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Abstract 

 

Seismic modeling plays an important role in geophysics and seismology for estimating 

the response of seismic sources in a given medium. In this work, we present a 

MATLAB-based package, FDwave3D, for synthetic wavefield and seismogram 

modeling in 3D anisotropic media. The seismic simulation is carried out using the 

finite-difference method over the staggered grid, and it is applicable to both active and 

passive surveys. The code package allows the incorporation of arbitrary source 

mechanisms and offers spatial derivative operators of accuracy up to tenth-order along 

with different types of boundary conditions. First, the methodological aspects of finite-

difference method are briefly introduced. Then, the code has been tested and verified 

against the analytical solutions obtained for the homogeneous model. Further, the 

numerical examples of layered and overthrust models are presented to demonstrate its 

reliability. 

 

Keywords: Seismic modeling; Finite-difference method; MATLAB, Anisotropic; 

Microseismic 
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Nomenclature  

FDM   Finite-difference method 

VTI    Vertical transverse isotropic 

HTI    Horizontal transverse isotropic 

PML   Perfectly matched layer 

TI     Transverse isotropic 

FD     Finite difference 

RMS   Root-mean-square 

      Density 

iv      Particle velocity 

ij      Stress 

ij      Strain 

if      Body force 

ijklC    Tensor of elastic moduli 

ijC     Second-order components of elastic moduli 

      Lame constant 

      Shear modulus 

0     P-wave velocity along the respective axis 

0     S-wave velocity along the respective axis 

, ,    Thomsen’s anisotropy parameters 

/ / /dh dx dy dz  Space interval 

dt      Time interval 

D+      Forward derivative operator 

D−      Backward derivative operator 

n              Time step 

M             Half of the order of FD operator 

mc             FD coefficients 

iu             Displacement 

M            Moment tensor 

ijm            Moment tensor components 

,ij kG        Spatial derivative of the Green’s function 

( )s t          Source-time function 

( )s t          Derivative of the source-time function 

PV            P-wave velocity 

SV            S-wave velocity 

i            Direction cosine of the ray path 

ij           The Kronecker delta function 

V           Volume of a grid cell 

ij          The incremental stress 

            Damping parameter 

maxV         Maximum velocity along all directions 

minV         Minimum velocity along all directions 

nt          Total number of time steps 

min        Minimum wavelength 

maxf        Maximum frequency of the source signal 

 

1 Introduction 

In recent years, both the academic and industrial communities have shown an increasing 

interest in passive seismic, such as microseismic monitoring. For active seismic surveys, 

the seismic anisotropic effect is often ignored to accelerate the simulation of seismic 

wavefields, and an explosive or force source is generally used to mimic explosives or 

seismic sources from trucks [1]. For microseismic monitoring, seismic anisotropy has 

significant effects on the recorded traveltime and amplitudes, and increases the 

uncertainty for source location [2] and source mechanism inversion [3]. The source 
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mechanism can provide fundamental information to understand the rock failure process, 

and it also lays the foundation for subsequent geomechanical analyses and geological 

interpretations. In the context of passive seismic monitoring, both double-couple and 

non-double-couple source mechanisms are observed [4, 5]. Various researchers have 

shown that the processing and interpretation of microseismic data can be greatly 

facilitated by seismic wavefield modeling [6–8].  

 

Seismic forward modeling can be used to obtain the seismic response of a source(s) 

with a defined mechanism within the given medium (e.g., anisotropic or attenuative 

media) [9, 10]. The exact analytical solutions of wave equations do not exist for 

complex subsurface configurations, and numerical methods such as the finite-

difference method (FDM) play a vital role in such cases [10–13]. The FDM transforms 

the set of the partial differential equations, that govern the propagation of seismic waves 

within the media, into a system of algebraic equations through its discretization over 

the computational domain. A large amount of effort has been put into the development 

of various aspects of FDM, including rheology [14, 15], grid schemes [16, 17], and 

boundaries [18–20]. The FDM is based on the complete wave equation (with least 

physical approximations) and it can account for relative amplitudes of various arrivals 

(e.g., primaries and multiples). Seismic anisotropy is characterized by the elastic 

parameters and can be incorporated into FDM through the elastic wave equation [21]. 

Here we take the two commonly-used anisotropic media, vertical transverse isotropic 

(VTI) and horizontal transverse isotropic (HTI) media, as examples to showcase the 

anisotropic effects. The moment tensor source can be implemented by adding 

increments on the stress or particle velocity components [22, 23].  
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From the perspective of code availability, most of the current open-source packages are 

in C and FORTRAN, and some are limited to 2D cases [24–26]. A list of available codes 

for simulating seismic wave propagation is summarized in Table 1. During the last 

decades, MATLAB has emerged as a preferred platform for carrying out the scientific 

simulations due to its features and advantages, such as the dynamical expansion of 

matrices, strong interactive experience and parallel computing performance, flexible 

declaration and allocation of variables [12, 27]. Though there are several MATLAB-

based seismic packages or tools, such as SplitLab [28] and Crazyseismic [29], only a 

few packages are available for seismic wave simulation in 2D scenarios [26, 30]. 

 

In this work, we have developed a MATLAB solver (FDwave3D) for seismic forward 

modeling, which is an extension of the previous code package FDwave [26]. Since the 

computational power of modern computers enables us to simulate full seismic 

wavefields for large and complex 3D models, we leverage it to provide a concise, 

comprehensible, and practical framework of 3D wavefield modeling in anisotropic 

media. The unique capabilities of the FDwave3D package are: (1) variable order 

accuracy of spatial derivative (up to tenth-order) using the staggered grid, (2) 

incorporation of arbitrary source mechanisms using the moment tensor, (3) option for 

different types of absorbing boundary conditions, i.e., perfectly matched layer (PML) 

and damped boundary condition, and (4) efficient implementation using vectorization. 

The code package is suitable for anisotropic elastic wave propagation simulation in both 

active and passive seismic surveys. We have provided numerical examples of 3D 

anisotropic models to demonstrate the reliability of the code package. 
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Table 1 

Representative FD codes for seismic wave modeling. VS and DS represent velocity-

stress formulation and displacement-stress formulation, respectively. “/” denotes no 

parallelization implementation. 

Rheology Scheme Grid type Parallelization Language References 

Viscoelastic VS Staggered MPI C [14] 

Poroelastic VS Staggered MPI C [24] 

Anisotropic elastic DS Collocated / Matlab [30] 

Viscoelastic VS Staggered MPI+OpenMP Fortran [31] 

Elastic VS Staggered GPU CUDA [32] 

Viscoelastic VS Staggered OpenMP C [25] 

Anisotropic elastic DS Collocated GPU+OpenMP CUDA [33] 

Elastic VS Staggered MPI C [34] 

Elastic VS Staggered GPU CUDA [35] 

Viscoelastic VS Staggered MPI+OpenMP Fortran [36] 

Viscoelastic VS Staggered GPU OpenCL [37] 

Anisotropic viscoelastic DS Collocated / C [38] 

Anisotropic elastic VS Staggered OpenMP Fortran [39] 

Elastic VS Staggered Vectorized Matlab [26] 

Anisotropic elastic VS Staggered Vectorized Matlab This study 
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2 Methodology 

 

In this section, we briefly discuss the basic theory and methodology required for 

numerical simulation of seismic wave propagation using FDM, which includes the 

elastic wave formulation, discretization strategies, boundary conditions, and stability 

and dispersion issues. More detailed descriptions of the theory and workflow of FDM 

can be found in [9] and [10]. 

 

2.1 Elastic wave modeling using the finite-difference method 

The basic equations for elastodynamic wave motion include the momentum 

conservation equation (equation of motion) and the constitutive law (Hooke’s law) 

which specifies the relation between the stress and strain tensors. These two equations 

for generally anisotropic elastic media can be written as 

 

,
iji

i

j

v
f

t x





= +

 
   (1) 

,ij ijkl klC =   (2) 

where    is the density of the medium, iv   is the particle velocity, ,ij kl    are the 

stresses and strains, if  is the external body force in the direction i , ijklC  denotes the 

tensor of elastic moduli, and  , , , , ,i j k l x y z . Subscripts in the equation follow the 

Einstein summation convention. Owing to the symmetry of stress and strain 

components, the fourth-order elastic tensor can be reduced to second-order tensor 

following the Voigt notation [40]. The elastic tensor has only 21 independent 
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parameters in a general and full anisotropic medium and the complete equation of 

Hook’s is 
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 , (3) 

 

where 
ij  are 

ij  stress and strain components, and  , , ,i j x y z . For the transverse 

isotropy case, only 5 independent components are involved, which are 

11 13 33 44 66, , , ,C C C C C  , and 12 11 662C C C= −  . The isotropic case can be obtained 

from the transversely isotropic case, where 11 33 2C C  = = + , 44 66= =C C  , and 

13C = , in terms of two independent Lame’s constants   and  . The tensor of 

elastic moduli for the transversely isotropic and isotropic media are given by 
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C

C

C
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C  (4) 
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   

   

   
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


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 
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C , (5) 
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The Lame’s parameters are preferred since these two are directly related to the P- and 

S-wave velocities. It makes more sense to choose the parameters with a physical 

interpretation, and thereby, the anisotropy parameters are generally expressed using the 

Thomsen’s parameters ( ), ,     and two velocities ( )0 0,    to characterize weak 

anisotropy in exploration seismology, and the relations between the five parameters and 

elastic moduli are [41] 

( ) ( )

( )

33

0

44

0

11 33

33

66 44

44

2 2

13 44 33 44

33 33 44

2

2

2

C

C

C C

C

C C

C

C C C C

C C C














=



 =



−
=


 −

=



+ − − =
 −

. (6) 

The 
0  and 

0  are related to P-wave and S-wave velocity parallel to the respective 

axis, whereas    and    reflect the fractional change in the P-wave and S-wave 

velocities, respectively. 

 

2.2 Finite difference formulation for elastic wave simulation 

The strain rate can be defined as ( )1 2ij i j j it v x v x  =   +   and substituting 

this definition into the time derivative of Hooke’s law, we obtain the velocity-stress 

formulation as a coupled partial differential equation (PDE), which is adopted in the 

present work. The set of the coupled PDE obtained above is discretized over the 

staggered grid, which is quite frequently used for the 3D FD modeling of seismic wave 

propagation and earthquake motion [16, 22, 42, 23]. The arrangement of the material 
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parameters (e.g., density, velocity) and field parameters (e.g., stresses and particle 

velocities) for the staggered grid and the collocated grid are shown in Figure 1. The 

parameters on the staggered grid are positioned on different nodes separated by half the 

grid spacing, which increases the accuracy and stability of the FDM. A disadvantage of 

staggered grids is that the off-diagonal stress and strain components are not defined and 

computed in the same position. Therefore, some stress components have to be 

interpolated, which accounts for stress-strain relation [43] and moment tensor source 

implementation [39].  

 

 

Figure 1. Schematic representations of (a) the collocated grid (a) and (b) the staggered 

grid (b). The staggered-grid implementation is realized by shifting half spacing of the 

conventional full grid and overlapping meshes of individual components. 

 

The velocity-stress formulation shown in anisotropic media can be discretized over the 

standard staggered grid as follows [14, 39] 
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where ijC  is the components of the matrix of elastic moduli and follows the Voigt 

notation [40]. D+
  and D−

  are the shifted discrete derivative operators, which 

correspond to forward and backward operators, respectively (see equations 9-10 for 

more details). n+   and n−   denote ( )1 2n dt+   and ( )-1 2n dt  , respectively. The 

remaining parameters have the same meanings as mentioned above.  

 

Our code package offers a dynamic selection from fourth- to tenth-order accurate spatial 

derivative-based FD schemes. By shifting the coordinate system ±1/2 grid spacing over 

the grid, we can obtain the generalized formulation of the forward and backward FD 

operators as [44] 
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( ) ( ) ( )( )( )
1

1
1 ,

M

m

m

D f i c f i m f i m
dh

+

=

= + − − −  (9) 

( ) ( )( ) ( )( )
1

1
1 ,

M

m

m

D f i c f i m f i m
dh

−

=

= + − − −  (10) 

where dh  is the spatial spacing, M  is the half of the order of FD operator, mc  is 

the corresponding coefficients for the staggered grid scheme. Please note the operators 

D+   and D−  approximate the partial derivative of a continuous function ( )f x   at 

1 2i +  and 1 2i − , respectively, since we shift the coordinate system ±1/2 grid spacing 

to realize the staggered grid scheme and in real implementations we can only use 

integers as grid numbers [14].  

 

Here we showcase the sample codes of the transverse isotropy case as Figure 2. The 

snippets are directly taken from the function 

FDwave_calculation_3Delastic_2N_vTI.m (only the codes of the particle velocity xv  

and stress component xx  are shown). 
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Figure 2. Sample codes of finite difference formulation for elastic wave simulation in 

transverse isotropy case. Nt and dt are the total number of time steps and time spacing, 

NN is the half value of the operator order, nx, ny, and nz are the number of spatial nodes 

in x, y, and z directions, respectively, while dx, dy, and dz are the corresponding spatial 

spacing. vx_x, vx_y, and vx_z are the components of vx in x, y, and z directions, 

respectively, and those of txx have similar meanings. Pmlxn and Pmlxd are the 

numerator and denominator of PML condition in x direction defined in equation 16, 

other PML-related variables have similar meanings. Dxfm is the forward derivative 

operator of x (e.g., equation 9), Dybm and Dzbm are backward derivative operators of 

y and z (e.g., equation 10). C11, C12, and C13 are three of the five non-zero values of 

the components of the matrix of elastic moduli in the case of transverse isotropy. 
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2.3 Moment tensor source implementation 

A point source is generally utilized for the simulation of small local or near-regional 

earthquakes, where the dominant wavelength is much larger than the source dimensions 

[45]. A point displacement discontinuity (e.g., dislocation) is assumed at the source, 

which can be mathematically represented with the body-force term in the equation of 

motion for the continuous medium [46]. A moment tensor is a mathematical 

representation of a point seismic source characterized by nine pairs of force couples 

that act at a point and expressed as a symmetric second-order tensor M   [47]. The 

tensor component ijm  is a force couple of opposing forces applied along the i  axis 

and situated along the j   axis. Combined with the Green’s function for seismic 

response of specific media, the moment tensor can be used to compute the 

corresponding displacement u  due to an arbitrary source mechanism as follows 

 

( ), ,i jk ij ku m G s t=    (11) 

where ,ij kG  is the spatial derivative of the Green’s function, ( )s t  is the source-time 

function. The detailed equations of far-field displacement of P- and S-waves in a 

homogeneous isotropic elastic medium are [48] 

 

3
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 

 
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  (12) 
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1
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S
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 
 (13) 

where 
P

iu  and 
S

iu  are the displacement at a distance r  from the source, PV  and   
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SV  are P- and S-wave velocities, i  is the i th direction cosine of the ray path, and 

s is the time derivative of the source-time function.  

 

The moment-tensor source can be implemented in two ways. One is loading the 

equivalent body-force term on momentum conservation equations, namely on particle 

velocity components [22, 49], and the other one is adding the body forces on stress 

components [23, 50]. The implementation of incremental stress is more straightforward 

between the two approaches and is adopted in this work. Shi et al. [39] provided a more 

reasonable formulation associated with four neighboring grid points of each shear stress 

component to obtain a symmetrical moment tensor solution (equation 15), while Li et 

al. [51] presented a simpler implementation setting all stress components at the single 

grid point (equation 14). Based on the configuration of nodes for different variables on 

the staggered-grid based FDM (Figure 1), we can obtain the moment tensor 

implementation with the stress components as following single point and multiple point 

schemes 

( )
,

ij

ij

m s t dt

V


−
 =   (14) 

( )

( )

( )
1 2, 1 2

,

| ,
4

ij

ij

ij

ij i j

m s t dt
i j

V

m s t dt
i j

V




 

−
 = =



−
 = 

  (15) 

where   is the incremental stress, V dx dy dz=  is the effective volume of the 

grid cell, , ,dx dy dz  are the spatial spacing and dt  is the size of time steps. Both of 

the two schemes are included in our package, and the scheme with a single grid point 

is set as the default implementation. 
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2.4 Other implementation details 

Boundary condition 

To solve the problem of wave propagation through the subsurface, one must specify the 

appropriate initial and boundary conditions. The typical assumption is that of zero 

initial conditions, i.e., all wavefields used for modeling are all assumed to be at rest. 

The boundary condition deserves more attention and elaboration. In general, there are 

two types of boundary conditions, free surface boundary and absorbing boundary. The 

top surface can be treated as the free surface resembling the real scenario, namely air-

solid interface for the land seismic and air-water interface in the case of the marine 

seismic. Our code package adopts the stress imaging technique [22, 42] to implement 

the free surface condition. The artificial absorbing boundary can be implemented either 

using the damping boundary condition or the perfectly matched layers (PML). The 

former is also called as the classical sponge method, in which the amplitudes are 

multiplied by a damping factor to eliminate spurious wave reflection at the boundaries 

[18]. The PML was initially proposed for electromagnetic wave propagation [19] and 

later utilized in elastic wave propagation by [20, 52, 53]. In this work, we use the 

classical (split) PML, in which all wavefields are first split into three orthogonal 

directions and then each is updated using the artificial damping provided by PML 

(equation 16).  

 

Take the x   component of particle velocity ( xv  ) as an example, formulation of 

discretized equations with PML as follows 
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  
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+  


 
= − +  

+  


  = − + 
 +  

 (16) 

where , ,x y z    are the damping parameter along respective directions, the subscript 

and superscript of the variable denote the spatial direction and time step, respectively. 

For instance, |nx xv  denotes the xv  component at x-direction and time step n . The 

remaining parameters have the same meanings as mentioned before. The damping 

parameter is calculated as ( ) ( )2 3 13 2 lnpV d W R −= , where d  is the distance from the 

point to the inner boundary, W  is the width of the boundary layer, and the theoretical 

reflection coefficient 610R −=  [20].  

 

Numerical stability and grid dispersion 

In FDM, the continuous derivatives are approximated by the numerical derivative 

operators and thus, numerical errors are inevitably introduced. These errors can 

introduce numerical dispersion and even cause instability in the numerical scheme of 

FDM. The relationship between the temporal and spatial grid spacing parameters (i.e., 

dt   and dh  ) are coupled such that it affects the stability and the dispersion 

characteristics of the numerical scheme. 

 

The numerical stability is achieved by constraining the timestep smaller than the time 
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taken by the wave travels between two adjacent grid points. For the 3D scenario, the 

timestep should fulfill the following Courant-Friedrichs-Lewy criterion [54] 

 

max

,
3

dh
dt

V S
   (17) 

where maxv  is the maximum velocity (among all directions) in the model, S  is the 

summation over absolute values of Taylor coefficients. For fourth-order FD operator 

for the staggered grid scheme, 27 24 1 24 7 6S = + = . 

 

The grid dispersion can be controlled by constraining the value of dx , and a general 

criterion can be obtained following the Nyquist-Shannon sampling theory [44] 

 

min min

max

,
V

dh
w wf


 =  (18) 

 

where  min  denotes the minimum wavelength, w  is the number of grid points per 

wavelength, minV  is the minimum velocity (among all directions) in the model and  

maxf  is the maximum frequency of the source signal. A refinement of the spatial 

sampling of the model results in a more precise FD solution. The accuracy of the FD 

operator is determined by its length. For short FD operators, w   should be chosen 

relatively large and thus require small spatial grid spacing, while grid spacing is allowed 

to be larger for high-order operators. A rule of thumb to minimize the grid dispersion is 

that the shortest wavelength should be sampled by at least five or six grid points to keep 

the numerical dispersion error below 5 % level [42, 55, 56]. Bohlen et al. [44] provided 
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more conservative conditions to avoid grid dispersion, e.g., 8w =   and 5w =   for a 

fourth- and tenth-order FD operator, respectively. 

 

 

3 Architecture of the package 

 

The basic architecture of the code package and an exemplary implementation are 

summarized in Figure 3, and Figure 4. For each specific case, the simulation can be 

separated into three parts as input calculation, and output. The basic steps to conduct 

seismic modeling are as follows: 

 

⚫ Initialize and setup the FDwave3D code. 

⚫ Define the model by assigning stiffness coefficients for the media. 

⚫ Define the source wavelet signature and the source mechanism. 

⚫ Select and setup the source and receiver geometry. 

⚫ Check the potential numerical stability and grid dispersion issues. 

⚫ Select the boundary condition. 

⚫ Carry out the simulation and show the results. 
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Figure 3. The basic architecture of FDwave3D: Light green, red, and blue boxes 

represent the folder names and functions of input, calculation, and output part of the 

simulation workflow. 

 

 

Figure 4. Setup of an exemplary implementation for FDwave3D. 

 

To facilitate the understanding of the examples in this work (see the following section), 

we briefly introduce the respective scripts and functions in Table 3. The code package 

(see Code availability) has been tested with MATLAB R2016b in both Windows and 

Linux operating systems. 

 

 

Table 2  

A brief introduction of the code package FDwave3D and the respective scripts and 
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functions mentioned in the manuscript. 

Purpose Script Name 

Scripts for running simulations on different models 

Homogeneous model Simulation3_homo_downhole.m 

Horizontally layered model Simulation3_layer3_TI.m 

Over thrust model Simulation3_overthrust_TI.m 

Comparison of computational costs compare_cost.m 

Useful function provided within package 

Numerical stability and grid dispersion check FDwave_analyse_3Delastic.m 

Calculate moment tensor using fault plane 

solution 
FPgenMT.m 

Boundary condition (Damp/Sponge, PML) bc_3Ddamp.m, bc_3Dpml.m 

FD solver for the TI case FDwave_calculation_3Delastic_2N_vTI.m 

FD solver for the full anisotropic case FDwave_calculation_3Delastic_2N_vFulAni.m 

 

 

 

4 Application 

 

Compared to active seismic modeling, the passive seismic sources generally lie in the 

subsurface with a higher dominant frequency content, and their source mechanisms are 

more complex than controlled sources, which are simple explosives or force sources. 

In this section, we demonstrated the reliability of the code with passive seismic or 

microseismic modeling over 3D homogeneous, layered, and overthrust models. The 

wavefield snapshots and records for different anisotropic media are analyzed and their 

computational costs (including processing time and memory cost) are compared.  

 

First, we validate the accuracy of the method and code by comparing the synthetic 
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seismograms with analytical solutions for a homogeneous and isotropic model. Then, 

two anisotropic models (a horizontally layered model and the overthrust model) from 

[39] are utilized to test the accuracy of the proposed FD operator. The detailed 

parameters used for simulation are listed in Table 3. We set the FD operator with 

second-order in time and tenth-order in space (i.e., ( )2 10,O t x   ) as the default 

scheme, which is also consistent with [39]. 
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Table 3  

List of parameters used for FD seismic wave simulation. 

Parameter Symbol 

3D Models 

Homogenous Horizontally layered Overthrust 

Grid spacing dh  2.5 m 10 m 10 m 

Time spacing dt  0.0003 s 0.0005 s 0.0005 s 

Total number of nodes  nx ny nz   121 ×121 × 121 341 × 341 × 291 401 × 401 × 94 

Total time steps nt  801 2401 2001 

Receiver spacing dr  

Downhole line 

10 m 

Downhole line 

10 m 

Surface line 

10 m 

Source wavelet ( )s t  Ricker Ricker Ricker 

Source central 

frequency 
0f  60 Hz 30 Hz 30 Hz 

Source moment tensor M  
1;

1

xy yx

yz zy

m m

m m

= =

= = −
 1xy yxm m= =  1xy yxm m= =  

Number of PML layers PMLN  20 20 20 

Anisotropic parameters 







 Isotropic 
In the middle layer 

(0.334, 0.575, 0.73) 

Around the source 

(0.334, 0.575, 0.73) 
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4.1 Homogenous and isotropic model 

The homogeneous model size is 200 m × 200 m × 200 m, with the spatial and temporal 

spacing are 2.5dx m=   and 0.0003dt s=  . The velocities of the model are 

3000 , 1.67p p sv m s v v= = , and the density is 32500 kg m = . The seismic source is located 

at (100 m, 100 m, 200 m). A downhole array with 15 receivers is deployed at the lateral 

position of ( )0, 0x y= =  to record the seismic data. Other parameters are listed in Table 

3. In order to validate our code, we compare synthetic seismograms with corresponding 

analytical solutions (equations 12 and 13). The derivatives of the far-field displacement 

with respect to time in the x-direction are compared with the synthetic velocity 

components. The error between the compared traces is quantified using the root-mean-

square (RMS) error ( ( )
2

FD analytical

x x

nt

v v nt− , where nt  is the total number of time 

steps of each trace). As shown in Figure 5, the synthetic waveforms show good 

agreement with the analytical solution, and there is no obvious difference for the 

normalized amplitude and seismic phases between the two approaches.  
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Figure 5. Comparison of synthetic seismograms with analytical solutions of two 

double-couple sources. (a) and (b) are results of a strike-slip source with moment tensor 

( )1 2 0 1 0 1 0 0 0 0 0=M ； ；  , (c) and (d) are results of a dip-slip source with moment 

tensor ( )1 2 0 0 0 0 0 -1 0 -1 0=M ； ； . 

 

 

4.2 Horizontally layered model 

A horizontally layered model with the size of 3000 m × 3000 m × 2500 m is tested in 

this section. The thickness of the three layers are 750 m, 1000 m, and 750 m, and 
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corresponding velocities and the density are  3724, 4640, 5854pv m s=  ,

 1944, 2583, 3251sv m s= ,   32450, 2490, 2680 kg m = , respectively. The seismic source 

with the vertical strike-slip mechanism is located in the middle of the model. A 

downhole array with 251 receivers is deployed at the lateral position of 

( )1700 , 1700x m y m= = .  

 

The VTI and HTI models are commonly used to simulate horizontal stratification, e.g., 

shale formations, and the rock with vertical fractures, respectively. Besides the isotropic 

model, a VTI layer and a HTI layer are also used to show the effects of seismic 

anisotropy on the seismic wavefield. The HTI medium is constructed by rotating the 

VTI medium anticlockwise along the Y-axis by 90◦, in which the Thomsen parameters 

are 0.334, 0.575, 0.73  = = = , as measured anisotropy in the clay shale [41].  

 

The vertical wavefield slices of the particle velocity in the y-direction for the three 

models are shown in Figures 6a-c. The existence of layer boundaries produces 

transmitted waves, reflected waves, and converted waves, making the wavefield 

complicated. For the VTI and HTI models, strong anisotropy can be observed in the 

shape of the wavefront and there are obvious quasi P- and S-waves (as shown in Figures 

6b and 6c). The corresponding seismograms of the downhole array for the three models 

are shown in Figures 6d-f. Compared with the seismograms in the isotropic case, the 

seismograms for the TI models are much more complicated due to S-wave splitting, 

and more reflected and converted waves. The presence of seismic anisotropy results in 

difficulty for seismic processing, e.g., seismic event detection and phase picking. 
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Figure 6. Wavefield snapshots of velocity component in the y-direction for isotropic (a), 

VTI (b), and HTI (c) models. The slices are taken at the simulation time of 0.23 s and 

lateral position of y=1500 m. The corresponding seismograms of the three different 

models are shown in (d), (e), and (f), respectively. Dashed lines show the boundaries of 

different layers. The figure is produced referring to Figures 7 and 8 in [39] for 

comparison, and the high degree of consistency between snapshots and seismograms 

provides cross-validation of the code. 

 

4.3 Overthrust model 

As the last example, we apply our code package to the benchmark SEG/EAGE 
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overthrust model [57], which is highly heterogeneous and widely used in exploration 

geophysics [58]. The P-wave velocity of the overthrust model is shown in Figure 7a. 

The overthrust model has a size of 401 × 401 × 94 nodes in the x-, y-, and z-directions 

with a grid spacing of 10 m. The same double-couple source with vertical strike-slip, 

as used in above horizontally layered model, is adopted and set in the middle of the 

model. We have considered three cases for this model as well, namely, isotropic, VTI, 

and HTI models. For TI models, the anisotropic region is set up around the source and 

the size is of 1000 m × 1000 m × 500 m (black lines in Figure 7). A surface array of 

201 receivers is deployed at 2 km in the y-direction. The source-receiver geometry is 

shown in Figures 4b and 4c.  

 

 

Figure 7. (a) P-wave velocity of the 3D overthrust model. (b) Velocity profile at 2 km 

in the y-direction. (c) Velocity profile at 2 km in the x-direction. The red star indicates 

the source position, the yellow reversed triangles indicate the surface array, and the 

black lines show the boundary of the anisotropic region in the model. 

 

The vertical wavefield snapshots and the corresponding seismograms of the three 

models are shown in Figure 8. Due to seismic anisotropy, the wavefields of the 



30 

 

anisotropic models are much more complex than that of the isotropic model, especially 

in the anisotropic region (Figures 8a-c). This complexity arises from the S-wave 

splitting and velocity contrast between isotropic and anisotropic regions. A significant 

difference in the recorded seismograms can also be observed between the isotropic and 

TI models (Figures 8d-f). 

 

 

5 Computational cost 

 

The computation expense is quantified in terms of processing time and memory cost. 

The processing time is directly dependent on the size of the model, the number of time 

steps, the order of the derivative, and the type of boundary condition. A better measure 

is normalized processing time (total processing time/number of time steps), which is 

independent of the number of time steps. We want to investigate the effect of model 

size on computational efficiency, so we choose the same parameters for all simulations, 

including the same FD operator ( ( )2 10,O t x  ) and the same PML boundary condition 

with a fixed thickness. 
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Figure 8. Wavefield snapshots of velocity component in the y-direction for isotropic (a), 

VTI (b), and HTI (c) models. The slices are taken at the simulation time of 0.5 s and 

lateral position of y=2 km. The corresponding seismograms of the surface arrays from 

the three different models are shown in (d), (e), and (f). The results are quite consistent 

with those in Figures 23 and 26 in [39]. 
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The code package offers two solutions, pure-MATLAB codes and a C-MEX code. The 

former is convenient for users to manipulate and modify while the latter allows users 

to obtain synthetic results in a more efficient manner (in the context of MATLAB). The 

normalized processing time and memory cost for the aforementioned models are 

presented in Table 4. Two supplementary examples with the grid size of 171 × 171 × 

171 and 215 × 215 × 215 are added to fill the size gap between the homogeneous and 

overthrust models. Theoretically, the normalized processing time increases linearly 

along with the total number of nodes in the double logarithmic coordinate, as shown in 

Figure 9. Please note that the related C++ code within the package is not fully optimized 

(e.g., vectorized or parallelized), which is beyond the scope of the current study. The 

tests are conducted on a standalone computer with 8 cores of Intel Xeon W-2123 CPU 

with the frequency of 3.60 GHz and 64 GB RAM in a Windows operating system. 

 

Table 4 

Normalized processing time (second) and memory cost (GB) for different codes and 

models.  

Model parameter Grid size Code 

Normalized 

processing time 

(second) 

Memory cost 

(GB) 

Homogeneous model 

121×121×121 

Pure-

MATLAB 

2.0 0.8 

C-MEX 0.7 0.8 

171×171×171 

Pure-

MATLAB 

5.9 2.7 

C-MEX 2.4 2.8 

215×215×215 Pure- 12.3 5.0 
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MATLAB 

C-MEX 4.9 5.3 

Overthrust model 401×401×94 

Pure-

MATLAB 

11.4 12.5 

C-MEX 4.6 13.5 

Horizontally layered 

model 

341×341×291 

Pure-

MATLAB 

41.7 15.0 

C-MEX 18.0 18.5 

 

 

 

 

Figure 9. Normalized processing time for different codes and models. The circles from 

the left to the right of each line correspond to the homogeneous model, two 

supplementary models, the overthrust model, and the horizontally layered model. 
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6 Conclusion 

 

We developed an efficient MATLAB package for FD modeling of seismic waves in 3D 

anisotropic media. The code package provides various options for source 

implementations with arbitrary source mechanisms, boundary conditions, and variable 

accuracy (up to tenth-order) of the spatial derivative operators. In principle, the code 

can be applied to elastic wave propagation simulation in heterogeneous anisotropic 

media for both active and passive seismic surveys at all scales. Numerical examples 

have demonstrated the reliability of the method and the code package according to the 

test results on a standalone computer. 
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