ðk � 1Þ �

 
1

a
�
Pk�1

r¼1 jErð �SÞjr
vol ðSÞ

!

¼ aþ 1 � k þ ðaþ 1Þðk � 1Þ
a

� ðaþ 1Þ � ðk � 1Þ �
 Pk�1

r¼1 jErð �SÞjr
vol ðSÞ

!

¼ k � ðaþ 1Þ � ðk � 1Þ �
 Pk�1

r¼1 jErð �SÞjr
vol ðSÞ

!

�
by aþ 1� 2

�
� k � 2ðk � 1Þ

 Pk�1
r¼1 jErð �SÞjr

vol ðSÞ

!

� k � 2ðk � 1Þ
 Pk�1

r¼1 jErð �SÞjrðk � rÞ
vol ðSÞ

!

¼ k � 2ðk � 1Þh:

The claim follows. h
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5 Proof of the Lower Bound

Theorem 4 Let C be a connected, k-uniform hypergraph. Then,

k � kn�1 �
1

2ðk � 1Þ h
2:

Proof We follow and generalize the proof method of [11, Theorem 2.2].

Let f be an eigenfunction for L with eigenvalue kn�1. Without loss of generality,

we relabel the vertices so that

f ðviÞ� f ðviþ1Þ; for i ¼ 1; . . .; n� 1:

Let Si :¼ fv1; . . .; vig and let

t :¼ maxfi : vol ðSiÞ� vol ð �SiÞg:

Since we are assuming (3), t is well defined. Now, since f is orthogonal to the

constants,
P

v2V f ðvÞdegðvÞ ¼ 0. Hence,

X

v2V
degðvÞ

�
f ðvÞ þ f ðvtÞ

�2

¼
X

v2V
degðvÞf ðvÞ2 þ f ðvtÞ2

vol ðVÞ

�
X

v2V
degðvÞf ðvÞ2:

This implies that

k � kn�1 ¼ k �
P

e2E
�P

v2e f ðvÞ
�2

P
v2V degðvÞf ðvÞ2

¼
k �
P

v2V degðvÞf ðvÞ2 �
P

e2E
�P

v2e f ðvÞ
�2

P
v2V degðvÞf ðvÞ2

�
k �
P

v2V degðvÞf ðvÞ2 �
P

e2E
�P

v2e f ðvÞ
�2

P
v2V degðvÞ

�
f ðvÞ þ f ðvtÞ

�2
:

Now, for v 2 V , let

fþðvÞ :¼
f ðvÞ þ f ðvtÞ if f ðvÞ þ f ðvtÞ� 0

0 otherwise

�

and let

f�ðvÞ :¼
jf ðvÞ þ f ðvtÞj if f ðvÞ þ f ðvtÞ� 0

0 otherwise.

�

Then,
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fþðvÞ þ f�ðvÞ ¼ jf ðvÞ þ f ðvtÞj 8v 2 V ; ð5Þ

similarly

fþðvÞ2 þ f�ðvÞ2 ¼
�
f ðvÞ þ f ðvtÞ

�2

8v 2 V ð6Þ

and, by (5),

X

v2V
degðvÞ

�
f ðvÞ þ f ðvtÞ

�2

¼
X

v2V
degðvÞ

�
fþðvÞ2 þ f�ðvÞ2

�
:

Moreover,

X

e2E

 
X

v2e
f ðvÞ

!2

�
X

e2E

 �X

v2e
fþðvÞ

�2

þ
�X

v2e
f�ðvÞ

�2
!

� jEjk2f ðvtÞ2: ð7Þ

To see this, observe first that, for each e 2 E,

�X

v2e
fþðvÞ

�2

þ
�X

v2e
f�ðvÞ

�2

¼
X

v2e

�
fþðvÞ2 þ f�ðvÞ2

�
þ 2

X

v 6¼w:fv;wg�e

�
fþðvÞfþðwÞ þ f�ðvÞf�ðwÞ

�

�
by ð6Þ

�
¼
X

v2e

�
f ðvÞ þ f ðvtÞ

�2

þ 2
X

v 6¼w:fv;wg�e

�
fþðvÞfþðwÞ þ f�ðvÞf�ðwÞ

�

�
by construction of f

�
�
X

v2e

�
f ðvÞ þ f ðvtÞ

�2

þ 2
X

v 6¼w:fv;wg�e

�
f ðvÞ þ f ðvtÞ

��
f ðwÞ þ f ðvtÞ

�

¼
X

v2e
f ðvÞ2 þ k � f ðvtÞ2 þ 2f ðvtÞ �

X

v2e
f ðvÞþ

þ 2
X

v 6¼w:fv;wg�e

 
f ðvÞf ðwÞ þ f ðvtÞf ðvÞ þ f ðvtÞf ðwÞ þ f ðvtÞ2

!

�
since jej ¼ k 8e 2 E

�
¼
X

v2e
f ðvÞ2 þ k � f ðvtÞ2 þ 2f ðvtÞ �

X

v2e
f ðvÞþ

þ 2
X

v 6¼w:fv;wg�e

f ðvÞf ðwÞ þ 2f ðvtÞðk � 1Þ
X

v2e
f ðvÞ þ kðk � 1Þf ðvtÞ2

¼
X

v2e
f ðvÞ2 þ 2

X

v 6¼w:fv;wg�e

f ðvÞf ðwÞ þ 2f ðvtÞk �
X

v2e
f ðvÞ þ k2f ðvtÞ2

¼
 
X

v2e
f ðvÞ

!2

þ 2f ðvtÞk �
X

v2e
f ðvÞ þ k2f ðvtÞ2:

In going from the third to the fourth line, we used the fact that, by definition of f,
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�
fþðvÞfþðwÞ þ f�ðvÞf�ðwÞ

�
�
�
f ðvÞ þ f ðvtÞ

��
f ðwÞ þ f ðvtÞ

�
; for v 6¼ w: ð8Þ

This can be seen in more detail by considering the following three cases.

– Case 1:

f ðvÞ þ f ðvtÞ� 0 and f ðwÞ þ f ðvtÞ� 0:

In this case, by definition of f,

fþðvÞfþðwÞ þ f�ðvÞf�ðwÞ ¼ fþðvÞfþðwÞ ¼
�
f ðvÞ þ f ðvtÞ

��
f ðwÞ þ f ðvtÞ

�
:

– Case 2:

f ðvÞ þ f ðvtÞ� 0 and f ðwÞ þ f ðvtÞ� 0:

In this case, by definition of f,

fþðvÞfþðwÞ þ f�ðvÞf�ðwÞ ¼ f�ðvÞf�ðwÞ ¼
����f ðvÞ þ f ðvtÞ

���� �
����f ðwÞ þ f ðvtÞ

����:

– Case 3:

f ðvÞ þ f ðvtÞ� 0 and f ðwÞ þ f ðvtÞ� 0; or vice versa:

In this case, by definition of f,

fþðvÞfþðwÞ þ f�ðvÞf�ðwÞ ¼ 0;

while
�
f ðvÞ þ f ðvtÞ

��
f ðwÞ þ f ðvtÞ

�
� 0:

This proves (8). Therefore,
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X

e2E

 �X

v2e
fþðvÞ

�2

þ
�X

v2e
f�ðvÞ

�2
!

�
X

e2E

  
X

v2e
f ðvÞ

!2

þ 2f ðvtÞk �
X

v2e
f ðvÞ þ k2f ðvtÞ2

!

¼
X

e2E

 
X

v2e
f ðvÞ

!2

þ 2f ðvtÞk �
X

v2V
degðvÞf ðvÞ þ jEjk2f ðvtÞ2

 
by
X

v2V
degðvÞf ðvÞ ¼ 0

!
¼
X

e2E

 
X

v2e
f ðvÞ

!2

þ jEjk2f ðvtÞ2:

Hence,

X

e2E

 
X

v2e
f ðvÞ

!2

�
X

e2E

 �X

v2e
fþðvÞ

�2

þ
�X

v2e
f�ðvÞ

�2
!

� jEjk2f ðvtÞ2:

This proves (7). By putting everything together,

k � kn�1 �
k �
P

v2V degðvÞf ðvÞ2 �
P

e2E

 
P

v2e f ðvÞ
!2

P
v2V degðvÞ

 
f ðvÞ þ f ðvtÞ

!2

�
k �
P

v2V degðvÞf ðvÞ2 þ jEjk2f ðvtÞ2 �
P

e2E

 
�P

v2e fþðvÞ
�2 þ

�P
v2e f�ðvÞ

�2
!

P
v2V degðvÞ

�
fþðvÞ2 þ f�ðvÞ2

�

¼ k �
P

v2V degðvÞf ðvÞ2 þ jEjk2f ðvtÞ2

P
v2V degðvÞ

�
f ðvÞ þ f ðvtÞ

�2
�

P
e2E

 �P
v2e fþðvÞ

�2

þ
�P

v2e f�ðvÞ
�2
!

P
v2V degðvÞ

�
fþðvÞ2 þ f�ðvÞ2

�

� k �
P

v2V degðvÞf ðvÞ2 þ jEjk2f ðvtÞ2

P
v2V degðvÞ

�
f ðvÞ þ f ðvtÞ

�2
� maxfRQ ðfþÞ; RQ ðf�Þg;

since

aþ b

cþ d
� max

(
a

c
;
b

d

)
:

Now assume, without loss of generality, that RQ ðfþÞ� RQ ðf�Þ. Then,
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k � kn�1 �
k �
P

v2V degðvÞf ðvÞ2 þ jEjk2f ðvtÞ2

P
v2V degðvÞ

�
f ðvÞ þ f ðvtÞ

�2
� RQ ðfþÞ:

Now, by the orthogonality to the constants and since

vol ðVÞ ¼
P

v2V degðvÞ ¼ jEjk,

k �
P

v2V degðvÞf ðvÞ2 þ jEjk2f ðvtÞ2

P
v2V degðvÞ

�
f ðvÞ þ f ðvtÞ

�2
¼ k �

P
v2V degðvÞf ðvÞ2 þ jEjk2f ðvtÞ2

P
v2V degðvÞ

�
f ðvÞ2 þ f ðvtÞ2

�

¼ k �
P

v2V degðvÞf ðvÞ2 þ jEjkf ðvtÞ2

P
v2V degðvÞf ðvÞ2 þ jEjkf ðvtÞ2

¼ k:

Hence, by letting E(v, w) denote the set of edges that contain both v and w,

k � kn�1 � k � RQ ðfþÞ

¼ k �

P
e2E

�P
v2e fþðvÞ

�2

P
v2V degðvÞfþðvÞ2

¼
k �
�P

v2V degðvÞfþðvÞ2

�
�
P

e2E

�P
v2e fþðvÞ

2 þ 2
P

fv;wg�e:v6¼w fþðvÞfþðwÞ
�

P
v2V degðvÞfþðvÞ2

¼
ðk � 1Þ �

�P
v2V degðvÞfþðvÞ2

�
� 2

P
v 6¼w jEðv;wÞjfþðvÞfþðwÞ

P
v2V degðvÞfþðvÞ2

¼

P
e2E
P

fv;wg�e

�
fþðvÞ � fþðwÞ

�2

P
v2V degðvÞfþðvÞ2

¼

P
e2E
P

fv;wg�e

�
fþðvÞ � fþðwÞ

�2

P
v2V degðvÞfþðvÞ2

�

P
e2E
P

fv;wg�e

�
fþðvÞ þ fþðwÞ

�2

P
e2E
P

fv;wg�e

�
fþðvÞ þ fþðwÞ

�2

�

 
P

v 6¼w jEðv;wÞj �
�
fþðvÞ � fþðwÞ

�2
!
�
 
P

v6¼w jEðv;wÞj �
�
fþðvÞ þ fþðwÞ

�2
!

2ðk � 1Þ
�P

v2V degðvÞfþðvÞ2

�2
;

using the inequality
�
fþðvÞ þ fþðwÞ

�2 � 2
�
fþðvÞ2 þ fþðwÞ2

�
in the denomina-

tor.Now, by the Cauchy–Schwarz inequality, the numerator in the last line is such

that
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X

v 6¼w

jEðv;wÞj �
�
fþðvÞ � fþðwÞ

�2
!

�
 
X

v 6¼w

jEðv;wÞj �
�
fþðvÞ þ fþðwÞ

�2
!

�
 
X

v 6¼w

jEðv;wÞj �
�
fþðvÞ � fþðwÞ

��
fþðvÞ þ fþðwÞ

�!2

¼
 
X

v 6¼w

jEðv;wÞj �
�
fþðvÞ2 � fþðwÞ2

�!2

:

Hence,

k � kn�1 �

 
P

v 6¼w jEðv;wÞj �
�
fþðvÞ2 � fþðwÞ2

�!2

2ðk � 1Þ
�P

v2V degðvÞfþðvÞ2

�2
:

Now,

X

v 6¼w

jEðv;wÞj �
�
fþðvÞ2 � fþðwÞ2

�

¼
X

a\c

jEðva; vcÞj �
�
fþðvaÞ2 � fþðvcÞ2

�

¼
X

a\c

jEðva; vcÞj �
 
Xc�1

i¼a

fþðviÞ2 � fþðviþ1Þ2

!

¼
X

a\c

Xc�1

i¼a

jEðva; vcÞj �
�
fþðviÞ2 � fþðviþ1Þ2

�

¼
Xn�1

i¼1

X

a� i

X

c[ i

jEðva; vcÞj �
�
fþðviÞ2 � fþðviþ1Þ2

�

¼
Xn�1

i¼1

X

va2Si

X

vc2 �Si

jEðva; vcÞj �
�
fþðviÞ2 � fþðviþ1Þ2

�

¼
Xn�1

i¼1

Xk�1

r¼1

rðk � rÞjErðSiÞj �
�
fþðviÞ2 � fþðviþ1Þ2

�
:

It follows that
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k � kn�1 �

 
Pn�1

i¼1

Pk�1
r¼1 rðk � rÞjErðSiÞj �

�
fþðviÞ2 � fþðviþ1Þ2

�!2

2ðk � 1Þ
�P

v2V degðvÞfþðvÞ2

�2
:

Now, for each i ¼ 1; . . .; n� 1, we let

jdðSiÞj :¼
Xk�1

r¼1

rðk � rÞjErðSiÞj and gvol ðSiÞ :¼ minf vol ðSiÞ; vol ð �SiÞg;

so that

hðSiÞ ¼
jdðSiÞj
gvol ðSiÞ

� h:

Then,

 
Xn�1

i¼1

Xk�1

r¼1

rðk � rÞjErðSiÞj �
�
fþðviÞ2 � fþðviþ1Þ2

�!2

¼
 
Xn�1

i¼1

jdðSiÞj �
�
fþðviÞ2 � fþðviþ1Þ2

�!2

�
 
Xn�1

i¼1

h � gvol ðSiÞ �
�
fþðviÞ2 � fþðviþ1Þ2

�!2

¼ h2 �
 
gvol ðS1Þfþðv1Þ2 þ

Xn

i¼2

�
gvol ðSiÞ � gvol ðSi�1Þ

�
fþðviÞ2

!2

¼ h2 �
 
Xn

i¼1

degðviÞfþðviÞ2

!2

;

where in the last line we have used the assumption (3). Putting everything together,
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k � kn�1 �

 
P

i

Pk�1
r¼1 rðk � rÞjErðSiÞj �

�
fþðviÞ2 � fþðviþ1Þ2

�!2

2ðk � 1Þ
�P

v2V degðvÞfþðvÞ2

�2

� h2

2ðk � 1Þ �

 
Pn

i¼1 degðviÞfþðviÞ2

!2

�P
v2V degðvÞfþðvÞ2

�2

¼ h2

2ðk � 1Þ :

h
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