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We study natural models of physics beyond the Standard Model with several directions in
mind. Firstly we study the supersymmetric extension of the U(1)y x U(1)p_r model. This
non-minimal supersymmetric model maintains the best features of the minimal supersymmetric
Standard Model, but provides several new dark matter candidates. We compare metrics of fine-
tuning in these two models and characterise these new candidates. We then focus in particular on
the superpartner of the right-handed neutrino, the right-handed sneutrino and consider methods
of indirect, direct and collider detection.

We then consider Z’ signals at the LHC arising from two models, the aforementioned B — L
model, as well as one originating from the group U(1)g xU (1) p—r, which comes from the breaking
of SO(10). These models may be distinguished by the axial couplings in the later case leading
to different forward-backward asymmetry shapes.

Lastly, we consider neutrino masses and the flavour puzzle. Here we use the framework of
modular symmetry to present new models of neutrino masses and mixing in addition to natural
charged lepton masses. We then consider a new model scenario which also accommodates the
observed quark masses and mixing angles in addition to the lepton sector, providing a natural

solution to the fermion mass hierarchies.
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Chapter 1

Introduction

1.1 Overture

Despite the overwhelming success of the Standard Model (SM), there are many outstanding
puzzles which remain to be solved. In this thesis, we investigate several interesting models which
provide some natural solutions to some of the main challenges in modern High Energy Physics
(HEP).

At the lowest energy scale lies neutrino physics. Predicted massless in the SM, but now
known to have non-zero, < O(1) eV masses, this is perhaps the most direct evidence of Beyond
the SM (BSM) physics we see. All of the models discussed in this thesis are motivated with
solutions which can accommodate neutrino masses, directly or otherwise. One of the simplest SM
extensions which can explain the masses is the B — L model, which promotes the global symmetry
in the SM of baryon minus lepton number into a gauge symmetry. For anomaly cancellation,
this demands three new Right-Handed (RH) singlets of the SM, which are identified as the RH
neutrinos. Breaking the gauged U(1)p_1 symmetry sets a dynamic scale for the neutrino mass,
as well as providing other interesting phenomenology related to the associated B — L Higgs and
massive gauge boson. Such a theory is well motivated, but does not provide concrete predictions
on the nature of the neutrinos masses and mixing. Here, flavour symmetry models can produce
falsifiable predictions of the properties of neutrinos. Discrete symmetries here attempt to match
the currently measured neutrino properties, as well as providing predictions for parameters which
will be directly measured by the next generation of neutrino experiments.

At the larger Electroweak (EW) and TeV scales, the Large Hadron Collider (LHC) is search-
ing for BSM content both directly through production of new particles, as well as from deviations
in quantities predicted by the SM. One of the most compelling theories here is low-scale Super-
symmetry (SUSY). This theory addresses numerous problems in HEP, but perhaps the most
immediate concern is the hierarchy problem. Introducing any heavy BSM content will lead to
large corrections to the bare mass of the SM Higgs, such that the corrected Higgs mass must
be very finely tuned to remain at the EW scale. The scale of this fine-tuning is considered un-

acceptably large (up to 1 part in 103* for content around the Planck scale) and begs for a NP



explanation. In addition, SUSY can predict a suitable Dark Matter (DM) candidate, and modi-
fies the running of the SM gauge couplings such that they appear to all unify, and is a necessary

ingredient for many theories of Quantum Gravity (QG).

At the highest scale are Grand Unified Theories (GUTs). Motivated by the running of gauge
couplings which almost meet in the SM and directly meet in low-scale SUSY models, GUTs aim
to unify the three SM forces. There are numerous GUT groups which are considered, but SO(10),
SU(5) and the Pati-Salam (PS) group SU(4)c x SU(2)r, x SU(2) g are the most popular choices.
Unification has been a guiding principle in physics since Maxwell’s unification of electricity and
magnetism into electromagnetism (EM) and EM combining with the weak force into the EW

theory.

In chapter one we will present a full introduction to the SM, neutrino masses, SUSY and
GUTs. We will then present five chapters based on models which relate to these topics. In
chapter two we introduce the non-SUSY B — L model, and then the SUSY version the B — L
Supersymmetric SM (BLSSM). We compare the Fine-Tuning (FT) of this model to the usual min-
imal supersymmetric SM (MSSM), as well as identify new DM candidates. We find that the levels
of F'T similar, however we see several features of the BLSSM model result in a larger parameter
space for solutions which satisfy the relic density requirements for the DM candidate. In chapter
three we continue with the the BLSSM, but focus on the RH sneutrino as the DM candidate.
Here we study the direct, indirect and collider approaches to identify the RH sneutrino as DM
and find several smoking gun signals of the BLSSM. In chapter four we investigate a comparison
between the aforementioned U(1)y x U(1)p—_r model with the similar U(1)r x U(1)p—r, model,
dubbed the BLR. The later model has origins from SO(10) whereas the former does not nicely
embed itself into a GUT group. Both predict a Z’ with similar phenomenology at the LHC and
in this chapter we aim to discriminate the two similar models, should a signal be seen, by their
forward-backward asymmetries. We then move on to models of neutrino masses in chapters five
and six, and study the string-theory inspired framework of modular symmetry. In chapter five
we present a new model which provides natural (ie with model parameters close to unity) models
of charged lepton masses in addition to predicting neutrino masses and mixing parameters com-
petitively, with a reduced x? close to unity. We then go on, in chapter six, to study a model in
the framework of modular symmetry which predicts all fermion masses (leptons and quarks) with
natural inputs, close to unity and again find several solutions with a successful reduced y? ~ 1.

Finally, we present our conclusions in chapter seven.

1.2 Standard Model

1.2.1 The Gauge Sector

The SM is a gauge theory based on the group SU(3). x SU(2)r x U(1)y, comprising the strong

interactions (where c is for colour), weak interactions (denoted by L, referring to the Left-Handed



(LH) fermions which couple to it !), and the hypercharge, denoted by Y.
We begin by considering the gauge sector of the SM. Their interactions are determined by

the Lagrangian involving the field strength tensors,

1 1 1
LB = G GO — Wi, W — 1B, B (1.1)

The forms of the field strength tensors are defined by their symmetry. The Abelian (where

different elements of the group commute) hypercharge field strength tensor is defined as
B, = 0,8, — 0,By, (1.2)
where a local transformation of the hypercharge field takes the form
1
B, — B, + ?8uwy(x), (1.3)

where ¢’ is the hypercharge coupling and wy (x) parametrises a local (space-time dependent)
phase. With this transformation, the term —iBWB“” is invariant. We note here that as this is
an Abelian group, all terms are quadratic derivatives of the gauge boson fields, and so there are

no interactions between hypercharge bosons.

This is not the case for non-Abelian theories. The weak field strength tensor, now with index

a =1, 2, 3, which refers to the 3 different gauge fields (generally for SU(N), the N? — 1 fields),
is defined as

Wi =0,W — 0,Wi + ge™ W)Wy, (1.4)

abc

where €2°¢ is the totally antisymmetric three-index tensor (also known as the Levi-Civita symbol),

such that €'?® = 1. This is defined from the group generators T¢,
[T“,Tb} — jeabee, (1.5)
where the generators T* = 0% /2 and ¢ are the Pauli matrices,
0 1 0 — 1 0
The fields Wy, transform locally as

a a 1 a aoc C
Wi — Wo+ gaﬂwL(x) + b ijwL(:):), (1.7)

!The common choice to use the identifier L in the weak coupling gauge group can be confusing, as Right-Handed
(RH) anti-fermions also couple to this, and in principle any new RH fermion could be charged, and any left-handed
piece uncharged under SU(2). An alternative, less commonly used, notation is to refer to the group as SU(2)w,
where W means weak, though we do not adopt this convention to keep consistent with the standard notation and
avoid other confusions with the field strength tensor notation.



such that after a local transformation, one will also gain terms of the form
1
5L D ge™ (0, WHWiWE — ZgQEGbceadeW3WijWf, (1.8)

which are the three-point and four-point interaction terms. Here we find the crucial difference
that while Abelian fields do not interact, non-Abelian gauge fields do. The strong interaction
SU(3)., being non-Abelian, looks very similar to the weak interaction, however now the index a

runs from 1...8, since N = 3, and t* = A\*/2, the Gell-Mann matrices (see appendix),

G% = 0,Go — 9,GY + g™ G Ge, (1.9)

[t“,tb} — fabete, (1.10)
a a ]' a aoc (&

Gy, —>G“+;3uwc(x)—|—6 b Gch(l‘). (1.11)

A mass term in any gauge field, such as 2, = (Bu, W, GZ),
L o
LD imQQHQ“, (1.12)

is not gauge-invariant, and thus forbidden to be entered in the Lagrangian, therefore all (unbro-

ken) gauge bosons must be massless.

Fermions will transform in the following way under the three gauge transformations

U1y : P — eV h, (1.13)
SU(2)r : P — LTy, (1.14)
SU(3). : ) — ety (1.15)

and interact with the gauge fields through the covariant derivative,

D, =8, —ig'B,Y — igWiT® — ig,Got®, (1.16)
Efermion, gauge __ Mz(Du’Y”W (117)

1.2.2 The Fermion Sector

The fermionic content of the SM is summarised in table 1.1. There are three generations of chiral
(LH and RH) fields transform in different ways, as opposed to vector-like where LH and RH fields
transform in the same way) of quarks and leptons, where all three generations have the same

representation. In Dirac notation, the Lagrangian for a fermion v with mass m has the form

L = iy y'1h — mapp. (1.18)



Generation Representation under
1 2 3 SU3). x SU((2)L x U(1)y

<§>L (Z)L (3,2,1/6)
<Ve€>L (l:f)L <VTT)L (1,2,-1/2)

UR CR tr (3,1, +2/3)
dr SR br (3,1,-1/3)
eR KR TR (1,1,-1)

Table 1.1: Fermionic fields and representations in the SM, in the convention Q = 72 + Y.

We may rewrite this mass term in Weyl notation

— m) = —mapRipr, — MR, (1.19)

and can see that we may not write any mass term for any of the SM particle content, for example
a term like merer would break gauge invariance of both SU(2)y, and U(1)y. To generate both
particle and gauge boson masses as observed, we need to consider the final piece of the SM, the

Higgs sector.

1.2.3 The Higgs Sector

To the aforementioned gauge and fermionic sector, we add a complex, SU(2) doublet scalar, ®,

with hypercharge Y = 1/2 and a colour singlet,

+ .
®= ¢0 _ (e, (1.20)
¢ V2 \ 3 +igs
which has four real degrees of freedom ¢; ... ¢4. The Lagrangian for this new scalar is
Lo = ‘DM(I)‘Q - V(i)) + Lyukawas (1.21)

with kinetic and gauge interactions contained in the first piece, the potential written in the second,
and fermionic interactions contained in the final, Yukawa 2 Lagrangian. The normalisation 1/v/2
is chosen so that the kinetic piece of the Lagrangian has the correct normalisation, £ D %(%qbﬁ“qbi.

A general potential for a complex scalar contains two allowed pieces,

V(®) = —p2®Td 4 A(®TD)?, (1.22)

2Any interaction between a scalar field (or pseudoscalar) and a fermion is named after Hideki Yukawa, who
predicted pion (pseudoscalar) interactions with protons and neutrons (fermions).
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Figure 1.1: Plots of the Higgs potential, V(®) = —u?®® + \(®T®)? as a function of Re(®) and
Im(®), for —pu? > 0 (left and —p? < 0 (right). The parameters A ~ 0.129 and |u?| ~ (88.4GeV)?

are obtained from the measured Higgs mass my = 125 GeV and vev, v = 246 GeV. In the right
hand case, the minimum lies at ® = v/ V2~ 174 GeV.

where p and A are fundamental parameters of the theory and

D10 = (6} + 03+ 0+ 6. (123

For a stable potential, we must have that A > 0, which leave two scenarios where —u? > 0
and —p? < 0. This is shown in figure 1.1 on the left and right side respectively. In the former
scenario, the minimum lies at |®| = V®T® = 0 (coloured in turquoise), which does not break
any symmetry as a gauge transformation acting on the vacuum ® = 0 does not change the state.
Nature realises the other scenario, with negative —u? and positive A\. Here the ground state lies
away from ® = 0, at the base of the “Mexican-hat” shaped potential, coloured in blue. Since
now Py # 0, SU(2) x U(1)y transformations rotate the vacuum around this minima ring, and
the gauge symmetry is spontaneously broken in the vacuum.

We may find the vacuum state value of ® in the ground state by minimising the potential,

dv (@) 2
= 4%+ 20070 = 0, 1.24
vois - " (1.24)

Voo = \/g = % (1.25)

We notice at this point there is a global O(4) symmetry among the column vector (¢1, ¢2, ¢3, ¢4)’,
ie. ¢ = 0450, — TP — otP, if 0;;O;1, = 01, which is the O(4) rotational symmetry group.
This allows us to choose a single component to take the vacuum expectation value (VEV), rather
than it lie in some combination of fields. Without loss of generality, we may choose the vev to
lie in the ¢3 component,

(93) = v, (f1) = (¢2) = (¢4) =0, (1.26)

which is why we chose the normalisation relating v and V(®)|min. We also permit a new real

scalar h, with zero vev (h) = 0 related to excitations around the vacuum, ¢3 = h+ v, so that our



final Higgs doublet becomes

1 D1+ i
(I)Zi . .
V2 <h+v +i¢4> (1.27)

The form of a generic mass term to a scalar field is made from a quadratic piece in the field,
LPmass — %m2<p2. From our Higgs potential, we find only one quadratic piece which is in the h

field. The other three ¢; terms are massless.
V(@)auadratic — xi2p2 iy = V202, (1.28)

It is possible to remove the appearance of these massless modes by a gauge transformation. By

writing &' = ¢o, €2 = ¢1, &3 = —¢4, and working to first order in (h, ¢;)/v, then we may re-write

P as
1 &% 0
¢ = 7 exp <v > (v N h) , (1.29)

where 0 are the Pauli matrices, and the repeated index is summed over a = 1, 2, 3. The gauge
transformation in SU(2); may now be straight forwardly calculated. Fixing the gauge to be

wi (z) = —2£%/v at all points in space-time, then we find

SU(2)r - ® — exp (1&)%0;) @z\}i (v—?—h) . (1.30)

This process of “gauging-away” allows us to view the theory in some manner in which these fields
are absent. This particular gauge is known as unitary gauge, and is sometimes referred to as the

Goldstones being “eaten” by the gauge bosons. We will now describe this effect in detail.

1.2.4 Gauge Boson Masses

Using the covariant derivative, defined in eq. 1.16 on the unitary gauge Higgs field, and defining

the combinations >

1 A2 1 A2
Wi iWE o Wi
V2 . V2

then the gauge-kinetic term of the Higgs takes the form

=W, (1.31)

2 2 2
_u g n, 9 —u 1 2 312
wiw +7thW +ZthjW +§(v+h) (=g’ Bu+gW;)*.
(1.32)
We note that the appearance of a two real scalar fields appearing together in the form (o1 +ip2)
— p1+ips
- V2

2
DI = (@) @)+~

may be identified as a single complex field ¥ , so the above combination is well justified.

3The charge may be correctly assigned to each combination of Wj, Wj by requiring charge conservation in the
fermion-gauge interactions.



The mass terms for this general complex (charged) gauge field ¥, and real (neutral) field Z° are
1
[8auge masses _ m%qﬁqj + 577@222,7220’{ (1.33)

Analogously to the masses of real versus complex scalar fields, there is no factor of 1/2 for
the complex field, as it can be written in terms of two real scalar fields and this normalisation
generates the 1/2 from the 1/4/2’s. We may thus extract a mass term for our W boson,

202

my = L. (1.34)

We see that our VEV has given the W a mass, in addition to generating interactions with the

Higgs boson. We may measure the parameters g and my experimentally, to derive that v = 246
GeV.

We now turn out attention to the B, and WS fields. We may re-write this term as a mass

2
DBI2 5 L0+ h)? (B, w?) A AT (1.35)
w 8 © H 7gg/ 92 WB# ) ’

matrix,

which we may diagonalise by making a field rotation. Defining

By  (cosOw —sinfy A, (1.36)
Wg’ B sinfyy  cos Oy Zy ’ .

and requiring no mixed A,Z* term, we find

/

g . g
cos by = , sinfy = ———, (1.37)
9 +g” Vg2 +g7?
/ 2 12
ma =0, my— NI TI_ MW (1.38)

2 cos Oy

The physical fields we observe are the photon, A, the Z—boson, and the charged W*. These fields
will appear in the final covariant derivative expression and Feynman rules for all interactions with
scalar and fermionic fields may be derived from this. Defining sin 6y = sy, and cos Oy = cw,

we may focus on the photon term of the covariant derivative
Dy = —iA(gswT? + gewY) +.... (1.39)

By experiment, we may observe the photon coupling to be e) where ) is the electric charge of
the interacting field and e is the electromagnetic coupling. We may simplify the photon coupling

which appears in the covariant derivative using this,

99

Vg*+g”

(gswT? + g'ewY) = (T2 4+Y) = eQ, (1.40)



from which we identify

99’
6:7:QSW:g/CW7 Q:T3—|—Y (141)

Vg +g”

We may use this to simplify the expression to the Z—boson as well. Defining 7% = o = o dio?

2
we may now write the covariant derivative after EW Symmetry Breaking (EWSB), in the mass

basis,

Z,(T? - s3,Q) —ieA,Q. (1.42)

. . . g et I . €
'D#—au—zgsGZt“_ZE (wrrt+w,T )—ZSWCW

This couples to the Higgs as in eq. 1.35, and to fermions as,

L 898 — i Dy, + iR Dy . (1.43)

1.2.5 Fermion Masses

We may now study the couplings of fermions to the Higgs doublets. Whereas previously with no
Higgs doublet, inserting a mass term breaks gauge invariance we may now couple to the Higgs
doublet which carries SU(2)r, and U(1)y. For a single generation of charged leptons, we may

write down a general coupling to the Higgs boson,
re® - <y§EL<I>eOR + yg*éoRchLL) , (1.44)

where the second term is the hermitian conjugate of the first, L is the lepton doublet, ® is the
Higgs doublet and vy, is the complex Yukawa coupling. This may first be made real by a rotation
of the field. Writing y? as a real part with phase, 30 = y.e'®ve, and a field rotation eOR — e Preep,
then

Y0l = yeeiPveel, - g evee e = yoep, (1.45)
— Lo — (yeEL@eR n yeéRchLL) . (1.46)
In unitary gauge and using Weyl notation, this finds

Le,‘b — _ye(v + h)
V2

which corresponds to an interaction term with the Higgs field, and a mass term for the charged

(€rer + €Ler), (1.47)

lepton,
Ye

%

We will now briefly consider the analogous scenario but with a single quark generation. Since the

(1.48)

me =

charged lepton appears in the 7% = —1/2 piece of the L doublet, it is clear to see how the mass



is generated. For down quarks this is exactly analogous, but for up quarks there is a subtlety.
We are required to construct a doublet where the vev appears in the upper term. This can be
done in SU(2) as we may take the 2 representation, which transforms in the same was as the 2

4. Explicitly, we construct the object,

b=t =i [0 V(7 ), (1.49)
i 0)\—om
- v+ h)/V2
(I)|Unitary = ( 0)/ (150)

We may then couple the up-type quarks (after rotating away the complex Yukawa phase), as
— L% = g up® QL + yuQrPug. (1.51)

In the SM, we have three generations of quarks, and so the Yukawa couplings become 3 x 3

complex matrices. For the quarks before any field rotations, in the flavour basis, in unitary

gauge,
ud d°
_ e _ % (ao 2 p)Ryg ol o+ % (JO 50 EO)RYdO S| +he. (152
0 v°

L L

We may diagonalise this Yukawa matrix by a “bi-unitary” transformation to guarantee real,
positive eigenvalues. Defining 1/;2 R= (ao & EO)R, and similarly for the RH, down-type, and

unconjugated fields, we make the field rotations
Vo r=Uur¥ur, VYop=Usr%ur, V9r=Uir%ar V3;=UdsraLr, (1.53)
which are defined such that °

Ul YU, =Yy = diag(yu, Yo, w), Ul pY4Uar = Yo = diag(ya, s, m), (1.54)

“This is not the case in SU(3) (or SU(N > 3)), where the 3 and 3 do not transform in the same way. If the
Higgs mechanism were based on triplet SU(3) interactions, with fermion triplets transforming, then one sector of
the fermions would remain massless, unlike the SU(2) case where both up and down type quarks gain mass. This
is because of the group theory result that in SU(2) we have 2x2 = 2x2 = 38+1. Whereas in SU(3),3x3=6+3
and 3 x 3 = 8 + 1. We require singlet pieces in the Lagrangian, so we could not perform the same trick with a
Higgs triplet of SU(3) as Higgs doublet in SU(2).

5We prove here that any complex, square matrix, Y, may be diagonalised to have real, positive eigenvalues
via bi-unitary matrices, U}; and UL here. Given the form D = U};YUL, we construct two Hermitian matrices
Hy, =Y'Y, and Hr = YY'. A Hermitian matrix may be diagonalised by a single unitary matrix, by UITJHLUL =
ULHRUR = HY*® = diag(|y1|?, |v2|?, |ys|?). Now DD = H*8 so D = diag(y1, v2, y3). Note there are cases
where this procedure apparently fails, such as when D'D = 1, however in these cases the matrix D is already
diagonal up to permutations of the rows, which is allowed by the theory.

10



where y; are positive, real entries. As with the charged lepton example, my = % This rotation

into the mass basis causes flavour changing charged currents, through the W —boson, but no
Flavour Changing Neutral Currents (FCNCs). We write the gauge-quark interactions from eq.

1.43 in the flavour basis, and then mass basis,

L g-1 _ _
L£8W2) — ¢27L%Wm“w2¢ + e+ [0 1(9az - V27" 1+ a1 (guz - D2y "dg r, + (L R)]

(1.55)
Ul (g DU
S L%WJ’Yﬂwd,L + h.c. (1.56)
+ %,LUJ,L(QdZ D Uur. 2" Y, + @d,LUJ,L(guz D Uq,1.Z A" + (L < R)|,
(1.57)

where g,z parametrises the interaction strength between the up and down type quarks with the
Z, and we have written explicitly that the coupling multiplies a unit matrix. In the flavour basis
the couplings are diagonal, there are no mixed terms. For the Z interactions, the couplings are of
the form U'U = 1, and hence after rotating into the mass basis, these couplings are still flavour
conserving. This is referred to as the Glashow-Iliopoulos-Maiani (GIM) mechanism. For the W
interactions, the object

Ul [ Ugp = UM, (1.58)

u

is non-diagonal and so there will be flavour changing interactions in W-quark interactions. These
are parametrised by the unitary ¢ Cabibbo-Kobayashi-Maskawa (CKM) matrix. There is an
analogous mixing matrix in the lepton sector, derived in the same way as the CKM but with
no RH neutrinos, called the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix. We change
notation slightly, that whilst charged fermions in the flavour basis are written with a superscript
zero, such as e, u®, 7Y and the mass basis without the superscript, e, p, 7, we now write
neutrinos in flavour basis without the superscript zero, ve, v,, v, and in the mass basis with
numbered elements v, 1o, 3. The reason for this inconsistency will become apparent later as
eases notation in other areas of neutrino physics. We now present the analogue to the CKM
matrix in the lepton sector, the PMNS 7 matrix, which rotates the neutrinos in the flavour basis

into the mass basis,

Ve 141

__ 77PMNS
vy =U V9 . (159)
Vr I 122 I

Both the CKM and PMNS matrices may be described in terms of just four parameters, three
angles and a complex phase. This parameter counting may be determined in the following way. To

begin with there are 9 complex entries in the 3 x 3 matrix (18 real parameters). The matrices are

S(U L Ua) (UL Uar) =1,
"Also known as MNS, or MNSP.

11



unitary, which sets 9 constraints from U,;rj Uji = dik, which reduces the number of free parameters
to 9 (made up of 6 phases and 3 angles). &

In addition, 5 further phases may be removed by phase rotations on the fermions.  This
leaves three angles, and one phase which causes CP violation for both the CKM and PMNS
matrices. The final matrix may be parametrised by

€12€13 $12€13 size™
—S19C23 — C12513523€™ C1aC03 — S12513523€%  C13593 ; (1.60)

i i
512523 — €12513C23€"°  —C12523 — $12513C23€"°  C13C23

where 0 = dcp is the C'P violating phase in each sector (quark and lepton) and si3 = sin 63,
etc. with (very) different angles for quarks and leptons.

To conclude our discussion on the SM, the predictions of this theory have matched experi-
mental observations remarkably well, but there are still some unanswered questions. It is to these
that we devote the remainder of this thesis. We begin with introductions on some of the main

problems in BSM physics.

1.3 Neutrino Masses

In the SM, LH neutrinos are massless and have no RH partners. We observe, however, that
from neutrino oscillation experiments that they have small non-zero masses. The absolute scale
of these masses has not been directly measured, but is constrained by cosmological data to be
< O(1) eV. What is measured precisely by oscillation experiments is the squared mass differences
between the three neutrino mass species, in addition to the three mixing angles defined in Eq.
1.60 which parametrise the mixing between the flavour and mass basis. So far the Mass Ordering
(MO), of the three states has also not been measured, and results in two possibilities which are
discussed in figure 1.2. Further to the MO, the C'P violating phase has not yet been directly
measured, but in both cases there are hints. The experimentally observed masses and mixing
angles are written later in this thesis, in table 5.6.

There are many possibilities for BSM theories which generate these observed masses. One
such interesting idea generates masses without needed to introduce any RH partners. This is

the “type-1I see-saw mechanism”, which introduces a new SU(2)y, triplet Higgs field. Here the

8Since we may write a unitary matrix in terms of a Hermitian matrix as U = €' | and since a Hermitian matrix

has real diagonals, and complex upper triangle, one show there are N(N — 1)/2 angles and N(N + 1)/2 phases,
hence for a 3 X 3 unitary matrix, of the 9 real parameters, there are 6 phases and 3 angles

9For example, we can write entries of the CKM in terms of a real part and phase, so what appears in the
Lagrangian are terms like (@ire'®*¢U,qdy). We may then make rotations on the fermion fields to fix this. By
setting ur, — e~ *®»dyy then the (1,1) entry of the CKM is made real. Importantly, this phase in the up field
does not appear in any other terms in the Lagrangian, as the up quark appears in the combination @rur which
cancels this phase. We may similarly go through other elements, such as sp, — e(?us~®ud) fixing U,,, taking care
to cancel the new ur, phase. Similarly we may fix Uy with by, and U.q with c¢r. Now U.s and U, cannot be fixed,
but we may fix Uy with . The remaining two terms U.s and Uy, also cannot be fixed. We note that no further
piece could be helped by any rephasing on dr,, and we removed 5 phases in total.

12
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Figure 1.2: (Figure taken from reference [6]). The probability that a particular neutrino mass
state v; with mass m; contains a particular charged lepton mass basis state (ve,v,,v;) is repre-
sented by colours. The left and right panels of the figure are referred to as normal or inverted
mass squared ordering, respectively, referred to as NO or 10. The value of the lightest neutrino
mass is presently unknown.

SU(2) product of the two lepton doublets with a triplet is a singlet, and so we allow a mass term
of the form (schematically) m,vrvy. This possibility precludes the assumption that there must
exist any RH partners to the LH neutrinos, and so we may not simply assert there must exist

such RH pieces, in addition to the SM, due to the presence of neutrino masses.

1.3.1 Type-I See-Saw

In this thesis, we consider the implications of introducing RH neutrinos, which offer perhaps
a simpler and more natural explanation of neutrino masses compared to other models. For
concreteness, we will add three generations ' of RH neutrinos, which are singlets under the SM

gauge group. This will generate a usual Dirac mass term after SSB for the neutrinos,

Lp = —vrmjpyr + h.c.. (1.61)

0Though, we note that models exist which may explain data with just two families, or more than three, but for
an embedding into SO(10) which we will discuss later, or for gauging U(1)p—r, one requires exactly three species
to match the number of LH generations.
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Whilst inserting fermion mass terms was forbidden by gauge invariance for fermions charged
under the SM gauge group, for the RH neutrinos there is no such prevention by symmetry, and

so one must also include, in this extension, an unprotected Majorana mass term,

1
Ly = *§I7RMRR(VR)C+h.C.. (1.62)

Where ¢, is the CP-conjugate of ¥. We note that this mass term Mprpr will break the global
B — L symmetry, since through a mass insertion we may change lepton number by two units.
Breaking a symmetry in this way, through the use of a mass term is referred to as “soft” symmetry
breaking, so-called since it appears as a mass term, rather than in an interaction which would
generate a “hard” scattering process. As this mass, Mpgpg, is unprotected, it is typically set to
be very high scales (such as the GUT ~ 10'6 GeV or Planck ~ 10 GeV), if not fixed by a
dynamical scale such as in a gauged B — L model. We write down these two mass terms together,

as a mass matrix,

1 B 0 T c
LY =Ly + Lp = —= (0% MLk "L ) 4he. (1.63)
2 mrr Mpg VR

Noting we have used the relation v;“M Y = oM T4y, which is true for any two fermions (and
also note this is a scalar quantity, rather than a matrix), and matrix M, providing [M,~*] = 0,

which will be true if the indices on M are for neutrino flavour, rather than spinor based.

We wish to diagonalise!! this matrix as we are interested in the physical masses of our observed

neutrino states. We can do this by defining a new set of fields
(Vlight)c e
( by | ZU 7, (1.64)
Vnp VR
(vt (phen)e) = (v vp) U, (1.65)

Noting that the charge conjugation and “bar” operations only apply to the spinorial indices,
rather than the matrix indices we see here. (ie there is no such operation as U, nor U¢). We

choose the unitary matrix to diagonalise our neutrino mass matrix,

0 T 0
Ut MLR ) = (T . (1.66)

So, we may rewrite our neutrino mass Lagrangian as

1 . mrr 0 (Vgght)c
Ln=—5 (V-thht (V-Rheavyy) by | +hec. (1.67)
R 14

0 mp R

"1 Because this mass matrix is symmetric, it is diagonalisable under UT M*¥™U = M%%9 on contrast to the
traditional UTMU = M%%9_ though this is not relevant for this derivation
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Where in the large Mrg > mr limit we find

T
—m m
mrr = 7]@1; L (1.68)
RR
mpr = Mip. (1.69)

If we take mpr ~ 100GeV and Mpr ~ 1016GeV, then our physical, light neutrino mass state (ie

solar neutrinos) will have a mass like mp;, = mp, RME}Em e ~ 1073V, which is very reasonable.

1.3.2 Inverse See-Saw

Another see-saw model, though less minimal is to add 3 SM singlet fermions, “S” in addition
to the RH neutrinos. This is motivated, for example, by B — L models, as done in [7], where we
follow their notation (why we use Sy rather than S). The Lagrangian for neutrino masses in this
model appear like:

LY =vrmpvr + VpMpySs + h.c.. (1.70)

In the basis {v§,vg, S2}, the 9 X 9 neutrino mass matrix has the form
0 mp 0\ (v

(7 # &) |mh 0 My||ve| (1.71)
0 M]E s 52

Which diagonalises to

—\/ M2 +m?, 0 0

T
0 oRTD 0 . (1.72)
MyME,

0 0 \/ MZ +m3,

Thus one may have light neutrino masses O(eV) from the central term and O(TeV) scale heavy
masses as favoured by the B — L model, assuming values of mp ~ 100 GeV, My ~ 1 TeV and

ts =~ 1 KeV. The physical neutrino states are given in terms of v{, vg, and S3 as follows:

vy = V§ + a1V + a2So, (1.73)
vy = agvi + avg — aSs, (1.74)
v = avg + aSo, (1.75)

where now v refers to the light state and vy g+ are the two degenerate heavy mass states. Given

the mass values above, one finds a1 2 ~ mp/(Mn+/2+ 2mp/My) ~ 0.05, a3 ~ mp/My ~ 0.1
and « ~ sin7/4. The smallness of i is natural in the t’'Hooft sense, as the symmetry enhances

as i — 0, though there is no dynamical understanding of this smallness.
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1.3.3 Linear See-Saw

The linear see-saw is similar to the inverse see-saw case, but now with a small element in the
(1,3) component, rather than (3,3):

mb 0 M, |. (1.76)
e Ml 0

Each element here corresponds to a 3 x 3 block. Solving this in block diagonal form, assuming
€ K mqg < My, one finds

M, +m3M_! 0 0
0 —(My+mpMh) 0 . (1.77)
0 0 —eMb
MX

So the light and heavy physical masses are

mp
MVL = _Eﬁx + h.C., (178)
My, ~ My, ~ My + mpM ' +hee. (1.79)

Here we have the light neutrinos as observed in oscillation experiments and My, , are the heavier
neutral fermions. The smallness of € may allow for a low (TeV) scale M,, which is a fundamental
feature of all low-scale see-saw mechanisms. We see that M,, is linear in m p, which is proportional

to the Yukawa couplings, hence the name “linear” see-saw.

1.4 Supersymmetry

SUSY is the unique space-time extension of the Poincaré group. This has interesting applications
to more formal physics, such as string theory, supergravity (SUGRA), meta-stability of the
vacuum, inflation and scattering amplitudes, but low-scale (ie near EW) supersymmetric theories
also have phenomenological applications. It has been one of the great interests of recent years
in HEP to find low scale evidence of this theory, but so far there are no hints. There are many
appealing features which address problems in the SM from low-scale SUSY, but perhaps none
more compelling than a solution to the “hierarchy problem”. So far we have only discussed the
SM with tree level physics, but a problem arises when we consider quantum corrections to the
Higgs boson mass parameter, p. A full derivation is done in appendix A, but simply write the
result here. With a Lagrangian £ D —AH ff, a self energy diagram with fermion loop yields a
correction
Ar[?
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and for a complex scalar S with mass mg with Lagrangian term —\g|H|?|S|?, there is the mass
correction,
As

where N, is the number of colours of a fermion, and Ayy is an ultraviolet momentum cut-off
used to regulate the loop integral. This should be interpreted as an energy scale at which new
physics alters the high-energy behaviour of the theory. This is generally thought to be the GUT
scale at which point the gauge groups unify ~ O(10'® GeV), or certainly at the Planck scale,
~ O(10' GeV), where quantum gravity effects should be considered. Further to the problems
associated with a Ayy, even using dimensional regularization, the counter term to the Higgs mass
parameter p has pieces proportional to m% For any large mg content, such as appearing in GUTs,
or even for any heavy vector-like fermions F' with masses mp not from a Higgs coupling (but
coupling to the Higgs at two-loop order, through gauge interactions), then the bare Higgs mass
will have to be extremely finely tuned such that these large counter-terms cancel. In the GUT
scenario, this leads to a Fine-Tuning (FT) of M2, 7/Mzy, ~ 1 part in 10%. This large degree
of F'T is known as the Hierarchy problem. This problem is fundamentally with the y parameter
of the Higgs potential, and so extends not just to the mass of the physical scalar Higgs, but is
also intimately related to the vev, from v = @ Since A < 1 for perturbativity, taking orders
of magnitude v ~ u. So, unrelated to the tuning due to high mass new content is the question of

why gravity is so much weaker than the other forces, i.e. why is v|246 Gev << Mpi|1019 Gov?

There are numerous solutions to the Hierarchy problem, such as suggesting the observed 125
GeV state is not a fundamental scalar but composite, or that one should only consider effective
field theory approach and so the cut-off scale is much lower, or even that this amount of FT
is acceptable (the anthropic principle). The final approach we will discuss is to notice that the
scalar and fermion corrections to the Higgs mass come with opposite signs, due to Bose-Einstein
statistics. To cancel the contributions from each fermion, there exists a scalar partner. Likewise
to cancel any scalar contribution, there is a new fermionic partner. This involves the imposition

of a symmetry between fermions and bosons, called a supersymmetry.

We may introduce an operator @ and Q' that generate such transformations,
@ |Boson) = |Fermion) , @ |Fermion) = |Boson) . (1.82)

Further details of the algebra associated with these operators (SUSY algebra) will not be dis-
cussed here. With this new symmetry between fermions and bosons, the irreducible represen-
tations of the SUSY algebra are supermultiplets, which contain equal numbers of fermionic and
bosonic degrees of freedom, and combining a Weyl fermion and complex scalar field is a chiral

supermultiplet.

We will now discuss the MSSM. Chiral supermultiplets embed the SM fermions and their
scalar, spin-0 counterparts (prefixed with an ”s-” for scalar), the sfermions. The gauge fields of

the SM are placed in gauge (or vector) supermultiplets, with their spin 1/2 partners (suffixed
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with “ino”), the gauginos. The Higgs is also placed in a chiral supermultiplet with its spin 1/2
superpartner the Higgsino. All SUSY partners must have the same quantum numbers as their
counterparts, and in the limit of unbroken SUSY, also the same masses. Since we do not observe
any partners at the same mass as the usual particle content, then SUSY must be broken in some
way. Since we are interested in solving the hierarchy problem, we expect the scale of this breaking
to happen at low energies. As with the global B — L softly broken with a mass term Mpgg, we
may break the SUSY by inserting “soft” mass terms for the sfermions, by hand '2.
Supersymmetric theories may be described in terms of their superpotential, W. The La-
grangian may be reconstructed from this in the following way. A SUSY model with several chiral

supermultiplets, 1; has a non-gauge, interacting Lagrangian given by
. 1. ,
L = Wi + W'E; + ., (1.83)

where the holomorphic ' superpotential W derives the W* and W% terms as

W= ZZ, Wi = aijg;j' (1.84)
The auxiliary fields F; and their conjugates are defined from
Fy=-W7,  F*=_-W' (1.85)
The SUSY gauge interactions are made from
D* = —g(¢"T*¢), (1.86)

where T'* are the relevant generators of the gauge group. Finally, the scalar potential is recovered

from

1 1
*\ __ pxk a _ kyxr* 2 ka2
V(6,0 = F*Eit 5 3 DDy = Wi+ 53 6i(6"T°0) (1.87)
The superpotential for the MSSM is
Wassm = uyuQHy — dyaQHy — éyeLHy + pH, Hy, (1.88)

where the objects {H,, Hy, Q, L, @, d, €} are the chiral superfields which correspond to the
chiral supermultiplets in table 1.2 and we have suppressed all gauge and family indices. The
left and RH pieces of the quarks and leptons are separate two component Weyl spinors which

transform differently under the SM gauge group. We use a tilde (7) to denote superpartners

12We also note inserting soft masses is also works as an ‘effective theory’ for other forms of SUSY breaking, such
as spontaneous.

13The holomorphicity condition enforces that a complex function f(z) does not depending on the conjugate, z*,
i.e. that ng* = 0. In this case we require W% does not contain ¢** for the Lagrangian to be invariant under SUSY
transformations, which we do not detail here.
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of the SM particles, and subscript to differentiate which Weyl fermion it is a partner of (the
sfermions are scalars and so have helicity 0). The necessity for two Higgs chiral supermultiplets
is twofold, firstly since the Higgsinos (the fermion superpartner to the Higgs boson) would produce
a chiral (gauge) anomaly, so one requires one chiral supermultiplet with Y = +1/2 and one with
Y = —1/2 to cancel this. Secondly related to the holomorphicity condition. A term like uQH,,
could not be replaced by uQH; and likewise dQH, could not be replaced by dQH. The p
parameter sets the Higgsino masses, in addition to other observed SM masses, and requires a
value close (within an order of magnitude) to the EW scale. This is considered unnatural as this
dimensionful parameter could take any value; this is known as the p problem, and less minimal
model, such as the Next-to Minimal Supersymmetric Standard Model (NMSSM) seek to address
this. The two Higgs doublet fields are part of the type-II 2 Higgs doublet Model (2HDM), and

so relate the two vevs by

e+ v = vl aev’, (1.89)
tan f = 2. (1.90)
V4

We will now briefly discuss some of the more phenomenological consequences of the MSSM.
Firstly, with the additional field content, there is unification of forces. The extra particle content
in loops modify the three beta functions so that unlike in the SM where the forces almost unify,
as can be seen in the upper figure of 1.3, in the MSSM the couplings meet exactly, implying
unification, as in the lower image of 1.3. In addition there are several DM candidates. By
assuming R-parity conservation, this prevents the Lightest SUSY Particle (LSP) from decaying,
and hence it is stable. In the MSSM the lightest neutralino (superpartner to the gauge and Higgs
fields) is a good candidate. When presented with all constraints from the LHC, in addition to
requiring the correct DM relic density, the parameter space for an MSSM DM candidate is vastly
reduced. Finally, the MSSM does not address the issues of neutrino masses, beyond allowing for
a SUSY embedding of a seesaw model. These two issues call for further, non-minimal extensions,

which we will address in great detail in chapters 2 and 3.

1.5 Grand Unified Theories

Unification of forces as been an overwhelmingly successful guiding principle in physics for cen-
turies. With Maxwell’s unification of electricity and magnetism into electromagnetism in 1865,
and years later with unification of EM and the weak force into the EW, the notion that nuanced
behaviour may be described in terms of laws with a great deal of symmetry has lead to great suc-
cess. There are several striking features of the SM which beg for a greater symmetry which will
unify for forces. Firstly, that the SM may be unified at all. The gauge group SU(3)x.SU(2)xU(1)
is suggestively able to be embedded in larger gauge groups, where all fermions may be accounted
for in the representations and no further fermions arise which spoil anomaly cancellation. Given

a particular gauge group and fermionic content, it is not the case that such a theory is unifiable
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Figure 1.3: The upper panel shows the running couplings in the SM (at one loop) and the lower
panel shows the running couplings in the MSSM, given a a SUSY scale vsysy = 10° GeV, and a
determined GUT scale of MgyuT = 3.3 x 1016 GeV.

whatsoever. In addition, the running of the SM gauge couplings appear to almost unify (i.e. meet
at the same coupling value). Adding in certain extra particle content, such as in the MSSM, will

lead to all three groups unifying.

There are numerous choices for the GUT gauge group, but we will focus on SU(5), the
Pati-Salam (PS) group SU(4)c x SU(2)r, x SU(2)g, and SO(10).

1.5.1 SU(5)

The gauge group SU(5) is rank 4, with 52 — 1 = 24 gauge bosons which transform in the 24

adjoint representation. The fermions (more difficult to accommodate in a given QFT) nicely fit
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Names spin 0 spin 1/2 | SU(3)c, SU(2), U(1)y

squarks, quarks | Q | (ap dr) (ur, dr) (3,2, %)
(x3 families) u uh u% (3,1, -2)
d d;, dh, (3,1, 1)

sleptons, leptons | L (v er) (v er) (1,2, —%)
(x3 families) e €x e}% (1,1, 1)
Higgs, Higgsinos | H, | (H;} HY) | (H} HY) (1,2, +3)
Hy | (HY Hy) | (HY Hy) (1,2, -3)

Table 1.2: Chiral supermultiplets in the MSSM. The spin-0 fields are complex scalars, and the
spin-1/2 fields are LH two-component Weyl fermions.

into the F' =5 and T = 10, where (for one family)

d¢ 0 ug —up Uy dy
dy 0 u. w dy
F=| da o T=1 . . 0 u d : (1.91)
e” 0 e
— . ) .0
e/, L

The subscripts represent the three quark colours (7, g,b) and superscript ¢ is represents the C'P
conjugated fermions. These assignments in the F and 7" may be derived from the requirement of
both F' and T being invariant under the SM gauge group (for example the sum of electric charges

in F and T are zero), this can be seen from

5=d°(3,1,1/3) ® L(1,2,-1/2), (1.92)
10 = u(3,1,-2/3) © Q(3,2,1/6) ® (1,1, 1). (1.93)

RH neutrinos may not be embedded here, and must be added separately as singlets of SU(5).
The breaking SU(5) — SU(3)c x SU(2)r, x U(1)y is done by the Higgs multiplets in the 24
representation developing a VEV. The usual EW doublets appear from the SU(5) multiplets Hs
and Hg, but this requires a colour triplet to remain heavy (as it is not observed by experiment).
This is known as the doublet-triplet splitting problem. The Yukawa couplings to these Higgses

take the form (for one family),

LVERYK o s Ty T TH™ + vy, Hsi F'v° + yg HETy 7, (1.94)

21



where €7%™ ig the totally antisymmetric tensor with 4, 4,5, k,0 = 1,...,5. These generate the

Yukawa terms for the SM content,
L5V E) Yok SM — ) 1, Que + yy Hy Lv* + ya(HyQd® + HyeL). (1.95)

At the GUT scale the Yukawa couplings for d and e are equal (meaning an electron and down
quark share the same mass at high scale). Extending this argument to the other families finds
the relation

Yy =Y, (1.96)

Which works well for the third generation (i.e. at GUT scale m, = my), however for the first two
generations this fails. Georgi and Jarlskog [8] proposed the (2,2) entry of the Yukawa matrices
may be given by

£5U6) Xuk, daz — (V)00 HieTy F, (1.97)

where now the down type Higgs doublet Hy is a mixture of the EW doublets in Hg and Hgz. In
terms of SM fields, this term finds

£SU(5), Yuk, SM dz2 _ (Ya)22(HyQodS — 3HyeS L), (1.98)

where the factor —3 on the lepton piece is a Clebsch-Gordan (CG) coefficient. Placing a zero
element in the (1, 1) piece of the Yukawa matrix predicts the following relations between charged

lepton and down quark masses at GUT scale,

y
Yb = Yr, Ys= g“ Ya = 3Ye, (1.99)

which previously worked as a successful model for observed quark masses. In recent times, with
new quark mass data from lattice QCD results, [9], alternative fermion mass ratios are preferred,
such as [10]

(1.100)

Yr_ 3 Y _9
Yp 2’ Ys 2

1.5.2 Pati-Salam SU(4)c x SU(2);, x SU(2)g

Prior to the suggestion of SU(5) as the unifying group, Pati and Salam were the first to propose
a unification of the SM gauge group [11] based on the gauge group

Gps = SU(4)C X SU(Q)L X SU(2)R, (1.101)

MThe SU(4)c group is also referred to in literature as SU(4)ps referring to Pati and Salam.
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where the leptons act as the fourth colour and the assignment is left-right symmetric. The LH

and RH fermions transform (respectively) under Gpg as

Up Uy Ug VU
¥i(4,2,1) = ; (1.102)
d, dy dg e |
o up up ug V°
¥i(4,1,2) = : (1.103)

dp dy dg e |
(2
where again ¢ are the CP conjugated RH fermions (so they become LH) and ¢ = 1...3 is the
family index. Unlike in SU(5) the RH neutrinos are predicted as part of the gauge multiplets,
gaining masses via the seesaw mechanism as desired. The Higgs fields are contained in the
following representations,
H,~ HP

h(1,2,2) = , (1.104)

HS H;

where the light Higgs doublets are again given by Hy and H,,. Unlike SU(5), there is no splitting

problem here, as the heavy Higgses are contained in different representations,

uBouB Wl vy
H4,1,2)=| " 7 , (1.105)

H(4,1,2) = , (1.106)

and develop vevs at the GUT scale, (vg) ~ (0g) ~ Mgyr, which breaks Gpg to the SM gauge

SU4)e x SU(2)L, x SU(2)r — SU3)e x SU2)1 x U(1)y. (1.107)

This may be done through intermediate breaking steps, where

SU(4)C — SU(?))C X U(l)B_L, (1.108)
SU(Q)R — U(l)R, (1.109)

and then
U(l)R X U(l)B,L — U(l)y, (1.110)

where B — L refers to baryon minus lepton number and R represents a charge given to RH
fermions (analogously to how SU(2)y, is assigned for LH pieces). The hypercharge is then related

to the R and B — L quantum numbers through Y = Ti’z + %, and hence electric charge
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from Q = Tg + T}% + %. This is a remarkable formula, that the hypercharges of the SM
may be predicted in terms of two new quantum numbers, which were already accidental (global)
symmetries of the model. The breaking scale of this U(1)p_, will fix the scale of the RH neutrino

masses, Mr ~ vg_;. The Yukawa couplings for all fermions take the simple form
LI = i), (1.111)
which at low energies reproduces the couplings for the SM fields,
L£P8 Y SN — g (H,Quu§ + HyLiv§ + HaQidS + HyLic§). (1.112)
which predicts the same Yukawa coupling for all SM fields at GUT scale,
Y=Y, =Y. =Y, (1.113)

which does not match the usual SUSY RGE Yukawas at GUT scale. These relations may be fixed
following similar procedures to the SU(5) case, by including CG coefficients through suitable
model building. The Majorana mass term for the RH neutrinos can be written in terms of
non-renormalisable operators,

o /\i‘ ii
LMR — FHHAYYS - TJ@H)QV;:V; = M5, (1.114)

where A may be of the order of the Planck scale.

1.5.3 SO(10)

The final GUT group we will consider is SO(10), which may break to the SM via the PS group,
as well as SU(5). It is rank 5 (compared to rank 4 for SU(5)), and has 2 (%)2 — 9 =45
gauge bosons which transform as the 45 adjoint representation. One complete family of SM
fermions fits nicely in a single 16 spinor representation, which includes the RH neutrinos. We
will briefly discuss some relevant group theory to motivate this (as the theory of SO(N) is not as
common as SU(N) to most phenomenologists). To begin, SO(3) is locally isomorphic to SU(2),
and has a 2 spinor representation which can be written as a single set of Pauli matrices with
eigenstates |+) = |£3). We can write the 4 of SO(5) as the product of two Pauli matrices with
eigenstates |£=£). Similarly to SO(3) = SU(2), we see that SO(6) is isomorphic to SU(4), and
has two complex spinor representations where 4 +4 may be written as the product of three Pauli
matrices with eigenstates |+ + £), where the 4 corresponds to an odd number of |—) eigenstates,
and the 4 to the states with an even number of |—). SO(6) = SU(4) has an SU(3) subgroup
where the 4 decomposes to a 1+ 3 where the singlet is identified as |— — —) and the triplet as the
remaining |+ + —), |[+—4), |-+ +), which are all permutations of requiring an odd number
of |—) states. The 4 state is similarly identified by exchanging (— <+ +). The GUT group SO(10)
has subgroup SO(6) x SO(4), where we identify the SO(6) with the PS group, SO(6) = SU(4)¢,
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and then SO(4) with the Left-Right symmetric group, SO(4) = SU(2)r, x SU(2)g. In figure 1.4,
taken from [12], we show the components of the 16 spinor for each quark, where the first three
components correspond to the PS colour group (i.e. the first three |- — —,...) is a colour singlet)
and the last two dictate (schematically) whether the particle resides in an SU(2)r or SU(2)g
doublet,

—+) =)
SU2): 2~ , SUQ2)p: 2~ . (1.115)
+-) [++)
So one possible breaking direction is
SO(10) — SU(4)c x SU(2)r, x SU(2)r, (1.116)
with
16 — (4,2,1) 9 (4,1,2). (1.117)

One is not forced to go through PS though. By changing the vevs of Higgses, another possible

symmetry breaking direction is,

SO(10) = SU(5) x U(1)x, (1.118)
with

16—)3_3@101@15, (1.119)

10 = 5_5 @ 5s. (1.120)

In terms of Yukawa couplings, to decide which representation the Higgs should reside in, we will
take the Kronecker product of two fermion spinors, and find representations which multiply with

this product to make a singlet. Since
16 ® 16 =10 @ 126 ¢ 120. (1.121)

Then the Higgs can reside in the 10, 126, 120 representations, since all of 10 x 10, 126 x
126, 120 x 120 will produce a singlet. It is preferred to place the Higgses in a 10 as it is the
smallest representation (to reduce doublet, N-plet splitting), and the 126 is preferred for neutrino

masses as it is symmetric. The singlet term will look like
ﬁSO(lO), Yuk = yijhwﬂﬁj, (1.122)
where 7,5 = 1,...,3 are family indices. For the SM fields at low energy, this finds

L5000, Xk SM — o (L Quu + Hy LivS + HaQudS + HyLieS), (1.123)
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Figure 1.4: (Taken from [12]). A complete family of LH quarks and leptons (where RH fermions
are C'P conjugated) forms a single 16 spinor representation of SO(10), including the RHN (C'P
conjugated as v°). The notation | £ £ £ £+) labels the components of the spinor, in terms of a
direct product of five Pauli matrices with eigenstates |1), respectively, with the constraint that
there must be an even number of |—) eigenstates. The embedding of the SM gauge group is
such that the first three components of | + £ + ++) is associated SU(3)c, while the last two
components are associated with the SU(2)z x U(1)y gauge group.

where y;; is a symmetric matrix. As with the PS model, the initial prediction is that the Yukawa

couplings for all fermions are equal, at the GUT scale,
Yo=Y, =Y. =Y, (1.124)

which may be fixed using CG relations as done in [13]. Again, the RH Majorana masses Mp may

be generated from the non-renormalisable operators,

Nei i
%Hﬂwl% — %(DH>2VCVJC = Mgufyjc, (1.125)

where A may be of order the Planck scale, and H are Higgs in the 16 representation, and their
RH component may gain a vev, breaking SO(10) to SU(5) at the GUT scale.
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Chapter 2

Supersymmetric Extension of the
U(1)g_; Model: Naturalness

2.1 Non-SUSY B - L

Before discussing the SUSY version of the B — L model, we will briefly discuss the non-SUSY
version [14, 15]. In the SM, at Lagrangian level, there is an accidental baryon, B, and lepton,
L symmetry. Since there are three quarks in a baryon, we assign up and down type quarks a
baryon number B(q) = 1/3, and assign leptons a lepton number L(l) = L(v) = 1, else they are
zero, B(l) = B(v) = L(q) = 0. Writing down all allowed Lagrangian terms in the SM, one finds
that every term conserve these two quantities. When considering non-perturbative effects (such
as sphaleron processes, which we will not discuss), it is the difference between baryon and lepton
number, which is conserved as a global symmetry, U (1)%()_bfl. There has been a great deal of
success in the SM being guided by the principle of gauge symmetries, so it is worth considering
the implications if this global symmetry were promoted to a gauge form, U(1)p_1 (where in our
notation, the absence of a superscript “global” implies it is a gauge symmetry).

The U(1)p_1 gauge group appears in several GUT extensions as mentioned in the introduc-
tion, such as SU(3)c x SU(2), xU(1)p x U(1)p—r, from SO(10), but can be viewed as a different
model in its own right. One may begin with the SM gauge group, and then promote B — L to a
gauge syminetry,

Gp_r=SUB)c xSU2), xU(1l)y xU(1)p_p. (2.1)

This has several consequences. Firstly, to cancel chiral anomalies, one must introduce three SM
singlet fermions, with U(1)p_r charge +1. These fermions have the same behaviour as, and
thus we identify them to be, the three RH neutrinos. An unbroken gauge symmetry will have
massless gauge bosons which mediate the force, such as the gluons in the strong force. Since
we do not observe such mediators of B — L in nature, then the group must be broken at some
scale. To break the B — L symmetry, one may introduce an extra complex scalar, a B — L Higgs,

which we denote with n, and proceed with spontaneous symmetry breaking, analogously to how
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SU(2), x U(1)y is broken in the SM. This will also generate a massive gauge boson, a Z’ and
finally the RH neutrinos will gain a Majorana mass term through a coupling with n. All three
mass scales: {m,, my, Mg}, are dependent on the dimensionful vev (breaking scale) vps, of
the U(1)p_r. In addition, the scalar mass is also dependent on the potential term Apy, the Z’
boson on the gauge coupling ggr and the RH neutrino mass on the Yukawa coupling yy. For
a “natural” theory, we expect that these three parameters are order unity A ~ gpr ~ yn ~ 1,
and so (at least to a good approximation) one expects the three new mass scales of the theory
to be near the breaking scale. As with the SM, on a theoretical level this breaking scale can
be anywhere up to the Planck scale, and is only guided by experimental observation. From the
measurement of < O(0.1) eV neutrino masses !, then one may determine this breaking scale from
requiring a natural Dirac coupling yp ~ 1 using the type-I seesaw, vgr, ~ 10'6 GeV, but taking
the Dirac coupling to be more similar to that of the electron, 7. = 107% would find vy ~ 1
TeV. This model has many interesting features and has been well studied, but we will devote the
remainder of the next two chapters to the supersymmetric version of this theory. In this brief
discussion we have neglected many features, including Gauge-Kinetic Mixing (GKM), for which

a full description may be found in appendix C.3.

2.2 Introduction

Low scale SUSY is motivated by solving two major flaws of the SM: the gauge hierarchy and DM
problems.

In the SM, the hierarchy problem stems from the fact that a very unnatural F'T is required to
keep the Higgs mass at an acceptable value for current data. SUSY provides an elegant solution
to this. However, SUSY must be broken at a high scale, hence some FT is reintroduced at some
level. In the MSSM, with universal soft SUSY breaking terms, a heavy spectrum is required to
give large radiative corrections to the SM-like Higgs mass and account for the recently measured
value of 125 GeV at the LHC. Thus naturalness becomes seriously challenged in the MSSM by
well established experimental conditions.

Furthermore, the alluring hints of DM existence are serious indications for new BSM physics.
Due to R-parity conservation, the LSP in the MSSM, the lightest neutralino, is stable and thus
is a good candidate for DM. However, in the constrained MSSM (CMSSM) framework, in which
universal boundary conditions are imposed at the GUT scale, the extra Higgs bosons of the
MSSM are beyond the reach of the LHC experiments, while the lightest CP-even Higgs boson
is reserved as the SM-like one. Such heavy Higgs bosons result in large FT at the EW scale.
In addition, the strict bound on the gluino mass (mgz < 1.9 TeV [16]) causes heavy EW —inos
(bino and wino) at low scale, since the gaugino masses are also set universal at the GUT scale.
Besides, the null results from direct searches for SUSY particles lead to a heavy mass spectrum.

The ensuing EW sector, in particular, severely raises the required FT leading to the correct scale

!This is an oversimplification of the current bound on the sum of neutrino masses.
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for EW Symmetry Breaking (EWSB). Even though it is not possible to exclude the CMSSM
completely, such a heavy spectrum brings poor agreement with various precision observables
[17]. Detailed discussions of the FT issue in the CMSSM framework can be found in [18].

Besides the LHC ones, the latest measurements for DM also provide strict constraints for
the MSSM regardless of imposing universal boundary conditions at the GUT scale or otherwise.
The latest results from, e.g., the LUX collaboration [19] have a strong impact especially for light
DM candidates. A low FT condition requires the higgsino-like LSP neutralino to have a large
cross-section with nuclei, since the relevant scattering processes happen through the Yukawa
interactions, so that LUX results exclude such solutions. Indeed, only a bino-like LSP neutralino
can more or less survive, since its corresponding scattering cross-section is instead low [20].
However, the relic abundance of the bino is usually much larger than the ranges allowed by the
current Wilkinson Microwave Anisotropy Probe (WMAP) and Planck results [21, 22].

Quite apart from the aforementioned two problems of the SM, it should be recalled that non-
vanishing neutrino masses are presently some of the most important evidence for BSM physics.
Massive neutrinos are not present in the SM. However, a simple extension of it, based on the
gauge group SU(3)cxSU(2), xU(1)y xU(1)p—r, can account for current experimental results of
light neutrino masses and their large mixing [23-33]. Within the B — L Supersymmetric Standard
Model (BLSSM), the SUSY version of such a scenario, which inherits the same beneficial features
of the MSSM in connection with SUSY dynamics, it has been emphasised that the scale of B — L
symmetry breaking is related to the SUSY breaking one and both occur in the TeV region [34—
39]. Therefore, several testable signals of the BLSSM are predicted for the current experiments
at the LHC [40-51].

In addition, the BLSSM provides new candidates for DM different from those of the MSSM.
In particular, there are two kinds of neutralinos, corresponding to the gaugino of U(1)p_1 and
the B — L Higgsinos. Also a RH sneutrino, in a particular region of parameter space, may be a
plausible candidate for DM. We also consider the scenario where the extra B — L neutralinos can
be cold DM states. We then examine the thermal relic abundance of these particles and discuss
the constraints imposed on the BLSSM parameter space from the negative results of their direct
detection. We argue that, unlike the MSSM, the BLSSM offers one with significant parameter
space satisfying all available experimental constraints. This may be at the expense of high FT,
if Z' is quite heavy and soft SUSY breaking terms are universal. Nevertheless, for what we will
eventually verify to be a small increase in FT with respect to the MSSM, we will gain in the
BLSSM a more varied DM sector and much better compliance with relic and (in)direct detection
data.

In the build-up to this DM phenomenology, we analyse the naturalness problem in the BLSSM
and compare its performance in this respect against that of the MSSM. In the latter, the weak

scale (M) depends on the soft SUSY breaking terms through the Renormalisation Group Equa-
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tions (RGEs) and the EW minimisation conditions, which can be expressed as

1 m%l — m%{ tan? 3
“MZ = x — 2. 2.2
2772 tan? 3 — 1 # (2:2)

Therefore, a possible measure of FT is defined as [52]

_a_0Mj
M2 da

A(M3%,a) = : (2.3)

where a stands for the GUT scale parameters (e.g., mo,my /s, Ao, etc.) or low scale param-
eters (e.g., My, My, M3, mg,my, etc.). In order for SUSY to stabilise the weak scale, A =
Max (A(M%,a)) should be less than O(100). However, as the scale of SUSY breaking is in-
creased, the EW one becomes highly fine-tuned. As intimated, in the BLSSM, both the weak
and B — L scales are related to soft SUSY breaking terms and, in addition to Eq. (2.2), which is

slightly modified by the presence of the gauge mixing g, we also have, in the same limit g ~ 0,

2 200 _ 02
ms, tan® ' —mg,

/2
1 _ tanQ B/ - :u I (24)

1
7M2/ —
9 Z

where 72 are scalar bosons, with (11 2) = v} 5 that break the B — L symmetry spontaneously,
and tan 8’ = v} /v. The bound on My, due to negative searches at the Large Electron-Positron
Collider (LEP), is given by My /gpr, > 6 TeV [53]. As we will see in section 2.5, we fix the value
of Mz = 4 TeV, which satisfies all constraints from the LHC and LEP2. Furthermore, LHC
constraints from the Drell-Yan (DY) process also exist, which force the B — L Z’' mass to be in
the few TeV region. This indicates that m,, , and ' are of order TeV. Therefore, in the scenario
of universal soft SUSY breaking terms of the BLSSM, a heavy M implies higher soft terms,
hence the estimation of the FT is expected to be worse than in the MSSM. At this point, it is
worth mentioning that the Z’ gauge boson in the BLSSM can have a large decay width, thus
potentially evading LEP and LHC constraints, which are based on the assumption of a narrow
decay width, hence on Z’ decays into SM particles and additional neutrinos only. While this has
been proven to be possible in a non-unified version of the BLSSM, wherein the aforementioned
limits can be relaxed and My can be of order one TeV [48, 49], it remains to be seen whether
a similar phenomenology can occur in the unified version of it which we are going to deal with

here.

2.3 The B — L Supersymmetric Standard Model

In this section, we briefly review the BLSSM with an emphasis on its salient features with respect
to the MSSM. Even though its gauge group seems like a simple extension of the MSSM gauge
group with a gauged U(1)p_r, (hereafter, B — L symmetry), it significantly enriches the particle

content, which drastically changes the low scale phenomena. First of all, the anomaly cancellation
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in the BLSSM requires three singlet fields; the most natural candidates in the BLSSM framework
are the three RH neutrino fields. We may implement the SUSY seesaw mechanisms, where
non-zero neutrino masses and mixings consistent with experimental data [54] are achieved. In
addition, R—parity, which is assumed in the MSSM to avoid fast proton decay, can be linked to
the U(1)p—1, gauge group and it can be preserved if the B — L symmetry is broken spontaneously
[55], as is the case in the BLSSM studied here.

Spontaneous breaking of the B — L symmetry can be realised in a similar way to the Higgs
mechanism. That is, one can introduce two scalar fields, denoted as 11 2. These fields should
carry non-zero B — L charges to break the B — L symmetry and they are preferably singlets under
the MSSM gauge group so as not to spoil EWSB. Thus, the Superpotential in the BLSSM can

be written as

W = pHyHg+Y7QiHwS + Y, QiHyds + Y LiHye$
+ YILH N + Y NENSy + plm, (2.5)

where the first line represents the MSSM Superpotential using the standard notation for (s)particles
while the second line includes the terms associated with the RH neutrinos, N;s, plus the singlet
Higgs fields i1 and 2. The B — L symmetry requires 71 and 72 to carry —2 and +2 charges under
B — L transformations, respectively. The presence of the /NS terms makes it possible to have
Yukawa interaction terms for the neutrinos, denoted by Y,. Finally, p’' stands for the bilinear

mixing term between the singlet Higgs fields.

In addition to the RH neutrinos and the singlet Higgs fields, the BLSSM also introduces a
gauge field (B’) and its gaugino (B') associated with the gauged B — L symmetry, so that the
appropriate Soft SUSY-Breaking (SSB) Lagrangian can be written as

B U NP 4+ AL+ Ay
1 _ .
+ §MB/B/B/ + MBB/BB/ =+ B(,u/7717’]2 + hC) (26)

Note that, in contrast to its non-SUSY version, the BLSSM does not allow mixing between the
doublet and singlet Higgs fields through the Superpotential and SSB Lagrangian. Therefore, the
scalar potential for these can be written separately and their mass matrices can be diagonalised

independently. The scalar potential for the singlet Higgs fields can be derived as

1
V(m,m2) = pfiml? + p5 ne|* — ph(mne + hee.) + §Q2BL(|771|2 — n2|?)? (2.7)

and the minimisation of this potential yields Eq. (2.4). Despite the non-mixing Superpoten-
tial and SSB Lagrangian, one can implement mixing between the two abelian gauge fields via
—XBEV_LBY#”, where By, is the field strength tensor of a U(1) gauge field, with a = (Y, B— L),
the hypercharge and B — L charge, respectively. The gauge kinetic mixing can be rotated away
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from the kinetic Lagrangian and the covariant derivative takes a non-canonical form [42]
Dy=08,+....+ (@Y +4¢ (B-1L))B,, (2.8)

where ¢ describes the kinetic mixing in place of x. Even though g is set to zero at the GUT
scale, it can be generated at the low scale through the RGEs [56]. In this basis, one finds

1 1.
M ~ Z(gf + g3)v?, M2, ~ gp v+ 1921)2, (2.9)

where v = /v2 +v% ~ 246 GeV and v/ = \/vf? + v% with the Vacuum Expectation Values
(VEVs) of the Higgs fields given by <ReH27d> = vya/V2 and (Re n19) = 0'172/\@. It is worth

mentioning that the mixing angle between Z and Z’ is given by

25 2 2
tan 20/ ~ A (2.10)

G2 +16(2)2¢%, — g3 — g2

The minimisation conditions of the BLSSM scalar potential at tree-level lead to the following

relations [42]:

1. 1

v <m7271 + WP+ ZQQBL(%% —va) + 59%%(”12 - U?)) — By = 0, (2.11)
1. 1

vy (m7272 + )P+ EQQBL(USL —vg) + 5912%(”52 - 0/12)) - By = 0. (2.12)

From these equations, one can determine |x/|? and By in terms of other soft SUSY breaking
terms. (Note that, with § = 0, the expression of |/|? takes the form of Eq. (2.4).) Breaking the
EW and B— L symmetries naturally shapes a Type-I seesaw mechanism for the six neutrino states
of the model. The effective lepton flavour violating scale is dynamically generated and identified
with the B — L one. The resulting 6 x 6 mass matrix will include these two different breaking
scales in two separated 3 x 3 blocks. The singlet Higgsino VEVs are responsible for the Majorana
block in the subspace of RH neutrinos whereas EWSB determines the left-right neutrino mixing
of a Dirac type. Hierarchies between the two scales, with the Majorana scale much larger than
the Dirac one, is the origin of the Type-I seesaw mechanism. As a consequence of the additional
neutral states B/, 71 and 72, the corresponding neutralino mass matrix is extended to a 7 x 7 one

given by

BV BY. B B )= | O © 21
M7( ) ) 15 25 , M, 772) = ) ( . 3)
oT  Ms

where M, is the MSSM-type neutralino mass matrix and M3 is the additional 3 x 3 neutralino
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mass matrix, which is given by

Mp _gBL,Ui gBLUIZ
Mg =1 —g,, v} 0 —u - (2.14)
gBLv/Q _Nl 0

In addition, the off-diagonal matrix O is given by

0= . (2.15)

(Note that the off-diagonal matrix elements vanish identically if g = 0 and Mpp = 0). One can

then diagonalise the real matrix My with a symmetric mixing matrix V such that
VMVT = diag(mgo), k=1,...,7. (2.16)
In these conditions, the LSP has the following decomposition

XY = Vi B + VigW? + VisHS + VigHC + Vis B’ + Vigin + Viriia. (2.17)

If the LSP is then considered as a candidate for DM, each species in the above equation, if
dominant, leads to its own phenomenology that can possibly be distinguished in direct detection
experiments. For example, to achieve the correct relic density of Bino-like DM is challenging,
since its abundance is usually so high over the fundamental parameter space that one needs
to identify several annihilation and/or coannihilation channels to reduce its density down to the
WMAP [21] or Planck [22] measurements. Since this DM state interacts through the hypercharge,
its scattering with nuclei has a very low cross section. Conversely, the largest cross section in DM
scattering can be obtained when DM is Higgsino-like, since it interacts with the quarks through
the Yukawa interactions. Since the BLSSM sector offers significant interference in the neutralino
sector, this may also drastically change the DM kinematics. In contrast to a Bino, the B’—ino
interacts more strongly depending on the B — L gauge coupling. Despite the severe mass bound
on the Z’, there is no specific bound on m,, so that it can be even as low as 100 GeV [57]. In
this context, one can expect the LSP neutralino to be mostly formed by B’ and its cross section
in its scattering with nuclei can be very large, in contrast to the Bino case. In addition to B/,
the LSP neutralino can be formed by the singlet Higgsinos (also dubbed Bileptinos due to their
L = +£2 lepton charge). In this case, it is challenging for their abundance to be compatible with

the experimental results. The reduction through the coannihilation channels involving SUSY
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particles arises from the gauge kinetic mixing, which is restricted to be moderate. If its mass is
nearly degenerate with that of the B’ state, they can significantly coannihilate. Also, a singlet
Higgsino yields low cross section in DM scattering experiments. Besides the neutralinos, one can
also consider the sneutrino as a DM candidate, when it is the LSP. In this case, the extended
sector of the BLSSM involves twelve states coming from the Superpartners of the left- and the RH
neutrinos. In a Charge and Parity (CP)-conserving framework the states entering the sneutrino
mixing matrix can be expressed by separating their scalar and pseudo-scalar components

oL +i0L; -
vy = ) NZ:

V2

ORi +1QRi

N (2.18)

The breaking of B — L generates an effective mass term through Y]@j N{NFm causing a mass
splitting between the CP-even and CP-odd sector. Therefore, in terms of Eq. (2.18), the corre-

sponding 12 x 12 mass matrix is reduced to two different 6 x 6 blocks

M2a M20’ M2¢ M2¢
M2 (op,0R) = QLLT QLR , MP(¢r, ¢r) = QLQSLT 55 (2.19)
MR MzR Mir" Mgg

Such differences between CP-even and CP-odd sectors do not involve the left components with
7 and MQLS ;, described by the common form M3,
54

y ~ ~ ~ 1 .
M3, 0= = (91 +95+3 (9L +3)) 0m + (9B +§) 6y) + 5”3 (YY) +mihd,

(2.20)

where we have introduced 4, = v{Z — v and 6y = v —v2 . For the submatrices M%7, and M?{Z

we have instead
§id

. ~ 1 i o Y
M%{Rl’] = - g IBL (95H+293L577)+§UZ (YquT)”-Fm?vl’j‘f'QU/lz (YJ\%)Z]

T V2 (vg WY ), AZ;VJ‘) (2.21)

while the left-right sneutrino mixing is ruled by the matrices

M%RW = 5 (—\@Uqulf’J + vy \@AZV’J * 20, Ull (YNYV)M) ’ (2‘22)

with upper(lower) signs corresponding to CP-even(odd) cases. The parameter Y, and the corre-
sponding trilinear term A, determine the mixing between the left and right components. In our
setup, Y, is negligible and can safely be set to zero already at the GUT scale, as it is the case also
for the boundary condition of A,. The resulting 12 x 12 sneutrino mass matrix is consequently
unable to mix the RH and RH components as the CP-even and CP-odd parts of a sneutrino state

will be completely determined by assigning its CP value and the chirality of its Supersymmetric

34



partner.

2.4 Renormalisation Group Equations

The presence of an extra Abelian gauge group introduces a distinctive feature, the gauge kinetic
mixing, through a renormalisable and gauge invariant operator y B*” B;W of the two Abelian field
strengths. Moreover, off-diagonal soft breaking terms for the Abelian gaugino masses are also
allowed. This effect is completely novel with respect to the MSSM or other Supersymmetric
models in which only a single U(1) factor is considered. If the two Abelian gauge factors emerge
from the breaking of a simple gauge group, the kinetic mixing is absent at that scale. For this
reason, arguing that the BLSSM could be embedded into a wider GUT scenario (the matter
content of the BLSSM, which includes three generations of RH neutrinos, nicely fits into the
16-D spinorial representation of SO(10)), we require the vanishing of the kinetic mixing at the
GUT scale. As we stated above, we nevertheless end up with a non-zero kinetic mixing at low
scales affecting the Z’ interactions as well as the Higgs and the neutralino sectors [42].

Instead of working with a non-canonical kinetic Lagrangian in which the kinetic mixing x
appears, it is more practical to introduce a non-diagonal gauge covariant derivative with a diag-
onal kinetic Lagrangian. The two approaches are related by a gauge field redefinition and are
completely equivalent. In this basis the covariant derivative of the Abelian fields takes the form
D,=0,—- iQTGAM, where (@ is the vector of the Abelian charges, A is the vector of the Abelian
gauge fields and G is the Abelian gauge coupling matrix with non-zero off-diagonal elements.
The matrix G can be recast into a triangular form with an orthogonal transformation G — GOT
[58]. With this parametrisation, the three independent parameters of G are explicitly manifest
and correspond to the Abelian couplings, g1, gpr, and g, describing, respectively, the hypercharge
interactions, the extra B — L ones and the gauge kinetic mixing. Differently from the MSSM case,
the Abelian gaugino mass term is replaced by a symmetric matrix with a non-zero mixed mass
term Mpp: between the B and B’ gauginos. Coherently with our high energy unified embedding,
we choose Mpp = 0 at the GUT scale. Notice that the Abelian gaugino mass matrix M is
affected by the same rotation O and in the basis in which G is triangular and M transforms
through M — OMOT.

We have performed an RGE study of the BLSSM assuming gauge coupling unification and
minimal Super-Gravity (mSUGRA) boundary conditions at the GUT scale. This scenario consid-
erably constrains the parameter space connecting different sectors which are usually independent
in non-unified scenarios. In particular, the two main scales describing BSM physics, the scale of
SUSY and B — L breaking, are linked by the RGEs. In a non-SUSY model, the B — L symmetry
breaking scale is arbitrary and can be placed anywhere between TeV and GUT energies. How-
ever, within a SUSY scenario, the radiative symmetry breaking approach can also be applied to
B — L symmetry breaking. This mechanism was studied for the first time in [35]. As discussed
in detail herein, radiative B — L symmetry breaking requires m,, # m,, at the low scale. This

requirement relates then the B — L symmetry breaking scale to the SUSY one, since m,, , are
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Figure 2.1: Gaugino masses at the SUSY scale as a function of the GUT my /, mass. Here, both
gauge coupling and soft mass unification have been assumed.

SSB masses for the relevant Higgs fields denoted by n;.

The two-loop RGEs have been computed with SARAH [59] and fed into SPheno [60] which
has been used for the spectrum computation and for the numerical analysis of the model. Here we
show the one-loop S functions of the gauge couplings highlighting the appearance of the kinetic

mixing contributions

33
1 3
51) = ggl’
3 - ~
/BélB)L = ggBL (15Q%L + 4\/ﬁgBLQ + 1192) )
3 3 5 12¢/10
/Bél) - gg (159128L +4V10gp1, § + 1192) + 5 9i9BL,

where we have adopted the GUT normalisations /3/5 and /3/2, respectively, for the U(1)y
and U(1)p_1 gauge groups. At one-loop level the expressions of the § functions of g1, g2 and
gs are the same as those of the MSSM with differences appearing at two-loop order only. Notice
that the term responsible for the reintroduction of a non-vanishing mixing coupling g along the
RGE running, even if absent at some given scale, is the last term in 5;1). We recall again that the
kinetic mixing is a peculiar feature of Abelian extensions of the SM and their Supersymmetric
versions, admissible only between two or more U (1) gauge groups.

Assuming gauge coupling unification at the GUT scale, the RGE analysis provides the results
g ~ —0.144 and gpr, ~ 0.55 with Mgyt ~ 10'6 GeV, which are controlled by the leading one-
loop 8 functions given in Eq. (2.23). The spread of points around these central values, less than
1% for gpr, and 5% for g, is only due to higher-order corrections, namely two-loop running and

threshold corrections.
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The running of the gaugino masses is directly linked to that of the gauge couplings. In the

Abelian sector and at one-loop, the Abelian gaugino mass matrix M evolves with
By = MGTQ?*G + GTQ?’GM = MG~ '3 + G BaM, (2.24)

where () = Zp QpQg, with @, the vector of the Abelian charges of the p particle. Exploiting
the structure of the 8 functions of the gaugino masses, a simple relation is obtained, M;/m /5 =
gi2 / géUT, for non-Abelian masses at one-loop order. In the Abelian sector, due to the presence
of the mixing, the previous equation is replaced by a matrix relation. Indeed, from the product
GM~'GT, which remains constant along the RGE evolution, one finds the Abelian gaugino mass
matrix M/my sy = Gra) géUT. We show in Fig. 2.1 the dependence of the gaugino masses as a
function of the GUT gaugino mass my /5. The hierarchy is obviously controlled by the size of the

gauge couplings at low scale.

The gaugino masses Mj, M| and M are obtained from M B, Mp and Mpp: through the

transformation OMO?T. The coefficients 01,2 are defined as

o1 = m%{d - m%{u —tr(m3) — tr(m?) + tr(m}) — tr(mg) + 2tr(m?),

oy = 2m7271 - Qm%2 + tr(m2) — tr(m?) + 2tr(m?) — 2tr(m§) + tr(m?) — tr(m?,R) (2.25)

and are found to be RGE invariant combinations of the soft SUSY masses. Assuming unification
conditions at the GUT scale, 012 remain zero along all the RGE evolution. As Bm%2 is only

characterised by negative contributions proportional to the Abelian gaugino masses, the corre-

2
n

EW scale. The same feature is shared by m%{d except for some particular values of the gaugino

sponding soft mass m;  will increase and remain positive during the run from the GUT to the

and soft scalar masses at the GUT scale for which the ¥}, Yukawa coupling contribution (of the

b-quark) to ﬂm%Q is not negligible. The spontaneous symmetry breaking of EW and B-L, requir-

ing negative mlzqu and m?h,

and BLSSM. Namely, even though there is no spontaneous symmetry breaking at a high scale,

the large top-quark Yukawa coupling Y; and its trilinear soft term A; can drive m%{u negative

can be realised radiatively, which is a nice feature in both MSSM

through its RGE evolution, which triggers spontaneous EWSB. Similarly, a sufficiently large neu-

2

5 negative in its RGE

trino Yukawa coupling Yy and corresponding trilinear soft term A,, turn m

evolution and break the B — L symmetry spontaneously.

In general only one of the three components of the diagonal Yn matrix is required to be
large in order to realise the spontaneous symmetry breaking of the extra Abelian symmetry, thus
providing a heavy and two possible lighter heavy-neutrino states. Notice also that the elements
of the low scale values of the Y matrix cannot be taken arbitrary large otherwise a Landau pole
is hit before the GUT scale. A close inspection of the one-loop § function of the heavy-neutrino

Yukawa coupling

¥ « 9
ﬁYN = 8YNYNYN + 21:I“(YNYN)YN — QQBLzyNa (2.26)
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where we have neglected the negligible contribution of the light-neutrino Yukawa coupling Y,
shows that Y = 0.5 spoils indeed the perturbativity of the model at the GUT scale or below.

2.5 Collider and Dark Matter Constraints

To investigate the viability of the BLSSM parameter space, with mSUGRA boundary conditions,
we have challenged its potential signatures against two sets of experimental constraints. To the
first set belong different bounds coming from collider probes which have been used in building the
scan procedure. These form a varied set of requirements affecting our choice of the Z’ benchmark
mass as well as the character of the acceptable low-scale particle spectrum. As already stated,
stringent constraints come from LEP2 data via EW Precision Observables (EWPOs) and from
Run 2 of the LHC through a signal-to-background analysis using Poisson statistics to extract
a 95% Confidence Level (CL) bound in the di-lepton channel. The CL has been extracted at
the LHC with /s = 13 TeV and £ = 13.3 fb~!, updating the analysis presented in [61]. We
have taken into account the Z’ signal and its interference with the SM background and included
efficiency and acceptance for both the electron and muon channels as described in [62]. Such
studies affect the extended gauge sector (g,gpr, Mz/) in a way that, in all safety, allow us to
select the value Mz = 4 TeV for all magnitudes of gauge couplings and Z’ total width (in the
range 30-45 GeV) met in the RGE evolution. Notice that the BLSSM supplied with unification
conditions at the GUT scale provides a very narrow Z' width with a I'z//My ratio reaching
1% at most. Thus, this is unlike the results of [48, 49|, which were indeed obtained without any
universality conditions. Such a Z’ mass value completes the independent parameters that feed our
scan and which in turn provides a BLSSM low-energy spectrum. We now impose the exclusion
bounds coming from LEP, Tevatron and LHC linked to the negative searches of scalar degrees
of freedom and to the correct reproduction of the measured Higgs signal strength around 125
GeV. More precisely, from our scan it is possible to extract the masses and the Branching Ratios
(BRs) of all the (neutral and charged) scalars plus their effective couplings to SM fermions and
bosons. This information is then processed into HiggsBounds (HB) [63-66] which, considering all
the available collider searches, expresses whether a parameter point has been excluded at 95%
CL or not.

This analysis removes a considerable number of acceptable points, among those with successful
EW and U(1)p_1, symmetry breaking, as obtained from the GUT parameters scan. Over such
points, the compatibility fit of the generated Higgs signal strengths with the ones measured at
LHC is taken into account by HiggsSignals (HS) [67], which provides the corresponding x?. By
asking for a 2¢ interval around the minimum y? generated, we obtain a further constraint over
the parameter space investigated. The strongest sparticle bounds which may affect our generated
SUSY spectra come from the mass limits on the chargino and stau sectors, which must be more
massive than ~100 GeV [68]. However, for our generated sparticles, we are safe from this limit.

The second set of bounds that we considered emerges from the probe of DM signatures which

are a common and natural product of many SUSY models. Among these, the BLSSM stands
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out for both theoretical and phenomenological reasons that make the study of its DM aspects
particularly worthwhile. The presence of a gauged B — L symmetry, being broken by the scalar
fields 1 and 79, as they are charged under B — L [36], provides a local origin to the discrete
R—symmetry that is usually imposed ad-hoc to prevent fast proton decay. Consequently, the
BLSSM embeds the stability of the LSP through its gauge structure, as it does for the produced
DM density.

From the phenomenological side, the BLSSM, like the MSSM, has the neutralino as a possible
cold DM candidate. The presence of additional neutral degrees of freedom drastically changes
its properties with respect to the corresponding MSSM ones, which is mostly Bino in GUT con-
strained models, possibly giving the necessary degrees of freedom to accommodate the measured
DM evidences. Moreover, the BLSSM also envisages a scalar LSP in its spectrum, generated by
the superpartners of the six Majorana neutrinos, which may also be the origin of a cold DM relic.

For every possible low energy spectrum obtained, the LSP provided by the BLSSM will
participate in the early thermodynamical evolution of the universe. After an initial regime of
thermal equilibrium with the SM particles, decoupling takes place once the DM annihilation rate
becomes slower than the Universe expansion. This process would result in the relic density lasting
until now. Consequently, a crucial test of the cosmological viability of the BLSSM is enforced by
requiring the relic abundance generated not to overclose the Universe by exceeding the measured

current value of the DM relic density
Qh? = 0.1187 + 0.0017 (stat) & 0.0120 (syst) (2.27)

as measured by the Planck Collaboration [22].

The requirement to reproduce the measured relic density would finally highlight the region
of the parameter space where the model is able to solve the DM puzzle. The computation
of the DM abundance is achieved by solving the evolution numerically with MicrOMEGAs [69,
70], which collects the amplitudes for all the annihilation, as well as coannihilation, processes.
Another source of constraints, which cannot be neglected due to the recent increase in precision
reached by the LUX collaboration [19, 71], is linked to the direct searches intended to detect
DM signatures coming from DM scatterings with nuclei. We have tested the BLSSM spectrum
against the challenging upper limit on the Spin Independent (SI) component of the LSP-nucleus
scattering. The zeptobarn order of magnitude, reached in the recent upgrade of the DM-nucleus
cross section bound, will have an interesting interplay with the parameter space analysed to test
the surviving ability of the BLSSM against stringent exclusions.

The DM scenarios provided represent a peculiar signature of the model, with characteristic
degrees of freedom playing a key role in drawing a rich DM texture. As already stated, the
BLSSM has two candidates for cold DM as it is possible to have, other than the neutralino, also
a heavy stable sneutrino. The extended neutral sector, consequence of the inclusion of an extra
B — L gauge factor, enlarges the neutralino components with three new states (two coming from

Bileptinos and one from BLino) as seen in Eq. (2.17). To study the behaviour of the neutralinos
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we may consider the following classification

VE>05 Bino-like,

V3 > 05 Wino-like,
VE+VE>05 Higgsino-like,
VA >05 BLino-like,
Vs + V3 > 0.5 Bileptino-like,

Neither of the previous cases Mixed.

In this scheme the nature of the neutralino is identified with the interaction eigenstate that makes

up for more than half of its content.

H1 H [ Bino-like
H Neutralino H T B 0 BLino-like
1 m Sneutino %[ ::_ MU | o Bileptino-like
M O Mixed

[ 500 1000 1500 2000 [ 500 1000 1500 2000

Mpw [GeV] Mpw [GeV]

Figure 2.2: (a) The normalised distribution of the neutralino and sneutrino types found in our
scan. (b) The normalised distribution of the different types of LSP found in our scan. The
histograms are stacked.

For all the points generated in our scan, in agreement with the constraints from Higgs searches,
the LSP will, in the majority of cases, results in a fermionic DM candidate with mass below 2
TeV, see Fig. 2.2(a). The sneutrino will instead be a subdominant option over our entire set
of points. It is interesting to explore the composition of the sneutrino LSP written in terms of
CP eigenstates and left-right parts. This is relevant to appreciate the chances to survive the
direct detection probes of DM, with a LH sneutrino having a dangerously enhanced scattering
rate against nuclei [72] due to Z mediation. Fig. 2.3 indicates that only sneutrinos above ~ 2
TeV may have a large left handed component. However, we will see only sneutrinos lighter than
this limit will compete against the neutralino as a possible LSP. So, the LSP sneutrino in our
constrained BLSSM will always be a RH sneutrino. Following the previous classification, a Bino-
like neutralino will be more common to encounter as the BLSSM favourite LSP, but, as typical
features of the model, also states of BLino and Bileptino nature are often met, see Fig. 2.2(b).
Notably, no Higgsino-like neutralino are found while the Wino possibility is a most rare one,

which requires very tuned conditions over the parameter space to be produced in a sizeable
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Figure 2.3: Composition of the lightest sneutrino for the set of points in agreement with the
constraints from HB and HS. Histogram is of stacked type with normalised heights.

amount. Given our uniform treatment over the boundary conditions, we will not consider this

case though.

2.6 Fine-Tuning Measures

We introduce measures of F'T in this section to compare BLSSM and MSSM in respect of natural-
ness. F'T is not a physical observable, but it is rather an indication for an unknown mechanism,
which is missing in the model under concern. Its quantitative values, then, can be interpreted as
the effectiveness of the missing mechanisms over the low scale results. In this context, the model
may cover most of the whole BSM physics, when FT is small.

There are many alternatives for a quantitative measure of FT [52, 73-86], which are commonly
based on the change in the Z-boson mass. Its measure (denoted by A) equals the largest of these
changes defined as [87, 88]

0 1nv?
Olna;

a; Ov?
v?2 Oa;

a; 8M%
M% 8&1'

= Max

. (2.28)

A:Max‘

When viewing a parameter space, a particular point has a low FT if the Z mass does not largely
change when deviating from its position. A natural model will, therefore, possess large regions
of viable parameter space with low FT values. Having this feature in a particular model will
make it more attractive a prospect. Our goal here is to find allowed regions of parameter space
for the BLSSM with a similar (or better) level of FT to the MSSM, so the models may be of
comparable naturalness. We apply this same measure in two different scenarios (high- and low-
scale parameters) for both the MSSM and BLSSM. We will proceed by explaining the procedure
for the two models. We compute the minimisation conditions, or tadpole equations, and solve
them to find a relation for the Z-mass and SUSY-scale parameters. At this point, we have two
choices: to use these SUSY-scale parameters or to relate these to high-scale (GUT) ones and use
those. For the GUT-FT, we treat loop corrections as dependent on the EW VEV, as done in [89],
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which will eventually reduce the FT value by up to a factor of ~ 2. For the SUSY-FT case, we
use the approximation that loop factors are independent of the other parameters, e.g., the Higgs
masses (mp, and mp,). Notice, in fact, that this approximation has been widely used in the
literature [18, 86, 90-97], hence we have adopted it here too. However, what is important in this
work is not the comparison of the two F'T methods, but rather for each one of these the difference
between the two SUSY models at hand. With this in mind, we begin first by discussing the high
and low scale scenarios for the MSSM, and proceed to extend this discussion to the BLSSM.

For the GUT-FT in the MSSM, our high-scale parameters are: the unification masses for
scalars (mg) and gauginos (m3), the universal trilinear coupling (Ay), the y parameter and the
quadratic soft SUSY term (Bpu),

a; = {mo, mi/2, Ao, w, BM}- (2.29)

In order to calculate this F'T measure for a particular spectrum point, the high scale parameters
are altered slightly and a new SUSY spectrum is calculated using the two-loop RGEs to run from
GUT to SUSY scale. These new (modified) SUSY-scale parameters (eg mp,) are used to solve
the tadpole equations and calculate a new M. Practically, this computation is implemented in

the SPheno program [60] and performed automatically for each spectrum point.

The GUT-FT will compare the naturalness at high scale, but two models with similar mea-
sures here may have large differences at the SUSY-scale. To test whether the BLSSM and MSSM
have a similar FT at both GUT and SUSY-scale, we will consider a low-scale FT. To do this, we

begin with the relation for the Z-mass and SUSY-scale parameters,

1, (m}, +5) - (my +5)tan?8

— = — 2.
Z tanQ ,3 _ 1 )u ) ( 30)
where BAV
Youd = ——. 2.31
7d 8’03 J ( )

Unlike in the GUT-FT case, we treat the loop corrections as independent of the EW VEV, as in
[86]. If we substitute this expression into Eq. (2.28) and use the low-scale parameters a; = {m%[d,
m%{u, p2, By, Xq}, one will find [86]

Asusy = Max(Cy)/(M3/2) (2:32)
where
tan? 3 1
. 2 Ve P — A
CHu = ’mHu (tanzﬁ _ 1) ) CHd ‘de (tan25 — 1) )
o (2.33)
tan? 3 1
. 2 o R = T o9 5 o~
Cp, — ’,U, ‘ ) Czu - ‘Eu (tan25 — 1) ’ Czd Ed (taHQB - 1) } .
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We now turn to the BLSSM. For the GUT-FT, we follow the same universal parameters as
the MSSM, but with two additional terms, relating to the y’ parameter and the corresponding
quadratic soft SUSY term, By, so that all of our high scale terms are:

a; = {mo, miss, Ao, pt, By, 1, By'}. (2.34)

We may also follow our previous procedure to find a SUSY-scale FT (SUSY-FT) for the BLSSM.

By minimising the scalar potential, we find (at loop level),

M2 1L mb, kY (mdy, o+ Soed() | gMEY (23
2 X @@ -0 (310 dge ) |
where ~9 BY
g g
X—14 n ’ 2.36
(97 +93)  29B1(g% + 93) 250
and

_cos(26) (tan® 8 + 1) (1 — tan? §') (2.37)

~ cos(268) (1 —tan?B) (tan? B’ + 1)
In the limit of no gauge kinetic mixing (g — 0), this equation reproduces the MSSM minimised
potential of Eq. (2.30). Our SUSY-FT parameters for the BLSSM are thus

( m%{u tan? 3 m%{d 1 Xd 1
Cu, = 3 ,Ch, = 2 Y8 T Y 1an2 2 1)
X (tan®*p —1) X (tan®f—1) X (tan® 5 —1)
C; =
by tan? 2 qgY
== 7’“7 = — MQ/
O, X (tan2B—1)|’ Cu X » Oz ‘ dgprX |

(2.38)
These equations resemble those of the MSSM SUSY-FT, but now with a factor of 1/X. In
addition, we have a contribution from the Z’ mass and BLSSM loop factors. Considering the
heavy mass bound on M, its contribution could be expected much larger than the other terms
in Eq. (2.35), which would worsen the required FT at the low scale. However, a significantly
large My severely constrains the VEVs of the singlet Higgs fields as tan 8’ ~ 1 [42] and, hence,
Y yields a very stringent suppression in Cz/. Note that, even though the trilinear A-terms are
not included in determining the FT, their effects can be counted in the SSB masses in Eq. (2.38),

whose values include also the loop corrections.

If the required FT measure is quantified in terms of the GUT scale parameters, as done for
the MSSM in [87], such as mq, m s, Ao, pt, By, i/, By, one can investigate which parameter is
most frequently responsible for determining FT. Since the value of FT is taken to be equal to
the maximum contribution out of all parameters, for a given SUSY spectrum only one parameter
will determine the FT.

Fig. 2.4 displays the FT contributions of the fundamental parameters of the MSSM and
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BLSSM. For each of our SUSY spectrum points which survive the HB/HS constraints, we count
the number of times each parameter determines the FT. This has been done for both MSSM and
BLSSM points, then the vertical axis is rescaled so the sum of counts is 1.

The dominating term in both cases is from the p term, which is fixed (along with Bu) by
requiring EWSB. The next largest contribution to the F'T measure arises from the gaugino sector,
whose masses are parametrised via my/,. This can be understood with the heavy gluino mass
bound [gluino] and its large loop contribution to realise the 125 GeV Higgs boson. The BLSSM
sector is also effective in the FT in terms of p/ and By'. There is a very small dependence on A

as discussed previously, and approximately no dependence on mg or By in either case.

MSSM BLSSM
.E -E 025
= =2
8 T 8 020
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mo myj2 Ao 7] By mg myz Ae p Bp g By
Parameters Parameters

Figure 2.4: Histogram for GUT-FT parameters for MSSM (left) and BLSSM (right), counting
the number of spectrum points each parameter determines the FT value, and normalised so the
sum of counts is unity.

Fig. 2.5 uses the same method as figure 2.4, counting the frequency each parameter determines
the FT, but now for SUSY-scale parameters. Both the MSSM and BLSSM are dominated by
the p’s FT, with a small contribution from mpg, and also a slight dependence on My for the
BLSSM. Considering this, what will affect the FT between the BLSSM and MSSM will be a

combination of how large the factor X is and the largeness of y in both models. This value will
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Figure 2.5: Histogram for SUSY-FT parameters for MSSM (left) and BLSSM (right), counting
the number of spectrum points each parameter determines the F'T value, and normalised so the
sum of counts is unity.
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My (gY)

v in the BLSSM minimisation equation.
9dBL

not be identical, as there is an additional factor of

2.7 Results

We will now compare the FT obtained in the BLSSM and MSSM scenarios, for our two FT
measures. We will begin by explaining the interval ranges of our data, then we will discuss the
SUSY-scale and GUT-scale F'T's and which parameters are most responsible for their values. This
will be done for both the BLSSM and MSSM, though the same parameters in both models are
usually responsible for the largeness of FT. Then we will compare the GUT-FT and SUSY-FT
for both the BLSSM and MSSM in the plane (mg, my/3), as is commonly done.

The scan performed to obtain this data has been done by SPheno with all points being passed
through HB and HS. We have scanned over the range [0,5] TeV in both mg and m; 5, tan 3 in
[0,60], Ag in [-15,15] TeV, which are common universal parameters for both the MSSM and the
BLSSM, while for the BLSSM we also required tan 8’ in the interval [0, 2] with neutrino Yukawa
couplings YD | y(22) ' y(33) in [0,1]. The My value has been fixed to 4 TeV as discussed in
Section 2.5. We will now compare the FT for both the MSSM and BLSSM, using both low- and
high-scale parameters.

We begin by presenting a measure of how the SUSY-FT parameter varies with p in the
BLSSM. Fig. 2.6 displays how the SUSY FT parameter, Agygy varies with g. The F'T measure
is equal to the maximum contribution from any of the SUSY parameters, but here we see all data
points centred on the curve. The tightness of this line (very few points that lie above or below the
p line) shows that very rarely are the other (my,,, myp,, Xy, X4q) parameters ever responsible for
the FT. This behaviour is expected, as one can see from the histogram plot of SUSY parameters,
see Fig. 2.5. The corresponding plot for the MSSM looks very similar and so is not shown. The
behaviour is almost identical, as is expected from the MSSM version of the histogram discussed
in section 2.6, where the u parameter dominates the FT.

Now, we turn our attention to considering loop contributions in the SUSY-scale FT. By
treating the loop factors as independent parameters which contribute to FT, we may observe
their contributions. Fig. 2.7 presents the contribution to FT from >, and ¥; whilst varying u.
Immediately, one can compare the typical FT values with that of the overall FT as in Fig. 2.6
and see that the loop contributions will never be the dominant contribution for the FT. There
is some growth with u, but for any given value, the contribution from g itself is 10 times larger.
Since only the maximum contribution of any C; parameter is taken, we find that treating the
tadpole loop contributions as independent of the VEV causes the one-loop FT to look much the
same as at tree-level. Once again, this behaviour is mimicked in the MSSM, where the VEV
independent tadpole loop corrections are also dwarfed by u’s FT.

Penultimately, before we turn to our final comparison of FT, we will discuss the dominant
parameters in the GUT-FT sector. Fig. 2.8 shows how the GUT-FT depends on m ;. There is
a proportionality with my 5, favouring lower values for a better F'T, but the points are not tightly

constrained, unlike in SUSY-FT. The upward spread of points indicates that other parameters
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in addition to m /, affect the FT. This is expected from the histogram in Fig. 2.4, where no one
single parameter always determines F'T, but rather a more even mix.

Finally, we will consider how the FT changes in the plane of (mg, m;/3). These parameters
have been chosen as they dominantly characterise the behaviour of the model itself at the GUT
scale. The u parameter that dominates FT is determined by the minimisation conditions, which
may be written as functions of mgo and my /. We colour the points with their F'T values in four
intervals, namely: red for F'T > 5000, green for 1000 < FT < 5000, orange for 500 < FT < 1000
and blue (the least finely-tuned points) for FT < 500. The same set of points is used to compare
the GUT-FT and the SUSY-FT (there is only a recolouring of these data points between left and
right hand side) for the BLSSM and MSSM. The overall picture is similar for all four cases and
it is immediately clear that the F'T is comparable between the BLSSM and the MSSM. There
is a difference in the distribution of points between the MSSM and BLSSM, where there seem
to be no viable points until mg ~ 1TeV in the latter. This is due to the requirement of a Z’
mass consistent with current constraints (see Section 2.5). Moreover, due to the tadpole equation
given in Eq. (2.4) relating Mz to the soft-masses m,, ,, which are functions of mg, notice that a
larger Mz leads to a larger mg. All four graphs have a similar FT distribution, where a low my
is favoured and which manifests an approximate independence of mg. Indeed, m;/y is mostly
responsible for the F'T rather than mg (see Fig. 2.4). Since there is a little dependence on mg, we
expect to see an increasing F'T' as m /5 increases, as can be seen in all four cases. When comparing
the BLSSM and MSSM GUT-FT, the two pictures are very similar, with a slightly better F'T in
the MSSM, though the less fine tuned (blue) points appear about the same mass of m;/, ~ 2
TeV. This behaviour is very similar when comparing the SUSY-FT between BLSSM and MSSM,
where the pictures (up to the distribution of points) are very similar, with a slight dependence
on myg, where larger values are favoured. Lastly, we compare the GUT-FT and SUSY-FT for
each of the models. In the BLSSM we find a more concentrated region of less fine-tuned points
at higher mo. Both measures show a strong dependence on my /. In the MSSM, we again find
this dependence, but not the increase in density of less-finely tuned points as in the BLSSM.
To conclude the discussion on FT, we find that the overall FT is very comparable between the
BLSSM and MSSM. Though the GUT-parameter measure is similar in both pictures, with the
MSSM as slightly less finely tuned, the BLSSM has a larger density of less-finely-tuned points

when considering SUSY-parameters.
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Figure 2.6: (a) The SUSY-FT, Agysy vs u plotted for BLSSM spectrum points. As one expects
from figure 2.5, there is a strong dependence of the overall FT, Agygy with the p parameter; as
for nearly every spectrum point, C), is the largest of all C' parameters.
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Figure 2.7: Strength of loop factors, 3, 4, appearing in Eq. (2.38) as a function of ;1 plotted for
BLSSM spectrum points. This may be compared to the overall F'T value, appearing in Fig. 2.6,
and one can see the loop factors contributions are never dominant and so loop corrections do not
affect the SUSY-FT.

47



5000

4000

3000

2000

1000

ol . 1 1 1 1 1
o 1000 2000 3000 4000 5000

my /2 [G e\.f]

Figure 2.8: GUT-FT plotted against myp for BLSSM spectrum points. There is a strong de-
pendence for the GUT-FT with the m;/; parameter, although the wide upward spread indicates
other parameters may also be the dominant F'T contribution.
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Figure 2.9: FT in the plane of unification of scalar, gaugino masses for BLSSM and MSSM for
both GUT-parameters (A) and EW parameters (Agw). The FT is indicated by the colour of
the dots: blue for FT < 500; Orange for 500 < FT < 1000; Green for 1000 < FT < 5000; and
Red for F'T > 5000.

We now turn to considering the DM sectors of both models. We will see that once cosmological
and direct detection bounds are imposed on the DM candidates, the BLSSM parameter space is
far less constrained than the MSSM one, although at the cost of an increased GUT-FT.

For each generated spectrum, the LSP must comply with the cosmological and direct detec-
tion bounds of Section 2.5. The relic density in respect to the mass of the LSP (Mpy) is plotted
in Fig. 2.10(a). The relic is overabundant for the large part of points surviving the screening from
collider constraints. Without specifying initial conditions, as those igniting a favourable coanni-
hilation, our scan reveals multiple extended areas with relic densities close to zero. Interestingly,

the BLSSM successfully accommodates values within the allowed interval in Eq. (2.27), with all
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Figure 2.10: (a) Relic density vs LSP mass for the BLSSM. (b) Relic density vs LSP mass for
the MSSM. In both plots the horizontal lines identify the 20 region around the current central
value of Qh2.

LSP species. The corresponding distributions in Fig. 2.10(a) have recognisable shapes, which
point to different areas where a given LSP is more likely to cross the experimentally allowed
interval. Neutralinos may be found mostly, but not entirely, at large Mpy values. Sneutrinos
appear in a cloud, with low relic density values around the centre of our mass span. The sneutrino
option stands out as a very promising one, compensating its low rate of production as a LSP
with a milder value of the relic with respect to the neutralino.

The extended particle spectrum of the BLSSM yields a more varied nature of the LSP, with
more numerous combinations of DM annihilation diagrams, and can play a significant role in
dramatically changing the response of the model to the cosmological data, in comparison to the
much constrained MSSM. This is well manifested by the relic density computed in the MSSM,
as shown in Fig. 2.10(b). From here, it is obvious how the BLSSM offers a variety of solutions
to saturate the relic abundance compatible with the constraints, whether taken at 20 from the
central value measured by experiment or as an absolute upper limit, precluded to the MSSM.
In the former, different DM incarnations (Bino-, BLino-, Bileptino-like and mixed neutralino,
alongside the sneutrino) can comply with experimental evidence over a Mpy interval which
extends up to 2 TeV or so, while in the MSSM case solutions can only be found for much lighter
LSP masses and limitedly to one nature (the usual Bino-like neutralino). Together with the limit
on the cosmological relic produced at decoupling by the candidate DM particle, we challenge the
constrained BLSSM against the negative search for Weakly Interactive Massive Particle (WIMP)
nuclear recoils by the LUX experiment.

The 2016 results of the LUX collaboration have seen the upper bound on the cross section
decreasing by a factor of four in the three years of exposure. Such constraining analyses are still
ongoing and will interestingly become a threat or a confirmation of the WIMP hypothesis in
future years. From Fig. 2.11 we notice how the BLSSM with the parameter space investigated

largely survives such tight limits. We impose the modified constraint [98]:

o5y < EakYX (2.39)
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Figure 2.11: Spin-independent WIMP-nucleus scattering cross section generated in our scan
against the upper bounds from 2016 run of the LUX experiment.

where
1 if 0.1168 < Qh% < 0.1208 ,
€= (2.40)

% if Qh* <0.1168 .

This accounts for the LUX experimental search assuming the DM has the correct relic density.
The effect is to weaken constraints for low relic density points. The LUX bounds have just
started touching the BLSSM parameter space, so the next improvements of direct DM searches
will continue to further probe BLSSM’s parameter space. Even without accounting for this “low
relic-density” effect, the picture is still similar. For the MSSM, the SI bounds look identical to
the BLSSM, but with a Bino-like neutralino only.

2.8 Chapter Summary

While several studies of the SUSY version of the B — L model, BLSSM for short, exist for its
low energy phenomenology and predict distinctive experimental signatures, very little had been
said about the theoretical degree of F'T required in this scenario in order to produce them.
Alternatively, these studies fail to escape current experimental constraints coming from EWPOs,
collider and cosmological data. We have addressed these issues in the first part of this chapter,
by adopting a suitable FT measure amongst those available in literature and expressed it in
terms of the low energy spectra of the MSSM and BLSSM as well as of the (high-scale) universal
parameters of the two models. The latter, for the MSSM, include: masses for scalars and gauginos,
trilinear coupling, Higgsino mass and the quadratic soft SUSY term. In the BLSSM, we have all
of these parameters plus two additional ones, the BLino mass and another quadratic soft SUSY
term. The low and high energy spectra in the two SUSY scenarios can be related by RGEs,
which we have computed numerically at two-loop level.

We have found that the level of F'T required in the BLSSM is somewhat higher than in the

MSSM when computed at the GUT scale in presence of all available experimental constraints,
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but those connected to DM searches, and this is primarily driven by the requirement of a large
7' mass, of order 4 TeV or higher, which in turn corresponds to somewhat different acceptable
values for the scalar and fermionic unification masses, which partially reflect in different low
energy spectra potentially accessible at the LHC. However, when the FT is computed at the
SUSY scale, the pull now originating from all available experimental constraints, chiefly the DM
ones, destabilises the MSSM more than the BLSSM, as the latter appears more natural, well
reflecting a much lower level of tension against data existing in the latter with respect to the
former.

Furthermore, we have examined the response to the relic density constraints of the non-
minimal SUSY scenario, wherein the extra B — L neutralinos (three extra neutral fermions,
ie, a U(1)p_1 gaugino B’ and two extra Higgsinos 77) can be cold DM candidates. As well
known, taking the lightest neutralino in the MSSM as the sole possible DM candidate implies
severe constraints on the parameter space of this scenario. Indeed, in the case of universal soft-
breaking terms, the MSSM is almost ruled out by combining collider, astrophysics and rare decay
constraints. Therefore, it is important to explore very well motivated extensions of the MSSM,
such as the BLSSM, that provide new DM candidates that may account for the relic density with
no conflict with other phenomenological constraints.

After an extensive study in this direction, we have concluded that the extended particle
spectrum of the BLSSM, in turn translating into a more varied nature of the LSP as well as a
more numerous combination of DM annihilation diagrams, can play a significant role in dramat-
ically changing the ability of SUSY to adapt to cosmological data, in comparison to the much
constrained MSSM. In fact, the BLSSM offers a variety of solutions to the relic abundance con-
straint, whether taken at 20 from the central value measured by experiment or as an absolute
upper limit, which are unavailable in the MSSM. Alongside the usual Bino- (and possibly sneu-
trino), also BLino- and Bileptino-like as well as mixed neutralino can comply with experimental
evidence over an Mpy interval which extends up to 2 TeV or so, while in the MSSM case solu-
tions can only be found for much lighter LSP masses (~ 500 GeV) and limited to the standard

Bino-like neutralino.
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Chapter 3

Supersymmetric Extension of the
U(1)g_; Model: Dark Matter

3.1 Introduction

In the previous chapter, we introduced possible dark matter candidates from the BLSSM and
calculated FT metrics in comparison to the CMSSM. ! In this chapter, we investigate the feasi-
bility of the RH sneutrino LSP as a suitable DM candidate within the BLSSM framework, which
embeds a Type-I seesaw mechanism for the neutrino masses. In this case though, realising that
consistency with relic density of such a DM candidate is difficult due to the tiny Yukawa cou-
plings (Y, < 107%) involved [99], one may be tempted to conclude that its observation would be
difficult. This perception may be further reinforced by the fact, even though the RH sneutrino
can interact with the Z boson through the gauge kinetic mixing between U(1)y and U(1)p_r,
such an interaction is strongly suppressed by the heavy mass bound on the gauge boson asso-
ciated with the (B — L) symmetry (the aforementioned Z’). These difficulties can however be
overcome by identifying some new DM annihilation channels, which we will discuss below, in
which the specific (B — L) sector plays a crucial role. In this case then, one may even attempt to
extract evidence of such new DM dynamics which can be tested, if not at present, in near future

experiments, both collider and astrophysical ones.

3.2 RH Sneutrinos in the BLSSM

We now consider the RH sneutrino sector in the BLSSM model. With a TeV scale BLSSM
with Type-I seesaw and very small neutrino Yukawa coupling, Y, < O(107°), the sneutrino mass
matrix, in the basis (7,7}, Vg, 7y), is approximately given by a 2 x 2 block diagonal matrix,

where the element 11 of this matrix is given by the diagonal LH sneutrino mass matrix and the

!The C refers to “constrained”, which means using unified input parameters.
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element 22 represents the RH sneutrino mass matrix, Mprp, defined as [100]

MJQ\,—Fm?\?—i—m%—i— $MZ, cos2f’ Mn(An — p/ cot B')

Mpp = (3.1)

My (An — 1/ cot 3') va—i—mi?—l—m%—i—%M%, cos23

It is notable that a large mixing between the RH sneutrinos and RH antisneutrinos is quite
plausible, since it is given in terms of large Yukawa couplings, Yy ~ O(1). Therefore, Ug, I}, are
not the mass eigenstates. The mass splitting and mixing between the RH sneutrino 7 and RH
antisneutrino o}, are a result of the induced AL = 2 lepton number violating term My N°N°€.

One can show that the mass eigenvalues of RH sneutrinos are given by [44, 101]

1
m%ﬂF = M3 + m?v +m3, + §M§, cos23 F Am%R, (3.2)
where Am%R = |Mn(An — i/ cot 5/ )‘ and the mass eigenstates v+ are defined in terms of vg, U

as follows:
b= %Z (ei‘z’/QﬁR - e*l’d’/%;;) , (3.3)
1/ . .
o= (eW?ﬁR + e—“b/?ﬁ;g) , (3.4)

where ¢ is the phase of the off-diagonal element of Mgg, i.e., ¢ = arg(My(Ay — p/ cot 8')). In
case of real soft SUSY breaking terms, one finds ¢ = 0 or ¢ = 7, depending on the relative sign
of Ay and /. In the former case, we see that v_(¢ = 0) = I(Ig) = 7!, so the lightest state
is an imaginary sneutrino with m; = myp_ and the real type, R(vg) = ﬁf{, has a larger mass
MR = My, . The other possibility i; ¢ =7, where now v_(¢ =m) = 171R is the lightest state with

mgr = mp_ and 17}2 is heavier with ML = My, .
1 1

Before we consider the effect this will have on spectrum points in parameter space, we must
first discuss how we obtain our numerical results. In this work, we have used the spectra for RH
sneutrino LSP candidates in the BLSSM, previously obtained in [1], and discussed in the previous
chapter, where the exact details of the numerical results are discussed in great detail, though we
summarise them here. We have used the SARAH [59] and SPheno [60] programs, considering
a complete universal scenario where the gauge couplings all unify at GUT scale, and evolve at
two-loop order to low scale. We have scanned over the range [0,5] TeV in both mg and my s,
tan 3 in [0, 60], Ag in [—15,15] TeV, tan 8’ in the interval [0, 2] with neutrino Yukawa couplings
YLD y@2) yG3) iy [0,1]. The My value has been fixed to 4 TeV to comply with dedicated
U(1)p—r searches, such as in [49, 61, 102, 103]. In particular, 95% CL bound has been extracted
in the di-lepton channel at the LHC with /s = 13 TeV and £ = 40 fb~! luminosity. The Z’ signal
and its interference with the SM background have been properly taken into account as well as
the efficiency and acceptance factors as illustrated in [62]. The Z’ values of the gauge couplings,

gpr, ~ 0.55 and g ~ —0.144, have been obtained from an RGE analysis assuming unification
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at the GUT scale [1]. The spectra are then processed into HB [63-66] which, considering all
the available collider searches, expresses whether a parameter point has been excluded at 95%
CL or not. Finally, the compatibility fit of the generated Higgs signal strengths with the ones
measured at LHC is taken into account by HS [67], which provides the corresponding x2. By
asking for a 20 interval around the minimum x? generated, we obtain a further constraint over
the parameter space investigated. After these conditions are satisfied, we then enforce that all
spectra satisfy the SUSY mass bounds for gluinos, staus, neutralinos, charginos and stops [104].
It is worth noting, at this point, that fixing Mz = 4 TeV enforces a heavy SUSY spectrum,
so enforcing masses greater than SUSY search bounds is not in general more constraining than
the enforcement of Higgs data. We would also like to stress that the additional content of the
BLSSM compared to the MSSM will not act to enhance the production rate of any simplified
model searches, so it is reasonable to use these limits; though they do not greatly remove many
spectrum points after all other constraints are imposed. Finally, for the work in this chapter, we
isolate the RH sneutrino LSP candidate points generated by this scan which comply with all our
constraints.

One can now see the behaviour of the mass difference, Aml%R, on the sneutrino mass, applied
to our scan, in Fig. 3.1. When the mass difference is positive, ¢ = 0 and so the ﬂf acquires the
lightest mass my_. In the case of a negative mass difference (¢ = =), one has a &F LSP, with
mass my_. In general, one finds that My(Ay — p’ cot 3’) tends to be positive and so there are

many more CP-odd sneutrino LSPs than CP-even ones (by a factor of ~ 10).

2000 —— ————
A 2
AA A 4
TNV 5
1500;ALAA‘AAAAAAA 7
a A A AAA L i
= L A0 N 4
A ‘A A A A A i
o LY At& 1 ~
O, 1000}‘: Y ﬁ‘ A ‘*‘AA A T Vim
S R LR | ~
‘A 4 A A
A ap Al & A, ] A VRe
A A
500 k B
L N |
A
0 L L L L 1 L L L L L L L L 1 L L L L
-1x107 -5x 106 0 5x 108 1x107

My (An-4' cot B) [GeV?]

Figure 3.1: Masses of real and imaginary RH sneutrino LSP candidates are plotted against the
mass difference of the two eigenstates, My (1 cot 8/ — An).

Now, we briefly describe the relevant interactions of sneutrino DM, for 13112 and 17}1;L LSPs.
The relic abundance of the sneutrino DM is a direct consequence of the strength of these
interactions, in addition to revealing what signatures this DM candidate may provide. The
main interactions which contribute to the annihilations of the sneutrino DM are given by four-

~(R,I)

point interaction (ﬁ&R’I)I/l — hihj) and processes mediated by the CP-even Higgs sector
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~R,I hs ~R.I hs ~R,I -
17 J 7 J 7 W,

Figure 3.2: Feynman diagrams of the dominant interaction terms of two real or two imaginary
RH sneutrinos.

%R,I)%R,I) — h; — h;h; or W+W_>, as shown in Fig. 3.2. With Y, <« 1, the Lagrangian

of these interactions can be written as follows:
2 2
£ o { (71) hs o (20 % (0028 — 0aZ8) £ V2(ZH 1 Yewa — Z8Traa) — 40 ZHYE |
Rr1\? 3 RIO\2[ 9% ((7H 7H HH gBgvs (7H 7H Ho H H 7 Hy 2
+ (Vl ) hihj 3 a1 (Z13540) [7 (ZiS Zis — Zi4Zj4> + T(Zilzjl —Zjs ZjZ) —4Z;3 ZjSYx,aa]
+ (hihshe) g3 vy ( — 328 2828 + 2B 2B 20 + ZH 2B 2] + 21 2821

+on (282820 + 282828 + 22828 - 328 28 28 ) |

ot § (el + ) (o70) | 9

where h; is one of the four mixed CP-even Higgs mass eigenstates [46] (h; is the lightest SM-like
Higgs, ho is the light (B — L)-like Higgs, hs is the heavy MSSM-like Higgs and h4 is the heavy
(B — L)-like state). These states are all mixed and the matrix which diagonalises the Higgs
mass matrix is written as Z¥. There are four Higgs VEVs, corresponding to the MSSM H,,
and H, doublets and the BLSSM 7 and 7 singlets, written as (vy, vq, vy, vg), respectively. The
diagonalising mass matrices for the CP-even and CP-odd sneutrinos are denoted by Z®D while
the Y, 44’s are the Yukawa couplings for the RH neutrinos, which are assumed to be diagonal
along with the trilinear couplings, the T} 4,’s. The gauge couplings gp and gy p will be rotated,

along with the (unseen) gyy and gpy couplings, to become the physical g1, gpr, and g couplings.

3.3 Annihilation Cross Section and DM Relic Abundance

The two CP-eigenstate RH sneutrinos, DjlL and DF, produce different phenomena in respect of
the cross sections of their annihilation channels, which may yield detectable consequences in
cosmological measurements. The DM is annihilating at low (thermal) energies, so the final
product masses must be < 2Mj;. As indicated by the interaction terms in (3.5), the highest cross
section channel (for both CP-even and -odd) is oo — h'h'2, as long as My, < M. If this is not

the case then the next highest cross section channel is 77 — WTW ™. One is also allowed decays

2For ease of notation, hereafter, we identify h’' = hs.
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to ZZ, with a cross section approximately half that of WTW~, but this contribution will be
neglected for the remainder of the thesis. We find that other channels have small contributions to
the total annihilation cross section in comparison to these two. So, what separates the phenomena
of the real and imaginary sneutrinos is then simply the mass relation between h’ and . If
M > Mj,, the annihilation cross section will be dominated by the A'h’ production and, if not,
then WTW~. In order to determine which mass is larger, and hence the phenomenology of a
given state, we must consider the dependence of the mass splitting relation (3.2) on the trilinear
coupling Ag. This initial input parameter will determine the properties of our sneutrino LSP at
the low scale. For Ag < 0, this mass splitting will favour a lower mass CP-even sneutrino and
hence LSP, while for Ag = 0 we find CP-odd LSPs. The exact details are discussed previously,

in Section 3.2, but one finds this general trend, as seen in Fig. 3.3.

Now, we turn to how the lightest (B — L) Higgs is affected by the trilinear coupling,

My = 5 [(m% + M) — [ (m? + MZ,)2 — 4m?, M, cos? 26" |, (3.6)

N

where m?, is the mass of the (B — L) CP-odd Higgs,

2B,
_ u
A= Gn2g” (3.7)

and B, is determined by the B — L minimisation condition,
1 -
By = [—2gB 0™ cos 28" + 2m3, — 2m?, + Ggprv® cos 28] tan 23", (3.8)

At low scale, mi L2 depends on Ay (due to the RGE running from GUT scale to EW scale). This
directly affects B,/ and also tan ' and hence induces an Ag dependence on myus and also M.
Fig. 3.3 displays this relation and we see that, for large positive Ay values, a wide range of Mj,
masses are allowed (~ 100 — 2000 GeV) whereas, for Ag < 0, lower M}, values are favoured, with

the largest density of points over the interval ~ 100 — 500 GeV.

Combining this trend with larger mass scales for CP-even sneutrinos, as seen in Fig. 3.1,
provides us with two general cases based on the GUT parameters. Firstly, Ay is negative,
the sneutrino LSP is CP-even, with mz 2 500 GeV and M, < 500 GeV, hence, in general,
mp > Myp. The other possibility is that Ag is positive, here, the sneutrino LSP is CP-odd
and both masses are similar, 100 < mgp, My, < 2000 GeV. Further, there are cases where my
is larger and also My is larger. This behaviour is reflected in Fig. 3.4, where the histogram
counts the number of spectrum points where the annihilation channels h’'h’, W~W ™ or something
else have the largest cross section of annihilation. The different spectrum points are coloured
according to the value of their normalised annihilation cross section for a particular channel (e.g.,
o(vv — W'R)/o(0v — X), for any combination of particles X). As mentioned, the CP-even case
has many more parameter points with my > M}/, hence a larger number of our spectra have the

largest annihilation into h’h’. The CP-odd case has a larger number of points in our parameter

o7



2000
A
A

I N ]

1500 | g

I . ]

AA

g 1000 | 5 VIm
i A A VRe

500 4

A
A
0 L L Il L L L L
-10000 5000 10000

Ao [GeV]

Figure 3.3: Mass of lightest (B — L)-like Higgs versus the GUT parameter Aj, for CP-even
sneutrino LSPs (red) and CP-odd sneutrino LSPs (blue).

space with the largest cross section of annihilation into W W ~. A particular point in parameter
space will have a specified cross section into W+ W, which will strongly affect the ability to
detect that scenario via indirect detection, as we detail in the next section. If nature realises a
given point in parameter space, it may be the case that this is detectable via indirect detection

methods in the near future as we detail next section.

However, further to this we may make comments regarding the parameter space as a whole.
Firstly, we see general differences between the CP-even and CP-odd scenarios, which are directly
a consequence of the initial GUT conditions, especially the value of the trilinear coupling Ag; for
which we choose a wide range of positive and negative values (-15TeV< Ay <15 TeV). Choosing
this positive and scanning over our parameter space (detailed in section 3.2), one will find the
majority of the sneutrino-LSP points will be CP-odd and for many of these, where my; < My,
they will annihilate most strongly into W W™, which can lead to a detectable signal. So one
may make the point that positive Ag values will generally lead to larger direct detection signals.
We emphasise here, though, that we are not saying a particular scenario is more likely realised

in nature, but rather one may observe interesting features of our choice of parameter space.

These annihilation cross sections will be what determine the relic abundance of the sneutrinos.
In this work we consider a standard cosmological scenario, where the DM particles were in thermal
equilibrium with the SM ones in the early Universe and decoupled when the temperature fell below

their relativistic energy. The relic density of our sneutrino species is written as [105]:

2
QhﬁR,I =
1

2.1 x 1027 cm3s ! 100\ 2
X cm°s (azp>( ) (3.9)

(o2 0) 20/ \ g+(TF)
1

where (0?}%v) is a thermal average for the total cross section of annihilation to SM objects
14

1
multiplied by the relative sneutrino velocity, T is the freeze out temperature, zp = m_r.1 [Tp ~
1
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Figure 3.4: Histogram counting the number of spectrum points with the largest annihilation
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Figure 3.5: Relic density of CP-even and CP-odd sneutrinos versus their mass in GeV, where
horizontal lines correspond to the Planck limits for the relic abundance.

0(20) and g«(Tr) ~ O(100) is the number of degrees of freedom at freeze-out.

Fig. 3.5 shows the thermal relic abundance for sneutrinos. This has been computed by
micrOMEGAs [69, 70] and one can see that both CP-even and CP-odd candidates are allowed by
current limits of 0.09 < Qh? < 0.14, which is the 20 allowed region by the Planck collaboration
[22]. These points also satisfy the HB/HS [65, 67] constraints (that the lightest CP-even Higgs
must be SM-like and subject to negative Higgs searches), in addition to SUSY mass bounds for

gluinos, staus, neutralinos, charginos and stops [104].
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3.4 Indirect Detection

When the sneutrino contribute to the observed or a part of DM abundance, its annihilation to SM
particles produces an energetic spectrum of SM particles which has chances of being measured
in DM indirect detection experiments. In this section, we will focus on the photon spectrum,
produced as secondaries when sneutrino DM annihilates to SM final states. We will analyse the
impact of FermiLLAT searches from dwarf spheroidal galaxies (dSphs) and the galactic center in
order to constrain and understand the future potential to explore sneutrino DM. The annihilation

of sneutrinos in astrophysical objects with DM density ppum yields a v—ray flux which is given

by
dd 1 (ov) dN, 9 ,
—_— = — — dldQ) 1
dE’Y <47T 2Tn2DM dE’Y) . </AQ [o.s. pDM ’ (3 0)

where it is possible to separate a particle-dependent part, as the cross section (owv) and the

differential distribution dN,/dE,, from the astrophysical term involving the integration of ppm
over the line-of-sight (l.0.s) and the solid angle AQ. The differential distribution dN,/dE, is the
photon energy spectrum per annihilation. In our scenario we will focus on the W W~ channel,
which yields photons primarily through the decay of charged and neutral pions produced from
hadronization, but also from decays to charged fermions which propagate and emit photons from
inverse Compton scattering. This shape will be derived in our work by micrOMEGAs, but in
general this distribution takes the form [106]
dN,  mpmdN, a 4,

— 3.11
dx dE, x1-5e ’ ( )

where © = E,/mpy, and in ref. [106] the coefficients a = 0.73, b = 7.8 are calculated by
matching the coefficients to a continuum spectrum result calculated through PYTHIA [107].
The last term, dubbed J-factor, depends on the particular v—ray source where the DM
annihilation takes place. The FermiLAT experiment has searched for y—rays production with
a sensitivity in the energy range from 20 MeV to ~ 300 GeV. Now, dSphs of the Milky Way,
which are expected to have a sizable DM content, have a J-factor of 10 GeV? cm™> and a small
non-thermal y—ray background. These features make their observation particularly suitable in
constraining (ov) and we challenge the BLSSM sneutrino predicition against the bounds coming
from 6 years of observation over 15 dSphs [108]. Consistently with the result of the previous
section that, by far, the main charged annihilation channel is represented by WW~, we have
checked that also the biggest constraint is provided in the same channel®. In Fig. 3.6, we plot the
sneutrino annihilation cross section in the W™ W~ channel. We denote the two populations of
sneutrino DM candidates namely, CP-odd and CP-even, with two different colours and compare

the thermal cross section prediction with the existing bounds form dSphs (solid line). We also

3We notice that, when the DM candidate is not fully responsible for the measured relic density, the cross section
has been rescaled by an appropriate factor as shown in [98].
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Figure 3.6: Thermal cross section for DM DM — WT™W ™ annihilation as predicted by theory
as a function of the DM mass, for CP-even (blue) and CP-odd (orange) sneutrinos. Also shown
are the FermiL AT limit from dSphs at present (solid black) and as projection for 15 years from
now (dashed black). All points obey the relic density upper limit, for which rescaling, where
necessary, has been applied.

show the projection from 15 years of observation of 60 dSphs sample. While some CP-odd
sneutrino candidates can be tested with future FermiLAT searches, the constraining power for
CP-even candidates is far weaker. Most of the parameter space of this model though remains
safely allowed from existing and also future searches. It is imperative to note that the constraining
power of FermiLAT for sneutrino DM is weaker in our scenarios because of underabundant
DM component. Moreover, our scan reveals the existence of a section of the GUT-constrained
parameter space amenable to investigation in future searches, here represented by the single point
above the dashed line. Finally, we see a line of points with a similar cross section of ~ 10726

3 571 which can be explained as follows. When the sneutrino mass is larger then the B — L

cm
Higgs mass, mp > mp,, the sneutrinos will largely decay into two B — L Higgses preferentially
via the four point coupling in eq. 3.5. Otherwise they will decay via h; mostly into either h;h;
or WW. Since the sneutrinos couple most strongly to the B — L Higgs, usually the ho is the
mediator, and the mixing into two SM-like Higgses is small, as a direct coupling is forbidden in
the superpotential. It is then the mixed, gauge coupling hoWW which becomes strongest and
so light sneutrinos will largely annihilate into WW  whereas when mj > hg, they will preferably
annihilate to hohs, and so oy is small. The reason for such a compressed line is then due to
the logarithmic nature of the plot, where small differences in the couplings appear suppressed
compared to the 10 orders of magnitude which the figure spans.

In a second attempt to confront our model with the FermiLAT observations, we turn to the
galactic center and compute the differential y-ray flux due to snuetrino annihilation at the center

of the Milky Way. The differential distributions for the gamma spectrum as computed in (3.10)
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Figure 3.7: Differential flux of y-ray secondary radiation induced by DM DM — W+W ™~ an-
nihilation as a function of the photon energy, with fixed DM mass, for our benchmark CP-odd
sneutrino (orange). The corresponding distribution for the background is also given (red). The
FermiLAT present data (with error) are in black. The sneutrino point considered is compliant
with the relic density constraint taken as an upper limit.

is itself also a subject of dedicated analyses and experimental searches based on FermiLAT data.

The flux detected has therefore two components, of signal (SIG) and background (BG),

BG SIG
A%, _ dop¢  do3
dE, ~ dE, = dE,

(3.12)

and we computed the signal flux (d@EIG /dE,) for the case of the sneutrino corresponding to
the largest annihilation cross section in our scan. We notice, as shown in Fig. 3.7, how for our

benchmark point of mass of 661 GeV and (oww) ~ 7 x 1072 cm? s~! the signal is far below
dCI)BG

ar,

detection of a signal in the integrated flux measurement it would not correspond a -ray spectrum

the large background (given by ). Hence, our prediction for FermiLLAT is that to a possible
significantly distorted from the background shape, at least not in the current experimental run.
However, as the FermiLAT data sample will increase, more and more of the spectrum will be

accessible at larger energies, where a characteristic signal shape may eventually emerge.

When this will happen, it will be interesting to understand whether such a shape may enable
one to distinguish between a fermionic DM hypothesis and a CP-even or -odd one (and possibly
between the latter two). With this in mind, we compare the shape of the differential ~-ray
flux from CP-even, CP-odd sneutrino and neutralino DM candidates in Fig. 3.8. Here, we plot
the normalised flux distribution allowing us to make comparison between the three candidates
independently of the size of their annihilation cross sections and relic density. The three chosen
points have very similar mass, hence also determining similar end points in the spectrum. While

the CP-even and CP-odd sneutrinos have a very similar shape, the neutralino one is very different,
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Figure 3.8: Differential flux of y-ray secondary radiation induced by DM DM — W™W ™ scatter-
ings as a function of the photon energy, with fixed DM mass, for our benchmark CP-even (blue)
and CP-odd (orange) sneutrinos. The corresponding distribution for a neutralino is also given
for comparison (green). Normalisation is the same for all curves.

this result allowing us to speculate on the possibility of extracting the DM spin via indirect
detection experiments. It should however be noted that a more complete analysis, taking into
account various theoretical and experimental uncertainties, must be carried out in order to make
a more concrete statement in this direction. Nonetheless, we find this result to be important, as

it may actually be testable via data expected to be collected in the years to come.

3.5 LHC Signatures

In this section we discuss the possibility of characterising the sneutrino DM at the LHC by
qualitatively describing some of the most interesting signatures provided by the BLSSM.

Since the LSP sneutrino is mostly RH, it carries no SU(2); quantum numbers and hence
may only interact with the MSSM-like states via mixing with the LH sneutrinos. This is highly
suppressed, being proportional to the very small Dirac Yukawa coupling for the LH neutrinos.
As such, searches in the neutral or charged DY processes, mediated respectively by the SM Z
and W¥ gauge bosons, are hopeless. In contrast, the largest couplings of the RH sneutrinos are
with the typical (B — L) degrees of freedom, among the others, the Z’ and heavy bi-leptonic
scalars. In particular, as required by CP conservation, the Z’ couples to 7% (CP-even) and o'
(CP-odd), where one of the two is the LSP and the other can be the Next-to-LSP (NLSP), while
the heavy CP-even Higgses can couple to two LSPs. Hence, for the case of direct DM production
at the LHC, one can attempt relying upon pp — Z' — 1,spinrsp, with the decay of the NLSP to
the LSP via ingLp — vrspZ™ providing a di-lepton (plus missing transverse energy) signature
through a SM Z boson decay, unlike the heavy Higgs mediated process, which, since the final
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state is made up by LSP pairs, is invisible and can only be accessed through mono-jet, -photon,
etc. searches. In searching for these direct DM signals, we have scanned over several benchmark
CP-even and CP-odd sneutrino LSPs and used MadGraph [109] for the computation of the LHC
cross sections. In detail, we have computed the inclusive cross section for pp — ﬁ{ﬁiR, where 7} is
the LSP and allowed for the production of any other CP-even sneutrinos (i = 1,...,6) alongside
it. We also have explored the pp — ﬂf‘z}il channel in which the LSP is represented by the CP-even
component of the lightest sneutrino. These cross sections are totally dominated by the s-channel
exchange of a 7', i.e., pp — Z' — i}, #R57}, and found to be o ~ 0.025 fb at most for both the
CP charges of the LSP. It is unsurprising that this cross section is so small, as we are forced to
have a heavy Z’ to comply with current LHC search limits (Mz = 4 TeV). As this cross section
is so small, it would be difficult to observe any signal here without a much higher luminosity than
at present.

Another intriguing possibility to search for LSP states though is to do so indirectly, e.g., via
slepton  pair production. The corresponding cross section may lay in the ~ 0.1 fb range. When
the slepton mass is light enough, the [ — W*D1gp channel is the only available decay mode despite
its width being suppressed by the smallness of the Dirac Yukawa coupling, yiedling a di-lepton
signature. Alternatively, if kinematically allowed, one can have [— X'l with ¥ — v, 01,5p, where
vp, is the heavy neutrino. The latter will mainly undergo vy, — W=*IF or v, — Zy; decay, thus
providing fully or semi-leptonic signatures (again, accompanied by missing transverse energy).
Other interesting DM signatures may arise from squark pair production for which the cross
sections can reach several fb’s. In this case, e.g., one can exploit the decay chain ¢ — x°¢, which
can occur with a BR ~ 80% if the ¢ is the lightest squark, where YX° — vuirgp, as discussed
above. Here, one would have a variety of jet plus multi-lepton final states recoiling against

missing transverse energy.

3.6 Chapter Summary

The BLSSM provides a preferential DM candidate which is notably different from the MSSM
neutralino. The former is a spin-0 boson (specifically, a CP-even or CP-odd sneutrino) and the
latter a spin-1/2 fermion (specifically, a neutralino). While in a previous chapter we had assessed
that sneutrino DM affords the BLSSM with an amount of parameter space comparatively much
larger than the one of the MSSM offering neutralino DM, both compliant with WMAP /Planck
and LUX constraints, here, we have shown that signals of sneutrino DM are, on the one hand, just
below the current sensitivity of FermiLAT and, on the other hand, within reach of it in the next
15 years of foreseen data taking, unlike the neutralino case. Furthermore, we have illustrated
that, once a DM signal is established by such an experiment as an excess in the integrated
photon flux for some DM mass, there exists scope in establishing the (pseudo)scalar nature of
sneutrino DM by studying the differential photon flux in energy, as its shape is notably different
from the one pertaining to (fermionic) neutralino DM. However, there exists no possibility in this

experiment to separate with differential data the CP-even from the CP-odd sneutrino hypothesis,
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although their integrated rates are significantly different, with a predominance of relic CP-odd
states over CP-even ones. This phenomenology is enabled by the fact that one of the dominant
DM annihilation channels in the case of the BLSSM has charged particles in the final state,
notably W* boson pairs, as already noted in such a previous publication of ours. In fact, it is the
copious y-ray emission from the charged gauge boson pair that puts FermiLAT in the position
of exploring signals of sneutrino DM, unlike the MSSM, wherein the annihilation channel of
neutralino DM into W pairs is negligible. Intriguingly, the favourite BLSSM candidate for DM
is also potentially accessible at the LHC over the same time scale, 15 years or so. In fact, Run 2
and 3 data from the CERN machine may be able access a series of signatures, involving multi-
lepton final states, with and without jets, alongside the expected missing transverse energy. In
fact, also customary mono-jet, -photon, etc. searches may eventually develop sensitivity to the
BLSSM candidate for DM.

Altogether, we should like to conclude by mentioning that the DM sector of the BLSSM has
very distinctive features with respect to those specific to the prevalent SUSY description, i.e., the
MSSM, that can be eventually established in both DM indirect detection experiments and at the
LHC. In constrast, we do not expect (nor we have investigated here) the possibility of differences
in case of DM direct searches, as potential BLSSM mediators, a Z’ or additional heavy Higgs
states, are either too heavy or too weakly coupled to nuclear constituents, respectively, to play
any significant role. We therefore advocate more thorough investigations of DM phenomenology

in this non-minimal SUSY scenario, which is beyond the scope of this chapter.
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Chapter 4

Hints of Unification at the LHC

Having now studied carefully some of the phenomenological consequences of the BLSSM, in this
chapter we look at an aspect not carefully studied previously: distinguishing models with similar
signatures at the LHC. Both in the non-SUSY and SUSY version of the BLSSM, one of the
strongest signals one might see first is from the Z’ in breaking the U(1)p_r. As mentioned
previously, there is a difference between the model of SO(10) broken to SU(3)c x SU(2)r x
U(l)g x U(1)p—r and the usual SU(3)c x SU(2)p x U(1l)y x U(1)p—r. In this chapter, we

explore these differences and attempt to discriminate the two scenarios at the LHC.

4.1 Introduction

SO(10) GUTs are very attractive since they predict RH neutrinos and make neutrino mass
inevitable. SUSY allows for a single step unification of the gauge couplings. Being a rank 5
gauge group, SO(10) also naturally accommodates an additional Z’ gauge boson, which may
have a mass at the TeV scale within the range of the LHC. Such Z’ models are attractive since,
apart from the three RH neutrinos, they do not require any new exotic particles to make the
theory anomaly free.

There are two main symmetry breaking patterns of SO(10) leading to the SM gauge group.
Firstly there is the SU(5) embedding,

SO(10) = SU(5) x U(1)y, = SU3)c x SU2)r, x U(1)y x U(1)y, (4.1)

where the U(1), is broken at the TeV scale, yielding a massive Z; . For recent examples of models
based on such a Z;, see e.g. [110].
Secondly there is the PS gauge group embedding,

50(10) — SU(4)pS X SU(Q)L X SU(Z)R (4.2)

The PS colour group SU(4)ps may be broken to SU(3)c x U(1)p—_r, leading to the left-right
symmetric model gauge group. The SU(2)g group may be broken to the gauge group U(1)g
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associated with the diagonal generator T3r. It is thus possible to break SO(10) in a single step
at the GUT scale without reducing the rank,

50(10) — SU(3)C X SU(Q)L X U(l)R X U(l)B,L (4.3)

The resulting gauge group in Eq.4.3 does not predict any new charged currents and is not very
tightly constrained phenomenologically. It may therefore survive down to the TeV scale before
being broken to the SM gauge group, leading to the prediction of a massive Z3; , accessible to
the LHC.

In this chapter we shall focus on SO(10) broken at the GUT scale in a single step, as in
Eq.4.3. In order to allow for gauge coupling unification we shall assume SUSY which is broken
close to the TeV scale, but at a high enough scale to enable the superpartners to have evaded
detection at the LHC. We shall be interested in the Zj; , which emerges when the Abelian
subgroup U(1)r x U(1)p—_p is broken down to the SM hypercharge gauge group U(1)y near
the TeV scale (for brevity we refer to this scenario as the BLR model). We study the discovery
prospects of such a Z; p at the LHC, its possible decay mode into Higgs bosons, and the expected
forward-backward asymmetry, comparing the predictions to the well studied B — L model based
on U(1)y x U(1)p—r, [35, 36, 40, 100, 111]. We comment on the U(1)y x U(1), model [112, 113]
below.

The Abelian gauge group U(1)g x U(1)p—r has quite a long history in the literature as
reviewed in [113, 114]. It was recently realised that SUSY SO(10) models which break down to
this gauge group may allow for a new type of seesaw model, namely the linear seesaw model [115,
116]. Subsequently, the phenomenology of the SUSY U(1)r x U(1)p—_z model has been studied
in a number of works [43, 117-122]. Indeed it has been demonstrated that the Abelian BLR
gauge group U(1)r x U(1)p_r, is equivalent to U(1)y x U(1), (arising from the breaking chain in
Eq.4.1) by a basis transformation and furthermore that this equivalence is preserved under RGE
running, when kinetic mixing is consistently taken into account [122]. Therefore the physics of
the TeV scale Zj;; » considered here should be identical to that of the Z; [122].

We emphasise that there are several new aspects of our study including: the statistical signif-
icance of producing a Z; 5 at the LHC including finite width and interference effects (the LHC
uses a narrow width approximation); the study of Higgs final states in the U(1)p_r x U(1)gr
model; and the study of forward-backward asymmetry at the High-Luminosity (HL) LHC as a
discriminator between the U(1)r x U(1)p—_r, model (or equivalently the U(1)y x U(1), model)
and the usual Z5; based on U(1)y x U(1)p_r, i.e. the commonly studied B — L model [35, 36,
40, 100, 111].

4.2 Model

We shall not consider the high energy SO(10) breaking here, so the starting point of the considered

model is to assume that, below the GUT scale, we have the gauge group as on the RH side of
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Eq.4.3, namely,
SU(3)C X SU(Q)L X U(l)R X U(I)B_L (4.4)

Note that in this basis the hypercharge gauge group U(1)y of the SM is not explicitly present, in-
stead it is “unified” into U(1)gp xU(1)p—r. Note that, although the Abelian factors are equivalent
to the U(1)y x U(1)y model by a basis transformation, we shall work in the U(1)g x U(1)p—r,
basis. In order to allow gauge coupling unification we need SUSY, but we shall assume it is
broken above the Zj, » mass scale so that SUSY particles are not present in the decays of the
Z's1r- Note that such SUSY decays have been considered extensively in [43, 117-122].

At the Z5; p mass scale (typically a few TeV), hypercharge emerges from the breaking,
UlrxU(l)p_r = UQ)y (4.5)
where the hypercharge generator is identified as
Y =T3p+Tp-1, (4.6)

where

T 1 = (B —L)/2. (4.7)

The symmetry breaking in Eq.4.5 requires two Higgs superfields x12 whose scalar components
develop Vacuum Expectation Values (VEVs) which carry non-zero T3r and opposite Tp_1, so
that they are neutral under hypercharge. If they arise from an SU(2)g doublet then this fixes
their charges to be T3p = +1/2 and hence Ts_; = F1/2. Two of them with opposite quantum
numbers are required by SUSY to cancel anomalies (and for holomorphicity). They must be

singlets under both SU(3)¢ and SU(2), in order to preserve these gauge groups.

Finally, at the EW scale we have the usual SM breaking
SUR2), xU(1)y = U(1)g, (4.8)
where the electric charge generator is identified as
Q=T +Y. (4.9)

As in usual SUSY models, the EW symmetry breaking is accomplished by two Higgs doublets
H, 4 of SU(2);, which have B — L = 0. If the two Higgs doublets of SU(2); were embedded
into a single SU(2)r doublet, then we expect that H,, 4 will have T3p = £1/2, respectively. In
addition, in order to accomplish neutrino masses via the linear seesaw model, we need to add
three complete singlet superfields S, as discussed in the appendix C. The particle content of the
model (henceforth denoted as BLR) is then summarised in Tab. 4.1.
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Particle Ts, | Tsp | Tp—r | Ty |Y=T3p+Tp_ | Q=T3+Y
u +1/2 | 0 | +1/6 | +1/4 +1/6 +2/3
d) /2 | 0 | +1/6 | +1/4 +1/6 -1/3
up 0 | +1/2| +1/6 | -1/4 +2/3 +2/3
dp 0 | -1/2 | +1/6 | +3/4 -1/3 -1/3
Ve +1/2| 0 | -1/2 | -3/4 -1/2 0
e ), /2 | 0 | -1/2 | -3/4 -1/2 -1
VR 0 |+1/2]| -1/2 | -5/4 0 0
er 0 | -1/2 | -1/2 | -1/4 -1 -1
Xk 0 -1/2 | +1/2 | +5/4 0 0
X% 0 | +1/2| -1/2 | -5/4 0 0
S 0 0 0 0 0 0
Ho (cb;f +1/2 [ +1/2| 0 | -1/2 +1/2 +1
RN
H L /2 [ 4172 0 | -1/2 +1/2 0
0
Hy = (%)
i) +1/2 | -1/2 | 0 | +1/2 -1/2 0
/2 | 12 00 | 41/2 -1/2 -1

Table 4.1: The particle
model.

content and generators of the SU(3)c x SU(2)r x U(1)r x U(1)p—r,
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4.3 7' Couplings to Fermions

In this work, numerically, we use the SARAH program [59] to determine the vector and axial
couplings of the fermions with the Z};; . This includes the full impact of GKM as done in [119,
122]. Considering this effect in full leads to ~ O(1)% differences in vector and axial couplings.
In this section, for simplicity, we neglect the impact of GKM but stress that all implications are

considered in our final results.

We begin by examining the low energy breaking of the gauge group in Eq.4.5. The coupling
of a fermion f to the U(1)r and U(1)p_y fields are obtained from

— LpLr = fy" (QRT?,RWgR + QBLTBfLBfL) f (4.10)
where TBfL = %

After symmetry breaking, these two fields will mix to become the SM massless hypercharge

gauge boson, By, and a massive Z;, (corresponding to the Zp; ),

BBL cosbflpr, —sinfpy, B
= 1. (4.11)
Wi’R sinfg;, cosfOpr, Z,
So, the Z};; p has the following coupling to fermions:
— LEir = Z,f" (grcosOpLTsr — gprsin0p.Ts_1) f. (4.12)
Since
gRsinHBL :gBLCOSQBL =gy, (4.13)
we may rewrite the Z’ couplings of the BLR model in a more compact form,
— Lr = Z, /7" 9y Qi
QLr = (COtHBLTgR—taHQBLTB_L), tanfpy, :gBL/gR- (4.14)

We shall be interested in comparing the Z’ couplings in the BLR model above to those in
related models where the SM gauge group (including hypercharge) is augmented by an Abelian
gauge group U(1)’, identified with the generator Ty, resulting in the Z’ couplings

~ LA = Z,f+" 980T LT, (4.15)

which may be compared to the BLR couplings in Eq.4.14. We shall find to one-loop the non-GUT
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Model | ¢ | et | et | e | & | & | @ | &
T | 0 |1/2] 0 | —12] o |-12] o | 12
Tp_p | 1/6 | 1/6 | 1/6 | 1/6 | —1/2 | —1/2 | —1/2 | —1/2

Table 4.2: Chiral couplings for the U(1)g and U(1)p—_1, models.

Model\gH 94 \ 9% \gj‘ﬂ 9v \gi\ 9v \ 94
Tsp | 1/2 | =1/2| —-1/2 | 1/2 | =1/2 | 1/2| 0 0
Tpp |1/3| 0 | 1/3 | 0 | =1 | 0 |—-1/2|-1/2

Table 4.3: Vector and axial couplings for the U(1)g and U(1)p_1 models. Note that we have
integrated out the RH neutrinos? in calculating gy, and g%.

normalised couplings (i.e., in the conventions of this section)!:
gr = 0.448, gpr = 0.459. (4.16)

In general the Z%;;  couples to a fermion f which may be either left- or RH and the above
couplings sum over both chiral components of all the fermions. For analysing the couplings
of different models it is useful to decompose the couplings into either left-chiral or right-chiral

components, leading to the vector and axial couplings in the BLR model as follows

, _ 1
~ LER = gv Z FAM (el Pr + €pPR)f = gYZLf7”§ (95 - 95175) f, (4.17)

foo_
V/A —

decompositions can be made for the Z’ couplings of the other models in Eq.4.15. Tab. 4.2 shows

where Pp 1, = (1 £ v5)/2 and the vector/axial couplings are defined as g e{ + eﬁ. Similar
the chiral couplings for the relevant generators Tr and Tp_1, = (B — L)/2. Tab. 4.3 shows the

vector and axial couplings obtained for the two different models.

4.4 7' Couplings to Higgs Bosons

In this section we shall ignore the Z};; j, decays into bosons arising from X};{ and X%z' The X}z and
x%% bosonic sector contains four degrees of freedom, two scalars plus two pseudoscalars, where
one of the pseudoscalars is eaten by the Zj; », to leave two C'P even scalars plus one CP odd

pseudoscalar in the physical spectrum. If the soft SUSY breaking masses associated with X}%

1Including GUT normalisation, 1/3/2gpr, = 0.563. We also find the mixed couplings, related to GKM, gr, 1, ~
gsr,r ~ 0.01.

2In the linear seesaw, the heavy neutrino mass is approx My ~ Fug, see Eq.C.1 in appendix A for the
definition of F' while vg is the BLR breaking scale. We will see that the mass of the Z’ is approximately M/ ~

14/ (3g%_, + g%)vr. We thus prevent heavy neutrino decays (2Mxy > M) through the requirement that the

free Yukawa coupling be large enough, F > 4/ (%gf;fL + gfa) ~ 0.2.
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Vertex 9755,
00 | 9rCoSOB-pcos(B — )
2
7' ;0 A0 —grcosfp_p, Sin(ﬁ — a)
2
ZHYH- 4%

Table 4.4: The coupling of the BLR Z’ to the physical 2HDM mass states. The Feynman rule for
the vertex is given by (gz:s,s,)(p — P')., where p, p’ are the momenta of the two scalars towards
the vertex.

and X%{ are very large, then we would expect the physical C'P odd pseudoscalar to become very
heavy. Since the Zj; , must decay into a scalar plus a pseudoscalar (assuming that C'P and
angular momentum are conserved) then this would imply that none of the bosons arising from

Xk and X%—‘e would be kinematically accessible in Z;; ;, decays.

Under the above assumption of large soft masses for X}g and XQR, we shall discuss the Z5;
coupling to the Higgs bosons arising from H, and Hy only, which are assumed to have smaller
soft masses. To investigate the Z’ coupling to what is essentially a 2HDM sector, we begin with

the Lagrangian term with the covariant derivative

£Z’,scalars = (D,LL(DI)T(DM(I)l) + (D,u(i)Z)T(D,u(i)Q) (418)

with v
Dy =08, —i— 2 (Typ — 5%, —), (4.19)

SBLCBL 2

where cos (fp_1) = cpr, and sin (0p_1) = spr. Our two Higgs doublets are

¢ - bs
o) = ! , Dy = ioy®) = 2 (4.20)
(U1+h1+ia1)/\@ (—UQ—hz—i-iag)/\/i
and we rotate the fields to the physical basis as in the standard 2HDM procedure,
G+ - H*
(hOSga + HOCBQ + vsp + iGO)/ﬁ (—h065a + H085a + iAO)/\@

where we defined the standard 2HDM rotation angles cos(aw — ) = cqp and sin(a — 3) = sqg.
We extract the physical couplings for our Zj; 5 to the hO, HO H* A0 in Tab. 4.4.

We find the partial widths by using the general expression for a Z’ decaying into two spinless
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bosons of unequal masses M; and Ma, with coupling gz/s,s, (read off from Tab. 4.4),

1 1

T(Zprr — 5152) = 4877TM739
Z/

g5, (Mg + My + M3 — 2 (M3MZ, + Mf Mg, + MPM3)) .
(4.22)

For a discussion of the Z;; coupling to the scalar sector in the U(1)p—r model see e.g. [43].

4.5 Renormalisation Group Equations

We now turn to the RGEs at one-loop. These RGEs will determine the U(1)r and U(1)p—_1
coupling constants and will also predict a value of the SM hypercharge coupling constant, given
measured results of as and as. We begin by using the SM S-function coefficients bgM =-19/6
and b§M = —7 for the SU(2)., and SU(3). groups, respectively. We perform the running from
Mz up to our BLR breaking scale, which we denoted by vr. From the scale vg < Q < vsyusy,
these two [S-function coefficients are unchanged, as none of the additional BLR particle content
has quantum numbers under these two groups. Then, at vgusy < @ < MguT, we introduce
the SUSY partners and the S-function coefficients are modified to bgUSY = +1 and bgUSY = -3.
These are the familiar MSSM B-function coefficients. The strong and weak coupling constants
are run until they intersect, which determines Q = Mgyt and agur = aa(Mgur) = as(Mgur).
We now run our U(1)p_, and U(1)g coupling constants down from this GUT scale.

As we have two U(1) groups, they undergo GKM. We begin with the S-function coefficients
bEIiR’SUSY =27/4, bI%LR’SUSY = 15/2 and a mixed term bg?g;SLUSY = —y/3/8, including a GUT
normalisation term of 3/8 on the U(1) p_1, and hence /3/8 on the (U(1)5_r, x U(1)g) coefficient.
Rotating the couplings into the upper triangular physical basis [58], and following the procedure
of [123], we find the following B-functions for the GUT normalised couplings®

dgr 1 15g3

- 4.2
dt (4m)2 2 7 .
g 1 27 \/3 _ 15, \/5 2\

e ()2 [(4gBL §gBL9 + ?g g+ igBL +15g | 9% | » (4.24)

dgpr 1 (27, \/§ o 15,
= (i (493L Q9mLd + 5 0" ) gt 42

At the GUT scale, we set g = 0 and allow it to run to non-zero values at low scale. Fig. 4.1 shows
the running of the U(1)g and U(1)p_r groups both with (solid line) and without (dashed line)
including the GKM procedure. One can see immediately that these two lines lie on top of one
another, meaning the effect of the GKM is negligible. The ap has an entirely negligible change
and one can see a zoomed plot of the shift in the apy coefficient, which changes by O(0.1%).

3The couplings in this section are GUT normalised, while those in earlier sections are the non-GUT normalised
couplings We have chosen the same nomenclature for both normalisations, being careful to specify which normali-
sation we are using.
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Figure 4.1: Comparison of RGE evolution with (solid lines) and without (dashed lines) gauge-
kinetic mixing from GUT to SUSY scale. The U(1)r evolution is unchanged, whereas the
U(1)p—r is modified slightly. A zoomed in plot of this modification is shown.

At the low (TeV) scale, one finds a negligible mixing coupling term § =~ 1072, nevertheless we
include this correction in our numerical work.

We include GKM from the SUSY scale to the U(1)g x U(1)p_p breaking scale, vg. From
vRr < @ < vsyusy, decoupling the SUSY particles, the S-function coefficients change to b%IzR =
17/4, B = 13/3 and a mixed term bg{}?;sLU SY = bg&l}%lsy = —1/+/24. We summarise these
beta function coefficients and their meaning in appendix C.1. At vg these two coupling values
determine the (GUT normalised) hypercharge coupling,

3 2
oyl =Cap' + Cag;. (4.26)

5 5
From this scale, a7 is run further down from vgr to Mz, with the SM pB-function coefficient
b?M = 41/10. The BLR breaking scale has been chosen such that the VEV and coupling values
at this point correspond to a Z’ with a statistical significance < 20, which is seen later to be
3750 GeV. Using this Z’ mass, the vg VEV is determined from the formula? [119] in the limit

g9=0,

14,2

19RY 1/3 4 2\ .2
~=-|=-g%5_ 5+ , 4.27
3/2)9237L+912% 1 (293 L QR) VR ( )

where /(3/2)gp—_r1, = 0.563, as seen in Eq.4.16, and Mz = 3750 GeV leads to vgp = 10328 GeV.
The upper panel of Fig. 4.2 shows the running couplings of the BLR model, setting vg = 10328

1/3
Mz =1 (Seb o+ o) ot

GeV and vgysy = 10° GeV. Using our one-loop RGEs, we predict a value for the SM hypercharge

coupling as ay(Myz) = §a1 Mz) = 1/102.44, which we may compare to the experimentall
ping 5 ) y p p Yy

“The factor of 3/2 in Eq.4.27 multiplying g%_, comes from the 3/8 GUT normalisation factor times a factor of

4 in going from B — L to (B — L)/2. This is responsible for the GUT scale prediction tan0pr = grr/gr = v/3/2
in terms of the non-GUT normalised couplings in Eq.4.14.
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Figure 4.2: The upper panel shows the running couplings in the BLR model, with vp = 11660
GeV, which corresponds to M = 3750 GeV and vgysy = 10° GeV. The GUT scale is determined
to be Mgyt = 3.30 x 10'6 GeV. The lower panel shows the running couplings in the MSSM.
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may be partly accounted for by our procedure of running up the best fit experimental values of

determined value of oy = = 1/98.39 [104]. The difference between the two values

ag and ag at My to determine Mgyt and agyur at the point where they meet, then running all
the gauge couplings from this point down to low energies. This procedure, though convenient for
the BLR model where the hypercharge gauge coupling is not defined above vg, does not take into
account the experimental error in ag’(p in the prediction for of;fp. Another source of error is the
fact that we do not consider either two loop RGEs or threshold effects, both of which are beyond
the scope of this chapter. Using our one loop results, we determine the values of the couplings

in Eq.4.16, which refer to the non-GUT normalised couplings.

For comparison, the lower panel of Fig. 4.2 shows the MSSM at one-loop running couplings,
again assuming vsysy = 10° GeV. In this case the analogous procedure to that used in the BLR

model yields a prediction for the SM hypercharge coupling of a}?55M (M) = 1/102.25.

4.6 Results

4.6.1 Preliminaries

In this section, we review the LHC results specific to the BLR model in DY processes as well as
in final states including Higgs bosons. We do so in two separate subsections to follow. In the case
of DY studies, we also compare the BLR results to those of the U(1)p_ scenario. Throughout
our analysis we assume the aforementioned heavy SUSY scale, thereby preventing decays of the
Z' into sparticles. However, we consider the possibility that the 2HDM-like Higgs states of the
BLR models are lighter than the Z’, which may therefore decay into them via the couplings
in Tab. 4.4. Further, notice that Z’ decays into non-MSSM-like Higgs states can be heavily
suppressed in comparison, in virtue of the fact that the additional CP-odd state not giving mass
to the Z' can be made arbitrarily heavy (as previously explained), a setup which we assume here,
so that we refrain from accounting for these decay patterns. Finally, recall that heavy neutrino
decays are prevented here in the light of footnote 2 and that they have already been studied in,
e.g., [45] (for the B — L case), from where it is clear that they have little Z’ diagnostic power.
In contrast, we aim at making the point that the Higgs decays we study below can eventually be

used for this purpose.

We use standard 2HDM notation, such that h® and HY are the CP-even Higgs mass states
(with the lighter h° being the discovered SM-like one), A° the CP-odd one and H™ the charged

ones.

Tab. 4.5 summarises the numerical values of the vector and axial couplings of the Z’ to
fermions for the B — L and BLR models. For each scenario we have defined new vector and axial

couplings with the gauge coupling absorbed:

' — 1
— 7 = 2,5 (el — gk, (4.28)
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Model | Gange Coupling | gp | g4 | ot | a4 | &% | & | o | &
B—-L gpr,.=0.592 0.197 0 0.197 0 -0.592 0 -0.296 | -0.296
BLR See Eq.4.16 -0.0103 | -0.135 | -0.279 | 0.135 | 0.300 | 0.135 | 0.217 | 0.217

Table 4.5: Numerical values of the vector and axial couplings for the U(1)p_z and U(1)p_r1, x
U(1)g models. Note that we have decoupled the RH neutrinos in calculating gy, and g".

which may be compared to Eq. 4.17. For the U(1)p_1 model the calculation of g{/,A in Tab. 4.5
uses the gauge coupling constants shown there multiplied by the vector and axial couplings given
previously in Tab. 4.3. For the BLR model, the new numerical vector and axial couplings are
derived including the full effects of GKM using SARAH (as a function of the mixed couplings
9BL,R, 9r,BL and the rotation matrix which diagonalises the neutral gauge boson mass matrices),

but may be approximated analytically neglecting GKM using Eqs. 4.14, 4.17 as
g1, 4(BLR) ~ gy |(cot 051 )g{: ,(R) — (tanfp)gl, ,(BL) (4.29)

in terms of the vector and axial couplings g";’ 4(R) and g{? 4(BL) for the T3r and Ts_r, models as
written in Tab. 4.3. The non-GUT normalised gauge couplings for the BLR model in Eq.4.29 and
Tab. 4.5 come from the RGE analysis leading to Eq.4.16. The values of the non-GUT normalised
gauge couplings gpr, and g, for the B — L and x models in Tab. 4.5 were taken from the low
energy parametrisation in [113] rather than an RGE analysis, which would require us to specify
the corresponding high energy models, which we do not wish to do here, bearing in mind that
the B — L model does not emerge from SO(10). If some other value of gp;, were used instead,
then the vector and axial couplings for the B — L model in Tab. 4.5 would be straightforwardly
rescaled.

Many qualitative features of the results can be understood by examining the fermion couplings

in Tab. 4.5, for example, the vector nature of the B — L couplings.

4.6.2 Drell-Yan

The most promising channel to search for and profile a Z’ boson at the LHC in the BLR model
is DY production and decay, namely, pp — v, Z,Z" — ete™ and pu*p~. Fig. 4.3 illustrates the
current LHC reach (assuming 30 fb~! of integrated luminosity at 13 TeV), highlighting that
a Z' of BLR origin with a mass of 3750 GeV is allowed by data, as its statistical significance

a = \/%I is less than 2 in the entire mass range over which the signal |S| could manifest

itself over the background |B|. Notice that, here and in the following, our signal is given by the
(modulus of the) cross section of pp — v, Z,Z" — eTe™ and p*u~ minus that of pp — v, Z —
eTe” and utu~ (thereby including interference effects between Z’ and v, Z), the latter being the

(irreducible) background®. This very same Z’ boson will, however, become accessible by the end

5Notice that, for the Z’ mass ranges currently allowed by experiment, other (reducible) backgrounds can be
neglected.
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Figure 4.3: Statistical significance for producing a Z’ decaying into ete™ and p*pu~ in the BLR
model at integrated luminosities of (a) L = 30 fb~! and (b) 300 fb~!. The number of events
obtained at these luminosities for pp — Z’ is 74 in case (a) and 737 in case (b).
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Figure 4.4: The theoretical predictions of the leptonic forward-backward asymmetry at the LHC
Afp in the presence of a Z' decaying into eTe™ and ptp~ for the U(1)y x U(1)p—y (red) and
U(1)r x U(1)p—r, (blue) models. We have taken My = 3750 GeV. The SM (black) result is also
given for comparison.

of Run 2 of the LHC, as illustrated in Fig. 4.3, where (assuming 300 fb~! of integrated luminosity

at 13 TeV) values of « in excess of 5 are found near the peak region®.

Once such a Z’ signal is established, it will be necessary to diagnose it, i.e., to assess to which
model it belongs. A useful variable in this respect is the (reconstructed) Forward-Backward
Asymmetry (Afp) of the DY cross section. We use here the definition adopted in Ref. [125], see
Sect. 3 therein, with no cut on the the di-lepton rapidity (see also Refs. [126, 127]). Fig. 4.4 shows
the shape of this observable at the LHC, for /s = 13 TeV and Mz = 3750 GeV, as it would
appear in the Z’ peak region of the di-lepton invariant mass distribution for the BLR model as
well as the U(1)p_ scenario. The shape emerging from the BLR case is notably different from
the one of the companion SO(10) model”.

In order to quantify whether the LHC will be able to differentiate these two models, from one

another or the SM, one must include the statistical error in the formulation of Afy [126]:

/1 — A?

5Tn performing this exercise, we have used the program described in Refs. [48, 49] for the U(1)p—_1 case suitably
adapted to the BLR one. In particular, our implementation accounts for Z’ width and interference (with SM
di-lepton production) effects, which tend to reduce somewhat the sensitivity of the LHC experiments. Needless to
say, when these are neglected, we are able to reproduce results obtained by the LHC collaborations [62, 124] with
percent accuracy, for the corresponding choice of couplings (which differ somewhat from those used in the present
chapter). This is why our limits for Z’ masses differ from those quoted by the LHC.

7As intimated, recall that the Z’ couplings to leptons in the U(1)p—L case are purely vectorial, so that non-zero
values of ALy are due in this case to interference effects.

80



In Fig. 4.5 we include this error in a binned version of Fig. 4.4, which overlays the U(1)p_1,
and BLR models, for a luminosity of 3000 fb~! corresponding to the final result for the High-
Luminosity LHC (HL-LHC) run [128]. The purple region is the overlap of errors between the
two models. One can see that there are areas where the errors do not overlap and, by looking at
the entire invariant mass distribution, a detailed statistical analysis may in principle differentiate
between these two models at this luminosity, although we leave this task to the experimental
collaborations. The shape of the errors here strongly depends on the number of events, IV, which
depends on the differential cross sections for the two models. The U(1)p_1, model has a wider
resonance, and so at larger invariant masses there are more Z’ events produced and hence a
smaller AFB error, 6Afg.

Models = U(1)s_;

\Js =13Tev

Mz = 3750 GeV
Lum = 3000 fb™"

-0.5

-1.0

3000 3500 4000 4500
M, [GeV]

Figure 4.5: The Aj,p spectrum of the DY cross section in the presence of a Z’ of mass Mz = 3750
GeV. The figure we shows the BLR model prediction for Afy (in blue) and its error (shaded in
light blue) as well as the U(1)p—r, prediction for A (in red) and its error (shaded in light red)
as a function of the dilepton invariant mass. The purple region is the overlap of errors between
the two models. Here, L = 3000 fb—1.

4.6.3 Higgs Final States

An alternative way of singling out the BLR nature of a Z’ signal established via DY studies would
be by pursuing the isolation of its exotic decays, i.e., into non-SM objects. Under the enforced
assumption of heavy neutrinos, additional CP-odd Higgs boson and all sparticles being (much)
heavier than the Z’, the latter would include those into all possible MSSM-like (pseudo)scalar
states pertaining to the Higgs sector of the BLR model, which, as discussed while commenting
Tab. 4.1, is notably different from those of the U(1)p_1, scenario. In particular, in presence of CP
conservation, the following decay channels would be allowed in the BLR framework: Z/ — A%A9,
AYH? and H*H~. These are presented for the usual Z’ benchmark, assuming cos(8 — a) = 0.1
(so as to comply with LHC data from Higgs studies), in Fig. 4.6, for representative values of
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Figure 4.6: BRs of a Z’ in the BLR model as a function of degenerate Ay, H° and H* masses.
Here, My = 3750 GeV and cos(3 — «) = 0.1.

the Higgs boson masses. While the corresponding BRs are always subleading (of O(107%) to
0O(1072)) with respect to those of the decays into SM fermions, the (on-shell) Z’ cross section is
2.46 fb. For My ~ 500 GeV, we see branching ratios of order 1072, which leads to a production
cross section of o(pp — Z' — {AH°, HTH~, A°h°}) ~ ©(0.01) fb. We may compare this to the
cross section for pair production in generic 2HDMs (ie not via this Z’), which has been studied
extensively, such as in ref. [129]. In this reference, the full NLO calculation has been performed
for several benchmarks in 2HDM models. We see that production cross sections can vary by
up to an order of magnitude depending on the exact 2HDM scenario, but broadly we find for
200 < My, <500 GeV, where H; = {Mpo, Mo, Mpy+}, cross sections of

o(gg — {A°H®, HTH™}) ~ 0(qq — {A°H®, HYH"}) ~ O(1) fb,

o(gg — A°h%) ~ O(10) fb. (431)

For a larger mass scenario, with similar masses for all extended Higgses of Mo ~ M40 ~ Mg+ ~

700 GeV, we find smaller cross sections of

o(qqg — {AH°, HYH™}) ~ 0(0.1) b,

o(gg — A°h%) ~ O(1) fh, (432)

where we have omitted modes with small cross sections. The cross sections written above are
generally much larger than our scenario, so one will likely see a signal directly in these channels

before any detection via the Z’ decay.

82



4.7 Chapter Summary

SO(10) GUTs have the remarkable property that they predict RH neutrinos, making neutrino
mass inevitable. SO(10) is also a rank 5 gauge group, which implies that any rank preserving
GUT breaking sector will lead to an extra Abelian factor in the low energy effective theory, which
protects RH neutrinos from gaining mass. If the rank is broken at the TeV scale, then there will
be a Z' and massive RH neutrinos possibly observable at the LHC.

We have considered SO(10) motivated Z' models. In particular we have focussed on the
breaking pattern in Eq. 4.3, where the final breaking scale in Eq. 4.5, of the U(1)g x U(1)p—_p,
Abelian subgroup into the hypercharge U(1)y of the SM, may be around the TeV scale without
spoiling gauge unification, within the accuracy of our one-loop analysis. The SUSY version of the
U(1)r xU(1)p—r, (BLR) model permits a linear seesaw mechanism for neutrino mass generation.

After defining the BLR model particle content and giving the relevant Z’;; , and Higgs cou-
plings, we have focussed on the discovery prospects of the Z;;  at the LHC, its decay into Higgs
states, and the forward-backward asymmetry as a diagnostic for discriminating it from the Zj,
of the U(1)y x U(1)p—r, model. It is noteworthy that the ZJ;, of the B — L model has purely
vector couplings to quarks and leptons, making the forward-backward asymmetry a powerful
discriminator, as we have discussed. In general, we have set out to test whether such models
can be disentangled at past (like LEP/Stanford Linear Collider (SLC)) and present (like LHC)
machines, assuming that the SUSY scale is higher than the Z};; , mass.

Having determined the parameters of the BLR model to one-loop accuracy at the TeV scale,
we have examined the feasibility of the LHC to extract a Z';; 5, signal. We have shown that Z; 5
mass values just below the current sensitivity of the LHC can easily be accessed by the end of
Run 2 in standard DY searches exploiting electron and muon final states. Furthermore, we have
made a detailed investigation of Ay (i.e., the reconstructed forward-backward asymmetry) of
these di-lepton final states and shown that it may be possible to distinguish the Zj; , of the
U(l)r x U(1)p—r, from the Z5; of the U(1)y x U(1)p—r, case, assuming HL-LHC luminosities.
This is probably the main new result of this chapter.

We have also considered the Z};; 5 decays into MSSM-like Higgs bosons, which would include
Zgir — ARV AYHO and HTH~, but excluding possible decays into X}% and X%{ bosons which
we assume to be too heavy to be produced. While the Higgs decay rates are always small, from
percent to fraction of permille level, compared to those into SM leptons and quarks, HL-LHC
luminosities should render the extraction of all of these signals feasible. Though such decays
are often neglected in the literature, they provide an additional Higgs production mechanism,
possibly the dominant mechanism on the Z; 5 resonance at an eTe™ collider, and a crucial test
of the gauge structure of the model in the 2HDM versions of the models that SUSY demands.
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Chapter 5

Modular Symmetry with Natural
Lepton Masses

The models we have discussed until now have all featured massive neutrinos, but these have not
been the main focus. In this chapter we will change direction and put the prediction of neutrino

masses and mixing at the forefront.

5.1 Overview of Modular Symmetry

Over the next two chapters, we will concern ourselves with the framework of modular symmetry.
These are a class of supersymmetric models which predict lepton masses and mixing angles
similarly to the usual discrete symmetry flavour models, but with this role now being played
by modular invariance. For a given modular level, N, the matter supermultiplets transform
under representations of the discrete group I'yy. The Yukawa couplings are modular forms and
the flavour symmetry breaking is solely from a single complex parameter, the modulus 7. The
usual models studied in the literature are the special case where the modular forms are constant
functions which collapses the whole construction to a supersymmetric flavour model invariant
under I'y. This framework can be extremely predictive, where all neutrino mass ratios, lepton
mixing angles and Dirac and Majorana phases can be determined in a model with just two
parameters, the real and complex part of 7. Modular invariance has a long history in both string
and field theories. Target space modular invariance has been studied after the discovery that
the spectrum of a closed string when compactified on a circle of radius R is invariant under the
modular transformation 7 — —1/7. There have been many studies subsequently in numerous
areas, such as orbifold compactification [130-138], orientifold compactifications of Type II strings
[139-145] and magnetised extra dimensions [146, 147]. Modular invariant SUSY string theories
have been analysed in the late 80s [148, 149] for both global and local SUSY. In field theory
constructions, modular invariance has been involved in flavour problem model building [150-
156], and finally duality and modular invariance has been suggested as the underlying properties
of the quantum Hall effect [157-165].
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5.2 Introduction

Masses and mixing angles of elementary fermions are known with good precision and in the last
few years the progress in the lepton sector has been particularly impressive, with neutrino squared
mass differences and mixing angles that are attaining or approaching percent-level precision.
Despite such an advance on the experimental side, the fundamental principle, if any, ruling this
important aspect of fundamental interactions has remained elusive. In recent times a lot of
attention has been focused on neutrinos, since the relatively mild mass hierarchy and the large
mixing angles discovered through neutrino oscillations have not matched the expectations based
on the knowledge of the quark sector. Neutrinos led to a change of perspective, particularly
relevant when we look at the flavour puzzle in the light of a unified theory, where leptons and
quarks loose their individuality.

One of the few tools we have to address the flavour puzzle is the one based on flavour sym-
metries, which, however, comes with its own drawbacks. Flavour symmetries cannot be exact
symmetries [166] and Yukawa couplings are usually expressed as a power series in the symmetry
breaking terms, with many independent free variables, to the detriment of predictability. In
addition, such an approach typically makes use of several symmetry breaking parameters, with
specific orientation in flavour space, considerably complicating the construction. Finally, the
most popular flavour symmetries of the lepton sector constrain only mixing angles and phases,
leaving fermion masses essentially undetermined [12, 167-173].

Recently, modular invariance has been invoked as candidate flavour symmetry [174]. In
its simplest implementation a unique complex field, the modulus, acts as symmetry breaking
parameter, thus simplifying the vacuum alignment problem. Modular invariance, in the limit of
exact SUSY, completely determines the Yukawa couplings, to any order of the expansion in powers
of the modulus. Moreover, neutrino masses, mixing angles and phases are all related to each other
and, in minimal models, depend only on a few parameters. The formalism has been extended to
consistently include C'P transformations [175] ! and it can involve several moduli [149, 178]. The
idea that Yukawa couplings are determined by a set of moduli is clearly not new, and has been
naturally realized in the context of string theory [130-134], in D-brane compactification [139-
145], in magnetized extra dimensions [146, 147, 179], and in orbifold compactification [135-138].
Modular invariance has also been incorporated in early flavour models [150-154]. However, the
main advantage of the recent approach is that it can be implemented in a bottom-up perspective,
relying on the group transformation properties of modular forms of given weight and level.

Several models of lepton masses and mixing angles have been built at level 2 [180, 181],
3 [174, 182-185], 4 [186-188] and 5 [189, 190]. Extensions to quarks [191, 192] and to grand
unified theories [193, 194] have also been proposed. In most of the existing constructions, there

is a unique symmetry breaking parameter: the modulus itself. While this scenario is certainly

!The interplay between C'P and modular invariance in string theory have been discussed in Ref. [155, 156] and
especially in Ref. [176, 177] where a unified picture of flavour, CP and modular invariance has been analyzed from
a string theory perspective.
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appealing since it minimizes the symmetry breaking sector, it does not yet provide a convincing
explanation of the charged lepton masses. The mass hierarchy is achieved by hand by introducing
one parameter for each charged lepton species. This can be intuitively understood by recognizing
that the dependence of modular forms on the modulus is nearly exponential and small neutrino
mass hierarchies and large mixing angles require a modulus with small imaginary part, which is
inadequate to generate the large hierarchies observed among electron, muon and tau masses. This
may indicate that the charged lepton sector requires a different description, perhaps in terms of

more moduli, a natural possibility in string theory.

In the present work we explore alternative descriptions of the charged lepton sector in a
modular invariant framework. We test the dependence of charged lepton masses on an additional
set of fields by including in the symmetry breaking sector both the modulus and ordinary flavons,
chiral multiplets invariant under gauge transformations carrying non-trivial representations of the
finite modular groups and non-trivial weights, to guarantee consistence with invariance under the
full modular group. This has been done at level 3 in Ref. [182] and at level 5 in Ref. [190]. We
will extend the investigation to level 4 and extend the possibilities studied so far al level 5. At
level 4 the charged lepton Yukawa couplings are tailored to depend only on the flavons, with the
hope of reproducing charged lepton masses with parameters similar in size, at least at the level
of order of magnitudes. We will let RH charged leptons be responsible for the observed mass
hierarchy, by assigning them different modular weights compensated by growing powers of the
flavons, much as in Ref. [152-154]. At level 5 we will take a more radical departure from the
existing constructions and we will assign the RH charged leptons to an irreducible triplet of I's,
to treat them more closely to their LH partners. In our models only the neutrino sector depends
non-trivially on the modulus. As done in Ref. [182], we will not attempt to dynamically select
the vacuum configurations in the symmetry breaking sector. We have no compelling indications
so far that Nature follows a dynamical principle to set the cosmological constant or the EW scale.

We thus treat the VEVs as free parameters, to be varied to match the experimental data.

The models are built aiming at minimizing the number of free parameters. So far few pre-
dictive models use four independent parameters to describe neutrino masses, mixing angles and
phases and a variety of models achieve that with five free parameters, including real and imag-
inary part of the modulus. As we will see the models we have been able to construct make use
of at least five parameters and can be considered next-to-minimal. In our attempts we have also
incorporated C'P invariance, to be spontaneously broken by the modulus and by the flavons. We
present realistic examples where neutrino masse are described both in terms of the Weinberg

operator and via the type I seesaw mechanism.

Our chapter is organized as follows. In section 2 we briefly review the formalism of modular
invariant supersymmetric theories applied to the lepton sector and we will describe our models.
In section 3 we present the data, describe our fit and we show the results of the fit and the

predictions of the models. Finally in 4 we draw our conclusion.
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5.3 The Models

We brefly review the formalism of modular invariant supersymmetric theories [148, 149]. The
models analyzed here are supersymmetric and gauge invariant under SU(3)xSU(2)xU(1). We

are mainly interested to the Yukawa interactions, described by the action:
S = /d4xd29d2§ K(®,®) +/d4xd29 w(®) + h.c. (5.1)

where K (®,®), the Kihler potential, is a real gauge-invariant function of the chiral superfields
® and their conjugates and w(®), the superpotential, is a holomorphic gauge-invariant function
of the chiral superfields ®. The chiral superfields ® = (7, ¢!)) include the modulus 7, a dimen-
sionless chiral supermultiplet, and the remaining chiral supermultiplets, (/). Under the modular

group I' the modulus transforms as

ar +b

2
ct+d (5:2)

T =T =

with a, b, ¢ and d integers satisfying ad — bc = 1. The modular group I" is an infinite discrete

group, generated by the elements S and T satisfying S? = (ST)? = 1. They act as

. (5) ror+1 () . (5.3)

The transformation properties of ¢!) are fully specified by the data (kr, N, p(I)), where ky (the
weight) is a real number, N (the level) is an integer and p() is a unitary representation of the
quotient group I'y = I'/T'(N). T'(N) is a principal congruence subgroup of I' and the level N

can be kept fixed in the construction. The multiplets p(!) transform as
o = (er + )1 pD (7)) (5.4)

We choose a minimal form of the Kahler potential, invariant under Eqs. (5.2, 5.4) up to Kahler

transformations:

K(®,®) = —hlog(—ir +i7) + Y _(—ir +i7) D | (5.5)
I

where h is a positive constant. Concerning the superpotential w(®), its expansion in power series

of the supermultiplets ap(I ) reads:

w(®) =" ¥i, p, (1) oMol (5.6)
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For the n-th order term to be modular invariant the functions Y7, 7, (7) should be modular forms

of weight ky (n) and level N, transforming in the representation p of I'y:

Vi1, (v7) = (er + ) Mp(y) Yy, 0, (1) (5.7)

satisfying the conditions:

1. The weight ky (n) should compensate the overall weight of the product o) o).

ky(n) +kn +....+k, =0 . (5.8)

2. The product p x p* x ... x p'» contains an invariant singlet.

The above requirement is very restrictive. Indeed, for each level N and for each even non-negative
weight k, there is only a finite number of linearly independent modular forms 2. They span the
linear space My(I'(N)). Forms with vanishing weight are constant, that is independent from 7.
We will analyze models with N = 4 and 5. The dimension of M(I'(4)) is 2k+1, while M (T'(5))
has dimension 5k + 1. Modular forms of weight 2 generate the whole ring of modular forms. The
five independent modular forms of level 4 and weight 2 have been constructed in Ref. [186]. They
decompose as 2 + 3’ under the finite group I'y = S4. The eleven independent modular forms of
level 5 and weight 2 have been constructed in Ref. [189] and [190]. They decompose as 3+3'+5
under I's = As. In Appendix D.1 and D.2 we list them.

The chiral multiplets /) comprise three generations of lepton singlets E¢ and doublets L,
the Higgses H, 4, and gauge invariant flavons ¢. We will consider both the case where neutrino
masses arise through the Weinberg operator and the case where neutrinos get their masses through
the seesaw mechanism. In the latter framework also three generations of gauge singlets N€¢ are
included. In our conventions both the modulus 7 and the flavon ¢ are dimensionless fields. The
correct dimensions can be recovered by an appropriate rescaling.

Invariance under C'P can be incorporated in a consistent way [175] by requiring:
r CB , (5.9)
up to a modular transformation. On the chiral multiplets ¢(!) a C'P transformation acts as
oD S5 Xl (5.10)
where X7y is a matrix satisfying the consistency conditions:
Xl X =0"0) (7.¥)er . (5.11)

In a basis where all the matrices p) (7) are symmetric, these conditions are always solved by

2Recently modular forms of general integer weights and their transformation properties under the double cov-
ering of finite modular groups have been analyzed in Ref. [195].
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Xy = 1. This is the case of our choice of basis at level 5. At level 4 our basis does not enjoy

this property and a non-canonical solution for X is listed in Appendix A.

5.3.1 Level 4 Models

The group I'y has order 24 and is isomorphic to Sy. Its irreducible representations are 1, 1/,
2, 3 and 3'. It is generated by two elements S and T satisfying the relations S? = (ST)3 =
T4 = 1. In Appendix D.1 we detail the explicit form of the generators for the irreducible
representations and the relevant CG coefficients used in this chapter. The particle content,

weights and representations of our models are shown in Tab. 5.1.

Ef E§ ES | NC| L |Hyl| o]l ¢

)

I'y=25, 1 1 1 3 3 1 3 |1

kr (Seesaw) k — 3k, k — 2k, k—k, k| —k| O ko | kyr

kr (Weinberg) | —k —3k, | =k =2k, | =k —ky, | — | k 0 ko | kyr

Table 5.1: Chiral supermultiplets, transformation properties and weights. Weights for Ef and L
depend on whether neutrinos get their masses from the seesaw mechanism or from the Weinberg
operator. A possible choice leading to the superpotential given in the text is k = —5/3, ky =
+4/3 and k, = +3/2. As a consequence, the neutrino sector depends only on ¢’ and the charged
lepton sector depends only on ¢.

With the above assignment the superpotential reads
W= wp + We +w, (5.12)

where wy, we, w, describe the Higgs sector, the charged lepton sector and the neutrino sector,
respectively. Since the Higgs sector plays no role in our discussion, we neglect wy. We set
H, = H; = 1 in the superpotential, but we keep track of the correct dimension of the operators.

In the neutrino sector w, depends on the mass generation mechanism. When neutrino masses

originate from the Weinberg operator we have:

w, = —% [(¢'LL Y2)1 + &(¢'LL Y3)1] (5.13)

where A stands for the scale associated to lepton number violation, (...), denotes the r represen-
tation of I'y and £ is a free parameter. When light neutrinos get their masses from the seesaw

mechanism, the terms of w, bilinear in the matter multiplets L and N€ read
w, = —yo(N°L)1 + A [(¢'N°N® Ya)1 + £(¢'N°N® Ya)1] + ... (5.14)

Dots denote terms containing three or more powers of the matter fields, having no impact on
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our analysis. A truly minimal model would involve a single invariant in the neutrino sector.
For instance, a suitable assignement of weights can allow the unique term w, = —(LL Y2)1/A
(Weinberg) or w, = —(N°N°¢ Y2)1A (seesaw). We have studied these possibilities, but we found

no viable choice of parameters which may reproduce data.

At energies below the mass scale A for both models we have, in a matrix notation:

1
w, = —XLTWL +. (5.15)

where W denotes a matrix in generation space depending on the 5 independent level 4 and weight
+2 modular forms Y;(7) (i = 1,...,5). We list these results in table 5.2, where the VEV of ¢’
has been absorbed in A, Y; stands for Y;(7), and the indices W, S distinguish neutrino masses

originating from the Weinberg operator or from the seesaw mechanism.

0 i - 2Y; —Y; Y,
Weinberg, Wy = Yi =Y, 0 +&| -5 2Yy, —-Y3
Y, 0 % =Y, Y3 2Y;
) 1 0 0 1 0 0
Seesaw, Wg = 3/?0 001 [Wy']o0o01
010 010

Table 5.2: Relevant matrices in the neutrino sector of the superpotential in I'y models.

The light neutrino mass matrix m, is

2

my, = W”K sin?f (5.16)

where tan 3 is the ratio of VEVs, (H,) / (Hg). So far, the results in the neutrino sector would not
vary had we instead defined N¢ and L to transform as a 3’, rather than a 3 under I'y. However,
the following discussion in the charged lepton sector requires the properties as defined in Tab.

5.1. The superpotential w, for the charged lepton sector reads:

we = —aFES(L ¢*), — d' EY(L ©®)) — bES(L ©*)1 — cES(L )1 = —ETY.L . (5.17)
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In the last equality we use a vector notation and

a(p3 — 207+ ¢3)  Ba(p1es —p293)  —3a(p3es — @1¢93)

+d' (¢34 2010903)  +d (303 + 2020%)  +a (V202 + 2¢0303)
Ve = . (5.18)
b(¢3 — paip3) b(¢3 — 13) b(—p12 + ¢3)

cpY1 CY3 CP2

There are two independent I'y invariants that can be built out of L and 3, hence the two
independent parameters a and a’. The dependence on the flavon supermultiplet ¢ is fixed by the
weight assignment. There is no dependence on the modulus 7, since the bilinears (E{L, ESL, ESL)
have weight (—3k,, —2k,, —k,). Taking, for instance, k, = +3/2, these weights cannot be

matched by modular forms. The charged lepton mass matrix m, reads

Me = ye% cosf . (5.19)
Notice that if the flavon ¢ is aligned along the (0, @2, 0) direction, ), is diagonal and the charged

lepton masses are given by:

me = %wg’ cosf my, = ;ivcp% cosB my = \%vg@ cosfB . (5.20)
Hence, a mass hierarchy can be generated by |ps| < 1, even with a, b and ¢ of the same order.
In our numerical analysis we will treat the modulus 7 and the VEV of ¢ as free parameters.
Beyond that, the parameters controlling lepton masses and mixing angles are the overall scale A
and the five dimensionless constants £, a, a/, b and c¢. Without loss of generality, we can require
a, a’, b and c to be real, since their phases are always unphysical. On the contrary, the phase of
& cannot be removed by a field redefinition. We will consider two options, either requiring the
theory to be invariant under C'P at the Lagrangian level, or not. In the former case, using the C' P
transformation given in Appendix A, we find that £ should be real and C'P can be spontaneously
broken by the VEVs of 7 and /or ¢. In the latter case, we will treat £ as a complex free parameter.
The dependence on tan B can be absorbed into the above parameters and will not be explicitly

shown when reporting numerical values.

5.3.2 Level 5 Models

The irreducible representations of the group I's = A5 are 1, 3, 3/, 4 and 5. Its generators are
S and T, satisfying S? = (ST )3 = T° = 1. In appendix D.2 we specify the explicit form of the
generators for each representation, together with the relevant Clebsh-Gordan coefficients. Here,
we construct modular-invariant models in which all leptons are collected into 3 or 3’ multiplets

of Ay, containing the three generations of each type of field. We take the neutrino sector to be
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minimal, it should only depend on the modulus 7 and an overall scale. Modular forms will not
appear in the charged-lepton sector, which instead will contain two extra flavons. In table 5.3,

we show the assignments of representations and weights that we consider.

PN pL | kN kL

- 3 - -1
Weinberg
E* N¢ | L | Hyq % X - 3| - -1
s =45 PL pN | pL | 1 pr | 1 3 3 |-1 1
kr —3—Fkr | kn | kL 0 3/2 | 3/2 3 3 |-1 1
Seesaw

3 3]0 -2
3 3 0 -2

Table 5.3: Chiral supermultiplets, transformation properties and weights for the level-5 models.

Setting H,, = Hy = 1, the neutrino sector w, of the superpotential is, depending on the choice

Weinberg vs. Seesaw and (pr, = pn) vs. (pL # pN):
—+1(LLY i
5 ( 5)1 Weinberg

Wy =4 —yo(N°L)1 + A(N°N°Ys), Seesaw, p; = pn (5.21)

—yo(N°LY5)1 + A(N°N€), Seesaw, pr, # pn
The case of pr, ~ pn ~ 3 has been studied in detail in Ref. [196] and so not discussed here.

Below the energy scale A, w, can always be written as

w, = —%LTWL, (5.22)

with W a 3 x 3 matrix, whose explicit form for each case can be read from table 5.4, using the
2

equation W = %0 y,,T Wv_Vly,, for the seesaw case. The light neutrino mass matrix m, can be

obtained from W as in Eq. 5.16.

The charged-lepton sector w, of the superpotential is
we = a(E°L)x° + B(E°L)gxp + 7(E°L)s(¢?)s + 8(E°L); (%) = —E4 VL . (5.23)

In what follows we set the flavons to their vevs and denote them by x, ;. We absorb x # 0,
1 # 0 and the Lagrangian parameter J into «, (3, 7, 2 and 3. Once this is done, the matrix
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27 —V3Ys —V/3Y,
W=| -V3Ys 6Y, -V
—V3Y, -V V6Y3

27 —V/3Yy —V/3y3

Weinberg, pr =3
kr, = —1

Weinberg, pp = 3’

; : W=| -3y, VY, -1
L= —
-3y -1 V6Y;
, 27 —V3Y; —/3Y;, 100
Seesaw, pr = pN =
L Lk ) WW: —\/§Y5 \/6Y4 -Y; ayzx: 0 0 1
L— 1 N — —
-V3Y, -Y1 V6Y3 010
o 2V, —V3Y: —V3Y; 1 00
Seesaw, pf, = pN =
L Lk ) WW: —\/§Y4 \/6Y2 —Y1 7yI/: 0 0 1
L— 1 N — —
—V3Y; -1 V6Ys 0 10
. 5 ¥ 100 Vi Y Ys
eesaw, pr, = 9, PN =
A ) o Ww=|001]/| = Y2 —V2¥3 —V2¥;
L — — 4, N —
010 Ys  —V/2Y2 —V/2Y)
. y . 1 0 0 V3vi Y Y3
eesaw, pr, = 9, PN =
. - Ww=]0011/ V= Vs  —V2Y3 —V/2Y;
L — —4 N —
10 Yo —V2Y; —V2Y,

Table 5.4: Relevant matrices in the neutrino sector of the superpotential in I's; models.

Y, takes the form

o+ 4y(1 — pagp3) (B+67)ps3 (=B +67)p2
Ve = (=B + 67)p3 62 atB-291—gaps) | - (524)
(B+67)p2  a—B—2v(1 — pap3) 6v¢3

The charged lepton mass matrix m, has the same form as in Eq. (5.19), m. = Y.vcos B /2.

Setting w2 = w3 = 0 and switching the last two rows gives a diagonal m,, with eigenvalues

. v R v -

cos , mpy = (@ — 8 — 27)——= cos , me = (a+ B — 2v)——= cos
(5.25)

As for the I'y case, we treat 7 and the VEVs ¢» 3 as parameters to be freely varied in our fit.

The remaining parameters are the overall scale A and the dimensionless constants «, 5 and +.

v

V2

mq = (o +4y)
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By enforcing C'P conservation, the latter three are required to be real. The dependence on tan B

can be absorbed into these parameters.

5.4 Results

In this section we identify which scenarios we analyse, state the experimental data used and report
the results of a chi-square analysis with the predictions of the models. In table 5.5, we list the
seven scenarios which reproduce the data well, with a reasonable Xfmn’ req and minimum number
of parameters. We will present results only for these scenarios, omitting those presenting a high
Xilin, red OF @ large number of parameters. We identify the different cases with a code referring
to the modular level 'y = Sy or T's = A5 “4 (5)”; Weinberg or Seesaw “W (S)”; C'P conserving
or violating “C (V)”. For the A5 Weinberg scenario, we add the transformation property of the
lepton triplet, whether this transforms as a 3, or 3* “3 (3p)”.

We present the results in this section for which 7 is not restricted to be in the fundamental
domain, |Re(7)| < 1/2, |7| > 1. However, in appendix D.3 we also include a full list of modular
transformations to the set of input parameters which transforms 7 into the fundamental region,
as well as the explicit numerical values for these transformed parameters, which will yield the
same set of physical observables. In this main text we list the non-fundamental region input
parameters to avoid confusion stemming from spurious additional imaginary parameters which

are just an artefact of a basis transformation.

Model Operator C'P conservation | Charged Lepton sector | Case Identifier
S Weinberg oP Diagonal 4WV
Sy Seesaw CoP Diagonal 485V
Sy Weinberg CcP Modified 4WC
Sa Seesaw CcCP Modified 4SC
As Weinberg, pr, = 3 CcP Modified 5WC3
As Weinberg, p = 3’ CP Modified 5WC3p
As Seesa, cP Modified 5SC
pr =3, pny =3, Im(p2,3) =0

Table 5.5: A list of the seven scenarios presented with good fits to data.

5.4.1 Fit to Leptonic Data

In Tab. 5.6, we list the experimental data and errors we use to calculate our pulls and Xr2nin, red
values. For the Yukawa couplings, we use the renomalised values at my scale, as detailed in
Ref. [197]. For the neutrino oscillation data, we use the most recent results from the NuFit
collboration, Ref. [198]. For the calculation of our X?nimed, we assume the conservative estimate

of gaussian errors, unless explicitly stated otherwise. Even though current data seem to prefer
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normal to inverted neutrino MO, we do not weight this option in our y? function.

We show our results for all the considered I'y and I's cases in the three tables contained in
Tab. 5.7 and 5.8 respectively. For each case we present the point in parameter space which
minimises the y2, as a result of a numerical minimisation procedure. In the first table, one finds
the predictions and, in parentheses, pulls to the six observed neutrino parameters: the two mass
squared differences, Am2,, Am2, (where the latter refers to Am3, > 0 for NO and Am3, < 0 for
10), three PMNS angles, 012, 6013, 023, and C'P violating phase, d; as well as the final X12nin, red-
In the second table, we list the predictions for each scenario for the: three individual neutrino
masses, my, Mo, ms; Majorana phases ao1, a31; neutrinoless double beta decay parameter, mee;
and MO. In the third table we specify the input parameters used to generate the best fit point
discussed. In neither I'y, nor I's do we present the pulls from the Yukawa of the charged lepton
sector, as we find sufficient freedom for every considered case to reproduce the observed values
with negligible pulls (Ax? < 0.01).

10 NO

Ami | 739(21) 7.39(21)
ye(mz) | 2.794745(16) x 1076 wf’;“g;vz —2.512(33) | 4+2.525(32)
yu(mz) | 5.899863(19) x 10~* sin? 012 0.310(13) 0.310(13)
y-(mz) | 1.002950(91) x 102 sin? @13 | 0.02263(66) | 0.02240(66)
sin? fa3 0.582(17) 0.582(17)
5/ 1.56(15) 1.21(19)

Table 5.6: Left panel: charged lepton Yukawa couplings renormalized at the my scale, from Ref.
[197]. Right panel: neutrino oscillation data, from Ref. [198]. The squared mass difference Am3,
is equal to Am§1 for normal ordering and Amg2 for inverted ordering. Errors, shown in brackets,
are the average of positive and negative 1o deviations. The x? function is not gaussian along the
sin® Ao direction and our definition overestimates the error.
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5.4.2 Numerical Results at Level 4

To minimize the number of effective parameters, we first analyze the case of diagonal charged
lepton sector. This can be realized by fixing the VEV of the flavon ¢ along the direction (0, 2, 0).
All terms depending on a’ drop. The remaining input parameters a, b and ¢, can be fixed to

exactly reproduce the charged lepton masses:

(a,b,c) =

V2 <m T mT> (5.26)

veos B\ @3’ @3 v
Due to the hierarchical pattern in powers of the VEV, these input parameters may be all of

similar order by fixing, for example, |p2| = 1/100, which leads to
acos S ~ 2.8, bcos 3 ~ 5.9, ccos B~ 1. (5.27)

We are left with 3 Lagrangian parameters, (A,Re({), Im(£)) and the (complex) modulus VEV 7.
Choosing the neutrino mass generated by the Weinberg operator (denoted case “4WV”), we get
a good agreement between the model and the data by the parameter choice shown in Tab. 5.7,
with a X12nin, red ~ 0.6. We also present results for the same scenario, but now with neutrino mass

generated by a type-I seesaw (denoted case “4SV”), with a Xfmm req ~ L.1.

We may further reduce the number of free parameters by imposing that the Lagrangian be C'P
conserving. This amounts, in our basis, to requiring real Lagrangian parameters, i.e. Im(§) = 0.
We found no feasible solutions with this further restriction keeping the charged lepton sector
diagonal as before. Thus we relax this requirement and at the same we set ' = 0. Though o’
is a legitimate parameter of our model, we can safely neglect it in the limit of nearly diagonal
charged lepton sector. Indeed, in such a limit, the contribution to lepton mixing is dominated
by the elements of ), below the diagonal, controlled by the parameters b and c¢. We find a
good fit to data allowing small perturbations (in units of ¢2) of Im(y1) = —Im(p3) # 0. Along
this particular direction CP is spontaneously broken, see Appendix A, and the charged lepton
sector contributes to the physical phases of the PMNS matrix. However, the main motivation
for choosing such a direction is to show that it is possible to achieve a good agreement with
the data by turning on a minimum number of extra parameters. We present our results for this
scenario for both the Weinberg case (denoted “4WC”), with X12nin, red ~ 3.2 and the seesaw case
(denoted “4SC”), with anin’ red ~ 0.3. In both C'P conserving and violating scenarios, neutrino
masses from the Weinberg operator have inverted ordering, while those coming from the seesaw

mechanism are normal ordered.

In our setup we were unable to describe both the neutrino masses and the mixing matrix
with fewer than five parameters. On the other hand the overall results and predictions are
quite stable with respect to the details of the model. The quality of the fit is quite similar in
all cases analysed and the results mainly depend on the choice between the Weinberg operator

and the seesaw mechanism. In both cases the neutrino mass spectrum is nearly degenerate and
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value (pull)
Case | Am3;-10° eV™2 | Am3, - 10% eV 2 sin? 012 sin” 013 sin? Oa3 o/m anm_, red
AWV 7.39 (0) -2.517 (-0.2) 0.310 (4+0.0) | 0.02262 (-0.0) | 0.583 (4+0.1) | 1.68 (+0.8) 0.6
45V 7.39 (0) 2.527 (+0.1) 0.310 (4+0.0) | 0.02241 (4+0.0) | 0.580 (-0.1) | 1.40 (+1.0) 1.1
nige 7.39 (0) -2.512 (-0.0) 0.310 (4+0.0) | 0.02264 (4+0.0) | 0.580 (-0.1) | 1.83 (+1.8) 3.2
45C 7.39 (0) 2.526 (+0.0) 0.317 (4+0.5) | 0.02237 (-0.1) 0.580 (-0.1) | 1.25 (+0.2) 0.3

value
Case | m1-102eV™2 | mo-10%2eV™2 | ms-10% eV 2 ao1 /7 | asi/m | Mee 102 eVt | MO
AWV 6.56 6.61 4.31 0.21 1.76 6.18 10
45V 4.23 4.32 6.57 0.22 0.54 4.01 NO
e 6.33 6.39 3.96 1.88 1.69 6.20 10
45C 4.26 4.35 6.59 0.11 0.30 4.25 NO

Input parameters
Case | Re(r) | Im(7) Re(§) Im(¢) Im(ps)=-Im(p1) a b c 1/A (eV™h)
4WV | 1.155 | 0.9797 | -2.536 | -0.07654 - 2.795 | 5.900 | 1.003 0.007395
45V | 0.8436 | 0.9968 | -2.600 0.1151 - 2.795 | 5.900 | 1.003 0.7672
4WC | 2.530 | 0.5380 | -0.1063 - -0.001063 2.647 | 5.899 | 0.9918 0.003799
45C | 2.506 | 0.5905 | -2.595 - 0.001081 2.642 | 5.899 | 0.9914 1.301

Table 5.7: Results of the fit to lepton data for the I'y models. In the top panel, best values and
pulls for the observables used in the fit. Also the minimum y? is shown. In the middle table,
predictions of the models: neutrino masses, phases and parameter me. relevant for neutrinoless
double beta decay. In the bottom panel input parameters at the minimum of the y? function. We
have fixed @2 = 0.01 for all four cases. To simplify the notation, the factors cos B and 1/ sin? B
have been omitted from a, b, ¢ and A, respectively.

the lightest neutrino mass is around 40 meV. When we adopt the Weinberg operator (seesaw
mechanism) me. is close to 60 (40) meV. A normally ordered spectrum (corresponding to the
seesaw mechanism) predicting a relatively high m.. parameter seems a common feature to most
of the models enjoying modular invariance and providing a good fit to the data. The neutrino
masses in our model are slightly heavier than those of the level 4 models studied in Ref. [186,
187].
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5.4.3 Numerical Results at Level 5

We now turn to the models at level 5. Unlike in level 4, all the examples listed here produce a
CP conserving Lagrangian. In our basis, this requirement is that all Lagrangian parameters be
real. The charged lepton masses are essentially controlled by «, 5, ~, while neutrino masses and
mixing angles are mainly governed by A, 7 and ¢. We fix ¢; = 1 and, to reduce the number
of parameters, we restrict the two VEVs of (y2, ¢3) to real values. Neutrino properties are thus
described by a total of five parameters and C'P violating phases are entirely due to the neutrino
sector, since C'P is preserved by a real ¢ VEV. Here again this choice is mainly dictated by the

desire to match the data using a small number of parameters.

As we can see from Tab. 5.8, we get the best agreement with data when neutrino masses
come from the Weinberg operator, with p;, ~ 3 (denoted case “5WC3”), for which we get a
Xr2nin, red ~ 1.1. The 7 value is very close to the border of the fundamental region (see also
Tab. D.2 in Appendix C), where C'P is conserved. This result strongly supports the indication
that, in a C'P invariant model, even a tiny departure from the region of moduli space where C' P
is preserved can cause large observable C'P-violating effects [175]. We also notice that all the
components of the multiplet ¢ are of the same order, indicating that the charged lepton mass
matrix is far from the diagonal form, related to ¢ o (1,0,0). This is a new feature, since in
the level 4 models discussed here and in the level 3 model of Ref. [182], the contribution to the
lepton mixing of the charged lepton mass matrix (depending on ordinary flavons) is small. The
model predicts mee &~ 27 meV. The MO is inverted, as in all previous cases dealing with the
Weinberg operator. An exception is provided by the other Weinberg case at level 5 in which
pr, ~ 3’ (denoted “5WC3p”), which predicts normal ordering at the price of a considerably worse
XIQnin, red ~ 12.6. The largest pulls are the one in ¢, which deviates by more than 30 and by

sin? @3, about 1o below the current best value.

We have also explored this model in a seesaw scenario, in which py, ~ 3, pny ~ 3’ (denoted
“55C”). The agreement with data is not excellent and our estimate of the X?nin, req 18 11.1. The
main contributions to the Xiﬂn’ red come from 6, which deviates by more than 20 and by sin? O3,
about 20 below the current best value. For sin? fa3 ~ 0.45 we do not use the nominal pull, since
the error is non-gaussian. We assess the contribution to the Xr2nin, req directly using the results
from NuFit. The neutrino mass spectrum has normal ordering. Specific to the seesaw realization
are the prediction of a3 in the first octant and of a vanishing m;. The latter result has no
counterpart in any model based on modular invariance so far investigated. The presence of a
vanishing eigenvalue is independent from the choice of the modular parameter 7 and is due to
the fact that the determinant of the combination yVT ngly,, vanishes identically for the chosen
representations. Though we do not have a full analytic proof of such behavior, we have checked
it by means a g-expansion of the modular forms Y; (i = 1,...,5): the determinant is proportional
to a power of ¢ that grows with the order at which we stop the g-expansion of Y;. The vanishing
of the determinant probably reflects one of the many algebraic identities involving lowest weight

modular forms. As a consequence me. =~ 1.3 meV is rather small.
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value (pull)

Case Am3y -10° eV™2 | AmZ, - 10% eV 2 sin? 012 sin? 013 sin? fa3 o/m XIQnin, red
5WC3 7.39 (0) -2.512 (+0.0) 0.312 (4+0.1) | 0.02260 (-0.0) | 0.592 (+0.6) | 1.69 (40.9) 1.1
5WC3p 7.39 (0) 2.525 (40.0) 0.309 (-0.1) 0.0217 (-1.2) | 0.586 (+0.3) | 0.57 (-3.3) 12.6

55C 7.39 (0) 2.522 (-0.1) 0.292 (-1.4) | 0.0228 (+0.5) | 0.449 (-2.0%) | 1.63 (+2.2) | 11.1%

value

Case my-102eV™2 | mo-10%2eV™2 | ms-10% eV 2 a1 /7 | as1/T | Mee 102 eV~ | MO

5WC3 4.94 5.01 0.0942 0.70 0.94 2.7 10

5WC3p 2.82 2.95 5.76 0.38 0.26 2.3 NO

Case mi-102eV™2 | ms-10%2eV™2 | mg-10% eV 2 (@21 —as1)/m | Mee - 102 eV~ | MO

55C 0 0.860 5.02 1.68 0.13 NO

Input parameters

Case Re(7) Im(7) | Re(p2) | Im(p2) | Re(ws) | Im(ps) | a-10% | B-10% | ~-10° | 1/A (eV™H)
5WC3 | -0.01882 | 0.9929 | 0.4260 - 0.8030 - 3.018 3.927 | -0.4484 0.008180
5WC3p | -0.09033 | 0.2190 | 0.4244 - 0.01694 - 3.259 4.311 | -0.8036 | 0.0006303
55C -0.3615 | 0.2412 | 0.04759 - 0.3731 - 3.368 4.411 | -0.8126 | 0.0001639

Table 5.8: Results of the fit to lepton data for the As models. For the 5SC case, the predicted
lightest neutrino mass is m; = 0 and so only one physical Majorana phase exists, which appears
in the combination (a2; — a31) in neutrinoless double beta decay and hence we report only this
combination. We have fixed ¢; = 1 for all three cases. *Actual NuFit 4.0 error on sin?#fa3
measurement (for NO) used, rather than assumed Gaussian error. To simplify the notation, the
factors cos 3 and 1 / sin? /3 have been omitted from «, 3, ~v and A, respectively.

In all these cases we find that the spread of the parameters «, 3, v is less than one order of
magnitude, much less than the one among the charged lepton masses. This statement requires
a specification since, from the matrix of charged lepton Yukawa couplings, eq. (5.24), for «, 3,
~ of the same order and generic VEVs ¢; (i = 1,2,3), there is no evident preferred pattern of
eigenvalues. Indeed, though the best fit values of a, 8, « are of the same order, some amount
of tuning is needed to correctly reproduce the masses. This can be appreciated from eq. (5.25),
the unrealistic case of diagonal ). Indeed, close to our best fit point, the combinations « + 4+,
a— B —2vand a+ B — 27 are of order 1, 0.01 and 10 respectively, revealing a hidden conspiracy

of the input parameters. Our approach and the related results significantly differ from those of
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refs. [189, 190] where several modular invariant models at level 5 have been analysed, under the
assumption that the charged lepton sector be always diagonal [189] or diagonal when depending
on ordinary flavons [190]. We have also looked for a better agreement with data in the seesaw
case by relaxing the requirement of a real (g, p3). At the price of more parameters, we obtain

an better fit to data, though we do not present this example explicitly.

5.5 Chapter Summary

Modular invariance has been proven to offer a promising framework to describe lepton masses
and mixing angles. In minimal models masses, mixing angles and phases are all predicted in
terms of the modulus in addition to a few free parameters. Despite these nice features, neutrinos
and charged leptons typically require different realizations to reproduce the sizeable hierarchy
among electron, muon and tau masses. In most of the existing models RH leptons are assign to
singlets of the modular group to allow a sufficient number of free parameters, tuned to match
the charged lepton masses. We think that this aspect might indicate the need for a different
description, perhaps in terms of other moduli than the one controlling the neutrino sector. In a
simple-minded approach, not aiming at a fundamental description but rather to test the ground
for a more extensive analysis, we have explored alternative realisations of the charged lepton
sector in modular invariant models at levels 4 and 5.

At level 4 we have shown that it is possible to ascribe the charged lepton mass hierarchy to
the weight difference in the right handed sector, similar to what occurs in Froggatt-Nielsen (FN)
models, wherein the role of the weights is played by the charges. At level 5 we have assigned
both RH and LH leptons to irreducible triplets of the finite modular group I's. Moreover we have
shown that also at level 5 the three parameters required to describe charged lepton masses can
be almost within the same order of magnitude, though requiring some degree of tuning. In all
models considered here we do not need a strong hierarchy at the level of Lagrangian parameters
to reproduce charged lepton masses.

We built several models along these lines, analysing neutrino masses coming either from the
Weinberg operator or from a type I seesaw, and we have selected seven scenarios which produce
a reasonable fit to data, four of them at level 4 and three at level 5. We looked for minimal
realisations, in terms of the lowest possible number of free parameters. Among them we also
count the vacuum expectation values of both modulus and flavons, which we varied in order to
maximise the agreement with the data. Three parameters are in a one-to-one relation with the
charged lepton masses. Besides them, all of our scenarios make use of five parameters, always
including an overall scale A, and real and imaginary parts of 7. In these cases we get four
predictions: the absolute neutrino mass scale and all C'P violating phases, which allow one to pin
down the value of mee, relevant to neutrinoless double beta decay. So far few models based on
modular invariance perform better, managing to fit the neutrino data with four free parameters.
In all cases analysed at level 5 and in two cases at level 4 we demanded that the Lagrangian

be C'P conserving. A common feature of level 4 and 5 scenarios is that inverted ordering for
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neutrino masses is predicted when adopting the Weinberg operator and normal ordering when
making use of type I seesaw, with a single exception whose XIQnin, req 18 noOt particularly good.
At level 4 the overall results and predictions are quite stable with respect to the details of the
model, only depending on the choice between the Weinberg operator and the seesaw mechanism.
In both cases the neutrino mass spectrum is nearly degenerate and the lightest neutrino mass is
around 40 meV. At level 5 we get an excellent Xfmn’ req Only when considering neutrino masses
generated by the Weinberg operator, predicting inverted MO. In the seesaw scenario a good fit
requires the introduction of additional parameters. Remarkably we find that our seesaw models
at level 5 predict a massless neutrino.

A weak point of our construction is the correct vacuum selection. We have not attempted to
dynamically select the vacuum configurations in the symmetry breaking sector, while our results,
relying on ordinary flavons besides the modular parameter, require a specific vacuum alignment.
We have treated the VEVs as free parameters, to be varied to match the experimental data. The
VEV pattern suggested by data is peculiar and points to a nontrivial vacuum selection mechanism,
where such an elucidation goes beyond the scope of this chapter. We do not consider our results
conclusive and we think that there is still a considerable room to improve the characterization of
the charged lepton sector. Nevertheless, by exploring some nonstandard possibilities, we hope to

have provided some new element for the identification of a basic framework.
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Chapter 6

Modular Symmetry with Natural

Fermion Masses

In the previous chapter, we studied models of neutrino masses in the framework of modular
symmetry. In particular, we focused on models in which the charged lepton masses were described
by natural parameters. In this chapter, we will consider a further step in this direction, and
describe all fermion (both lepton and quark) masses using natural parameters in the framework

of modular symmetry.

6.1 Introduction

The origin of the three families of quarks and leptons and their extreme range of masses remains
a mystery of particle physics. According to the SM, quarks and leptons come in complete families
that interact identically with the gauge forces, leading to a remarkably successful quantitative
theory describing practically all data at the quantum level. The various quark and lepton masses
are described by having different interaction strengths with the Higgs doublet, also leading to
quark mixing and charge-parity (CP) violating transitions involving strange, bottom and charm
quarks. However, the SM provides no understanding of the pattern of quark and lepton masses,
quark mixing or CP violation.

The discovery of neutrino mass and mixing makes the flavour puzzle hard to ignore, with the
fermion mass hierarchy now spanning at least 12 orders of magnitude, from the neutrino to the
top quark. However, it is not only the fermion mass hierarchy that is unsettling. There are now
28 free parameters in a Majorana-extended SM, of which 22 are associated with flavour, surely
too many for a fundamental theory of nature. While the quark mixing angles are small, the
lepton sector has two large mixing angles 612, 623 and one small mixing angle 613 which is of the
same order of magnitude as the quark Cabibbo mixing angle [199].

One early attempt to understand the quark and lepton mass hierarchies is the FN mechanism
[200]. This approach assumes an additional U(1)py symmetry under which the quarks and

leptons carry various charges and a cut-off scale Mgy is associated with the breaking of the
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U(1)pn symmetry. In the SM the top quark mass of 173 GeV is given by a Yukawa coupling
times the Higgs vacuum expectation value of 246 GeV divided by the square root of two. This
implies a top quark Yukawa coupling close to unity. From this point of view, the top quark
mass is not at all puzzling - it is the other fermion masses associated with much smaller Yukawa
couplings that require explanation. According to FN, the fermions are assigned various U(1)ry
charges and small Yukawa couplings are forbidden at the renormalisable level due to the U(1)py
symmetry. The symmetry is broken by the vacuum expectation value of a new “flavon” field 6,
where 6 is a neutral scalar under the SM but carries one unit of U(1)ry charge. Small effective
Yukawa couplings then originate from non-renormalisable contact operators where the fermion
charges are compensated by powers of 6, leading to suppression by powers of the small ratio
(0) /My (where My acts as a cut-off scale of the contact interaction).

To account for family replication and to address the question of large lepton mixing, theorists
have explored a larger non-Abelian family symmetry, SU(3) s [201], where the three families are
analogous to the three quark colours in quantum chromodynamics (QCD). Many other examples
have been proposed based on subgroups of SU(3)y;, including non-abelian discrete flavour sym-
metry (for reviews see e.g. [6, 12, 167, 168, 170, 171, 202]). Moreover, the leptonic CP violation
phases can be predicted and the precisely measured quark CKM mixing matrix can be accom-
modated if the discrete flavour symmetry is combined with generalized CP symmetry [203-206].
However the main drawback of all such approaches that the flavour symmetry must be broken
down to different subgroups in the neutrino and charged lepton sectors at low energy and this re-
quires flavon fields to obtain vacuum expectation values (VEVs) along specific directions in order
to reproduce phenomenologically viable lepton mixing angles. As a consequence, the scalar po-
tential of discrete flavour symmetry models is rather elaborate, and auxiliary abelian symmetries
are usually needed to forbid dangerous operators.

Recently, modular symmetry has been suggested as the origin of flavour symmetry, with
neutrino masses as complex analytic functions called modular forms [174]. The starting point of
this novel idea is that non-Abelian discrete family symmetries may arise from superstring theory
in compactified extra dimensions, as a finite subgroup of the modular symmetry of such theories
(i.e. the symmetry associated with the non-unique choice of basis vectors spanning a given extra-
dimensional lattice). It follows that the 4D effective Lagrangian must respect modular symmetry.
This implies that Yukawa couplings may be modular forms. So if the leptons transform as triplets
under some finite modular symmetry, then the Yukawa couplings must transform nontrivially
under the modular symmetry and they are modular forms which are holomorphic functions of
a complex modulus field 7 [174]. At a stroke, this removes the need for flavon fields and ad
hoc vacuum alignments to break the family symmetry, and potentially greatly simplifies the
particle content of the theory. Moreover, all higher-dimensional operators in the superpotential
are completely determined by modular invariance if SUSY is exact. Models with modular flavour
symmetry can be highly predictive; the neutrino masses and mixing parameters can be predicted
in terms of few input parameters, although the predictive power of this framework may be reduced

by the Kéhler potential which is less constrained by modular symmetry [207].
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The finite modular groups I's = S5 [180, 181, 194, 208], I's = A4 [174, 180-185, 191, 209, 210],
Iy =S, [4, 186, 187, 210, 211] and I's = A5 [4, 189, 190] have been considered. For example,
simple A4 modular models can reproduce the measured neutrino masses and mixing angles[174,
183, 185]. The quark masses and mixing angles may also be included together with leptons in
an A4 modular invariant model [192]. The modular invariance approach has been extended to
include odd weight modular forms which can be decomposed into irreducible representations of
the the homogeneous finite modular group I'y [195], and the modular symmetry I'; = 7" has
been discussed, including the new possibility of texture zeroes [212]. Also modular symmetry may
be combined with generalized CP symmetry, where the modulus transforms as 7 — —7* under
the CP transformation [155, 175, 176, 213, 214]. The formalism of the single modulus has been
generalized to the case of a direct product of multiple moduli [178, 188], which is motivated by the
additional extra dimensions in superstring theory, assuming toroidal compactification. Indeed,
from a top-down perspective, modular symmetry naturally appears in string constructions [176,
177, 179, 215, 216].

It has been realised that, if the VEV of the modulus 7 takes some special value, a residual
subgroup of the finite modular symmetry group I'y would be preserved. The phenomenological
implications of the residual modular symmetry have been discussed in the context of modular
Ay [184, 210], Sy [187, 210] and As [189] symmetries. If the modular symmetry is broken down
to a residual Z3 (or Zs) subgroup in charged lepton sector and to a Z subgroup in the neutrino
sector, the trimaximal TM1 and TM2 mixing patterns can be obtained [184, 187].

In this chapter, we show how fermion mass hierarchies can be reproduced in the framework
of modular symmetry. The mechanism is analogous to the FN mechanism, but without requiring
any Abelian symmetry to be introduced, nor any SM singlet flavon to break it. The modular
weights of fermion fields play the role of FN charges, and a SM singlet field ¢ with non-zero
modular weight (called a “weighton”) plays the role of a flavon. We illustrate the mechanism
with modular level 3 (A4) models of quark and lepton (including neutrino) masses and mixing,
using a single modulus field 7 and where the charged fermion mass hierarchies originate from
a single weighton ¢. We discuss two such viable models in some detail, both numerically and
analytically, showing how both fermion mass and mixing hierarchies emerge from the modular
symmetry. The class of modular level 3 (with even weight modular forms) examples of the
mechanism we present here is by no means exhaustive; the new mechanism may be be applied
to other levels and choices of weights, and to models with any number of moduli fields and
weightons.

We also remark that the approach here differs from an early work based on U(1)py broken
by a flavon 0, where all fields carried both FN charge and modular weight [154]. In our approach,
the Yukawa couplings are modular forms, which means that the modular weights do not have to
sum to zero, and are triplets under the A4 modular symmetry, which constrains the rows of the
Yukawa matrices. We also emphasise that we do not have any U(1)px symmetry, nor any flavon
f to break such a symmetry. Our weighton ¢ is an Ay singlet which does not break any flavour

symmetry and is therefore not a flavon.
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6.2 Modular Symmetry

The modular group I is the group of linear fraction transformations which acts on the complex

modulus 7 in the upper half complex plane as follow,
with a,b,c,d€ Z, ad—bc=1, Im7>0. (6.1)

We note that the map

ar +0b a b
H

(6.2)
cTt+d d

is an isomorphism from the modular group to the projective matrix group PSL(2,Z) = SL(2,Z)/{*I},
where SL(2,Z) is the group of two-by-two matrices with integer entries and determinant equal

to one.

The modular group I' can be generated by two generators S and T'

1
ST ——, T:7—71+1, (6.3)
T

which are represented by the following two matrices of PSL(2,2Z),

We can check that the generators S and T obey the relations,
S% = (ST = (TS)*=1. (6.5)

The principal congruence subgroup of level N is the subgroup
b
I'(N) = € SL(2,Z2), b=c=0(mod N),a=d=1(mod N) ; , (6.6)

which is an infinite normal subgroup of SL(2,Z). It is easy to see that TV is an element of I'(V).
The projective principal congruence subgroup is defined as T'(N) = T'(N)/{£I} for N = 1,2.
For the values of N > 3, we have I'(INV) = I'(IV) because I'(V) doesn’t contain the element —I.
The quotient group I'y = I'/T(N) is the finite modular group, and it can be obtained by further
imposing the condition 7%V = 1 besides those in Eq. (6.5).

A crucial element of the modular invariance approach is the modular form f(7) of weight &

and level N. The modular form f(7) is a holomorphic function of the complex modulus 7 and it
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is required to transform under the action of T'(IV) as follows,

at+b a b
f<CT+d>:(CT+d)kf(T) for v o cT(N). (6.7)

The modular forms of weight k£ and level IV span a linear space of finite dimension. It is always
possible to choose a basis in this linear space such that the modular forms can be arranged into
some modular multiplets fr = (f1(7), f2(7), ...)T which transform as irreducible representation r

of the finite modular group I'y for even k [174, 195], i.e.

fe(yr) = (er+ d)Fpe(7) fe(r) for V€T, (6.8)

where 7 is the representative element of the coset yI'(V) in 'y, and pr(7y) is the representation

matrix of the element v in the irreducible representation r.

The superpotential W (®;,7) can be expanded in power series of the supermultiplets ®7,
W(@rn,7) =Y Y. 1,(r) 1.1, , (6.9)
n

where Y7, 7, is a modular multiplet of weight ky and it transforms in the representation py of
FN?

et +d (6.10)

The requirement of modular invariance of the superpotential implies
ky=k]1+...+k[n, Py @pr, ®@...®p1, 1. (6.11)

where the supermultiplet ®;, is assumed to transform in a representation py, of I'y, with a

modular weight —kz,, and so on for the other supermultiplets.

6.3 Modular Forms of I's = A, (Level 3)

The modular group I'(3) has been extensively studied in the literature [174, 180-184, 191, 209,
210]. In the present work we shall adopt the same convention as [174, 185, 210]. The finite
modular group I3 is isomorphic to A4 which is the symmetry group of the tetrahedron. It contains
twelve elements and it is the smallest non-abelian finite group which admits an irreducible three-

dimensional representation. The A4 group has three one-dimensional representations 1, 1/, 1”
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and a three-dimensional representation 3. In the singlet representations, we have

= ]_, T:LL)Q, (612)

For the representation 3, we will choose a basis in which the generator T is diagonal. The explicit

forms of S and T are

1 2 2 1 0 0
1
S=§ 2 -1 21|, T=|o w? of, (6.13)
2 2 1 0 0 w

with w = e?™/3 = —1/2 4 iy/3/2. The basic multiplication rule is
33=19131"935334, (6.14)

where the subscripts S and A denotes symmetric and antisymmetric combinations respectively.
If we have two triplets a = (a1, ag,a3) ~ 3 and 8 = (1, B2, 33) ~ 3, we can obtain the following

irreducible representations from their product,

20181 — aafz — azfa, 20303 — a1 o — 21, 20282 — a1 B3 — a3 ffr)

(ap)

(ap)

(aB)1r = azfr + 183 + azfi,

(aB)ss = (

(aB)3, = (afiz3 — agfa, a1 B2 — aafi, af — 1 f3) - (6.15)

The linear space of the modular forms of integral weight £ and level N = 3 has dimension
k + 1 [174]. The modular space Moy (I'(3)) can be constructed from the Dedekind eta-function
n(7) which is defined as

n(r) =g/ [[a-qv), q=&"". (6.16)
n=1
The Dedekind eta-function 7(7) satisfies the following identities
n(r+1)=e™n(r),  n(=1/7) = V=it (7). (6.17)

There are only three linearly independent modular forms of weight 2 and level 3, which are
denoted as Y;(7) with i = 1,2,3. We can arrange the three modular functions into a vector

Y3(2) =W, Ys, Y3)T transforming as a triplet 3 of A4. The modular forms Y; can be expressed in
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terms of 7(7) and its derivative as follow [174]:

Vi) = - W'(r/3)  w((r+1)/3)  1'((r+2)/3) 2777’(37)}
2r [ n(v/3)  n((r+1)/3)  n(r+2)/3)  a@Br) |’
V() = — n'(7/3) | (T +1)/3) (7 +2)/3)]
™ L n(T/3) n(r+10/3) " al(r+2)/3) ]
Ya(r) = — n'(r/3)  n (T +1)/3) (T +2)/3)]
w Ln(r/3) Tl +1)/3) n((r+2)/3) ]
The g-expansions of the triplet modular forms V% are given by
Y (1) 1+ 12q + 36¢> + 12¢® + 84¢* + 72¢° + . ..
V3 = [ va(r) | = | =6412(1 + g + 842 + 18¢7 + 14¢* + ..
Ya(7) —18¢*/3(1 +2¢ +5¢> +4¢° +8¢* +...)

They satisfy the constraint [174]

YY) = VE +2mYs = 0.

(6.18)

(6.19)

(6.20)

Multiplets of higher weight modular forms can be constructed from the tensor products of Y3(2).

Using the A4 contraction 3 ®3 =141 & 1” @ 35 ® 34, we can obtain five independent

weight 4 modular forms,

vV =¥2 4275 ~ 1,
Y1(,4) =Y{+21Yo ~ 17,

Y1(4) Y12 _ )/'2}/'3
Y3(4) = Y2(4) = Y32 -, ~ 3.
Y3(4) }/22 _ }/IYS

(6.21)

Similarly there are seven modular forms of weight 6, which can be decomposed as 1 ® 3 @ 3

109



Ag311'17"11 3| 1
kr|1j1j1(1(11] 0

Table 6.1: The Feruglio model of leptons, where each supermultiplet has a modular weight —kj.

under Ay [174],
Y=Y 1YY - svinYs ~ 1,

oV Y+ 2V1YaYs
Vi = |9 | = | vevar2pys |
oy Y2Y3 4 2Y3Ys (6.22)
Y% Vi 4+ 21YaYy
Yarr = [ v | = | vévi+2viys
Ya(?z Y2Ys 4 2Y5Y)

It has been realised that, if the VEV of the modulus 7 takes some special value, a residual
subgroup of the finite modular symmetry group I's would be preserved. Thus, the fixed points
75 =i, s = (—1+iV/3)/2, 775 = (1+iv/3)/2, 77 = iocc in the fundamental domain are invariant
under modular transformations, and there are many other examples in the upper half complex
plane [210]. For example, 7p = ico implies Y3>) o< (1,0,0)7, 3" o (1,0,0)", v{9 o (1,0,0)7,

Yap o< (0,0,0)7.

6.4 Models with I's = A, (Level 3)

6.4.1 The Feruglio Model of Leptons

In this subsection we review an example of a model of lepton masses and mixing based on Ay
modular symmetry, first introduced as example 3 in [174] and later reanalysed in the light of
current data in [185]. In this example, there is no flavon field other than the modulus 7. The
Higgs doublets H,, and Hy are assumed to transform as 1 under A4 and their modular weights
k1, are vanishing. The neutrino masses are assumed arise from the type I seesaw mechanism.
In this example [174], the three generations of LH lepton doublets L = (L1, Lo, L3)” and of the
CP conjugated RH neutrino N¢ = (Nf,NQC,N:,f)T are organised into two triplets 3 of A4 with
modular weights denoted as k7, and kpy, which will be fixed to take the values of unity shown in
Table 6.1.

When the three CP conjugated RH charged leptons ef,; are assigned to three different
singlets 1/, 1” and 1 of A4 as in previous works [174, 180-184, 191], their modular weights could
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be identical, which will be fixed to take the values of unity as shown in Table 6.1, and only the

lowest weight modular form YS(Q) is necessary in the minimal model.

Then the superpotential for the charged lepton masses takes the form

W, = ae§(LYA?)1 Hy + Be§ (LY Hy + ve§(LYS?) 10 Hy
= ae{(L1Y1 + LoYs + L3Y2)Hy + Bes(L3Ys + L1Ya + LoY1)Hy
+ ’Y€§(L2YQ + LY + L1Y3)Hd. (6.23)

The invariance of W, under modular transformations implies the following relations for the

weights,
ke, +kr =2,
ke, + kL =2, (6.24)
key +kr =2,
which implies
ke, =key = kes =2 — kg, (6.25)

where all values are fixed to be unity as shown in Table 6.1. This is exactly the case considered in
the literature [174, 180-184, 191]. We can straightforwardly read out the charged lepton Yukawa

matrix

OéYl Ong OéYé

Ye=| 8, /Y1 BYs (6.26)

vY3 vYs Y1

For example, 70 = 00 implies Y3(2) x (1,0, O)T, leads to a diagonal charged lepton Yukawa matrix
with me : my, : m; = a : B :~. The charged lepton mass hierarchies are accounted for in the

Feruglio model by tuning the parameters to be a < 8 < 7.

If neutrino masses are generated through the type-I seesaw mechanism, for the triplet as-
signments of both RH neutrinos N¢ and LH lepton doublets L, the most general form of the

superpotential in the neutrino sector is
Wy =g (N LHufn (Y))y + A(NNfar (V) (6.27)

where fy(Y) and fy(Y) are generic functions of the modular forms Y (7). Motivated by the
principle of minimality, we consider the following example: fy (V) o Y3(2) and fi7 (V) x Y3(2),
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which implies,

W, = g1((N° L)asYa ™)1 Hy + g2((N° )3, Yo" )1 Hy + A((NN®)5, Y™
= g1[(2NfL1 — N5Ls — N§L3)Y1 + (2N§L3 — NfLy — N5L1)Y3
+ (2N5Ly — N§Ly — N{L3)Ya|Hy + g2 [(N5Ls — N§L2)Y1 + (Nf Ly — N5L1)Y3
+ (N§Ly — N{L3)Ya] Hy + 2A[(NENY — NSNS)Y: + (NSNS — NENS)Y3
+ (N§N§ — N{N$)Ys] . (6.28)

The modular weights of N¢ and L correspond to k;, = ky = 1 as shown in Table 6.1.
We find Mp and My take the following form

2Y1 -Ys -V
My=|-v3; 2V, -Y | A,

Y, -1 23

2911 (91 +92)Ys (=91 —g2)Y2
Mp = [ (—g1 — g2)Y3 291> (=1 +92)Y1 | Vu- (6.29)

(91 +92)Y2 (g1 — 921 291Y3

The light neutrino mass matrix is given by the seesaw formula,
M, = —MhMy'Mp . (6.30)

This is the original Feruglio model introduced as example 3 in [174], corresponding to the case of
D in [185], giving an excellent fit to current experimental data. The best fit (allowed range) of
the modulus for Djg in [185] is: Re (7) = 0.0386(0.0307 ~ 0.1175), Im (7) = 2.230(1.996 ~ 2.50),
which approximates the fixed point case 7p = i0co, since the real part is much less than the

imaginary part.

6.4.2 A Natural Model of Charged Leptons

In this subsection we show how Feruglio’s A4 modular model of charged leptons can be recast
in natural form by introducing a single weighton. The neutrino sector will remain unchanged to
leading order. The resulting model of leptons shown in Table 6.2 now involves a single “weighton”
¢ which is defined to be a SM and Ay singlet field with k4 = 1 (i.e. weight —1). We show how
such a model can generate a natural charged lepton mass hierarchy. In the next subsection we
extend the idea to the quark sector, thereby explaining all charged fermion masses naturally.
The three RH charged leptons €5 , ; are assigned to three different singlets 1, 1” and 1 of A4 as

before but now their their modular weights are not identical, and correspond to ke¢ , = 0,—1, -3
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Ag317(1"11 3] 1 |1
kr|1j0|—=1|-3| 1| 0

—_

Table 6.2: A natural A4 model of leptons with a weighton ¢. Note that each supermultiplet has
a modular weight —kj.

(i.e. weights 0,1,3) such that powers of ¢ with k;, = 1 are required compensate the terms in
the previous model, with the combinations e§¢, e5¢?, e§¢* each having combined weights of unity
as before. The weighton ¢ is assumed to develop a vacuum expectation value (vev) so that the

corresponding terms are suppressed by powers of
o= (6.31)

where My, is a dimensionful cut-off flavour scale. This generates the charged lepton mass hier-
archy naturally, with m;, . o b, ¢, ¢*, with only the lowest weight modular form Y?,@) being
necessary as before.

After the weighton develops its vev, the superpotential for the charged lepton masses takes

the form

W, = aee§ ¢ (LYaD) 1 Hy + Bees G (LYy ™)1 Hy + vee§(LYy > )10 Hy
= 0§ (L1 Y + LoYs + L3Ya)Hy + Bee5d*(L3Ys + L1Ya 4+ LoY1)Hy
+ ’yeeg(z;(LQYQ + L3Y1 + L1Y3)Hy, (6.32)

which gives a charged lepton Yukawa matrix similar to Eq.6.26, except that it involves powers of

QE controlling the hierarchies,

ae¢~54 Yy OCeQEZL Y3 O‘eé4 Yo

Yve = 56&2}/2 ﬁe@gzyi 56&2}/3 (6.33)

Ve QZ;YE} 7695}/2 Ve ¢~)Yl

For example, 70 = {00 implies Y3(2) x (1,0, O)T7 leading to a diagonal and naturally hierarchical

charged lepton Yukawa matrix with me : m, : m, = aeq~54 : Be¢~>2 : ’ye& The empirically observed
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charged lepton mass ratios m,/m,, = 1/207 and m,,/m, = 1/17 suggest that we fix ¢ ~ 1/15 to
account for the charged lepton mass hierarchy, with the mass ratios m./m,, ~ $? and my/ms ~ &,
assuming order one coefficients a., B¢, Ve ~ 1. The small parameter (5 ~ 1/15 defined to to be the

ratio of scales in Eq.6.31 now provides an explanation for the charged lepton mass hierarchies.

However now there will be additional terms corresponding to higher weight modular forms,
Y354), compensated by extra powers of weighton fields ¢, which will give corrections to the charged

lepton superpotential,

AW, = ale$ ¢ (LY V)1 Hy + BLesd (LYY )y Hy + +Led? (LYSY) 1 Hy
= alef " (VY + LoYy® + Lo¥y V) Hy + Blesd" (LaYy" + LaYy ) + Lov)) H,
e Loy, + LV + Ly V) Hy (6.34)

where from Eq.6.21 the weight 4 Yukawa couplings are given in terms of the weight 2 Yukawa
couplings,
Y‘1(4):Y’12_Y2Y'3, Y'2(4):Yj32_Y1Y’2, Y3<4):Y22—Y1YE),. (635)

This yields the additive correction to the charged lepton mass matrix in Eq.6.33,
R NS FR T
AY, = | 8o gt gty (6.36)

S C R S AT

where o, 5., ~. are new free complex coefficients (also assumed to be of order unity) while the
weight 4 Yukawa couplings are given in Eq.6.35. For example, 77 = t00 implies Y?,(2) x (1,0, O)T,
implies that the higher order corrections also take the form of a diagonal charged lepton Yukawa
matrix. However these are just the leading corrections. There will also be further corrections
from even higher weight modular forms, such as Y3(6), compensated by extra powers of weighton
fields ¢, which will give further corrections to the charged lepton Yukawa matrix. However, since
(;NS ~ 1/15, we find all such corrections to be very suppressed, and have a negligible effect on the

numerical results.

Since the modular weights of L and N€¢ are unchanged, and their representations are the
same, we expect the seesaw neutrino matrices to be the same as in the original model at lowest
order, where no weighton field ¢ appears and fy (V) o Y3(2) and fir (V) x Y3(2) as in Eq.6.28.

Thus the seesaw matrices in this model are exactly the same as in Eq.6.29. However now there
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Q| d§ |ds|ds| u§ | u§ |uS|Hyald
A3 1 17|11V | 17 |11 )1
kr1100,2,4/—2|-3/5,3,1|—-1,2,4/-3| 0 |1

Table 6.3: Natural A4 models of quarks with a weighton ¢. All 27 combinations of modular
weights are considered in the text. Note that each supermultiplet has a modular weight —k;.

will higher order corrections involving weightons, the leading correction being suppressed by @2,

AW, = gl d* (N L)3 Yo" )1 Hy + gh*(N© )3, Ya )1 Ho + N G((N°N)5, Yy )
= i *[(2N{Ly — N§Ls — N§Ly)Y,\ "V + (2N§L3 — N{Ly — N§Ly)Yy "
+ (2NSLy — N§Ly — N{Ls)Y, "] H,
+ 958 [(NSLs — N§Lo)Y,\" + (NLy — N§Ly)Yy" + (N§Ly — NiLs)Yy V| H,
+ 2N G [(NENF — N§N§)YY + (NSNS — NENS)YSY + (NSNS — NEN§)YSY ], (6.37)

which is of the same form as in Eq.6.28, yielding additive corrections to the seesaw matrices of
the same form as in Eq.6.29 but suppressed by gz~52 and with the primed Yukawa couplings given
by Eq.6.35. As before, since ¢ ~ 1/15, these corrections are expected to be about 0.5%, so in the
neutrino sector we can safely ignore these corrections and use the same results as before. Thus we
expect that the modulus best fit to point to be the same value quoted as before, approximating

the fixed point case 7p = i00.

6.4.3 Natural Models of Quarks

Quarks have been considered with A4 modular symmetry in [192]. However there has been no
attempt to explain the quark mass hierarchy. Using similar ideas developed in the previous
section for the charged leptons, we now consider models for the down type quark Yukawa matrix
with mg : mg : my ~ gz~54 : &3 : ¢~>, which turns out to be a good description of the down quark mass
hierarchies as we shall see. As in the charged lepton sector, the weighton is assumed to develop
a vacuum expectation value (vev) so that the corresponding terms are suppressed by powers of
b= (¢)/M 11, where My is a dimensionful cut-off flavour scale, which we assume to be the same
scale as for the charged leptons.

We introduce the quark modular weights in Table 6.3 which can achieve this, using the same
weighton ¢ as in the charged lepton sector. We assign the quark doublets @) to a triplet of Ay
with kg = 1 analogous to the lepton doublets. The three RH down type quarks dj , ; are assigned
to three different singlets 1/, 1” and 1 of A4, analogous to how the charged lepton Yukawa matrix

was constructed.

Unlike in the charged lepton sector, here we allow higher weight modular forms in the quark
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sector, which will prove necessary to describe quark mixing. We therefore have more freedom
in assigning various modular weights to d§,; such that powers of ¢ with ky = 1 are required
compensate the terms, with the combmatlons de, d5¢°, d§¢* appearing, analogous to the charged

lepton assignments. This generates the down type quark mass hierarchy naturally, with my, 5 4 o

$, 9%, ¢".

After the weighton develops its VEV, the superpotential for the down type quark masses with
kqge . = 0,—2,—3 takes the form

3,2,1

Wy = aqds*(QY, )1Hd + Bads ¢3(QY Ny Hy + yad ¢(QY ")y Hy
= aqdip (Q1Y1 + QY3 + Q3Y2)Hy + B4d5¢° (Q3Ys + Q1Yo + QoY1) Hy
+ 7ad50(Q2Ya + QsY1 + Q1Y3)Hy, (6.38)

which gives a similar form of Yukawa matrix for the down type quarks as for the charged leptons

in Eq.6.33, albeit the second row being more suppressed than before,

aad* YT d'Ys  agdtYs

vi= | Bsd*Ya Bap* V1 BadYs (6.39)

YadYs YadYa YadY1

where without loss of generality we may take ag, 84,7u to be real. However now there will be
additional terms corresponding to higher weight modular forms, Ygf4), compensated by extra
powers of weighton fields ¢, which will give corrections to the down type quark superpotential,
analogous to the higher order corrections to the charged lepton superpotential in Eq.6.34. Since
these corrections will yield a matrix with a similar structure to the lowest order matrix but with

each element having an additional correction be suppressed by a relative power of $2. This yields
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the additive correction to the down type quark mass matrix in Eq.6.39,

aélq;G Y1(4) aZZq;G }/':))(4)

AY, = | By¢° Y2(4) B46° Y1(4)

7&&3 Y3(4) %/1&3 Y2(4)

Olélﬁz;G )/'2(4)

621 (55}/3(4)

7&‘733 Y1(4)

(6.40)

where o), 3,7}, are new free complex coefficients (also assumed to be of order unity) while the

weight 4 Yukawa couplings are given in Eq.6.35.

Other alternatives include kdg — 2,—2,-3:

gt Yy g Vs

v = | Bad’Ya Bad* Y1

’Ydéygw ’Yd<73Y2(4)

Also we consider kg, =4,-2,-3:

IIT _
Y, =

agd* v agd* Vs
BadYa B40°Y:

7+ (6 7+ (6 7y (6 7+ (6
WOVs] Vi desd +allovy)

aqd* Ya

Bad’Y3

’Yd43Y1(4)

agdt Yz
BadY3

7+ (6 7+ (6
%Il ¢Y1(,I) + 7£[¢Y1(,1)1

(6.41)

(6.42)

It is worth noting that we have achieved a single power of suppression qg for the third down

type family in several ways, by choosing an even weight for kgg = 0,2,4, ... so that dgé@ is also
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even and may be compensated by a Yukawa coupling modular form of weight 2,4, 6, ..., leading
to the three possibilities for the third row of the down type Yukawa matrix as above (with more
possibilities at even higher weight). On the other hand higher powers of suppression such as <z~53, <z~54
for the first two families may only be achieved at lowest order by a Yukawa coupling modular

form of weight 2.

Turning to the up type quark sector, we first consider my : me : my ~ Pt ¢2 1, assuming
b~ 1 /15 as before. In order to achieve this, the up type quarks are assigned the modular weights
as shown in Table 6.3. The three RH up type quarks u§ , ; are assigned to three different singlets
1’, 1”7 and 1 of A4. In this case the up type quark mass hierarchy is much stronger and the top
quark Yukawa coupling is of order unity, which suggests that it should be unsuppressed without
any weighton field being involved. Moreover, as shown in [192], the lowest weight modular forms
Y3(2) are not sufficient to describe quark mixing so here we shall utilise weight 6 modular form Y3(6)
for only the third family (whereas in in [192] weight 6 modular forms were assumed for all three

(2)

families of quarks). If we had used the lowest weight modular forms Y3 for all three families then
the up quark Yukawa matrix would have rows proportional to that of the down quark Yukawa
matrix, leading to zero quark mixing angles, so we need to use higher weight modular forms for
the up Yukawa matrix, at least for the second or third families, and here we use weight 6 only for

the third family. This motivates the assignments k,c_ = = 5,—1,—3 such that the combinations

U321
Qus, Quse?, Qus¢* imply the modular forms Y3( ), Y3(2), Y3(2), respectively, where powers of ¢
with kg = 1 are required. Actually there are two independent weight 6 modular forms Yg(g) and

Y3( I)I and both must be considered as contributing independently.

Although the above assignments satisfies our requirements, we need to check that these are
indeed the leading order terms. Firstly Qu§ has weight —6 so the leading term is Y3(6) , with the
higher order correction Qu§¢2 having weight —8 and requiring Y3(8) (the lower weight modular
forms Y3(2) and Y3(4) are forbidden at all orders). Secondly, although Qu$§ has weight zero,
this term is forbidden since it is an A4 triplet and Y3(0) does not exist. Therefore the leading
allowed term is Qu§¢2 with weight —2, compensated by Y3(2), with the higher order term Qu§¢4

with weight —4 compensated by Y3(4)

being suppressed. Thirdly Qu{ has weight 2 and cannot
be compensated by a modular form with positive weight. While Qu{#? has weight zero it is
forbidden since it is an A4 triplet and triplet modular forms cannot have zero weight. Therefore
the leading term is Qu$¢* with weight —2 which is compensated by Y.f), with the higher order

(4)

correction Qu§@® having weight —4 compensated by Y3 being suppressed.

After the weighton develops its vev, the leading order superpotential for the up type quark

masses takes the form

Wo = 0uu§ 31 (QVa )1 Hu + Buti§d*(QYa )1 Hu + You§(QY4 ) )1 Hu + s (QYy )1 Ha
= Oéuui<l~54(Q1Y1 + Q2Y3 + Q3Y2)H + But§d*(Q3Ys + Q1Ya + QoY1) H,
+ 71{“3(Q2 I )+ Q3Y(,6) + Q1Y 1 DV H + Q2 YZ(I)I + QsY; ?I + 1Yy H)
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Thus kyg, | =5,—1,—3 leads to the up quark Yukawa matrix,

1
au(&l Y; au$4 Y3 aué4 Yy

YI = Bu@zzyé /Bu¢~52yl 6u§52}/3 (6.43)

6 6 6 6 6 6
%ILY?)(,I) + ’Y{LIY:’)(,I)I 753/2(,1) + %5[5/2(,1)1 %ILY1(,1) + %{]Yl(,l)l

where the weight 6 Yukawa couplings are given in Eq.6.22. This is consistent with a diagonal
and naturally hierarchical up type quark Yukawa matrix with my, : me : my ~ ¢* : ¢% : 1, where
without loss of generality we may take cu,, B4, V. to be real, while in general v/ can be complex.

Before performing a numerical study of this case, we recall that, 7 = 700 implies Y3(2) o
(1,0,0)", Y3 x (1,0,0)", Y39 o (1,0,0)7, Y39, o (0,0,0)" so near this limit Yy p; will not
contribute. However we need to go away from this limit to explain quark mixing angles. There
is a potential problem with the Yukawa structures in Eqs.6.39,6.43 since analytically (ignoring
third family mixing angles) we expect 0‘112 ~ 0%y ~ Y3/Y1, so the physical Cabibbo angle 615 ~

04, — 69, ~ 0 due to cancellation.

To avoid this problem we also consider an alternative model with the assignments kyg, =

5,2, -3 (i.e. only differing by the assignment k,g = 2) such that the combinations Qu$, Qu§, Quf o

4), Y3(2), respectively, where powers of ¢ with ks = 1 are re-

imply the modular forms Y3(6) , Y3(
quired. This may avoid the cancellation problem of the Cabibbo angle, since now 67, ~ Y2(4) / Y1(4)
is different from 0?2 ~ Y5/Y1, but is slightly less natural, being consistent with a diagonal and
naturally hierarchical up type quark Yukawa matrix with m, : m¢ @ my ~ &4 : qg : 1. Thus

k = 5,2, —3 leads to:

ug o1
au¢4 Yy au¢4 Y3 au¢4 Yo

yil = BudYy" Budy BudYs? (6.44)

6 6 6 6 6 6
71{}/3(,1) + ’Yil}/},(,l)l 71{Y2(,I) + 71{IY2(,I)I 7£Y1(,I) + %Itlyl(,l)l

The analysis of the alternative model using the up quark Yukawa matrix in Eq.6.44 is very similar
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to that using the up quark Yukawa matrix in Eq.6.43, but we expect that the Cabibbo angle will

be reproduced more easily, with the down quark Yukawa matrix in Eq.6.39 being the same in
both cases.

We also consider a third model with the assignments kg, = 5,4, -3 (i.e. differing by the

assignment kg = 4) such that the combinations Qu§, Quso, Quf ¢* imply the modular forms Y3(6),

Y3(6), Y3(2), respectively, where powers of ¢ with ks = 1 are required. Thus with kyg,, = 5,4, -3
we have:
au¢~54 Yy au§g4 Y3 O‘ua% Yy
I 15y (6) 11 5y(6) 15y (6) 11 5y(6) 15y (6) 11 5y(6)
y = | Bud 2.1 + 5. ¢ 211 B¢ 1,1 + B¢ 1,11 B¢ 3.1 + B¢ 3,11 (6.45)
6 6 6 6 6 6
T YB(,I) +! Y3(,I)I T Y2(,I) +! Y2(,I)I %ILY1(,1) +! Y1(,1)1

All the above three possibilities for the up quark Yukawa matrices have the third family
controlled by a weight 6 modular form, resulting from the choice k,¢ = 5. We now consider third
family modular forms of weight 4 corresponding to the choice kyg = 3. This would lead to three

more possibilities as shown below.

With k

u§ oy, = 3,—1,—3 we have:

YT aud'Ys  adtYs

YIV = | Bud®Y2  BudY1  Bud?Yi (6.46)

’YuY3(4) ’YuY2(4) ’Yqu(4)
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With Ky, = 3,2,—3 we have:

au$4 Y; aué4 Y3 au$4 Y,
YV = | BtV YV Budvy? (6.47)

,yuyg(4) ’YuY2(4) ’YuY1(4)

With kug&l = 3,4, —3 we have:
'Yy a, Vs a, o' Y
vV — | BLoYSS) 4+ gl BLeYS) 4 plgY(S)  BLoYSY) 4 gLV (6.48)
YD Y Y@

Finally we also consider third family modular forms of weight 2 corresponding to the choice

kug = 1. This would lead to three final possibilities as shown below.

With kg, =1,—1, -3 we have:

YT ad'Ys aetYs
YV = | Bud?Ya  Bud®Vi  Bud?Yi (6.49)

Yu Y3 Yu Yo Yu Y;
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With kg, =1,2,—3 we have:

'Yl aud'Ys audtYs
vV — | gy g pugvY (6.50)

Yu YE’) Yu Yé Yu Yl

With ku%,m = 1,4, —3 we have:
¢t Y ' Vs ¢! Ys
yIX = | 8oV + 81, Loy ) + slavS,  pLevY + oYy, (6.51)
YuY3 YuY2 YY1

Note that there is only one possibility for the first family of up quarks since the required

suppression ¢* can only be achieved by modular forms of weight 2.

In the the next section we perform a numerical analysis of our models. First we check the
lepton sector results, based on the matrices in Eqs.6.29,6.33, then go on to the quark sector using
one of the Yukawa matrices in Eq.6.39,6.41 or 6.42 combined with one of Eq.6.43-6.51. Without
loss of generality we take cie gy, Be,d,us Ve,d,u t0 be real, with Bi, %5 real while 81/, 751 are complex.

We allow gg to be free but find that the numerical fits prefer <;~5 ~ 1/15, as expected.

6.5 Numerical and Analytical Results

6.5.1 Input Data and Global Analysis

The charged fermion mass matrices are given by

Ud

V2

VH

7

Ud

V2

M. =Y, = Y. cos 8 Mg =Yy :chosﬁ%,
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where the ratio of Higgs VEVs is tan 8 = v, /vg and the SM Higgs VEV is vy = {/v2 + vfl = 246
GeV, and Yg, Yy, Y, represent the Yukawa matrices predicted by the models, namely Eq.6.33, for
the charged lepton Yukawa matrix, Eqs.6.39,6.41 or 6.42 for the down quark Yukawa matrix and
Eqs.6.43-6.51 for the up quark Yukawa matrix.

The scale of Yukawa couplings in this model is given by the string compactification scale, and
hence we use couplings calculated at the GUT scale from a minimal SUSY breaking scenario,
with tan 8 = 5, as done in [192, 197, 217]. Similarly, we use the CKM parameters also at this
scale as derived by the same authors. For the charged lepton and down type Yukawa masses, the

physical particle masses are given by mMS3M = yMSSMy,, /\/2 for i = (e, u, 7,d, s,b), and for the

7

up quarks, mj\/[ SSM — yJM SSMy,., /N2, for j = (u,c,t). The numerical eigenvalues calculated from
our input Yukawa matrices Y, Yy, Y, are matched to y™S5M . Below we list §; yZM SSM o5 8

and g, = yM95M 1

j sin 8 for tan 8 = 5, together with the quark mixing parameters,

Je = (1.97 £ 0.0236) x 107, ¢, = (4.16 £0.0497) x 107*, ¢, = (7.07 £ 0.0727) x 1073,
Jqg = (4.814+1.06) x 1075, g, =(9.524+1.03) x107°,  §, = (6.95+0.175) x 1073,

Ju=(2924+1.81) x 1075, . = (1.4340.100) x 1072,  § =0.534+0.0341

6%, = 13.027° + 0.0814°, 63, = 2.054° £ 0.384°, 67, = 0.1802° + 0.0281° ,

07 =69.21° £ 6.19°.
(6.53)
For the neutrino parameters, we use the data from NuFit 4.1 (2019) [198], without Super-
Kamiokande (SK) atmospheric data, which we summarise below for Normal Ordering (NO),

where we write eorrs in brackets, which correspond to the average of positive and negative 1o

deviations.
sin? f1o = 0.310(13), sin®613 = 0.02241(66), sin® o3 = 0.558(26),
— 2L —739(21), ——3L_ =2525(31), §/m =1.23(18
105 oV? @D, T eve (31) /™ (18)

For our numerical study, we follow a procedure similar to that described in [4], but here
generalised to the quark sector, to find the minimum XIQnin,Q contribution from the CKM and
quark Yukawa pulls. We consider all 27 combinations of YdI Yo, ... ,Ydl 1 YuI X restricting 7 to be
within a range which is acceptable to the lepton sector, based on the matrices in Eqs.6.29,6.33,
which is approximately the same as found in [185], model D in their notation.

We display our best fit points in table 6.4, for all 27 models. From this table it is clear that we
find unacceptably high Xr2nin 2 50 for all permutations besides YdI Hy VI and YdI Iy T for which
we found an arbitrarily good Xilin,Q < 1, where the subscript “Q” refers to the partial x? from the

quark sector alone, and note the total Xfmn across both the quark and lepton sectors observables

!These values do not change significantly for tan 8 = 10. For larger values of tan 3, threshold corrections become
increasingly important.
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1 11 11T % 1% VI VII VIII X

YdI 118 | 194 | 123 | 420 | 337 | 984 | 183 244 122

Y 1791|789 | 0.00 | 248 | 279 | 142 | 413 479 93

v/IT | 118 | 186 | 135 | 79.8 | 79.5 [ 0.00 | 117 | 190 | 135

Table 6.4: Xfmn’Q for all 27 combinations of Y,,, Yy

is &~ 1. For the remainder of this chapter, we will focus on these two successful models, and do

not list the benchmark points for the other models which do not well reproduce data.

6.5.2 Model V,V!, V]!
Numerical Study

We find two combinations of down and up quark Yukawa matrices has an acceptable X?nin,Q
value, from YUVI in combination with YdI T wwhich we study in this section and YuI S Ydl I which
we study in the next 2 In Tab. 6.5 we write the input and output parameters, both for the quark
and lepton sectors for our best fit point in this model. Since the neutrino sector is the same as
found in [185], model Djp, and charged lepton Yukawa matrix a similar form besides the addition
of weightons, the lepton observables and predictions are similar to what is seen by Ding, et. al.
However, the quark sector is entirely new of our own construction. Here we see that by tuning
the «y, B, i parameters to match SM fermion Yukawa couplings (at GUT scale), we also find
very strong agreement with the CKM angles and phase.

To explain why this is the case, we first look at numerical motivations and then go on to
study the analytic properties of this point. Firstly, we list the two numerical mixing matrices
which produce the CKM for our best fit point found in Tab. 6.5 are as follows. Defining
U}j’VIT(YuVI TYUVI YVt = yvi 49 and similarly for the down sector we find the following two

diagonalising matrices,

0.981 ~0.193 —0.00283
UPYT =1 0149+ 0.122i  —0.758 + 0.622i —0.0433 — 0.00328i | » (6.55)

0.00411 — 0.005227 0.0355 — 0.0244: —0.988 — 0.15:

—-0.999 0.0436 —0.00277

USTTT =1 _0.0434 — 0.00329i —0.996 — 0.0736i  0.00225 -+ 0.0273i | - (6.56)

—0.0028 — 0.000437z —0.00319 — 0.0272;  0.962 — 0.2731%

2We have also tested these models with a different tan 8 = 10, to check we are not overly sensitive to this initial
choice.
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Lepton observable | value (pull) Quark Observable value(pull)
Am3; - 10° (eV?) 7.39 (0.0) 69, 0.227 (0.0)
Am3, - 10° (eV?) 2.52 (0.0) 01, 0.00314 (0.0)
sin? 615 0.310 (0.0) 03, 0.0358 (0.0)
sin? 013 0.0224 (0.0) 8/ 1.21 (0.0)
sin? a3 0.562 (0.2) Yo - 10° 1.49 (0.0)
5/ 1.58 (1.9) ye - 103 7.29 (0.0)
Ye - 10° 1.00 (0.0) Yt 2.72 (0.0)
Y. - 10° 2.12 (0.0) ya - 10° 2.45 (0.0)
yr - 107 3.61 (0.0) ys - 10* 4.85 (0.0)
XPin.L 3.67 y - 102 3.54 (0.0)
Lepton prediction value sznin,Q 0.0
my (eV) 0.11 Quark input value
ma (eV) 0.11 Oy -1.476
i -0.1264
ms (eV) 0.12
11 0.2697 — 0.19714
Qo1 /T 0.013 Yu 2.720
asi/m 1.01 g -2.387
Mee (€V) 0.11 Ba 2.672
MO NO ~! 0.6253
Lepton Input value ~H 0.4958 — 0.2187:
Re(g2/g1) 0.4185
Im(g2/g1) 1.048 Common Input value
givZ /A (eV) 0.05506 Re(7) 0.03610
Qe -0.9778 Im(7) 2.352
Be -0.6615 é 0.05663
Ye -0.6360

Table 6.5: Results of the fit to lepton and quark data for model combining M, Y., VY7, YdI S
In the left panel are the lepton observables and pulls (in fractions of 10), the Xilin,L contribution
from the lepton sector, as well as predictions for neutrino masses, phases, neutrinoless double
beta decay and MO. The inputs for the lepton sector are displayed at the bottom. In the right
panel we have the quark observables and pulls, the sznin,Q quark contribution, and quark inputs.
At the bottom right we list the 7 and ¢ inputs which are common to both sectors. We note that
q~5 = 1/15 = 0.06667 for example may be fixed exactly to find an equivalently good benchmark
point.
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We can see that the Cabbibo angle, 015 is mostly generated by the mixing in the up sector,
since U}J‘I’Q > Ugm, however both sectors will play a similar role in generating the other two
angles, with the imaginary part playing a significant role for 0s3. To examine this further, we

turn to an analytic study of the structure of our up and down Yukawa matrices.

Analytic Results

We may approximate the analytic forms of our successful model of Y,/ YdHI rewriting the
weighton and weight two modular forms as follows, using Eq.6.19, and writing the higher weight

forms directly in terms of these weight two approximations as in Eqs. 6.21, 6.22,

¢ ~0.057 = €, (6.57)
Yi(r) 14 O(q) 1.00 1
Ya(r) | = | =643+ 0(g) | =] —0.043-0.0033 |=]e |- (6.58)
Y3(7) —18¢*/% + O(q) —0.00094 — 0.00014s e

where ¢ = e?™7. We find numerically that e% is a similar order to eg, and to e3. Consequently,
we may take the first non-trivial term at the order O(e;) ~ O(e1) ~ O(ea) ~ (9(6:1,)/2), dropping
higher corrections in each entry of our successful model. We find the following results for the up
and down quark Yukawa matrices, respectively, making a leading order approximation for each

element of the matrix,

etau, etesay, eteaay,
VI
Yo'~ |eae (281 +8L)  apBl e (26381 +e3pl) ) (6.59)
(E% - 63) Yu —€2Vu Tu
ety etesay eteaay
17
Y&~ €3eafa €184 €lesfy : (6.60)

a1 (26575 +evy) @ (20 +00)  a)
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Since the matrices are hierarchical, we can make an estimate for the three mixing angles as
follows, which accurately reproduces the fully calculated CKM angles. We then express €3, €3 by
using the g-expansions, for which the first order reproduces well the full Dedekind-eta value for

our best fit point.

Yf’l y21 BU 2 | 11
Opg ~ | % — —L | = |9, = 12¢ 37 Im(7) |Cw (6.61)
i ey .
vty o= 24" R
013 ~ Ylé”?’ - Yd3’3 = |3 7 d 3| = 72e7 3™ |1 — ij (6.62)
u d Vd Vd
y3:2 y 32 ,.YI + ,YH s ,)/II
Qg3 ~ # - # = 2141 =12¢ 3™ M) |1 4 14 (6.63)
u d Ya Vd

The above approximations reproduce the numerical values of the quark mixing angles well, to
two significant figures for 612, 023, but only within a factor of two for #13. This is because it is
the smallest angle, and hence sensitive to additional contributions. For the two larger angles,
there are several reasons why the above expressions well reproduce data. To begin with, quark
mixing angles are all small, so a small angle appr0x1mat10n is valid. Furthermore, overall factors

y2!

and phases cancel in the ratios such as ver and since each row of the Yukawa matrices

Y2 2
is controlled by a particular modular form, therefore the physical CKM angles are identified as

the difference in these two ratios, with no arbitrary relative phase. This is quite different from
a traditional FN model based on an Abelian symmetry, where mixing angle predictions would

depend on arbltrary coefficients and phases. It implies that partial cancellations occur between
2,1
Yoz
d
numerator. It also implies that the mixing angles are independent of e¢; which cancels in the

and ; > in constructing 612, which leads to a particularly simple form without ,6’1 in the
ratios, so the only role of €; is to control mass hierarchies. The mixing angles are therefore
completely controlled by €2 and €3, which however are not independent parameters, being related
by the expansion of the A4 triplet modular forms in Eq.6.19. This dependence is manifested
in the final expressions on the RH sides of the Eqs.6.61,6.62,6.63 based on the truncations in
Eq.6.58, which are valid for small ¢ = e?™" when the imaginary part of 7 is large. Despite the
large prefactors, the CKM angles are therefore small due to an exponential suppression arising
from the best fit point 7 having a large imaginary part. One can see that in the limit 7 — ioco the
CKM angles go to zero, which is expected as this would correspond to diagonal Yukawa matrices.
Given O(1) input parameters, we then see the required value of 7 to match the observed CKM

values must be near 7 ~ 2.357.

6.5.3 Model Y7 Y
Numerical Study

We now study a second successful model, comprised of Y,//!, Y! with input and output param-

eters found in Tab. 6.6. This section will proceed analagously to the previous one.
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Table 6.6: Results of the fit to lepton and quark data for model combining M,,, Y, Y,//1 YdI I
In the left panel are the lepton observables and pulls (in fractions of 10), the XfmmL contribution
from the lepton sector, as well as predictions for neutrino masses, phases, neutrinoless double
beta decay and MO. The inputs for the lepton sector are displayed at the bottom. In the right
panel we have the quark observables and pulls, the Xian quark contribution, and quark inputs.
At the bottom right we list the 7 and ¢ inputs which are common to both sectors. We note that
g?) = 1/15 = 0.06667 for example may be fixed exactly to find an equivalently good benchmark

point.
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Lepton observable | value (pull) Quark Observable value(pull)
Am3; - 10° (eV?) 7.39 (0.0) 01, 0.227 (0.0)
Am3; - 10° (eV?) 2.52 (0.0) 04, 0.00314 (0.0)
sin? 012 0.310 (0.0) 03 0.0358 (0.0)
sin? 013 0.0224 (0.0) 8/m 1.21 (0.0)
sin? O3 0.562 (0.2) Yo - 10° 1.49 (0.0)
8/ 1.58 (1.9) ye - 103 7.29 (0.0)
Ye - 10° 1.00 (0.0) n 2.72 (0.0)
Y - 103 2.12 (0.0) ya - 10° 2.45 (0.0)
yr - 107 3.61 (0.0) ys - 10% 4.85 (0.0)
Xnin.L 3.67 yp - 107 3.54 (0.0)
Lepton prediction value anin’Q 0.0
m1 (eV) 0.11 Quark input value
ma (eV) 0.11 Oy -1.137
ms (eV) 0.12 B 01048
1 0.1937 4 0.1985:
a2/ 0.012 " 272
i —1.697 — 0.4260i
az1/m 1.01 q -1.137
Mee (V) 0.11 Ba -1.533
MO NO Ya -0.5194
Lepton Input value
Re(g2/91) 0.4185
Im(g2/91) 1.038 Common Input value
givZ /A (eV) 0.05508 Re(7) 0.03610
Qe -0.4658 Im(r) 2.353
Be -0.4566 @ -0.06816
Ye 0.5284




We first present the two numerical diagonalising matrices as before. The numerical values of

this model are similar to the previous scenario, where 615 is dominated by the contribution from

the up quark sector.

~0.98 — 0.00001217  0.198 + 0.000225i 0.00312 — 0.00123i
upttt = 0.102 + 0.173 0.506 +0.84i  —0.00896 + 0.0148i | - (6.64)
0.00166 — 0.00417i 0.00782 — 0.0152i  —0.999 + 0.047i
0.999 — 0.000038  0.0437 + 0.000215i —0.00275 + 0.00068i
UP =1 0.0434+0.00329  —0.995—0.0803i —0.0428 +0.00722i |.  (6.65)
—0.995 + 0.091

—0.00467 — 0.0007127  0.0428 + 0.00673¢

Analytic Results

We again proceed with the same analytic approach as before, and will find very similar analytic

approximations as with the previous scenario. For the new scenario (with slightly different input
values of (¢, 7)), we again see the relation O(e;) ~ O(e1) ~ O(ea) ~ (’)(e;/z), and take the lowest

non trivial order in each entry in the two Yukawa matrices.

¢~ —0.068 = ey,
Yi(7) 1+ 0(q) 1.00
Yo(r) | = | =643+ 0(q) | = | —0.043 —0.0033i
Y3(7) —18¢%/3 + O(q) —0.00093 — 0.00014i
e‘llozu e‘f@,au e‘llegozu
VT~ | e (28I + Bl) a8l e1 (26381 + e3B1)
esvL + 263yl e (v + 2717) o
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(6.66)
1
e |- (6.67)
€3

(6.68)




II
Vi~

e%ad 6‘116304(1

€3 B4

€3eaBy

€174 (€3 — €3) —er€av4

6‘1162 Qg

€3esfa

€17d

(6.69)

We now follow the same procedure to approximate the three CKM mixing angles, and replace

€23 with the g-expansions to first order.

2,1 2,1 I
b1 =~ Yoo Yal_ 260
=322 22| =
vt Yp Bl
3,1 3.1 I 1
013 ~ Yoo Yol 2Ju ~ 2V
=333 33| = |2
YAy Vi
3,2 3,2 I Ir
0on ~ | Y YUl 9, Yut Vu
2= |33 el T |ef2 T
23y, T

1

1I
— 1267§7r1rn(7') u‘
u

— 7267%7r1m(7') - L{LI

Tu

— 2¢3

II
14 Lo
Y

— 1267§7r Im(7)

(6.70)

(6.71)

(6.72)

The analytic forms here are identical to the previous model, exchanging 4 previously seen

with 7, here. In this scenario, the weight six entries previously found in the third row of YdVI

are instead found in the third row of Y;///. In this scenario, the mixing angles are even more

controlled by the up sector than beore.

It can now be understood that these two specific models are both successful, as they both

predict the same expressions for the CKM mixing angles above, for which values of oy, 8;, v

that explain well the Yukawa couplings of the quarks also well reproduce the observed mixings

in the quark sector.

6.5.4 Analytic Expansion of the Lepton Matrices

Finally, it is interesting to apply the same analytic expansion procedure used for the quarks, also

to the leptons. For the charged lepton Yukawa matrix in Eq.6.33, we find (without dropping any
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terms since the leading order matrix arises at weight 2),

04,3611l 0466411 €3 Oz,geil €2
2 2 2
Y, ~ | Be€iez Beeq Beeies : (6.73)
Ye€1€3 Ye€1€2 Ye€1

This structure provides a natural explanation of the charged lepton mass hierarchy, namely
Me : Myt My = Ozeeil : ﬁee% D Ye€1-
After the seesaw mechanism, by inputting and expanding the matrices in Eq.6.29 we find the

effective neutrino mass matrix,

—2 €3 €9 0 —26% + €3 €9
2’[}5 2U12L 2
My~gi5|es —2e 1 toay | 264 26 —1 . (6.74)
€2 1 —263 €9 -1 —26% + 263

The parameters g1, go and €9, €3 are determined by the fit to the neutrino mass squared differences
and PMNS mixing parameters, which arise predominantly from the neutrino sector, due to the
very small charged lepton mixing corrections. The large elements in the neutrino mass matrix
occurring in the (1,1) and (2,3) positions, controlled by g1, g2, are responsible for the quasi-
degenerate neutrino masses mj; ~ mg ~ 0.11 eV, and m3 ~ 0.12 eV, with the neutrinoless double
beta becay parameter me. ~ 0.11 eV in the sensitivity region of current experiments, and the
cosmological sum of neutrino masses Y m; ~ 0.34 eV being in the disfavoured region. Either
this lepton model will be discovered soon or it will be excluded in the near future. In any case we
remark that the neutrino sector considered here is identical to that of the Feruglio model, being

independent of the weighton ¢, and hence €;.

6.6 Chapter Summary

In this chapter we have shown how quark and lepton mass hierarchies can be reproduced in the

framework of modular symmetry. The mechanism we have proposed is analogous to the FN
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mechanism, but without requiring any Abelian symmetry to be introduced, nor any SM singlet
flavon to break it. The modular weights of fermion fields play the role of FN charges, and SM
singlet fields with non-zero modular weight called weightons play the role of flavons.

We have illustrated the mechanism by analysing A4 (modular level 3) models of quark and
lepton (including neutrino) masses and mixing, with a single modulus field. We showed how a
previously proposed A4 modular model of leptons can be recast in natural form by introducing
a single weighton, then applied similar ideas to 27 possible models in the quark sector. We
analysed all the quark models, combined with the natural lepton model, and identified two viable
combinations, which can successfully describe all quark and lepton (including neutrino) masses
and mixing, using a single modulus field 7, and in which all charged fermion mass hierarchies
originate from a single weighton.

We have discussed these two particular examples in some detail, both numerically and an-
alytically, showing how both fermion mass and mixing hierarchies emerge from the modular
symmetry. The analytic results clearly show how the fermion mass hierarchies are controlled by
the powers of the weighton field which multiply a particular row of the Yukawa matrix, while the
smallness of the quark mixing angles arises because of the proximity of the modulus field to the
fixed point case 7 = ioco, which results in exponentially suppressed entries within a particular
row of the Yukawa matrix. This leads to a simple analytic understanding of the smallness of
quark mixing angles.

We emphasise that the mechanism introduced in this chapter is quite unlike the traditional
FN mechanism, based on an Abelian symmetry, in which the suppression of both rows and
columns of the Yukawa matrices arises from FN charges. In the present approach, fermion mass
hierarchies and small quark mixing angles emerge from different aspects of the modular symmetry,
without having to introduce an extra Abelian symmetry and an additional flavon to break it.
The A4 flavour symmetry arises as a finite subgroup of the underlying modular symmetry, and
the weightons responsible for the charged fermion mass hierarchies are A4 singlets which do not
break the flavour symmetry.

Finally we note that the class of modular level 3 (with even weight modular forms) examples
of the mechanism we present here are by no means exhaustive. The new mechanism may be be
applied to other levels and choices of weights, and to models with any number of moduli fields

and weightons.
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Chapter 7

Conclusion

Naturalness may take many forms in modern day BSM theories. In this thesis we have considered
quantitative measures of naturalness, such as the Barbieri-Giudice (BG) metric for the BLSSM,
as well as concepts such as unification as a guiding principle and finally explicitly theories which
solve the flavour problem, with natural (O(1)) parameters.

In chapter 2 we began by considering the SUSY extension of the U(1)g_z model. We used
two metrics of FT, both a high scale BG metric, as well as a low (SUSY) scale one to compare
the BLSSM to the CMSSM. We found here that both models have a similar level of FT, but
slightly higher for the BLSSM at GUT scale, in the presence of all available constraints. This was
largely driven by the requirement for a high Z’ mass of 4 TeV from non-observation in searches,
which sets generally larger allowed unification masses, which was somewhat reflected by a higher
mass low energy spectra of sparticles. Considering low energy FT, the BLSSM and MSSM are
somewhat more similar. In addition to F'T, we considered the DM candidates of each model for
our given parameter scan. There are several candidates which appear in the BLSSM but not
MSSM which can well accommodate all DM constraints so far. In addition to the bino which was
present in both models, the extra B — L neutralinos (the U(1)p_1 gaugino, B’ and two Higgsinos
77) may be cold DM candidates. In addition we found the superpartner to the RH neutrino, the
RH sneutrino, was an ideal candidate.

In chapter 3 we built on the previous chapter’s finding of a RH sneutrino acting as a cold
DM candidate and inspected its properties. Here we saw that the current and near future (15
year) tests of indirect detection could begin to touch the available parameter space. If such
a signal were to be established, then by examining the shape of the photon flux distribution,
there exists the possibility to discriminate different DM species consequently. For example, the
scalar sneutrino may be distinguishable from the fermionic neutralino DM given the different flux
shapes, for the same given DM mass. We also explored the possibility of detecting sneutrinos at
the LHC through unique signatures. In addition to the usual mono-X searches, we found there
were options involving multi-lepton final states, with and without jets in addition to the missing
transverse energy. Finally, we saw that the exact details depended on the hierarchy of mass states

in a particular spectrum.
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We then shifted focus from DM to a more subtle problem in chapter 4. Here we compared
two similar models, the U(1)y x U(1) g—r, model of the previous two chapters, versus the U(1)p x
U(1)p—r model arising from SO(10). One of the first discovery modes of both models was from
their Z’, and in this chapter we investigated the ability to use forward-backward asymmetry to
differentiate the two models. Since the BLR has axial couplings rather than just vector as in the
usual B — L case, such a test to discern from which a Z’ belongs is possible. These findings may
provide hints towards unification at high scales.

In the remaining two chapters, 5 and 6, we considered the flavour problem. In the framework
of Modular Symmetry, inspired by string theory, we provided several models which explain the
observed neutrino masses and mixing. In the first chapter we considered a model with natural
parameters for the charged lepton masses, in addition to explaining neutrino data. We considered
seven scenarios across two different modular levels, 4 and 5, corresponding to the discrete groups
Sy and As. All of these seven models had good fits to data, in addition to natural charged lepton
masses. In chapter 6 we extended this idea to the quark sector, using a pre-existing model of
neutrino masses, but attempting to determine all quark and lepton masses using natural input
parameters. We found two such model scenarios which were able to satisfy all neutrino and quark
masses and mixing angles, providing an elegant solution to the flavour puzzle.

Looking ahead, there are many possible directions which still remain to be explored. Firstly,
the obvious dark matter problem requires a solution which cannot be provided by the SM. Despite
the beauty of the WIMP scenario, there is no argument which prevents a huge span of DM masses,
over fifty orders of magnitude, which may prevent any terrestrial interaction. However, we have
shown that even typical SUSY WIMP scenarios may perfectly evade current experimental efforts,
and require further study to fully explore its parameter space. From the collider perspective, so
far there has been no BSM physics discovered, though many natural, O(TeV) scale models may
still be hiding in the data, and require ~ 3000 fb~!, or more, to be seen. Undiscussed in this
thesis are the alluring hints of new physics from both g—2 (electron and muon) and also the ever-
present b—anomalies, where a coherent picture of all flavour sectors has yet to emerge, though
the next few years of experiments will shed light on the final story here. There are also the less
well known anomalies, such as from the Atomki group, which have proven if nothing else that
O(10) MeV bosons may be added to the SM consistently with all current experimental data, and
that new physics might be hiding at low-scale. Arguably the only BSM problem which directly
requires a solution is neutrino physics. Much is still unknown in this sector though: the absolute
scale, MO and CP-violating phase are yet to be directly measured, and the remaining parameters
have much more precision to be gained. Neutrino masses may be the key to solving the whole
flavour puzzle, which is perhaps the most compelling problem which still remains with the SM.
With new directions like modular symmetry, there is clearly much more to be explored in this
age old problem, and this is largely dependent on new directions from theorists. In summary
there are a great many worthy directions to pursue as a modern day BSM physicist, and with
numerous experiments operating in a multitude of sectors, the current status of particle physics

is an exciting one.
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Appendix A

Higgs Self-Energy Correction

In this section, we briefly derive the correction to the Higgs mass term from a fermion. We begin

with the Feynman rule for a fermion propagator, and two useful trace theorems.

i(p +m)

p? —m? + e

Feynman rule for fermion propagator

Tr [(F)?] = Tr (k" ko’ = Tr [kuky (—7"+* + {7 u,7"})] = Tr [—%2 + 2k, kg™ |, (A1)

2Tr [()?] = Tr [2k%1] — Tr [(K)?] = 4K°. (A.2)

We may now draw the relevant loop diagram for the correction to the Higgs mass from a fermion

loop, and calculate the mass correction given N, colours.

k
3)‘_/;\/_5 Z)‘_/;\/_i = —iAm?% (A.3)
p p
ktp

—iAmyy = Ne(=1) (2) /. (;1;1’;4 o [k;(—%;ﬁ) <l:<—_zi§2+ ! :ﬂ)} (A-4)

A2 dik B ()] A e d%k 4
“2 ) (2m)t {] 2 ) em)iR?

k2 k2
22 < dk 4 A2 [
. 2 . 2 E 3 o
_ZAmH = _Nc(_l)wick’ rotation?Q"T /_Oo (2ﬂ)4kE% = 4772/—00 dkgkEg (A6)

(A.5)

fNC)\Q Auv )2
Am? = yw /0 dkpkp = —NC@A%V +... (A7)

We finally see the leading order mass correction scales with the square of the cut-off, which

will lead to very large F'T of the bare mass term.
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Appendix B

£ Functions for the BLSSM

We complete the list of the 8 functions giving those concerning the soft masses of the scalar fields

H,, H; and n1,72. These are given, at one-loop, by

B2

Hy

Bm?m

6 - 3 - ) -

—2 (G(MP + 812) + P(M? + M2) + 2015(My + M) ) — 69307y

L 3Y10
Jor——,

6

- (gf(Mf + M2) + GF(M{? + M?) + 2015(M + M{)M) — 695 My,

9BLgo2 +6 (m%{u + mgzazs + mis:&

)}/;2 + 61’}2

- 3
3(91 + 3%)o1 +

10 ~
9BLjo2 + 6 (mFy, +m2, +m3,,) Yy + 617

4
~12gpr2(M{? + M?) + 4m? te(Y3) + 4tr(T2,) + 8tr(m2, Y3),

3\/5 go1 + S br?
- g — g
59BL9 1 293L 2,
3

3 2
—1293L2(M{2 + M?) — 3\/;91% goy — 593L2027

(B.1)

(B.2)

(B.3)

(B.4)

where, for the sake of simplicity, we have neglected all the Yukawa couplings but top- and bottom-

quark Y;, Y, and the heavy-neutrinos Ya. We have also assumed real parameters.

137



138



Appendix C

Linear Seesaw and $ Functions for
the BLR

The linear seesaw is similar to an inverse seesaw, but with ¢ — 0 and a new term coupling a LH

neutrino to the scalar singlet S:

0 Yv Fup 0 mp €
YT 0 Fop | =|mE5 o M, (C.1)
FTop, FTop 0 el M;‘(F 0

Each element here corresponds to a 3 x 3 block. Solving this in block diagonal form, assuming
€ < mp <K My, one finds

M, +mpmpM* 0 0
0 —(My +mEmpM;Y) 0 (C.2)
_eMb
0 0 €N

So the light and heavy physical masses are

mh
MVL = —Gﬁx + h.C. <C3)
]\4—]\[1 ~ MN2 ~ MX + mEmDM;:L =+ h.C. <C4)

Here we have the light neutrinos, vy, as observed in oscillation experiments, and Ny 2 are the
heavier neutral fermions. The smallness of € may allow for a low (TeV) scale M,, which is a
fundamental feature of all low-scale seesaw mechanisms. Unlike the inverse seesaw, we see that
M,, is linear in mp, which is proportional to the Yukawa couplings, hence the name “linear”

seesaw.
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Coeflicient GUT normalisation Value Scale
BLR 15/2 | Msusy < @ < Mgur
bR,R 1
13/3 | MpLr < Q < Msusy
bin 27/4 | Msusy < Q < Mgur Abelian
b(5-L)(B-1) 3/8
17/4 | Mprr < Q < Msusy
JBLE  _ yBLR 278 —/3/8 | Msyusy < @ < Mgur
R.B—L = YBZLR /
—1/v24 | Mprr < Q < Mgusy
1 -3 Msysy < Q < Mgur
BPLA 1 -7 MpLr < Q < Msusy
1 -7 Mpw < Q < MpLr Non-Abelian
1 1 Msusy < Q < Mgur
BPLE 1 -19/6 | MpLr < Q < Msusy
1 —19/6 Mew < Q < Mprr )

Table C.1: Beta function coefficients for Abelian and non-Abelian gauge groups in the BLR
model

C.1 RGEs

Beta functions for the non-Abelian and Abelian groups, respectively, are [123]

dga _ Bagg dgim _ Yk b

At 16720 dt | 16m2 @9kdim (C.5)

where the index a runs over the non-Abelian groups SU(2), and SU(3)., a = 2,3 and (4, j, k,l,m)
run over the U(1)r, U(1)p_r, and mixed U(1)r x U(1)p—r and U(1)p_r x U(1)r groups,
(i,4,k,l,m) = (R, B — L) and Einstein summation convention is assumed. For our RGE section,

we make a rotation on the coupling matrix G, such that it is set in upper triangular form [58]

a— gi1  gi2 (06)

g21 G922

g g11922—g12921 g11921+912922
G =GOk = - V931163 V931193, (C.7)
0

g 0 V931 + 93

One may consequently find the RGE in terms of g, ¢/, g by differentiating these expressions and

S}

then replacing the differentials dg;;/dt with the beta functions as calculated with eq. C.5, then

replacing ¢11, g12, g22 in terms of g, ¢’, g.
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C.2 Derivation of Renormalisation Factors

In N=1 SUSY, for the renormalisation of a single gauge coupling at one loop, one finds the

standard expression [218]

3
Y= L (SR - 30(C) (©8)

where S(R)" is the Dynkin index summed over all chiral multiplets and for a single multiplet

is defined as
5“bS(R) = tr(tatb), (C.9)

and C(G) is the quadratic Casimir invariant of the adjoint representation of group G. This is
trivial to determine and is simply N for SU(N) and 0 for a U(N). The Dynkin index can be
quickly found knowing the particle content of a model and the quantum numbers under the
different gauge groups of a theory; thus one may immediately determine how couplings run in
SUSY theories with no calculation of any Feynman diagrams, unlike the SM. This is because in
SUSY one is only concerned with wave-function renormalisation [219]. We now go through some
specific examples of how one calculates the Dynkin indices. In our notation b;; = S(R);; as the
Casimir invariant is 0 for U(1) gauge groups. Before we discuss the Dynkin index for the Abelian
sector which interests us, we will quickly discuss how to calculate this in the non-Abelian sector.

As an example, we will use SU(2). For an SU(N) group, in any representation

6 S(R)SUIN) — tr(¢94%)
Sap0™*S(R)SYIN) = 6 ptr(t°¢")
(N? = 1)S(R)SYM) = tr(t%4%) = (N? — Dtr(£3¢%)
S(R)STW™) = tr(£343)

C.10
C.11
C.12

(
(
(
(C.13

)
)
)
)

Where we note that the number of generators is fixed for any representation, and equal to N% —

and consequently 6%°6,, = N? — 1. Also, for SU(N), though this holds more generally for any
compact Lie group, tr(t't') = tr(t*t) = ..., we choose to consider the T but are at liberty
to choose any of the generators. As a concrete example, we consider SU(2) and the 2 and 3

dimensional representations. We find

S(2)5U@ — 4 (TPT?) = i(a3a3) itr(Ig):f (C.14)

S(3)5V@) = r(J3J3) = 2 (C.15)

where J3 = [1,0,0;0,0,0;0,0,—1], and T = %0“, the Pauli matrices. So, for a non-Abelian

group, one then sums over all the chiral multiplets
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Coefficient S(R)Ch GUT normalisation | C(G) | S(R)&Y -3C(G) ! Scale

byt 1/2x3,Ci =6 1 3 -3

bph 1/2x3,Li=T7 1 2 +1

bR > T2, =15/2 1 0 15/2 Msusy < Q < Mavr
bEr b >(B—L)f =18 3/8 0 27/4

bREL >.:((B—=L)T3R)i = -1 3/8 0 -\/3/8

bEr R >.:(B=L)T3R) = -1 3/8 0 -\/3/8

b x >i(T3); = 153/8 1/10 0 153/80

by y >(T9)i =11 3/5 0 33/5

by x 2 i(TyTy)i =6 1/v/10 x /3/5 0 3v6/5

byy Y i(T\Iy); =6 1/v/10 x /3/5 0 3v/6/5
SU(3). - - - 2pgM = 7 10%2GeV < Q < 103GeV
SU(2)L - - - 3p?M = —19/6 | 102GeV < Q < 103GeV
Uy - - - 4pM = 41/10 | 102GeV < Q < 10°GeV

Table C.2: Beta function coeflicients for the BLR model

C.2.1 Derivation of 5 Function Coefficients
Beta function for non-Abelian and Abelian groups, respectively are [123]

dg  Bg®  dgm 9k
At 16x2 7 dt (47r)2b"jg““gjm' (C.16)

dgii1  bugn (9 + 91s) + bi2ga1 (g3 + 93s) + (911921 + g12922) (21911 + b22g21)

dt 1672 (C.17)
dgio  bugia (911 + 9i2) + b2rgi2 (911921 + g12922) + g22 (D12 (971 + 97a) + D22 (911921 + g12922))
dt 1672
(C.18)
dgo1  biigni (911921 + 912922) + bi2gar (911921 + 912922) + (931 + 932) (b21g11 + ba2gar) C19
dt 1672 (C.19)
dgas  bi1g12 (911921 + 912922) + b21912 (951 + 952) + 922 (b12 (911921 + g12922) + b2z (931 + 952))
dt 1672
(C.20)

1psM = (—(11/3)N°+(2N75)/3); N¢ = 3, N§ is the number of fermions with factor (1/2): (ie 6: (1/2)*(ur,...tr)).

2p5M = (—(11/3)N* + (2N§)/3) + (nscT(Rsc))/3); N¥ = 2, N§ is the number of SU(2) doublets =
(1/2)*(3+9)=6, nsc = 1, T(Res) = 1/2

3by = (1/2) x 10 + (1/4) x (2) x (1/2)*> = 41/6. by = 3/5 x by = 41/10

1S(R)YY = S(R) x GUT normalisation
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C.2.2 Calculating GUT normalisations

Hypercharge

SU((5) = SU(3). x SU(2)r, x U(1)y. Begin with an SU(5) 5-plet, which contains three down
quarks of different colours and a lepton doublet.
d’r’
db
s (C.21)

1%

e

The generator of this group must be traceless and have the first three quantum numbers the
same, and the last two. (eg a,a,a,b,b where 3a4+2b=0). As an example we choose twos and

threes.

Ty=z|0 0 2 0 0 (C.22)

000 =3 O

0 00 0 =3

For the fundamental representation of SU(N), tr(7*1*)=1/2. This determines the normalisation
parameter, x.

tr(TyTy) = 1/2 = 22(30) — = = 1/V/60. (C.23)

In the SM, the hypercharge of a lepton doublet is Y (L) = Y(Q — T31) = —1/2, and so Y (L)% =
+1/4. In our GUT normalisation, we would have Y (L)gur = = — Y (L)%, = 3/20. So

Y(L)éUT 3 . . . \/@ . (g}(,;UT)2
we find that Y@h. = 5 Since the Lagrangian contains terms like (igY B,,), then I =
(agUT)Eal

i = 2 In a similar fashion, to find the normalisation for B — L, we recall that this gauge
(O‘Y ) 3

group is obtained from a PS, SU(4)ps — SU(3). x U(1)p_r, so our SU(4) 4-plet will take the

form:

Tp_p = (C.24)

Bl
o~

)

o

—

o

0 00 =3
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and so we may compare the squared B — L normalisation for the SM and GUT normalised to

find:
B — L)? 9/24 3
((B - L))%ZZ B | /1 | - 8 ()

Previously, we found the relation 1/¢2 = 1/g% + 1/g9%; — a;l = agl + a;lL, which holds with
with a gpr(B — L)/2 normalisation, which is equivalent to gpr+«(B — L) where gpr» = gpr/2.

Using this, along with afl = %a;l and a;L, = %a;};* = %QBL, we find
3 2
ol = ga}_%l + ga;ﬂ. (C.26)

This is used to fix the value of our al_l coupling at the breaking scale vy

C.3 Gauge Kinetic Mixing

C.3.1 Removing Mixed Kinetic Term

The kinetic sector for a gauge group U(1); x U(1)2 will have a mixed term:

1 1 K
ﬁ:—lﬂﬁﬂg—iﬂﬁﬂg—gﬂﬁﬂg (C.27)
with k parametrising the strength of the mixing and
Fii = 0,AL — 0,A, (C.28)

(with no anti-commutation term as the two groups are Abelian). We may eliminate the mixing

term in the kinetic Lagrangian by performing a rotation on the gauge fields:

Al cos(¢) —sin(¢ B!
1= (@) (@) : (C.29)
2 : 52
A sin(¢)  cos(¢) B
One finds the mixed term in the B basis
Lkin D 282(Bil§5)(c082(9) —sin?(h)) (C.30)
Which may be removed by setting # = /4. The kinetic Lagrangian then takes the form
L = — =B by v _ LK By (C.31)
kin = 4 w L' B, 4 ot B, .
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To take the canonical form (kinetically diagonal basis), one may rescale the fields:

Rl 1 1
Bu _ T—k 0 Bu
P2 0 1 2

H Vits H

So the rotated and rescaled Lagrangian takes the form

L= LBREY - LEREL
under the total transformation
A, B cos(m/4) —sin(mw/4) \/11_7 0 B}
A2 - sin(w/4)  cos(m/4) 0 \/114? B2
:L \/11? - 1175 B}L
2 1 1 B2

C.3.2 Consequences for Gauge Interactions

The fermion interaction Lagrangian is given by

Lint = VyuQia1 AV + Y5y, Q792450

(C.32)

(C.33)

(C.34)

(C.35)

(C.36)

where the fermions ¢; have charges QZ]} and the gauge coupling is g; under the gauge group

U(1);. To make the transformation into the new (kinetic mixing free) basis more obvious, we

may write this interaction Lagrangian in a more suggestive way

_ g1 0 A‘Lf
Lint = VY (Q} Q?) , (0
0 g2 A2

Under the transformation C.35, the interaction now becomes

_ g 0 1 L - L B*
£m=%%<@ @) — [V o K
s 0 V2 1 1 B
92 Vitr itk 2
We define
o g1 01 1 = ——\ [ g
0 ¢ \@ 1 1 N
Vitr Vitr g21 G922
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(C.38)

(C.39)



So the interaction Lagrangian takes the form

Lint = yu(911Q) + 921Q7) Bivy + ¥ 57u(912Q} + 922QF) By g (C.40)

At this point, we may choose to work in this basis, but we may perform an extra rotation on the
fields Bj, Bs to parametrise the matrix GG, in terms of only three independent parameters. By

making the rotation (which is a function of (g1, g2, k)):

By 1 g2 gu | [ B*
BYy VIR TIN \—gn gan) \B"
O
One finds
—g12921+9g11922 9119211912922 g g
OG = V4 g§1+g§2 V9§1+9§2 = (C.42)
0 Vi + 9% 0 ¢
and we may thus write the interaction Lagrangian as
Lint = Yyyu(9QF + §QF) B s + ¥yyu(d QF) By (C.43)

One may question whether this spoils the kinetic Lagrangian and introduce mixed terms, but it

does not, the mixed terms cancel and leave the kinetic part of the Lagrangian is found to be

1 5w
L=—-FBFm

1 5w
1 Fia ~FBFL (C.44)

4= H

C.4 p-Functions for Two U(1) Groups

This discussion of the derivation of the beta functions follow the procedure in eq 12-14 in [123],
noting simplicity due to working in a SUSY framework. We use the basis with g;; (rather than
g found in eq. C.40). We first rewrite the interaction Lagrangian of fermions with gauge bosons

using a slightly different notation (but still in this basis), which we will use henceforth

Eint = d—}f'yuQ}wfgrng (045)

where the indices f,s refers to fermions, scalars respectively and the repeated indices imply a
sum over all fermion/scalar fields. For our two-field case, r,b = 1,2 (for a specific case, eg
U(l)r x U(1)p_r, one would say r,b = R,(B — L)). If one expands this expression, one will
recover the interaction Lagrangian, C.40. The S-functions determine how these couplings run
with energy, and will take the form (in our case) of a system comprised of four differential

equations

dgi
=19 (C.46)
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where i, j labels the fields and the RHS is a function of all other fields at order g3. One must

then solve the system of differential equations to find how each of the ¢ fields run.

Ikt = Qrgrb (C.47)
dgrb
—_— C.48
L Bab ( )
1 4 1
/Bab = W <3’%gfagfb + 3ngsagsb> (049)

where gy, is a reduced coupling that evolves according to %, where k labels the fields (fermions

/ scalars) that carry U(1) charges. There is an explanation of the origin of eq. C.49 in the
appendix. We may expand eq.C.49, a

1 /4 1

Bab = W <35QfQ?gragrb + BanQggragrb> (050)
1 i
= (a2 Z b giagiv (C.51)
i,J
where we have defined

ij 4 i L i

b = g’foQf + ganQs (C.52)

One thus finds a general expression for the four beta functions as

dgii  bugu (91 + 912) + bizgar (931 + 93a) + (911921 + g12922) (21911 + b22gor1)

dat 1672 (C.53)
dgia  bugiz (931 + 9i2) + b2rg12 (911921 + g12922) + g22 (D12 (971 + 97a) + b22 (911921 + g12922))
dt 1672
(C.54)
dga1  bi1gi1 (911921 + g12922) + b12g21 (911921 + g12922) + (g%l + 932) (b21g11 + ba2go1)
_ (C.55)
dt 1672
dgaz  b11gi2 (911921 + g12922) + b21g12 (931 + 9%2) + 922 (512 (911921 + g12g22) + b22 (9%1 + 932))
dt 1672
(C.56)

In SUSY, one may easily find b;;, without using any diagrams, by counting the charges. Examples

of the calculation of these parameters are discussed in appendix C.2.

We have four charges, g11, gi2, 921, g22, corresponding to the

(UMW g)?%, UL RU) 1, UML) p_LUQ)g, (U(1)p_1)? (C.57)
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groups. For the beta-function coefficients, we find

B = (2:)2, biy = 15/2 (C.58)
o= (g2 b= -1 (.59
Bo1 = (:;1)2, byt = —1 (C.60)
Bz = (5;2)2, bog = 18 (C.61)
so we now have
% - (471r>2 (br1giy + ba1912931) (C.62)
% - (4;)2 (b1291197 + b2291295>) (C.63)
% - (471r)2 (b11g21971 + b219229%1) (C.64)
% = (471T)2 (b12g2197> + ba2g3y) - (C.65)

C.5 Rotation into g Basis

This section follows that of section 3 of [58]. We now rotate our coupling matrix:

G- g1 912 (C.66)

g21 G922

cosfl —sinf 1 922 —g21
Or = = (C.67)

/2 2
sinf cosf 922 T 92 g21 922

g11922—gi2921 911921+912922
2 2 2 2
_ V31+93 V31193 (C.68)

g 0 V931 + 95

9922 = gi2g21

g1 — g = . - (C.69)
V93, + 932
gy s = J0921 T g1297 (C.70)

V 931 + 952

g21 — 0 (C.71)

922 — gl =1/ 951 + Q%Q (C?Z)
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Appendix D

Finite Modular Groups

D.1 Finite Modular Group I'y and Level 4 Modular Forms

The finite modular group I'y is isomorphic to Sy, the symmetric group of permutations of four
objects. It has 24 elements and five irreducible representations: 1, 1/, 2, 3 and 3'. It admits a

presentation in terms of two generators S and 71"
S? = (ST =T1* =1. (D.1)

In this paper we use an explicit realization of the elements S and T for the different representa-
tions, obtained from the one in Ref. [220], with the identification [186]: S = S'T"? and T = 5,
where the primed generators are those given in Ref. [220]. We also use the CGn coefficients listed
in Ref. [220].

The linear space of weight 2 and level 4 modular forms has dimension 5 (see, e.g., [174]).

These forms can be constructed in terms of the Dedekind eta function [186]:
s .
77(7—) = ql/24 H (1 o qn) , q= 2T (DQ)
n=1

Defining

d 1 T
Y(er,...,c6m) = s [01 logn <7’ + 2) + calogn (47) + c3logn (Z)

+1 +2 +3
+cqlogn <T4> + ¢c5logn (T4> + cglogn <T4> ] ; (D.3)
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with ¢; 4+ - -+ 4+ ¢g = 0, the basis of the modular forms of weight 2 reads [186],

Yi(r) =i Y(1,1,w,w? w,w’7T), (D.4a)
Ya(r) =i Y(1,1,w? w,w? wlt), (D.4b)
Yi(r) =i Y(1,-1,-1,—1,1,1|7), (D.4c)
Yi(r) =i Y(1, -1, —w? —w,w? w|r), (D.4d)
Ys(r) =i Y(1, -1, —w, —w? w,w?|7), (D.4e)

with w = e2™/3. Notice here, we have an extra factor of ¢ compared to the definition of Ref.
[186]. It has been shown that Y;(7) and Y2(7) form a doublet transforming in the 2 of Sy, while
the three remaining modular forms make up a triplet transforming in 3’ of S4. Doublet and the

triplet will be denoted by

o Y(r)
o= " e =|vim | (D.5)

no Ya(r)

5\ T

The g-expansions (¢ = ¢>™7) for Eq. (D.4) can be found in [186]. In our analysis we use the full
analytic form. The modular forms of higher weights k = 4, 6,... are homogeneous polynomials
in the variables Y;(7), i =1,...,5.

Under CP, Eq. (5.9), modular forms of level 4 and weight 2 transform as [187]:

Ya(-m) = Xa [Va(r)]" . Ya(-r%) = Xy V()] (D.6)

where X9 and X3 are the matrices:

-1 2w 2w?
0 1 1
Xo = ) X3':—§ 2w 2w? -1 - (D-7)
10
w? -1 2w

By decomposing products of representations in their irreducible components we find that a consis-
tent action of C'P on chiral multiplets ¢, transforming in the representation r (r =1,1’,2,3,3’)

of I'y is given by:

CcP %
or — Xr 0p (D-8)
with X2 and X3 given above and
Xi=-Xy =1, X3 =Xg . (D.9)
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This set of matrices satisfy the consistency conditions

X pi(v) Xih =pe(?) (v,¥)eT (D.10)

as can be checked by working with the generators v = (S,T). We find $' = S~! and T" = T~ 1.
The conditions for the VEV (¢1, @2, ¢3) of a triplet to preserve C'P read:

Im(p;) = \/gRe(cpg —v3) , Im(ps) = \/§Re(g01 —v2) , Im(ps) = \/§Re(g03 —¢1) . (D.11)

In our basis, the requirement of C'P conservation on a modular invariant supersymmetric theory
at level 4, adopting the above C'P transformations on the chiral multiplets, amounts to having

all Lagrangian parameters real.

D.2 Finite Modular Group I'5s and Level 5 Modular Forms

The finite modular group I's is isomorphic to As, the group of even permutations of five objects.
It has 60 elements and five irreducible representations: 1, 3, 3’, 4 and 5. It admits a presentation

in terms of two generators of S and T"
S? = (ST =T° = 1. (D.12)

In this paper we use the explicit realisation of the elements S and T for the different representa-
tions given in Ref. [196], where we can also find the corresponding CG coefficients.
Level 5 modular forms of weight 2 have been built in Ref. [189], making use of the Jacobi

theta function:

O3(u, 7) = Opo(u, ) = Z Pl e2min (D.13)

n=—oo

where p = €™7. Defining the seed functions:

1 : 1
041’_1(7') 593 (T; ,57’), Ck27_1(7') 5627”7/593 (37—;_ ,57’),
. T+9 T B TH+T T
anolr) = 00 (5507 | analr) = 60 (15T
1 1
ai(r) = 03 (17077_—'5_> ; az1(T) = 03 <Tl—|(—)8,7_£ ) ,

D.14
ara(r) = 6 T+1 7+2 0na(r) = 0 T4+9 7+2 ( )
12\T) = U3 10 ' 5 ) 2,2\T) = U3 10 ' 5 ’

B T+2 7+3 . T T+3
a1,3(7) —93< 0 5 >, az3(7) 293<10, 5 >,
T+3 7+4 T+1 7+4
=90 =40
a1,4(T) 3( 10 ) 5 >7 062,4(7') 3< 10 ) 5 )7
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and the functions,

d
Y(Cl,—la v ,61’4; CQ’_l, ey 62,4‘7') = Z CiJE log Oéi’j(’f) s

then the modular forms of weight two are divided into the following multiplets of As,

=

T

o

T

(1)
(1)
(1)
(1)
(1)

&
S
I
&

T

=

T

Y3 (1) = | Yio(7r)

Yii(7)

Z'Ij

- 7Y (=5,1,1,1,1,1;-5,1,1,1,1,1|r)
Y(0,1,¢%,¢%,¢%,¢; 0,1,¢%,¢%, ¢%, ¢ 7)
Y(0,1,¢%,¢,¢4 €% 0,1, ¢, ¢ ¢ P )
Y(0,1,¢%,¢%,¢,¢%: 0,1,¢%,¢4 ¢, ¢ [ 7)
Y(0,1,¢,¢%,¢%,¢4: 0,1,¢,¢%, ¢, ¢t 7)

Y (-V5,-1,-1,-1,-1,-1;v5,1,1,1,1,1|7)

Y(Oa 17 C47 <-3’ C27 Ca 07 _]-a _C47 _C3a _C27 _C ‘ T)
Y(Ov 17 <7 CQ) C37 C4 ; 07 _]-7 _Cu _CQ) _Cga _C4 ‘ T)

%Y (V5,-1,-1,-1,-1,-1; —V5,1,1,1,1,1|7)
Y(07 17 437 C) C47 €2 5 07 _]-7 _C37 _C7 _C47 _C2 ‘ T)

Y(07 17 C27 <47 C7 <3 5 07 _1a _C27 _447 _Cv _C3 ‘ T)

with Zci’j = 0,
'7j

(D.15)

(D.16)

(D.17)

(D.18)

where ¢ = ¢2™/%. The first few terms of the g-expansions of these modular forms can be found in

Ref. [189]. Our numerical results have made use of g-expansions up to O(q'%?), but the results

are unchanged when using up to O(¢%).
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D.3 Numerical Results in Fundamental Region

The models studied in chapter 5 are modular invariant and it is always possible to map the
Lagrangian referred to a certain value 7 of the modulus to an equivalent Lagrangian where the
modulus 7/ is inside the fundamental region |Re(7’)| < 1/2, |7'| > 1. By definition there exists
a modular transformation ~ such that 7/ = 7. Together with the transformation 7 — 7, we
consider the field redefinition mapping all chiral multiplets except L into the modular transformed

ones, after setting to zero all their weights. We find that the low-energy superpotential

v? Vo
w = —ﬁLT W(r) L — EE T y(p) L (D.19)
becomes )
w= gy LT WO L= 25 BT V@) pla)L (D.20)
where
W(yr) = (er + d)?pr(1)* W(r) pl(7) . (D.21)

Neutrino and charged lepton mass matrices are now:

’U2 ’U2
my = W) mlme = 5pu() Y(@)'V(e) p() (D-22)

The lepton mixing matrix is unchanged. We list here the transformations needed to map the

values of 7 found by our minimisation procedure to points inside the fundamental region.

153



Input parameters - fundamental region
Case T Re(r) | Im(7) | Re(p1) | Im(p1) | Re(p2) | Im(p2) | Re(ps) | Tm(ps) | 1/A (eVT)
AWV ST 17 -0.1579 | 0.9957 2/3 0 1/6 1/2v/3 -1/3 1/v/3 0.003223
48V T-r -0.1564 | 0.9968 | -1/3 | -1/v/3 | -1/3 1/V3 -1/3 0 0.7672
AWC | T71ST=37 | -0.07915 | 1.055 | -0.3947 | 0.5774 | 0.6974 | -0.05315 | 0.1053 | 0.1824 | 0.0007030
48C | T-1ST=37 | -0.1667 | 0.9966 | -0.2709 | 0.5774 | 0.6355 | 0.05406 | 0.2291 | 0.3968 0.06993
Table D.1: Parameters 7 and ¢ in the fundamental region for level 4 models.
Input parameters - fundamental region
Case T Re(r) | Im(7) | Re(p1) | Im(p1) | Re(pa) | Im(p2) | Re(ps) | Im(pz) | 1/A (V)
SWC'3 ST 0.01908 | 1.007 | -0.3301 0 -0.7188 0 -1.096 0 0.007958
5WC3p | T-2S7 | -0.3908 | 3.902 | -0.1618 0 0.1621 | 0.4990 | 0.2911 | -0.8960 | 0.0007302
55C T-2S7 | -0.08591 | 1.277 | 0.1812 0 0.4561 | 0.3314 | 0.7194 | -0.5227 | 0.002804

Table D.2: Parameters 7 and ¢ in the fundamental region for level 5 models.
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