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We study natural models of physics beyond the Standard Model with several directions in

mind. Firstly we study the supersymmetric extension of the U(1)Y × U(1)B−L model. This

non-minimal supersymmetric model maintains the best features of the minimal supersymmetric

Standard Model, but provides several new dark matter candidates. We compare metrics of fine-

tuning in these two models and characterise these new candidates. We then focus in particular on

the superpartner of the right-handed neutrino, the right-handed sneutrino and consider methods

of indirect, direct and collider detection.

We then consider Z ′ signals at the LHC arising from two models, the aforementioned B − L
model, as well as one originating from the group U(1)R×U(1)B−L, which comes from the breaking

of SO(10). These models may be distinguished by the axial couplings in the later case leading

to different forward-backward asymmetry shapes.

Lastly, we consider neutrino masses and the flavour puzzle. Here we use the framework of

modular symmetry to present new models of neutrino masses and mixing in addition to natural

charged lepton masses. We then consider a new model scenario which also accommodates the

observed quark masses and mixing angles in addition to the lepton sector, providing a natural

solution to the fermion mass hierarchies.
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Chapter 1

Introduction

1.1 Overture

Despite the overwhelming success of the Standard Model (SM), there are many outstanding

puzzles which remain to be solved. In this thesis, we investigate several interesting models which

provide some natural solutions to some of the main challenges in modern High Energy Physics

(HEP).

At the lowest energy scale lies neutrino physics. Predicted massless in the SM, but now

known to have non-zero, < O(1) eV masses, this is perhaps the most direct evidence of Beyond

the SM (BSM) physics we see. All of the models discussed in this thesis are motivated with

solutions which can accommodate neutrino masses, directly or otherwise. One of the simplest SM

extensions which can explain the masses is the B−L model, which promotes the global symmetry

in the SM of baryon minus lepton number into a gauge symmetry. For anomaly cancellation,

this demands three new Right-Handed (RH) singlets of the SM, which are identified as the RH

neutrinos. Breaking the gauged U(1)B−L symmetry sets a dynamic scale for the neutrino mass,

as well as providing other interesting phenomenology related to the associated B − L Higgs and

massive gauge boson. Such a theory is well motivated, but does not provide concrete predictions

on the nature of the neutrinos masses and mixing. Here, flavour symmetry models can produce

falsifiable predictions of the properties of neutrinos. Discrete symmetries here attempt to match

the currently measured neutrino properties, as well as providing predictions for parameters which

will be directly measured by the next generation of neutrino experiments.

At the larger Electroweak (EW) and TeV scales, the Large Hadron Collider (LHC) is search-

ing for BSM content both directly through production of new particles, as well as from deviations

in quantities predicted by the SM. One of the most compelling theories here is low-scale Super-

symmetry (SUSY). This theory addresses numerous problems in HEP, but perhaps the most

immediate concern is the hierarchy problem. Introducing any heavy BSM content will lead to

large corrections to the bare mass of the SM Higgs, such that the corrected Higgs mass must

be very finely tuned to remain at the EW scale. The scale of this fine-tuning is considered un-

acceptably large (up to 1 part in 1034 for content around the Planck scale) and begs for a NP

1



explanation. In addition, SUSY can predict a suitable Dark Matter (DM) candidate, and modi-

fies the running of the SM gauge couplings such that they appear to all unify, and is a necessary

ingredient for many theories of Quantum Gravity (QG).

At the highest scale are Grand Unified Theories (GUTs). Motivated by the running of gauge

couplings which almost meet in the SM and directly meet in low-scale SUSY models, GUTs aim

to unify the three SM forces. There are numerous GUT groups which are considered, but SO(10),

SU(5) and the Pati-Salam (PS) group SU(4)C ×SU(2)L×SU(2)R are the most popular choices.

Unification has been a guiding principle in physics since Maxwell’s unification of electricity and

magnetism into electromagnetism (EM) and EM combining with the weak force into the EW

theory.

In chapter one we will present a full introduction to the SM, neutrino masses, SUSY and

GUTs. We will then present five chapters based on models which relate to these topics. In

chapter two we introduce the non-SUSY B − L model, and then the SUSY version the B − L
Supersymmetric SM (BLSSM). We compare the Fine-Tuning (FT) of this model to the usual min-

imal supersymmetric SM (MSSM), as well as identify new DM candidates. We find that the levels

of FT similar, however we see several features of the BLSSM model result in a larger parameter

space for solutions which satisfy the relic density requirements for the DM candidate. In chapter

three we continue with the the BLSSM, but focus on the RH sneutrino as the DM candidate.

Here we study the direct, indirect and collider approaches to identify the RH sneutrino as DM

and find several smoking gun signals of the BLSSM. In chapter four we investigate a comparison

between the aforementioned U(1)Y × U(1)B−L model with the similar U(1)R × U(1)B−L model,

dubbed the BLR. The later model has origins from SO(10) whereas the former does not nicely

embed itself into a GUT group. Both predict a Z ′ with similar phenomenology at the LHC and

in this chapter we aim to discriminate the two similar models, should a signal be seen, by their

forward-backward asymmetries. We then move on to models of neutrino masses in chapters five

and six, and study the string-theory inspired framework of modular symmetry. In chapter five

we present a new model which provides natural (ie with model parameters close to unity) models

of charged lepton masses in addition to predicting neutrino masses and mixing parameters com-

petitively, with a reduced χ2 close to unity. We then go on, in chapter six, to study a model in

the framework of modular symmetry which predicts all fermion masses (leptons and quarks) with

natural inputs, close to unity and again find several solutions with a successful reduced χ2 ≈ 1.

Finally, we present our conclusions in chapter seven.

1.2 Standard Model

1.2.1 The Gauge Sector

The SM is a gauge theory based on the group SU(3)c × SU(2)L × U(1)Y , comprising the strong

interactions (where c is for colour), weak interactions (denoted by L, referring to the Left-Handed
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(LH) fermions which couple to it 1), and the hypercharge, denoted by Y .

We begin by considering the gauge sector of the SM. Their interactions are determined by

the Lagrangian involving the field strength tensors,

Lgauge = −1

4
GaµνG

a,µν − 1

4
W a
µνW

a,µν − 1

4
BµνB

νµ. (1.1)

The forms of the field strength tensors are defined by their symmetry. The Abelian (where

different elements of the group commute) hypercharge field strength tensor is defined as

Bµν = ∂µBν − ∂νBµ, (1.2)

where a local transformation of the hypercharge field takes the form

Bµ → Bµ +
1

g′
∂µωY (x), (1.3)

where g′ is the hypercharge coupling and ωY (x) parametrises a local (space-time dependent)

phase. With this transformation, the term −1
4BµνB

µν is invariant. We note here that as this is

an Abelian group, all terms are quadratic derivatives of the gauge boson fields, and so there are

no interactions between hypercharge bosons.

This is not the case for non-Abelian theories. The weak field strength tensor, now with index

a = 1, 2, 3, which refers to the 3 different gauge fields (generally for SU(N), the N2 − 1 fields),

is defined as

W a
µ = ∂µW

a
ν − ∂νW a

µ + gεabcW b
µW

c
ν , (1.4)

where εabc is the totally antisymmetric three-index tensor (also known as the Levi-Civita symbol),

such that ε123 = 1. This is defined from the group generators T a,[
T a, T b

]
= iεabcT c, (1.5)

where the generators T a = σa/2 and σa are the Pauli matrices,

σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)
. (1.6)

The fields W a
νµ transform locally as

W a
µ →W a

µ +
1

g
∂µω

a
L(x) + εabcW b

µω
c
L(x), (1.7)

1The common choice to use the identifier L in the weak coupling gauge group can be confusing, as Right-Handed
(RH) anti-fermions also couple to this, and in principle any new RH fermion could be charged, and any left-handed
piece uncharged under SU(2). An alternative, less commonly used, notation is to refer to the group as SU(2)W ,
where W means weak, though we do not adopt this convention to keep consistent with the standard notation and
avoid other confusions with the field strength tensor notation.
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such that after a local transformation, one will also gain terms of the form

δL ⊃ gεabc(∂µW a
ν )W b

µW
c
ν −

1

4
g2εabcεadeW

b
µW

c
νW

d
µW

e
ν , (1.8)

which are the three-point and four-point interaction terms. Here we find the crucial difference

that while Abelian fields do not interact, non-Abelian gauge fields do. The strong interaction

SU(3)c, being non-Abelian, looks very similar to the weak interaction, however now the index a

runs from 1 . . . 8, since N = 3, and ta = λa/2, the Gell-Mann matrices (see appendix),

Gaµ = ∂µG
a
ν − ∂νGaµ + gεabcGbµG

c
ν , (1.9)[

ta, tb
]

= ifabctc, (1.10)

Gaµ → Gaµ +
1

gs
∂µω

a
c (x) + εabcGbµω

c
c(x). (1.11)

A mass term in any gauge field, such as Ωµ =
(
Bµ, W

a
µ , G

a
µ

)
,

L ⊃ 1

2
m2

ΩΩµΩµ, (1.12)

is not gauge-invariant, and thus forbidden to be entered in the Lagrangian, therefore all (unbro-

ken) gauge bosons must be massless.

Fermions will transform in the following way under the three gauge transformations

U(1)Y : ψ → eiωY ψ, (1.13)

SU(2)L : ψ → eiω
a
LT

a
ψ, (1.14)

SU(3)c : ψ → eiω
a
c t
a
ψ, (1.15)

and interact with the gauge fields through the covariant derivative,

Dµ = ∂µ − ig′BµY − igW a
µT

a − igsGaµta, (1.16)

Lfermion, gauge = iψ̄(Dµγµ)ψ. (1.17)

1.2.2 The Fermion Sector

The fermionic content of the SM is summarised in table 1.1. There are three generations of chiral

(LH and RH) fields transform in different ways, as opposed to vector-like where LH and RH fields

transform in the same way) of quarks and leptons, where all three generations have the same

representation. In Dirac notation, the Lagrangian for a fermion ψ with mass m has the form

L = iψ̄∂µγ
µψ −mψ̄ψ. (1.18)
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Generation Representation under

1 2 3 SU(3)c × SU(2)L × U(1)Y(
u
d

)
L

(
c
s

)
L

(
t
b

)
L

(3, 2 , 1/6)(
νe
e

)
L

(
νµ
µ

)
L

(
ντ
τ

)
L

(1, 2, -1/2)

uR cR tR (3, 1, +2/3)
dR sR bR (3, 1, -1/3)
eR µR τR (1, 1, -1)

Table 1.1: Fermionic fields and representations in the SM, in the convention Q = T 3 + Y .

We may rewrite this mass term in Weyl notation

−mψ̄ψ = −mψ̄RψL −mψ̄LψR, (1.19)

and can see that we may not write any mass term for any of the SM particle content, for example

a term like meLeR would break gauge invariance of both SU(2)L and U(1)Y . To generate both

particle and gauge boson masses as observed, we need to consider the final piece of the SM, the

Higgs sector.

1.2.3 The Higgs Sector

To the aforementioned gauge and fermionic sector, we add a complex, SU(2)L doublet scalar, Φ,

with hypercharge Y = 1/2 and a colour singlet,

Φ =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
, (1.20)

which has four real degrees of freedom φ1 . . . φ4. The Lagrangian for this new scalar is

LΦ = |DµΦ|2 − V (Φ) + LYukawa, (1.21)

with kinetic and gauge interactions contained in the first piece, the potential written in the second,

and fermionic interactions contained in the final, Yukawa 2 Lagrangian. The normalisation 1/
√

2

is chosen so that the kinetic piece of the Lagrangian has the correct normalisation, L ⊃ 1
2∂µφi∂

µφi.

A general potential for a complex scalar contains two allowed pieces,

V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2, (1.22)

2Any interaction between a scalar field (or pseudoscalar) and a fermion is named after Hideki Yukawa, who
predicted pion (pseudoscalar) interactions with protons and neutrons (fermions).
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Figure 1.1: Plots of the Higgs potential, V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2 as a function of Re(Φ) and
Im(Φ), for −µ2 > 0 (left and −µ2 < 0 (right). The parameters λ ' 0.129 and |µ2| ' (88.4GeV)2

are obtained from the measured Higgs mass mh = 125 GeV and vev, v = 246 GeV. In the right
hand case, the minimum lies at Φ = v/

√
2 ' 174 GeV.

where µ and λ are fundamental parameters of the theory and

Φ†Φ =
1

2
(φ2

1 + φ2
2 + φ2

3 + φ2
4). (1.23)

For a stable potential, we must have that λ > 0, which leave two scenarios where −µ2 > 0

and −µ2 < 0. This is shown in figure 1.1 on the left and right side respectively. In the former

scenario, the minimum lies at |Φ| =
√

Φ†Φ = 0 (coloured in turquoise), which does not break

any symmetry as a gauge transformation acting on the vacuum Φ = 0 does not change the state.

Nature realises the other scenario, with negative −µ2 and positive λ. Here the ground state lies

away from Φ = 0, at the base of the “Mexican-hat” shaped potential, coloured in blue. Since

now Φmin 6= 0, SU(2)L×U(1)Y transformations rotate the vacuum around this minima ring, and

the gauge symmetry is spontaneously broken in the vacuum.

We may find the vacuum state value of Φ in the ground state by minimising the potential,

dV (Φ)

d
√

Φ†Φ
= −µ2 + 2λΦ†Φ = 0, (1.24)

√
Φ†Φ =

√
µ2

2λ
≡ v√

2
. (1.25)

We notice at this point there is a globalO(4) symmetry among the column vector (φ1, φ2, φ3, φ4)T ,

i.e. φi → Oijφj =⇒ Φ†Φ→ Φ†Φ, if OijOik = δjk, which is the O(4) rotational symmetry group.

This allows us to choose a single component to take the vacuum expectation value (VEV), rather

than it lie in some combination of fields. Without loss of generality, we may choose the vev to

lie in the φ3 component,

〈φ3〉 = v, 〈φ1〉 = 〈φ2〉 = 〈φ4〉 = 0, (1.26)

which is why we chose the normalisation relating v and V (Φ)|min. We also permit a new real

scalar h, with zero vev 〈h〉 = 0 related to excitations around the vacuum, φ3 = h+ v, so that our
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final Higgs doublet becomes

Φ =
1√
2

(
φ1 + iφ2

h+ v + iφ4

)
. (1.27)

The form of a generic mass term to a scalar field is made from a quadratic piece in the field,

Lϕ,mass = 1
2m

2ϕ2. From our Higgs potential, we find only one quadratic piece which is in the h

field. The other three φi terms are massless.

V (Φ)quadratic = λv2h2 −→ mh =
√

2λv2. (1.28)

It is possible to remove the appearance of these massless modes by a gauge transformation. By

writing ξ1 = φ2, ξ
2 = φ1, ξ

3 = −φ4, and working to first order in (h, φi)/v, then we may re-write

Φ as

Φ =
1√
2

exp

(
iξaσa

v

)(
0

v + h

)
, (1.29)

where σa are the Pauli matrices, and the repeated index is summed over a = 1, 2, 3. The gauge

transformation in SU(2)L may now be straight forwardly calculated. Fixing the gauge to be

ωaL(x) = −2ξa/v at all points in space-time, then we find

SU(2)L : Φ→ exp

(
i ωaL

σa

2

)
Φ =

1√
2

(
0

v + h

)
. (1.30)

This process of “gauging-away” allows us to view the theory in some manner in which these fields

are absent. This particular gauge is known as unitary gauge, and is sometimes referred to as the

Goldstones being “eaten” by the gauge bosons. We will now describe this effect in detail.

1.2.4 Gauge Boson Masses

Using the covariant derivative, defined in eq. 1.16 on the unitary gauge Higgs field, and defining

the combinations 3

W 1
µ − iW 2

µ√
2

≡W+
µ

W 1
µ + iW 2

µ√
2

≡W−µ , (1.31)

then the gauge-kinetic term of the Higgs takes the form

|DµΦ|2 =
1

2
(∂µh)(∂µh)+

g2v2

4
W+
µ W

−µ+
g2v

2
hW+

µ W
−µ+

g2

4
hhW+

µ W
−µ+

1

8
(v+h)2(−g′Bµ+gW 3

µ)2.

(1.32)

We note that the appearance of a two real scalar fields appearing together in the form (ϕ1 + iϕ2)

may be identified as a single complex field Ψ ≡ ϕ1+iϕ2√
2

, so the above combination is well justified.

3The charge may be correctly assigned to each combination of W 1
µ , W

2
µ by requiring charge conservation in the

fermion-gauge interactions.
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The mass terms for this general complex (charged) gauge field Ψ, and real (neutral) field Z0 are

Lgauge masses = m2
ΨΨ†Ψ +

1

2
m2
ZZ0

µZ0µ. (1.33)

Analogously to the masses of real versus complex scalar fields, there is no factor of 1/2 for

the complex field, as it can be written in terms of two real scalar fields and this normalisation

generates the 1/2 from the 1/
√

2’s. We may thus extract a mass term for our W boson,

mW =
g2v2

4
. (1.34)

We see that our VEV has given the W a mass, in addition to generating interactions with the

Higgs boson. We may measure the parameters g and mW experimentally, to derive that v = 246

GeV.

We now turn out attention to the Bµ and W 3
µ fields. We may re-write this term as a mass

matrix,

|DµΦ|2 ⊃ 1

8
(v + h)2

(
Bµ W 3

µ

)( g′2 −gg′
−gg′ g2

)(
Bµ

W 3µ

)
, (1.35)

which we may diagonalise by making a field rotation. Defining(
Bµ

W 3
µ

)
=

(
cos θW − sin θW

sin θW cos θW

)(
Aµ

Zµ

)
, (1.36)

and requiring no mixed AµZ
µ term, we find

cos θW =
g√

g2 + g′2
, sin θW =

g′√
g2 + g′2

, (1.37)

mA = 0, mZ =
v
√
g2 + g′2

2
=

mW

cos θW
. (1.38)

The physical fields we observe are the photon, A, the Z−boson, and the charged W±. These fields

will appear in the final covariant derivative expression and Feynman rules for all interactions with

scalar and fermionic fields may be derived from this. Defining sin θW ≡ sW , and cos θW ≡ cW ,

we may focus on the photon term of the covariant derivative

Dµ = −iAµ(gsWT
3 + g′cWY ) + . . . . (1.39)

By experiment, we may observe the photon coupling to be eQ where Q is the electric charge of

the interacting field and e is the electromagnetic coupling. We may simplify the photon coupling

which appears in the covariant derivative using this,

(
gsWT

3 + g′cWY
)

=
gg′√
g2 + g′2

(T 3 + Y ) = eQ, (1.40)
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from which we identify

e =
gg′√
g2 + g′2

= gsW = g′cW , Q = T 3 + Y. (1.41)

We may use this to simplify the expression to the Z−boson as well. Defining T± = σ± = σ1±iσ2

2 ,

we may now write the covariant derivative after EW Symmetry Breaking (EWSB), in the mass

basis,

Dµ = ∂µ − igsGaµta − i
g√
2

(
W+
µ T

+ +W−µ T
−)− i e

sW cW
Zµ(T 3 − s2

WQ)− ieAµQ. (1.42)

This couples to the Higgs as in eq. 1.35, and to fermions as,

Lf, gauge = iψ̄LDµγµψL + iψ̄RDµγµψR. (1.43)

1.2.5 Fermion Masses

We may now study the couplings of fermions to the Higgs doublets. Whereas previously with no

Higgs doublet, inserting a mass term breaks gauge invariance we may now couple to the Higgs

doublet which carries SU(2)L and U(1)Y . For a single generation of charged leptons, we may

write down a general coupling to the Higgs boson,

Le,Φ = −
(
y0
e L̄LΦe0

R + y0
e
∗
ē0
RΦ†LL

)
, (1.44)

where the second term is the hermitian conjugate of the first, L is the lepton doublet, Φ is the

Higgs doublet and ye is the complex Yukawa coupling. This may first be made real by a rotation

of the field. Writing y0
e as a real part with phase, y0

e = yee
iφye , and a field rotation e0

R → e−iφyeeR,

then

y0
ee

0
R = yee

iφyee0
R → yee

iφyee−iφyeeR = yeeR, (1.45)

=⇒ Le,Φ = −
(
yeL̄LΦeR + yeēRΦ†LL

)
. (1.46)

In unitary gauge and using Weyl notation, this finds

Le,Φ = −ye(v + h)√
2

(ēReL + ēLeR), (1.47)

which corresponds to an interaction term with the Higgs field, and a mass term for the charged

lepton,

me =
yev√

2
. (1.48)

We will now briefly consider the analogous scenario but with a single quark generation. Since the

charged lepton appears in the T 3 = −1/2 piece of the L doublet, it is clear to see how the mass
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is generated. For down quarks this is exactly analogous, but for up quarks there is a subtlety.

We are required to construct a doublet where the vev appears in the upper term. This can be

done in SU(2) as we may take the 2̄ representation, which transforms in the same was as the 2
4. Explicitly, we construct the object,

Φ̃ ≡ iσ2Φ∗ = i

(
0 −i
i 0

)(
φ0∗

−φ−

)
, (1.49)

Φ̃|Unitary =

(
(v + h)/

√
2

0

)
. (1.50)

We may then couple the up-type quarks (after rotating away the complex Yukawa phase), as

− Lu,Φ = yuūRΦ̃†QL + yuQ̄LΦ̃uR. (1.51)

In the SM, we have three generations of quarks, and so the Yukawa couplings become 3 × 3

complex matrices. For the quarks before any field rotations, in the flavour basis, in unitary

gauge,

− Lq,Φ =
v√
2

(
ū0 c̄0 t̄0

)
R
Y 0
u

u
0

c0

t0


L

+
v√
2

(
d̄0 s̄0 b̄0

)
R
Y 0
d

d
0

s0

b0


L

+ h.c.. (1.52)

We may diagonalise this Yukawa matrix by a “bi-unitary” transformation to guarantee real,

positive eigenvalues. Defining ψ̄0
u,R =

(
ū0 c̄0 t̄0

)
R

, and similarly for the RH, down-type, and

unconjugated fields, we make the field rotations

ψ0
u,R = Uu,R ψu,R, ψ0

u,L = Uu,L ψu,L, ψ0
d,R = Ud,R ψd,R, ψ0

d,L = Ud,L ψd,L, (1.53)

which are defined such that 5

U †u,RY
0
u Uu,L = Yu = diag(yu, yc, yt), U †d,RY

0
d Ud,L = Yd = diag(yd, ys, yb), (1.54)

4This is not the case in SU(3) (or SU(N ≥ 3)), where the 3 and 3̄ do not transform in the same way. If the
Higgs mechanism were based on triplet SU(3) interactions, with fermion triplets transforming, then one sector of
the fermions would remain massless, unlike the SU(2) case where both up and down type quarks gain mass. This
is because of the group theory result that in SU(2) we have 2× 2̄ = 2×2 = 3+1. Whereas in SU(3), 3×3 = 6+ 3̄
and 3 × 3̄ = 8 + 1. We require singlet pieces in the Lagrangian, so we could not perform the same trick with a
Higgs triplet of SU(3) as Higgs doublet in SU(2).

5We prove here that any complex, square matrix, Y , may be diagonalised to have real, positive eigenvalues
via bi-unitary matrices, U†R and UL here. Given the form D = U†RY UL, we construct two Hermitian matrices
HL = Y †Y , and HR = Y Y †. A Hermitian matrix may be diagonalised by a single unitary matrix, by U†LHLUL =
U†RHRUR = Hdiag = diag(|y1|2, |y2|2, |y3|2). Now D†D = Hdiag, so D = diag(y1, y2, y3). Note there are cases
where this procedure apparently fails, such as when D†D = 1, however in these cases the matrix D is already
diagonal up to permutations of the rows, which is allowed by the theory.
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where yi are positive, real entries. As with the charged lepton example, mf =
vyf√

2
. This rotation

into the mass basis causes flavour changing charged currents, through the W−boson, but no

Flavour Changing Neutral Currents (FCNCs). We write the gauge-quark interactions from eq.

1.43 in the flavour basis, and then mass basis,

Lq,(W,Z) = ψ̄0
u,L

g · 1√
2
W+
µ γ

µψ0
d,L + h.c.+

[
ψ̄0
u,L(gdZ · 1)Zµγ

µψ0
u,L + ψ̄0

d,L(guZ · 1)Zµγ
µψ0

d,L + (L↔ R)
]
,

(1.55)

= ψ̄u,L
U †u,L(g · 1)Ud,L√

2
W+
µ γ

µψd,L + h.c. (1.56)

+
[
ψ̄u,LU

†
u,L(gdZ · 1)Uu,LZµγ

µψu,L + ψ̄d,LU
†
d,L(guZ · 1)Ud,LZµγ

µψd,L + (L↔ R)
]
,

(1.57)

where gqZ parametrises the interaction strength between the up and down type quarks with the

Z, and we have written explicitly that the coupling multiplies a unit matrix. In the flavour basis

the couplings are diagonal, there are no mixed terms. For the Z interactions, the couplings are of

the form U †U = 1, and hence after rotating into the mass basis, these couplings are still flavour

conserving. This is referred to as the Glashow–Iliopoulos–Maiani (GIM) mechanism. For the W

interactions, the object

U †u,LUd,L ≡ UCKM, (1.58)

is non-diagonal and so there will be flavour changing interactions in W -quark interactions. These

are parametrised by the unitary 6 Cabibbo–Kobayashi–Maskawa (CKM) matrix. There is an

analogous mixing matrix in the lepton sector, derived in the same way as the CKM but with

no RH neutrinos, called the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. We change

notation slightly, that whilst charged fermions in the flavour basis are written with a superscript

zero, such as e0, µ0, τ0, and the mass basis without the superscript, e, µ, τ , we now write

neutrinos in flavour basis without the superscript zero, νe, νµ, ντ and in the mass basis with

numbered elements ν1, ν2, ν3. The reason for this inconsistency will become apparent later as

eases notation in other areas of neutrino physics. We now present the analogue to the CKM

matrix in the lepton sector, the PMNS 7 matrix, which rotates the neutrinos in the flavour basis

into the mass basis, νeνµ
ντ


L

= UPMNS

ν1

ν2

ν3


L

. (1.59)

Both the CKM and PMNS matrices may be described in terms of just four parameters, three

angles and a complex phase. This parameter counting may be determined in the following way. To

begin with there are 9 complex entries in the 3×3 matrix (18 real parameters). The matrices are

6(U†u,LUd,L)†(U†u,LUd,L) = 1.
7Also known as MNS, or MNSP.
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unitary, which sets 9 constraints from U †ijUjk = δik, which reduces the number of free parameters

to 9 (made up of 6 phases and 3 angles). 8

In addition, 5 further phases may be removed by phase rotations on the fermions. 9 This

leaves three angles, and one phase which causes CP violation for both the CKM and PMNS

matrices. The final matrix may be parametrised by c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s23e
iδ c12c23 − s12s13s23e

iδ c13s23

s12s23 − c12s13c23e
iδ −c12s23 − s12s13c23e

iδ c13c23

 , (1.60)

where δ ≡ δCP is the CP violating phase in each sector (quark and lepton) and s13 = sin θ13,

etc. with (very) different angles for quarks and leptons.

To conclude our discussion on the SM, the predictions of this theory have matched experi-

mental observations remarkably well, but there are still some unanswered questions. It is to these

that we devote the remainder of this thesis. We begin with introductions on some of the main

problems in BSM physics.

1.3 Neutrino Masses

In the SM, LH neutrinos are massless and have no RH partners. We observe, however, that

from neutrino oscillation experiments that they have small non-zero masses. The absolute scale

of these masses has not been directly measured, but is constrained by cosmological data to be

. O(1) eV. What is measured precisely by oscillation experiments is the squared mass differences

between the three neutrino mass species, in addition to the three mixing angles defined in Eq.

1.60 which parametrise the mixing between the flavour and mass basis. So far the Mass Ordering

(MO), of the three states has also not been measured, and results in two possibilities which are

discussed in figure 1.2. Further to the MO, the CP violating phase has not yet been directly

measured, but in both cases there are hints. The experimentally observed masses and mixing

angles are written later in this thesis, in table 5.6.

There are many possibilities for BSM theories which generate these observed masses. One

such interesting idea generates masses without needed to introduce any RH partners. This is

the “type-II see-saw mechanism”, which introduces a new SU(2)L triplet Higgs field. Here the

8Since we may write a unitary matrix in terms of a Hermitian matrix as U = eiH , and since a Hermitian matrix
has real diagonals, and complex upper triangle, one show there are N(N − 1)/2 angles and N(N + 1)/2 phases,
hence for a 3× 3 unitary matrix, of the 9 real parameters, there are 6 phases and 3 angles

9For example, we can write entries of the CKM in terms of a real part and phase, so what appears in the
Lagrangian are terms like (ūLe

iφudUuddL). We may then make rotations on the fermion fields to fix this. By
setting uL → e−iφuduL then the (1, 1) entry of the CKM is made real. Importantly, this phase in the up field
does not appear in any other terms in the Lagrangian, as the up quark appears in the combination ūLuL which
cancels this phase. We may similarly go through other elements, such as sL → ei(φus−φud) fixing Uus, taking care
to cancel the new uL phase. Similarly we may fix Uub with bL and Ucd with cL. Now Ucs and Ucb cannot be fixed,
but we may fix Utd with t. The remaining two terms Uts and Utb also cannot be fixed. We note that no further
piece could be helped by any rephasing on dL, and we removed 5 phases in total.
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Figure 1.2: (Figure taken from reference [6]). The probability that a particular neutrino mass
state νi with mass mi contains a particular charged lepton mass basis state (νe, νµ, ντ ) is repre-
sented by colours. The left and right panels of the figure are referred to as normal or inverted
mass squared ordering, respectively, referred to as NO or IO. The value of the lightest neutrino
mass is presently unknown.

SU(2) product of the two lepton doublets with a triplet is a singlet, and so we allow a mass term

of the form (schematically) mννLνL. This possibility precludes the assumption that there must

exist any RH partners to the LH neutrinos, and so we may not simply assert there must exist

such RH pieces, in addition to the SM, due to the presence of neutrino masses.

1.3.1 Type-I See-Saw

In this thesis, we consider the implications of introducing RH neutrinos, which offer perhaps

a simpler and more natural explanation of neutrino masses compared to other models. For

concreteness, we will add three generations 10 of RH neutrinos, which are singlets under the SM

gauge group. This will generate a usual Dirac mass term after SSB for the neutrinos,

LD = −ν̄Rmν
LRνL + h.c.. (1.61)

10Though, we note that models exist which may explain data with just two families, or more than three, but for
an embedding into SO(10) which we will discuss later, or for gauging U(1)B−L, one requires exactly three species
to match the number of LH generations.
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Whilst inserting fermion mass terms was forbidden by gauge invariance for fermions charged

under the SM gauge group, for the RH neutrinos there is no such prevention by symmetry, and

so one must also include, in this extension, an unprotected Majorana mass term,

LM = −1

2
ν̄RMRR(νR)c + h.c.. (1.62)

Where ψc, is the CP -conjugate of ψ. We note that this mass term MRR will break the global

B − L symmetry, since through a mass insertion we may change lepton number by two units.

Breaking a symmetry in this way, through the use of a mass term is referred to as “soft” symmetry

breaking, so-called since it appears as a mass term, rather than in an interaction which would

generate a “hard” scattering process. As this mass, MRR, is unprotected, it is typically set to

be very high scales (such as the GUT ∼ 1016 GeV or Planck ∼ 1019 GeV), if not fixed by a

dynamical scale such as in a gauged B−L model. We write down these two mass terms together,

as a mass matrix,

Lνm = LM + LD = −1

2
(ν̄Lν̄cR)

(
0 mT

LR

mLR MT
RR

)(
νcL
νR

)
+ h.c.. (1.63)

Noting we have used the relation ψ̄1
c
Mψc2 = ψ̄2M

Tψ1, which is true for any two fermions (and

also note this is a scalar quantity, rather than a matrix), and matrix M , providing [M,γµ] = 0,

which will be true if the indices on M are for neutrino flavour, rather than spinor based.

We wish to diagonalise11 this matrix as we are interested in the physical masses of our observed

neutrino states. We can do this by defining a new set of fields(
(νlight
L )c

νheavy
R

)
≡ U

(
νcL
νR

)
, (1.64)(

ν̄L
light (ν̄R

heavy)c
)

=
(
ν̄L ν̄cR

)
U †. (1.65)

Noting that the charge conjugation and “bar” operations only apply to the spinorial indices,

rather than the matrix indices we see here. (ie there is no such operation as Ū , nor U c). We

choose the unitary matrix to diagonalise our neutrino mass matrix,

U †

(
0 mT

LR

mLR MT
RR

)
U =

(
mLL 0

0 mRR

)
. (1.66)

So, we may rewrite our neutrino mass Lagrangian as

Lνm = −1

2

(
ν̄L

light (ν̄R
heavy)c

)(mLL 0

0 mRR

)(
(νlight
L )c

νheavy
R

)
+ h.c.. (1.67)

11Because this mass matrix is symmetric, it is diagonalisable under UTMsymU = Mdiag, on contrast to the
traditional U†MU = Mdiag, though this is not relevant for this derivation
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Where in the large MRR � mLR limit we find

mLL =
−mT

LRmLR

MT
RR

, (1.68)

mRR = MT
RR. (1.69)

If we take mLR ∼ 100GeV and MRR ∼ 1016GeV, then our physical, light neutrino mass state (ie

solar neutrinos) will have a mass like mLL ≡ mLRM
−1
RRmLR ∼ 10−3eV, which is very reasonable.

1.3.2 Inverse See-Saw

Another see-saw model, though less minimal is to add 3 SM singlet fermions, “S2” in addition

to the RH neutrinos. This is motivated, for example, by B − L models, as done in [7], where we

follow their notation (why we use S2 rather than S). The Lagrangian for neutrino masses in this

model appear like:

Lνm = ν̄LmDνR + ν̄cRMNS2 + h.c.. (1.70)

In the basis {νcL, νR, S2}, the 9× 9 neutrino mass matrix has the form

(
ν̄L ν̄cR S̄2

c
) 0 mD 0

mT
D 0 MN

0 MT
N µs


ν

c
L

νR

S2

 . (1.71)

Which diagonalises to 
−
√
M2
N +m2

D 0 0

0
mDµsm

T
D

MNMT
N

0

0 0
√
M2
N +m2

D

 . (1.72)

Thus one may have light neutrino masses O(eV) from the central term and O(TeV) scale heavy

masses as favoured by the B − L model, assuming values of mD ' 100 GeV, MN ' 1 TeV and

µs ' 1 KeV. The physical neutrino states are given in terms of νcL, νR, and S2 as follows:

νl = νcL + a1νR + a2S2, (1.73)

νH = a3ν
c
L + ανR − αS2, (1.74)

νH′ = ανR + αS2, (1.75)

where now νl refers to the light state and νH,H′ are the two degenerate heavy mass states. Given

the mass values above, one finds a1,2 ∼ mD/(MN

√
2 + 2mD/MN ) ∼ 0.05, a3 ∼ mD/MN ∼ 0.1

and α ∼ sinπ/4. The smallness of µ is natural in the t’Hooft sense, as the symmetry enhances

as µ→ 0, though there is no dynamical understanding of this smallness.
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1.3.3 Linear See-Saw

The linear see-saw is similar to the inverse see-saw case, but now with a small element in the

(1,3) component, rather than (3,3):  0 mD ε

mT
D 0 Mχ

εT MT
χ 0

 . (1.76)

Each element here corresponds to a 3 × 3 block. Solving this in block diagonal form, assuming

ε� md �Mχ, one finds
Mχ +m2

DM
−1
χ 0 0

0 −(Mχ +m2
DM

−1
χ ) 0

0 0 −εm
T
D

Mχ

 . (1.77)

So the light and heavy physical masses are

MνL = −εm
T
D

Mχ
+ h.c., (1.78)

MN1 ∼MN2 ∼Mχ +m2
DM

−1
χ + h.c.. (1.79)

Here we have the light neutrinos as observed in oscillation experiments and MN1,2 are the heavier

neutral fermions. The smallness of ε may allow for a low (TeV) scale Mχ, which is a fundamental

feature of all low-scale see-saw mechanisms. We see that Mνl is linear in mD, which is proportional

to the Yukawa couplings, hence the name “linear” see-saw.

1.4 Supersymmetry

SUSY is the unique space-time extension of the Poincaré group. This has interesting applications

to more formal physics, such as string theory, supergravity (SUGRA), meta-stability of the

vacuum, inflation and scattering amplitudes, but low-scale (ie near EW) supersymmetric theories

also have phenomenological applications. It has been one of the great interests of recent years

in HEP to find low scale evidence of this theory, but so far there are no hints. There are many

appealing features which address problems in the SM from low-scale SUSY, but perhaps none

more compelling than a solution to the “hierarchy problem”. So far we have only discussed the

SM with tree level physics, but a problem arises when we consider quantum corrections to the

Higgs boson mass parameter, µ. A full derivation is done in appendix A, but simply write the

result here. With a Lagrangian L ⊃ −λHf̄f , a self energy diagram with fermion loop yields a

correction

∆m2
H = −Nc

|λF |2
8π2

Λ2
UV + . . . , (1.80)
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and for a complex scalar S with mass mS with Lagrangian term −λS |H|2|S|2, there is the mass

correction,

∆m2
H =

λS
16π2

[
Λ2
UV − 2m2

S ln(ΛUV /mS) + . . .
]
, (1.81)

where Nc is the number of colours of a fermion, and ΛUV is an ultraviolet momentum cut-off

used to regulate the loop integral. This should be interpreted as an energy scale at which new

physics alters the high-energy behaviour of the theory. This is generally thought to be the GUT

scale at which point the gauge groups unify ∼ O(1016 GeV), or certainly at the Planck scale,

∼ O(1019 GeV), where quantum gravity effects should be considered. Further to the problems

associated with a ΛUV , even using dimensional regularization, the counter term to the Higgs mass

parameter µ has pieces proportional to m2
S . For any large mS content, such as appearing in GUTs,

or even for any heavy vector-like fermions F with masses mF not from a Higgs coupling (but

coupling to the Higgs at two-loop order, through gauge interactions), then the bare Higgs mass

will have to be extremely finely tuned such that these large counter-terms cancel. In the GUT

scenario, this leads to a Fine-Tuning (FT) of M2
GUT /M

2
EW ∼ 1 part in 1028. This large degree

of FT is known as the Hierarchy problem. This problem is fundamentally with the µ parameter

of the Higgs potential, and so extends not just to the mass of the physical scalar Higgs, but is

also intimately related to the vev, from v =

√
µ2

λ . Since λ . 1 for perturbativity, taking orders

of magnitude v ∼ µ. So, unrelated to the tuning due to high mass new content is the question of

why gravity is so much weaker than the other forces, i.e. why is v|246 GeV << MPl|1019 GeV?

There are numerous solutions to the Hierarchy problem, such as suggesting the observed 125

GeV state is not a fundamental scalar but composite, or that one should only consider effective

field theory approach and so the cut-off scale is much lower, or even that this amount of FT

is acceptable (the anthropic principle). The final approach we will discuss is to notice that the

scalar and fermion corrections to the Higgs mass come with opposite signs, due to Bose-Einstein

statistics. To cancel the contributions from each fermion, there exists a scalar partner. Likewise

to cancel any scalar contribution, there is a new fermionic partner. This involves the imposition

of a symmetry between fermions and bosons, called a supersymmetry.

We may introduce an operator Q and Q† that generate such transformations,

Q |Boson〉 = |Fermion〉 , Q |Fermion〉 = |Boson〉 . (1.82)

Further details of the algebra associated with these operators (SUSY algebra) will not be dis-

cussed here. With this new symmetry between fermions and bosons, the irreducible represen-

tations of the SUSY algebra are supermultiplets, which contain equal numbers of fermionic and

bosonic degrees of freedom, and combining a Weyl fermion and complex scalar field is a chiral

supermultiplet.

We will now discuss the MSSM. Chiral supermultiplets embed the SM fermions and their

scalar, spin-0 counterparts (prefixed with an ”s-” for scalar), the sfermions. The gauge fields of

the SM are placed in gauge (or vector) supermultiplets, with their spin 1/2 partners (suffixed
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with “-ino”), the gauginos. The Higgs is also placed in a chiral supermultiplet with its spin 1/2

superpartner the Higgsino. All SUSY partners must have the same quantum numbers as their

counterparts, and in the limit of unbroken SUSY, also the same masses. Since we do not observe

any partners at the same mass as the usual particle content, then SUSY must be broken in some

way. Since we are interested in solving the hierarchy problem, we expect the scale of this breaking

to happen at low energies. As with the global B − L softly broken with a mass term MRR, we

may break the SUSY by inserting “soft” mass terms for the sfermions, by hand 12.

Supersymmetric theories may be described in terms of their superpotential, W . The La-

grangian may be reconstructed from this in the following way. A SUSY model with several chiral

supermultiplets, ψi has a non-gauge, interacting Lagrangian given by

Lint = −1

2
W ijψiψj +W iFi + h.c., (1.83)

where the holomorphic 13 superpotential W derives the W i and W ij terms as

W i =
∂W

∂φi
, W ij =

∂2W

∂φi∂φj
. (1.84)

The auxiliary fields Fi and their conjugates are defined from

Fi = −W ∗i , F ∗i = −W i. (1.85)

The SUSY gauge interactions are made from

Da = −g(φ∗T aφ), (1.86)

where T a are the relevant generators of the gauge group. Finally, the scalar potential is recovered

from

V (φ, φ∗) = F ∗kFk +
1

2

∑
a

DaDa = W kW ∗k +
1

2

∑
a

g2
a(φ
∗T aφ)2. (1.87)

The superpotential for the MSSM is

WMSSM = ūyuQHu − d̄ydQHd − ēyeLHd + µHuHd, (1.88)

where the objects {Hu, Hd, Q, L, ū, d̄, ē} are the chiral superfields which correspond to the

chiral supermultiplets in table 1.2 and we have suppressed all gauge and family indices. The

left and RH pieces of the quarks and leptons are separate two component Weyl spinors which

transform differently under the SM gauge group. We use a tilde ( .̃ ) to denote superpartners

12We also note inserting soft masses is also works as an ‘effective theory’ for other forms of SUSY breaking, such
as spontaneous.

13The holomorphicity condition enforces that a complex function f(z) does not depending on the conjugate, z∗,
i.e. that ∂f

∂z∗ = 0. In this case we require W ij does not contain φ∗k for the Lagrangian to be invariant under SUSY
transformations, which we do not detail here.
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of the SM particles, and subscript to differentiate which Weyl fermion it is a partner of (the

sfermions are scalars and so have helicity 0). The necessity for two Higgs chiral supermultiplets

is twofold, firstly since the Higgsinos (the fermion superpartner to the Higgs boson) would produce

a chiral (gauge) anomaly, so one requires one chiral supermultiplet with Y = +1/2 and one with

Y = −1/2 to cancel this. Secondly related to the holomorphicity condition. A term like ūQHu

could not be replaced by ūQH∗d and likewise d̄QHd could not be replaced by d̄QH∗u. The µ

parameter sets the Higgsino masses, in addition to other observed SM masses, and requires a

value close (within an order of magnitude) to the EW scale. This is considered unnatural as this

dimensionful parameter could take any value; this is known as the µ problem, and less minimal

model, such as the Next-to Minimal Supersymmetric Standard Model (NMSSM) seek to address

this. The two Higgs doublet fields are part of the type-II 2 Higgs doublet Model (2HDM), and

so relate the two vevs by

v2
u + v2

d = v|174 GeV
2, (1.89)

tanβ =
vu
vd
. (1.90)

We will now briefly discuss some of the more phenomenological consequences of the MSSM.

Firstly, with the additional field content, there is unification of forces. The extra particle content

in loops modify the three beta functions so that unlike in the SM where the forces almost unify,

as can be seen in the upper figure of 1.3, in the MSSM the couplings meet exactly, implying

unification, as in the lower image of 1.3. In addition there are several DM candidates. By

assuming R-parity conservation, this prevents the Lightest SUSY Particle (LSP) from decaying,

and hence it is stable. In the MSSM the lightest neutralino (superpartner to the gauge and Higgs

fields) is a good candidate. When presented with all constraints from the LHC, in addition to

requiring the correct DM relic density, the parameter space for an MSSM DM candidate is vastly

reduced. Finally, the MSSM does not address the issues of neutrino masses, beyond allowing for

a SUSY embedding of a seesaw model. These two issues call for further, non-minimal extensions,

which we will address in great detail in chapters 2 and 3.

1.5 Grand Unified Theories

Unification of forces as been an overwhelmingly successful guiding principle in physics for cen-

turies. With Maxwell’s unification of electricity and magnetism into electromagnetism in 1865,

and years later with unification of EM and the weak force into the EW, the notion that nuanced

behaviour may be described in terms of laws with a great deal of symmetry has lead to great suc-

cess. There are several striking features of the SM which beg for a greater symmetry which will

unify for forces. Firstly, that the SM may be unified at all. The gauge group SU(3)×SU(2)×U(1)

is suggestively able to be embedded in larger gauge groups, where all fermions may be accounted

for in the representations and no further fermions arise which spoil anomaly cancellation. Given

a particular gauge group and fermionic content, it is not the case that such a theory is unifiable
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Figure 1.3: The upper panel shows the running couplings in the SM (at one loop) and the lower
panel shows the running couplings in the MSSM, given a a SUSY scale vSUSY = 105 GeV, and a
determined GUT scale of MGUT = 3.3× 1016 GeV.

whatsoever. In addition, the running of the SM gauge couplings appear to almost unify (i.e. meet

at the same coupling value). Adding in certain extra particle content, such as in the MSSM, will

lead to all three groups unifying.

There are numerous choices for the GUT gauge group, but we will focus on SU(5), the

Pati-Salam (PS) group SU(4)C × SU(2)L × SU(2)R, and SO(10).

1.5.1 SU(5)

The gauge group SU(5) is rank 4, with 52 − 1 = 24 gauge bosons which transform in the 24

adjoint representation. The fermions (more difficult to accommodate in a given QFT) nicely fit
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Names spin 0 spin 1/2 SU(3)C , SU(2)L, U(1)Y

squarks, quarks Q (ũL d̃L) (uL dL) ( 3, 2 , 1
6)

(×3 families) u ũ∗R u†R ( 3, 1, −2
3)

d d̃∗R d†R ( 3, 1, 1
3)

sleptons, leptons L (ν̃ ẽL) (ν eL) ( 1, 2 , −1
2)

(×3 families) e ẽ∗R e†R ( 1, 1, 1)

Higgs, Higgsinos Hu (H+
u H0

u) (H̃+
u H̃0

u) ( 1, 2 , +1
2)

Hd (H0
d H−d ) (H̃0

d H̃−d ) ( 1, 2 , −1
2)

Table 1.2: Chiral supermultiplets in the MSSM. The spin-0 fields are complex scalars, and the
spin-1/2 fields are LH two-component Weyl fermions.

into the F = 5 and T = 10, where (for one family)

F =



dcr

dcb

dcg

e−

−νe


L

, T =



0 ucg −ucb ur dr

. 0 ucr ub db

. . 0 ug dg

. . . 0 ec

. . . . 0


L

. (1.91)

The subscripts represent the three quark colours (r, g, b) and superscript c is represents the CP

conjugated fermions. These assignments in the F and T may be derived from the requirement of

both F and T being invariant under the SM gauge group (for example the sum of electric charges

in F and T are zero), this can be seen from

5 = dc(3,1, 1/3)⊕ L(1,2,−1/2), (1.92)

10 = uc(3,1,−2/3)⊕Q(3,2, 1/6)⊕ ec(1,1, 1). (1.93)

RH neutrinos may not be embedded here, and must be added separately as singlets of SU(5).

The breaking SU(5) → SU(3)C × SU(2)L × U(1)Y is done by the Higgs multiplets in the 24

representation developing a VEV. The usual EW doublets appear from the SU(5) multiplets H5

and H5, but this requires a colour triplet to remain heavy (as it is not observed by experiment).

This is known as the doublet-triplet splitting problem. The Yukawa couplings to these Higgses

take the form (for one family),

LSU(5), Yuk = yuH5iTjkTlmε
ijklm + yνH5iF

iνc + ydH
i
5
TijF

j , (1.94)
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where εijklm is the totally antisymmetric tensor with i, j, j, k, l = 1, . . . , 5. These generate the

Yukawa terms for the SM content,

LSU(5), Yuk, SM = yuHuQu
c + yνHuLν

c + yd(HdQd
c +Hde

cL). (1.95)

At the GUT scale the Yukawa couplings for d and e are equal (meaning an electron and down

quark share the same mass at high scale). Extending this argument to the other families finds

the relation

Yd = Y T
e . (1.96)

Which works well for the third generation (i.e. at GUT scale mτ = mb), however for the first two

generations this fails. Georgi and Jarlskog [8] proposed the (2, 2) entry of the Yukawa matrices

may be given by

LSU(5), Yuk, d22 = (Yd)22H45T2F2, (1.97)

where now the down type Higgs doublet Hd is a mixture of the EW doublets in H5 and H45. In

terms of SM fields, this term finds

LSU(5), Yuk, SM d22 = (Yd)22(HdQ2d
c
2 − 3Hde

c
2L2), (1.98)

where the factor −3 on the lepton piece is a Clebsch-Gordan (CG) coefficient. Placing a zero

element in the (1, 1) piece of the Yukawa matrix predicts the following relations between charged

lepton and down quark masses at GUT scale,

yb = yτ , ys =
yµ
3
, yd = 3ye, (1.99)

which previously worked as a successful model for observed quark masses. In recent times, with

new quark mass data from lattice QCD results, [9], alternative fermion mass ratios are preferred,

such as [10]
yτ
yb

= −3

2
,

yµ
ys

=
9

2
. (1.100)

1.5.2 Pati-Salam SU(4)C × SU(2)L × SU(2)R

Prior to the suggestion of SU(5) as the unifying group, Pati and Salam were the first to propose

a unification of the SM gauge group [11] based on the gauge group 14

GPS ≡ SU(4)C × SU(2)L × SU(2)R, (1.101)

14The SU(4)C group is also referred to in literature as SU(4)PS referring to Pati and Salam.
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where the leptons act as the fourth colour and the assignment is left-right symmetric. The LH

and RH fermions transform (respectively) under GPS as

ψi(4, 2, 1) =

 ur ub ug ν

dr db dg e−


i

, (1.102)

ψci (4̄, 1, 2̄) =

 ucr ucb ucg νc

dcr dcb dcg ec


i

, (1.103)

where again ψci are the CP conjugated RH fermions (so they become LH) and i = 1 . . . 3 is the

family index. Unlike in SU(5) the RH neutrinos are predicted as part of the gauge multiplets,

gaining masses via the seesaw mechanism as desired. The Higgs fields are contained in the

following representations,

h(1, 2̄, 2) =

 Hu
+ Hd

0

Hu
0 Hd

−

 , (1.104)

where the light Higgs doublets are again given by Hd and Hu. Unlike SU(5), there is no splitting

problem here, as the heavy Higgses are contained in different representations,

H(4, 1, 2) =

 uRH uBH uGH νH

dRH dBH dGH e−H

 , (1.105)

H̄(4̄, 1, 2̄) =

 d̄RH d̄BH d̄GH e+
H

ūRH ūBH ūGH ν̄H

 , (1.106)

and develop vevs at the GUT scale, 〈vH〉 ∼ 〈v̄H〉 ∼ MGUT , which breaks GPS to the SM gauge

group,

SU(4)C × SU(2)L × SU(2)R → SU(3)C × SU(2)L × U(1)Y . (1.107)

This may be done through intermediate breaking steps, where

SU(4)C → SU(3)C × U(1)B−L, (1.108)

SU(2)R → U(1)R, (1.109)

and then

U(1)R × U(1)B−L → U(1)Y , (1.110)

where B − L refers to baryon minus lepton number and R represents a charge given to RH

fermions (analogously to how SU(2)L is assigned for LH pieces). The hypercharge is then related

to the R and B − L quantum numbers through Y = T 3
R + B−L

2 , and hence electric charge
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from Q = T 3
L + T 3

R + B−L
2 . This is a remarkable formula, that the hypercharges of the SM

may be predicted in terms of two new quantum numbers, which were already accidental (global)

symmetries of the model. The breaking scale of this U(1)B−L will fix the scale of the RH neutrino

masses, MR ∼ vB−L. The Yukawa couplings for all fermions take the simple form

LPS, Yuk = yijhψiψ
c
j , (1.111)

which at low energies reproduces the couplings for the SM fields,

LPS, Yuk, SM = yij(HuQiu
c
j +HuLiν

c
j +HdQid

c
j +HdLie

c
j). (1.112)

which predicts the same Yukawa coupling for all SM fields at GUT scale,

Yd = Yu = Ye = Yν , (1.113)

which does not match the usual SUSY RGE Yukawas at GUT scale. These relations may be fixed

following similar procedures to the SU(5) case, by including CG coefficients through suitable

model building. The Majorana mass term for the RH neutrinos can be written in terms of

non-renormalisable operators,

LMR =
λij
Λ
H̄H̄ψciψ

c
j →

λij
Λ
〈ν̄H〉2νci νcj ≡M ij

R ν
c
i ν
c
j , (1.114)

where λ may be of the order of the Planck scale.

1.5.3 SO(10)

The final GUT group we will consider is SO(10), which may break to the SM via the PS group,

as well as SU(5). It is rank 5 (compared to rank 4 for SU(5)), and has 2
(

10
2

)2 − 10
2 = 45

gauge bosons which transform as the 45 adjoint representation. One complete family of SM

fermions fits nicely in a single 16 spinor representation, which includes the RH neutrinos. We

will briefly discuss some relevant group theory to motivate this (as the theory of SO(N) is not as

common as SU(N) to most phenomenologists). To begin, SO(3) is locally isomorphic to SU(2),

and has a 2 spinor representation which can be written as a single set of Pauli matrices with

eigenstates |±〉 ≡ |±1
2〉. We can write the 4 of SO(5) as the product of two Pauli matrices with

eigenstates |±±〉. Similarly to SO(3) ∼= SU(2), we see that SO(6) is isomorphic to SU(4), and

has two complex spinor representations where 4+4 may be written as the product of three Pauli

matrices with eigenstates |± ± ±〉, where the 4 corresponds to an odd number of |−〉 eigenstates,

and the 4 to the states with an even number of |−〉. SO(6) ∼= SU(4) has an SU(3) subgroup

where the 4 decomposes to a 1+3 where the singlet is identified as |− − −〉 and the triplet as the

remaining |+ +−〉 , |+−+〉 , |−+ +〉, which are all permutations of requiring an odd number

of |−〉 states. The 4 state is similarly identified by exchanging (− ↔ +). The GUT group SO(10)

has subgroup SO(6)×SO(4), where we identify the SO(6) with the PS group, SO(6) ∼= SU(4)C ,
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and then SO(4) with the Left-Right symmetric group, SO(4) ∼= SU(2)L×SU(2)R. In figure 1.4,

taken from [12], we show the components of the 16 spinor for each quark, where the first three

components correspond to the PS colour group (i.e. the first three |− − −, . . .〉 is a colour singlet)

and the last two dictate (schematically) whether the particle resides in an SU(2)L or SU(2)R

doublet,

SU(2)L : 2 ∼

|−+〉

|+−〉

 , SU(2)R : 2 ∼

|−−〉
|++〉

 . (1.115)

So one possible breaking direction is

SO(10)→ SU(4)C × SU(2)L × SU(2)R, (1.116)

with

16→ (4,2,1)⊕ (4,1,2). (1.117)

One is not forced to go through PS though. By changing the vevs of Higgses, another possible

symmetry breaking direction is,

SO(10)→ SU(5)× U(1)X , (1.118)

with

16→ 5−3 ⊕ 101 ⊕ 15, (1.119)

10→ 5−2 ⊕ 52. (1.120)

In terms of Yukawa couplings, to decide which representation the Higgs should reside in, we will

take the Kronecker product of two fermion spinors, and find representations which multiply with

this product to make a singlet. Since

16⊗ 16 = 10⊕ 126⊕ 120. (1.121)

Then the Higgs can reside in the 10, 126, 120 representations, since all of 10 × 10, 126 ×
126, 120 × 120 will produce a singlet. It is preferred to place the Higgses in a 10 as it is the

smallest representation (to reduce doublet, N-plet splitting), and the 126 is preferred for neutrino

masses as it is symmetric. The singlet term will look like

LSO(10), Yuk = yijhψiψj , (1.122)

where i, j = 1, . . . , 3 are family indices. For the SM fields at low energy, this finds

LSO(10), Yuk, SM = yij(HuQiu
c
j +HuLiν

c
j +HdQid

c
j +HdLie

c
j), (1.123)
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Figure 1.4: (Taken from [12]). A complete family of LH quarks and leptons (where RH fermions
are CP conjugated) forms a single 16 spinor representation of SO(10), including the RHN (CP
conjugated as νc). The notation | ± ± ±±±〉 labels the components of the spinor, in terms of a
direct product of five Pauli matrices with eigenstates |±〉, respectively, with the constraint that
there must be an even number of |−〉 eigenstates. The embedding of the SM gauge group is
such that the first three components of | ± ± ± ±±〉 is associated SU(3)C , while the last two
components are associated with the SU(2)L × U(1)Y gauge group.

where yij is a symmetric matrix. As with the PS model, the initial prediction is that the Yukawa

couplings for all fermions are equal, at the GUT scale,

Yd = Yu = Ye = Yν , (1.124)

which may be fixed using CG relations as done in [13]. Again, the RH Majorana masses MR may

be generated from the non-renormalisable operators,

λij
Λ
H̄H̄ψiψj →

λij
Λ
〈ν̄H〉2νci νcj ≡M ij

R ν
c
i ν
c
j , (1.125)

where Λ may be of order the Planck scale, and H̄ are Higgs in the 16 representation, and their

RH component may gain a vev, breaking SO(10) to SU(5) at the GUT scale.
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Chapter 2

Supersymmetric Extension of the

U(1)B−L Model: Naturalness

2.1 Non-SUSY B − L

Before discussing the SUSY version of the B − L model, we will briefly discuss the non-SUSY

version [14, 15]. In the SM, at Lagrangian level, there is an accidental baryon, B, and lepton,

L symmetry. Since there are three quarks in a baryon, we assign up and down type quarks a

baryon number B(q) = 1/3, and assign leptons a lepton number L(l) = L(ν) = 1, else they are

zero, B(l) = B(ν) = L(q) = 0. Writing down all allowed Lagrangian terms in the SM, one finds

that every term conserve these two quantities. When considering non-perturbative effects (such

as sphaleron processes, which we will not discuss), it is the difference between baryon and lepton

number, which is conserved as a global symmetry, U(1)global
B−L . There has been a great deal of

success in the SM being guided by the principle of gauge symmetries, so it is worth considering

the implications if this global symmetry were promoted to a gauge form, U(1)B−L (where in our

notation, the absence of a superscript “global” implies it is a gauge symmetry).

The U(1)B−L gauge group appears in several GUT extensions as mentioned in the introduc-

tion, such as SU(3)C×SU(2)L×U(1)R×U(1)B−L from SO(10), but can be viewed as a different

model in its own right. One may begin with the SM gauge group, and then promote B − L to a

gauge symmetry,

GB−L = SU(3)C × SU(2)L × U(1)Y × U(1)B−L. (2.1)

This has several consequences. Firstly, to cancel chiral anomalies, one must introduce three SM

singlet fermions, with U(1)B−L charge +1. These fermions have the same behaviour as, and

thus we identify them to be, the three RH neutrinos. An unbroken gauge symmetry will have

massless gauge bosons which mediate the force, such as the gluons in the strong force. Since

we do not observe such mediators of B − L in nature, then the group must be broken at some

scale. To break the B−L symmetry, one may introduce an extra complex scalar, a B−L Higgs,

which we denote with η, and proceed with spontaneous symmetry breaking, analogously to how
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SU(2)L × U(1)Y is broken in the SM. This will also generate a massive gauge boson, a Z ′ and

finally the RH neutrinos will gain a Majorana mass term through a coupling with η. All three

mass scales: {mη, mZ′ , MR}, are dependent on the dimensionful vev (breaking scale) vBL of

the U(1)B−L. In addition, the scalar mass is also dependent on the potential term λBL, the Z ′

boson on the gauge coupling gBL and the RH neutrino mass on the Yukawa coupling yN . For

a “natural” theory, we expect that these three parameters are order unity λ ∼ gBL ∼ yN ∼ 1,

and so (at least to a good approximation) one expects the three new mass scales of the theory

to be near the breaking scale. As with the SM, on a theoretical level this breaking scale can

be anywhere up to the Planck scale, and is only guided by experimental observation. From the

measurement of . O(0.1) eV neutrino masses 1, then one may determine this breaking scale from

requiring a natural Dirac coupling yD ∼ 1 using the type-I seesaw, vBL ∼ 1016 GeV, but taking

the Dirac coupling to be more similar to that of the electron, ye = 10−6 would find vBL ∼ 1

TeV. This model has many interesting features and has been well studied, but we will devote the

remainder of the next two chapters to the supersymmetric version of this theory. In this brief

discussion we have neglected many features, including Gauge-Kinetic Mixing (GKM), for which

a full description may be found in appendix C.3.

2.2 Introduction

Low scale SUSY is motivated by solving two major flaws of the SM: the gauge hierarchy and DM

problems.

In the SM, the hierarchy problem stems from the fact that a very unnatural FT is required to

keep the Higgs mass at an acceptable value for current data. SUSY provides an elegant solution

to this. However, SUSY must be broken at a high scale, hence some FT is reintroduced at some

level. In the MSSM, with universal soft SUSY breaking terms, a heavy spectrum is required to

give large radiative corrections to the SM-like Higgs mass and account for the recently measured

value of 125 GeV at the LHC. Thus naturalness becomes seriously challenged in the MSSM by

well established experimental conditions.

Furthermore, the alluring hints of DM existence are serious indications for new BSM physics.

Due to R-parity conservation, the LSP in the MSSM, the lightest neutralino, is stable and thus

is a good candidate for DM. However, in the constrained MSSM (CMSSM) framework, in which

universal boundary conditions are imposed at the GUT scale, the extra Higgs bosons of the

MSSM are beyond the reach of the LHC experiments, while the lightest CP-even Higgs boson

is reserved as the SM-like one. Such heavy Higgs bosons result in large FT at the EW scale.

In addition, the strict bound on the gluino mass (mg̃ ≤ 1.9 TeV [16]) causes heavy EW –inos

(bino and wino) at low scale, since the gaugino masses are also set universal at the GUT scale.

Besides, the null results from direct searches for SUSY particles lead to a heavy mass spectrum.

The ensuing EW sector, in particular, severely raises the required FT leading to the correct scale

1This is an oversimplification of the current bound on the sum of neutrino masses.
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for EW Symmetry Breaking (EWSB). Even though it is not possible to exclude the CMSSM

completely, such a heavy spectrum brings poor agreement with various precision observables

[17]. Detailed discussions of the FT issue in the CMSSM framework can be found in [18].

Besides the LHC ones, the latest measurements for DM also provide strict constraints for

the MSSM regardless of imposing universal boundary conditions at the GUT scale or otherwise.

The latest results from, e.g., the LUX collaboration [19] have a strong impact especially for light

DM candidates. A low FT condition requires the higgsino-like LSP neutralino to have a large

cross-section with nuclei, since the relevant scattering processes happen through the Yukawa

interactions, so that LUX results exclude such solutions. Indeed, only a bino-like LSP neutralino

can more or less survive, since its corresponding scattering cross-section is instead low [20].

However, the relic abundance of the bino is usually much larger than the ranges allowed by the

current Wilkinson Microwave Anisotropy Probe (WMAP) and Planck results [21, 22].

Quite apart from the aforementioned two problems of the SM, it should be recalled that non-

vanishing neutrino masses are presently some of the most important evidence for BSM physics.

Massive neutrinos are not present in the SM. However, a simple extension of it, based on the

gauge group SU(3)C×SU(2)L×U(1)Y ×U(1)B−L, can account for current experimental results of

light neutrino masses and their large mixing [23–33]. Within the B−L Supersymmetric Standard

Model (BLSSM), the SUSY version of such a scenario, which inherits the same beneficial features

of the MSSM in connection with SUSY dynamics, it has been emphasised that the scale of B−L
symmetry breaking is related to the SUSY breaking one and both occur in the TeV region [34–

39]. Therefore, several testable signals of the BLSSM are predicted for the current experiments

at the LHC [40–51].

In addition, the BLSSM provides new candidates for DM different from those of the MSSM.

In particular, there are two kinds of neutralinos, corresponding to the gaugino of U(1)B−L and

the B − L Higgsinos. Also a RH sneutrino, in a particular region of parameter space, may be a

plausible candidate for DM. We also consider the scenario where the extra B−L neutralinos can

be cold DM states. We then examine the thermal relic abundance of these particles and discuss

the constraints imposed on the BLSSM parameter space from the negative results of their direct

detection. We argue that, unlike the MSSM, the BLSSM offers one with significant parameter

space satisfying all available experimental constraints. This may be at the expense of high FT,

if Z ′ is quite heavy and soft SUSY breaking terms are universal. Nevertheless, for what we will

eventually verify to be a small increase in FT with respect to the MSSM, we will gain in the

BLSSM a more varied DM sector and much better compliance with relic and (in)direct detection

data.

In the build-up to this DM phenomenology, we analyse the naturalness problem in the BLSSM

and compare its performance in this respect against that of the MSSM. In the latter, the weak

scale (MZ) depends on the soft SUSY breaking terms through the Renormalisation Group Equa-
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tions (RGEs) and the EW minimisation conditions, which can be expressed as

1

2
M2
Z =

m2
Hd
−m2

Hu
tan2 β

tan2 β − 1
− µ2. (2.2)

Therefore, a possible measure of FT is defined as [52]

∆(M2
Z , a) =

∣∣∣∣ aM2
Z

∂M2
Z

∂a

∣∣∣∣ , (2.3)

where a stands for the GUT scale parameters (e.g., m0,m1/2, A0, etc.) or low scale param-

eters (e.g., M1,M2,M3,mq̃,m˜̀, etc.). In order for SUSY to stabilise the weak scale, ∆ ≡
Max

(
∆(M2

Z , a)
)

should be less than O(100). However, as the scale of SUSY breaking is in-

creased, the EW one becomes highly fine-tuned. As intimated, in the BLSSM, both the weak

and B −L scales are related to soft SUSY breaking terms and, in addition to Eq. (2.2), which is

slightly modified by the presence of the gauge mixing g̃, we also have, in the same limit g̃ ' 0,

1

2
M2
Z′ =

m2
η1

tan2 β′ −m2
η2

1− tan2 β′
− µ′ 2, (2.4)

where η1,2 are scalar bosons, with 〈η1,2〉 = v′1,2 that break the B − L symmetry spontaneously,

and tanβ′ = v′1/v
′
2. The bound on MZ′ , due to negative searches at the Large Electron-Positron

Collider (LEP), is given by MZ′/gBL > 6 TeV [53]. As we will see in section 2.5, we fix the value

of MZ′ = 4 TeV, which satisfies all constraints from the LHC and LEP2. Furthermore, LHC

constraints from the Drell-Yan (DY) process also exist, which force the B − L Z ′ mass to be in

the few TeV region. This indicates that mη1,2 and µ′ are of order TeV. Therefore, in the scenario

of universal soft SUSY breaking terms of the BLSSM, a heavy MZ′ implies higher soft terms,

hence the estimation of the FT is expected to be worse than in the MSSM. At this point, it is

worth mentioning that the Z ′ gauge boson in the BLSSM can have a large decay width, thus

potentially evading LEP and LHC constraints, which are based on the assumption of a narrow

decay width, hence on Z ′ decays into SM particles and additional neutrinos only. While this has

been proven to be possible in a non-unified version of the BLSSM, wherein the aforementioned

limits can be relaxed and MZ′ can be of order one TeV [48, 49], it remains to be seen whether

a similar phenomenology can occur in the unified version of it which we are going to deal with

here.

2.3 The B − L Supersymmetric Standard Model

In this section, we briefly review the BLSSM with an emphasis on its salient features with respect

to the MSSM. Even though its gauge group seems like a simple extension of the MSSM gauge

group with a gauged U(1)B−L (hereafter, B −L symmetry), it significantly enriches the particle

content, which drastically changes the low scale phenomena. First of all, the anomaly cancellation
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in the BLSSM requires three singlet fields; the most natural candidates in the BLSSM framework

are the three RH neutrino fields. We may implement the SUSY seesaw mechanisms, where

non-zero neutrino masses and mixings consistent with experimental data [54] are achieved. In

addition, R−parity, which is assumed in the MSSM to avoid fast proton decay, can be linked to

the U(1)B−L gauge group and it can be preserved if the B−L symmetry is broken spontaneously

[55], as is the case in the BLSSM studied here.

Spontaneous breaking of the B − L symmetry can be realised in a similar way to the Higgs

mechanism. That is, one can introduce two scalar fields, denoted as η1,2. These fields should

carry non-zero B−L charges to break the B−L symmetry and they are preferably singlets under

the MSSM gauge group so as not to spoil EWSB. Thus, the Superpotential in the BLSSM can

be written as

W = µHuHd + Y ij
u QiHuu

c
j + Y ij

d QiHdd
c
j + Y ij

e LiHde
c
j

+ Y ij
ν LiHuN

c
i + Y ij

N N
c
iN

c
j η1 + µ′η1η2, (2.5)

where the first line represents the MSSM Superpotential using the standard notation for (s)particles

while the second line includes the terms associated with the RH neutrinos, N c
i s, plus the singlet

Higgs fields η1 and η2. The B−L symmetry requires η1 and η2 to carry −2 and +2 charges under

B − L transformations, respectively. The presence of the N c
i terms makes it possible to have

Yukawa interaction terms for the neutrinos, denoted by Yν . Finally, µ′ stands for the bilinear

mixing term between the singlet Higgs fields.

In addition to the RH neutrinos and the singlet Higgs fields, the BLSSM also introduces a

gauge field (B′) and its gaugino (B̃′) associated with the gauged B − L symmetry, so that the

appropriate Soft SUSY-Breaking (SSB) Lagrangian can be written as

−LBLSSM
SSB = −LMSSM

SSB +m2
Ñc |Ñ c|2 +m2

η1
|η1|2 +m2

η2
|η2|2 +AνL̃HuÑ

c +AN Ñ
cÑ cη1

+
1

2
MB′B̃

′B̃′ +MBB′B̃B̃
′ +B(µ′η1η2 + h.c.). (2.6)

Note that, in contrast to its non-SUSY version, the BLSSM does not allow mixing between the

doublet and singlet Higgs fields through the Superpotential and SSB Lagrangian. Therefore, the

scalar potential for these can be written separately and their mass matrices can be diagonalised

independently. The scalar potential for the singlet Higgs fields can be derived as

V (η1, η2) = µ′21 |η1|2 + µ′22 |η2|2 − µ′3(η1η2 + h.c.) +
1

2
g2
BL(|η1|2 − |η2|2)2 (2.7)

and the minimisation of this potential yields Eq. (2.4). Despite the non-mixing Superpoten-

tial and SSB Lagrangian, one can implement mixing between the two abelian gauge fields via

−χBB−L
µν BY,µν , where Ba

µν is the field strength tensor of a U(1) gauge field, with a = (Y, B−L),

the hypercharge and B − L charge, respectively. The gauge kinetic mixing can be rotated away
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from the kinetic Lagrangian and the covariant derivative takes a non-canonical form [42]

Dµ = ∂µ + . . . .+ (g̃ Y + g′ (B − L))B′µ, (2.8)

where g̃ describes the kinetic mixing in place of χ. Even though g̃ is set to zero at the GUT

scale, it can be generated at the low scale through the RGEs [56]. In this basis, one finds

M2
Z '

1

4
(g2

1 + g2
2)v2, M2

Z′ ' g2
BLv

′2 +
1

4
g̃2v2, (2.9)

where v =
√
v2
u + v2

d ' 246 GeV and v′ =
√
v′21 + v′22 with the Vacuum Expectation Values

(VEVs) of the Higgs fields given by 〈ReH0
u,d〉 = vu,d/

√
2 and 〈Re η1,2〉 = v′1,2/

√
2. It is worth

mentioning that the mixing angle between Z and Z ′ is given by

tan 2θ′ ' 2g̃
√
g2

1 + g2
2

g̃2 + 16(v
′

v )2g2
BL − g2

2 − g2
1

. (2.10)

The minimisation conditions of the BLSSM scalar potential at tree-level lead to the following

relations [42]:

v′1

(
m2
η1

+ |µ′|2 +
1

4
g̃gBL(v2

d − v2
u) +

1

2
g2
BL(v′21 − v′22 )

)
− v′2Bµ′ = 0, (2.11)

v′2

(
m2
η2

+ |µ′|2 +
1

4
g̃gBL(v2

u − v2
d) +

1

2
g2
BL(v′22 − v′21 )

)
− v′1Bµ′ = 0. (2.12)

From these equations, one can determine |µ′|2 and Bµ′ in terms of other soft SUSY breaking

terms. (Note that, with g̃ = 0, the expression of |µ′|2 takes the form of Eq. (2.4).) Breaking the

EW and B−L symmetries naturally shapes a Type-I seesaw mechanism for the six neutrino states

of the model. The effective lepton flavour violating scale is dynamically generated and identified

with the B − L one. The resulting 6 × 6 mass matrix will include these two different breaking

scales in two separated 3×3 blocks. The singlet Higgsino VEVs are responsible for the Majorana

block in the subspace of RH neutrinos whereas EWSB determines the left-right neutrino mixing

of a Dirac type. Hierarchies between the two scales, with the Majorana scale much larger than

the Dirac one, is the origin of the Type-I seesaw mechanism. As a consequence of the additional

neutral states B̃′, η̃1 and η̃2, the corresponding neutralino mass matrix is extended to a 7× 7 one

given by

M7(B̃, W̃ 3, H̃0
1 , H̃

0
2 , B̃

′, η̃1, η̃2) ≡

 M4 O

OT M3

 , (2.13)

where M4 is the MSSM-type neutralino mass matrix and M3 is the additional 3× 3 neutralino
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mass matrix, which is given by

M3 =


MB′ −gBLv′1 gBLv

′
2

−gBLv′1 0 −µ′

gBLv
′
2 −µ′ 0

 . (2.14)

In addition, the off-diagonal matrix O is given by

O =



MBB′ 0 0

0 0 0

−1
2 g̃vd 0 0

1
2 g̃vu 0 0


. (2.15)

(Note that the off-diagonal matrix elements vanish identically if g̃ = 0 and MBB′ = 0). One can

then diagonalise the real matrix M7 with a symmetric mixing matrix V such that

VM7V
T = diag(mχ̃0

k
), k = 1, . . . , 7. (2.16)

In these conditions, the LSP has the following decomposition

χ̃0
1 = V11B̃ + V12W̃

3 + V13H̃
0
d + V14H̃

0
u + V15B̃

′ + V16η̃1 + V17η̃2. (2.17)

If the LSP is then considered as a candidate for DM, each species in the above equation, if

dominant, leads to its own phenomenology that can possibly be distinguished in direct detection

experiments. For example, to achieve the correct relic density of Bino-like DM is challenging,

since its abundance is usually so high over the fundamental parameter space that one needs

to identify several annihilation and/or coannihilation channels to reduce its density down to the

WMAP [21] or Planck [22] measurements. Since this DM state interacts through the hypercharge,

its scattering with nuclei has a very low cross section. Conversely, the largest cross section in DM

scattering can be obtained when DM is Higgsino-like, since it interacts with the quarks through

the Yukawa interactions. Since the BLSSM sector offers significant interference in the neutralino

sector, this may also drastically change the DM kinematics. In contrast to a Bino, the B̃′−ino

interacts more strongly depending on the B −L gauge coupling. Despite the severe mass bound

on the Z ′, there is no specific bound on mB̃′ , so that it can be even as low as 100 GeV [57]. In

this context, one can expect the LSP neutralino to be mostly formed by B̃′ and its cross section

in its scattering with nuclei can be very large, in contrast to the Bino case. In addition to B̃′,

the LSP neutralino can be formed by the singlet Higgsinos (also dubbed Bileptinos due to their

L = ±2 lepton charge). In this case, it is challenging for their abundance to be compatible with

the experimental results. The reduction through the coannihilation channels involving SUSY
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particles arises from the gauge kinetic mixing, which is restricted to be moderate. If its mass is

nearly degenerate with that of the B̃′ state, they can significantly coannihilate. Also, a singlet

Higgsino yields low cross section in DM scattering experiments. Besides the neutralinos, one can

also consider the sneutrino as a DM candidate, when it is the LSP. In this case, the extended

sector of the BLSSM involves twelve states coming from the Superpartners of the left- and the RH

neutrinos. In a Charge and Parity (CP)-conserving framework the states entering the sneutrino

mixing matrix can be expressed by separating their scalar and pseudo-scalar components

ν̃i =
σLi + iφLi√

2
, Ñi =

σRi + iφRi√
2

. (2.18)

The breaking of B − L generates an effective mass term through Y ij
N N

c
iN

c
j η1 causing a mass

splitting between the CP-even and CP-odd sector. Therefore, in terms of Eq. (2.18), the corre-

sponding 12× 12 mass matrix is reduced to two different 6× 6 blocks

M2σ(σL, σR) ≡

 M2σ
LL M2σ

LR

M2σ
LR

T M2σ
RR

 , M2φ(φL, φR) ≡

 M2φ
LL M2φ

LR

M2φ
LR

T M2φ
RR

 . (2.19)

Such differences between CP-even and CP-odd sectors do not involve the left components with

Mσ
LL and Mφ

LL described by the common form M2
LL

M2
LL

i,j ≡ δi,j

8

((
g2

1 + g2
2 + g̃ (gBL + g̃)

)
δH + (gBL + g̃) δη

)
+

1

2
v2
u

(
Y T
ν Yν

)i,j
+m2

l
i,j ,

(2.20)

where we have introduced δη = v′21 − v′22 and δH = v2
d− v2

u . For the submatricesM2σ
RR andM2φ

RR

we have instead

M2
RR

i,j ≡ −δ
i,j

8
gBL (g̃δH + 2gBLδη) +

1

2
v2
u

(
YνY

T
ν

)i,j
+m2

Ñ
i,j + 2 v′21

(
Y 2
N

)i,j
∓
√

2
(
v′2 µ

′Y i,j
N − v′1A

i,j
N

)
(2.21)

while the left-right sneutrino mixing is ruled by the matrices

M2
LR

i,j ≡ 1

2

(
−
√

2 vdµY
i,j
ν + vu

√
2Ai,jν ± 2vu v

′
1 (YNYν)i,j

)
, (2.22)

with upper(lower) signs corresponding to CP-even(odd) cases. The parameter Yν and the corre-

sponding trilinear term Aν determine the mixing between the left and right components. In our

setup, Yν is negligible and can safely be set to zero already at the GUT scale, as it is the case also

for the boundary condition of Aν . The resulting 12 × 12 sneutrino mass matrix is consequently

unable to mix the RH and RH components as the CP-even and CP-odd parts of a sneutrino state

will be completely determined by assigning its CP value and the chirality of its Supersymmetric
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partner.

2.4 Renormalisation Group Equations

The presence of an extra Abelian gauge group introduces a distinctive feature, the gauge kinetic

mixing, through a renormalisable and gauge invariant operator χBµνB′µν of the two Abelian field

strengths. Moreover, off-diagonal soft breaking terms for the Abelian gaugino masses are also

allowed. This effect is completely novel with respect to the MSSM or other Supersymmetric

models in which only a single U(1) factor is considered. If the two Abelian gauge factors emerge

from the breaking of a simple gauge group, the kinetic mixing is absent at that scale. For this

reason, arguing that the BLSSM could be embedded into a wider GUT scenario (the matter

content of the BLSSM, which includes three generations of RH neutrinos, nicely fits into the

16-D spinorial representation of SO(10)), we require the vanishing of the kinetic mixing at the

GUT scale. As we stated above, we nevertheless end up with a non-zero kinetic mixing at low

scales affecting the Z ′ interactions as well as the Higgs and the neutralino sectors [42].

Instead of working with a non-canonical kinetic Lagrangian in which the kinetic mixing χ

appears, it is more practical to introduce a non-diagonal gauge covariant derivative with a diag-

onal kinetic Lagrangian. The two approaches are related by a gauge field redefinition and are

completely equivalent. In this basis the covariant derivative of the Abelian fields takes the form

Dµ = ∂µ− iQTGAµ, where Q is the vector of the Abelian charges, A is the vector of the Abelian

gauge fields and G is the Abelian gauge coupling matrix with non-zero off-diagonal elements.

The matrix G can be recast into a triangular form with an orthogonal transformation G→ GOT

[58]. With this parametrisation, the three independent parameters of G are explicitly manifest

and correspond to the Abelian couplings, g1, gBL and g̃, describing, respectively, the hypercharge

interactions, the extra B−L ones and the gauge kinetic mixing. Differently from the MSSM case,

the Abelian gaugino mass term is replaced by a symmetric matrix with a non-zero mixed mass

term MBB′ between the B and B′ gauginos. Coherently with our high energy unified embedding,

we choose MBB′ = 0 at the GUT scale. Notice that the Abelian gaugino mass matrix M is

affected by the same rotation O and in the basis in which G is triangular and M transforms

through M → OMOT .

We have performed an RGE study of the BLSSM assuming gauge coupling unification and

minimal Super-Gravity (mSUGRA) boundary conditions at the GUT scale. This scenario consid-

erably constrains the parameter space connecting different sectors which are usually independent

in non-unified scenarios. In particular, the two main scales describing BSM physics, the scale of

SUSY and B−L breaking, are linked by the RGEs. In a non-SUSY model, the B−L symmetry

breaking scale is arbitrary and can be placed anywhere between TeV and GUT energies. How-

ever, within a SUSY scenario, the radiative symmetry breaking approach can also be applied to

B − L symmetry breaking. This mechanism was studied for the first time in [35]. As discussed

in detail herein, radiative B − L symmetry breaking requires mη1 6= mη2 at the low scale. This

requirement relates then the B − L symmetry breaking scale to the SUSY one, since mη1,2 are
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Figure 2.1: Gaugino masses at the SUSY scale as a function of the GUT m1/2 mass. Here, both
gauge coupling and soft mass unification have been assumed.

SSB masses for the relevant Higgs fields denoted by ηi.

The two-loop RGEs have been computed with SARAH [59] and fed into SPheno [60] which

has been used for the spectrum computation and for the numerical analysis of the model. Here we

show the one-loop β functions of the gauge couplings highlighting the appearance of the kinetic

mixing contributions

β(1)
g1

=
33

5
g3

1,

β(1)
gBL

=
3

5
gBL

(
15g2

BL + 4
√

10gBL g̃ + 11g̃2
)
,

β
(1)
g̃ =

3

5
g̃
(

15g2
BL + 4

√
10gBL g̃ + 11g̃2

)
+

12
√

10

5
g2

1gBL,

β(1)
g2

= g3
2,

β(1)
g3

= −3g3
3, (2.23)

where we have adopted the GUT normalisations
√

3/5 and
√

3/2, respectively, for the U(1)Y

and U(1)B−L gauge groups. At one-loop level the expressions of the β functions of g1, g2 and

g3 are the same as those of the MSSM with differences appearing at two-loop order only. Notice

that the term responsible for the reintroduction of a non-vanishing mixing coupling g̃ along the

RGE running, even if absent at some given scale, is the last term in β
(1)
g̃ . We recall again that the

kinetic mixing is a peculiar feature of Abelian extensions of the SM and their Supersymmetric

versions, admissible only between two or more U(1) gauge groups.

Assuming gauge coupling unification at the GUT scale, the RGE analysis provides the results

g̃ ' −0.144 and gBL ' 0.55 with MGUT ' 1016 GeV, which are controlled by the leading one-

loop β functions given in Eq. (2.23). The spread of points around these central values, less than

1% for gBL and 5% for g̃, is only due to higher-order corrections, namely two-loop running and

threshold corrections.
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The running of the gaugino masses is directly linked to that of the gauge couplings. In the

Abelian sector and at one-loop, the Abelian gaugino mass matrix M evolves with

βM = MGTQ2G+GTQ2GM = MG−1βG +G−1βGM, (2.24)

where Q =
∑

pQpQ
T
p , with Qp the vector of the Abelian charges of the p particle. Exploiting

the structure of the β functions of the gaugino masses, a simple relation is obtained, Mi/m1/2 =

g2
i /g

2
GUT, for non-Abelian masses at one-loop order. In the Abelian sector, due to the presence

of the mixing, the previous equation is replaced by a matrix relation. Indeed, from the product

GM−1GT , which remains constant along the RGE evolution, one finds the Abelian gaugino mass

matrix M/m1/2 = GTG/g2
GUT. We show in Fig. 2.1 the dependence of the gaugino masses as a

function of the GUT gaugino mass m1/2. The hierarchy is obviously controlled by the size of the

gauge couplings at low scale.

The gaugino masses M1,M
′
1 and M̃ are obtained from MB,MB′ and MBB′ through the

transformation OMOT . The coefficients σ1,2 are defined as

σ1 = m2
Hd
−m2

Hu − tr(m2
d)− tr(m2

e) + tr(m2
l )− tr(m2

q) + 2tr(m2
u),

σ2 = 2m2
η1
− 2m2

η2
+ tr(m2

d)− tr(m2
e) + 2tr(m2

l )− 2tr(m2
q) + tr(m2

u)− tr(m2
νR

) (2.25)

and are found to be RGE invariant combinations of the soft SUSY masses. Assuming unification

conditions at the GUT scale, σ1,2 remain zero along all the RGE evolution. As βm2
η2

is only

characterised by negative contributions proportional to the Abelian gaugino masses, the corre-

sponding soft mass m2
η2

will increase and remain positive during the run from the GUT to the

EW scale. The same feature is shared by m2
Hd

except for some particular values of the gaugino

and soft scalar masses at the GUT scale for which the Yb Yukawa coupling contribution (of the

b-quark) to βm2
η2

is not negligible. The spontaneous symmetry breaking of EW and B-L, requir-

ing negative m2
Hu

and m2
η1

, can be realised radiatively, which is a nice feature in both MSSM

and BLSSM. Namely, even though there is no spontaneous symmetry breaking at a high scale,

the large top-quark Yukawa coupling Yt and its trilinear soft term At can drive m2
Hu

negative

through its RGE evolution, which triggers spontaneous EWSB. Similarly, a sufficiently large neu-

trino Yukawa coupling YN and corresponding trilinear soft term An turn m2
η1

negative in its RGE

evolution and break the B − L symmetry spontaneously.

In general only one of the three components of the diagonal YN matrix is required to be

large in order to realise the spontaneous symmetry breaking of the extra Abelian symmetry, thus

providing a heavy and two possible lighter heavy-neutrino states. Notice also that the elements

of the low scale values of the YN matrix cannot be taken arbitrary large otherwise a Landau pole

is hit before the GUT scale. A close inspection of the one-loop β function of the heavy-neutrino

Yukawa coupling

βYN = 8YNY
∗
NYN + 2tr(YNY

∗
N )YN −

9

2
gBL

2YN , (2.26)
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where we have neglected the negligible contribution of the light-neutrino Yukawa coupling Yν ,

shows that YN & 0.5 spoils indeed the perturbativity of the model at the GUT scale or below.

2.5 Collider and Dark Matter Constraints

To investigate the viability of the BLSSM parameter space, with mSUGRA boundary conditions,

we have challenged its potential signatures against two sets of experimental constraints. To the

first set belong different bounds coming from collider probes which have been used in building the

scan procedure. These form a varied set of requirements affecting our choice of the Z ′ benchmark

mass as well as the character of the acceptable low-scale particle spectrum. As already stated,

stringent constraints come from LEP2 data via EW Precision Observables (EWPOs) and from

Run 2 of the LHC through a signal-to-background analysis using Poisson statistics to extract

a 95% Confidence Level (CL) bound in the di-lepton channel. The CL has been extracted at

the LHC with
√
s = 13 TeV and L = 13.3 fb−1, updating the analysis presented in [61]. We

have taken into account the Z ′ signal and its interference with the SM background and included

efficiency and acceptance for both the electron and muon channels as described in [62]. Such

studies affect the extended gauge sector (g̃, gBL,MZ′) in a way that, in all safety, allow us to

select the value MZ′ = 4 TeV for all magnitudes of gauge couplings and Z ′ total width (in the

range 30–45 GeV) met in the RGE evolution. Notice that the BLSSM supplied with unification

conditions at the GUT scale provides a very narrow Z ′ width with a ΓZ′/MZ′ ratio reaching

1% at most. Thus, this is unlike the results of [48, 49], which were indeed obtained without any

universality conditions. Such a Z ′ mass value completes the independent parameters that feed our

scan and which in turn provides a BLSSM low-energy spectrum. We now impose the exclusion

bounds coming from LEP, Tevatron and LHC linked to the negative searches of scalar degrees

of freedom and to the correct reproduction of the measured Higgs signal strength around 125

GeV. More precisely, from our scan it is possible to extract the masses and the Branching Ratios

(BRs) of all the (neutral and charged) scalars plus their effective couplings to SM fermions and

bosons. This information is then processed into HiggsBounds (HB) [63–66] which, considering all

the available collider searches, expresses whether a parameter point has been excluded at 95%

CL or not.

This analysis removes a considerable number of acceptable points, among those with successful

EW and U(1)B−L symmetry breaking, as obtained from the GUT parameters scan. Over such

points, the compatibility fit of the generated Higgs signal strengths with the ones measured at

LHC is taken into account by HiggsSignals (HS) [67], which provides the corresponding χ2. By

asking for a 2σ interval around the minimum χ2 generated, we obtain a further constraint over

the parameter space investigated. The strongest sparticle bounds which may affect our generated

SUSY spectra come from the mass limits on the chargino and stau sectors, which must be more

massive than ≈100 GeV [68]. However, for our generated sparticles, we are safe from this limit.

The second set of bounds that we considered emerges from the probe of DM signatures which

are a common and natural product of many SUSY models. Among these, the BLSSM stands
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out for both theoretical and phenomenological reasons that make the study of its DM aspects

particularly worthwhile. The presence of a gauged B − L symmetry, being broken by the scalar

fields η1 and η2, as they are charged under B − L [36], provides a local origin to the discrete

R−symmetry that is usually imposed ad-hoc to prevent fast proton decay. Consequently, the

BLSSM embeds the stability of the LSP through its gauge structure, as it does for the produced

DM density.

From the phenomenological side, the BLSSM, like the MSSM, has the neutralino as a possible

cold DM candidate. The presence of additional neutral degrees of freedom drastically changes

its properties with respect to the corresponding MSSM ones, which is mostly Bino in GUT con-

strained models, possibly giving the necessary degrees of freedom to accommodate the measured

DM evidences. Moreover, the BLSSM also envisages a scalar LSP in its spectrum, generated by

the superpartners of the six Majorana neutrinos, which may also be the origin of a cold DM relic.

For every possible low energy spectrum obtained, the LSP provided by the BLSSM will

participate in the early thermodynamical evolution of the universe. After an initial regime of

thermal equilibrium with the SM particles, decoupling takes place once the DM annihilation rate

becomes slower than the Universe expansion. This process would result in the relic density lasting

until now. Consequently, a crucial test of the cosmological viability of the BLSSM is enforced by

requiring the relic abundance generated not to overclose the Universe by exceeding the measured

current value of the DM relic density

Ωh2 = 0.1187± 0.0017 (stat)± 0.0120 (syst) (2.27)

as measured by the Planck Collaboration [22].

The requirement to reproduce the measured relic density would finally highlight the region

of the parameter space where the model is able to solve the DM puzzle. The computation

of the DM abundance is achieved by solving the evolution numerically with MicrOMEGAs [69,

70], which collects the amplitudes for all the annihilation, as well as coannihilation, processes.

Another source of constraints, which cannot be neglected due to the recent increase in precision

reached by the LUX collaboration [19, 71], is linked to the direct searches intended to detect

DM signatures coming from DM scatterings with nuclei. We have tested the BLSSM spectrum

against the challenging upper limit on the Spin Independent (SI) component of the LSP-nucleus

scattering. The zeptobarn order of magnitude, reached in the recent upgrade of the DM-nucleus

cross section bound, will have an interesting interplay with the parameter space analysed to test

the surviving ability of the BLSSM against stringent exclusions.

The DM scenarios provided represent a peculiar signature of the model, with characteristic

degrees of freedom playing a key role in drawing a rich DM texture. As already stated, the

BLSSM has two candidates for cold DM as it is possible to have, other than the neutralino, also

a heavy stable sneutrino. The extended neutral sector, consequence of the inclusion of an extra

B−L gauge factor, enlarges the neutralino components with three new states (two coming from

Bileptinos and one from BLino) as seen in Eq. (2.17). To study the behaviour of the neutralinos
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we may consider the following classification

V 2
11 > 0.5 Bino-like,

V 2
12 > 0.5 Wino-like,

V 2
13 + V 2

14 > 0.5 Higgsino-like,

V 2
15 > 0.5 BLino-like,

V 2
16 + V 2

17 > 0.5 Bileptino-like,

Neither of the previous cases Mixed.

In this scheme the nature of the neutralino is identified with the interaction eigenstate that makes

up for more than half of its content.

Figure 2.2: (a) The normalised distribution of the neutralino and sneutrino types found in our
scan. (b) The normalised distribution of the different types of LSP found in our scan. The
histograms are stacked.

For all the points generated in our scan, in agreement with the constraints from Higgs searches,

the LSP will, in the majority of cases, results in a fermionic DM candidate with mass below 2

TeV, see Fig. 2.2(a). The sneutrino will instead be a subdominant option over our entire set

of points. It is interesting to explore the composition of the sneutrino LSP written in terms of

CP eigenstates and left-right parts. This is relevant to appreciate the chances to survive the

direct detection probes of DM, with a LH sneutrino having a dangerously enhanced scattering

rate against nuclei [72] due to Z mediation. Fig. 2.3 indicates that only sneutrinos above ∼ 2

TeV may have a large left handed component. However, we will see only sneutrinos lighter than

this limit will compete against the neutralino as a possible LSP. So, the LSP sneutrino in our

constrained BLSSM will always be a RH sneutrino. Following the previous classification, a Bino-

like neutralino will be more common to encounter as the BLSSM favourite LSP, but, as typical

features of the model, also states of BLino and Bileptino nature are often met, see Fig. 2.2(b).

Notably, no Higgsino-like neutralino are found while the Wino possibility is a most rare one,

which requires very tuned conditions over the parameter space to be produced in a sizeable
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Figure 2.3: Composition of the lightest sneutrino for the set of points in agreement with the
constraints from HB and HS. Histogram is of stacked type with normalised heights.

amount. Given our uniform treatment over the boundary conditions, we will not consider this

case though.

2.6 Fine-Tuning Measures

We introduce measures of FT in this section to compare BLSSM and MSSM in respect of natural-

ness. FT is not a physical observable, but it is rather an indication for an unknown mechanism,

which is missing in the model under concern. Its quantitative values, then, can be interpreted as

the effectiveness of the missing mechanisms over the low scale results. In this context, the model

may cover most of the whole BSM physics, when FT is small.

There are many alternatives for a quantitative measure of FT [52, 73–86], which are commonly

based on the change in the Z-boson mass. Its measure (denoted by ∆) equals the largest of these

changes defined as [87, 88]

∆ = Max

∣∣∣∣∂ ln v2

∂ ln ai

∣∣∣∣ = Max

∣∣∣∣ aiv2

∂v2

∂ai

∣∣∣∣ = Max

∣∣∣∣ aiM2
Z

∂M2
Z

∂ai

∣∣∣∣ . (2.28)

When viewing a parameter space, a particular point has a low FT if the Z mass does not largely

change when deviating from its position. A natural model will, therefore, possess large regions

of viable parameter space with low FT values. Having this feature in a particular model will

make it more attractive a prospect. Our goal here is to find allowed regions of parameter space

for the BLSSM with a similar (or better) level of FT to the MSSM, so the models may be of

comparable naturalness. We apply this same measure in two different scenarios (high- and low-

scale parameters) for both the MSSM and BLSSM. We will proceed by explaining the procedure

for the two models. We compute the minimisation conditions, or tadpole equations, and solve

them to find a relation for the Z-mass and SUSY-scale parameters. At this point, we have two

choices: to use these SUSY-scale parameters or to relate these to high-scale (GUT) ones and use

those. For the GUT-FT, we treat loop corrections as dependent on the EW VEV, as done in [89],
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which will eventually reduce the FT value by up to a factor of ∼ 2. For the SUSY-FT case, we

use the approximation that loop factors are independent of the other parameters, e.g., the Higgs

masses (mHu and mHd). Notice, in fact, that this approximation has been widely used in the

literature [18, 86, 90–97], hence we have adopted it here too. However, what is important in this

work is not the comparison of the two FT methods, but rather for each one of these the difference

between the two SUSY models at hand. With this in mind, we begin first by discussing the high

and low scale scenarios for the MSSM, and proceed to extend this discussion to the BLSSM.

For the GUT-FT in the MSSM, our high-scale parameters are: the unification masses for

scalars (m0) and gauginos (m1/2), the universal trilinear coupling (A0), the µ parameter and the

quadratic soft SUSY term (Bµ),

ai =
{
m0, m1/2, A0, µ, Bµ

}
. (2.29)

In order to calculate this FT measure for a particular spectrum point, the high scale parameters

are altered slightly and a new SUSY spectrum is calculated using the two-loop RGEs to run from

GUT to SUSY scale. These new (modified) SUSY-scale parameters (eg mHd) are used to solve

the tadpole equations and calculate a new MZ . Practically, this computation is implemented in

the SPheno program [60] and performed automatically for each spectrum point.

The GUT-FT will compare the naturalness at high scale, but two models with similar mea-

sures here may have large differences at the SUSY-scale. To test whether the BLSSM and MSSM

have a similar FT at both GUT and SUSY-scale, we will consider a low-scale FT. To do this, we

begin with the relation for the Z-mass and SUSY-scale parameters,

1

2
M2
Z =

(m2
Hd

+ Σd)− (m2
Hu

+ Σu) tan2 β

tan2 β − 1
− µ2, (2.30)

where

Σu,d =
∂∆V

∂v2
u,d

. (2.31)

Unlike in the GUT-FT case, we treat the loop corrections as independent of the EW VEV, as in

[86]. If we substitute this expression into Eq. (2.28) and use the low-scale parameters ai = {m2
Hd

,

m2
Hu

, µ2, Σu, Σd}, one will find [86]

∆SUSY ≡ Max(Ci)/(M
2
Z/2) , (2.32)

where

Ci =


CHu =

∣∣∣∣m2
Hu

tan2 β

(tan2 β − 1)

∣∣∣∣ , CHd =

∣∣∣∣m2
Hd

1

(tan2 β − 1)

∣∣∣∣ ,
Cµ =

∣∣µ2
∣∣ , CΣu =

∣∣∣∣Σu
tan2 β

(tan2 β − 1)

∣∣∣∣ , CΣd =

∣∣∣∣Σd
1

(tan2 β − 1)

∣∣∣∣ .
(2.33)
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We now turn to the BLSSM. For the GUT-FT, we follow the same universal parameters as

the MSSM, but with two additional terms, relating to the µ′ parameter and the corresponding

quadratic soft SUSY term, Bµ′, so that all of our high scale terms are:

ai =
{
m0, m1/2, A0, µ, Bµ, µ

′, Bµ′
}
. (2.34)

We may also follow our previous procedure to find a SUSY-scale FT (SUSY-FT) for the BLSSM.

By minimising the scalar potential, we find (at loop level),

Mz2

2
=

1

X

(
m2
Hd

+ Σd

(tan2(β)− 1)
−

(m2
Hu

+ Σu) tan2(β)

(tan2(β)− 1)
+
g̃M2

Z′Y

4gBL
− µ2

)
, (2.35)

where

X = 1 +
g̃2

(g2
1 + g2

2)
+

g̃3Y

2gBL(g2
1 + g2

2)
, (2.36)

and

Y =
cos(2β′)

cos(2β)
=

(
tan2 β + 1

) (
1− tan2 β′

)
(1− tan2 β) (tan2 β′ + 1)

(2.37)

In the limit of no gauge kinetic mixing (g̃ → 0), this equation reproduces the MSSM minimised

potential of Eq. (2.30). Our SUSY-FT parameters for the BLSSM are thus

Ci =



CHu =

∣∣∣∣∣m2
Hu

X

tan2 β

(tan2 β − 1)

∣∣∣∣∣ , CHd =

∣∣∣∣∣m2
Hd

X

1

(tan2 β − 1)

∣∣∣∣∣ , CΣd =

∣∣∣∣Σd

X

1

(tan2 β − 1)

∣∣∣∣
CΣu =

∣∣∣∣Σu

X

tan2 β

(tan2 β − 1)

∣∣∣∣ , Cµ =

∣∣∣∣µ2

X

∣∣∣∣ , CZ′ =

∣∣∣∣M2
Z′

g̃Y

4gBLX

∣∣∣∣ .
(2.38)

These equations resemble those of the MSSM SUSY-FT, but now with a factor of 1/X. In

addition, we have a contribution from the Z ′ mass and BLSSM loop factors. Considering the

heavy mass bound on MZ′ , its contribution could be expected much larger than the other terms

in Eq. (2.35), which would worsen the required FT at the low scale. However, a significantly

large MZ′ severely constrains the VEVs of the singlet Higgs fields as tanβ′ ∼ 1 [42] and, hence,

Y yields a very stringent suppression in CZ′ . Note that, even though the trilinear A-terms are

not included in determining the FT, their effects can be counted in the SSB masses in Eq. (2.38),

whose values include also the loop corrections.

If the required FT measure is quantified in terms of the GUT scale parameters, as done for

the MSSM in [87], such as m0,m1/2, A0, µ,Bµ, µ
′, Bµ′, one can investigate which parameter is

most frequently responsible for determining FT. Since the value of FT is taken to be equal to

the maximum contribution out of all parameters, for a given SUSY spectrum only one parameter

will determine the FT.

Fig. 2.4 displays the FT contributions of the fundamental parameters of the MSSM and
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BLSSM. For each of our SUSY spectrum points which survive the HB/HS constraints, we count

the number of times each parameter determines the FT. This has been done for both MSSM and

BLSSM points, then the vertical axis is rescaled so the sum of counts is 1.

The dominating term in both cases is from the µ term, which is fixed (along with Bµ) by

requiring EWSB. The next largest contribution to the FT measure arises from the gaugino sector,

whose masses are parametrised via m1/2. This can be understood with the heavy gluino mass

bound [gluino] and its large loop contribution to realise the 125 GeV Higgs boson. The BLSSM

sector is also effective in the FT in terms of µ′ and Bµ′. There is a very small dependence on A0

as discussed previously, and approximately no dependence on m0 or Bµ in either case.

Figure 2.4: Histogram for GUT-FT parameters for MSSM (left) and BLSSM (right), counting
the number of spectrum points each parameter determines the FT value, and normalised so the
sum of counts is unity.

Fig. 2.5 uses the same method as figure 2.4, counting the frequency each parameter determines

the FT, but now for SUSY-scale parameters. Both the MSSM and BLSSM are dominated by

the µ’s FT, with a small contribution from mHu and also a slight dependence on MZ′ for the

BLSSM. Considering this, what will affect the FT between the BLSSM and MSSM will be a

combination of how large the factor X is and the largeness of µ in both models. This value will

Figure 2.5: Histogram for SUSY-FT parameters for MSSM (left) and BLSSM (right), counting
the number of spectrum points each parameter determines the FT value, and normalised so the
sum of counts is unity.
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not be identical, as there is an additional factor of
MZ′ (g̃Y )

4gBL
in the BLSSM minimisation equation.

2.7 Results

We will now compare the FT obtained in the BLSSM and MSSM scenarios, for our two FT

measures. We will begin by explaining the interval ranges of our data, then we will discuss the

SUSY-scale and GUT-scale FTs and which parameters are most responsible for their values. This

will be done for both the BLSSM and MSSM, though the same parameters in both models are

usually responsible for the largeness of FT. Then we will compare the GUT-FT and SUSY-FT

for both the BLSSM and MSSM in the plane (m0, m1/2), as is commonly done.

The scan performed to obtain this data has been done by SPheno with all points being passed

through HB and HS. We have scanned over the range [0, 5] TeV in both m0 and m1/2, tanβ in

[0, 60], A0 in [−15, 15] TeV, which are common universal parameters for both the MSSM and the

BLSSM, while for the BLSSM we also required tanβ′ in the interval [0, 2] with neutrino Yukawa

couplings Y (1,1), Y (2,2), Y (3,3) in [0, 1]. The MZ′ value has been fixed to 4 TeV as discussed in

Section 2.5. We will now compare the FT for both the MSSM and BLSSM, using both low- and

high-scale parameters.

We begin by presenting a measure of how the SUSY-FT parameter varies with µ in the

BLSSM. Fig. 2.6 displays how the SUSY FT parameter, ∆SUSY varies with µ. The FT measure

is equal to the maximum contribution from any of the SUSY parameters, but here we see all data

points centred on the curve. The tightness of this line (very few points that lie above or below the

µ line) shows that very rarely are the other (mhu , mhd , Σu, Σd) parameters ever responsible for

the FT. This behaviour is expected, as one can see from the histogram plot of SUSY parameters,

see Fig. 2.5. The corresponding plot for the MSSM looks very similar and so is not shown. The

behaviour is almost identical, as is expected from the MSSM version of the histogram discussed

in section 2.6, where the µ parameter dominates the FT.

Now, we turn our attention to considering loop contributions in the SUSY-scale FT. By

treating the loop factors as independent parameters which contribute to FT, we may observe

their contributions. Fig. 2.7 presents the contribution to FT from Σu and Σd whilst varying µ.

Immediately, one can compare the typical FT values with that of the overall FT as in Fig. 2.6

and see that the loop contributions will never be the dominant contribution for the FT. There

is some growth with µ, but for any given value, the contribution from µ itself is 10 times larger.

Since only the maximum contribution of any Ci parameter is taken, we find that treating the

tadpole loop contributions as independent of the VEV causes the one-loop FT to look much the

same as at tree-level. Once again, this behaviour is mimicked in the MSSM, where the VEV

independent tadpole loop corrections are also dwarfed by µ’s FT.

Penultimately, before we turn to our final comparison of FT, we will discuss the dominant

parameters in the GUT-FT sector. Fig. 2.8 shows how the GUT-FT depends on m1/2. There is

a proportionality with m1/2, favouring lower values for a better FT, but the points are not tightly

constrained, unlike in SUSY-FT. The upward spread of points indicates that other parameters
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in addition to m1/2 affect the FT. This is expected from the histogram in Fig. 2.4, where no one

single parameter always determines FT, but rather a more even mix.

Finally, we will consider how the FT changes in the plane of (m0, m1/2). These parameters

have been chosen as they dominantly characterise the behaviour of the model itself at the GUT

scale. The µ parameter that dominates FT is determined by the minimisation conditions, which

may be written as functions of m0 and m1/2. We colour the points with their FT values in four

intervals, namely: red for FT > 5000, green for 1000 < FT < 5000, orange for 500 < FT < 1000

and blue (the least finely-tuned points) for FT < 500. The same set of points is used to compare

the GUT-FT and the SUSY-FT (there is only a recolouring of these data points between left and

right hand side) for the BLSSM and MSSM. The overall picture is similar for all four cases and

it is immediately clear that the FT is comparable between the BLSSM and the MSSM. There

is a difference in the distribution of points between the MSSM and BLSSM, where there seem

to be no viable points until m0 ∼ 1TeV in the latter. This is due to the requirement of a Z ′

mass consistent with current constraints (see Section 2.5). Moreover, due to the tadpole equation

given in Eq. (2.4) relating MZ′ to the soft-masses mη1,2 , which are functions of m0, notice that a

larger MZ′ leads to a larger m0. All four graphs have a similar FT distribution, where a low m1/2

is favoured and which manifests an approximate independence of m0. Indeed, m1/2 is mostly

responsible for the FT rather than m0 (see Fig. 2.4). Since there is a little dependence on m0, we

expect to see an increasing FT as m1/2 increases, as can be seen in all four cases. When comparing

the BLSSM and MSSM GUT-FT, the two pictures are very similar, with a slightly better FT in

the MSSM, though the less fine tuned (blue) points appear about the same mass of m1/2 ≈ 2

TeV. This behaviour is very similar when comparing the SUSY-FT between BLSSM and MSSM,

where the pictures (up to the distribution of points) are very similar, with a slight dependence

on m0, where larger values are favoured. Lastly, we compare the GUT-FT and SUSY-FT for

each of the models. In the BLSSM we find a more concentrated region of less fine-tuned points

at higher m0. Both measures show a strong dependence on m1/2. In the MSSM, we again find

this dependence, but not the increase in density of less-finely tuned points as in the BLSSM.

To conclude the discussion on FT, we find that the overall FT is very comparable between the

BLSSM and MSSM. Though the GUT-parameter measure is similar in both pictures, with the

MSSM as slightly less finely tuned, the BLSSM has a larger density of less-finely-tuned points

when considering SUSY-parameters.
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Figure 2.6: (a) The SUSY-FT, ∆SUSY vs µ plotted for BLSSM spectrum points. As one expects
from figure 2.5, there is a strong dependence of the overall FT, ∆SUSY with the µ parameter; as
for nearly every spectrum point, Cµ is the largest of all C parameters.

Figure 2.7: Strength of loop factors, Σu,d, appearing in Eq. (2.38) as a function of µ plotted for
BLSSM spectrum points. This may be compared to the overall FT value, appearing in Fig. 2.6,
and one can see the loop factors contributions are never dominant and so loop corrections do not
affect the SUSY-FT.
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Figure 2.8: GUT-FT plotted against m1/2 for BLSSM spectrum points. There is a strong de-
pendence for the GUT-FT with the m1/2 parameter, although the wide upward spread indicates
other parameters may also be the dominant FT contribution.
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Figure 2.9: FT in the plane of unification of scalar, gaugino masses for BLSSM and MSSM for
both GUT-parameters (∆) and EW parameters (∆EW). The FT is indicated by the colour of
the dots: blue for FT < 500; Orange for 500 < FT < 1000; Green for 1000 < FT < 5000; and
Red for FT > 5000.

We now turn to considering the DM sectors of both models. We will see that once cosmological

and direct detection bounds are imposed on the DM candidates, the BLSSM parameter space is

far less constrained than the MSSM one, although at the cost of an increased GUT-FT.

For each generated spectrum, the LSP must comply with the cosmological and direct detec-

tion bounds of Section 2.5. The relic density in respect to the mass of the LSP (MDM) is plotted

in Fig. 2.10(a). The relic is overabundant for the large part of points surviving the screening from

collider constraints. Without specifying initial conditions, as those igniting a favourable coanni-

hilation, our scan reveals multiple extended areas with relic densities close to zero. Interestingly,

the BLSSM successfully accommodates values within the allowed interval in Eq. (2.27), with all

49



Figure 2.10: (a) Relic density vs LSP mass for the BLSSM. (b) Relic density vs LSP mass for
the MSSM. In both plots the horizontal lines identify the 2σ region around the current central
value of Ωh2.

LSP species. The corresponding distributions in Fig. 2.10(a) have recognisable shapes, which

point to different areas where a given LSP is more likely to cross the experimentally allowed

interval. Neutralinos may be found mostly, but not entirely, at large MDM values. Sneutrinos

appear in a cloud, with low relic density values around the centre of our mass span. The sneutrino

option stands out as a very promising one, compensating its low rate of production as a LSP

with a milder value of the relic with respect to the neutralino.

The extended particle spectrum of the BLSSM yields a more varied nature of the LSP, with

more numerous combinations of DM annihilation diagrams, and can play a significant role in

dramatically changing the response of the model to the cosmological data, in comparison to the

much constrained MSSM. This is well manifested by the relic density computed in the MSSM,

as shown in Fig. 2.10(b). From here, it is obvious how the BLSSM offers a variety of solutions

to saturate the relic abundance compatible with the constraints, whether taken at 2σ from the

central value measured by experiment or as an absolute upper limit, precluded to the MSSM.

In the former, different DM incarnations (Bino-, BLino-, Bileptino-like and mixed neutralino,

alongside the sneutrino) can comply with experimental evidence over a MDM interval which

extends up to 2 TeV or so, while in the MSSM case solutions can only be found for much lighter

LSP masses and limitedly to one nature (the usual Bino-like neutralino). Together with the limit

on the cosmological relic produced at decoupling by the candidate DM particle, we challenge the

constrained BLSSM against the negative search for Weakly Interactive Massive Particle (WIMP)

nuclear recoils by the LUX experiment.

The 2016 results of the LUX collaboration have seen the upper bound on the cross section

decreasing by a factor of four in the three years of exposure. Such constraining analyses are still

ongoing and will interestingly become a threat or a confirmation of the WIMP hypothesis in

future years. From Fig. 2.11 we notice how the BLSSM with the parameter space investigated

largely survives such tight limits. We impose the modified constraint [98]:

σSI < ξσLUXSI (2.39)
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Figure 2.11: Spin-independent WIMP-nucleus scattering cross section generated in our scan
against the upper bounds from 2016 run of the LUX experiment.

where

ξ =


1 if 0.1168 < Ωh2 < 0.1208 ,

0.1188

Ωh2
if Ωh2 < 0.1168 .

(2.40)

This accounts for the LUX experimental search assuming the DM has the correct relic density.

The effect is to weaken constraints for low relic density points. The LUX bounds have just

started touching the BLSSM parameter space, so the next improvements of direct DM searches

will continue to further probe BLSSM’s parameter space. Even without accounting for this “low

relic-density” effect, the picture is still similar. For the MSSM, the SI bounds look identical to

the BLSSM, but with a Bino-like neutralino only.

2.8 Chapter Summary

While several studies of the SUSY version of the B − L model, BLSSM for short, exist for its

low energy phenomenology and predict distinctive experimental signatures, very little had been

said about the theoretical degree of FT required in this scenario in order to produce them.

Alternatively, these studies fail to escape current experimental constraints coming from EWPOs,

collider and cosmological data. We have addressed these issues in the first part of this chapter,

by adopting a suitable FT measure amongst those available in literature and expressed it in

terms of the low energy spectra of the MSSM and BLSSM as well as of the (high-scale) universal

parameters of the two models. The latter, for the MSSM, include: masses for scalars and gauginos,

trilinear coupling, Higgsino mass and the quadratic soft SUSY term. In the BLSSM, we have all

of these parameters plus two additional ones, the BLino mass and another quadratic soft SUSY

term. The low and high energy spectra in the two SUSY scenarios can be related by RGEs,

which we have computed numerically at two-loop level.

We have found that the level of FT required in the BLSSM is somewhat higher than in the

MSSM when computed at the GUT scale in presence of all available experimental constraints,
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but those connected to DM searches, and this is primarily driven by the requirement of a large

Z ′ mass, of order 4 TeV or higher, which in turn corresponds to somewhat different acceptable

values for the scalar and fermionic unification masses, which partially reflect in different low

energy spectra potentially accessible at the LHC. However, when the FT is computed at the

SUSY scale, the pull now originating from all available experimental constraints, chiefly the DM

ones, destabilises the MSSM more than the BLSSM, as the latter appears more natural, well

reflecting a much lower level of tension against data existing in the latter with respect to the

former.

Furthermore, we have examined the response to the relic density constraints of the non-

minimal SUSY scenario, wherein the extra B − L neutralinos (three extra neutral fermions,

i.e., a U(1)B−L gaugino B̃′ and two extra Higgsinos η̃) can be cold DM candidates. As well

known, taking the lightest neutralino in the MSSM as the sole possible DM candidate implies

severe constraints on the parameter space of this scenario. Indeed, in the case of universal soft-

breaking terms, the MSSM is almost ruled out by combining collider, astrophysics and rare decay

constraints. Therefore, it is important to explore very well motivated extensions of the MSSM,

such as the BLSSM, that provide new DM candidates that may account for the relic density with

no conflict with other phenomenological constraints.

After an extensive study in this direction, we have concluded that the extended particle

spectrum of the BLSSM, in turn translating into a more varied nature of the LSP as well as a

more numerous combination of DM annihilation diagrams, can play a significant role in dramat-

ically changing the ability of SUSY to adapt to cosmological data, in comparison to the much

constrained MSSM. In fact, the BLSSM offers a variety of solutions to the relic abundance con-

straint, whether taken at 2σ from the central value measured by experiment or as an absolute

upper limit, which are unavailable in the MSSM. Alongside the usual Bino- (and possibly sneu-

trino), also BLino- and Bileptino-like as well as mixed neutralino can comply with experimental

evidence over an MDM interval which extends up to 2 TeV or so, while in the MSSM case solu-

tions can only be found for much lighter LSP masses (∼ 500 GeV) and limited to the standard

Bino-like neutralino.
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Chapter 3

Supersymmetric Extension of the

U(1)B−L Model: Dark Matter

3.1 Introduction

In the previous chapter, we introduced possible dark matter candidates from the BLSSM and

calculated FT metrics in comparison to the CMSSM. 1 In this chapter, we investigate the feasi-

bility of the RH sneutrino LSP as a suitable DM candidate within the BLSSM framework, which

embeds a Type-I seesaw mechanism for the neutrino masses. In this case though, realising that

consistency with relic density of such a DM candidate is difficult due to the tiny Yukawa cou-

plings (Yν . 10−6) involved [99], one may be tempted to conclude that its observation would be

difficult. This perception may be further reinforced by the fact, even though the RH sneutrino

can interact with the Z boson through the gauge kinetic mixing between U(1)Y and U(1)B−L,

such an interaction is strongly suppressed by the heavy mass bound on the gauge boson asso-

ciated with the (B − L) symmetry (the aforementioned Z ′). These difficulties can however be

overcome by identifying some new DM annihilation channels, which we will discuss below, in

which the specific (B−L) sector plays a crucial role. In this case then, one may even attempt to

extract evidence of such new DM dynamics which can be tested, if not at present, in near future

experiments, both collider and astrophysical ones.

3.2 RH Sneutrinos in the BLSSM

We now consider the RH sneutrino sector in the BLSSM model. With a TeV scale BLSSM

with Type-I seesaw and very small neutrino Yukawa coupling, Yν <∼ O(10−6), the sneutrino mass

matrix, in the basis (ν̃L, ν̃
∗
L, ν̃R, ν̃

∗
R), is approximately given by a 2 × 2 block diagonal matrix,

where the element 11 of this matrix is given by the diagonal LH sneutrino mass matrix and the

1The C refers to “constrained”, which means using unified input parameters.
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element 22 represents the RH sneutrino mass matrix, MRR, defined as [100]

M2
RR =

M2
N +m2

Ñ
+m2

D + 1
2M

2
Z′ cos 2β′ MN (AN − µ′ cotβ′)

MN (AN − µ′ cotβ′) M2
N +m2

Ñ
+m2

D + 1
2M

2
Z′ cos 2β′

 . (3.1)

It is notable that a large mixing between the RH sneutrinos and RH antisneutrinos is quite

plausible, since it is given in terms of large Yukawa couplings, YN ∼ O(1). Therefore, ν̃R, ν̃
∗
R are

not the mass eigenstates. The mass splitting and mixing between the RH sneutrino ν̃R and RH

antisneutrino ν̃∗R are a result of the induced ∆L = 2 lepton number violating term MNN
cN c.

One can show that the mass eigenvalues of RH sneutrinos are given by [44, 101]

m2
ν̃∓ = M2

N +m2
Ñ

+m2
D +

1

2
M2
Z′ cos 2β′ ∓∆m2

ν̃R
, (3.2)

where ∆m2
ν̃R

=
∣∣∣MN (AN − µ′ cotβ′)

∣∣∣ and the mass eigenstates ν̃∓ are defined in terms of ν̃R, ν̃
∗
R

as follows:

ν̃− =
−i
2

(
eiφ/2ν̃R − e−iφ/2ν̃∗R

)
, (3.3)

ν̃+ =
1

2

(
eiφ/2ν̃R + e−iφ/2ν̃∗R

)
, (3.4)

where φ is the phase of the off-diagonal element of MRR, i.e., φ = arg(MN (AN − µ′ cotβ′)). In

case of real soft SUSY breaking terms, one finds φ = 0 or φ = π, depending on the relative sign

of AN and µ′. In the former case, we see that ν̃−(φ = 0) = I(ν̃R) ≡ ν̃I
1
, so the lightest state

is an imaginary sneutrino with mν̃I
1

= mν̃− and the real type, R(ν̃R) ≡ ν̃R
1 , has a larger mass

mν̃R
1

= mν̃+ . The other possibility is φ = π, where now ν̃−(φ = π) = ν̃R
1

is the lightest state with

mν̃R
1

= mν̃− and ν̃I
R is heavier with mν̃I

R
= mν̃+ .

Before we consider the effect this will have on spectrum points in parameter space, we must

first discuss how we obtain our numerical results. In this work, we have used the spectra for RH

sneutrino LSP candidates in the BLSSM, previously obtained in [1], and discussed in the previous

chapter, where the exact details of the numerical results are discussed in great detail, though we

summarise them here. We have used the SARAH [59] and SPheno [60] programs, considering

a complete universal scenario where the gauge couplings all unify at GUT scale, and evolve at

two-loop order to low scale. We have scanned over the range [0, 5] TeV in both m0 and m1/2,

tanβ in [0, 60], A0 in [−15, 15] TeV, tanβ′ in the interval [0, 2] with neutrino Yukawa couplings

Y (1,1), Y (2,2), Y (3,3) in [0, 1]. The MZ′ value has been fixed to 4 TeV to comply with dedicated

U(1)B−L searches, such as in [49, 61, 102, 103]. In particular, 95% CL bound has been extracted

in the di-lepton channel at the LHC with
√
s = 13 TeV and L = 40 fb−1 luminosity. The Z ′ signal

and its interference with the SM background have been properly taken into account as well as

the efficiency and acceptance factors as illustrated in [62]. The Z ′ values of the gauge couplings,

gBL ' 0.55 and g̃ ' −0.144, have been obtained from an RGE analysis assuming unification
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at the GUT scale [1]. The spectra are then processed into HB [63–66] which, considering all

the available collider searches, expresses whether a parameter point has been excluded at 95%

CL or not. Finally, the compatibility fit of the generated Higgs signal strengths with the ones

measured at LHC is taken into account by HS [67], which provides the corresponding χ2. By

asking for a 2σ interval around the minimum χ2 generated, we obtain a further constraint over

the parameter space investigated. After these conditions are satisfied, we then enforce that all

spectra satisfy the SUSY mass bounds for gluinos, staus, neutralinos, charginos and stops [104].

It is worth noting, at this point, that fixing MZ′ = 4 TeV enforces a heavy SUSY spectrum,

so enforcing masses greater than SUSY search bounds is not in general more constraining than

the enforcement of Higgs data. We would also like to stress that the additional content of the

BLSSM compared to the MSSM will not act to enhance the production rate of any simplified

model searches, so it is reasonable to use these limits; though they do not greatly remove many

spectrum points after all other constraints are imposed. Finally, for the work in this chapter, we

isolate the RH sneutrino LSP candidate points generated by this scan which comply with all our

constraints.

One can now see the behaviour of the mass difference, ∆m2
ν̃R

, on the sneutrino mass, applied

to our scan, in Fig. 3.1. When the mass difference is positive, φ = 0 and so the ν̃I
1

acquires the

lightest mass mν̃− . In the case of a negative mass difference (φ = π), one has a ν̃R
1

LSP, with

mass mν̃− . In general, one finds that MN (AN − µ′ cotβ′) tends to be positive and so there are

many more CP-odd sneutrino LSPs than CP-even ones (by a factor of ∼ 10).
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Figure 3.1: Masses of real and imaginary RH sneutrino LSP candidates are plotted against the
mass difference of the two eigenstates, MN (µ′ cotβ′ −AN ).

Now, we briefly describe the relevant interactions of sneutrino DM, for ν̃I
R and ν̃R

R LSPs.

The relic abundance of the sneutrino DM is a direct consequence of the strength of these

interactions, in addition to revealing what signatures this DM candidate may provide. The

main interactions which contribute to the annihilations of the sneutrino DM are given by four-

point interaction
(
ν̃

(R,I)
1 ν̃

(R,I)
1 → hihj

)
and processes mediated by the CP-even Higgs sector
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Figure 3.2: Feynman diagrams of the dominant interaction terms of two real or two imaginary
RH sneutrinos.

(
ν̃

(R,I)
1 ν̃

(R,I)
1 → hi → hihj or W+W−

)
, as shown in Fig. 3.2. With Yν � 1, the Lagrangian

of these interactions can be written as follows:

L ⊃ i
{(

ν̃R,I
1

)2

hi
∑3
a=1(Z

(R,I)
13+a)2

[
g2B
2

(
vηZ

H
i3 − vη̄ZHi4

)
±
√

2
(
ZHi4µηYx,aa − ZHi3Tx,aa

)
− 4vηZ

H
i3Y

2
x,aa

]
+
(
ν̃R,I

1

)2

hihj
∑3
a=1(Z

(R,I)
13+a)2

[
g2B
2

(
ZHi3Z

H
j3 − ZHi4ZHj4

)
+ gBgY B

4

(
ZHi1Z

H
j1 − ZHi2ZHj2

)
− 4ZHi3Z

H
j3Y

2
x,aa

]
+ (hihjhk) g2

B

[
vη

(
− 3ZHi3Z

H
j3Z

H
k3 + ZHi3Z

H
j4Z

H
k4 + ZHi4Z

H
j3Z

H
k4 + ZHi4Z

H
j4Z

H
k3

)
+vη̄

(
ZHi3Z

H
j3Z

H
k4 + ZHi3Z

H
j4Z

H
k3 + ZHi4Z

H
j3Z

H
k3 − 3ZHi4Z

H
j4Z

H
k4

)]
+hiW

−
µ W

+
σ
g22
2

(
vdZ

H
i1 + vuZ

H
i2

)(
gσµ
)}

, (3.5)

where hi is one of the four mixed CP-even Higgs mass eigenstates [46] (h1 is the lightest SM-like

Higgs, h2 is the light (B − L)-like Higgs, h3 is the heavy MSSM-like Higgs and h4 is the heavy

(B − L)-like state). These states are all mixed and the matrix which diagonalises the Higgs

mass matrix is written as ZH . There are four Higgs VEVs, corresponding to the MSSM Hu

and Hd doublets and the BLSSM η and η̄ singlets, written as (vu, vd, vη, vη̄), respectively. The

diagonalising mass matrices for the CP-even and CP-odd sneutrinos are denoted by Z(R,I) while

the Yx,aa’s are the Yukawa couplings for the RH neutrinos, which are assumed to be diagonal

along with the trilinear couplings, the Tx,aa’s. The gauge couplings gB and gY B will be rotated,

along with the (unseen) gY Y and gBY couplings, to become the physical g1, gBL and g̃ couplings.

3.3 Annihilation Cross Section and DM Relic Abundance

The two CP-eigenstate RH sneutrinos, ν̃I
1 and ν̃R

1 , produce different phenomena in respect of

the cross sections of their annihilation channels, which may yield detectable consequences in

cosmological measurements. The DM is annihilating at low (thermal) energies, so the final

product masses must be . 2Mν̃ . As indicated by the interaction terms in (3.5), the highest cross

section channel (for both CP-even and -odd) is ν̃ν̃ → h′h′2, as long as Mh′ < Mν̃ . If this is not

the case then the next highest cross section channel is ν̃ν̃ →W+W−. One is also allowed decays

2For ease of notation, hereafter, we identify h′ ≡ h2.
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to ZZ, with a cross section approximately half that of W+W−, but this contribution will be

neglected for the remainder of the thesis. We find that other channels have small contributions to

the total annihilation cross section in comparison to these two. So, what separates the phenomena

of the real and imaginary sneutrinos is then simply the mass relation between h′ and ν̃. If

Mν̃ > Mh′ , the annihilation cross section will be dominated by the h′h′ production and, if not,

then W+W−. In order to determine which mass is larger, and hence the phenomenology of a

given state, we must consider the dependence of the mass splitting relation (3.2) on the trilinear

coupling A0. This initial input parameter will determine the properties of our sneutrino LSP at

the low scale. For A0 . 0, this mass splitting will favour a lower mass CP-even sneutrino and

hence LSP, while for A0 & 0 we find CP-odd LSPs. The exact details are discussed previously,

in Section 3.2, but one finds this general trend, as seen in Fig. 3.3.

Now, we turn to how the lightest (B − L) Higgs is affected by the trilinear coupling,

Mh′ =
1

2

[
(m2

A′ +M2
Z′)−

√
(m2

A′ +M2
Z′)

2 − 4m2
A′M

2
Z′ cos2 2β′

]
, (3.6)

where m2
A′ is the mass of the (B − L) CP-odd Higgs,

mA′ =
2Bµ′

sin 2β′
, (3.7)

and Bµ′ is determined by the B − L minimisation condition,

Bµ′ =
1

4

[
−2g2

BLv
′2 cos 2β′ + 2m2

χ1
− 2m2

χ2
+ g̃gBLv

2 cos 2β
]

tan 2β′. (3.8)

At low scale, m2
χ1,2

depends on A0 (due to the RGE running from GUT scale to EW scale). This

directly affects Bµ′ and also tanβ′ and hence induces an A0 dependence on mA′ and also Mh′ .

Fig. 3.3 displays this relation and we see that, for large positive A0 values, a wide range of Mh′

masses are allowed (∼ 100− 2000 GeV) whereas, for A0 . 0, lower Mh′ values are favoured, with

the largest density of points over the interval ∼ 100− 500 GeV.

Combining this trend with larger mass scales for CP-even sneutrinos, as seen in Fig. 3.1,

provides us with two general cases based on the GUT parameters. Firstly, A0 is negative,

the sneutrino LSP is CP-even, with mν̃ & 500 GeV and Mh′ . 500 GeV, hence, in general,

mν̃ > Mh′ . The other possibility is that A0 is positive, here, the sneutrino LSP is CP-odd

and both masses are similar, 100 . mν̃ ,Mh′ . 2000 GeV. Further, there are cases where mν̃

is larger and also Mh′ is larger. This behaviour is reflected in Fig. 3.4, where the histogram

counts the number of spectrum points where the annihilation channels h′h′, W−W+ or something

else have the largest cross section of annihilation. The different spectrum points are coloured

according to the value of their normalised annihilation cross section for a particular channel (e.g.,

σ(ν̃ν̃ → h′h′)/σ(ν̃ν̃ → X), for any combination of particles X). As mentioned, the CP-even case

has many more parameter points with mν̃ > Mh′ , hence a larger number of our spectra have the

largest annihilation into h′h′. The CP-odd case has a larger number of points in our parameter
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Figure 3.3: Mass of lightest (B − L)-like Higgs versus the GUT parameter A0, for CP-even
sneutrino LSPs (red) and CP-odd sneutrino LSPs (blue).

space with the largest cross section of annihilation into W+W−. A particular point in parameter

space will have a specified cross section into W+W−, which will strongly affect the ability to

detect that scenario via indirect detection, as we detail in the next section. If nature realises a

given point in parameter space, it may be the case that this is detectable via indirect detection

methods in the near future as we detail next section.

However, further to this we may make comments regarding the parameter space as a whole.

Firstly, we see general differences between the CP-even and CP-odd scenarios, which are directly

a consequence of the initial GUT conditions, especially the value of the trilinear coupling A0; for

which we choose a wide range of positive and negative values (-15TeV< A0 <15 TeV). Choosing

this positive and scanning over our parameter space (detailed in section 3.2), one will find the

majority of the sneutrino-LSP points will be CP-odd and for many of these, where mν̃ < Mh′ ,

they will annihilate most strongly into W+W−, which can lead to a detectable signal. So one

may make the point that positive A0 values will generally lead to larger direct detection signals.

We emphasise here, though, that we are not saying a particular scenario is more likely realised

in nature, but rather one may observe interesting features of our choice of parameter space.

These annihilation cross sections will be what determine the relic abundance of the sneutrinos.

In this work we consider a standard cosmological scenario, where the DM particles were in thermal

equilibrium with the SM ones in the early Universe and decoupled when the temperature fell below

their relativistic energy. The relic density of our sneutrino species is written as [105]:

Ωh2
ν̃R,I
1

=
2.1× 10−27cm3s−1

〈σann
ν̃R,I
1

v〉
(xF

20

)( 100

g∗(TF )

) 1
2

, (3.9)

where 〈σann
ν̃R,I
1

v〉 is a thermal average for the total cross section of annihilation to SM objects

multiplied by the relative sneutrino velocity, TF is the freeze out temperature, xF ≡ mν̃R,I
1
/TF '
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Figure 3.4: Histogram counting the number of spectrum points with the largest annihilation
cross section being in either the h′h′, W+W− or other channel. This has been done for spectrum
points which have a CP-odd (left) or CP-even (right) sneutrino LSP. Each count is also coloured
by the normalised cross section (so that the sum of annihilation cross section channels for a given
point is unity), where a red coloured point means the given annihilation channel has a larger
cross section.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

▲

▲

▲

▲ ▲

▲

▲▲

▲
▲

▲

▲

▲
▲

▲

▲
▲

▲

▲
▲

▲

▲

▲
▲

▲

▲

▲

▲▲

▲

▲

▲

▲▲

▲

▲
▲

▲

▲

▲

▲

▲▲

▲

▲ ▲

▲
▲

▲

▲

▲

▲▲▲

▲

▲

▲

▲

▲ ▲

▲

▲▲ ▲

▲
▲ ▲

▲

▲

▲

▲ ▲

▲
▲

▲
▲

▲

▲
▲

▲

▲

▲

▲

▲▲

▲

▲

▲

▲

▲

▲ ▲

▲

▲

▲

▲

▲
▲

▲

▲
▲

▲

▲
▲

▲

▲

▲

▲

▲

▲▲

▲

▲
▲

▲

▲

▲

▲▲

▲

▲

▲▲
▲

▲▲
▲▲
▲▲

▲
▲

▲

▲

▲ ▲
▲

▲

▲

▲

▲

▲

▲

▲
▲

▲
▲ ▲

▲

▲

▲
▲

▲

▲
▲

▲

▲ ▲

▲

▲ ▲

▲▲

▲

▲

▲

▲
▲

▲

▲ ▲
▲

▲

▲▲

▲

▲

▲

▲

▲

▲

▲

▲
▲

▲

▲

▲

▲

▲

▲

▲ ▲

▲

▲

▲

▲
▲

▲
▲

▲

▲

▲

▲

▲

▲

▲

▲

▲
▲

▲

▲ ▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲ ▲▲ ▲

▲

▲

▲

▲

▲

▲
▲▲

▲

▲

▲

▲

▲

▲

▲

▲

▲
▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲

▲▲

▲
▲

▲

▲

▲

▲

▲
▲

▲
▲

▲▲
▲

▲

▲
▲

▲
▲

▲

▲ ▲

▲

▲▲▲
▲▲

▲

▲

▲

▲

▲
▲

▲
▲

▲

▲

▲

▲

▲

▲

▲

▲

▲
▲

0 500 1000 1500 2000
10

-4

0.01

1

100

10
4

MDM [GeV]

Ω
h
2

● ν
˜
Im

▲ ν
˜
Re

Figure 3.5: Relic density of CP-even and CP-odd sneutrinos versus their mass in GeV, where
horizontal lines correspond to the Planck limits for the relic abundance.

O(20) and g∗(TF ) ' O(100) is the number of degrees of freedom at freeze-out.

Fig. 3.5 shows the thermal relic abundance for sneutrinos. This has been computed by

micrOMEGAs [69, 70] and one can see that both CP-even and CP-odd candidates are allowed by

current limits of 0.09 < Ωh2 < 0.14, which is the 2σ allowed region by the Planck collaboration

[22]. These points also satisfy the HB/HS [65, 67] constraints (that the lightest CP-even Higgs

must be SM-like and subject to negative Higgs searches), in addition to SUSY mass bounds for

gluinos, staus, neutralinos, charginos and stops [104].
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3.4 Indirect Detection

When the sneutrino contribute to the observed or a part of DM abundance, its annihilation to SM

particles produces an energetic spectrum of SM particles which has chances of being measured

in DM indirect detection experiments. In this section, we will focus on the photon spectrum,

produced as secondaries when sneutrino DM annihilates to SM final states. We will analyse the

impact of FermiLAT searches from dwarf spheroidal galaxies (dSphs) and the galactic center in

order to constrain and understand the future potential to explore sneutrino DM. The annihilation

of sneutrinos in astrophysical objects with DM density ρDM yields a γ−ray flux which is given

by

dΦ

dEγ
=

(
1

4π

〈σv〉
2m2

DM

dNγ

dEγ

)
×
(∫

∆Ω

∫
l.o.s.

ρ2
DM dldΩ′

)
, (3.10)

where it is possible to separate a particle-dependent part, as the cross section 〈σv〉 and the

differential distribution dNγ/dEγ , from the astrophysical term involving the integration of ρDM

over the line-of-sight (l.o.s) and the solid angle ∆Ω. The differential distribution dNγ/dEγ is the

photon energy spectrum per annihilation. In our scenario we will focus on the W+W− channel,

which yields photons primarily through the decay of charged and neutral pions produced from

hadronization, but also from decays to charged fermions which propagate and emit photons from

inverse Compton scattering. This shape will be derived in our work by micrOMEGAs, but in

general this distribution takes the form [106]

dNγ

dx
=
mDMdNγ

dEγ

a

x1.5
e−bx , (3.11)

where x = Eγ/mDM, and in ref. [106] the coefficients a = 0.73, b = 7.8 are calculated by

matching the coefficients to a continuum spectrum result calculated through PYTHIA [107].

The last term, dubbed J-factor, depends on the particular γ−ray source where the DM

annihilation takes place. The FermiLAT experiment has searched for γ−rays production with

a sensitivity in the energy range from 20 MeV to ∼ 300 GeV. Now, dSphs of the Milky Way,

which are expected to have a sizable DM content, have a J-factor of 1019 GeV2 cm−5 and a small

non-thermal γ−ray background. These features make their observation particularly suitable in

constraining 〈σv〉 and we challenge the BLSSM sneutrino predicition against the bounds coming

from 6 years of observation over 15 dSphs [108]. Consistently with the result of the previous

section that, by far, the main charged annihilation channel is represented by W+W−, we have

checked that also the biggest constraint is provided in the same channel3. In Fig. 3.6, we plot the

sneutrino annihilation cross section in the W+W− channel. We denote the two populations of

sneutrino DM candidates namely, CP-odd and CP-even, with two different colours and compare

the thermal cross section prediction with the existing bounds form dSphs (solid line). We also

3We notice that, when the DM candidate is not fully responsible for the measured relic density, the cross section
has been rescaled by an appropriate factor as shown in [98].
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Figure 3.6: Thermal cross section for DM DM → W+W− annihilation as predicted by theory
as a function of the DM mass, for CP-even (blue) and CP-odd (orange) sneutrinos. Also shown
are the FermiLAT limit from dSphs at present (solid black) and as projection for 15 years from
now (dashed black). All points obey the relic density upper limit, for which rescaling, where
necessary, has been applied.

show the projection from 15 years of observation of 60 dSphs sample. While some CP-odd

sneutrino candidates can be tested with future FermiLAT searches, the constraining power for

CP-even candidates is far weaker. Most of the parameter space of this model though remains

safely allowed from existing and also future searches. It is imperative to note that the constraining

power of FermiLAT for sneutrino DM is weaker in our scenarios because of underabundant

DM component. Moreover, our scan reveals the existence of a section of the GUT-constrained

parameter space amenable to investigation in future searches, here represented by the single point

above the dashed line. Finally, we see a line of points with a similar cross section of ∼ 10−26

cm3 s−1 which can be explained as follows. When the sneutrino mass is larger then the B − L
Higgs mass, mν̃ > mh2 , the sneutrinos will largely decay into two B − L Higgses preferentially

via the four point coupling in eq. 3.5. Otherwise they will decay via hi mostly into either hihj

or WW . Since the sneutrinos couple most strongly to the B − L Higgs, usually the h2 is the

mediator, and the mixing into two SM-like Higgses is small, as a direct coupling is forbidden in

the superpotential. It is then the mixed, gauge coupling h2WW which becomes strongest and

so light sneutrinos will largely annihilate into WW , whereas when mν̃ > h2, they will preferably

annihilate to h2h2, and so σWW is small. The reason for such a compressed line is then due to

the logarithmic nature of the plot, where small differences in the couplings appear suppressed

compared to the 10 orders of magnitude which the figure spans.

In a second attempt to confront our model with the FermiLAT observations, we turn to the

galactic center and compute the differential γ-ray flux due to snuetrino annihilation at the center

of the Milky Way. The differential distributions for the gamma spectrum as computed in (3.10)
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Figure 3.7: Differential flux of γ-ray secondary radiation induced by DM DM → W+W− an-
nihilation as a function of the photon energy, with fixed DM mass, for our benchmark CP-odd
sneutrino (orange). The corresponding distribution for the background is also given (red). The
FermiLAT present data (with error) are in black. The sneutrino point considered is compliant
with the relic density constraint taken as an upper limit.

is itself also a subject of dedicated analyses and experimental searches based on FermiLAT data.

The flux detected has therefore two components, of signal (SIG) and background (BG),

dΦγ

dEγ
=
dΦBG

γ

dEγ
+
dΦSIG

γ

dEγ
(3.12)

and we computed the signal flux (dΦSIG
γ /dEγ) for the case of the sneutrino corresponding to

the largest annihilation cross section in our scan. We notice, as shown in Fig. 3.7, how for our

benchmark point of mass of 661 GeV and 〈σWW 〉 ' 7 × 10−25 cm3 s−1 the signal is far below

the large background (given by
dΦBG

γ

dEγ
). Hence, our prediction for FermiLAT is that to a possible

detection of a signal in the integrated flux measurement it would not correspond a γ-ray spectrum

significantly distorted from the background shape, at least not in the current experimental run.

However, as the FermiLAT data sample will increase, more and more of the spectrum will be

accessible at larger energies, where a characteristic signal shape may eventually emerge.

When this will happen, it will be interesting to understand whether such a shape may enable

one to distinguish between a fermionic DM hypothesis and a CP-even or -odd one (and possibly

between the latter two). With this in mind, we compare the shape of the differential γ-ray

flux from CP-even, CP-odd sneutrino and neutralino DM candidates in Fig. 3.8. Here, we plot

the normalised flux distribution allowing us to make comparison between the three candidates

independently of the size of their annihilation cross sections and relic density. The three chosen

points have very similar mass, hence also determining similar end points in the spectrum. While

the CP-even and CP-odd sneutrinos have a very similar shape, the neutralino one is very different,
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this result allowing us to speculate on the possibility of extracting the DM spin via indirect

detection experiments. It should however be noted that a more complete analysis, taking into

account various theoretical and experimental uncertainties, must be carried out in order to make

a more concrete statement in this direction. Nonetheless, we find this result to be important, as

it may actually be testable via data expected to be collected in the years to come.

3.5 LHC Signatures

In this section we discuss the possibility of characterising the sneutrino DM at the LHC by

qualitatively describing some of the most interesting signatures provided by the BLSSM.

Since the LSP sneutrino is mostly RH, it carries no SU(2)L quantum numbers and hence

may only interact with the MSSM-like states via mixing with the LH sneutrinos. This is highly

suppressed, being proportional to the very small Dirac Yukawa coupling for the LH neutrinos.

As such, searches in the neutral or charged DY processes, mediated respectively by the SM Z

and W± gauge bosons, are hopeless. In contrast, the largest couplings of the RH sneutrinos are

with the typical (B − L) degrees of freedom, among the others, the Z ′ and heavy bi-leptonic

scalars. In particular, as required by CP conservation, the Z ′ couples to ν̃R (CP-even) and ν̃I

(CP-odd), where one of the two is the LSP and the other can be the Next-to-LSP (NLSP), while

the heavy CP-even Higgses can couple to two LSPs. Hence, for the case of direct DM production

at the LHC, one can attempt relying upon pp→ Z ′ → ν̃LSPν̃NLSP, with the decay of the NLSP to

the LSP via ν̃NSLP → ν̃LSPZ
(∗) providing a di-lepton (plus missing transverse energy) signature

through a SM Z boson decay, unlike the heavy Higgs mediated process, which, since the final
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state is made up by LSP pairs, is invisible and can only be accessed through mono-jet, -photon,

etc. searches. In searching for these direct DM signals, we have scanned over several benchmark

CP-even and CP-odd sneutrino LSPs and used MadGraph [109] for the computation of the LHC

cross sections. In detail, we have computed the inclusive cross section for pp→ ν̃I
1ν̃

R
i , where ν̃I

1 is

the LSP and allowed for the production of any other CP-even sneutrinos (i = 1, . . . , 6) alongside

it. We also have explored the pp→ ν̃R
1 ν̃

I
i channel in which the LSP is represented by the CP-even

component of the lightest sneutrino. These cross sections are totally dominated by the s-channel

exchange of a Z ′, i.e., pp→ Z ′ → ν̃I
1ν̃

R
i , ν̃

R
1 ν̃

I
i , and found to be σ ' 0.025 fb at most for both the

CP charges of the LSP. It is unsurprising that this cross section is so small, as we are forced to

have a heavy Z ′ to comply with current LHC search limits (MZ′ & 4 TeV). As this cross section

is so small, it would be difficult to observe any signal here without a much higher luminosity than

at present.

Another intriguing possibility to search for LSP states though is to do so indirectly, e.g., via

slepton l̃ pair production. The corresponding cross section may lay in the ∼ 0.1 fb range. When

the slepton mass is light enough, the l̃→W±ν̃LSP channel is the only available decay mode despite

its width being suppressed by the smallness of the Dirac Yukawa coupling, yiedling a di-lepton

signature. Alternatively, if kinematically allowed, one can have l̃→ χ̃0l with χ̃0 → νhν̃LSP, where

νh is the heavy neutrino. The latter will mainly undergo νh → W±l∓ or νh → Zνl decay, thus

providing fully or semi-leptonic signatures (again, accompanied by missing transverse energy).

Other interesting DM signatures may arise from squark pair production for which the cross

sections can reach several fb’s. In this case, e.g., one can exploit the decay chain t̃→ χ̃0 t, which

can occur with a BR ∼ 80% if the t̃ is the lightest squark, where χ̃0 → νhν̃LSP, as discussed

above. Here, one would have a variety of jet plus multi-lepton final states recoiling against

missing transverse energy.

3.6 Chapter Summary

The BLSSM provides a preferential DM candidate which is notably different from the MSSM

neutralino. The former is a spin-0 boson (specifically, a CP-even or CP-odd sneutrino) and the

latter a spin-1/2 fermion (specifically, a neutralino). While in a previous chapter we had assessed

that sneutrino DM affords the BLSSM with an amount of parameter space comparatively much

larger than the one of the MSSM offering neutralino DM, both compliant with WMAP/Planck

and LUX constraints, here, we have shown that signals of sneutrino DM are, on the one hand, just

below the current sensitivity of FermiLAT and, on the other hand, within reach of it in the next

15 years of foreseen data taking, unlike the neutralino case. Furthermore, we have illustrated

that, once a DM signal is established by such an experiment as an excess in the integrated

photon flux for some DM mass, there exists scope in establishing the (pseudo)scalar nature of

sneutrino DM by studying the differential photon flux in energy, as its shape is notably different

from the one pertaining to (fermionic) neutralino DM. However, there exists no possibility in this

experiment to separate with differential data the CP-even from the CP-odd sneutrino hypothesis,
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although their integrated rates are significantly different, with a predominance of relic CP-odd

states over CP-even ones. This phenomenology is enabled by the fact that one of the dominant

DM annihilation channels in the case of the BLSSM has charged particles in the final state,

notably W± boson pairs, as already noted in such a previous publication of ours. In fact, it is the

copious γ-ray emission from the charged gauge boson pair that puts FermiLAT in the position

of exploring signals of sneutrino DM, unlike the MSSM, wherein the annihilation channel of

neutralino DM into W± pairs is negligible. Intriguingly, the favourite BLSSM candidate for DM

is also potentially accessible at the LHC over the same time scale, 15 years or so. In fact, Run 2

and 3 data from the CERN machine may be able access a series of signatures, involving multi-

lepton final states, with and without jets, alongside the expected missing transverse energy. In

fact, also customary mono-jet, -photon, etc. searches may eventually develop sensitivity to the

BLSSM candidate for DM.

Altogether, we should like to conclude by mentioning that the DM sector of the BLSSM has

very distinctive features with respect to those specific to the prevalent SUSY description, i.e., the

MSSM, that can be eventually established in both DM indirect detection experiments and at the

LHC. In constrast, we do not expect (nor we have investigated here) the possibility of differences

in case of DM direct searches, as potential BLSSM mediators, a Z ′ or additional heavy Higgs

states, are either too heavy or too weakly coupled to nuclear constituents, respectively, to play

any significant role. We therefore advocate more thorough investigations of DM phenomenology

in this non-minimal SUSY scenario, which is beyond the scope of this chapter.
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Chapter 4

Hints of Unification at the LHC

Having now studied carefully some of the phenomenological consequences of the BLSSM, in this

chapter we look at an aspect not carefully studied previously: distinguishing models with similar

signatures at the LHC. Both in the non-SUSY and SUSY version of the BLSSM, one of the

strongest signals one might see first is from the Z ′ in breaking the U(1)B−L. As mentioned

previously, there is a difference between the model of SO(10) broken to SU(3)C × SU(2)L ×
U(1)R × U(1)B−L and the usual SU(3)C × SU(2)L × U(1)Y × U(1)B−L. In this chapter, we

explore these differences and attempt to discriminate the two scenarios at the LHC.

4.1 Introduction

SO(10) GUTs are very attractive since they predict RH neutrinos and make neutrino mass

inevitable. SUSY allows for a single step unification of the gauge couplings. Being a rank 5

gauge group, SO(10) also naturally accommodates an additional Z ′ gauge boson, which may

have a mass at the TeV scale within the range of the LHC. Such Z ′ models are attractive since,

apart from the three RH neutrinos, they do not require any new exotic particles to make the

theory anomaly free.

There are two main symmetry breaking patterns of SO(10) leading to the SM gauge group.

Firstly there is the SU(5) embedding,

SO(10)→ SU(5)× U(1)χ → SU(3)C × SU(2)L × U(1)Y × U(1)χ, (4.1)

where the U(1)χ is broken at the TeV scale, yielding a massive Z ′χ. For recent examples of models

based on such a Z ′χ, see e.g. [110].

Secondly there is the PS gauge group embedding,

SO(10)→ SU(4)PS × SU(2)L × SU(2)R (4.2)

The PS colour group SU(4)PS may be broken to SU(3)C × U(1)B−L, leading to the left-right

symmetric model gauge group. The SU(2)R group may be broken to the gauge group U(1)R
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associated with the diagonal generator T3R. It is thus possible to break SO(10) in a single step

at the GUT scale without reducing the rank,

SO(10)→ SU(3)C × SU(2)L × U(1)R × U(1)B−L (4.3)

The resulting gauge group in Eq.4.3 does not predict any new charged currents and is not very

tightly constrained phenomenologically. It may therefore survive down to the TeV scale before

being broken to the SM gauge group, leading to the prediction of a massive Z ′BLR, accessible to

the LHC.

In this chapter we shall focus on SO(10) broken at the GUT scale in a single step, as in

Eq.4.3. In order to allow for gauge coupling unification we shall assume SUSY which is broken

close to the TeV scale, but at a high enough scale to enable the superpartners to have evaded

detection at the LHC. We shall be interested in the Z ′BLR which emerges when the Abelian

subgroup U(1)R × U(1)B−L is broken down to the SM hypercharge gauge group U(1)Y near

the TeV scale (for brevity we refer to this scenario as the BLR model). We study the discovery

prospects of such a Z ′BLR at the LHC, its possible decay mode into Higgs bosons, and the expected

forward-backward asymmetry, comparing the predictions to the well studied B −L model based

on U(1)Y ×U(1)B−L [35, 36, 40, 100, 111]. We comment on the U(1)Y ×U(1)χ model [112, 113]

below.

The Abelian gauge group U(1)R × U(1)B−L has quite a long history in the literature as

reviewed in [113, 114]. It was recently realised that SUSY SO(10) models which break down to

this gauge group may allow for a new type of seesaw model, namely the linear seesaw model [115,

116]. Subsequently, the phenomenology of the SUSY U(1)R × U(1)B−L model has been studied

in a number of works [43, 117–122]. Indeed it has been demonstrated that the Abelian BLR

gauge group U(1)R×U(1)B−L is equivalent to U(1)Y ×U(1)χ (arising from the breaking chain in

Eq.4.1) by a basis transformation and furthermore that this equivalence is preserved under RGE

running, when kinetic mixing is consistently taken into account [122]. Therefore the physics of

the TeV scale Z ′BLR considered here should be identical to that of the Z ′χ [122].

We emphasise that there are several new aspects of our study including: the statistical signif-

icance of producing a Z ′BLR at the LHC including finite width and interference effects (the LHC

uses a narrow width approximation); the study of Higgs final states in the U(1)B−L × U(1)R

model; and the study of forward-backward asymmetry at the High-Luminosity (HL) LHC as a

discriminator between the U(1)R × U(1)B−L model (or equivalently the U(1)Y × U(1)χ model)

and the usual Z ′BL based on U(1)Y × U(1)B−L, i.e. the commonly studied B − L model [35, 36,

40, 100, 111].

4.2 Model

We shall not consider the high energy SO(10) breaking here, so the starting point of the considered

model is to assume that, below the GUT scale, we have the gauge group as on the RH side of
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Eq.4.3, namely,

SU(3)C × SU(2)L × U(1)R × U(1)B−L (4.4)

Note that in this basis the hypercharge gauge group U(1)Y of the SM is not explicitly present, in-

stead it is “unified” into U(1)R×U(1)B−L. Note that, although the Abelian factors are equivalent

to the U(1)Y × U(1)χ model by a basis transformation, we shall work in the U(1)R × U(1)B−L

basis. In order to allow gauge coupling unification we need SUSY, but we shall assume it is

broken above the Z ′BLR mass scale so that SUSY particles are not present in the decays of the

Z ′BLR. Note that such SUSY decays have been considered extensively in [43, 117–122].

At the Z ′BLR mass scale (typically a few TeV), hypercharge emerges from the breaking,

U(1)R × U(1)B−L → U(1)Y (4.5)

where the hypercharge generator is identified as

Y = T3R + TB−L, (4.6)

where

TB−L = (B − L)/2. (4.7)

The symmetry breaking in Eq.4.5 requires two Higgs superfields χ1,2 whose scalar components

develop Vacuum Expectation Values (VEVs) which carry non-zero T3R and opposite TB−L so

that they are neutral under hypercharge. If they arise from an SU(2)R doublet then this fixes

their charges to be T3R = ±1/2 and hence TB−L = ∓1/2. Two of them with opposite quantum

numbers are required by SUSY to cancel anomalies (and for holomorphicity). They must be

singlets under both SU(3)C and SU(2)L in order to preserve these gauge groups.

Finally, at the EW scale we have the usual SM breaking

SU(2)L × U(1)Y → U(1)Q, (4.8)

where the electric charge generator is identified as

Q = T3L + Y. (4.9)

As in usual SUSY models, the EW symmetry breaking is accomplished by two Higgs doublets

Hu,d of SU(2)L which have B − L = 0. If the two Higgs doublets of SU(2)L were embedded

into a single SU(2)R doublet, then we expect that Hu,d will have T3R = ±1/2, respectively. In

addition, in order to accomplish neutrino masses via the linear seesaw model, we need to add

three complete singlet superfields S, as discussed in the appendix C. The particle content of the

model (henceforth denoted as BLR) is then summarised in Tab. 4.1.
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Particle T3L T3R TB−L Tχ Y = T3R + TB−L Q = T3L + Yu
d


L

+1/2 0 +1/6 +1/4 +1/6 +2/3

-1/2 0 +1/6 +1/4 +1/6 -1/3

uR 0 +1/2 +1/6 -1/4 +2/3 +2/3

dR 0 -1/2 +1/6 +3/4 -1/3 -1/3νe
e−


L

+1/2 0 -1/2 -3/4 -1/2 0

-1/2 0 -1/2 -3/4 -1/2 -1

νR 0 +1/2 -1/2 -5/4 0 0

eR 0 -1/2 -1/2 -1/4 -1 -1

χ1
R 0 -1/2 +1/2 +5/4 0 0

χ2
R 0 +1/2 -1/2 -5/4 0 0

S 0 0 0 0 0 0

H


Hu =

(
φ+
u

φ0
u

)
L

Hd =

(
φ0
d

φ−d

)
L

+1/2 +1/2 0 -1/2 +1/2 +1

-1/2 +1/2 0 -1/2 +1/2 0

+1/2 -1/2 0 +1/2 -1/2 0

-1/2 -1/2 0 +1/2 -1/2 -1

Table 4.1: The particle content and generators of the SU(3)C × SU(2)L × U(1)R × U(1)B−L
model.
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4.3 Z ′ Couplings to Fermions

In this work, numerically, we use the SARAH program [59] to determine the vector and axial

couplings of the fermions with the Z ′BLR. This includes the full impact of GKM as done in [119,

122]. Considering this effect in full leads to ∼ O(1)% differences in vector and axial couplings.

In this section, for simplicity, we neglect the impact of GKM but stress that all implications are

considered in our final results.

We begin by examining the low energy breaking of the gauge group in Eq.4.5. The coupling

of a fermion f to the U(1)R and U(1)B−L fields are obtained from

− LBLR = f̄γµ
(
gRT3RW

3
µR + gBLTB−LB

BL
µ

)
f, (4.10)

where TB−L = B−L
2 .

After symmetry breaking, these two fields will mix to become the SM massless hypercharge

gauge boson, Bµ, and a massive Z ′µ (corresponding to the Z ′BLR),BBL
µ

W 3
µR

 =

cos θBL − sin θBL

sin θBL cos θBL


Bµ
Z ′µ

 . (4.11)

So, the Z ′BLR has the following coupling to fermions:

− LZ′BLR = Z ′µf̄γ
µ (gR cos θBLT3R − gBL sin θBLTB−L) f. (4.12)

Since

gR sin θBL = gBL cos θBL = gY , (4.13)

we may rewrite the Z ′ couplings of the BLR model in a more compact form,

− LZ′BLR = Z ′µf̄γ
µgYQLRf,

QLR ≡ (cot θBLT3R − tan θBLTB−L) , tan θBL = gBL/gR. (4.14)

We shall be interested in comparing the Z ′ couplings in the BLR model above to those in

related models where the SM gauge group (including hypercharge) is augmented by an Abelian

gauge group U(1)′, identified with the generator TBL, resulting in the Z ′ couplings

− LZ′BL = Z ′µf̄γ
µgBLTB−Lf, (4.15)

which may be compared to the BLR couplings in Eq.4.14. We shall find to one-loop the non-GUT
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Model εuL εuR εdL εdR εeL εeR ενL ενR

T3R 0 1/2 0 −1/2 0 −1/2 0 1/2

TB−L 1/6 1/6 1/6 1/6 −1/2 −1/2 −1/2 −1/2

Table 4.2: Chiral couplings for the U(1)R and U(1)B−L models.

Model guV guA gdV gdA geV geA gνV gνA

T3R 1/2 −1/2 −1/2 1/2 −1/2 1/2 0 0

TB−L 1/3 0 1/3 0 −1 0 −1/2 −1/2

Table 4.3: Vector and axial couplings for the U(1)R and U(1)B−L models. Note that we have
integrated out the RH neutrinos2 in calculating gνV and gνA.

normalised couplings (i.e., in the conventions of this section)1:

gR = 0.448, gBL = 0.459. (4.16)

In general the Z ′BLR couples to a fermion f which may be either left- or RH and the above

couplings sum over both chiral components of all the fermions. For analysing the couplings

of different models it is useful to decompose the couplings into either left-chiral or right-chiral

components, leading to the vector and axial couplings in the BLR model as follows

− LZ′BLR = gY Z
′
µf̄γ

µ(εfLPL + εfRPR)f = gY Z
′
µf̄γ

µ 1

2

(
gfV − g

f
Aγ

5
)
f, (4.17)

where PR,L = (1 ± γ5)/2 and the vector/axial couplings are defined as gfV/A = εfL ± e
f
R. Similar

decompositions can be made for the Z ′ couplings of the other models in Eq.4.15. Tab. 4.2 shows

the chiral couplings for the relevant generators TR and TB−L = (B − L)/2. Tab. 4.3 shows the

vector and axial couplings obtained for the two different models.

4.4 Z ′ Couplings to Higgs Bosons

In this section we shall ignore the Z ′BLR decays into bosons arising from χ1
R and χ2

R. The χ1
R and

χ2
R bosonic sector contains four degrees of freedom, two scalars plus two pseudoscalars, where

one of the pseudoscalars is eaten by the Z ′BLR, to leave two CP even scalars plus one CP odd

pseudoscalar in the physical spectrum. If the soft SUSY breaking masses associated with χ1
R

1Including GUT normalisation,
√

3/2gBL = 0.563. We also find the mixed couplings, related to GKM, gR,BL ∼
gBL,R ∼ 0.01.

2In the linear seesaw, the heavy neutrino mass is approx MN ∼ F̃ vR, see Eq.C.1 in appendix A for the
definition of F̃ while vR is the BLR breaking scale. We will see that the mass of the Z′ is approximately MZ′ ∼
1
2

√(
3
2
g2
B−L + g2

R

)
vR. We thus prevent heavy neutrino decays (2MN > MZ′) through the requirement that the

free Yukawa coupling be large enough, F̃ >
√(

3
2
g2
B−L + g2

R

)
∼ 0.2.
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Vertex gZ′S1S2

Z ′h0A0 gR cos θB−L cos(β − α)

2

Z ′H0A0 −gR cos θB−L sin(β − α)

2

Z ′H+H− −igR cos θB−L
2

Table 4.4: The coupling of the BLR Z ′ to the physical 2HDM mass states. The Feynman rule for
the vertex is given by (gZ′S1S2)(p− p′)µ, where p, p′ are the momenta of the two scalars towards
the vertex.

and χ2
R are very large, then we would expect the physical CP odd pseudoscalar to become very

heavy. Since the Z ′BLR must decay into a scalar plus a pseudoscalar (assuming that CP and

angular momentum are conserved) then this would imply that none of the bosons arising from

χ1
R and χ2

R would be kinematically accessible in Z ′BLR decays.

Under the above assumption of large soft masses for χ1
R and χ2

R, we shall discuss the Z ′BLR
coupling to the Higgs bosons arising from Hu and Hd only, which are assumed to have smaller

soft masses. To investigate the Z ′ coupling to what is essentially a 2HDM sector, we begin with

the Lagrangian term with the covariant derivative

LZ′,scalars = (DµΦ1)†(DµΦ1) + (DµΦ̃2)†(DµΦ̃2) (4.18)

with

Dµ = ∂µ − i
gY

sBLcBL
(T3R − s2

BL

Y

2
), (4.19)

where cos (θB−L) ≡ cBL and sin (θB−L) ≡ sBL. Our two Higgs doublets are

Φ1 =

 φ+
1

(v1 + h1 + ia1)/
√

2

 , Φ̃2 = iσ2Φ∗2 =

 φ+
2

(−v2 − h2 + ia2)/
√

2

 (4.20)

and we rotate the fields to the physical basis as in the standard 2HDM procedure,

ΦR
1 =

 G+

(h0sβα +H0cβα + vSM + iG0)/
√

2

 , Φ̃R
2 =

 H+

(−h0cβα +H0sβα + iA0)/
√

2

 , (4.21)

where we defined the standard 2HDM rotation angles cos(α − β) ≡ cαβ and sin(α − β) ≡ sαβ.

We extract the physical couplings for our Z ′BLR to the h0, H0, H±, A0 in Tab. 4.4.

We find the partial widths by using the general expression for a Z ′ decaying into two spinless
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bosons of unequal masses M1 and M2, with coupling gZ′S1S2 (read off from Tab. 4.4),

Γ(Z ′BLR → S1S2) =
1

48π

1

M3
Z′
g2
Z′S1S2

(
M4
Z′ +M4

1 +M4
2 − 2

(
M2

2M
2
Z′ +M2

1M
2
Z′ +M2

1M
2
2

))
.

(4.22)

For a discussion of the Z ′BL coupling to the scalar sector in the U(1)B−L model see e.g. [43].

4.5 Renormalisation Group Equations

We now turn to the RGEs at one-loop. These RGEs will determine the U(1)R and U(1)B−L

coupling constants and will also predict a value of the SM hypercharge coupling constant, given

measured results of α2 and α3. We begin by using the SM β-function coefficients bSM
2 = −19/6

and bSM
3 = −7 for the SU(2)L and SU(3)c groups, respectively. We perform the running from

MZ up to our BLR breaking scale, which we denoted by vR. From the scale vR < Q < vSUSY,

these two β-function coefficients are unchanged, as none of the additional BLR particle content

has quantum numbers under these two groups. Then, at vSUSY < Q < MGUT, we introduce

the SUSY partners and the β-function coefficients are modified to bSUSY
2 = +1 and bSUSY

3 = −3.

These are the familiar MSSM β-function coefficients. The strong and weak coupling constants

are run until they intersect, which determines Q = MGUT and αGUT ≡ α2(MGUT) = α3(MGUT).

We now run our U(1)B−L and U(1)R coupling constants down from this GUT scale.

As we have two U(1) groups, they undergo GKM. We begin with the β-function coefficients

bBLR,SUSY
BL = 27/4, bBLR,SUSY

R = 15/2 and a mixed term bBLR,SUSY
R,B−L = −

√
3/8, including a GUT

normalisation term of 3/8 on the U(1)B−L and hence
√

3/8 on the (U(1)B−L×U(1)R) coefficient.

Rotating the couplings into the upper triangular physical basis [58], and following the procedure

of [123], we find the following β-functions for the GUT normalised couplings3

dgR
dt

=
1

(4π)2

15g3
R

2
, (4.23)

dg̃

dt
=

1

(4π)2

[(
27

4
g2
BL −

√
3

2
gBLg̃ +

15

2
g̃2

)
g̃ +

(
−
√

3

2
gBL + 15g̃

)
g2
R

]
, (4.24)

dgBL
dt

=
1

(4π)2

(
27

4
g2
BL −

√
3

2
gBLg̃ +

15

2
g̃2

)
gBL. (4.25)

At the GUT scale, we set g̃ = 0 and allow it to run to non-zero values at low scale. Fig. 4.1 shows

the running of the U(1)R and U(1)B−L groups both with (solid line) and without (dashed line)

including the GKM procedure. One can see immediately that these two lines lie on top of one

another, meaning the effect of the GKM is negligible. The αR has an entirely negligible change

and one can see a zoomed plot of the shift in the αBL coefficient, which changes by O(0.1%).

3The couplings in this section are GUT normalised, while those in earlier sections are the non-GUT normalised
couplings We have chosen the same nomenclature for both normalisations, being careful to specify which normali-
sation we are using.
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Figure 4.1: Comparison of RGE evolution with (solid lines) and without (dashed lines) gauge-
kinetic mixing from GUT to SUSY scale. The U(1)R evolution is unchanged, whereas the
U(1)B−L is modified slightly. A zoomed in plot of this modification is shown.

At the low (TeV) scale, one finds a negligible mixing coupling term g̃ ≈ 10−2, nevertheless we

include this correction in our numerical work.

We include GKM from the SUSY scale to the U(1)R × U(1)B−L breaking scale, vR. From

vR < Q < vSUSY, decoupling the SUSY particles, the β-function coefficients change to bBLR
BL =

17/4, bBLR
R = 13/3 and a mixed term bBLR,SUSY

R,B−L = bBLR,SUSY
B−L,R = −1/

√
24. We summarise these

beta function coefficients and their meaning in appendix C.1. At vR these two coupling values

determine the (GUT normalised) hypercharge coupling,

α−1
1 =

3

5
α−1
R +

2

5
α−1
BL. (4.26)

From this scale, α1 is run further down from vR to MZ , with the SM β-function coefficient

bSM
1 = 41/10. The BLR breaking scale has been chosen such that the VEV and coupling values

at this point correspond to a Z ′ with a statistical significance ≤ 2σ, which is seen later to be

3750 GeV. Using this Z ′ mass, the vR VEV is determined from the formula4 [119] in the limit

g̃ = 0,

M2
Z′ =

1

4

(
3

2
g2
B−L + g2

R

)
v2
R +

1
4g

4
Rv

2

(3/2)g2
B−L + g2

R

≈ 1

4

(
3

2
g2
B−L + g2

R

)
v2
R, (4.27)

where
√

(3/2)gB−L = 0.563, as seen in Eq.4.16, and MZ′ = 3750 GeV leads to vR = 10328 GeV.

The upper panel of Fig. 4.2 shows the running couplings of the BLR model, setting vR = 10328

GeV and vSUSY = 105 GeV. Using our one-loop RGEs, we predict a value for the SM hypercharge

coupling as αY (MZ) =
3

5
α1(MZ) = 1/102.44, which we may compare to the experimentally

4The factor of 3/2 in Eq.4.27 multiplying g2
B−L comes from the 3/8 GUT normalisation factor times a factor of

4 in going from B − L to (B − L)/2. This is responsible for the GUT scale prediction tan θBL = gBL/gR =
√

3/2
in terms of the non-GUT normalised couplings in Eq.4.14.
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Figure 4.2: The upper panel shows the running couplings in the BLR model, with vR = 11660
GeV, which corresponds to MZ′ = 3750 GeV and vSUSY = 105 GeV. The GUT scale is determined
to be MGUT = 3.30× 1016 GeV. The lower panel shows the running couplings in the MSSM.
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determined value of αexp
Y =

αEM

1− sin2 θW
= 1/98.39 [104]. The difference between the two values

may be partly accounted for by our procedure of running up the best fit experimental values of

α2 and α3 at MZ to determine MGUT and αGUT at the point where they meet, then running all

the gauge couplings from this point down to low energies. This procedure, though convenient for

the BLR model where the hypercharge gauge coupling is not defined above vR, does not take into

account the experimental error in αexp
3 in the prediction for αexp

Y . Another source of error is the

fact that we do not consider either two loop RGEs or threshold effects, both of which are beyond

the scope of this chapter. Using our one loop results, we determine the values of the couplings

in Eq.4.16, which refer to the non-GUT normalised couplings.

For comparison, the lower panel of Fig. 4.2 shows the MSSM at one-loop running couplings,

again assuming vSUSY = 105 GeV. In this case the analogous procedure to that used in the BLR

model yields a prediction for the SM hypercharge coupling of αMSSM
Y (MZ) = 1/102.25.

4.6 Results

4.6.1 Preliminaries

In this section, we review the LHC results specific to the BLR model in DY processes as well as

in final states including Higgs bosons. We do so in two separate subsections to follow. In the case

of DY studies, we also compare the BLR results to those of the U(1)B−L scenario. Throughout

our analysis we assume the aforementioned heavy SUSY scale, thereby preventing decays of the

Z ′ into sparticles. However, we consider the possibility that the 2HDM-like Higgs states of the

BLR models are lighter than the Z ′, which may therefore decay into them via the couplings

in Tab. 4.4. Further, notice that Z ′ decays into non-MSSM-like Higgs states can be heavily

suppressed in comparison, in virtue of the fact that the additional CP-odd state not giving mass

to the Z ′ can be made arbitrarily heavy (as previously explained), a setup which we assume here,

so that we refrain from accounting for these decay patterns. Finally, recall that heavy neutrino

decays are prevented here in the light of footnote 2 and that they have already been studied in,

e.g., [45] (for the B − L case), from where it is clear that they have little Z ′ diagnostic power.

In contrast, we aim at making the point that the Higgs decays we study below can eventually be

used for this purpose.

We use standard 2HDM notation, such that h0 and H0 are the CP-even Higgs mass states

(with the lighter h0 being the discovered SM-like one), A0 the CP-odd one and H± the charged

ones.

Tab. 4.5 summarises the numerical values of the vector and axial couplings of the Z ′ to

fermions for the B−L and BLR models. For each scenario we have defined new vector and axial

couplings with the gauge coupling absorbed:

− LZ′ = Z ′µf̄γ
µ 1

2
(ḡfV − ḡ

f
Aγ

5)f, (4.28)
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Model Gauge Coupling ḡuV ḡuA ḡdV ḡdA ḡeV ḡeA ḡνV ḡνA

B − L gBL=0.592 0.197 0 0.197 0 -0.592 0 -0.296 -0.296

BLR See Eq.4.16 -0.0103 -0.135 -0.279 0.135 0.300 0.135 0.217 0.217

Table 4.5: Numerical values of the vector and axial couplings for the U(1)B−L and U(1)B−L ×
U(1)R models. Note that we have decoupled the RH neutrinos in calculating gνV and gνA.

which may be compared to Eq. 4.17. For the U(1)B−L model the calculation of ḡfV,A in Tab. 4.5

uses the gauge coupling constants shown there multiplied by the vector and axial couplings given

previously in Tab. 4.3. For the BLR model, the new numerical vector and axial couplings are

derived including the full effects of GKM using SARAH (as a function of the mixed couplings

gBL,R, gR,BL and the rotation matrix which diagonalises the neutral gauge boson mass matrices),

but may be approximated analytically neglecting GKM using Eqs. 4.14, 4.17 as

ḡfV,A(BLR) ≈ gY
[
(cot θBL)gfV,A(R)− (tan θBL)gfV,A(BL)

]
(4.29)

in terms of the vector and axial couplings gfV,A(R) and gfV,A(BL) for the T3R and TB−L models as

written in Tab. 4.3. The non-GUT normalised gauge couplings for the BLR model in Eq.4.29 and

Tab. 4.5 come from the RGE analysis leading to Eq.4.16. The values of the non-GUT normalised

gauge couplings gBL and gχ for the B − L and χ models in Tab. 4.5 were taken from the low

energy parametrisation in [113] rather than an RGE analysis, which would require us to specify

the corresponding high energy models, which we do not wish to do here, bearing in mind that

the B − L model does not emerge from SO(10). If some other value of gBL were used instead,

then the vector and axial couplings for the B − L model in Tab. 4.5 would be straightforwardly

rescaled.

Many qualitative features of the results can be understood by examining the fermion couplings

in Tab. 4.5, for example, the vector nature of the B − L couplings.

4.6.2 Drell-Yan

The most promising channel to search for and profile a Z ′ boson at the LHC in the BLR model

is DY production and decay, namely, pp → γ, Z, Z ′ → e+e− and µ+µ−. Fig. 4.3 illustrates the

current LHC reach (assuming 30 fb−1 of integrated luminosity at 13 TeV), highlighting that

a Z ′ of BLR origin with a mass of 3750 GeV is allowed by data, as its statistical significance

α ≡ |S|√
|S+B|

is less than 2 in the entire mass range over which the signal |S| could manifest

itself over the background |B|. Notice that, here and in the following, our signal is given by the

(modulus of the) cross section of pp → γ, Z, Z ′ → e+e− and µ+µ− minus that of pp → γ, Z →
e+e− and µ+µ− (thereby including interference effects between Z ′ and γ, Z), the latter being the

(irreducible) background5. This very same Z ′ boson will, however, become accessible by the end

5Notice that, for the Z′ mass ranges currently allowed by experiment, other (reducible) backgrounds can be
neglected.
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Figure 4.3: Statistical significance for producing a Z ′ decaying into e+e− and µ+µ− in the BLR
model at integrated luminosities of (a) L = 30 fb−1 and (b) 300 fb−1. The number of events
obtained at these luminosities for pp→ Z ′ is 74 in case (a) and 737 in case (b).
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Figure 4.4: The theoretical predictions of the leptonic forward-backward asymmetry at the LHC
A∗FB in the presence of a Z ′ decaying into e+e− and µ+µ− for the U(1)Y × U(1)B−L (red) and
U(1)R×U(1)B−L (blue) models. We have taken MZ′ = 3750 GeV. The SM (black) result is also
given for comparison.

of Run 2 of the LHC, as illustrated in Fig. 4.3, where (assuming 300 fb−1 of integrated luminosity

at 13 TeV) values of α in excess of 5 are found near the peak region6.

Once such a Z ′ signal is established, it will be necessary to diagnose it, i.e., to assess to which

model it belongs. A useful variable in this respect is the (reconstructed) Forward-Backward

Asymmetry (A∗FB) of the DY cross section. We use here the definition adopted in Ref. [125], see

Sect. 3 therein, with no cut on the the di-lepton rapidity (see also Refs. [126, 127]). Fig. 4.4 shows

the shape of this observable at the LHC, for
√
s = 13 TeV and MZ′ = 3750 GeV, as it would

appear in the Z ′ peak region of the di-lepton invariant mass distribution for the BLR model as

well as the U(1)B−L scenario. The shape emerging from the BLR case is notably different from

the one of the companion SO(10) model7.

In order to quantify whether the LHC will be able to differentiate these two models, from one

another or the SM, one must include the statistical error in the formulation of A∗FB [126]:

δAFB =

√
1−A2

FB

N
. (4.30)

6In performing this exercise, we have used the program described in Refs. [48, 49] for the U(1)B−L case suitably
adapted to the BLR one. In particular, our implementation accounts for Z′ width and interference (with SM
di-lepton production) effects, which tend to reduce somewhat the sensitivity of the LHC experiments. Needless to
say, when these are neglected, we are able to reproduce results obtained by the LHC collaborations [62, 124] with
percent accuracy, for the corresponding choice of couplings (which differ somewhat from those used in the present
chapter). This is why our limits for Z′ masses differ from those quoted by the LHC.

7As intimated, recall that the Z′ couplings to leptons in the U(1)B−L case are purely vectorial, so that non-zero
values of A∗FB are due in this case to interference effects.
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In Fig. 4.5 we include this error in a binned version of Fig. 4.4, which overlays the U(1)B−L

and BLR models, for a luminosity of 3000 fb−1 corresponding to the final result for the High-

Luminosity LHC (HL-LHC) run [128]. The purple region is the overlap of errors between the

two models. One can see that there are areas where the errors do not overlap and, by looking at

the entire invariant mass distribution, a detailed statistical analysis may in principle differentiate

between these two models at this luminosity, although we leave this task to the experimental

collaborations. The shape of the errors here strongly depends on the number of events, N , which

depends on the differential cross sections for the two models. The U(1)B−L model has a wider

resonance, and so at larger invariant masses there are more Z ′ events produced and hence a

smaller AFB error, δA∗FB.

3000 3500 4000 4500
-1.0

-0.5

0.0

0.5

1.0

Mℓℓ [GeV]

A
F
B
*

Models = U(1)B-L, BLR
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Figure 4.5: The A∗FB spectrum of the DY cross section in the presence of a Z ′ of mass MZ′ = 3750
GeV. The figure we shows the BLR model prediction for A∗FB (in blue) and its error (shaded in
light blue) as well as the U(1)B−L prediction for A∗FB (in red) and its error (shaded in light red)
as a function of the dilepton invariant mass. The purple region is the overlap of errors between
the two models. Here, L = 3000 fb−1.

4.6.3 Higgs Final States

An alternative way of singling out the BLR nature of a Z ′ signal established via DY studies would

be by pursuing the isolation of its exotic decays, i.e., into non-SM objects. Under the enforced

assumption of heavy neutrinos, additional CP-odd Higgs boson and all sparticles being (much)

heavier than the Z ′, the latter would include those into all possible MSSM-like (pseudo)scalar

states pertaining to the Higgs sector of the BLR model, which, as discussed while commenting

Tab. 4.1, is notably different from those of the U(1)B−L scenario. In particular, in presence of CP

conservation, the following decay channels would be allowed in the BLR framework: Z ′ → A0h0,

A0H0 and H+H−. These are presented for the usual Z ′ benchmark, assuming cos(β − α) = 0.1

(so as to comply with LHC data from Higgs studies), in Fig. 4.6, for representative values of
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Figure 4.6: BRs of a Z ′ in the BLR model as a function of degenerate A0, H0 and H± masses.
Here, MZ′ = 3750 GeV and cos(β − α) = 0.1.

the Higgs boson masses. While the corresponding BRs are always subleading (of O(10−4) to

O(10−2)) with respect to those of the decays into SM fermions, the (on-shell) Z ′ cross section is

2.46 fb. For MH± ≈ 500 GeV, we see branching ratios of order 10−2, which leads to a production

cross section of σ(pp→ Z ′ → {A0H0, H+H−, A0h0}) ∼ O(0.01) fb. We may compare this to the

cross section for pair production in generic 2HDMs (ie not via this Z ′), which has been studied

extensively, such as in ref. [129]. In this reference, the full NLO calculation has been performed

for several benchmarks in 2HDM models. We see that production cross sections can vary by

up to an order of magnitude depending on the exact 2HDM scenario, but broadly we find for

200 .MHi . 500 GeV, where Hi = {MH0 , MA0 , MH±}, cross sections of

σ(gg → {A0H0, H+H−}) ≈ σ(qq̄ → {A0H0, H+H−}) ∼ O(1) fb,

σ(gg → A0h0) ∼ O(10) fb.
(4.31)

For a larger mass scenario, with similar masses for all extended Higgses of MH0 ≈MA0 ≈MH± ∼
700 GeV, we find smaller cross sections of

σ(qq̄ → {A0H0, H+H−}) ∼ O(0.1) fb,

σ(gg → A0h0) ∼ O(1) fb,
(4.32)

where we have omitted modes with small cross sections. The cross sections written above are

generally much larger than our scenario, so one will likely see a signal directly in these channels

before any detection via the Z ′ decay.
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4.7 Chapter Summary

SO(10) GUTs have the remarkable property that they predict RH neutrinos, making neutrino

mass inevitable. SO(10) is also a rank 5 gauge group, which implies that any rank preserving

GUT breaking sector will lead to an extra Abelian factor in the low energy effective theory, which

protects RH neutrinos from gaining mass. If the rank is broken at the TeV scale, then there will

be a Z ′ and massive RH neutrinos possibly observable at the LHC.

We have considered SO(10) motivated Z ′ models. In particular we have focussed on the

breaking pattern in Eq. 4.3, where the final breaking scale in Eq. 4.5, of the U(1)R × U(1)B−L

Abelian subgroup into the hypercharge U(1)Y of the SM, may be around the TeV scale without

spoiling gauge unification, within the accuracy of our one-loop analysis. The SUSY version of the

U(1)R×U(1)B−L (BLR) model permits a linear seesaw mechanism for neutrino mass generation.

After defining the BLR model particle content and giving the relevant Z ′BLR and Higgs cou-

plings, we have focussed on the discovery prospects of the Z ′BLR at the LHC, its decay into Higgs

states, and the forward-backward asymmetry as a diagnostic for discriminating it from the Z ′BL
of the U(1)Y × U(1)B−L model. It is noteworthy that the Z ′BL of the B − L model has purely

vector couplings to quarks and leptons, making the forward-backward asymmetry a powerful

discriminator, as we have discussed. In general, we have set out to test whether such models

can be disentangled at past (like LEP/Stanford Linear Collider (SLC)) and present (like LHC)

machines, assuming that the SUSY scale is higher than the Z ′BLR mass.

Having determined the parameters of the BLR model to one-loop accuracy at the TeV scale,

we have examined the feasibility of the LHC to extract a Z ′BLR signal. We have shown that Z ′BLR
mass values just below the current sensitivity of the LHC can easily be accessed by the end of

Run 2 in standard DY searches exploiting electron and muon final states. Furthermore, we have

made a detailed investigation of A∗FB (i.e., the reconstructed forward-backward asymmetry) of

these di-lepton final states and shown that it may be possible to distinguish the Z ′BLR of the

U(1)R × U(1)B−L from the Z ′BL of the U(1)Y × U(1)B−L case, assuming HL-LHC luminosities.

This is probably the main new result of this chapter.

We have also considered the Z ′BLR decays into MSSM-like Higgs bosons, which would include

Z ′BLR → A0h0, A0H0 and H+H−, but excluding possible decays into χ1
R and χ2

R bosons which

we assume to be too heavy to be produced. While the Higgs decay rates are always small, from

percent to fraction of permille level, compared to those into SM leptons and quarks, HL-LHC

luminosities should render the extraction of all of these signals feasible. Though such decays

are often neglected in the literature, they provide an additional Higgs production mechanism,

possibly the dominant mechanism on the Z ′BLR resonance at an e+e− collider, and a crucial test

of the gauge structure of the model in the 2HDM versions of the models that SUSY demands.
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Chapter 5

Modular Symmetry with Natural

Lepton Masses

The models we have discussed until now have all featured massive neutrinos, but these have not

been the main focus. In this chapter we will change direction and put the prediction of neutrino

masses and mixing at the forefront.

5.1 Overview of Modular Symmetry

Over the next two chapters, we will concern ourselves with the framework of modular symmetry.

These are a class of supersymmetric models which predict lepton masses and mixing angles

similarly to the usual discrete symmetry flavour models, but with this role now being played

by modular invariance. For a given modular level, N , the matter supermultiplets transform

under representations of the discrete group ΓN . The Yukawa couplings are modular forms and

the flavour symmetry breaking is solely from a single complex parameter, the modulus τ . The

usual models studied in the literature are the special case where the modular forms are constant

functions which collapses the whole construction to a supersymmetric flavour model invariant

under ΓN . This framework can be extremely predictive, where all neutrino mass ratios, lepton

mixing angles and Dirac and Majorana phases can be determined in a model with just two

parameters, the real and complex part of τ . Modular invariance has a long history in both string

and field theories. Target space modular invariance has been studied after the discovery that

the spectrum of a closed string when compactified on a circle of radius R is invariant under the

modular transformation τ → −1/τ . There have been many studies subsequently in numerous

areas, such as orbifold compactification [130–138], orientifold compactifications of Type II strings

[139–145] and magnetised extra dimensions [146, 147]. Modular invariant SUSY string theories

have been analysed in the late 80s [148, 149] for both global and local SUSY. In field theory

constructions, modular invariance has been involved in flavour problem model building [150–

156], and finally duality and modular invariance has been suggested as the underlying properties

of the quantum Hall effect [157–165].
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5.2 Introduction

Masses and mixing angles of elementary fermions are known with good precision and in the last

few years the progress in the lepton sector has been particularly impressive, with neutrino squared

mass differences and mixing angles that are attaining or approaching percent-level precision.

Despite such an advance on the experimental side, the fundamental principle, if any, ruling this

important aspect of fundamental interactions has remained elusive. In recent times a lot of

attention has been focused on neutrinos, since the relatively mild mass hierarchy and the large

mixing angles discovered through neutrino oscillations have not matched the expectations based

on the knowledge of the quark sector. Neutrinos led to a change of perspective, particularly

relevant when we look at the flavour puzzle in the light of a unified theory, where leptons and

quarks loose their individuality.

One of the few tools we have to address the flavour puzzle is the one based on flavour sym-

metries, which, however, comes with its own drawbacks. Flavour symmetries cannot be exact

symmetries [166] and Yukawa couplings are usually expressed as a power series in the symmetry

breaking terms, with many independent free variables, to the detriment of predictability. In

addition, such an approach typically makes use of several symmetry breaking parameters, with

specific orientation in flavour space, considerably complicating the construction. Finally, the

most popular flavour symmetries of the lepton sector constrain only mixing angles and phases,

leaving fermion masses essentially undetermined [12, 167–173].

Recently, modular invariance has been invoked as candidate flavour symmetry [174]. In

its simplest implementation a unique complex field, the modulus, acts as symmetry breaking

parameter, thus simplifying the vacuum alignment problem. Modular invariance, in the limit of

exact SUSY, completely determines the Yukawa couplings, to any order of the expansion in powers

of the modulus. Moreover, neutrino masses, mixing angles and phases are all related to each other

and, in minimal models, depend only on a few parameters. The formalism has been extended to

consistently include CP transformations [175] 1 and it can involve several moduli [149, 178]. The

idea that Yukawa couplings are determined by a set of moduli is clearly not new, and has been

naturally realized in the context of string theory [130–134], in D-brane compactification [139–

145], in magnetized extra dimensions [146, 147, 179], and in orbifold compactification [135–138].

Modular invariance has also been incorporated in early flavour models [150–154]. However, the

main advantage of the recent approach is that it can be implemented in a bottom-up perspective,

relying on the group transformation properties of modular forms of given weight and level.

Several models of lepton masses and mixing angles have been built at level 2 [180, 181],

3 [174, 182–185], 4 [186–188] and 5 [189, 190]. Extensions to quarks [191, 192] and to grand

unified theories [193, 194] have also been proposed. In most of the existing constructions, there

is a unique symmetry breaking parameter: the modulus itself. While this scenario is certainly

1The interplay between CP and modular invariance in string theory have been discussed in Ref. [155, 156] and
especially in Ref. [176, 177] where a unified picture of flavour, CP and modular invariance has been analyzed from
a string theory perspective.
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appealing since it minimizes the symmetry breaking sector, it does not yet provide a convincing

explanation of the charged lepton masses. The mass hierarchy is achieved by hand by introducing

one parameter for each charged lepton species. This can be intuitively understood by recognizing

that the dependence of modular forms on the modulus is nearly exponential and small neutrino

mass hierarchies and large mixing angles require a modulus with small imaginary part, which is

inadequate to generate the large hierarchies observed among electron, muon and tau masses. This

may indicate that the charged lepton sector requires a different description, perhaps in terms of

more moduli, a natural possibility in string theory.

In the present work we explore alternative descriptions of the charged lepton sector in a

modular invariant framework. We test the dependence of charged lepton masses on an additional

set of fields by including in the symmetry breaking sector both the modulus and ordinary flavons,

chiral multiplets invariant under gauge transformations carrying non-trivial representations of the

finite modular groups and non-trivial weights, to guarantee consistence with invariance under the

full modular group. This has been done at level 3 in Ref. [182] and at level 5 in Ref. [190]. We

will extend the investigation to level 4 and extend the possibilities studied so far al level 5. At

level 4 the charged lepton Yukawa couplings are tailored to depend only on the flavons, with the

hope of reproducing charged lepton masses with parameters similar in size, at least at the level

of order of magnitudes. We will let RH charged leptons be responsible for the observed mass

hierarchy, by assigning them different modular weights compensated by growing powers of the

flavons, much as in Ref. [152–154]. At level 5 we will take a more radical departure from the

existing constructions and we will assign the RH charged leptons to an irreducible triplet of Γ5,

to treat them more closely to their LH partners. In our models only the neutrino sector depends

non-trivially on the modulus. As done in Ref. [182], we will not attempt to dynamically select

the vacuum configurations in the symmetry breaking sector. We have no compelling indications

so far that Nature follows a dynamical principle to set the cosmological constant or the EW scale.

We thus treat the VEVs as free parameters, to be varied to match the experimental data.

The models are built aiming at minimizing the number of free parameters. So far few pre-

dictive models use four independent parameters to describe neutrino masses, mixing angles and

phases and a variety of models achieve that with five free parameters, including real and imag-

inary part of the modulus. As we will see the models we have been able to construct make use

of at least five parameters and can be considered next-to-minimal. In our attempts we have also

incorporated CP invariance, to be spontaneously broken by the modulus and by the flavons. We

present realistic examples where neutrino masse are described both in terms of the Weinberg

operator and via the type I seesaw mechanism.

Our chapter is organized as follows. In section 2 we briefly review the formalism of modular

invariant supersymmetric theories applied to the lepton sector and we will describe our models.

In section 3 we present the data, describe our fit and we show the results of the fit and the

predictions of the models. Finally in 4 we draw our conclusion.
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5.3 The Models

We brefly review the formalism of modular invariant supersymmetric theories [148, 149]. The

models analyzed here are supersymmetric and gauge invariant under SU(3)×SU(2)×U(1). We

are mainly interested to the Yukawa interactions, described by the action:

S =

∫
d4xd2θd2θ̄ K(Φ, Φ̄) +

∫
d4xd2θ w(Φ) + h.c. , (5.1)

where K(Φ, Φ̄), the Kähler potential, is a real gauge-invariant function of the chiral superfields

Φ and their conjugates and w(Φ), the superpotential, is a holomorphic gauge-invariant function

of the chiral superfields Φ. The chiral superfields Φ = (τ, ϕ(I)) include the modulus τ , a dimen-

sionless chiral supermultiplet, and the remaining chiral supermultiplets, ϕ(I). Under the modular

group Γ the modulus transforms as

τ → γτ ≡ aτ + b

cτ + d
, (5.2)

with a, b, c and d integers satisfying ad − bc = 1. The modular group Γ is an infinite discrete

group, generated by the elements S and T satisfying S2 = (ST )3 = 1. They act as

τ → −1

τ
(S) τ → τ + 1 (T ) . (5.3)

The transformation properties of ϕ(I) are fully specified by the data (kI , N, ρ
(I)), where kI (the

weight) is a real number, N (the level) is an integer and ρ(I) is a unitary representation of the

quotient group ΓN = Γ/Γ(N). Γ(N) is a principal congruence subgroup of Γ and the level N

can be kept fixed in the construction. The multiplets ϕ(I) transform as

ϕ(I) → (cτ + d)kIρ(I)(γ)ϕ(I) . (5.4)

We choose a minimal form of the Kahler potential, invariant under Eqs. (5.2, 5.4) up to Kahler

transformations:

K(Φ, Φ̄) = −h log(−iτ + iτ̄) +
∑
I

(−iτ + iτ̄)−kI |ϕ(I)|2 , (5.5)

where h is a positive constant. Concerning the superpotential w(Φ), its expansion in power series

of the supermultiplets ϕ(I) reads:

w(Φ) =
∑
n

YI1...In(τ) ϕ(I1)...ϕ(In) . (5.6)
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For the n-th order term to be modular invariant the functions YI1...In(τ) should be modular forms

of weight kY (n) and level N , transforming in the representation ρ of ΓN :

YI1...In(γτ) = (cτ + d)kY (n)ρ(γ) YI1...In(τ) , (5.7)

satisfying the conditions:

1. The weight kY (n) should compensate the overall weight of the product ϕ(I1)...ϕ(In):

kY (n) + kI1 + ....+ kIn = 0 . (5.8)

2. The product ρ× ρI1 × ...× ρIn contains an invariant singlet.

The above requirement is very restrictive. Indeed, for each level N and for each even non-negative

weight k, there is only a finite number of linearly independent modular forms 2. They span the

linear space Mk(Γ(N)). Forms with vanishing weight are constant, that is independent from τ .

We will analyze models with N = 4 and 5. The dimension ofMk(Γ(4)) is 2k+1, whileMk(Γ(5))

has dimension 5k+ 1. Modular forms of weight 2 generate the whole ring of modular forms. The

five independent modular forms of level 4 and weight 2 have been constructed in Ref. [186]. They

decompose as 2 + 3′ under the finite group Γ4 ≡ S4. The eleven independent modular forms of

level 5 and weight 2 have been constructed in Ref. [189] and [190]. They decompose as 3+3′+5

under Γ5 ≡ A5. In Appendix D.1 and D.2 we list them.

The chiral multiplets ϕ(I) comprise three generations of lepton singlets Ec and doublets L,

the Higgses Hu,d, and gauge invariant flavons ϕ. We will consider both the case where neutrino

masses arise through the Weinberg operator and the case where neutrinos get their masses through

the seesaw mechanism. In the latter framework also three generations of gauge singlets N c are

included. In our conventions both the modulus τ and the flavon ϕ are dimensionless fields. The

correct dimensions can be recovered by an appropriate rescaling.

Invariance under CP can be incorporated in a consistent way [175] by requiring:

τ
CP−−→ −τ∗ , (5.9)

up to a modular transformation. On the chiral multiplets ϕ(I) a CP transformation acts as

ϕ(I) CP−−→ X(I)[ϕ
(I)]∗ , (5.10)

where X(I) is a matrix satisfying the consistency conditions:

X(I)[ρ
(I)(γ)]∗X−1

(I) = ρ(I)(γ′) , (γ, γ′) ∈ Γ . (5.11)

In a basis where all the matrices ρ(I)(γ) are symmetric, these conditions are always solved by

2Recently modular forms of general integer weights and their transformation properties under the double cov-
ering of finite modular groups have been analyzed in Ref. [195].
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X(I) = 1. This is the case of our choice of basis at level 5. At level 4 our basis does not enjoy

this property and a non-canonical solution for X(I) is listed in Appendix A.

5.3.1 Level 4 Models

The group Γ4 has order 24 and is isomorphic to S4. Its irreducible representations are 1, 1′,

2, 3 and 3′. It is generated by two elements S and T satisfying the relations S2 = (ST )3 =

T 4 = 1. In Appendix D.1 we detail the explicit form of the generators for the irreducible

representations and the relevant CG coefficients used in this chapter. The particle content,

weights and representations of our models are shown in Tab. 5.1.

Ec1 Ec2 Ec3 N c L Hu,d ϕ ϕ′

Γ4 ≡ S4 1 1 1 3 3 1 3 1′

kI (Seesaw) k − 3kϕ k − 2kϕ k − kϕ k −k 0 kϕ kϕ′

kI (Weinberg) −k − 3kϕ −k − 2kϕ −k − kϕ − k 0 kϕ kϕ′

Table 5.1: Chiral supermultiplets, transformation properties and weights. Weights for Eci and L
depend on whether neutrinos get their masses from the seesaw mechanism or from the Weinberg
operator. A possible choice leading to the superpotential given in the text is k = −5/3, kϕ′ =
+4/3 and kϕ = +3/2. As a consequence, the neutrino sector depends only on ϕ′ and the charged
lepton sector depends only on ϕ.

With the above assignment the superpotential reads

w = wh + we + wν , (5.12)

where wh, we, wν describe the Higgs sector, the charged lepton sector and the neutrino sector,

respectively. Since the Higgs sector plays no role in our discussion, we neglect wh. We set

Hu = Hd = 1 in the superpotential, but we keep track of the correct dimension of the operators.

In the neutrino sector wν depends on the mass generation mechanism. When neutrino masses

originate from the Weinberg operator we have:

wν = − 1

Λ

[
(ϕ′LL Y2)1 + ξ(ϕ′LL Y3′)1

]
, (5.13)

where Λ stands for the scale associated to lepton number violation, (...)r denotes the r represen-

tation of Γ4 and ξ is a free parameter. When light neutrinos get their masses from the seesaw

mechanism, the terms of wν bilinear in the matter multiplets L and N c read

wν = −y0(N cL)1 + Λ
[
(ϕ′N cN c Y2)1 + ξ(ϕ′N cN c Y3′)1

]
+ ... (5.14)

Dots denote terms containing three or more powers of the matter fields, having no impact on
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our analysis. A truly minimal model would involve a single invariant in the neutrino sector.

For instance, a suitable assignement of weights can allow the unique term wν = −(LL Y2)1/Λ

(Weinberg) or wν = −(N cN c Y2)1Λ (seesaw). We have studied these possibilities, but we found

no viable choice of parameters which may reproduce data.

At energies below the mass scale Λ for both models we have, in a matrix notation:

wν = − 1

Λ
LTWL+ ... , (5.15)

whereW denotes a matrix in generation space depending on the 5 independent level 4 and weight

+2 modular forms Yi(τ) (i = 1, ..., 5). We list these results in table 5.2, where the VEV of ϕ′

has been absorbed in Λ, Yi stands for Yi(τ), and the indices W,S distinguish neutrino masses

originating from the Weinberg operator or from the seesaw mechanism.

Weinberg, WW =


0 Y1 −Y2

Y1 −Y2 0

−Y2 0 Y1

+ ξ


2Y3 −Y5 −Y4

−Y5 2Y4 −Y3

−Y4 −Y3 2Y5



Seesaw, WS =
y2

0

2


1 0 0

0 0 1

0 1 0

W−1
W


1 0 0

0 0 1

0 1 0


Table 5.2: Relevant matrices in the neutrino sector of the superpotential in Γ4 models.

The light neutrino mass matrix mν is

mν =W v2

Λ
sin2 β̂ , (5.16)

where tan β̂ is the ratio of VEVs, 〈Hu〉 / 〈Hd〉. So far, the results in the neutrino sector would not

vary had we instead defined N c and L to transform as a 3’, rather than a 3 under Γ4. However,

the following discussion in the charged lepton sector requires the properties as defined in Tab.

5.1. The superpotential we for the charged lepton sector reads:

we = −aEc1(L ϕ3)1 − a′Ec1(L ϕ3)′1 − bEc2(L ϕ2)1 − cEc3(L ϕ)1 ≡ −EcTYeL . (5.17)
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In the last equality we use a vector notation and

Ye =



a(ϕ3
2 − 2ϕ3

1 + ϕ3
3) 3a(ϕ1ϕ

2
2 − ϕ2ϕ

2
3) −3a(ϕ2

2ϕ3 − ϕ1ϕ
2
3)

+a′(ϕ3
1 + 2ϕ1ϕ2ϕ3) +a′(ϕ2

1ϕ3 + 2ϕ2ϕ
2
3) +a′(ϕ2

1ϕ2 + 2ϕ2
2ϕ3)

b(ϕ2
1 − ϕ2ϕ3) b(ϕ2

2 − ϕ1ϕ3) b(−ϕ1ϕ2 + ϕ2
3)

cϕ1 cϕ3 cϕ2


. (5.18)

There are two independent Γ4 invariants that can be built out of L and ϕ3, hence the two

independent parameters a and a′. The dependence on the flavon supermultiplet ϕ is fixed by the

weight assignment. There is no dependence on the modulus τ , since the bilinears (Ec1L,E
c
2L,E

c
3L)

have weight (−3kϕ,−2kϕ,−kϕ). Taking, for instance, kϕ = +3/2, these weights cannot be

matched by modular forms. The charged lepton mass matrix me reads

me = Ye
v√
2

cos β̂ . (5.19)

Notice that if the flavon ϕ is aligned along the (0, ϕ2, 0) direction, Ye is diagonal and the charged

lepton masses are given by:

me =
a√
2
vϕ3

2 cos β̂ , mµ =
b√
2
vϕ2

2 cos β̂ , mτ =
c√
2
vϕ2 cos β̂ . (5.20)

Hence, a mass hierarchy can be generated by |ϕ2| < 1, even with a, b and c of the same order.

In our numerical analysis we will treat the modulus τ and the VEV of ϕ as free parameters.

Beyond that, the parameters controlling lepton masses and mixing angles are the overall scale Λ

and the five dimensionless constants ξ, a, a′, b and c. Without loss of generality, we can require

a, a′, b and c to be real, since their phases are always unphysical. On the contrary, the phase of

ξ cannot be removed by a field redefinition. We will consider two options, either requiring the

theory to be invariant under CP at the Lagrangian level, or not. In the former case, using the CP

transformation given in Appendix A, we find that ξ should be real and CP can be spontaneously

broken by the VEVs of τ and/or ϕ. In the latter case, we will treat ξ as a complex free parameter.

The dependence on tan β̂ can be absorbed into the above parameters and will not be explicitly

shown when reporting numerical values.

5.3.2 Level 5 Models

The irreducible representations of the group Γ5 ≡ A5 are 1, 3, 3′, 4 and 5. Its generators are

S and T , satisfying S2 = (ST )3 = T 5 = 1. In appendix D.2 we specify the explicit form of the

generators for each representation, together with the relevant Clebsh-Gordan coefficients. Here,

we construct modular-invariant models in which all leptons are collected into 3 or 3′ multiplets

of A5, containing the three generations of each type of field. We take the neutrino sector to be
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minimal, it should only depend on the modulus τ and an overall scale. Modular forms will not

appear in the charged-lepton sector, which instead will contain two extra flavons. In table 5.3,

we show the assignments of representations and weights that we consider.

Ec N c L Hu,d ϕ χ

Γ5 ≡ A5 ρL ρN ρL 1 ρL 1

kI −3− kL kN kL 0 3/2 3/2

ρN ρL kN kL

Weinberg
– 3 – -1

– 3′ – -1

Seesaw

3 3 -1 1

3′ 3′ -1 1

3 3′ 0 -2

3′ 3 0 -2

Table 5.3: Chiral supermultiplets, transformation properties and weights for the level-5 models.

Setting Hu = Hd = 1, the neutrino sector wν of the superpotential is, depending on the choice

Weinberg vs. Seesaw and (ρL = ρN ) vs. (ρL 6= ρN ):

wν =


− 1

Λ(LLY5)1 Weinberg

−y0(N cL)1 + Λ(N cN c Y5)1 Seesaw, ρL = ρN

−y0(N cLY5)1 + Λ(N cN c)1 Seesaw, ρL 6= ρN

(5.21)

The case of ρL ∼ ρN ∼ 3 has been studied in detail in Ref. [196] and so not discussed here.

Below the energy scale Λ, wν can always be written as

wν = − 1

Λ
LTWL, (5.22)

with W a 3 × 3 matrix, whose explicit form for each case can be read from table 5.4, using the

equation W =
y2
0
2 YTν W−1

W Yν for the seesaw case. The light neutrino mass matrix mν can be

obtained from W as in Eq. 5.16.

The charged-lepton sector we of the superpotential is

we = α(EcL)1χ
2 + β(EcL)3χϕ+ γ(EcL)5(ϕ2)5 + δ(EcL)1(ϕ2)1 ≡ −EcTYeL . (5.23)

In what follows we set the flavons to their vevs and denote them by χ, ϕi. We absorb χ 6= 0,

ϕ1 6= 0 and the Lagrangian parameter δ into α, β, γ, ϕ2 and ϕ3. Once this is done, the matrix

93



Weinberg, ρL = 3

kL = −1
W =


2Y1 −

√
3Y5 −

√
3Y2

−
√

3Y5

√
6Y4 −Y1

−
√

3Y2 −Y1

√
6Y3


Weinberg, ρL = 3′

kL = −1
W =


2Y1 −

√
3Y4 −

√
3Y3

−
√

3Y4

√
6Y2 −Y1

−
√

3Y3 −Y1

√
6Y5


Seesaw, ρL = ρN = 3

kL = 1, kN = −1
WW =


2Y1 −

√
3Y5 −

√
3Y2

−
√

3Y5

√
6Y4 −Y1

−
√

3Y2 −Y1

√
6Y3

, Yν =


1 0 0

0 0 1

0 1 0


Seesaw, ρL = ρN = 3′

kL = 1, kN = −1
WW =


2Y1 −

√
3Y4 −

√
3Y3

−
√

3Y4

√
6Y2 −Y1

−
√

3Y3 −Y1

√
6Y5

, Yν =


1 0 0

0 0 1

0 1 0


Seesaw, ρL = 3, ρN = 3′

kL = −2, kN = 0
WW =


1 0 0

0 0 1

0 1 0

, Yν =


√

3Y1 Y5 Y2

Y4 −
√

2Y3 −
√

2Y5

Y3 −
√

2Y2 −
√

2Y4


Seesaw, ρL = 3′, ρN = 3

kL = −2, kN = 0
WW =


1 0 0

0 0 1

0 1 0

, Yν =


√

3Y1 Y4 Y3

Y5 −
√

2Y3 −
√

2Y2

Y2 −
√

2Y5 −
√

2Y4


Table 5.4: Relevant matrices in the neutrino sector of the superpotential in Γ5 models.

Ye takes the form

Ye =


α+ 4γ(1− ϕ2ϕ3) (β + 6γ)ϕ3 (−β + 6γ)ϕ2

(−β + 6γ)ϕ3 6γϕ2
3 α+ β − 2γ(1− ϕ2ϕ3)

(β + 6γ)ϕ2 α− β − 2γ(1− ϕ2ϕ3) 6γϕ2
2

 . (5.24)

The charged lepton mass matrix me has the same form as in Eq. (5.19), me = Yev cos β̂/
√

2.

Setting ϕ2 = ϕ3 = 0 and switching the last two rows gives a diagonal me, with eigenvalues

ma = (α+ 4γ)
v√
2

cos β̂ , mb = (α− β − 2γ)
v√
2

cos β̂ , mc = (α+ β − 2γ)
v√
2

cos β̂ .

(5.25)

As for the Γ4 case, we treat τ and the VEVs ϕ2,3 as parameters to be freely varied in our fit.

The remaining parameters are the overall scale Λ and the dimensionless constants α, β and γ.
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By enforcing CP conservation, the latter three are required to be real. The dependence on tan β̂

can be absorbed into these parameters.

5.4 Results

In this section we identify which scenarios we analyse, state the experimental data used and report

the results of a chi-square analysis with the predictions of the models. In table 5.5, we list the

seven scenarios which reproduce the data well, with a reasonable χ2
min, red and minimum number

of parameters. We will present results only for these scenarios, omitting those presenting a high

χ2
min, red or a large number of parameters. We identify the different cases with a code referring

to the modular level Γ4 ≡ S4 or Γ5 ≡ A5 “4 (5)”; Weinberg or Seesaw “W (S)”; CP conserving

or violating “C (V)”. For the A5 Weinberg scenario, we add the transformation property of the

lepton triplet, whether this transforms as a 3, or 3’ “3 (3p)”.

We present the results in this section for which τ is not restricted to be in the fundamental

domain, |Re(τ)| ≤ 1/2, |τ | ≥ 1. However, in appendix D.3 we also include a full list of modular

transformations to the set of input parameters which transforms τ into the fundamental region,

as well as the explicit numerical values for these transformed parameters, which will yield the

same set of physical observables. In this main text we list the non-fundamental region input

parameters to avoid confusion stemming from spurious additional imaginary parameters which

are just an artefact of a basis transformation.

Model Operator CP conservation Charged Lepton sector Case Identifier

S4 Weinberg ��CP Diagonal 4WV

S4 Seesaw ��CP Diagonal 4SV

S4 Weinberg CP Modified 4WC

S4 Seesaw CP Modified 4SC

A5 Weinberg, ρL = 3 CP Modified 5WC3

A5 Weinberg, ρL = 3′ CP Modified 5WC3p

A5

Seesaw,
CP Modified 5SC

ρL = 3, ρN = 3′, Im(ϕ2,3) = 0

Table 5.5: A list of the seven scenarios presented with good fits to data.

5.4.1 Fit to Leptonic Data

In Tab. 5.6, we list the experimental data and errors we use to calculate our pulls and χ2
min, red

values. For the Yukawa couplings, we use the renomalised values at mZ scale, as detailed in

Ref. [197]. For the neutrino oscillation data, we use the most recent results from the NuFit

collboration, Ref. [198]. For the calculation of our χ2
min,red, we assume the conservative estimate

of gaussian errors, unless explicitly stated otherwise. Even though current data seem to prefer
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normal to inverted neutrino MO, we do not weight this option in our χ2 function.

We show our results for all the considered Γ4 and Γ5 cases in the three tables contained in

Tab. 5.7 and 5.8 respectively. For each case we present the point in parameter space which

minimises the χ2, as a result of a numerical minimisation procedure. In the first table, one finds

the predictions and, in parentheses, pulls to the six observed neutrino parameters: the two mass

squared differences, ∆m2
21, ∆m2

3l (where the latter refers to ∆m2
32 > 0 for NO and ∆m2

31 < 0 for

IO), three PMNS angles, θ12, θ13, θ23, and CP violating phase, δ; as well as the final χ2
min, red.

In the second table, we list the predictions for each scenario for the: three individual neutrino

masses, m1, m2, m3; Majorana phases α21, α31; neutrinoless double beta decay parameter, mee;

and MO. In the third table we specify the input parameters used to generate the best fit point

discussed. In neither Γ4, nor Γ5 do we present the pulls from the Yukawa of the charged lepton

sector, as we find sufficient freedom for every considered case to reproduce the observed values

with negligible pulls (∆χ2 < 0.01).

ye(mZ) 2.794745(16)× 10−6

yµ(mZ) 5.899863(19)× 10−4

yτ (mZ) 1.002950(91)× 10−2

IO NO

∆m2
21

10−5 eV2 7.39(21) 7.39(21)

∆m2
3`

10−3 eV2 −2.512(33) +2.525(32)

sin2 θ12 0.310(13) 0.310(13)

sin2 θ13 0.02263(66) 0.02240(66)

sin2 θ23 0.582(17) 0.582(17)

δ/π 1.56(15) 1.21(19)

Table 5.6: Left panel: charged lepton Yukawa couplings renormalized at the mZ scale, from Ref.
[197]. Right panel: neutrino oscillation data, from Ref. [198]. The squared mass difference ∆m2

3`

is equal to ∆m2
31 for normal ordering and ∆m2

32 for inverted ordering. Errors, shown in brackets,
are the average of positive and negative 1σ deviations. The χ2 function is not gaussian along the
sin2 θ23 direction and our definition overestimates the error.
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5.4.2 Numerical Results at Level 4

To minimize the number of effective parameters, we first analyze the case of diagonal charged

lepton sector. This can be realized by fixing the VEV of the flavon ϕ along the direction (0, ϕ2, 0).

All terms depending on a′ drop. The remaining input parameters a, b and c, can be fixed to

exactly reproduce the charged lepton masses:

(a, b, c) =

√
2

v cosβ

(
me

ϕ3
2

,
mµ

ϕ2
2

,
mτ

ϕ2

)
. (5.26)

Due to the hierarchical pattern in powers of the VEV, these input parameters may be all of

similar order by fixing, for example, |ϕ2| = 1/100, which leads to

a cosβ ' 2.8, b cosβ ' 5.9, c cosβ ' 1. (5.27)

We are left with 3 Lagrangian parameters, (Λ, Re(ξ), Im(ξ)) and the (complex) modulus VEV τ .

Choosing the neutrino mass generated by the Weinberg operator (denoted case “4WV”), we get

a good agreement between the model and the data by the parameter choice shown in Tab. 5.7,

with a χ2
min, red ∼ 0.6. We also present results for the same scenario, but now with neutrino mass

generated by a type-I seesaw (denoted case “4SV”), with a χ2
min, red ∼ 1.1.

We may further reduce the number of free parameters by imposing that the Lagrangian be CP

conserving. This amounts, in our basis, to requiring real Lagrangian parameters, i.e. Im(ξ) = 0.

We found no feasible solutions with this further restriction keeping the charged lepton sector

diagonal as before. Thus we relax this requirement and at the same we set a′ = 0. Though a′

is a legitimate parameter of our model, we can safely neglect it in the limit of nearly diagonal

charged lepton sector. Indeed, in such a limit, the contribution to lepton mixing is dominated

by the elements of Ye below the diagonal, controlled by the parameters b and c. We find a

good fit to data allowing small perturbations (in units of ϕ2) of Im(ϕ1) = −Im(ϕ3) 6= 0. Along

this particular direction CP is spontaneously broken, see Appendix A, and the charged lepton

sector contributes to the physical phases of the PMNS matrix. However, the main motivation

for choosing such a direction is to show that it is possible to achieve a good agreement with

the data by turning on a minimum number of extra parameters. We present our results for this

scenario for both the Weinberg case (denoted “4WC”), with χ2
min, red ∼ 3.2 and the seesaw case

(denoted “4SC”), with χ2
min, red ∼ 0.3. In both CP conserving and violating scenarios, neutrino

masses from the Weinberg operator have inverted ordering, while those coming from the seesaw

mechanism are normal ordered.

In our setup we were unable to describe both the neutrino masses and the mixing matrix

with fewer than five parameters. On the other hand the overall results and predictions are

quite stable with respect to the details of the model. The quality of the fit is quite similar in

all cases analysed and the results mainly depend on the choice between the Weinberg operator

and the seesaw mechanism. In both cases the neutrino mass spectrum is nearly degenerate and
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value (pull)

Case ∆m2
21 · 105 eV−2 ∆m2

3l · 103 eV−2 sin2 θ12 sin2 θ13 sin2 θ23 δ/π χ2
min, red

4WV 7.39 (0) -2.517 (-0.2) 0.310 (+0.0) 0.02262 (-0.0) 0.583 (+0.1) 1.68 (+0.8) 0.6

4SV 7.39 (0) 2.527 (+0.1) 0.310 (+0.0) 0.02241 (+0.0) 0.580 (-0.1) 1.40 (+1.0) 1.1

4WC 7.39 (0) -2.512 (-0.0) 0.310 (+0.0) 0.02264 (+0.0) 0.580 (-0.1) 1.83 (+1.8) 3.2

4SC 7.39 (0) 2.526 (+0.0) 0.317 (+0.5) 0.02237 (-0.1) 0.580 (-0.1) 1.25 (+0.2) 0.3

value

Case m1 · 102 eV−2 m2 · 102 eV−2 m3 · 102 eV−2 α21/π α31/π mee · 102 eV−1 MO

4WV 6.56 6.61 4.31 0.21 1.76 6.18 IO

4SV 4.23 4.32 6.57 0.22 0.54 4.01 NO

4WC 6.33 6.39 3.96 1.88 1.69 6.20 IO

4SC 4.26 4.35 6.59 0.11 0.30 4.25 NO

Input parameters

Case Re(τ) Im(τ) Re(ξ) Im(ξ) Im(ϕ3)=-Im(ϕ1) a b c 1/Λ (eV−1)

4WV 1.155 0.9797 -2.536 -0.07654 - 2.795 5.900 1.003 0.007395

4SV 0.8436 0.9968 -2.600 0.1151 - 2.795 5.900 1.003 0.7672

4WC 2.530 0.5380 -0.1063 - -0.001063 2.647 5.899 0.9918 0.003799

4SC 2.506 0.5905 -2.595 - 0.001081 2.642 5.899 0.9914 1.301

Table 5.7: Results of the fit to lepton data for the Γ4 models. In the top panel, best values and
pulls for the observables used in the fit. Also the minimum χ2 is shown. In the middle table,
predictions of the models: neutrino masses, phases and parameter mee relevant for neutrinoless
double beta decay. In the bottom panel input parameters at the minimum of the χ2 function. We
have fixed ϕ2 = 0.01 for all four cases. To simplify the notation, the factors cos β̂ and 1/ sin2 β̂
have been omitted from a, b, c and Λ, respectively.

the lightest neutrino mass is around 40 meV. When we adopt the Weinberg operator (seesaw

mechanism) mee is close to 60 (40) meV. A normally ordered spectrum (corresponding to the

seesaw mechanism) predicting a relatively high mee parameter seems a common feature to most

of the models enjoying modular invariance and providing a good fit to the data. The neutrino

masses in our model are slightly heavier than those of the level 4 models studied in Ref. [186,

187].
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5.4.3 Numerical Results at Level 5

We now turn to the models at level 5. Unlike in level 4, all the examples listed here produce a

CP conserving Lagrangian. In our basis, this requirement is that all Lagrangian parameters be

real. The charged lepton masses are essentially controlled by α, β, γ, while neutrino masses and

mixing angles are mainly governed by Λ, τ and ϕ. We fix ϕ1 = 1 and, to reduce the number

of parameters, we restrict the two VEVs of (ϕ2, ϕ3) to real values. Neutrino properties are thus

described by a total of five parameters and CP violating phases are entirely due to the neutrino

sector, since CP is preserved by a real ϕ VEV. Here again this choice is mainly dictated by the

desire to match the data using a small number of parameters.

As we can see from Tab. 5.8, we get the best agreement with data when neutrino masses

come from the Weinberg operator, with ρL ∼ 3 (denoted case “5WC3”), for which we get a

χ2
min, red ∼ 1.1. The τ value is very close to the border of the fundamental region (see also

Tab. D.2 in Appendix C), where CP is conserved. This result strongly supports the indication

that, in a CP invariant model, even a tiny departure from the region of moduli space where CP

is preserved can cause large observable CP -violating effects [175]. We also notice that all the

components of the multiplet ϕ are of the same order, indicating that the charged lepton mass

matrix is far from the diagonal form, related to ϕ ∝ (1, 0, 0). This is a new feature, since in

the level 4 models discussed here and in the level 3 model of Ref. [182], the contribution to the

lepton mixing of the charged lepton mass matrix (depending on ordinary flavons) is small. The

model predicts mee ≈ 27 meV. The MO is inverted, as in all previous cases dealing with the

Weinberg operator. An exception is provided by the other Weinberg case at level 5 in which

ρL ∼ 3′ (denoted “5WC3p”), which predicts normal ordering at the price of a considerably worse

χ2
min, red ∼ 12.6. The largest pulls are the one in δ, which deviates by more than 3σ and by

sin2 θ13, about 1σ below the current best value.

We have also explored this model in a seesaw scenario, in which ρL ∼ 3, ρN ∼ 3′ (denoted

“5SC”). The agreement with data is not excellent and our estimate of the χ2
min, red is 11.1. The

main contributions to the χ2
min, red come from δ, which deviates by more than 2σ and by sin2 θ23,

about 2σ below the current best value. For sin2 θ23 ' 0.45 we do not use the nominal pull, since

the error is non-gaussian. We assess the contribution to the χ2
min, red directly using the results

from NuFit. The neutrino mass spectrum has normal ordering. Specific to the seesaw realization

are the prediction of θ23 in the first octant and of a vanishing m1. The latter result has no

counterpart in any model based on modular invariance so far investigated. The presence of a

vanishing eigenvalue is independent from the choice of the modular parameter τ and is due to

the fact that the determinant of the combination YTν W−1
W Yν vanishes identically for the chosen

representations. Though we do not have a full analytic proof of such behavior, we have checked

it by means a q-expansion of the modular forms Yi (i = 1, ..., 5): the determinant is proportional

to a power of q that grows with the order at which we stop the q-expansion of Yi. The vanishing

of the determinant probably reflects one of the many algebraic identities involving lowest weight

modular forms. As a consequence mee ≈ 1.3 meV is rather small.
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value (pull)

Case ∆m2
21 · 105 eV−2 ∆m2

3l · 103 eV−2 sin2 θ12 sin2 θ13 sin2 θ23 δ/π χ2
min, red

5WC3 7.39 (0) -2.512 (+0.0) 0.312 (+0.1) 0.02260 (-0.0) 0.592 (+0.6) 1.69 (+0.9) 1.1

5WC3p 7.39 (0) 2.525 (+0.0) 0.309 (-0.1) 0.0217 (-1.2) 0.586 (+0.3) 0.57 (-3.3) 12.6

5SC 7.39 (0) 2.522 (-0.1) 0.292 (-1.4) 0.0228 (+0.5) 0.449 (-2.0*) 1.63 (+2.2) 11.1*

value

Case m1 · 102 eV−2 m2 · 102 eV−2 m3 · 102 eV−2 α21/π α31/π mee · 102 eV−1 MO

5WC3 4.94 5.01 0.0942 0.70 0.94 2.7 IO

5WC3p 2.82 2.95 5.76 0.38 0.26 2.3 NO

Case m1 · 102 eV−2 m2 · 102 eV−2 m3 · 102 eV−2 (α21 − α31)/π mee · 102 eV−1 MO

5SC 0 0.860 5.02 1.68 0.13 NO

Input parameters

Case Re(τ) Im(τ) Re(ϕ2) Im(ϕ2) Re(ϕ3) Im(ϕ3) α · 103 β · 103 γ · 103 1/Λ (eV−1)

5WC3 -0.01882 0.9929 0.4260 - 0.8030 - 3.018 3.927 -0.4484 0.008180

5WC3p -0.09033 0.2190 0.4244 - 0.01694 - 3.259 4.311 -0.8036 0.0006303

5SC -0.3615 0.2412 0.04759 - 0.3731 - 3.368 4.411 -0.8126 0.0001639

Table 5.8: Results of the fit to lepton data for the A5 models. For the 5SC case, the predicted
lightest neutrino mass is m1 = 0 and so only one physical Majorana phase exists, which appears
in the combination (α21 − α31) in neutrinoless double beta decay and hence we report only this
combination. We have fixed ϕ1 = 1 for all three cases. *Actual NuFit 4.0 error on sin2 θ23

measurement (for NO) used, rather than assumed Gaussian error. To simplify the notation, the
factors cos β̂ and 1/ sin2 β̂ have been omitted from α, β, γ and Λ, respectively.

In all these cases we find that the spread of the parameters α, β, γ is less than one order of

magnitude, much less than the one among the charged lepton masses. This statement requires

a specification since, from the matrix of charged lepton Yukawa couplings, eq. (5.24), for α, β,

γ of the same order and generic VEVs ϕi (i = 1, 2, 3), there is no evident preferred pattern of

eigenvalues. Indeed, though the best fit values of α, β, γ are of the same order, some amount

of tuning is needed to correctly reproduce the masses. This can be appreciated from eq. (5.25),

the unrealistic case of diagonal Ye. Indeed, close to our best fit point, the combinations α+ 4γ,

α− β− 2γ and α+ β− 2γ are of order 1, 0.01 and 10 respectively, revealing a hidden conspiracy

of the input parameters. Our approach and the related results significantly differ from those of
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refs. [189, 190] where several modular invariant models at level 5 have been analysed, under the

assumption that the charged lepton sector be always diagonal [189] or diagonal when depending

on ordinary flavons [190]. We have also looked for a better agreement with data in the seesaw

case by relaxing the requirement of a real (ϕ2, ϕ3). At the price of more parameters, we obtain

an better fit to data, though we do not present this example explicitly.

5.5 Chapter Summary

Modular invariance has been proven to offer a promising framework to describe lepton masses

and mixing angles. In minimal models masses, mixing angles and phases are all predicted in

terms of the modulus in addition to a few free parameters. Despite these nice features, neutrinos

and charged leptons typically require different realizations to reproduce the sizeable hierarchy

among electron, muon and tau masses. In most of the existing models RH leptons are assign to

singlets of the modular group to allow a sufficient number of free parameters, tuned to match

the charged lepton masses. We think that this aspect might indicate the need for a different

description, perhaps in terms of other moduli than the one controlling the neutrino sector. In a

simple-minded approach, not aiming at a fundamental description but rather to test the ground

for a more extensive analysis, we have explored alternative realisations of the charged lepton

sector in modular invariant models at levels 4 and 5.

At level 4 we have shown that it is possible to ascribe the charged lepton mass hierarchy to

the weight difference in the right handed sector, similar to what occurs in Froggatt-Nielsen (FN)

models, wherein the role of the weights is played by the charges. At level 5 we have assigned

both RH and LH leptons to irreducible triplets of the finite modular group Γ5. Moreover we have

shown that also at level 5 the three parameters required to describe charged lepton masses can

be almost within the same order of magnitude, though requiring some degree of tuning. In all

models considered here we do not need a strong hierarchy at the level of Lagrangian parameters

to reproduce charged lepton masses.

We built several models along these lines, analysing neutrino masses coming either from the

Weinberg operator or from a type I seesaw, and we have selected seven scenarios which produce

a reasonable fit to data, four of them at level 4 and three at level 5. We looked for minimal

realisations, in terms of the lowest possible number of free parameters. Among them we also

count the vacuum expectation values of both modulus and flavons, which we varied in order to

maximise the agreement with the data. Three parameters are in a one-to-one relation with the

charged lepton masses. Besides them, all of our scenarios make use of five parameters, always

including an overall scale Λ, and real and imaginary parts of τ . In these cases we get four

predictions: the absolute neutrino mass scale and all CP violating phases, which allow one to pin

down the value of mee, relevant to neutrinoless double beta decay. So far few models based on

modular invariance perform better, managing to fit the neutrino data with four free parameters.

In all cases analysed at level 5 and in two cases at level 4 we demanded that the Lagrangian

be CP conserving. A common feature of level 4 and 5 scenarios is that inverted ordering for
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neutrino masses is predicted when adopting the Weinberg operator and normal ordering when

making use of type I seesaw, with a single exception whose χ2
min, red is not particularly good.

At level 4 the overall results and predictions are quite stable with respect to the details of the

model, only depending on the choice between the Weinberg operator and the seesaw mechanism.

In both cases the neutrino mass spectrum is nearly degenerate and the lightest neutrino mass is

around 40 meV. At level 5 we get an excellent χ2
min, red only when considering neutrino masses

generated by the Weinberg operator, predicting inverted MO. In the seesaw scenario a good fit

requires the introduction of additional parameters. Remarkably we find that our seesaw models

at level 5 predict a massless neutrino.

A weak point of our construction is the correct vacuum selection. We have not attempted to

dynamically select the vacuum configurations in the symmetry breaking sector, while our results,

relying on ordinary flavons besides the modular parameter, require a specific vacuum alignment.

We have treated the VEVs as free parameters, to be varied to match the experimental data. The

VEV pattern suggested by data is peculiar and points to a nontrivial vacuum selection mechanism,

where such an elucidation goes beyond the scope of this chapter. We do not consider our results

conclusive and we think that there is still a considerable room to improve the characterization of

the charged lepton sector. Nevertheless, by exploring some nonstandard possibilities, we hope to

have provided some new element for the identification of a basic framework.
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Chapter 6

Modular Symmetry with Natural

Fermion Masses

In the previous chapter, we studied models of neutrino masses in the framework of modular

symmetry. In particular, we focused on models in which the charged lepton masses were described

by natural parameters. In this chapter, we will consider a further step in this direction, and

describe all fermion (both lepton and quark) masses using natural parameters in the framework

of modular symmetry.

6.1 Introduction

The origin of the three families of quarks and leptons and their extreme range of masses remains

a mystery of particle physics. According to the SM, quarks and leptons come in complete families

that interact identically with the gauge forces, leading to a remarkably successful quantitative

theory describing practically all data at the quantum level. The various quark and lepton masses

are described by having different interaction strengths with the Higgs doublet, also leading to

quark mixing and charge-parity (CP) violating transitions involving strange, bottom and charm

quarks. However, the SM provides no understanding of the pattern of quark and lepton masses,

quark mixing or CP violation.

The discovery of neutrino mass and mixing makes the flavour puzzle hard to ignore, with the

fermion mass hierarchy now spanning at least 12 orders of magnitude, from the neutrino to the

top quark. However, it is not only the fermion mass hierarchy that is unsettling. There are now

28 free parameters in a Majorana-extended SM, of which 22 are associated with flavour, surely

too many for a fundamental theory of nature. While the quark mixing angles are small, the

lepton sector has two large mixing angles θ12, θ23 and one small mixing angle θ13 which is of the

same order of magnitude as the quark Cabibbo mixing angle [199].

One early attempt to understand the quark and lepton mass hierarchies is the FN mechanism

[200]. This approach assumes an additional U(1)FN symmetry under which the quarks and

leptons carry various charges and a cut-off scale MFN is associated with the breaking of the
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U(1)FN symmetry. In the SM the top quark mass of 173 GeV is given by a Yukawa coupling

times the Higgs vacuum expectation value of 246 GeV divided by the square root of two. This

implies a top quark Yukawa coupling close to unity. From this point of view, the top quark

mass is not at all puzzling - it is the other fermion masses associated with much smaller Yukawa

couplings that require explanation. According to FN, the fermions are assigned various U(1)FN

charges and small Yukawa couplings are forbidden at the renormalisable level due to the U(1)FN

symmetry. The symmetry is broken by the vacuum expectation value of a new “flavon” field θ,

where θ is a neutral scalar under the SM but carries one unit of U(1)FN charge. Small effective

Yukawa couplings then originate from non-renormalisable contact operators where the fermion

charges are compensated by powers of θ, leading to suppression by powers of the small ratio

〈θ〉/Mfl (where Mfl acts as a cut-off scale of the contact interaction).

To account for family replication and to address the question of large lepton mixing, theorists

have explored a larger non-Abelian family symmetry, SU(3)fl [201], where the three families are

analogous to the three quark colours in quantum chromodynamics (QCD). Many other examples

have been proposed based on subgroups of SU(3)fl, including non-abelian discrete flavour sym-

metry (for reviews see e.g. [6, 12, 167, 168, 170, 171, 202]). Moreover, the leptonic CP violation

phases can be predicted and the precisely measured quark CKM mixing matrix can be accom-

modated if the discrete flavour symmetry is combined with generalized CP symmetry [203–206].

However the main drawback of all such approaches that the flavour symmetry must be broken

down to different subgroups in the neutrino and charged lepton sectors at low energy and this re-

quires flavon fields to obtain vacuum expectation values (VEVs) along specific directions in order

to reproduce phenomenologically viable lepton mixing angles. As a consequence, the scalar po-

tential of discrete flavour symmetry models is rather elaborate, and auxiliary abelian symmetries

are usually needed to forbid dangerous operators.

Recently, modular symmetry has been suggested as the origin of flavour symmetry, with

neutrino masses as complex analytic functions called modular forms [174]. The starting point of

this novel idea is that non-Abelian discrete family symmetries may arise from superstring theory

in compactified extra dimensions, as a finite subgroup of the modular symmetry of such theories

(i.e. the symmetry associated with the non-unique choice of basis vectors spanning a given extra-

dimensional lattice). It follows that the 4D effective Lagrangian must respect modular symmetry.

This implies that Yukawa couplings may be modular forms. So if the leptons transform as triplets

under some finite modular symmetry, then the Yukawa couplings must transform nontrivially

under the modular symmetry and they are modular forms which are holomorphic functions of

a complex modulus field τ [174]. At a stroke, this removes the need for flavon fields and ad

hoc vacuum alignments to break the family symmetry, and potentially greatly simplifies the

particle content of the theory. Moreover, all higher-dimensional operators in the superpotential

are completely determined by modular invariance if SUSY is exact. Models with modular flavour

symmetry can be highly predictive; the neutrino masses and mixing parameters can be predicted

in terms of few input parameters, although the predictive power of this framework may be reduced

by the Kähler potential which is less constrained by modular symmetry [207].
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The finite modular groups Γ2
∼= S3 [180, 181, 194, 208], Γ3

∼= A4 [174, 180–185, 191, 209, 210],

Γ4
∼= S4 [4, 186, 187, 210, 211] and Γ5

∼= A5 [4, 189, 190] have been considered. For example,

simple A4 modular models can reproduce the measured neutrino masses and mixing angles[174,

183, 185]. The quark masses and mixing angles may also be included together with leptons in

an A4 modular invariant model [192]. The modular invariance approach has been extended to

include odd weight modular forms which can be decomposed into irreducible representations of

the the homogeneous finite modular group Γ′N [195], and the modular symmetry Γ′3
∼= T ′ has

been discussed, including the new possibility of texture zeroes [212]. Also modular symmetry may

be combined with generalized CP symmetry, where the modulus transforms as τ → −τ∗ under

the CP transformation [155, 175, 176, 213, 214]. The formalism of the single modulus has been

generalized to the case of a direct product of multiple moduli [178, 188], which is motivated by the

additional extra dimensions in superstring theory, assuming toroidal compactification. Indeed,

from a top-down perspective, modular symmetry naturally appears in string constructions [176,

177, 179, 215, 216].

It has been realised that, if the VEV of the modulus τ takes some special value, a residual

subgroup of the finite modular symmetry group ΓN would be preserved. The phenomenological

implications of the residual modular symmetry have been discussed in the context of modular

A4 [184, 210], S4 [187, 210] and A5 [189] symmetries. If the modular symmetry is broken down

to a residual Z3 (or Z5) subgroup in charged lepton sector and to a Z2 subgroup in the neutrino

sector, the trimaximal TM1 and TM2 mixing patterns can be obtained [184, 187].

In this chapter, we show how fermion mass hierarchies can be reproduced in the framework

of modular symmetry. The mechanism is analogous to the FN mechanism, but without requiring

any Abelian symmetry to be introduced, nor any SM singlet flavon to break it. The modular

weights of fermion fields play the role of FN charges, and a SM singlet field φ with non-zero

modular weight (called a “weighton”) plays the role of a flavon. We illustrate the mechanism

with modular level 3 (A4) models of quark and lepton (including neutrino) masses and mixing,

using a single modulus field τ and where the charged fermion mass hierarchies originate from

a single weighton φ. We discuss two such viable models in some detail, both numerically and

analytically, showing how both fermion mass and mixing hierarchies emerge from the modular

symmetry. The class of modular level 3 (with even weight modular forms) examples of the

mechanism we present here is by no means exhaustive; the new mechanism may be be applied

to other levels and choices of weights, and to models with any number of moduli fields and

weightons.

We also remark that the approach here differs from an early work based on U(1)FN broken

by a flavon θ, where all fields carried both FN charge and modular weight [154]. In our approach,

the Yukawa couplings are modular forms, which means that the modular weights do not have to

sum to zero, and are triplets under the A4 modular symmetry, which constrains the rows of the

Yukawa matrices. We also emphasise that we do not have any U(1)FN symmetry, nor any flavon

θ to break such a symmetry. Our weighton φ is an A4 singlet which does not break any flavour

symmetry and is therefore not a flavon.
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6.2 Modular Symmetry

The modular group Γ is the group of linear fraction transformations which acts on the complex

modulus τ in the upper half complex plane as follow,

τ → γτ =
aτ + b

cτ + d
, with a, b, c, d ∈ Z, ad− bc = 1, Im τ > 0 . (6.1)

We note that the map

aτ + b

cτ + d
7→

 a b

c d

 (6.2)

is an isomorphism from the modular group to the projective matrix group PSL(2,Z) ∼= SL(2,Z)/{±I},
where SL(2,Z) is the group of two-by-two matrices with integer entries and determinant equal

to one.

The modular group Γ can be generated by two generators S and T

S : τ 7→ −1

τ
, T : τ 7→ τ + 1 , (6.3)

which are represented by the following two matrices of PSL(2,Z),

S =

 0 1

−1 0

 , T =

 1 1

0 1

 . (6.4)

We can check that the generators S and T obey the relations,

S2 = (ST )3 = (TS)3 = 1 . (6.5)

The principal congruence subgroup of level N is the subgroup

Γ(N) =


a b

c d

 ∈ SL(2,Z), b = c = 0 (mod N), a = d = 1 (mod N)

 , (6.6)

which is an infinite normal subgroup of SL(2,Z). It is easy to see that TN is an element of Γ(N).

The projective principal congruence subgroup is defined as Γ(N) = Γ(N)/{±I} for N = 1, 2.

For the values of N ≥ 3, we have Γ(N) = Γ(N) because Γ(N) doesn’t contain the element −I.

The quotient group ΓN ≡ Γ/Γ(N) is the finite modular group, and it can be obtained by further

imposing the condition TN = 1 besides those in Eq. (6.5).

A crucial element of the modular invariance approach is the modular form f(τ) of weight k

and level N . The modular form f(τ) is a holomorphic function of the complex modulus τ and it
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is required to transform under the action of Γ(N) as follows,

f

(
aτ + b

cτ + d

)
= (cτ + d)kf(τ) for ∀

 a b

c d

 ∈ Γ(N) . (6.7)

The modular forms of weight k and level N span a linear space of finite dimension. It is always

possible to choose a basis in this linear space such that the modular forms can be arranged into

some modular multiplets fr ≡ (f1(τ), f2(τ), ...)T which transform as irreducible representation r

of the finite modular group ΓN for even k [174, 195], i.e.

fr(γτ) = (cτ + d)kρr(γ)fr(τ) for ∀ γ ∈ Γ , (6.8)

where γ is the representative element of the coset γΓ(N) in ΓN , and ρr(γ) is the representation

matrix of the element γ in the irreducible representation r.

The superpotential W (ΦI , τ) can be expanded in power series of the supermultiplets ΦI ,

W (ΦI , τ) =
∑
n

YI1...In(τ) ΦI1 ...ΦIn , (6.9)

where YI1...In is a modular multiplet of weight kY and it transforms in the representation ρY of

ΓN ,

τ → γτ =
aτ + b

cτ + d
,

Y (τ)→ Y (γτ) = (cτ + d)kY ρY (γ)Y (τ) .

(6.10)

The requirement of modular invariance of the superpotential implies

kY = kI1 + ...+ kIn , ρY ⊗ ρI1 ⊗ . . .⊗ ρIn 3 1 . (6.11)

where the supermultiplet ΦI1 is assumed to transform in a representation ρI1 of ΓN , with a

modular weight −kI1 , and so on for the other supermultiplets.

6.3 Modular Forms of Γ3
∼= A4 (Level 3)

The modular group Γ(3) has been extensively studied in the literature [174, 180–184, 191, 209,

210]. In the present work we shall adopt the same convention as [174, 185, 210]. The finite

modular group Γ3 is isomorphic to A4 which is the symmetry group of the tetrahedron. It contains

twelve elements and it is the smallest non-abelian finite group which admits an irreducible three-

dimensional representation. The A4 group has three one-dimensional representations 1, 1′, 1′′
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and a three-dimensional representation 3. In the singlet representations, we have

1 : S = 1, T = 1 ,

1′ : S = 1, T = ω2 ,

1′′ : S = 1, T = ω .

(6.12)

For the representation 3, we will choose a basis in which the generator T is diagonal. The explicit

forms of S and T are

S =
1

3


−1 2 2

2 −1 2

2 2 −1

 , T =


1 0 0

0 ω2 0

0 0 ω

 , (6.13)

with ω = e2πi/3 = −1/2 + i
√

3/2. The basic multiplication rule is

3⊗ 3 = 1⊕ 1′ ⊕ 1′′ ⊕ 3S ⊕ 3A , (6.14)

where the subscripts S and A denotes symmetric and antisymmetric combinations respectively.

If we have two triplets α = (α1, α2, α3) ∼ 3 and β = (β1, β2, β3) ∼ 3, we can obtain the following

irreducible representations from their product,

(αβ)1 = α1β1 + α2β3 + α3β2 ,

(αβ)1′ = α3β3 + α1β2 + α2β1 ,

(αβ)1′′ = α2β2 + α1β3 + α3β1 ,

(αβ)3S = (2α1β1 − α2β3 − α3β2, 2α3β3 − α1β2 − α2β1, 2α2β2 − α1β3 − α3β1) ,

(αβ)3A = (α2β3 − α3β2, α1β2 − α2β1, α3β1 − α1β3) . (6.15)

The linear space of the modular forms of integral weight k and level N = 3 has dimension

k + 1 [174]. The modular space M2k(Γ(3)) can be constructed from the Dedekind eta-function

η(τ) which is defined as

η(τ) = q1/24
∞∏
n=1

(1− qn), q = e2πiτ . (6.16)

The Dedekind eta-function η(τ) satisfies the following identities

η(τ + 1) = eiπ/12η(τ), η(−1/τ) =
√
−iτ η(τ) . (6.17)

There are only three linearly independent modular forms of weight 2 and level 3, which are

denoted as Yi(τ) with i = 1, 2, 3. We can arrange the three modular functions into a vector

Y
(2)
3 = (Y1, Y2, Y3)T transforming as a triplet 3 of A4. The modular forms Yi can be expressed in
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terms of η(τ) and its derivative as follow [174]:

Y1(τ) =
i

2π

[
η′(τ/3)

η(τ/3)
+
η′((τ + 1)/3)

η((τ + 1)/3)
+
η′((τ + 2)/3)

η((τ + 2)/3)
− 27η′(3τ)

η(3τ)

]
,

Y2(τ) =
−i
π

[
η′(τ/3)

η(τ/3)
+ ω2 η

′((τ + 1)/3)

η((τ + 1)/3)
+ ω

η′((τ + 2)/3)

η((τ + 2)/3)

]
,

Y3(τ) =
−i
π

[
η′(τ/3)

η(τ/3)
+ ω

η′((τ + 1)/3)

η((τ + 1)/3)
+ ω2 η

′((τ + 2)/3)

η((τ + 2)/3)

]
. (6.18)

The q-expansions of the triplet modular forms Y
(2)
3 are given by

Y
(2)
3 =


Y1(τ)

Y2(τ)

Y3(τ)

 =


1 + 12q + 36q2 + 12q3 + 84q4 + 72q5 + . . .

−6q1/3(1 + 7q + 8q2 + 18q3 + 14q4 + . . . )

−18q2/3(1 + 2q + 5q2 + 4q3 + 8q4 + . . . )

 . (6.19)

They satisfy the constraint [174]

(Y
(2)
3 Y

(2)
3 )1′′ ≡ Y 2

2 + 2Y1Y3 = 0 . (6.20)

Multiplets of higher weight modular forms can be constructed from the tensor products of Y
(2)
3 .

Using the A4 contraction 3 ⊗ 3 = 1 ⊕ 1′ ⊕ 1′′ ⊕ 3S ⊕ 3A, we can obtain five independent

weight 4 modular forms,

Y
(4)
1 = Y 2

1 + 2Y2Y3 ∼ 1,

Y
(4)
1′ = Y 2

3 + 2Y1Y2 ∼ 1′ ,

Y
(4)
3 =


Y

(4)
1

Y
(4)

2

Y
(4)

3

 =


Y 2

1 − Y2Y3

Y 2
3 − Y1Y2

Y 2
2 − Y1Y3

 ∼ 3 .

(6.21)

Similarly there are seven modular forms of weight 6, which can be decomposed as 1⊕ 3⊕ 3
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L ec3 e
c
2 e

c
1 N

c Hu,d

A4 3 1′ 1′′ 1 3 1

kI 1 1 1 1 1 0

Table 6.1: The Feruglio model of leptons, where each supermultiplet has a modular weight −kI .

under A4 [174],

Y
(6)
1 = Y 3

1 + Y 3
2 + Y 3

3 − 3Y1Y2Y3 ∼ 1 ,

Y
(6)
3,I =


Y

(6)
1,I

Y
(6)

2,I

Y
(6)

3,I

 =


Y 3

1 + 2Y1Y2Y3

Y 2
1 Y2 + 2Y 2

2 Y3

Y 2
1 Y3 + 2Y 2

3 Y2

 ,

Y
(6)
3,II =


Y

(6)
1,II

Y
(6)

2,II

Y
(6)

3,II

 =


Y 3

3 + 2Y1Y2Y3

Y 2
3 Y1 + 2Y 2

1 Y2

Y 2
3 Y2 + 2Y 2

2 Y1

 .

(6.22)

It has been realised that, if the VEV of the modulus τ takes some special value, a residual

subgroup of the finite modular symmetry group Γ3 would be preserved. Thus, the fixed points

τS = i, τST = (−1+i
√

3)/2, τTS = (1+i
√

3)/2, τT = i∞ in the fundamental domain are invariant

under modular transformations, and there are many other examples in the upper half complex

plane [210]. For example, τT = i∞ implies Y
(2)
3 ∝ (1, 0, 0)T , Y

(4)
3 ∝ (1, 0, 0)T , Y

(6)
3,I ∝ (1, 0, 0)T ,

Y
(6)
3,II ∝ (0, 0, 0)T .

6.4 Models with Γ3
∼= A4 (Level 3)

6.4.1 The Feruglio Model of Leptons

In this subsection we review an example of a model of lepton masses and mixing based on A4

modular symmetry, first introduced as example 3 in [174] and later reanalysed in the light of

current data in [185]. In this example, there is no flavon field other than the modulus τ . The

Higgs doublets Hu and Hd are assumed to transform as 1 under A4 and their modular weights

kHu,Hd are vanishing. The neutrino masses are assumed arise from the type I seesaw mechanism.

In this example [174], the three generations of LH lepton doublets L ≡ (L1, L2, L3)T and of the

CP conjugated RH neutrino N c ≡ (N c
1 , N

c
2 , N

c
3)T are organised into two triplets 3 of A4 with

modular weights denoted as kL and kN , which will be fixed to take the values of unity shown in

Table 6.1.

When the three CP conjugated RH charged leptons ec3,2,1 are assigned to three different

singlets 1′, 1′′ and 1 of A4 as in previous works [174, 180–184, 191], their modular weights could
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be identical, which will be fixed to take the values of unity as shown in Table 6.1, and only the

lowest weight modular form Y
(2)
3 is necessary in the minimal model.

Then the superpotential for the charged lepton masses takes the form

We = αec1(LY
(2)
3 )1Hd + βec2(LY

(2)
3 )1′Hd + γec3(LY

(2)
3 )1′′Hd

= αec1(L1Y1 + L2Y3 + L3Y2)Hd + βec2(L3Y3 + L1Y2 + L2Y1)Hd

+ γec3(L2Y2 + L3Y1 + L1Y3)Hd . (6.23)

The invariance of We under modular transformations implies the following relations for the

weights, 
ke1 + kL = 2 ,

ke2 + kL = 2 ,

ke3 + kL = 2 ,

(6.24)

which implies

ke1 = ke2 = ke3 = 2− kL , (6.25)

where all values are fixed to be unity as shown in Table 6.1. This is exactly the case considered in

the literature [174, 180–184, 191]. We can straightforwardly read out the charged lepton Yukawa

matrix

Ye =



αY1 αY3 αY2

βY2 βY1 βY3

γY3 γY2 γY1


(6.26)

For example, τT = i∞ implies Y
(2)
3 ∝ (1, 0, 0)T , leads to a diagonal charged lepton Yukawa matrix

with me : mµ : mτ = α : β : γ. The charged lepton mass hierarchies are accounted for in the

Feruglio model by tuning the parameters to be α� β � γ.

If neutrino masses are generated through the type-I seesaw mechanism, for the triplet as-

signments of both RH neutrinos N c and LH lepton doublets L, the most general form of the

superpotential in the neutrino sector is

Wν = g (N cLHufN (Y ))1 + Λ (N cN cfM (Y ))1 , (6.27)

where fN (Y ) and fM (Y ) are generic functions of the modular forms Y (τ). Motivated by the

principle of minimality, we consider the following example: fN (Y ) ∝ Y
(2)
3 and fM (Y ) ∝ Y

(2)
3 ,
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which implies,

Wν = g1((N c L)3SY
(2)
3 )1Hu + g2((N c L)3AY

(2)
3 )1Hu + Λ((N cN c)3S

Y
(2)
3 )1

= g1

[
(2N c

1L1 −N c
2L3 −N c

3L2)Y1 + (2N c
3L3 −N c

1L2 −N c
2L1)Y3

+ (2N c
2L2 −N c

3L1 −N c
1L3)Y2

]
Hu + g2

[
(N c

2L3 −N c
3L2)Y1 + (N c

1L2 −N c
2L1)Y3

+ (N c
3L1 −N c

1L3)Y2

]
Hu + 2Λ

[
(N c

1N
c
1 −N c

2N
c
3)Y1 + (N c

3N
c
3 −N c

1N
c
2)Y3

+ (N c
2N

c
2 −N c

1N
c
3)Y2

]
. (6.28)

The modular weights of N c and L correspond to kL = kN = 1 as shown in Table 6.1.

We find MD and MN take the following form

MN =


2Y1 − Y3 − Y2

−Y3 2Y2 − Y1

−Y2 − Y1 2Y3

Λ ,

MD =


2g1Y1 (−g1 + g2)Y3 (−g1 − g2)Y2

(−g1 − g2)Y3 2g1Y2 (−g1 + g2)Y1

(−g1 + g2)Y2 (−g1 − g2)Y1 2g1Y3

 vu . (6.29)

The light neutrino mass matrix is given by the seesaw formula,

Mν = −MT
DM

−1
N MD . (6.30)

This is the original Feruglio model introduced as example 3 in [174], corresponding to the case of

D10 in [185], giving an excellent fit to current experimental data. The best fit (allowed range) of

the modulus for D10 in [185] is: Re 〈τ〉 = 0.0386(0.0307 ∼ 0.1175), Im 〈τ〉 = 2.230(1.996 ∼ 2.50),

which approximates the fixed point case τT = i∞, since the real part is much less than the

imaginary part.

6.4.2 A Natural Model of Charged Leptons

In this subsection we show how Feruglio’s A4 modular model of charged leptons can be recast

in natural form by introducing a single weighton. The neutrino sector will remain unchanged to

leading order. The resulting model of leptons shown in Table 6.2 now involves a single “weighton”

φ which is defined to be a SM and A4 singlet field with kφ = 1 (i.e. weight −1). We show how

such a model can generate a natural charged lepton mass hierarchy. In the next subsection we

extend the idea to the quark sector, thereby explaining all charged fermion masses naturally.

The three RH charged leptons ec3,2,1 are assigned to three different singlets 1′, 1′′ and 1 of A4 as

before but now their their modular weights are not identical, and correspond to kec3,2,1 = 0,−1,−3
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L ec3 ec2 ec1 N c Hu,d φ

A4 3 1′ 1′′ 1 3 1 1

kI 1 0 −1 −3 1 0 1

Table 6.2: A natural A4 model of leptons with a weighton φ. Note that each supermultiplet has
a modular weight −kI .

(i.e. weights 0, 1, 3) such that powers of φ with kφ = 1 are required compensate the terms in

the previous model, with the combinations ec3φ, e
c
2φ

2, ec1φ
4 each having combined weights of unity

as before. The weighton φ is assumed to develop a vacuum expectation value (vev) so that the

corresponding terms are suppressed by powers of

φ̃ ≡ 〈φ〉
Mfl

, (6.31)

where Mfl is a dimensionful cut-off flavour scale. This generates the charged lepton mass hier-

archy naturally, with mτ,µ,e ∝ φ̃, φ̃2, φ̃4, with only the lowest weight modular form Y
(2)
3 being

necessary as before.

After the weighton develops its vev, the superpotential for the charged lepton masses takes

the form

We = αee
c
1φ̃

4(LY
(2)
3 )1Hd + βee

c
2φ̃

2(LY
(2)
3 )1′Hd + γee

c
3φ̃(LY

(2)
3 )1′′Hd

= αee
c
1φ̃

4(L1Y1 + L2Y3 + L3Y2)Hd + βee
c
2φ̃

2(L3Y3 + L1Y2 + L2Y1)Hd

+ γee
c
3φ̃(L2Y2 + L3Y1 + L1Y3)Hd , (6.32)

which gives a charged lepton Yukawa matrix similar to Eq.6.26, except that it involves powers of

φ̃ controlling the hierarchies,

Ye =



αeφ̃
4 Y1 αeφ̃

4 Y3 αeφ̃
4 Y2

βeφ̃
2Y2 βeφ̃

2Y1 βeφ̃
2Y3

γeφ̃Y3 γeφ̃Y2 γeφ̃Y1



(6.33)

For example, τT = i∞ implies Y
(2)
3 ∝ (1, 0, 0)T , leading to a diagonal and naturally hierarchical

charged lepton Yukawa matrix with me : mµ : mτ = αeφ̃
4 : βeφ̃

2 : γeφ̃. The empirically observed
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charged lepton mass ratios me/mµ = 1/207 and mµ/mτ = 1/17 suggest that we fix φ̃ ≈ 1/15 to

account for the charged lepton mass hierarchy, with the mass ratios me/mµ ∼ φ̃2 and mµ/mτ ∼ φ̃,

assuming order one coefficients αe, βe, γe ∼ 1. The small parameter φ̃ ≈ 1/15 defined to to be the

ratio of scales in Eq.6.31 now provides an explanation for the charged lepton mass hierarchies.

However now there will be additional terms corresponding to higher weight modular forms,

Y
(4)
3 , compensated by extra powers of weighton fields φ, which will give corrections to the charged

lepton superpotential,

∆We = α′ee
c
1φ̃

6(LY
(4)
3 )1Hd + β′ee

c
2φ̃

4(LY
(4)
3 )1′Hd + γ′ee

c
3φ̃

3(LY
(4)
3 )1′′Hd

= α′ee
c
1φ̃

6(L1Y
(4)

1 + L2Y
(4)

3 + L3Y
(4)

2 )Hd + β′ee
c
2φ̃

4(L3Y
(4)

3 + L1Y
(4)

2 + L2Y
(4)

1 )Hd

+ γ′ee
c
3φ̃

3(L2Y
(4)

2 + L3Y
(4)

1 + L1Y
(4)

3 )Hd , (6.34)

where from Eq.6.21 the weight 4 Yukawa couplings are given in terms of the weight 2 Yukawa

couplings,

Y
(4)

1 = Y 2
1 − Y2Y3, Y

(4)
2 = Y 2

3 − Y1Y2, Y
(4)

3 = Y 2
2 − Y1Y3. (6.35)

This yields the additive correction to the charged lepton mass matrix in Eq.6.33,

∆Ye =



α′eφ̃
6 Y

(4)
1 α′eφ̃

6 Y
(4)

3 α′eφ̃
6 Y

(4)
2

β′eφ̃
4Y

(4)
2 β′eφ̃

4Y
(4)

1 β′eφ̃
4Y

(4)
3

γ′eφ̃
3Y

(4)
3 γ′eφ̃

3Y
(4)

2 γ′eφ̃
3Y

(4)
1



(6.36)

where α′e, β
′
e, γ
′
e are new free complex coefficients (also assumed to be of order unity) while the

weight 4 Yukawa couplings are given in Eq.6.35. For example, τT = i∞ implies Y
(2)
3 ∝ (1, 0, 0)T ,

implies that the higher order corrections also take the form of a diagonal charged lepton Yukawa

matrix. However these are just the leading corrections. There will also be further corrections

from even higher weight modular forms, such as Y
(6)
3 , compensated by extra powers of weighton

fields φ, which will give further corrections to the charged lepton Yukawa matrix. However, since

φ̃ ≈ 1/15, we find all such corrections to be very suppressed, and have a negligible effect on the

numerical results.

Since the modular weights of L and N c are unchanged, and their representations are the

same, we expect the seesaw neutrino matrices to be the same as in the original model at lowest

order, where no weighton field φ appears and fN (Y ) ∝ Y
(2)
3 and fM (Y ) ∝ Y

(2)
3 as in Eq.6.28.

Thus the seesaw matrices in this model are exactly the same as in Eq.6.29. However now there
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Q dc3 dc2 dc1 uc3 uc2 uc1 Hu,d φ

A4 3 1′ 1′′ 1 1′ 1′′ 1 1 1

kI 1 0, 2, 4 −2 −3 5, 3, 1 −1, 2, 4 −3 0 1

Table 6.3: Natural A4 models of quarks with a weighton φ. All 27 combinations of modular
weights are considered in the text. Note that each supermultiplet has a modular weight −kI .

will higher order corrections involving weightons, the leading correction being suppressed by φ̃2,

∆Wν = g′1φ̃
2((N c L)3SY

(4)
3 )1Hu + g′2φ̃

2((N c L)3AY
(4)
3 )1Hu + Λ′φ̃2((N cN c)3S

Y
(4)
3 )1

= g′1φ̃
2
[
(2N c

1L1 −N c
2L3 −N c

3L2)Y
(4)

1 + (2N c
3L3 −N c

1L2 −N c
2L1)Y

(4)
3

+ (2N c
2L2 −N c

3L1 −N c
1L3)Y

(4)
2

]
Hu

+ g′2φ̃
2
[
(N c

2L3 −N c
3L2)Y

(4)
1 + (N c

1L2 −N c
2L1)Y

(4)
3 + (N c

3L1 −N c
1L3)Y

(4)
2

]
Hu

+ 2Λ′φ̃2
[
(N c

1N
c
1 −N c

2N
c
3)Y

(4)
1 + (N c

3N
c
3 −N c

1N
c
2)Y

(4)
3 + (N c

2N
c
2 −N c

1N
c
3)Y

(4)
2

]
, (6.37)

which is of the same form as in Eq.6.28, yielding additive corrections to the seesaw matrices of

the same form as in Eq.6.29 but suppressed by φ̃2 and with the primed Yukawa couplings given

by Eq.6.35. As before, since φ̃ ≈ 1/15, these corrections are expected to be about 0.5%, so in the

neutrino sector we can safely ignore these corrections and use the same results as before. Thus we

expect that the modulus best fit to point to be the same value quoted as before, approximating

the fixed point case τT = i∞.

6.4.3 Natural Models of Quarks

Quarks have been considered with A4 modular symmetry in [192]. However there has been no

attempt to explain the quark mass hierarchy. Using similar ideas developed in the previous

section for the charged leptons, we now consider models for the down type quark Yukawa matrix

with md : ms : mb ∼ φ̃4 : φ̃3 : φ̃, which turns out to be a good description of the down quark mass

hierarchies as we shall see. As in the charged lepton sector, the weighton is assumed to develop

a vacuum expectation value (vev) so that the corresponding terms are suppressed by powers of

φ̃ = 〈φ〉/Mfl, where Mfl is a dimensionful cut-off flavour scale, which we assume to be the same

scale as for the charged leptons.

We introduce the quark modular weights in Table 6.3 which can achieve this, using the same

weighton φ as in the charged lepton sector. We assign the quark doublets Q to a triplet of A4

with kQ = 1 analogous to the lepton doublets. The three RH down type quarks dc3,2,1 are assigned

to three different singlets 1′, 1′′ and 1 of A4, analogous to how the charged lepton Yukawa matrix

was constructed.

Unlike in the charged lepton sector, here we allow higher weight modular forms in the quark
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sector, which will prove necessary to describe quark mixing. We therefore have more freedom

in assigning various modular weights to dc3,2,1 such that powers of φ with kφ = 1 are required

compensate the terms, with the combinations dc3φ, d
c
2φ

3, dc1φ
4 appearing, analogous to the charged

lepton assignments. This generates the down type quark mass hierarchy naturally, with mb,s,d ∝
φ̃, φ̃3, φ̃4.

After the weighton develops its VEV, the superpotential for the down type quark masses with

kdc3,2,1 = 0,−2,−3 takes the form

Wd = αdd
c
1φ̃

4(QY
(2)
3 )1Hd + βdd

c
2φ̃

3(QY
(2)
3 )1′Hd + γdd

c
3φ̃(QY

(2)
3 )1′′Hd

= αdd
c
1φ̃

4(Q1Y1 +Q2Y3 +Q3Y2)Hd + βdd
c
2φ̃

3(Q3Y3 +Q1Y2 +Q2Y1)Hd

+ γdd
c
3φ̃(Q2Y2 +Q3Y1 +Q1Y3)Hd , (6.38)

which gives a similar form of Yukawa matrix for the down type quarks as for the charged leptons

in Eq.6.33, albeit the second row being more suppressed than before,

Y I
d =



αdφ̃
4 Y1 αdφ̃

4 Y3 αdφ̃
4 Y2

βdφ̃
3Y2 βdφ̃

3Y1 βdφ̃
3Y3

γdφ̃Y3 γdφ̃Y2 γdφ̃Y1



(6.39)

where without loss of generality we may take αd, βd, γu to be real. However now there will be

additional terms corresponding to higher weight modular forms, Y
(4)
3 , compensated by extra

powers of weighton fields φ, which will give corrections to the down type quark superpotential,

analogous to the higher order corrections to the charged lepton superpotential in Eq.6.34. Since

these corrections will yield a matrix with a similar structure to the lowest order matrix but with

each element having an additional correction be suppressed by a relative power of φ̃2. This yields
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the additive correction to the down type quark mass matrix in Eq.6.39,

∆Yd =



α′dφ̃
6 Y

(4)
1 α′dφ̃

6 Y
(4)

3 α′dφ̃
6 Y

(4)
2

β′dφ̃
5Y

(4)
2 β′dφ̃

5Y
(4)

1 β′dφ̃
5Y

(4)
3

γ′dφ̃
3Y

(4)
3 γ′dφ̃

3Y
(4)

2 γ′dφ̃
3Y

(4)
1



(6.40)

where α′d, β
′
d, γ
′
d are new free complex coefficients (also assumed to be of order unity) while the

weight 4 Yukawa couplings are given in Eq.6.35.

Other alternatives include kdc3,2,1 = 2,−2,−3:

Y II
d =



αdφ̃
4 Y1 αdφ̃

4 Y3 αdφ̃
4 Y2

βdφ̃
3Y2 βdφ̃

3Y1 βdφ̃
3Y3

γdφ̃Y
(4)

3 γdφ̃Y
(4)

2 γdφ̃Y
(4)

1



(6.41)

Also we consider kdc3,2,1 = 4,−2,−3:

Y III
d =



αdφ̃
4 Y1 αdφ̃

4 Y3 αdφ̃
4 Y2

βdφ̃
3Y2 βdφ̃

3Y1 βdφ̃
3Y3

γId φ̃Y
(6)

3,I + γIId φ̃Y
(6)

3,II γId φ̃Y
(6)

2,I + γIId φ̃Y
(6)

2,II γId φ̃Y
(6)

1,I + γIId φ̃Y
(6)

1,II



(6.42)

It is worth noting that we have achieved a single power of suppression φ̃ for the third down

type family in several ways, by choosing an even weight for kdc3 = 0, 2, 4, . . . so that dc3φ̃Q is also
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even and may be compensated by a Yukawa coupling modular form of weight 2, 4, 6, . . ., leading

to the three possibilities for the third row of the down type Yukawa matrix as above (with more

possibilities at even higher weight). On the other hand higher powers of suppression such as φ̃3, φ̃4

for the first two families may only be achieved at lowest order by a Yukawa coupling modular

form of weight 2.

Turning to the up type quark sector, we first consider mu : mc : mt ∼ φ̃4 : φ̃2 : 1, assuming

φ̃ ≈ 1/15 as before. In order to achieve this, the up type quarks are assigned the modular weights

as shown in Table 6.3. The three RH up type quarks uc3,2,1 are assigned to three different singlets

1′, 1′′ and 1 of A4. In this case the up type quark mass hierarchy is much stronger and the top

quark Yukawa coupling is of order unity, which suggests that it should be unsuppressed without

any weighton field being involved. Moreover, as shown in [192], the lowest weight modular forms

Y
(2)
3 are not sufficient to describe quark mixing so here we shall utilise weight 6 modular form Y

(6)
3

for only the third family (whereas in in [192] weight 6 modular forms were assumed for all three

families of quarks). If we had used the lowest weight modular forms Y
(2)
3 for all three families then

the up quark Yukawa matrix would have rows proportional to that of the down quark Yukawa

matrix, leading to zero quark mixing angles, so we need to use higher weight modular forms for

the up Yukawa matrix, at least for the second or third families, and here we use weight 6 only for

the third family. This motivates the assignments kuc3,2,1 = 5,−1,−3 such that the combinations

Quc3, Qu
c
2φ

2, Quc1φ
4 imply the modular forms Y

(6)
3 , Y

(2)
3 , Y

(2)
3 , respectively, where powers of φ

with kφ = 1 are required. Actually there are two independent weight 6 modular forms Y
(6)
3,I and

Y
(6)
3,II and both must be considered as contributing independently.

Although the above assignments satisfies our requirements, we need to check that these are

indeed the leading order terms. Firstly Quc3 has weight −6 so the leading term is Y
(6)
3 , with the

higher order correction Quc3φ
2 having weight −8 and requiring Y

(8)
3 (the lower weight modular

forms Y
(2)
3 and Y

(4)
3 are forbidden at all orders). Secondly, although Quc2 has weight zero,

this term is forbidden since it is an A4 triplet and Y
(0)
3 does not exist. Therefore the leading

allowed term is Quc2φ
2 with weight −2, compensated by Y

(2)
3 , with the higher order term Quc2φ

4

with weight −4 compensated by Y
(4)
3 being suppressed. Thirdly Quc1 has weight 2 and cannot

be compensated by a modular form with positive weight. While Quc1φ
2 has weight zero it is

forbidden since it is an A4 triplet and triplet modular forms cannot have zero weight. Therefore

the leading term is Quc1φ
4 with weight −2 which is compensated by Y

(2)
3 , with the higher order

correction Quc1φ
6 having weight −4 compensated by Y

(4)
3 being suppressed.

After the weighton develops its vev, the leading order superpotential for the up type quark

masses takes the form

Wu = αuu
c
1φ̃

4(QY
(2)
3 )1Hu + βuu

c
2φ̃

2(QY
(2)
3 )1′Hu + γIuu

c
3(QY

(6)
3,I )1′′Hu + γIIu u

c
3(QY

(6)
3,II)1′′Hu

= αuu
c
1φ̃

4(Q1Y1 +Q2Y3 +Q3Y2)Hu + βuu
c
2φ̃

2(Q3Y3 +Q1Y2 +Q2Y1)Hu

+ γIuu
c
3(Q2Y

(6)
2,I +Q3Y

(6)
1,I +Q1Y

(6)
3,I )Hu + γIIu u

c
3(Q2Y

(6)
2,II +Q3Y

(6)
1,II +Q1Y

(6)
3,II)Hu ,
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Thus kuc3,2,1 = 5,−1,−3 leads to the up quark Yukawa matrix,

Y I
u =



αuφ̃
4 Y1 αuφ̃

4 Y3 αuφ̃
4 Y2

βuφ̃
2Y2 βuφ̃

2Y1 βuφ̃
2Y3

γIuY
(6)

3,I + γIIu Y
(6)

3,II γIuY
(6)

2,I + γIIu Y
(6)

2,II γIuY
(6)

1,I + γIIu Y
(6)

1,II



(6.43)

where the weight 6 Yukawa couplings are given in Eq.6.22. This is consistent with a diagonal

and naturally hierarchical up type quark Yukawa matrix with mu : mc : mt ∼ φ̃4 : φ̃2 : 1, where

without loss of generality we may take αu, βu, γ
I
u to be real, while in general γIIu can be complex.

Before performing a numerical study of this case, we recall that, τT = i∞ implies Y
(2)
3 ∝

(1, 0, 0)T , Y
(4)
3 ∝ (1, 0, 0)T , Y

(6)
3,I ∝ (1, 0, 0)T , Y

(6)
3,II ∝ (0, 0, 0)T so near this limit Y

(6)
3,II will not

contribute. However we need to go away from this limit to explain quark mixing angles. There

is a potential problem with the Yukawa structures in Eqs.6.39,6.43 since analytically (ignoring

third family mixing angles) we expect θd12 ∼ θu12 ∼ Y2/Y1, so the physical Cabibbo angle θ12 ∼
θd12 − θd12 ∼ 0 due to cancellation.

To avoid this problem we also consider an alternative model with the assignments kuc3,2,1 =

5, 2,−3 (i.e. only differing by the assignment kuc2 = 2) such that the combinationsQuc3, Qu
c
2φ,Qu

c
1φ

4

imply the modular forms Y
(6)
3 , Y

(4)
3 , Y

(2)
3 , respectively, where powers of φ with kφ = 1 are re-

quired. This may avoid the cancellation problem of the Cabibbo angle, since now θu12 ∼ Y
(4)

2 /Y
(4)

1

is different from θd12 ∼ Y2/Y1, but is slightly less natural, being consistent with a diagonal and

naturally hierarchical up type quark Yukawa matrix with mu : mc : mt ∼ φ̃4 : φ̃ : 1. Thus

kuc3,2,1 = 5, 2,−3 leads to:

Y II
u =



αuφ̃
4 Y1 αuφ̃

4 Y3 αuφ̃
4 Y2

βuφ̃Y
(4)

2 βuφ̃Y
(4)

1 βuφ̃Y
(4)

3

γIuY
(6)

3,I + γIIu Y
(6)

3,II γIuY
(6)

2,I + γIIu Y
(6)

2,II γIuY
(6)

1,I + γIIu Y
(6)

1,II



(6.44)

The analysis of the alternative model using the up quark Yukawa matrix in Eq.6.44 is very similar
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to that using the up quark Yukawa matrix in Eq.6.43, but we expect that the Cabibbo angle will

be reproduced more easily, with the down quark Yukawa matrix in Eq.6.39 being the same in

both cases.

We also consider a third model with the assignments kuc3,2,1 = 5, 4,−3 (i.e. differing by the

assignment kuc2 = 4) such that the combinations Quc3, Qu
c
2φ,Qu

c
1φ

4 imply the modular forms Y
(6)
3 ,

Y
(6)
3 , Y

(2)
3 , respectively, where powers of φ with kφ = 1 are required. Thus with kuc3,2,1 = 5, 4,−3

we have:

Y III
u =



αuφ̃
4 Y1 αuφ̃

4 Y3 αuφ̃
4 Y2

βIuφ̃Y
(6)

2,I + βIIu φ̃Y
(6)

2,II βIuφ̃Y
(6)

1,I + βIIu φ̃Y
(6)

1,II βIuφ̃Y
(6)

3,I + βIIu φ̃Y
(6)

3,II

γIuY
(6)

3,I + γIIu Y
(6)

3,II γIuY
(6)

2,I + γIIu Y
(6)

2,II γIuY
(6)

1,I + γIIu Y
(6)

1,II



(6.45)

All the above three possibilities for the up quark Yukawa matrices have the third family

controlled by a weight 6 modular form, resulting from the choice kuc3 = 5. We now consider third

family modular forms of weight 4 corresponding to the choice kuc3 = 3. This would lead to three

more possibilities as shown below.

With kuc3,2,1 = 3,−1,−3 we have:

Y IV
u =



αuφ̃
4 Y1 αuφ̃

4 Y3 αuφ̃
4 Y2

βuφ̃
2Y2 βuφ̃

2Y1 βuφ̃
2Y3

γuY
(4)

3 γuY
(4)

2 γuY
(4)

1



(6.46)
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With kuc3,2,1 = 3, 2,−3 we have:

Y V
u =



αuφ̃
4 Y1 αuφ̃

4 Y3 αuφ̃
4 Y2

βuφ̃Y
(4)

2 βuφ̃Y
(4)

1 βuφ̃Y
(4)

3

γuY
(4)

3 γuY
(4)

2 γuY
(4)

1



(6.47)

With kuc3,2,1 = 3, 4,−3 we have:

Y V I
u =



αuφ̃
4 Y1 αuφ̃

4 Y3 αuφ̃
4 Y2

βIuφ̃Y
(6)

2,I + βIIu φ̃Y
(6)

2,II βIuφ̃Y
(6)

1,I + βIIu φ̃Y
(6)

1,II βIuφ̃Y
(6)

3,I + βIIu φ̃Y
(6)

3,II

γuY
(4)

3 γuY
(4)

2 γuY
(4)

1



(6.48)

Finally we also consider third family modular forms of weight 2 corresponding to the choice

kuc3 = 1. This would lead to three final possibilities as shown below.

With kuc3,2,1 = 1,−1,−3 we have:

Y V II
u =



αuφ̃
4 Y1 αuφ̃

4 Y3 αuφ̃
4 Y2

βuφ̃
2Y2 βuφ̃

2Y1 βuφ̃
2Y3

γuY3 γuY2 γuY1



(6.49)
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With kuc3,2,1 = 1, 2,−3 we have:

Y V III
u =



αuφ̃
4 Y1 αuφ̃

4 Y3 αuφ̃
4 Y2

βuφ̃Y
(4)

2 βuφ̃Y
(4)

1 βuφ̃Y
(4)

3

γuY3 γuY2 γuY1



(6.50)

With kuc3,2,1 = 1, 4,−3 we have:

Y IX
u =



αuφ̃
4 Y1 αuφ̃

4 Y3 αuφ̃
4 Y2

βIuφ̃Y
(6)

2,I + βIIu φ̃Y
(6)

2,II βIuφ̃Y
(6)

1,I + βIIu φ̃Y
(6)

1,II βIuφ̃Y
(6)

3,I + βIIu φ̃Y
(6)

3,II

γuY3 γuY2 γuY1



(6.51)

Note that there is only one possibility for the first family of up quarks since the required

suppression φ̃4 can only be achieved by modular forms of weight 2.

In the the next section we perform a numerical analysis of our models. First we check the

lepton sector results, based on the matrices in Eqs.6.29,6.33, then go on to the quark sector using

one of the Yukawa matrices in Eq.6.39,6.41 or 6.42 combined with one of Eq.6.43-6.51. Without

loss of generality we take αe,d,u, βe,d,u, γe,d,u to be real, with βIu, γ
I
u real while βIIu , γ

II
u are complex.

We allow φ̃ to be free but find that the numerical fits prefer φ̃ ≈ 1/15, as expected.

6.5 Numerical and Analytical Results

6.5.1 Input Data and Global Analysis

The charged fermion mass matrices are given by

Me = Ye
vd√

2
= Ye cosβ

vH√
2
, Md = Yd

vd√
2

= Yd cosβ
vH√

2
, Mu = Yu

vu√
2

= Yu sinβ
vH√

2
, (6.52)
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where the ratio of Higgs VEVs is tanβ = vu/vd and the SM Higgs VEV is vH =
√
v2
u + v2

d = 246

GeV, and Ye, Yd, Yu represent the Yukawa matrices predicted by the models, namely Eq.6.33, for

the charged lepton Yukawa matrix, Eqs.6.39,6.41 or 6.42 for the down quark Yukawa matrix and

Eqs.6.43-6.51 for the up quark Yukawa matrix.

The scale of Yukawa couplings in this model is given by the string compactification scale, and

hence we use couplings calculated at the GUT scale from a minimal SUSY breaking scenario,

with tanβ = 5, as done in [192, 197, 217]. Similarly, we use the CKM parameters also at this

scale as derived by the same authors. For the charged lepton and down type Yukawa masses, the

physical particle masses are given by mMSSM
i = yMSSM

i vd/
√

2, for i = (e, µ, τ, d, s, b), and for the

up quarks, mMSSM
j = yMSSM

j vu/
√

2, for j = (u, c, t). The numerical eigenvalues calculated from

our input Yukawa matrices Ye, Yd, Yu are matched to yMSSM . Below we list ỹi ≡ yMSSM
i cosβ

and ỹj ≡ yMSSM
j sinβ for tanβ = 5, together with the quark mixing parameters,1

ỹe = (1.97± 0.0236)× 10−6, ỹµ = (4.16± 0.0497)× 10−4, ỹτ = (7.07± 0.0727)× 10−3,

ỹd = (4.81± 1.06)× 10−6, ỹs = (9.52± 1.03)× 10−5, ỹb = (6.95± 0.175)× 10−3,

ỹu = (2.92± 1.81)× 10−6, ỹc = (1.43±0.100)× 10−3, ỹt = 0.534± 0.0341 ,

θq12 = 13.027◦ ± 0.0814◦, θq23 = 2.054◦ ± 0.384◦, θq13 = 0.1802◦ ± 0.0281◦ ,

δq = 69.21◦ ± 6.19◦.

(6.53)

For the neutrino parameters, we use the data from NuFit 4.1 (2019) [198], without Super-

Kamiokande (SK) atmospheric data, which we summarise below for Normal Ordering (NO),

where we write eorrs in brackets, which correspond to the average of positive and negative 1σ

deviations.

sin2 θ12 = 0.310(13), sin2 θ13 = 0.02241(66), sin2 θ23 = 0.558(26),

∆m2
21

10−5 eV2 = 7.39(21),
∆m2

31

10−3 eV2 = 2.525(31), δ/π = 1.23(18)
(6.54)

For our numerical study, we follow a procedure similar to that described in [4], but here

generalised to the quark sector, to find the minimum χ2
min,Q contribution from the CKM and

quark Yukawa pulls. We consider all 27 combinations of Y I
d Y

I
u , . . . , Y

III
d Y IX

u , restricting τ to be

within a range which is acceptable to the lepton sector, based on the matrices in Eqs.6.29,6.33,

which is approximately the same as found in [185], model D10 in their notation.

We display our best fit points in table 6.4, for all 27 models. From this table it is clear that we

find unacceptably high χ2
min & 50 for all permutations besides Y III

d Y V I
u and Y II

d Y III
u , for which

we found an arbitrarily good χ2
min,Q < 1, where the subscript “Q” refers to the partial χ2 from the

quark sector alone, and note the total χ2
min across both the quark and lepton sectors observables

1These values do not change significantly for tanβ = 10. For larger values of tanβ, threshold corrections become
increasingly important.

123



Y I
u Y II

u Y III
u Y IV

u Y V
u Y V I

u Y V II
u Y V III

u Y IX
u

Y I
d 118 194 123 420 337 98.4 183 244 122

Y II
d 79.1 78.9 0.00 248 279 142 413 479 93

Y III
d 118 186 135 79.8 79.5 0.00 117 190 135

Table 6.4: χ2
min,Q for all 27 combinations of Yu, Yd

is ≈ 1. For the remainder of this chapter, we will focus on these two successful models, and do

not list the benchmark points for the other models which do not well reproduce data.

6.5.2 Model Y V I
u , Y III

d

Numerical Study

We find two combinations of down and up quark Yukawa matrices has an acceptable χ2
min,Q

value, from Y V I
u in combination with Y III

d , which we study in this section and Y III
u , Y II

d which

we study in the next 2 In Tab. 6.5 we write the input and output parameters, both for the quark

and lepton sectors for our best fit point in this model. Since the neutrino sector is the same as

found in [185], model D10, and charged lepton Yukawa matrix a similar form besides the addition

of weightons, the lepton observables and predictions are similar to what is seen by Ding, et. al.

However, the quark sector is entirely new of our own construction. Here we see that by tuning

the αi, βi, γi parameters to match SM fermion Yukawa couplings (at GUT scale), we also find

very strong agreement with the CKM angles and phase.

To explain why this is the case, we first look at numerical motivations and then go on to

study the analytic properties of this point. Firstly, we list the two numerical mixing matrices

which produce the CKM for our best fit point found in Tab. 6.5 are as follows. Defining

Uu,V IL

†
(Y V I
u
†
Y V I
u )Uu,V IL = Y V I

u
diag

, and similarly for the down sector we find the following two

diagonalising matrices,

Uu,V IL =


0.981 −0.193 −0.00283

−0.149 + 0.122i −0.758 + 0.622i −0.0433− 0.00328i

0.00411− 0.00522i 0.0355− 0.0244i −0.988− 0.15i

 , (6.55)

Ud,IIIL =


−0.999 0.0436 −0.00277

−0.0434− 0.00329i −0.996− 0.0736i 0.00225 + 0.0273i

−0.0028− 0.00043i −0.00319− 0.0272i 0.962− 0.273i

 . (6.56)

2We have also tested these models with a different tanβ = 10, to check we are not overly sensitive to this initial
choice.
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Lepton observable value (pull) Quark Observable value(pull)

∆m2
21 · 105 (eV2) 7.39 (0.0) θq12 0.227 (0.0)

∆m2
31 · 103 (eV2) 2.52 (0.0) θq13 0.00314 (0.0)

sin2 θ12 0.310 (0.0) θq23 0.0358 (0.0)

sin2 θ13 0.0224 (0.0) δq/π 1.21 (0.0)

sin2 θ23 0.562 (0.2) yu · 105 1.49 (0.0)

δ/π 1.58 (1.9) yc · 103 7.29 (0.0)

ye · 105 1.00 (0.0) yt 2.72 (0.0)

yµ · 103 2.12 (0.0) yd · 105 2.45 (0.0)

yτ · 102 3.61 (0.0) ys · 104 4.85 (0.0)

χ2
min,L 3.67 yb · 102 3.54 (0.0)

Lepton prediction value χ2
min,Q 0.0

m1 (eV) 0.11 Quark input value

m2 (eV) 0.11 αu -1.476

m3 (eV) 0.12
βIu

βIIu

-0.1264

0.2697− 0.1971i

α21/π 0.013 γu 2.720

α31/π 1.01 αd -2.387

mee (eV) 0.11 βd 2.672

MO NO γId 0.6253

Lepton Input value γIId 0.4958− 0.2187i

Re(g2/g1) 0.4185

Im(g2/g1) 1.048 Common Input value

g2
1v

2
u/Λ (eV) 0.05506 Re(τ) 0.03610

αe -0.9778 Im(τ) 2.352

βe -0.6615 φ̃ 0.05663

γe -0.6360

Table 6.5: Results of the fit to lepton and quark data for model combining Mν , Ye, Y
V I
u , Y III

d .
In the left panel are the lepton observables and pulls (in fractions of 1σ), the χ2

min,L contribution
from the lepton sector, as well as predictions for neutrino masses, phases, neutrinoless double
beta decay and MO. The inputs for the lepton sector are displayed at the bottom. In the right
panel we have the quark observables and pulls, the χ2

min,Q quark contribution, and quark inputs.
At the bottom right we list the τ and φ inputs which are common to both sectors. We note that
φ̃ = 1/15 = 0.06667 for example may be fixed exactly to find an equivalently good benchmark
point.
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We can see that the Cabbibo angle, θ12 is mostly generated by the mixing in the up sector,

since UuL
1,2 � UdL

1,2
, however both sectors will play a similar role in generating the other two

angles, with the imaginary part playing a significant role for θ23. To examine this further, we

turn to an analytic study of the structure of our up and down Yukawa matrices.

Analytic Results

We may approximate the analytic forms of our successful model of Y V I
u , Y III

d rewriting the

weighton and weight two modular forms as follows, using Eq.6.19, and writing the higher weight

forms directly in terms of these weight two approximations as in Eqs. 6.21, 6.22,

φ̃ ' 0.057 ≡ ε1, (6.57)
Y1(τ)

Y2(τ)

Y3(τ)

 =


1 +O(q)

−6q1/3 +O(q)

−18q2/3 +O(q)

 '


1.00

−0.043− 0.0033i

−0.00094− 0.00014i

 ≡


1

ε2

ε3

 . (6.58)

where q = e2πiτ . We find numerically that ε21 is a similar order to ε22, and to ε3. Consequently,

we may take the first non-trivial term at the order O(εi) ∼ O(ε1) ∼ O(ε2) ∼ O(ε
1/2
3 ), dropping

higher corrections in each entry of our successful model. We find the following results for the up

and down quark Yukawa matrices, respectively, making a leading order approximation for each

element of the matrix,

Y V I
u '



ε41αu ε41ε3αu ε41ε2αu

ε1ε2
(
2βIIu + βIu

)
ε1β

I
u ε1

(
2ε22β

II
u + ε3β

I
u

)
(
ε22 − ε3

)
γu −ε2γu γu


, (6.59)

Y III
d '



ε41αd ε41ε3αd ε41ε2αd

ε31ε2βd ε31βd ε31ε3βd

ε1
(
2ε22γ

II
d + ε3γ

I
d

)
ε1ε2

(
2γIId + γId

)
ε1γ

I
d


. (6.60)
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Since the matrices are hierarchical, we can make an estimate for the three mixing angles as

follows, which accurately reproduces the fully calculated CKM angles. We then express ε2, ε3 by

using the q-expansions, for which the first order reproduces well the full Dedekind-eta value for

our best fit point.

θ12 '
∣∣∣∣∣Y 2,1

u

Y 2,2
u

− Y 2,1
d

Y 2,2
d

∣∣∣∣∣ =

∣∣∣∣2ε2βIIuβIu
∣∣∣∣ = 12e−

2
3
π Im(τ)

∣∣∣∣βII
u

βI
u

∣∣∣∣ (6.61)

θ13 '
∣∣∣∣∣Y 3,1

u

Y 3,3
u

− Y 3,1
d

Y 3,3
d

∣∣∣∣∣ =

∣∣∣∣ε22γId − 2γIId
γId

− 2ε3

∣∣∣∣ = 72e−
4
3
π Im(τ)

∣∣∣∣1− γIId
γId

∣∣∣∣ (6.62)

θ23 '
∣∣∣∣∣Y 3,2

u

Y 3,3
u

− Y 3,2
d

Y 3,3
d

∣∣∣∣∣ =

∣∣∣∣2ε2γId + γIId
γId

∣∣∣∣ = 12e−
2
3
π Im(τ)

∣∣∣∣1 +
γIId
γId

∣∣∣∣ (6.63)

The above approximations reproduce the numerical values of the quark mixing angles well, to

two significant figures for θ12, θ23, but only within a factor of two for θ13. This is because it is

the smallest angle, and hence sensitive to additional contributions. For the two larger angles,

there are several reasons why the above expressions well reproduce data. To begin with, quark

mixing angles are all small, so a small angle approximation is valid. Furthermore, overall factors

and phases cancel in the ratios such as Y 2,1
u

Y 2,2
u

and
Y 2,1
d

Y 2,2
d

, since each row of the Yukawa matrices

is controlled by a particular modular form, therefore the physical CKM angles are identified as

the difference in these two ratios, with no arbitrary relative phase. This is quite different from

a traditional FN model based on an Abelian symmetry, where mixing angle predictions would

depend on arbitrary coefficients and phases. It implies that partial cancellations occur between
Y 2,1
u

Y 2,2
u

and
Y 2,1
d

Y 2,2
d

in constructing θ12, which leads to a particularly simple form without βIu in the

numerator. It also implies that the mixing angles are independent of ε1 which cancels in the

ratios, so the only role of ε1 is to control mass hierarchies. The mixing angles are therefore

completely controlled by ε2 and ε3, which however are not independent parameters, being related

by the expansion of the A4 triplet modular forms in Eq.6.19. This dependence is manifested

in the final expressions on the RH sides of the Eqs.6.61,6.62,6.63 based on the truncations in

Eq.6.58, which are valid for small q = e2πiτ when the imaginary part of τ is large. Despite the

large prefactors, the CKM angles are therefore small due to an exponential suppression arising

from the best fit point τ having a large imaginary part. One can see that in the limit τ → i∞ the

CKM angles go to zero, which is expected as this would correspond to diagonal Yukawa matrices.

Given O(1) input parameters, we then see the required value of τ to match the observed CKM

values must be near τ ' 2.35i.

6.5.3 Model Y III
u , Y II

d

Numerical Study

We now study a second successful model, comprised of Y III
u , Y II

d , with input and output param-

eters found in Tab. 6.6. This section will proceed analagously to the previous one.
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Lepton observable value (pull) Quark Observable value(pull)

∆m2
21 · 105 (eV2) 7.39 (0.0) θq12 0.227 (0.0)

∆m2
31 · 103 (eV2) 2.52 (0.0) θq13 0.00314 (0.0)

sin2 θ12 0.310 (0.0) θq23 0.0358 (0.0)

sin2 θ13 0.0224 (0.0) δq/π 1.21 (0.0)

sin2 θ23 0.562 (0.2) yu · 105 1.49 (0.0)

δ/π 1.58 (1.9) yc · 103 7.29 (0.0)

ye · 105 1.00 (0.0) yt 2.72 (0.0)

yµ · 103 2.12 (0.0) yd · 105 2.45 (0.0)

yτ · 102 3.61 (0.0) ys · 104 4.85 (0.0)

χ2
min,L 3.67 yb · 102 3.54 (0.0)

Lepton prediction value χ2
min,Q 0.0

m1 (eV) 0.11 Quark input value

m2 (eV) 0.11 αu -1.137

m3 (eV) 0.12
βIu

βIIu

-0.1048

0.1937 + 0.1985i

α21/π 0.012
γIu

γIIu

2.722

−1.697− 0.4260i

α31/π 1.01 αd -1.137

mee (eV) 0.11 βd -1.533

MO NO γd -0.5194

Lepton Input value

Re(g2/g1) 0.4185

Im(g2/g1) 1.038 Common Input value

g2
1v

2
u/Λ (eV) 0.05508 Re(τ) 0.03610

αe -0.4658 Im(τ) 2.353

βe -0.4566 φ̃ -0.06816

γe 0.5284

Table 6.6: Results of the fit to lepton and quark data for model combining Mν , Ye, Y
III
u , Y II

d .
In the left panel are the lepton observables and pulls (in fractions of 1σ), the χ2

min,L contribution
from the lepton sector, as well as predictions for neutrino masses, phases, neutrinoless double
beta decay and MO. The inputs for the lepton sector are displayed at the bottom. In the right
panel we have the quark observables and pulls, the χ2

min,Q quark contribution, and quark inputs.
At the bottom right we list the τ and φ inputs which are common to both sectors. We note that
φ̃ = 1/15 = 0.06667 for example may be fixed exactly to find an equivalently good benchmark
point.
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We first present the two numerical diagonalising matrices as before. The numerical values of

this model are similar to the previous scenario, where θ12 is dominated by the contribution from

the up quark sector.

Uu,IIIL =


−0.98− 0.0000121i 0.198 + 0.000225i 0.00312− 0.00123i

0.102 + 0.17i 0.506 + 0.84i −0.00896 + 0.0148i

−0.00166− 0.00417i 0.00782− 0.0152i −0.999 + 0.047i

 , (6.64)

Ud,IIL =


0.999− 0.000038i 0.0437 + 0.000215i −0.00275 + 0.00068i

0.0434 + 0.00329i −0.995− 0.0803i −0.0428 + 0.00722i

−0.00467− 0.000712i 0.0428 + 0.00673i −0.995 + 0.091i

 . (6.65)

Analytic Results

We again proceed with the same analytic approach as before, and will find very similar analytic

approximations as with the previous scenario. For the new scenario (with slightly different input

values of (ϕ, τ)), we again see the relation O(εi) ∼ O(ε1) ∼ O(ε2) ∼ O(ε
1/2
3 ), and take the lowest

non trivial order in each entry in the two Yukawa matrices.

φ̃ ' −0.068 ≡ ε1, (6.66)
Y1(τ)

Y2(τ)

Y3(τ)

 =


1 +O(q)

−6q1/3 +O(q)

−18q2/3 +O(q)

 '


1.00

−0.043− 0.0033i

−0.00093− 0.00014i

 ≡


1

ε2

ε3

 . (6.67)

Y III
u '



ε41αu ε41ε3αu ε41ε2αu

ε1ε2
(
2βIIu + βIu

)
ε1β

I
u ε1

(
2ε22β

II
u + ε3β

I
u

)
ε3γ

I
u + 2ε22γ

II
u ε2

(
γIu + 2γIIu

)
γIu


(6.68)
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Y II
d '



ε41αd ε41ε3αd ε41ε2αd

ε31ε2βd ε31βd ε31ε3βd

ε1γd
(
ε22 − ε3

)
−ε1ε2γd ε1γd


. (6.69)

We now follow the same procedure to approximate the three CKM mixing angles, and replace

ε2,3 with the q-expansions to first order.

θ12 '
∣∣∣∣∣Y 2,1

u

Y 2,2
u

− Y 2,1
d

Y 2,2
d

∣∣∣∣∣ =

∣∣∣∣2ε2βIIuβIu
∣∣∣∣ = 12e−

2
3
π Im(τ)

∣∣∣∣βII
u

βI
u

∣∣∣∣ (6.70)

θ13 '
∣∣∣∣∣Y 3,1

u

Y 3,3
u

− Y 3,1
d

Y 3,3
d

∣∣∣∣∣ =

∣∣∣∣ε22γIu − 2γIIu
γIu

− 2ε3

∣∣∣∣ = 72e−
4
3
π Im(τ)

∣∣∣∣1− γIIu
γIu

∣∣∣∣ (6.71)

θ23 '
∣∣∣∣∣Y 3,2

u

Y 3,3
u

− Y 3,2
d

Y 3,3
d

∣∣∣∣∣ =

∣∣∣∣2ε2γIu + γIIu
γIu

∣∣∣∣ = 12e−
2
3
π Im(τ)

∣∣∣∣1 +
γIIu
γIu

∣∣∣∣ (6.72)

The analytic forms here are identical to the previous model, exchanging γd previously seen

with γu here. In this scenario, the weight six entries previously found in the third row of Y V I
d

are instead found in the third row of Y III
u . In this scenario, the mixing angles are even more

controlled by the up sector than beore.

It can now be understood that these two specific models are both successful, as they both

predict the same expressions for the CKM mixing angles above, for which values of αi, βi, γi

that explain well the Yukawa couplings of the quarks also well reproduce the observed mixings

in the quark sector.

6.5.4 Analytic Expansion of the Lepton Matrices

Finally, it is interesting to apply the same analytic expansion procedure used for the quarks, also

to the leptons. For the charged lepton Yukawa matrix in Eq.6.33, we find (without dropping any
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terms since the leading order matrix arises at weight 2),

Ye '



αeε
4
1 αeε

4
1 ε3 αeε

4
1 ε2

βeε
2
1ε2 βeε

2
1 βeε

2
1ε3

γeε1ε3 γeε1ε2 γeε1



. (6.73)

This structure provides a natural explanation of the charged lepton mass hierarchy, namely

me : mµ : mτ = αeε
4
1 : βeε

2
1 : γeε1.

After the seesaw mechanism, by inputting and expanding the matrices in Eq.6.29 we find the

effective neutrino mass matrix,

Mν ' g2
1

v2
u

Λ



−2 ε3 ε2

ε3 −2ε2 1

ε2 1 −2ε3


+ g2

2

v2
u

Λ



0 −2ε22 + ε3 ε2

−2ε22 2ε2 −1

ε2 −1 −2ε22 + 2ε3


. (6.74)

The parameters g1, g2 and ε2, ε3 are determined by the fit to the neutrino mass squared differences

and PMNS mixing parameters, which arise predominantly from the neutrino sector, due to the

very small charged lepton mixing corrections. The large elements in the neutrino mass matrix

occurring in the (1, 1) and (2, 3) positions, controlled by g1, g2, are responsible for the quasi-

degenerate neutrino masses m1 ∼ m2 ∼ 0.11 eV, and m3 ∼ 0.12 eV, with the neutrinoless double

beta becay parameter mee ∼ 0.11 eV in the sensitivity region of current experiments, and the

cosmological sum of neutrino masses
∑
mi ∼ 0.34 eV being in the disfavoured region. Either

this lepton model will be discovered soon or it will be excluded in the near future. In any case we

remark that the neutrino sector considered here is identical to that of the Feruglio model, being

independent of the weighton φ, and hence ε1.

6.6 Chapter Summary

In this chapter we have shown how quark and lepton mass hierarchies can be reproduced in the

framework of modular symmetry. The mechanism we have proposed is analogous to the FN
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mechanism, but without requiring any Abelian symmetry to be introduced, nor any SM singlet

flavon to break it. The modular weights of fermion fields play the role of FN charges, and SM

singlet fields with non-zero modular weight called weightons play the role of flavons.

We have illustrated the mechanism by analysing A4 (modular level 3) models of quark and

lepton (including neutrino) masses and mixing, with a single modulus field. We showed how a

previously proposed A4 modular model of leptons can be recast in natural form by introducing

a single weighton, then applied similar ideas to 27 possible models in the quark sector. We

analysed all the quark models, combined with the natural lepton model, and identified two viable

combinations, which can successfully describe all quark and lepton (including neutrino) masses

and mixing, using a single modulus field τ , and in which all charged fermion mass hierarchies

originate from a single weighton.

We have discussed these two particular examples in some detail, both numerically and an-

alytically, showing how both fermion mass and mixing hierarchies emerge from the modular

symmetry. The analytic results clearly show how the fermion mass hierarchies are controlled by

the powers of the weighton field which multiply a particular row of the Yukawa matrix, while the

smallness of the quark mixing angles arises because of the proximity of the modulus field to the

fixed point case τT = i∞, which results in exponentially suppressed entries within a particular

row of the Yukawa matrix. This leads to a simple analytic understanding of the smallness of

quark mixing angles.

We emphasise that the mechanism introduced in this chapter is quite unlike the traditional

FN mechanism, based on an Abelian symmetry, in which the suppression of both rows and

columns of the Yukawa matrices arises from FN charges. In the present approach, fermion mass

hierarchies and small quark mixing angles emerge from different aspects of the modular symmetry,

without having to introduce an extra Abelian symmetry and an additional flavon to break it.

The A4 flavour symmetry arises as a finite subgroup of the underlying modular symmetry, and

the weightons responsible for the charged fermion mass hierarchies are A4 singlets which do not

break the flavour symmetry.

Finally we note that the class of modular level 3 (with even weight modular forms) examples

of the mechanism we present here are by no means exhaustive. The new mechanism may be be

applied to other levels and choices of weights, and to models with any number of moduli fields

and weightons.
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Chapter 7

Conclusion

Naturalness may take many forms in modern day BSM theories. In this thesis we have considered

quantitative measures of naturalness, such as the Barbieri-Giudice (BG) metric for the BLSSM,

as well as concepts such as unification as a guiding principle and finally explicitly theories which

solve the flavour problem, with natural (O(1)) parameters.

In chapter 2 we began by considering the SUSY extension of the U(1)B−L model. We used

two metrics of FT, both a high scale BG metric, as well as a low (SUSY) scale one to compare

the BLSSM to the CMSSM. We found here that both models have a similar level of FT, but

slightly higher for the BLSSM at GUT scale, in the presence of all available constraints. This was

largely driven by the requirement for a high Z ′ mass of 4 TeV from non-observation in searches,

which sets generally larger allowed unification masses, which was somewhat reflected by a higher

mass low energy spectra of sparticles. Considering low energy FT, the BLSSM and MSSM are

somewhat more similar. In addition to FT, we considered the DM candidates of each model for

our given parameter scan. There are several candidates which appear in the BLSSM but not

MSSM which can well accommodate all DM constraints so far. In addition to the bino which was

present in both models, the extra B−L neutralinos (the U(1)B−L gaugino, B̃′ and two Higgsinos

η̃) may be cold DM candidates. In addition we found the superpartner to the RH neutrino, the

RH sneutrino, was an ideal candidate.

In chapter 3 we built on the previous chapter’s finding of a RH sneutrino acting as a cold

DM candidate and inspected its properties. Here we saw that the current and near future (15

year) tests of indirect detection could begin to touch the available parameter space. If such

a signal were to be established, then by examining the shape of the photon flux distribution,

there exists the possibility to discriminate different DM species consequently. For example, the

scalar sneutrino may be distinguishable from the fermionic neutralino DM given the different flux

shapes, for the same given DM mass. We also explored the possibility of detecting sneutrinos at

the LHC through unique signatures. In addition to the usual mono-X searches, we found there

were options involving multi-lepton final states, with and without jets in addition to the missing

transverse energy. Finally, we saw that the exact details depended on the hierarchy of mass states

in a particular spectrum.
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We then shifted focus from DM to a more subtle problem in chapter 4. Here we compared

two similar models, the U(1)Y ×U(1)B−L model of the previous two chapters, versus the U(1)R×
U(1)B−L model arising from SO(10). One of the first discovery modes of both models was from

their Z ′, and in this chapter we investigated the ability to use forward-backward asymmetry to

differentiate the two models. Since the BLR has axial couplings rather than just vector as in the

usual B −L case, such a test to discern from which a Z ′ belongs is possible. These findings may

provide hints towards unification at high scales.

In the remaining two chapters, 5 and 6, we considered the flavour problem. In the framework

of Modular Symmetry, inspired by string theory, we provided several models which explain the

observed neutrino masses and mixing. In the first chapter we considered a model with natural

parameters for the charged lepton masses, in addition to explaining neutrino data. We considered

seven scenarios across two different modular levels, 4 and 5, corresponding to the discrete groups

S4 and A5. All of these seven models had good fits to data, in addition to natural charged lepton

masses. In chapter 6 we extended this idea to the quark sector, using a pre-existing model of

neutrino masses, but attempting to determine all quark and lepton masses using natural input

parameters. We found two such model scenarios which were able to satisfy all neutrino and quark

masses and mixing angles, providing an elegant solution to the flavour puzzle.

Looking ahead, there are many possible directions which still remain to be explored. Firstly,

the obvious dark matter problem requires a solution which cannot be provided by the SM. Despite

the beauty of the WIMP scenario, there is no argument which prevents a huge span of DM masses,

over fifty orders of magnitude, which may prevent any terrestrial interaction. However, we have

shown that even typical SUSY WIMP scenarios may perfectly evade current experimental efforts,

and require further study to fully explore its parameter space. From the collider perspective, so

far there has been no BSM physics discovered, though many natural, O(TeV) scale models may

still be hiding in the data, and require ∼ 3000 fb−1, or more, to be seen. Undiscussed in this

thesis are the alluring hints of new physics from both g−2 (electron and muon) and also the ever-

present b−anomalies, where a coherent picture of all flavour sectors has yet to emerge, though

the next few years of experiments will shed light on the final story here. There are also the less

well known anomalies, such as from the Atomki group, which have proven if nothing else that

O(10) MeV bosons may be added to the SM consistently with all current experimental data, and

that new physics might be hiding at low-scale. Arguably the only BSM problem which directly

requires a solution is neutrino physics. Much is still unknown in this sector though: the absolute

scale, MO and CP-violating phase are yet to be directly measured, and the remaining parameters

have much more precision to be gained. Neutrino masses may be the key to solving the whole

flavour puzzle, which is perhaps the most compelling problem which still remains with the SM.

With new directions like modular symmetry, there is clearly much more to be explored in this

age old problem, and this is largely dependent on new directions from theorists. In summary

there are a great many worthy directions to pursue as a modern day BSM physicist, and with

numerous experiments operating in a multitude of sectors, the current status of particle physics

is an exciting one.
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Appendix A

Higgs Self-Energy Correction

In this section, we briefly derive the correction to the Higgs mass term from a fermion. We begin

with the Feynman rule for a fermion propagator, and two useful trace theorems.

i(/p+m)

p2 −m2 + iε

Feynman rule for fermion propagator

Tr
[
(/k)2

]
= Tr [kµγ

µkνγ
ν ] = Tr [kµkν(−γνγµ + {γmu, γν})] = Tr

[
−/k2

+ 2kµkνg
µν
]
, (A.1)

2Tr
[
(/k)2

]
= Tr

[
2k21

]
→ Tr

[
(/k)2

]
= 4k2. (A.2)

We may now draw the relevant loop diagram for the correction to the Higgs mass from a fermion

loop, and calculate the mass correction given Nc colours.

p

k

k − p
p

iλ/
√
2 iλ/

√
2

= −i∆m2
H (A.3)

−i∆m2
H = Nc(−1)

(
iλ√

2

)2 ∫ ∞
−∞

d4k

(2π)4
Tr

[
i(/k +m)

k2 −m2 + iε

i(−/p+ /k +m)

(k − p)2 −m2 + iε

]
(A.4)

= −Nc
λ2

2

∫ ∞
−∞

d4k

(2π)4
Tr

[
(/k)

k2

(/k)

k2

]
= −λ

2

2

∫ ∞
−∞

d4k

(2π)4

4

k2
(A.5)

−i∆m2
H = −Nc(−i)wick rotation

λ2

2
2π2

∫ ∞
−∞

dkE
(2π)4

k3
E

4

k2
E

=
iλ2

4π2

∫ ∞
−∞

dkEkE (A.6)

∆m2
H =

−Ncλ
2

4π2

∫ ΛUV

0
dkEkE = −Nc

λ2

8π2
Λ2
UV + . . . (A.7)

We finally see the leading order mass correction scales with the square of the cut-off, which

will lead to very large FT of the bare mass term.
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Appendix B

β Functions for the BLSSM

We complete the list of the β functions giving those concerning the soft masses of the scalar fields

Hu, Hd and η1, η2. These are given, at one-loop, by

βm2
Hu

= −6

5

(
g2

1(M2
1 + M̃2) + g̃2(M ′1

2
+ M̃2) + 2g1g̃(M1 +M ′1)M̃

)
− 6g2

2M
2
W ,

− 3(g2
1 + g̃2)σ1 −

3
√

10

4
gBLg̃σ2 + 6

(
m2
Hu +m2

q33
+m2

u33

)
Y 2
t + 6T 2

t (B.1)

βm2
Hd

= −6

5

(
g2

1(M2
1 + M̃2) + g̃2(M ′1

2
+ M̃2) + 2g1g̃(M1 +M ′1)M̃

)
− 6g2

2M
2
W ,

+ 3(g2
1 + g̃2)σ1 +

3
√

10

4
gBLg̃σ2 + 6

(
m2
Hd

+m2
q33

+m2
d33

)
Y 2
b + 6T 2

b (B.2)

βm2
η1

= −12gBL
2(M ′1

2
+ M̃2) + 4m2

η1
tr(Y 2

N ) + 4tr(T 2
YN

) + 8tr(m2
νR
Y 2
N ),

+ 3

√
2

5
gBLg̃σ1 +

3

2
gBL

2σ2, (B.3)

βm2
η2

= −12gBL
2(M ′1

2
+ M̃2)− 3

√
2

5
gBL̃ gσ1 −

3

2
gBL

2σ2, (B.4)

where, for the sake of simplicity, we have neglected all the Yukawa couplings but top- and bottom-

quark Yt, Yb and the heavy-neutrinos YN . We have also assumed real parameters.
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Appendix C

Linear Seesaw and β Functions for

the BLR

The linear seesaw is similar to an inverse seesaw, but with µ→ 0 and a new term coupling a LH

neutrino to the scalar singlet S:
0 Y v FvL

Y T v 0 F̃ vR

F T vL F̃ T vR 0

 ≡


0 mD ε

mT
D 0 Mχ

εT MT
χ 0

 . (C.1)

Each element here corresponds to a 3 × 3 block. Solving this in block diagonal form, assuming

ε� mD �Mχ, one finds
Mχ +mT

DmDM
−1
χ 0 0

0 −(Mχ +mT
DmDM

−1
χ ) 0

0 0 −εm
T
D

Mχ

 . (C.2)

So the light and heavy physical masses are

MνL = −εm
T
D

Mχ
+ h.c. (C.3)

MN1 ∼MN2 ∼Mχ +mT
DmDM

−1
χ + h.c. (C.4)

Here we have the light neutrinos, νL, as observed in oscillation experiments, and N1,2 are the

heavier neutral fermions. The smallness of ε may allow for a low (TeV) scale Mχ, which is a

fundamental feature of all low-scale seesaw mechanisms. Unlike the inverse seesaw, we see that

Mνl is linear in mD, which is proportional to the Yukawa couplings, hence the name “linear”

seesaw.
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Coefficient GUT normalisation Value Scale

}

bBLRR,R 1
15/2 MSUSY < Q < MGUT

13/3 MBLR < Q < MSUSY

bBLR(B−L),(B−L) 3/8
27/4 MSUSY < Q < MGUT

17/4 MBLR < Q < MSUSY

bBLRR,B−L = bBLRB−L,R
√

3/8
−
√

3/8 MSUSY < Q < MGUT

−1/
√

24 MBLR < Q < MSUSY


Abelian

BBLR
3

1 -3 MSUSY < Q < MGUT

1 -7 MBLR < Q < MSUSY

1 -7 MEW < Q < MBLR

BBLR
2

1 1 MSUSY < Q < MGUT

1 -19/6 MBLR < Q < MSUSY

1 -19/6 MEW < Q < MBLR


Non-Abelian

Table C.1: Beta function coefficients for Abelian and non-Abelian gauge groups in the BLR
model

C.1 RGEs

Beta functions for the non-Abelian and Abelian groups, respectively, are [123]

dga
dt

=
Bag

3
a

16π2
,
dglm
dt

=
glk

16π2
bijgikgjm, (C.5)

where the index a runs over the non-Abelian groups SU(2)L and SU(3)c, a = 2, 3 and (i, j, k, l,m)

run over the U(1)R, U(1)B−L, and mixed U(1)R × U(1)B−L and U(1)B−L × U(1)R groups,

(i, j, k, l,m) = (R,B −L) and Einstein summation convention is assumed. For our RGE section,

we make a rotation on the coupling matrix G, such that it is set in upper triangular form [58]

G =

g11 g12

g21 g22

 (C.6)

G̃ = GOTR =

g g̃

0 g′

 =

 g11g22−g12g21√
g2
21+g2

22

g11g21+g12g22√
g2
21+g2

22

0
√
g2

21 + g2
22

 (C.7)

One may consequently find the RGE in terms of g, g′, g̃ by differentiating these expressions and

then replacing the differentials dgij/dt with the beta functions as calculated with eq. C.5, then

replacing g11, g12, g22 in terms of g, g′, g̃.
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C.2 Derivation of Renormalisation Factors

In N=1 SUSY, for the renormalisation of a single gauge coupling at one loop, one finds the

standard expression [218]
dg

dt
=

g3

16π2
(S(R)Ch − 3C(G)) (C.8)

where S(R)Ch is the Dynkin index summed over all chiral multiplets and for a single multiplet

is defined as

δabS(R) = tr(tatb), (C.9)

and C(G) is the quadratic Casimir invariant of the adjoint representation of group G. This is

trivial to determine and is simply N for SU(N) and 0 for a U(N). The Dynkin index can be

quickly found knowing the particle content of a model and the quantum numbers under the

different gauge groups of a theory; thus one may immediately determine how couplings run in

SUSY theories with no calculation of any Feynman diagrams, unlike the SM. This is because in

SUSY one is only concerned with wave-function renormalisation [219]. We now go through some

specific examples of how one calculates the Dynkin indices. In our notation bij = S(R)ij as the

Casimir invariant is 0 for U(1) gauge groups. Before we discuss the Dynkin index for the Abelian

sector which interests us, we will quickly discuss how to calculate this in the non-Abelian sector.

As an example, we will use SU(2). For an SU(N) group, in any representation

δabS(R)SU(N) = tr(tatb) (C.10)

δabδ
abS(R)SU(N) = δabtr(t

atb) (C.11)

(N2 − 1)S(R)SU(N) = tr(tata) = (N2 − 1)tr(t3t3) (C.12)

S(R)SU(N) = tr(t3t3) (C.13)

Where we note that the number of generators is fixed for any representation, and equal to N2−1,

and consequently δabδab = N2 − 1. Also, for SU(N), though this holds more generally for any

compact Lie group, tr(t1t1) = tr(t2t2) = ..., we choose to consider the T 3 but are at liberty

to choose any of the generators. As a concrete example, we consider SU(2) and the 2 and 3

dimensional representations. We find

S(2)SU(2) = tr(T 3T 3) =
1

4
tr(σ3σ3) =

1

4
tr(I2) =

1

2
(C.14)

S(3)SU(2) = tr(J3J3) = 2 (C.15)

where J3 = [1, 0, 0; 0, 0, 0; 0, 0,−1], and T a = 1
2σ

a, the Pauli matrices. So, for a non-Abelian

group, one then sums over all the chiral multiplets
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Coefficient S(R)Ch GUT normalisation C(G) S(R)GNCh -3C(G) 1 Scale

bBLR3 1/2×∑iCi = 6 1 3 -3

MSUSY < Q < MGUT

bBLRL 1/2×∑i Li = 7 1 2 +1

bBLRR,R

∑
i T

2
3R i = 15/2 1 0 15/2

bBLRBL,BL

∑
i(B − L)2

i = 18 3/8 0 27/4

bBLRR,BL

∑
i((B − L)T3R)i = −1

√
3/8 0 -

√
3/8

bBLRBL,R

∑
i((B − L)T3R)i = −1

√
3/8 0 -

√
3/8

bχχ,χ
∑

i(T
2
χ)i = 153/8 1/10 0 153/80

bχY,Y
∑

i(T
2
Y )i = 11 3/5 0 33/5

bχY,χ
∑

i(TY Tχ)i = 6 1/
√

10×
√

3/5 0 3
√

6/5

bχχ,Y
∑

i(TχTY )i = 6 1/
√

10×
√

3/5 0 3
√

6/5

SU(3)c - - - 2 bSM3 = −7 102GeV < Q < 103GeV

SU(2)L - - - 3 bSML = −19/6 102GeV < Q < 103GeV

U(1)Y - - - 4 bSM1 = 41/10 102GeV < Q < 103GeV

Table C.2: Beta function coefficients for the BLR model

C.2.1 Derivation of β Function Coefficients

Beta function for non-Abelian and Abelian groups, respectively are [123]

dg

dt
=

Bg3

16π2
,
dglm
dt

=
glk

(4π)2
bijgikgjm. (C.16)

dg11

dt
=
b11g11

(
g2

11 + g2
12

)
+ b12g21

(
g2

11 + g2
12

)
+ (g11g21 + g12g22) (b21g11 + b22g21)

16π2
(C.17)

dg12

dt
=
b11g12

(
g2

11 + g2
12

)
+ b21g12 (g11g21 + g12g22) + g22

(
b12

(
g2

11 + g2
12

)
+ b22 (g11g21 + g12g22)

)
16π2

(C.18)

dg21

dt
=
b11g11 (g11g21 + g12g22) + b12g21 (g11g21 + g12g22) +

(
g2

21 + g2
22

)
(b21g11 + b22g21)

16π2
(C.19)

dg22

dt
=
b11g12 (g11g21 + g12g22) + b21g12

(
g2

21 + g2
22

)
+ g22

(
b12 (g11g21 + g12g22) + b22

(
g2

21 + g2
22

))
16π2

(C.20)

1bSM3 = (−(11/3)Nc+(2Nc
f )/3); Nc = 3, Nc

f is the number of fermions with factor (1/2): (ie 6: (1/2)*(uL,..,tR)).
2bSM2 = (−(11/3)NL + (2Nc

f )/3) + (nscT (Rsc))/3); NL = 2, Nc
f is the number of SU(2) doublets =

(1/2)*(3+9)=6, nsc = 1, T (Rcs) = 1/2
3bY = (1/2)× 10 + (1/4)× (2)× (1/2)2 = 41/6. b1 = 3/5× bY = 41/10
4S(R)GN = S(R) × GUT normalisation
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C.2.2 Calculating GUT normalisations

Hypercharge

SU(5) → SU(3)c × SU(2)L × U(1)Y . Begin with an SU(5) 5-plet, which contains three down

quarks of different colours and a lepton doublet.

dr

db

dgν
e




(C.21)

The generator of this group must be traceless and have the first three quantum numbers the

same, and the last two. (eg a,a,a,b,b where 3a+2b=0). As an example we choose twos and

threes.

TY = x



2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 −3 0

0 0 0 0 −3


(C.22)

For the fundamental representation of SU(N), tr(T aT a)=1/2. This determines the normalisation

parameter, x.

tr(TY TY ) = 1/2 = x2(30)→ x = 1/
√

60. (C.23)

In the SM, the hypercharge of a lepton doublet is Y (L) = Y (Q− T3L) = −1/2, and so Y (L)2 =

+1/4. In our GUT normalisation, we would have Y (L)GUT = −3√
60
→ Y (L)2

GUT = 3/20. So

we find that
Y (L)2

GUT

Y (L)2
SM

= 3
5 . Since the Lagrangian contains terms like (igY Bµ), then

(gGUTY )2

(gSMY )2 =

(αGUTY )≡α1

(αSMY )
= 5

3 In a similar fashion, to find the normalisation for B−L, we recall that this gauge

group is obtained from a PS, SU(4)PS → SU(3)c × U(1)B−L, so our SU(4) 4-plet will take the

form:

TB−L =
1√
24



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −3


(C.24)
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and so we may compare the squared B − L normalisation for the SM and GUT normalised to

find:
(B − L)2

GUT

(B − L)2
SM

=
(9/24)

1
=

3

8
(C.25)

Previously, we found the relation 1/g2
Y = 1/g2

R + 1/g2
BL → α−1

Y = α−1
R + α−1

BL, which holds with

with a gBL(B − L)/2 normalisation, which is equivalent to gBL∗(B − L) where gBL∗ = gBL/2.

Using this, along with α−1
1 = 3

5α
−1
Y and α−1

BL′ = 3
8α
−1
BL∗ = 12

8 αBL, we find

α−1
1 =

3

5
α−1
R +

2

5
α−1
BL′ . (C.26)

This is used to fix the value of our α−1
1 coupling at the breaking scale vR

C.3 Gauge Kinetic Mixing

C.3.1 Removing Mixed Kinetic Term

The kinetic sector for a gauge group U(1)1 × U(1)2 will have a mixed term:

L = −1

4
FA1
µν F

µν
A1
− 1

4
FA2
µν F

µν
A2
− κ

2
FA1
µν F

µν
A2

(C.27)

with κ parametrising the strength of the mixing and

FAiµν = ∂µA
i
ν − ∂νAiµ (C.28)

(with no anti-commutation term as the two groups are Abelian). We may eliminate the mixing

term in the kinetic Lagrangian by performing a rotation on the gauge fields:A1
µ

A2
µ

 =

cos(φ) − sin(φ)

sin(φ) cos(φ)


B̄1

µ

B̄2
µ

 (C.29)

One finds the mixed term in the B̄ basis

Lkin ⊃ 2∂2(B̄1
µB̄

µ
2 )(cos2(θ)− sin2(θ)) (C.30)

Which may be removed by setting θ = π/4. The kinetic Lagrangian then takes the form

Lkin = −1− κ
4

F B̄1
µν F

µν
B̄1
− 1 + κ

4
F B̄2
µν F

µν
B̄2

(C.31)
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To take the canonical form (kinetically diagonal basis), one may rescale the fields:B̄1
µ

B̄2
µ

 =

 1√
1−κ 0

0 1√
1+κ


B1

µ

B2
µ

 (C.32)

So the rotated and rescaled Lagrangian takes the form

L = −1

4
FB1
µν F

µν
B1
− 1

4
FB2
µν F

µν
B2

(C.33)

under the total transformationA1
µ

A2
µ

 =

cos(π/4) − sin(π/4)

sin(π/4) cos(π/4)


 1√

1−κ 0

0 1√
1+κ


B1

µ

B2
µ

 (C.34)

=
1√
2

 1√
1−κ − 1√

1−κ

1√
1+κ

1√
1+κ


︸ ︷︷ ︸

≡Rκ

B1
µ

B2
µ

 (C.35)

C.3.2 Consequences for Gauge Interactions

The fermion interaction Lagrangian is given by

Lint = ψ̄fγµQ
1
fg1A

µ
1ψf + ψ̄fγµQ

2
fg2A

µ
2ψf (C.36)

where the fermions ψf have charges Qif and the gauge coupling is gii under the gauge group

U(1)i. To make the transformation into the new (kinetic mixing free) basis more obvious, we

may write this interaction Lagrangian in a more suggestive way

Lint = ψ̄fγµ

(
Q1
f Q2

f

)g1 0

0 g2


Aµ1
Aµ2

ψf (C.37)

Under the transformation C.35, the interaction now becomes

Lint = ψ̄fγµ

(
Q1
f Q2

f

)g1 0

0 g2

 1√
2

 1√
1−κ − 1√

1−κ

1√
1+κ

1√
1+κ


Bµ

1

Bµ
2

ψf (C.38)

We define

G =

g1 0

0 g2

 1√
2

 1√
1−κ − 1√

1−κ

1√
1+κ

1√
1+κ

 ≡
g11 g12

g21 g22

 (C.39)
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So the interaction Lagrangian takes the form

Lint = ψ̄fγµ(g11Q
1
f + g21Q

2
f )B1ψ

µ
f + ψ̄fγµ(g12Q

1
f + g22Q

2
f )Bµ

2ψf (C.40)

At this point, we may choose to work in this basis, but we may perform an extra rotation on the

fields B1, B2 to parametrise the matrix G, in terms of only three independent parameters. By

making the rotation (which is a function of (g1, g2, κ)):Bµ
1

Bµ
2

 =
1√

g2
22 + g2

21

 g22 g21

−g21 g22


︸ ︷︷ ︸

O

Bµ

B′µ

 (C.41)

One finds

OG =

−g12g21+g11g22√
g2
21+g2

22

g11g21+g12g22√
g2
21+g2

22

0
√
g2

21 + g2
22

 ≡
g g̃

0 g′

 (C.42)

and we may thus write the interaction Lagrangian as

Lint = ψ̄fγµ(gQ1
f + g̃Q2

f )Bµψf + ψ̄fγµ(g′Q2
f )B′

µ
ψf (C.43)

One may question whether this spoils the kinetic Lagrangian and introduce mixed terms, but it

does not, the mixed terms cancel and leave the kinetic part of the Lagrangian is found to be

L = −1

4
FBµνF

µν
B −

1

4
FB

′
µν F

µν
B′ (C.44)

C.4 β-Functions for Two U(1) Groups

This discussion of the derivation of the beta functions follow the procedure in eq 12-14 in [123],

noting simplicity due to working in a SUSY framework. We use the basis with gij (rather than

g̃ found in eq. C.40). We first rewrite the interaction Lagrangian of fermions with gauge bosons

using a slightly different notation (but still in this basis), which we will use henceforth

Lint = ψ̄fγµQ
r
fψfgrbB

µ
b (C.45)

where the indices f, s refers to fermions, scalars respectively and the repeated indices imply a

sum over all fermion/scalar fields. For our two-field case, r, b = 1, 2 (for a specific case, eg

U(1)R × U(1)B−L one would say r, b = R, (B − L)). If one expands this expression, one will

recover the interaction Lagrangian, C.40. The β-functions determine how these couplings run

with energy, and will take the form (in our case) of a system comprised of four differential

equations
dgij
dt

= fij(g) (C.46)
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where i, j labels the fields and the RHS is a function of all other fields at order g3. One must

then solve the system of differential equations to find how each of the i fields run.

gkb = Qrkgrb (C.47)

dgkb
dt

= gkaβab (C.48)

βab =
1

(4π)2

(
4

3
κgfagfb +

1

3
ηgsagsb

)
(C.49)

where gkb is a reduced coupling that evolves according to dgkb
dt , where k labels the fields (fermions

/ scalars) that carry U(1) charges. There is an explanation of the origin of eq. C.49 in the

appendix. We may expand eq.C.49, a

βab =
1

(4π)2

(
4

3
κQrfQ

p
fgragrb +

1

3
ηQrsQ

p
sgragrb

)
(C.50)

=
1

(4π)2

∑
i,j

bijgiagjb (C.51)

where we have defined

bij =

(
4

3
κQifQ

j
f +

1

3
ηQisQ

j
s

)
(C.52)

One thus finds a general expression for the four beta functions as

dg11

dt
=
b11g11

(
g2

11 + g2
12

)
+ b12g21

(
g2

11 + g2
12

)
+ (g11g21 + g12g22) (b21g11 + b22g21)

16π2
(C.53)

dg12

dt
=
b11g12

(
g2

11 + g2
12

)
+ b21g12 (g11g21 + g12g22) + g22

(
b12

(
g2

11 + g2
12

)
+ b22 (g11g21 + g12g22)

)
16π2

(C.54)

dg21

dt
=
b11g11 (g11g21 + g12g22) + b12g21 (g11g21 + g12g22) +

(
g2

21 + g2
22

)
(b21g11 + b22g21)

16π2
(C.55)

dg22

dt
=
b11g12 (g11g21 + g12g22) + b21g12

(
g2

21 + g2
22

)
+ g22

(
b12 (g11g21 + g12g22) + b22

(
g2

21 + g2
22

))
16π2

(C.56)

In SUSY, one may easily find bij , without using any diagrams, by counting the charges. Examples

of the calculation of these parameters are discussed in appendix C.2.

We have four charges, g11, g12, g21, g22, corresponding to the

(U(1)R)2, U(1)RU(1)B−L, U(1)B−LU(1)R, (U(1)B−L)2 (C.57)

147



groups. For the beta-function coefficients, we find

β11 =
b11

(4π)2
, b11 = 15/2 (C.58)

β12 =
b12

(4π)2
, b12 = −1 (C.59)

β21 =
b21

(4π)2
, b21 = −1 (C.60)

β22 =
b22

(4π)2
, b22 = 18 (C.61)

so we now have

dg11

dt
=

1

(4π)2

(
b11g

3
11 + b21g12g

2
21

)
(C.62)

dg12

dt
=

1

(4π)2

(
b12g11g

2
12 + b22g12g

2
22

)
(C.63)

dg21

dt
=

1

(4π)2

(
b11g21g

2
11 + b21g22g

2
21

)
(C.64)

dg22

dt
=

1

(4π)2

(
b12g21g

2
12 + b22g

3
22

)
. (C.65)

C.5 Rotation into g̃ Basis

This section follows that of section 3 of [58]. We now rotate our coupling matrix:

G =

g11 g12

g21 g22

 (C.66)

OR =

cos θ − sin θ

sin θ cos θ

 =
1√

g2
22 + g2

21

g22 −g21

g21 g22

 (C.67)

G̃ = GOTR =

g g̃

0 g′

 =

 g11g22−g12g21√
g2
21+g2

22

g11g21+g12g22√
g2
21+g2

22

0
√
g2

21 + g2
22

 (C.68)

g11 → g =
g11g22 − g12g21√

g2
21 + g2

22

(C.69)

g12 → g̃ =
g11g21 + g12g22√

g2
21 + g2

22

(C.70)

g21 → 0 (C.71)

g22 → g′ =
√
g2

21 + g2
22 (C.72)
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Appendix D

Finite Modular Groups

D.1 Finite Modular Group Γ4 and Level 4 Modular Forms

The finite modular group Γ4 is isomorphic to S4, the symmetric group of permutations of four

objects. It has 24 elements and five irreducible representations: 1, 1′, 2, 3 and 3′. It admits a

presentation in terms of two generators S and T :

S2 = (ST )3 = T 4 = 1 . (D.1)

In this paper we use an explicit realization of the elements S and T for the different representa-

tions, obtained from the one in Ref. [220], with the identification [186]: S = S′T ′2 and T = S′,

where the primed generators are those given in Ref. [220]. We also use the CGn coefficients listed

in Ref. [220].

The linear space of weight 2 and level 4 modular forms has dimension 5 (see, e.g., [174]).

These forms can be constructed in terms of the Dedekind eta function [186]:

η(τ) ≡ q1/24
∞∏
n=1

(1− qn) , q = e2πiτ . (D.2)

Defining

Y (c1, . . . , c6|τ) ≡ d

dτ

[
c1 log η

(
τ +

1

2

)
+ c2 log η (4τ) + c3 log η

(τ
4

)
+ c4 log η

(
τ + 1

4

)
+ c5 log η

(
τ + 2

4

)
+ c6 log η

(
τ + 3

4

)]
, (D.3)
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with c1 + · · ·+ c6 = 0, the basis of the modular forms of weight 2 reads [186],

Y1(τ) ≡ i Y (1, 1, ω, ω2, ω, ω2|τ) , (D.4a)

Y2(τ) ≡ i Y (1, 1, ω2, ω, ω2, ω|τ) , (D.4b)

Y3(τ) ≡ i Y (1,−1,−1,−1, 1, 1|τ) , (D.4c)

Y4(τ) ≡ i Y (1,−1,−ω2,−ω, ω2, ω|τ) , (D.4d)

Y5(τ) ≡ i Y (1,−1,−ω,−ω2, ω, ω2|τ) , (D.4e)

with ω ≡ e2πi/3. Notice here, we have an extra factor of i compared to the definition of Ref.

[186]. It has been shown that Y1(τ) and Y2(τ) form a doublet transforming in the 2 of S4, while

the three remaining modular forms make up a triplet transforming in 3′ of S4. Doublet and the

triplet will be denoted by

Y2(τ) ≡

Y1(τ)

Y2(τ)

 , Y3′(τ) ≡


Y3(τ)

Y4(τ)

Y5(τ)

 . (D.5)

The q-expansions (q ≡ ei2πτ ) for Eq. (D.4) can be found in [186]. In our analysis we use the full

analytic form. The modular forms of higher weights k = 4, 6, . . . are homogeneous polynomials

in the variables Yi(τ), i = 1, . . . , 5.

Under CP , Eq. (5.9), modular forms of level 4 and weight 2 transform as [187]:

Y2(−τ∗) = X2 [Y2(τ)]∗ , Y3′(−τ∗) = X3′ [Y3′(τ)]∗ , (D.6)

where X2 and X3′ are the matrices:

X2 =

0 1

1 0

 , X3′ = −1

3


−1 2ω 2ω2

2ω 2ω2 −1

2ω2 −1 2ω

 . (D.7)

By decomposing products of representations in their irreducible components we find that a consis-

tent action of CP on chiral multiplets ϕr transforming in the representation r (r = 1,1′,2,3,3′)

of Γ4 is given by:

ϕr
CP−−→ Xr ϕ

∗
r , (D.8)

with X2 and X3′ given above and

X1 = −X1′ = 1 , X3 = X3′ . (D.9)
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This set of matrices satisfy the consistency conditions

Xr ρ
∗
r(γ) X−1

r = ρr(γ
′) , (γ, γ′) ∈ Γ , (D.10)

as can be checked by working with the generators γ = (S, T ). We find S′ = S−1 and T ′ = T−1.

The conditions for the VEV (ϕ1, ϕ2, ϕ3) of a triplet to preserve CP read:

Im(ϕ1) =
√

3Re(ϕ2−ϕ3) , Im(ϕ2) =
√

3Re(ϕ1−ϕ2) , Im(ϕ3) =
√

3Re(ϕ3−ϕ1) . (D.11)

In our basis, the requirement of CP conservation on a modular invariant supersymmetric theory

at level 4, adopting the above CP transformations on the chiral multiplets, amounts to having

all Lagrangian parameters real.

D.2 Finite Modular Group Γ5 and Level 5 Modular Forms

The finite modular group Γ5 is isomorphic to A5, the group of even permutations of five objects.

It has 60 elements and five irreducible representations: 1, 3, 3′, 4 and 5. It admits a presentation

in terms of two generators of S and T :

S2 = (ST )3 = T 5 = I . (D.12)

In this paper we use the explicit realisation of the elements S and T for the different representa-

tions given in Ref. [196], where we can also find the corresponding CG coefficients.

Level 5 modular forms of weight 2 have been built in Ref. [189], making use of the Jacobi

theta function:

θ3(u, τ) ≡ θ0,0(u, τ) =
∞∑

n=−∞
pn

2
e2πinu , (D.13)

where p ≡ eπiτ . Defining the seed functions:

α1,−1(τ) ≡ θ3

(
τ + 1

2
, 5τ

)
,

α1,0(τ) ≡ θ3

(
τ + 9

10
,
τ

5

)
,

α1,1(τ) ≡ θ3

(
τ

10
,
τ + 1

5

)
,

α1,2(τ) ≡ θ3

(
τ + 1

10
,
τ + 2

5

)
,

α1,3(τ) ≡ θ3

(
τ + 2

10
,
τ + 3

5

)
,

α1,4(τ) ≡ θ3

(
τ + 3

10
,
τ + 4

5

)
,

α2,−1(τ) ≡ e2πiτ/5 θ3

(
3τ + 1
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(D.14)
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and the functions,

Y (c1,−1, . . . , c1,4; c2,−1, . . . , c2,4|τ) ≡
∑
i,j

ci,j
d

dτ
logαi,j(τ) , with

∑
i,j

ci,j = 0 , (D.15)

then the modular forms of weight two are divided into the following multiplets of A5,

Y5(τ) =



Y1(τ)

Y2(τ)

Y3(τ)

Y4(τ)

Y5(τ)


≡



− 1√
6
Y (−5, 1, 1, 1, 1, 1;−5, 1, 1, 1, 1, 1|τ)

Y (0, 1, ζ4, ζ3, ζ2, ζ ; 0, 1, ζ4, ζ3, ζ2, ζ | τ)

Y (0, 1, ζ3, ζ, ζ4, ζ2 ; 0, 1, ζ3, ζ, ζ4, ζ2 | τ)

Y (0, 1, ζ2, ζ4, ζ, ζ3 ; 0, 1, ζ2, ζ4, ζ, ζ3 | τ)

Y (0, 1, ζ, ζ2, ζ3, ζ4 ; 0, 1, ζ, ζ2, ζ3, ζ4 | τ)


, (D.16)

Y3(τ) =


Y6(τ)

Y7(τ)

Y8(τ)

 ≡


1√
2
Y
(
−
√

5,−1,−1,−1,−1,−1;
√

5, 1, 1, 1, 1, 1
∣∣τ)

Y (0, 1, ζ4, ζ3, ζ2, ζ ; 0,−1,−ζ4,−ζ3,−ζ2,−ζ | τ)

Y (0, 1, ζ, ζ2, ζ3, ζ4 ; 0,−1,−ζ,−ζ2,−ζ3,−ζ4 | τ)

 , (D.17)

Y3′(τ) =


Y9(τ)

Y10(τ)

Y11(τ)

 ≡


1√
2
Y
(√

5,−1,−1,−1,−1,−1;−
√

5, 1, 1, 1, 1, 1
∣∣τ)

Y (0, 1, ζ3, ζ, ζ4, ζ2 ; 0,−1,−ζ3,−ζ,−ζ4,−ζ2 | τ)

Y (0, 1, ζ2, ζ4, ζ, ζ3 ; 0,−1,−ζ2,−ζ4,−ζ,−ζ3 | τ)

 , (D.18)

where ζ = e2πi/5. The first few terms of the q-expansions of these modular forms can be found in

Ref. [189]. Our numerical results have made use of q-expansions up to O(q100), but the results

are unchanged when using up to O(q5).
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D.3 Numerical Results in Fundamental Region

The models studied in chapter 5 are modular invariant and it is always possible to map the

Lagrangian referred to a certain value τ of the modulus to an equivalent Lagrangian where the

modulus τ ′ is inside the fundamental region |Re(τ ′)| ≤ 1/2, |τ ′| ≥ 1. By definition there exists

a modular transformation γ such that τ ′ = γτ . Together with the transformation τ → γτ , we

consider the field redefinition mapping all chiral multiplets except L into the modular transformed

ones, after setting to zero all their weights. We find that the low-energy superpotential

w = − v
2

2Λ
LT W(τ) L− v√

2
EcT Y(ϕ) L (D.19)

becomes

w = − v
2

2Λ
LT W(γτ) L− v√

2
EcT Y(ϕ) ρ†L(γ)L , (D.20)

where

W(γτ) = (cτ + d)2ρL(γ)∗ W(τ) ρ†L(γ) . (D.21)

Neutrino and charged lepton mass matrices are now:

mν =
v2

Λ
W(γτ) , m†eme =

v2

2
ρL(γ) Y(ϕ)†Y(ϕ) ρ†L(γ) . (D.22)

The lepton mixing matrix is unchanged. We list here the transformations needed to map the

values of τ found by our minimisation procedure to points inside the fundamental region.
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Input parameters - fundamental region

Case γτ Re(τ) Im(τ) Re(ϕ1) Im(ϕ1) Re(ϕ2) Im(ϕ2) Re(ϕ3) Im(ϕ3) 1/Λ (eV−1)

4WV ST−1τ -0.1579 0.9957 2/3 0 1/6 1/2
√

3 -1/3 1/
√

3 0.003223

4SV T−1τ -0.1564 0.9968 -1/3 -1/
√

3 -1/3 1/
√

3 -1/3 0 0.7672

4WC T−1ST−3τ -0.07915 1.055 -0.3947 0.5774 0.6974 -0.05315 0.1053 0.1824 0.0007030

4SC T−1ST−3τ -0.1667 0.9966 -0.2709 0.5774 0.6355 0.05406 0.2291 0.3968 0.06993

Table D.1: Parameters τ and ϕ in the fundamental region for level 4 models.

Input parameters - fundamental region

Case γτ Re(τ) Im(τ) Re(ϕ1) Im(ϕ1) Re(ϕ2) Im(ϕ2) Re(ϕ3) Im(ϕ3) 1/Λ (eV−1)

5WC3 Sτ 0.01908 1.007 -0.3301 0 -0.7188 0 -1.096 0 0.007958

5WC3p T−2Sτ -0.3908 3.902 -0.1618 0 0.1621 0.4990 0.2911 -0.8960 0.0007302

5SC T−2Sτ -0.08591 1.277 0.1812 0 0.4561 0.3314 0.7194 -0.5227 0.002804

Table D.2: Parameters τ and ϕ in the fundamental region for level 5 models.
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