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Abstract 26 

The immune system provides defence to the host against pathogenic organisms. A weak immune 27 

system increases susceptibility to infections and allows infections to become more severe. One 28 

component of the immune response is inflammation. Where inflammation is excessive or 29 

uncontrolled it can damage host tissues and cause pathology. Limitation of oxidative stress is one 30 

means of controlling inflammation. Citrus fruit juices are a particularly good source of vitamin C 31 

and folate, which both have roles in sustaining the integrity of immunological barriers and in 32 

supporting the function of many types of immune cell including phagocytes, natural killer cells, 33 

T-cells and B-cells. Vitamin C is an antioxidant and reduces aspects of the inflammatory 34 

response. Important bioactive polyphenols in citrus fruit juices include hesperidin, narirutin and 35 

naringin. Hesperidin is a glycoside of hesperetin while narirutin and naringin are glycosides of 36 

naringenin. Hesperidin, hesperetin, naringenin, naringin and narirutin have all been found to 37 

have anti-inflammatory effects in model systems, and human trials of hesperidin report 38 

reductions in inflammatory markers. In humans, orange juice was shown to limit the post-39 

prandial inflammation induced by a high fat-high carbohydrate meal. Consuming orange juice 40 

daily for a period of weeks has been reported to reduce markers of inflammation, including C-41 

reactive protein, as confirmed through a recent meta-analysis. A newly emerging topic is 42 

whether polyphenols from orange juice have direct anti-viral effects. In summary, micronutrients 43 

and other bioactives present in citrus fruit juices have established roles in controlling oxidative 44 

stress and inflammation and in supporting innate and acquired immune responses. Trials in 45 

humans demonstrate that orange juice reduces inflammation; its effects on innate and acquired 46 

immunity require further exploration in well-designed trials in appropriate population sub-groups 47 

such as older people.   48 
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Introduction – the importance of immunity and the role of inflammation 49 

The role of the immune system is to protect the individual against pathogenic organisms 50 

including bacteria, viruses, fungi and parasites. There is a wide array of potentially threatening 51 

organisms in the environment. Thus,  in order to provide effective protection, the human immune 52 

system has evolved to include many different cell types and communicating molecules, and 53 

multiple functional responses. The immune system has four general actions. Firstly, it acts as a 54 

barrier keeping microbes from entering the body. Examples of barriers include the skin; the 55 

mucosal lining of the gastrointestinal, respiratory and genitourinary tracts; the acid pH of the 56 

stomach which kills many bacteria; and anti-microbial proteins in secretions such as tears and 57 

saliva. Secondly, the immune system acts to recognise microbes and to identify whether they are 58 

harmful or not. Recognition can be of general structural features of microbes (called molecular 59 

patterns) or of specific and unique microbial antigens. The mechanism of recognition involves 60 

ligand-receptor pairs, but these are different for recognition of molecular patterns compared with 61 

recognition of specific antigens and the type of response that is initiated is also different; this is 62 

elaborated further in this section. Thirdly, the immune system acts to eliminate those microbes 63 

identified as being harmful; this involves the destructive actions of various types of immune cell. 64 

Fourthly and finally, the immune response generates immunological memory. This involves 65 

long-term maintenance of memory T lymphocytes (T cells) and B lymphocytes (B cells) so that, 66 

if there is re-exposure to the harmful microbe, the immune response becomes faster and stronger 67 

than it was for the original response. The generation of immunological memory is the basis of 68 

vaccination. These complex and sophisticated actions can be achieved because the human 69 

immune system is comprised of many cell types (Figure 1) [1], each with their own individual 70 

functional capabilities. These different cell types interact with one another as part of the immune 71 

response to assure effective protection of the host from pathogens. The immune system may be 72 

classified in different ways, most commonly into innate (or natural) and acquired (or adaptive) 73 

immunity (Figure 1).  74 

Innate (sometimes called natural) immunity includes the barrier functions and the cells 75 

involved in recognition of molecular patterns on microbes (these are called microbe-associated 76 

molecular patterns or MAMPs) and the subsequent destruction of those microbes. Examples of 77 

MAMPs include the cell wall lipopolysaccharides of Gram-negative bacteria and the 78 

peptidoglycans of Gram-positive bacteria. These general structural features are recognised by 79 

pattern recognition receptors; toll-like receptors are examples of pattern recognition receptors but 80 

there are many others. The typical response following recognition would be to engulf the 81 

microbe carrying the MAMP by the process of phagocytosis, with subsequent destruction of the 82 

microbe within lysosomes by the so-called respiratory burst which generates destructive reactive 83 
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oxygen species. Neutrophils, monocytes, macrophages and dendritic cells are all phagocytic 84 

cells. The inflammatory response is also triggered by this process, with the aim of creating an 85 

environment that is hostile to the invading microbes; in fact, an inflammatory response can be 86 

triggered by isolated MAMPs, not only by microbes bearing MAMPs. Note too that the 87 

inflammatory response can be damaging to the host if it is not properly controlled and many 88 

pathologies involve adverse inflammation [2]. Components of the engulfed microbes appear on 89 

the surface of the phagocytes and are displayed (“presented”) to antigen-specific helper T cells; 90 

phagocytes capable of such display are called antigen-presenting cells.  91 

Acquired (sometimes called adaptive) immunity includes antigen recognition and antigen-92 

specific effector functions such as the proliferation of T cells, the killing of virally-infected cells 93 

by cytotoxic T cells, and the production of antibodies by B cells. Acquired immunity can be 94 

further sub-classified into cell-mediated immunity involving T cells and humoral immunity 95 

involving B cells and antibody production. There are multiple types of T cells, each with 96 

different roles in the immune response (Figure 1).  97 

Innate and acquired immunity are linked. As mentioned already, phagocytic cells such as 98 

macrophages and dendritic cells, which are part of innate immunity, act as antigen-presenting 99 

cells, whereby they process and then present antigens derived from engulfed microbes to 100 

antigen-specific T cells so eliciting acquired immunity. Conversely, cytokines produced by 101 

activated T cells regulate the activity of innate immune cells. Furthermore, antibodies produced 102 

by B cells coat microbes, making the process of phagocytosis more efficient. Thus, there is 103 

bidirectional communication between innate and acquired immunity and this can involve both 104 

cell-to-cell contact and production of, and responses to, chemical mediators.  105 

It is obvious that effective defense against pathogenic organisms requires a well-functioning 106 

immune system. Consequently, individuals with weakened immune systems are at increased risk 107 

of becoming infected and of infections being more serious, even fatal. Seriously 108 

immunocompromised individuals must live their lives in protected environments, where they are 109 

guarded against exposure to harmful microbes. The immune system also plays a role in assuring 110 

immunologic tolerance towards non-threating exposures including harmless microbes (e.g. 111 

commensal bacteria in the gastrointestinal tract) and food components. If this tolerance is lost, 112 

adverse immune reactions are triggered. 113 

Inflammation is an essential and normal component of the innate immune response. In 114 

general, inflammation acts to create an environment that is hostile to pathogens, it initiates 115 

pathogen killing, and it causes changes in the metabolism of the host. Many immune cell types 116 

play roles in the inflammatory response, which involves the production of, and responses to, a 117 

vast number of chemical mediators. The cardinal signs of inflammation are redness, swelling, 118 
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heat, pain and loss of function. These are caused by the cellular activation and chemical mediator 119 

release that occur during the initiation and perpetuation of the inflammatory response. The 120 

chemical mediators released from cells during inflammation include lipids (e.g. prostaglandins, 121 

leukotrienes, endocannabinoids, platelet activating factor), proteins (e.g. cytokines, chemokines), 122 

reactive oxygen species (e.g. superoxide anion, hydrogen peroxide), amino acid derivatives (e.g. 123 

histamine, nitric oxide) and enzymes (e.g. matrix proteases) depending upon the cell types 124 

present, the nature of the inflammatory stimulus, the anatomical site involved, and the stage 125 

during the inflammatory response. Although the inflammatory response is designed to be 126 

damaging to pathogens, the cellular activities involved and the chemical mediators produced can 127 

cause damage to host tissues. Fortunately, therefore, inflammation is normally self-limiting and 128 

typically resolves rapidly. This is because various inhibitory mechanisms are activated as 129 

inflammation runs its course. Loss of the regulatory processes involved in resolution of 130 

inflammation can result in excessive, inappropriate or on-going inflammation that can cause 131 

irreparable damage to host tissues leading to pathology and disease [3]. Inflammation is an 132 

important component of a wide array of human conditions including classic chronic 133 

inflammatory diseases like rheumatoid arthritis, inflammatory bowel diseases, allergy and 134 

asthma which are all controlled or treated with varying degrees of success with anti-135 

inflammatory medications [2,3]. Inflammation is also involved in cardiovascular diseases, 136 

metabolic diseases, neurodegenerative disorders and cognitive decline; in many cancers; and in 137 

ageing [4-6]. The relationship between inflammation and oxidative stress is bidirectional: 138 

oxidative stress induces inflammation and inflammation induces oxidative stress (Figure 2). 139 

Hence, agents that act to reduce oxidative stress can also be anti-inflammatory.  140 

The aim of this article is to review the literature that relates to the modulation of components 141 

of the immune response, including inflammation, by citrus fruit juices and their bioactive 142 

components and to describe the mechanisms involved. The bioactive components considered are 143 

vitamin C, folate, hesperidin, narirutin and naringin. Hesperidin is a glycoside of hesperetin 144 

(Figure 3) and is present in high amounts in sweet oranges, lemons, limes, and tangerines; it 145 

comprises 90% of the flavanones in orange juice. Narirutin and naringin are glycosides of 146 

naringenin (Figure 3). Naringin is the major flavonoid in grapefruits with far lower amounts seen 147 

in sweet oranges, lemons, limes and tangelos. Narirutin is found in grapefruits and in sweet 148 

oranges, tangerines and tangelos.  149 

 150 

Biomarkers of immunity 151 

Clearly the immune system is highly complex involving many different cell types and subtypes 152 

and functional responses, and the production of, and responses to, many chemical mediators 153 
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(Figure 1). Each of these components can be measured experimentally. In humans this is most 154 

often performed using blood samples, although some immune biomarkers can also be measured 155 

in other accessible fluids including saliva. It is important to note that most immunologic activity 156 

does not take place in the bloodstream but in lymphoid organs such as the spleen and lymph 157 

nodes, or in tissues such as the gut mucosa and lungs. As a consequence of this, only the 158 

minority of immune cells are in the bloodstream at any one time. It is generally agreed that there 159 

is no single marker of either the status or the functional capacity of the immune system [7-10]. In 160 

most human settings, circulating cell numbers, their activation state and responses to an ex vivo 161 

challenge can be, and are frequently, measured. There are normal ranges for circulating immune 162 

cell numbers and immunoglobulin concentrations, but there are no normal ranges for immune 163 

cell functional responses. Assessments of the functional capacity of the immune system can be 164 

made by: 165 

• measuring specific cell functions ex vivo (i.e. of cells isolated and studied in short- or long-166 

term culture); 167 

• measuring in vivo responses to challenge, for example by measuring the changes in the 168 

concentrations of antibodies in the bloodstream (or saliva) in response to an in vivo 169 

immunologic challenge such as vaccination; 170 

• measuring the incidence, duration and severity of infections.  171 

Expert groups have summarised and evaluated a large number of immune function assays 172 

commonly used as markers in human intervention studies [9.10]. Markers classified as being of 173 

high suitability were vaccine-specific serum antibody concentrations, the delayed-type 174 

hypersensitivity response, vaccine-specific or total secretory immunoglobulin (Ig) A in saliva, 175 

and the response to attenuated pathogens. Markers classified as being of medium suitability 176 

included natural killer cell cytotoxicity, oxidative burst of phagocytes, lymphocyte proliferation, 177 

and the cytokine pattern produced by activated immune cells. Other markers were classified as 178 

being of low suitability. Albers et al. [9] stated that “since no single marker allows conclusions 179 

to be drawn about the modulation of the whole immune system, except for the clinical outcome 180 

of infection itself, combining markers with high and medium suitability is currently the best 181 

approach to measure immunomodulation in human nutrition intervention studies”. With regard 182 

to inflammation, the total number of leukocytes (white blood cells) and circulating C-reactive 183 

protein (CRP) concentration are regarded as valid measures and may be supported by measuring 184 

concentrations of pro- and anti-inflammatory cytokines, chemokines and lipid mediators 185 

[2,4,5,6]. CRP at low concentrations requires measurement kits with high sensitivity to be used. 186 

As such, CRP measured with these kits is sometimes referred to as high-sensitivity CRP; it is 187 

important to note that this does not indicate a different type of CRP but merely indicates the 188 
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nature of the assay used to measure CRP. Patterns and clusters of such markers may be more 189 

robust biomarkers of inflammatory state and inflammatory response than individual markers or 190 

small numbers of markers. In addition, markers of cellular activation and gene expression 191 

profiles can be used to gain information about entire pathways of immune activation or 192 

inflammatory state and can also provide insights into mechanisms involved in any 193 

immune/inflammatory challenge or in modulation of the response to such challenges.  194 

 195 

Nutrients within citrus fruit juices that are of particular relevance to the immune system  196 

Citrus fruit juices contain a wide range of micronutrients (vitamins and minerals) and bioactive 197 

compounds; a comprehensive nutrient composition of orange juice has been provided elsewhere 198 

[11]. Several of these micronutrients are important in immune function support [12,13,14,15,16] 199 

and citrus fruit juice is a particularly good source of two of these, vitamin C and folate. The 200 

European Food Safety Authority permits claims of “contributes to the normal function of the 201 

immune system” for both vitamin C and folate [17]. The vitamin C content of orange juice is 202 

quoted as 31 mg/100 g and 40 mg/100 g juice stored at ambient or chilled temperature, 203 

respectively [11], but is known to vary by season and fruit variety. Chanson-Rolle et al. [18] 204 

present a compositional analysis of a number of commercial and home-made orange juices; all 205 

home-made juices were produced in Spain using Valencia oranges. They found that commercial 206 

orange juice contained about 15% less vitamin C than home-made orange juice (40.5 ± 10.1 207 

mg/100 ml vs 47.8 ± 8.59 mg/100 mL). This difference may relate to variations in production 208 

and storage. De Rycker et al. [19] report on a survey of the vitamin C content of 615 samples of 209 

orange juice sourced globally: average content was 45 ± 9.8 mg/100 ml with a range of 12.0 to 210 

72.1 mg/100 ml. Ashchoff et al. [20] report a vitamin C content of freshly squeezed orange juice 211 

of 49.4 mg/100 g with > 98% of this present as ascorbic acid. While storage of orange juice 212 

(whether fresh or commercially-squeezed) results in a decline in vitamin C content, less so if 213 

oxygen exposure is limited and temperature is reduced [21], industry standards require that at 214 

least 200 mg/litre of vitamin C must be present at the end of shelf life [European Fruit Juice 215 

Association, personal communication]. 216 

The total folate content of orange juice is quoted as 32 µg/100 g and 22 µg/100 g juice stored 217 

at ambient or chilled temperature, respectively [11]. Chanson-Rolle et al. [18] report that 218 

commercial orange juice contained about 27% less folate than home-made orange juice (25 ± 5.8 219 

μg/100 ml vs 34 ± 5.8 μg/100 ml, respectively). Others report similar values for folate (e.g. 16 to 220 

30 µg/100 g [22] in orange juice. The main form of folate in orange juice is 5-methyl-221 

tetrahydrofolate [22], which is stable over normal shelf life [22]. 222 
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In addition to micronutrients, citrus fruit juices contain a number of polyphenolic flavonoid 223 

compounds of relevance to the immune system. The concentration of total polyphenols was 224 

found to be similar between commercial and home-made orange juices (63.3 ± 5.85 mg/100 mL 225 

vs 62.9 ± 5.94 mg/100 mL, respectively) [18]. Hesperidin is the main polyphenol in orange juice. 226 

De Rycker et al. [19] report on a survey of the hesperidin content of 231 samples of orange juice 227 

sourced globally: average content was 52 ± 17.5 mg/100 mL with a range of 10.9 to 116.0 228 

mg/100 mL. Ashchoff et al. [20] report hesperidin and narirutin contents of fresh orange juice as 229 

29.3 and 5.3 mg/100 g, respectively. Bestwick et al. [23] and Gattuso et al. [24] report data for 230 

multiple phytochemicals in orange juices, while Grosso et al. [25] report such data for blood 231 

orange juice, which contains a different profile of polyphenolic compounds compared with 232 

regular orange juice.  Li et al. [26] report that the hesperidin and narirutin contents of a 233 

commercial blood orange juice were 80.2 ± 2.7 and 9.5 ± 0.1 mg/100 mL, respectively. Blood 234 

orange juice contained 2.4 ± 0.13 mg/100 mL anthocyanins [26]. Phenolic compounds in orange 235 

juice have been noted to decline minimally during optimal low temperature storage [21]. 236 

 237 

Bioavailability of bioactives from citrus fruit juices 238 

The bioavailability of bioactives from food and beverages is important if they are to exert a 239 

physiological effect of a health benefit, although they may also act via effects on gastrointestinal 240 

microbiota. The bioavailability of vitamin C (comprising ascorbic acid and dehydroascorbic 241 

acid) ranges between 80% and 100% at normal intakes [27]. Folate bioavailability is discussed in 242 

detail elsewhere [28]; bioavailability varies depending upon the exact chemical form and the 243 

food matrix but can be high. There is some evidence that a maximum of 30% of an ingested dose 244 

of hesperidin might be absorbed in the small intestine [29,30]. The majority of an ingested dose 245 

of hesperidin or narirutin is believed to reach the colon, where they are hydrolysed by the colonic 246 

microbiota, primarily yielding their corresponding aglycones hesperetin and naringenin, which 247 

are then absorbed by colonocytes. After conjugation with glucuronic acid or sulphate, they are 248 

released into the bloodstream [31,32]. Reported urinary flavanone recoveries are poor: only 4.1–249 

5.4% and 2.1–12.5% of total hesperidin and narirutin intake has been estimated to be 250 

bioavailable [31,33,34,35]. However, a substantial portion of the flavanone aglycones is further 251 

metabolized to similarly bioavailable catabolites by the colonic microbiota [36]. Thus, the total 252 

bioavailability once all chemical forms are considered may be higher and has even been stated to 253 

be almost 100% of the ingested dose [37]. Nevertheless, a considerable interindividual 254 

variability in the absorption and metabolism of citrus flavanones has been noted, most likely 255 

associated with difference in gut microbiota [38]. The availability of hesperidin from orange 256 

juice appears to be greater than for whole oranges [38], while levels of hesperidin are three times 257 
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greater in commercially-squeezed orange juice compared with home-squeezed which results in 258 

higher blood levels of hesperitin [39]. 259 

 260 

Evidence for effects of citrus fruit juices and their major bioactives on inflammation and 261 

immunity  262 

Introductory comments 263 

Fruits, fruit extracts and fruit juices are good sources of micronutrients and of bioactive 264 

phytochemicals. Many of these play roles in supporting the immune response, in controlling 265 

inflammation and in preventing or controlling oxidative stress which promotes inflammation and 266 

harms the immune response. In a randomised controlled trial, older people (65 to 85 years of 267 

age) who consumed 5 or more portions of fruits and vegetables per day had a better response to 268 

the vaccine against pneumococcus than those consuming 2 or less portions per day [40]. Bub et 269 

al. [41] compared the effects of two blends of fruit juice on immune parameters in healthy men; 270 

the juices used were blends of apple, orange, mango and berry juice or of apple, orange, mango, 271 

lime and apricot juice along with green tea. Both were matched for total polyphenol content 272 

although the nature of the polyphenols differed.  Intervention duration was two weeks. Both 273 

juices increased lymphocyte proliferation, interleukin (IL)-2 production and natural killer cell 274 

activity compared with baseline. The effects of a dried encapsulated fruit and vegetable extract 275 

on immune function have been tested in several studies. After 80 days, this extract increased 276 

lymphocyte proliferation and natural killer cell activity in older men and increased IL-2 277 

production in those who smoked cigarettes [42]. A 77-day randomised controlled trial in 278 

university students reported that the extract increased γδ T cells in the blood stream and resulted 279 

in fewer symptoms of the common cold [43]. γδ T cells are a distinct sub-population of T cells 280 

that are relatively uncommon but are most abundant in the gut mucosa where they contribute to 281 

the intraepithelial lymphocyte population. They are considered to be regulatory cells that link 282 

innate and adaptive immunity. A randomised control trial over 28 weeks in middle-aged men 283 

reported that the encapsulated extract improved markers of oxidative stress and decreased the 284 

inflammatory marker CRP [44]; there was also a tendency to less illness in those consuming the 285 

extract compared with the control group.  Finally, a large randomised controlled trial (n = 543) 286 

over 8 months in healthcare staff aged 18 to 65 years reported a reduction in days of symptoms 287 

of the common cold in those consuming the extract compared with the control group [45]. Taken 288 

together these studies indicate that fruits and vegetables, their juices and concentrates of their 289 

juices, can beneficially modify immune responses, inflammation and oxidative stress in humans.  290 

 291 

Orange juices and inflammation 292 
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Postprandial Studies 293 

It is well described that the post-prandial period can be accompanied by an elevation in the blood 294 

concentrations of markers of inflammation including various cytokines and adhesion molecules 295 

[46]. This post-prandial inflammation is exaggerated by meals high in sugar, total fat or saturated 296 

fat and is believed to enhance cardiovascular risk [46]. The effects of including a specific 297 

component (e.g. orange juice) in a test meal can be tested (“acute” effect) or the effects of 298 

chronic consumption (weeks, months) of a specific component on the response to a standard test 299 

meal can be investigated (“chronic” effect). Acute effects of orange juice consumption on 300 

inflammatory markers have been evaluated in postprandial studies. In the study by Ghanim et al. 301 

[47], orange juice was compared with energy-matched drinks containing glucose or fructose or a 302 

saccharin-containing control. Glucose promoted an increase in reactive oxygen species 303 

production by neutrophils and in activation of the pro-inflammatory transcription factor nuclear 304 

factor kappa-light-chain-enhancer of activated B cells (NFκB) in mononuclear cells. However, 305 

these effects were not seen with fructose, orange juice or saccharin. Plasma CRP declined one 306 

hour after consuming orange juice. These observations indicate that orange juice itself does not 307 

induce an acute inflammation.  308 

Further research by this group [48] considered the effect of orange juice on the post-prandial 309 

inflammatory response induced by a high fat-high carbohydrate meal. Adding orange juice to a 310 

standard meal reduced the post-prandial generation of reactive oxygen species by neutrophils 311 

compared with the meal plus water or the meal plus glucose. Orange juice totally mitigated the 312 

post-prandial rise in p38 mitogen-activated protein kinase (MAPK), phosphorylated p38 MAPK 313 

(the active form of MAPK) and p47phox (a subunit of NADPH oxidase responsible for reactive 314 

oxygen species production) in mononuclear cells, all molecular markers of enhanced 315 

inflammation, as well as the elevation in matrix metalloproteinase (MMP)-9 mRNA in 316 

mononuclear cells. Plasma MMP-9 concentration was not elevated with orange juice unlike in 317 

the other two groups, while the post-prandial elevation in toll-like receptor (TLR) 2 and TLR4 318 

mRNA and protein in mononuclear cells seen with glucose did not occur with orange juice. 319 

Endotoxemia occurred in the meal plus water and the meal plus glucose groups by not in the 320 

meal plus orange juice group. These observations suggest that orange juice mitigates the acute 321 

pro-inflammatory effects of a high fat-high carbohydrate meal. A comparison of test meals 322 

accompanied by water, cream, glucose or orange juice confirmed the protective effects of orange 323 

juice [49]: unlike the meals with cream or glucose, the meal with orange juice did not elevate 324 

tumour necrosis factor (TNF)-α or IL-1β mRNA or NFκB activation in mononuclear cells. 325 

Furthermore, unlike the meal with cream, the meal with orange juice did not elevate TLR4 326 



11 
 

mRNA or protein in mononuclear cells. Taken together, these findings suggest that inclusion of 327 

orange juice with a meal could minimize postprandial oxidative stress and inflammation.  328 

 329 

Intervention Studies 330 

The influence of chronic intervention with orange juice on inflammatory markers has been 331 

studied. In an uncontrolled study in 12 young adults, Sánchez-Moreno et al. [50] found that 332 

drinking two glasses of orange juice (500 mL) a day for 14 days reduced the plasma 333 

concentrations of prostaglandin E2 and 8-epi-prostaglandin F2α and tended to reduce the 334 

concentration of CRP. In healthy overweight men, the consumption of 500 mL orange juice daily 335 

for 4 weeks did not affect serum concentrations of several inflammatory markers (CRP, IL-6, 336 

soluble intercellular adhesion molecule (ICAM)-1, soluble vascular cell adhesion molecule 337 

(sVCAM)-1) [51], although blood pressure was lowered and vascular function improved. The 338 

orange juice intervention modulated the expression of 3,422 genes many of which are involved 339 

in chemotaxis, adhesion and cell infiltration [52]. Buscemi et al. [53] found reduced plasma 340 

concentrations of CRP, IL-6 and TNF-α in non-diabetic individuals with increased 341 

cardiovascular risk after one week of daily consumption of 500 mL blood orange juice. 342 

Endothelial function, which was measured as flow-mediated dilation, significantly improved in 343 

these subjects. Asgary et al. [54] compared effects of fresh and commercial orange juice in a 344 

cross-over study in 22 healthy adults who consumed 500 mL of orange juice twice daily for 4 345 

weeks: serum concentrations of CRP, sVCAM-1 and sE-selectin, but not IL-6, were decreased 346 

by both types of juice with no difference between them. In another study, 750 mL orange juice 347 

daily for 8 weeks lowered circulating CRP and raised IL-12, but did not affect IL-4, IL-10, TNF-348 

α or interferon (IFN)-γ, in both normal weight and overweight adults [55]. A second study with 349 

the same design (750 mL red fleshed orange juice daily for 8 weeks) also reported a reduction in 350 

CRP concentration in both normal weight and overweight individuals [56]. Patients with 351 

hepatitis C who consumed 500 mL of orange juice daily for 8 weeks showed a reduction in 352 

plasma CRP concentration, although the starting value was higher than in the control group [57]. 353 

Both normal polyphenol containing orange juice (299 mg polyphenols/L) and high polyphenol 354 

orange juice (745 mg polyphenols/L) provided at 500 mL daily for 12 weeks altered plasma lipid 355 

mediators in healthy participants with greater effects with the high polyphenol orange juice [58]. 356 

A recent meta-analysis of the effects of orange juice on risk factors for cardiovascular disease 357 

reported that orange juice significantly decreased CRP levels (7 trials; weighted mean difference: 358 

-0.467 mg/L, 95% confidence interval: -0.815, -0.120, p = 0.008) compared to placebo [59]. 359 

However, there was significant between-study heterogeneity: subgroup analysis identified that 360 

studies conducted on individuals with metabolic disease, that used more than 500 mL orange 361 
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juice/day and that had an intervention duration less than 8 weeks showed a greater reduction in 362 

CRP levels [59] The greater effect of the higher intake of orange juice makes sense because 363 

higher intakes will provide greater amounts of the bioactive components. The greater effect of 364 

shorter (than 8 week) durations is perhaps counterintuitive but may be explained by loss of 365 

compliance in longer duration studies. 366 

 367 

Orange juices and immunity 368 

Whilst a number of studies have investigated the effect of orange juices on inflammation, there 369 

are almost no studies of the effects on markers of innate or acquired immunity beyond 370 

inflammation. Perche et al. [60] conducted a trial in 24 healthy men of mean age 56 years who 371 

underwent 3 x 4 week treatment periods separated by 3 week washout periods. The three 372 

treatments were 500 mL orange juice daily, 500 mL isocaloric control drink daily or 500 mL of 373 

the control drink plus 292 mg hesperidin in capsules daily. There was no effect on blood immune 374 

cell phenotypes, the percentage of T cells and B cells activated with an immune stimulant ex 375 

vivo, ex vivo production of IL-2 and IL-4 by stimulated leukocytes, natural killer cell activity, or 376 

reactive oxygen species production by stimulated neutrophils. It is important to note that this 377 

study was conducted in healthy men and that it may be difficult to show improvements in 378 

immune function in healthy individuals.  379 

 380 

Vitamin C, inflammation and immunity 381 

Overview 382 

Vitamin C is an essential nutrient that acts primarily as a water-soluble antioxidant. It is a 383 

cofactor for a number of enzymes including the lysyl and prolyl hydroxylases required for 384 

stabilization of the tertiary structure of collagen. Hence, vitamin C is vital for maintaining 385 

epithelial integrity. Severe vitamin C deficiency results in scurvy, which is potentially fatal. 386 

Scurvy is characterized by weakening of collagenous structures, resulting in poor wound healing, 387 

and impaired immunity; individuals with scurvy are highly susceptible to potentially fatal 388 

infections such as pneumonia [61]. Cells of the immune system actively accumulate vitamin C 389 

against a concentration gradient, resulting in cellular concentrations that can be up to 50- or 100-390 

times those seen in plasma [62,63,64]. For example, neutrophils can accumulate vitamin C to 391 

achieve intracellular concentrations of 1 mM or more [62,65]. This suggests that vitamin C is of 392 

some importance to immune cells. Vitamin C has anti-inflammatory effects, in part because of 393 

its role as an antioxidant, and also has roles in several aspects of immunity, including leucocyte 394 

migration to sites of infection, phagocytosis and bacterial killing, natural killer cell activity, T 395 
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lymphocyte function and antibody production. There are a number of comprehensive reviews of 396 

the role of vitamin C in immunity and host susceptibility to infection [66,67]. 397 

 398 

Vitamin C and barrier function 399 

Vitamin C is actively accumulated into epidermal and dermal cells via sodium-dependent 400 

vitamin C transporters, suggesting that it has important functions within the skin. The effects of 401 

scurvy demonstrate the key role of vitamin C in maintaining barrier integrity. Vitamin C 402 

promotes collagen gene expression in fibroblasts [68,69,70,71,72] and promotes fibroblast 403 

proliferation and migration which is essential for tissue remodelling and wound healing [73,74]. 404 

Vitamin C intervention studies in humans have shown enhanced vitamin C uptake into skin cells 405 

[75,76] and enhanced oxidant scavenging activity of the skin [76,77]. The elevated antioxidant 406 

status of the skin following vitamin C supplementation could potentially protect against 407 

oxidative stress induced by UV irradiation and environmental pollutants [78,79].  408 

 409 

Vitamin C and inflammation 410 

Although cells of the immune system contain high concentrations of vitamin C, these can be 411 

decreased upon cellular stimulation, resulting in a loss of antioxidant protective mechanisms. An 412 

altered balance between oxidant generation and antioxidant defences can lead to changes in 413 

multiple signalling pathways, with the pro-inflammatory transcription factor NFκB playing a 414 

central role (Figure 2). Oxidants can activate NFκB leading to continued synthesis of oxidative 415 

species and other inflammatory mediators [80] (Figure 2). Vitamin C can diminish both oxidant 416 

generation and NFκB activation [81] and can modulate inflammation through redox-sensitive 417 

cell signalling pathways [82,83] or by directly protecting important structural components of the 418 

cell from damage [84]. In accordance with these proposed anti-inflammatory actions, vitamin C 419 

can modulate production of inflammatory cytokines. For example, it decreased 420 

lipopolysaccharide-induced production of TNF-α and IFN-γ, and increased anti-inflammatory 421 

IL-10 production, by human lymphocytes in culture [85]. Vitamin C treatment reduced 422 

activation of microglial cells and decreased the synthesis of the pro-inflammatory cytokines 423 

TNF-α, IL-6, and IL-1β [86]. Addition of vitamin C to peripheral blood monocytes isolated from 424 

patients with pneumonia decreased the generation of the pro-inflammatory cytokines TNF-α and 425 

IL-6 [87]. These findings are all consistent with an anti-inflammatory action of vitamin C. 426 

However, providing 1 g/day vitamin C (with and without vitamin E) to healthy volunteers was 427 

found to enhance IL-10, IL-1 and TNF-α production by blood mononuclear cells following 428 

stimulation with LPS [88,89].  429 

 430 
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Vitamin C and cellular aspects of innate immunity 431 

Chemotaxis describes the movement of immune cells into infected tissues which is an early step 432 

in innate immunity. Neutrophils express many receptors for different chemo-attractants, enabling 433 

them to sense and rapidly respond to signals indicating infection or tissue damage [90]. 434 

Leukocytes from vitamin C deficient guinea pigs show impaired chemotactic responses 435 

[91,92,93,94]. Studies with large doses of vitamin C in patients with recurrent infections and 436 

impaired leukocyte chemotaxis showed restoration of chemotaxis [95,96,97,98,99,100,101]. 437 

Supplementation of healthy volunteers with vitamin C has also been shown to enhance 438 

neutrophil chemotactic ability [84,102,103,104]. For example, in one study, provision of vitamin 439 

C through the diet (250 mg/day) increased neutrophil chemotaxis by 20% [104]. Furthermore, 440 

supplementation of elderly women with 1 g/day vitamin C, in combination with vitamin E, 441 

enhanced neutrophil functions, including chemotaxis [105]. Phagocytosis is the process of 442 

engulfing pathogens which are subsequently destroyed within intracellular vacuoles, in part by 443 

the oxidative burst. Neutrophils, monocytes, macrophages and dendritic cells are all phagocytic 444 

cells. Neutrophils from vitamin C deficient guinea pigs have an impaired ability to kill microbes 445 

[91,92,106], linked to defective phagocytosis and/or respiratory burst [106,107,108]. Dietary 446 

vitamin C (250 mg/day) enhanced neutrophil respiratory burst by 20% in human participants 447 

with low vitamin C status [104], while the combination of vitamins C and E increased both 448 

phagocytosis and respiratory burst of neutrophils in older people [105]. Vitamin C maintains or 449 

enhances natural killer cell activity [109,110]. 450 

 451 

Vitamin C and lymphocyte functions  452 

Like phagocytes, B and T lymphocytes accumulate vitamin C to high levels via specific 453 

transporters [111,112]. Jacob et al. [113] showed that a vitamin C-deficient diet in healthy 454 

young adult humans decreased mononuclear cell vitamin C content by 50% and decreased the 455 

T lymphocyte-mediated immune responses to recall antigens, suggesting a strong causal link 456 

between lymphocyte vitamin C content and lymphocyte function. Vitamin C seems to be 457 

important in the differentiation and maturation of immature T cells [114,115], effects which 458 

may relate to epigenetic modifications [115,116,117]. In vitro studies have indicated that 459 

incubation of lymphocytes with vitamin C promotes T lymphocyte proliferation [85,114] and 460 

increases antibody production [118]. Treatment of guinea pigs with vitamin C increased T 461 

cell proliferation [119] and enhanced antibody levels during immunization [120,121]. One 462 

human study reported that vitamin C supplementation (1 g/day for 73 days) increased serum 463 

IgM, IgG and IgA levels [122], although that effect was not seen in another study that used 1, 464 

2 and 3 g vitamin C/day [103]. However, 1, 3 and 3 g vitamin C/day enhanced ex vivo T 465 
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lymphocyte proliferation [103]. Administration of vitamin C to elderly people (500 mg/day 466 

for 1 month) was also shown to enhance ex vivo T lymphocyte proliferation [123], which was 467 

also seen with combinations of vitamin C with vitamins A and/or E [110,124].  468 

Vitamin C and infection 469 

Vitamin C clearly has benefits in supporting barrier function and both innate and acquired 470 

immunity. Furthermore, incubation of virus-infected human and murine fibroblasts with vitamin 471 

C enhanced generation of anti-viral IFNs [125,126,127,128,129]. A major symptom of scurvy is 472 

increased susceptibility to infections, particularly of the respiratory tract, with pneumonia being 473 

one of the most frequent complications of scurvy and a major cause of death [61,66]. This 474 

suggests that vitamin C likely has a role in protecting against infections, particularly of the 475 

respiratory tract. Significant decreases in leukocyte vitamin C levels occur during common cold 476 

episodes, with levels returning to normal following the infection [130,131,132,133], indicating 477 

that vitamin C is utilized during a common cold infection. Administration of high doses of 478 

vitamin C (6 g/day) during a common cold episode ameliorated the decline in leukocyte vitamin 479 

C, suggesting that administration of vitamin C may be beneficial for the recovery process [130]. 480 

A meta-analysis of randomised controlled trials (RCTs) identified that vitamin C did not affect 481 

incidence of the common cold in the general population (24 RCTs) but decreased incidence in 482 

people under heavy short-term physical stress (5 RCTs) [134]. Vitamin C shortened the duration 483 

of the common cold in all studies (31 RCTs), in adults (13 RCTs) and in children (10 RCTs) and 484 

decreased the severity of colds [134]. Plasma vitamin C concentrations are reduced in patients 485 

with acute respiratory infections, such as pulmonary tuberculosis and pneumonia [135,136]. In 486 

elderly people hospitalized because of pneumonia and who were identified to have very low 487 

vitamin C levels, administration of vitamin C (200 mg/day for 4 weeks) reduced the respiratory 488 

symptom score in the more severe patients [137]. In other pneumonia patients, low dose vitamin 489 

C (250 to 800 mg/day) reduced hospital stay by 19% compared with no vitamin C 490 

supplementation, while higher-dose vitamin C (500 mg to 1.6 g/day) reduced the duration of 491 

pneumonia by 36% [138]. There was also a positive effect on the chest X-ray, temperature, and 492 

erythrocyte sedimentation rate [138]. A meta-analysis of 3 RCTs reported a significant reduction 493 

in the risk of pneumonia with vitamin C supplementation, particularly in individuals with low 494 

dietary intakes [139].  495 

 496 

Folate and immunity 497 

Folate is essential for the synthesis of RNA and DNA and consequently for cell division, 498 

protein synthesis and tissue growth. It is not a surprise therefore that folate is required for the 499 
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immune system to function. In common with other B vitamins, folate (vitamin B9) is 500 

involved in intestinal immune regulation [140,141], thus contributing to gut barrier function. 501 

In fact, folate is essential for the survival of regulatory T cells in the small intestine wall 502 

[142], suggesting it plays a role in preventing adverse immune responses at that site. 503 

Regulatory T cells express high levels of folate receptor 4 (FR4) and administration of anti-504 

FR4 antibody to mice results in specific reduction in the regulatory T cell population [142], 505 

indicating that the folate-FR4 axis is required for regulatory T cell maintenance. In vitro 506 

culture of regulatory T cells in folate-restricted conditions impaired cell survival, with 507 

decreased expression of anti-apoptotic bcl2 molecules, although naïve T cells retained the 508 

ability to differentiate into regulatory T cells [143,144]; this suggests that folate is a survival 509 

factor for regulatory T cells. Consistent with these findings, dietary deficiency of folate 510 

results in reduction of the regulatory T cell population in the small intestine of mice 511 

[142,143]. Since regulatory T cells play an important role in the prevention of excessive 512 

immune responses [145], mice fed a folate-deficient diet exhibit increased susceptibility to 513 

intestinal inflammation [142]. Some commensal intestinal bacteria convert folate to 6-514 

formylpterin [146] which may suppress excess mucosal associated invariant T cell responses 515 

and prevent excessive allergic and inflammatory responses [147,148,149].  516 

Folate deficiency in experimental animals also causes systemic immune effects such as 517 

thymus and spleen atrophy and lower circulating T lymphocyte numbers: lymphocyte 518 

proliferation is also reduced in folate deficiency [150]. However, the phagocytic and 519 

bactericidal capacity of neutrophils appear unchanged [150]. Folate deficiency reduces 520 

natural killer cell activity in rats [151] and inhibits the proliferation of human CD8+ cytotoxic 521 

T lymphocytes in vitro [152], effects which would reduce antiviral defences. Folate deficient 522 

culture medium resulted in an immature phenotype of murine bone marrow derived dendritic 523 

cells that produced less IL-12 and pro-inflammatory cytokines in response to LPS [153]. This 524 

aberrant maturation of dendritic cells resulted in reduced ability to induce helper T cell 525 

responses with low production of cytokines including IL-2, IFN-γ and IL-10 [153].  Folate 526 

deficiency in mice resulted in poor dendritic cell and spleen cell responses (cytokine 527 

production) and altered T cell phenotypes [153], while folate deficiency in rats or mice 528 

impairs antibody production [154,155]. Thus, studies in experimental animals demonstrate 529 

that folate is essential for the immune system to function properly. Rather less is known about 530 

the influence of variations in folate intake or status in human populations and immune 531 

outcomes. Congenital isolated malabsorption of folic acid is associated with impairment of 532 

both cellular and humoral immunity, and increased infections [156], while suppressed T cell 533 

mediated immunity in patients with megalobastic anemia with folate deficiency was reversed 534 
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by folate treatment [157]. Critically ill patients with lower folate status had poorer neutrophil 535 

phagocytosis than those with higher folate status [158]. Likewise malnourished patients with 536 

lower folate status had poorer neutrophil function (phagocytosis, bacterial killing) than those 537 

with higher folate status and the impaired phagocytosis was corrected by folic acid 538 

supplementation [159]. Furthermore, the impairment in phagocytosis could be corrected by 539 

adding folic acid to the medium of the cultured neutrophils [159]. These studies indicate that 540 

having sufficient folate is important for the human immune system to function.   541 

Hara et al. [160] reported that serum folate status positively associated with antibody titres 542 

following seasonal influenza vaccination, although this association lost significance when the 543 

data were adjusted for age. An intervention with high dose folic acid (1.2 mg per day for 12 544 

weeks) in healthy subjects increased lymphocyte folate by 44% [161]. Plasma levels of a 545 

number of proteins related to immunity were positively associated with folate status both 546 

prior to and following intervention [161]. Folic acid supplementation increased plasma 547 

concentrations of a number of immune-related proteins, including IgM C chain and 548 

complement 3 [161]. Folate has been a component of several micronutrient mixtures or 549 

nutritional supplements that have been reported to increase some, though not all, immune 550 

biomarkers [162,163,164], including those associated with anti-viral defence [165,166], and 551 

to decrease infections [163,164], although the effects observed cannot, of course, be ascribed 552 

to folate. It is also important to note that some studies of micronutrient mixtures that include 553 

folate do not show improvements in immune outcomes [167,168]. Nevertheless, it seems 554 

clear from the literature that an adequate folate intake and status is required to support the 555 

human immune system.  556 

 557 

Hesperetin, hesperidin and inflammation  558 

Hesperetin is the aglycone of hesperidin (Figure 3). The anti-inflammatory effects of hesperetin 559 

and hesperidin have been examined in several cell culture studies (reviewed by Chanet et al. 560 

[169]). Hesperetin decreased production of TNF-α by lipopolysaccharide-stimulated 561 

macrophages in a concentration dependent manner [170,171]; IL-6 production was not affected 562 

[171]. Hesperitin did not affect expression of the inhibitory subunit of NFκB or inducible nitric 563 

oxide synthase in these cells following lipopolysaccharide stimulation and only modestly 564 

affected nitric oxide production [170]. Increased adhesion of monocytes to endothelial cells and 565 

expression of vascular cell adhesion molecule-1 in response to TNF-α treatment were reduced by 566 

pretreatment with hesperetin [172]. Both hesperetin and hesperidin deceased expression of the 567 

adhesion molecule VCAM-1 in TNF-stimulated endothelial cells [173,174] and decreased 568 

monocyte adhesion to endothelial cells [172,174]. Hesperidin also reduced ICAM-1 expression 569 
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on endothelial cells cultured in high glucose concentrations [175], an effect associated with 570 

reduced phosphorylation of the p38 MAPK. Hesperitin decreased IL-1β-induced MMP-3 and IL-571 

6 production by cultured human synovial cells, which was linked to reduced activation of c-Jun 572 

N-terminal kinase [176].  573 

Feeding hesperidin to mice for 6 weeks prior to undergoing irradiation resulted in lower 574 

concentrations of serum IL-1β, IL-6, and TNF-α compared to the control irradiated group [177]. 575 

Furthermore, splenocyte proliferation on day 10 after irradiation was enhanced by 576 

supplementation with hesperidin and the percentages of CD4+ and CD8+ lymphocytes tended to 577 

increase compared with the normal group [177]. This study suggests that hesperidin may 578 

enhance immunocompetence and decrease irradiation-induced inflammation in mice. 579 

In a placebo controlled human trial with a crossover design conducted in 24 men and women 580 

aged 21 to 65 years with metabolic syndrome, hesperidin (500 mg daily for 3 weeks resulted in 581 

significantly lowered plasma concentrations of CRP, serum amyloid A and sE-selectin [172]. A 582 

controlled trial in 64 patients with type-2 diabetes found that 500 mg/day hesperidin for 6 weeks 583 

decreased both CRP and IL-6 concentrations from baseline values [178]. In another human 584 

study, 292 mg hesperidin daily for 4 weeks modified the gene expression profile of white blood 585 

cells [52]; hesperidin intake modulated the expression of 1,819 genes many of which are 586 

involved in chemotaxis, adhesion and cell infiltration. In this study over 50% of the genes 587 

modulated by orange juice consumption were also modulated by hesperidin, suggesting that 588 

hesperidin makes an important contribution to the anti-inflammatory effects of orange juice.  589 

 590 

Naringenin, naringin, narirutin and inflammation  591 

Naringenin is the aglycone of naringin and narirutin (Figure 3). The anti-inflammatory effects of 592 

naringenin have been examined in several cell culture and animal feeding studies (reviewed by 593 

Chanet et al. [169]). In cell culture experiments, naringenin has been shown to decrease 594 

expression of inducible nitric oxide synthase and cyclooxygenase-2 and to decrease production 595 

of TNF-α, IL-1β, IL-6 and prostaglandin E2 by lipopolysaccharide-stimulated macrophages 596 

[179,180]. Naringenin also reduced expression of inducible nitric oxide synthase and 597 

cyclooxygenase-2 and decreased production of prostaglandin E2 and expression of mRNA for 598 

TNF-α, IL-1β and monocyte chemoattractant peptide 1 by BV2 microglial cells in culture [181]. 599 

Naringenin also decreased expression of the adhesion molecule VCAM-1 in TNF-stimulated 600 

endothelial cells [173] and decreased monocyte adhesion to endothelial cells [182]. Such effects 601 

appear to relate to deceased activation of the pro-inflammatory transcription factor NFκB 602 

[173,181,183] and of MAPKs [181]. Inclusion of naringenin in the diet of rabbits fed a high 603 
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cholesterol diet reduced expression of VCAM-1 and monocyte chemoattractant peptide 1 in the 604 

aortic arch [184].   605 

Naringin has also been studied in vitro and in animal feeding studies. Naringin deceased 606 

expression of the VCAM-1 in TNF-stimulated endothelial cells [173]. Naringin also reduced 607 

ICAM-1 expression on endothelial cells cultured in high glucose concentrations [175], an effect 608 

associated with reduced phosphorylation of the p38 MAPK. Inclusion of naringin in the diet of 609 

rabbits fed a high cholesterol diet reduced expression of VCAM-1 and MCP-1 in the aortic arch 610 

[184] and reduced expression of ICAM-1 on endothelial cells [185]. Inclusion of naringin in the 611 

diet of mice fed a high cholesterol diet reduced blood levels of sICAM-1 and sE-selectin [182]. 612 

Dietary naringin lowered serum TNF-α concentration and increased serum adiponectin in mice 613 

ref a high fat diet [186]. Dietary naringin dose-dependently decreased serum concentrations of 614 

TNF-α, IL-6 and CRP and increased adiponectin concentration in diabetic rats fed a high fat diet 615 

compared with diabetic control rats [187]. In this same study, naringen increased liver and 616 

kidney expression of the anti-inflammatory transcription factor peroxisome proliferator activated 617 

receptor-γ and of heat shock protein-27 and -72 and decreased liver, kidney and pancreas 618 

expression of NFκB [187]. 619 

Narirutin and naringin both decreased nitric oxide production by lipopolysaccharide-620 

stimulated macrophages and decreased CRP release from incubated rat aortic vascular ring 621 

[188]. These data suggest that naringenin and its glycosides naringin and narirutin may have 622 

similar anti-inflammatory effects. 623 

 624 

Direct anti-viral activities of citrus fruit juice bioactives 625 

Beyond effects supporting immune function and controlling inflammation, bioactives present in 626 

citrus fruit juices may have direct anti-viral effects; these have been highlighted in the context of 627 

infection with systemic acute respiratory syndrome coronavirus (SARS-CoV)-2 and the disease 628 

that this virus causes, coronavirus disease discovered in 2019 (COVID-19). Angiotensin 629 

converting enzyme (ACE) 2 is a transmembrane protein which acts as a receptor for spike 630 

protein binding of SARS‑CoV2, enabling cellular entry of the virus. Using in silico modelling it 631 

was identified that hesperidin can bind with ACE2 and in doing so may make the ACE2-SARS-632 

CoV-2 spike protein structure unstable [189,190,191]. Through this action it is proposed that 633 

hesperidin could block SARS-CoV-2 from entering host cells and so could prevent the infection. 634 

Hesperidin has also been shown to prevent replication of several viruses including the influenza 635 

virus acting through activation of immune-supporting MAPK pathways [192] and in mice it 636 

prevented the spread of influenza virus [193]. Both hesperidin and hesperetin are able to inhibit 637 
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key proteases involved in coronavirus replication [194,195]. As reviewed by Tutunchi [196] 638 

naringenin exerts similar actions suggesting it too could inhibit viral entry into host cells and 639 

subsequent viral replication.  640 

 641 

Integration, summary and conclusions 642 

The immune system provides defence to the host against pathogenic organisms. It includes 643 

barrier functions and capabilities for recognition and elimination of pathogens and for 644 

immunologic memory. A weak immune system increases susceptibility to infections and allows 645 

infections to become more severe. One component of the immune response is inflammation 646 

which is designed to create a hostile environment to pathogens. Generation of oxidative stress is 647 

part of the inflammatory response and, in turn, oxidative stress can induce inflammation. Where 648 

inflammation is excessive or uncontrolled it can damage host tissues and cause pathology. 649 

Hence, an immune response which is appropriate to the challenge and involves controlled 650 

inflammation that is self-resolving is optimal. Limitation of oxidative stress is one means of 651 

controlling inflammation, hence, antioxidants are often also anti-inflammatory. Nutrition is one 652 

of many determinants of the immune response [1,12,13,14,15,16] including the inflammatory 653 

component [4,5,6]. Micronutrients (vitamins and minerals) are especially important for 654 

supporting normal immune response [1,12,13,14,15,16] and plant polyphenols have also 655 

emerged as having important roles, not only in helping to control oxidative and inflammatory 656 

stress, but also in supporting the activities of the cellular aspects of innate and acquired 657 

immunity. Citrus fruit juices contain a wide range of vitamins, minerals and polyphenols, with 658 

100% orange juices being a particularly good source of vitamin C and folate. Vitamin C and 659 

folate both have roles in sustaining the integrity of immunological barriers including the skin and 660 

internal mucosal linings (Figure 4), while vitamin C is an antioxidant and helps to control 661 

inflammation (Figure 4). As described earlier, both vitamin C and folate support the function of 662 

many types of immune cell including phagocytes, natural killer cells, T-cells and B-cells (Figure 663 

4). In recognising the roles of vitamin C and folate within the immune response, the European 664 

Food Safety Authority (and the UK Government post-BREXIT) permit a claim of “contributes to 665 

the normal function of the immune system” for both vitamin C and folate [17]. To carry this 666 

claim, one serving of a food must supply at least 15% of the Nutrient Reference Value of the 667 

nutrient, while beverages must supply at least 7.5%. The Nutrient Reference Values for vitamin 668 

C and folate are 80 mg and 200 µg respectively. Typical contents of vitamin C and folate in 669 

orange juice are 40 to 50 mg/100 mL and 20 to 40 µg/100 mL, respectively, these being 670 

influenced by the type of oranges used for making the juice and how the juice is stored. 671 

Nevertheless, it is clear that a serving of 100% orange juice would provide sufficient amounts of 672 
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both vitamin C and folate to carry a permitted immune claim. Important bioactive polyphenols in 673 

citrus fruit juices include hesperidin, narirutin and naringin. Hesperidin is a glycoside of 674 

hesperetin and narirutin and naringin are glycosides of naringenin (Figure 3). Hesperidin, 675 

hesperetin, naringenin, naringin and narirutin have all been demonstrated to have anti-676 

inflammatory effects, mainly demonstrated in cell culture and some animal studies; all seem to 677 

act, at least in part, through inhibiting activation of the pro-inflammatory transcription factor 678 

NFκB. Human trials of hesperidin in people with metabolic syndrome [172] or type-2 diabetes 679 

[178] reported reductions in inflammatory markers, including CRP. Hesperidin modified gene 680 

expression in white blood cells with significant overlap of the genes modified with those 681 

modified by orange juice [52]. Thus, citrus fruit juices contain a mix of components that control 682 

oxidative stress and inflammation, and support the immune system. In the context of human 683 

trials, orange juice has been most widely explored, although specific trials on immunity are 684 

scarce. Orange juice was shown to limit the post-prandial inflammation induced by a high fat-685 

high carbohydrate meal [48]. Consuming orange juice daily for a period of weeks reduced 686 

markers of inflammation, including CRP, as confirmed through a recent meta-analysis [59]. One 687 

human intervention trial with orange juice failed to find effects on markers of innate or acquired 688 

immunity [60]; however this trial studied healthy middle aged men and it may be that groups 689 

vulnerable to declines in immune function, such as the elderly, may be a better option for this 690 

type of trial.  Despite the findings of the latter study, in general the effects of orange juice, 691 

especially with regard to inflammation, are consistent with those of its component bioactives. A 692 

newly emerging topic, driven largely by the SARS-CoV-2 pandemic, is whether polyphenols 693 

from orange juice have direct anti-viral effects. There is evidence from in silico modelling 694 

studies that hesperidin could interfere with SARS-CoV-2 entry into host cells through 695 

destabilising the interaction between the virus’ spike protein and ACE2 receptor on host cells 696 

[189,190,191]. Furthermore in vitro studies identify that hesperidin, hesperetin and naringenin 697 

can restrict viral replication acting through inhibition of key enzymes involved in this process 698 

[194,195,196]. Whether these effects occur in infected humans at intakes and circulating 699 

concentrations of these bioactives consistent with normal fruit juice consumption is uncertain. In 700 

this context a clinical trial of hesperidin in people newly infected with SARS-CoV-2 has been 701 

registered [197]. In summary, micronutrients and other bioactives present in citrus fruit juices 702 

have established plausible pathways for controlling oxidative stress and inflammation and in 703 

supporting innate and acquired immune responses. Trials in humans demonstrate that orange 704 

juice reduces inflammation, while its effects on innate and acquired immunity require further 705 

exploration in well-designed trials in appropriate population sub-groups, such as older people.  706 

 707 
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Figure captions 1301 

Figure 1. The components of the immune system and their division into innate and acquired 1302 

immunity. Abbreviations used: IFN, interferon; IL, interleukin; ILCs, innate lymphoid cells; 1303 

MAIT, mucosal associated invariant T; TGF, transforming growth factor; TNF, tumour necrosis 1304 

factor. Taken from [1].  1305 

 1306 

Figure 2. The bidirectional links between inflammation and oxidative stress. Reactive oxygen 1307 

species (ROS) can act as inflammatory trigger initiating inflammation. On the other hand 1308 

inflammation induces oxidative stress. Abbreviations used: IκB, inhibitory subunit of NFκB; 1309 

MAPK, mitogen-activated protein kinase; NFκB, nuclear factor kappa-light-chain-enhancer of 1310 

activated B cells; P, phosphate; ROS, reactive oxygen species. 1311 

 1312 

Figure 3. Structure of hesperidin, narirutin and naringin and the aglycones hesperetin and 1313 

naringenin. 1314 

 1315 

Figure 4. Summary of the effects of orange juice bioactives on different aspects of inflammation 1316 

and immunity. Vitamin C and folate support barrier function, T cell mediated immunity and B 1317 

cell mediated immunity. Vitamin C, folate, hesperidin and its aglycone hesperetin, and narirutin 1318 

and naringin and their aglycone naringenin all reduce inflammation. 1319 
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