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Abstract 12 

About 21% of the African population directly depends on rangeland resources. As this number is predicted 13 

to grow, it is important to understand the response of African rangelands to global environmental change and 14 

formulate, in turn, better hypotheses on their capacity to support livelihoods. Here we used three decades of 15 

satellite data and a dynamic global vegetation model to study the response of rangeland vegetation to recent 16 

climate change and to describe changes in the vegetation structure accompanying greening and browning 17 

trends. Long-term climate change was the dominant driver of vegetation dynamics in ca. 2,495,000 km2 of 18 

African rangelands (22.7% of the total extent). Examples of these rangelands are in Mauritania, Senegal, 19 

Chad, Namibia, Botswana, and South Africa, where the vegetation greened up due to an overall increase in 20 

trees, shrubs, and short herbaceous vegetation. We further identified a more extended different type of 21 

rangeland (ca. 2,915,000 km2) where vegetation dynamics appeared to be largely unrelated to long-term 22 

climate variations. In these rangelands, we observed opposite trends between woody cover (trees and shrubs) 23 

and short vegetation (mostly representative of the herbaceous layer). Greening (West Africa, South Sudan) 24 

was associated with an overall increase in woody cover (+4.4%) and a concomitant decline in short vegetation 25 

(-3.4%), while browning (Angola, Mozambique) resulted from a decrease in woody cover (-2.6%) and an 26 

increase in short vegetation (+4.3%) (total per cent change average during 1982-2015). Our results offer a 27 

nuanced perspective to frame greening and browning trends in rangeland systems. While greening may 28 

mitigate climate change via higher carbon uptake, the encroachment of less palatable woody species reduces 29 

the resources available to pastoral communities. On the other hand, browning due to a reduction in the 30 

woody cover attenuates carbon sequestration rates, but the observed increase in short herbaceous vegetation 31 

may hint a relative increase in forage resources. 32 

Keywords 33 

Rangeland dynamic, vegetation composition, remote sensing, DGVM, trend analysis, pastoral welfare  34 
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1 Introduction 35 

The International Grassland Congress and the International Rangeland Congress defined rangelands as 36 

domestic or wildlife grazing lands generally including grasslands, woodlands, shrublands, and some extent of 37 

deserts (Allen et al., 2011). Estimates of the proportion of Africa’s land covered by rangeland range from ca. 38 

22,000,000 km2 (Flintan, 2012), ca. 14,500,000 km2 (White et al., 2000), ca. 13,000,000 km2 (Hoffman and 39 

Vogel, 2008), ca. 8,100,000 km2 (Ellis et al., 2010), to ca. 6,700,000 km2 (Dixon et al., 2001) (depending on 40 

definitions and data sources). They provide the primary (e.g., meat, bones, hide) and secondary (e.g., milk, 41 

manure, fibre, wool, traction, eggs) animal products for the livestock rearing activities of some 270,000,000 42 

people, both pastoralists and agro-pastoralists (FAO, 2017; Phelps and Kaplan, 2017). Other ecosystem 43 

services supplied by rangelands include the provision of water resources, shade, heritage and recreation, 44 

wildlife habitat conservation, and carbon sequestration (Lal, 2004; Sala et al., 2017). 45 

The dependency on African rangeland resources is expected to grow due to the estimated increase of the 46 

African population to double by 2050 (UN DESA, 2019). Principally, this implies that livestock products will 47 

be increasingly transported to urban (i.e., non-rangeland) areas and will accelerate rangelands conversion to 48 

croplands to meet the food demand (Alkemade et al., 2013; van Ittersum et al., 2016). However, the opposite 49 

is also possible, since deforestation and the rural-urban migration (i.e., farmland abandonment) may foster the 50 

creation of new rangeland-type spaces (Benayas et al., 2007; Bond and Zaloumis, 2016). In addition to 51 

increasing social demands, the future of rangelands will also depend on the impacts of rising temperature and 52 

changes in the distribution and intensity of climate extremes (Kharin et al., 2007; Niang et al., 2014). For 53 

instance, although large disagreements still exist on the response of African ecosystems to different climate 54 

change scenarios (Midgley and Bond, 2015), drought may become more severe and frequent in southern and 55 

western Africa (Gizaw and Gan, 2017), while in eastern Africa this appears to be happening already 56 

(Nicholson, 2016). Similarly, recent studies have linked short-term shifts in rainfall patterns (Brandt et al., 57 

2019; Zhang et al., 2019), rising levels of atmospheric CO2 (Stevens et al., 2016; Wigley et al., 2010), or 58 

significant declines in large mammals (Daskin et al., 2016) to woody encroachment in African savannas. The 59 

persistence of drier and warmer conditions and shifts in the vegetation composition represents a major risk 60 
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not only for the regular food security of rangeland communities (Thornton et al., 2009), but also for 61 

rangeland biodiversity richness and carbon stock dynamics (Bond, 2016; Lange et al., 2015). 62 

One way to better understand how future climate change will influence the rangelands of Africa is to evaluate 63 

historical data to assess how the vegetation has responded to climate in the past. However, despite the 64 

increasing availability of global long-term satellite data, this information is still not readily available. In fact, 65 

while the vegetation of Africa is reported to be largely sensitive to water availability (mostly in arid and semi-66 

arid environments) (Anyamba et al., 2014; Herrmann et al., 2005; Moncrieff et al., 2016) or recent CO2 67 

fertilization (tropical regions) (Nemani et al., 2003; Zhu et al., 2016), many non-climatic disturbances 68 

influence its dynamics at different spatiotemporal scales. These may include land-use change and 69 

fragmentation (Hobbs et al., 2008; Song et al., 2018), land management (Kiage, 2013; Stevens et al., 2016), 70 

armed conflicts (Bromley, 2010; Gorsevski et al., 2012), or infrastructure (Dobson et al., 2010), among others. 71 

Thus, the location and extent of the African rangelands where climate is the predominant or subordinate 72 

driver of long-term vegetation dynamics are nowadays unclear. Relevant to this conundrum are ecological 73 

studies assessing what limits savanna boundaries and the tree-grass coexistence. These have explained that a 74 

world without fire would be forest-dominated (Bond et al., 2005), or that forests prevail in regions receiving 75 

more than 2,500 mm/yr of rainfall while grass-dominated systems occur below 650 mm/yr (Sankaran et al., 76 

2005), 750 mm/yr (Hirota et al., 2011) or 1000 mm/yr (Staver et al., 2011). Between these end members, 77 

ecosystems can persist as either forest or savanna depending on rainfall seasonality and disturbances (e.g., fire, 78 

mammalian herbivory) (Mayer and Khalyani, 2011). For instance, fire suppression would promote woody 79 

plant and canopy closure, which reduces light and hence grasses (that in turn reduces fire), while a strong 80 

rainfall seasonality would enhance fuel curing, fire frequency, open canopy and therefore a light-demanding 81 

grass state (that in turn favours fire) (Lehmann et al., 2011; Oliveras and Malhi, 2016; Pausas and Bond, 82 

2020). However, accounting for spatial and temporal inter-relationships between these elements remains 83 

complex and still represents a barrier to our understanding of potential future biome shifts (Wei et al., 2020). 84 

Remote sensing studies have tried to overcome such complexity by focusing on the dynamics of one specific 85 

structural component of the vegetation, i.e. woody plants. Not only this is because the phenomenon of 86 
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“woody plant encroachment” came into the spotlight of recent research (e.g., Axelsson and Hanan, 2018; 87 

Brandt et al., 2020; Li et al., 2020; Skowno et al., 2017; Stevens et al., 2016; Venter et al., 2018), but also 88 

because long-term assessments of woody vegetation dynamics were made feasible by new data such as 89 

vegetation optical depth (Andela et al., 2013; Brandt et al., 2017). As a consequence, less is known about long-90 

term changes in the short vegetation layer and the relative availability of herbaceous plants. It is however 91 

important to better understand the dynamics of all vegetation layers to formulate appropriate hypotheses on 92 

the current and future provision of ecosystem services from rangelands as well as to improve our knowledge 93 

on rangeland carbon dynamics. Building on the existing knowledge of woody vegetation dynamics, our study 94 

includes an assessment of short vegetation to provide a more comprehensive picture of potential implications 95 

associated with long-term changes in rangeland vegetation cover. More specifically, here we (a) identify those 96 

rangelands where changes in vegetation greenness were either mostly driven or unaffected by long-term 97 

climate change and (b) combine the properties of different satellite data to disentangle these changes in terms 98 

of the vegetation structure. By doing so, this study provides a long-term overview of how rangeland natural 99 

vegetation cover has changed across Africa in the last three decades. 100 

2 Materials and methods 101 

2.1 Study area 102 

An accurate definition of rangeland would allow to effectively estimate their spatial extent, facilitate the 103 

identification of owners or administrators, and yield more appropriate management strategies (Lund, 2007). 104 

However, ca. 300 rangeland definitions have been suggested in over a century of rangeland science and, 105 

nowadays, this term is still rather nebulous (Reeves et al., 2015). Much of this confusion likely exists because 106 

no clear distinction is made between the land use and land cover features or due to the misuse and 107 

misclassification of different classes (e.g., woodland, savanna, forest) (Lund, 2007; Phelps and Kaplan, 2017). 108 

In turn, this may explain why most terrestrial ecosystem studies have focused on better-defined regions such 109 

as drylands or forests. For our purpose, here we focused on observed land cover as defined in the moderate 110 

resolution imaging spectroradiometer (MODIS) global land cover product (MCD12C1 collection 6) (Sulla-111 
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Menashe and Friedl, 2018). From this product, we selected only the land cover classes that are typically 112 

included within rangeland definitions (Supplementary Fig. S1), i.e., shrublands, savannas, and grasslands, and 113 

therefore excluded forests, croplands, wetlands, urban and barren lands. According to this classification, we 114 

calculated that rangelands cover 10,999,375 km2 of the African continent, i.e., 92,500 km2 of closed 115 

shrublands, 1,453,125 km2 of open shrublands, 574,375 km2 of woody savannas, 3,236,250 km2 of savanna, 116 

and 5,598,125 km2 of grasslands (Fig. 1). We acknowledge that this value may best represent the potential 117 

rather than actual rangeland extent for Africa given that no land use evidences were included herein. 118 

However, for simplicity of terminology, our study area is hereafter referred to as rangeland. Alternative 119 

rangeland maps for Africa could be derived from White (1983), a continent-wide potential natural vegetation 120 

classification system, or Ellis et al. (2010), who produced an anthropogenic biome classification based on how 121 

humans transformed terrestrial biosphere (Supplementary Fig. S2). We opted for the MODIS-based product 122 

as the map from White (1983) would likely include extended areas now converted to croplands, while the 123 

Ellis et al. (2010) product was shown to be affected by problematic statistical inventory data and land use 124 

assumptions (Phelps and Kaplan, 2017; Sayre et al., 2017).  125 

 126 

Fig. 1 Rangeland extent derived from the MODIS MCD12C1 collection 6 global land cover product (Sulla-Menashe 127 

and Friedl, 2018). The classes follow the International Geosphere-Biosphere Programme (IGBP) classification scheme. 128 
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Forests, croplands, wetlands, urban, and barren lands were not included and are indicated as non rangeland (see 129 

Supplementary Fig. S1). The extent of ca. 11,000,000 km2 fits well within existing rangeland extent estimations for Africa 130 

(a). Herdsman and cattle in rangelands of Ethiopia (photo credit: Camille Hanotte, International Livestock Research 131 

Institute) (b). Kenya wildlife-rich rangelands (photo credit: Dave Elsworth, International Livestock Research Institute) 132 

(c). 133 

 2.2 Data sources and preprocessing 134 

Multiple, independent, and complementary datasets should be used to overcome the limitations of individual 135 

datasets and reduce uncertainties. To this end, we investigated rangeland dynamics in Africa during 1982-136 

2015 using an ensemble of optical and microwave satellite data as well as a dynamic global vegetation model. 137 

Given the differences in the nominal spatial resolution, all data were resampled at the common pixel size of 138 

25 km x 25 km using the aggregate and resample functions (bilinear algorithm) from the R package ‘raster’ 139 

(Hijmans et al., 2021). We determined annual means over growing season integrated metrics to avoid 140 

uncertainties caused by the seasonal complexity that exists throughout Africa. This is a common approach in 141 

broad-scale terrestrial ecosystem studies (Fensholt et al., 2009; Helldén and Tottrup, 2008; Mueller et al., 142 

2014). All analyses were performed within the R environment (R Core Team, 2018). 143 

2.2.1 Normalised Difference Vegetation Index (NDVI) 144 

The AVHRR-derived GIMMS NDVI3g.v1 (8 km x 8 km, 1981-2015) (Pinzon and Tucker, 2014) is one of 145 

the few datasets enabling vegetation greenness trend analysis over more than 30 years (Forkel et al., 2013). 146 

The NDVI3g.v1 comes with three main differences compared to the previous NDVI3g.v0. First, errors in 147 

the cross-calibration with SeaWiFS data were addressed to minimize overestimations of NDVI values in 148 

sparsely vegetated regions (Burrell et al., 2018). Second, it covers two extra years by integrating data from 149 

NOAA-17 and NOAA-18 satellites and, third, the quality flags, three instead of seven, are embedded 150 

separately to simplify the use of the dataset. After removing NDVI values that did not represent vegetated 151 

areas (NDVI ≤ 0), NDVI was further filtered to account for spurious signals due to soil-vegetation spectral 152 

mixing, which overestimates vegetation index over both dark-background and, to a lesser extent, bright-153 

background soils typical of rangeland areas (Elvidge and Lyon, 1985; Huete, 1988). Previous studies overcame 154 
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this issue by masking out values smaller than 0.1 (Bi et al., 2013), 0.15 (Eastman et al., 2013) or 0.2 (Zhu and 155 

Southworth, 2013). We tested all these thresholds and eventually chose the threshold at 0.1, as 0.15 and 0.2 156 

would mask out too many rangeland pixels (36% and 48% respectively, only 9% at 0.1). Monthly mean 157 

NDVI was then calculated by averaging the two maximum-value composite (MVC) values provided for each 158 

month (one for day 1-15 and one for day 16-end of the month per pixel). Instead of averaging, some studies 159 

aggregate bi-monthly values using again the MVC approach because it further reduces residual cloud cover 160 

effects (Bao et al., 2015; Ibrahim et al., 2015; Zhu and Southworth, 2013). However, this was not necessary as 161 

we excluded tropical forests and only used good quality pixels (i.e., flag 0), which refer to NDVI values 162 

without apparent issues (e.g., cloud-free pixels). Also, the MVC approach would represent just fifteen days of 163 

the month, whilst averaging enabled a more representative mean of a given month. Annual mean NDVI 164 

composites were then produced averaging January to December data. However, because good quality pixels 165 

did not necessarily represent all months during the time-series, it was essential to check the consistency in the 166 

annual availability of good quality pixels. The best-case scenario corresponded to a pixel having a good quality 167 

value in every month (i.e., annual mean calculated with 12 values). This case represented 91% of the African 168 

rangelands. For the remaining 9%, we conducted a sensitivity analysis aimed at determining the minimum 169 

number of months needed to obtain a representative annual mean. Using those pixels with 12-months of 170 

good quality data, randomly selected months were progressively removed. We then calculated the difference 171 

between the mean obtained with the full and reduced number of months and defined the acceptable number 172 

of months as that needed to achieve an average difference ≤ 5%. On average, annual mean NDVI 173 

composites were calculated with 12 to a minimum of 10 months, meaning that annual mean values calculated 174 

with 9 or less good quality pixels produced a difference with the 12-months good quality mean > 5% 175 

(Supplementary Fig. S3). In each year, the random approach was changed to ensure that the order in which 176 

pixels were removed varied to prevent the introduction of seasonal biases. The R package ‘gimms’ (Detsch, 177 

2016) was used to download the GIMMS dataset, rasterize the data, and apply the quality flags.  178 
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2.2.2 Vegetation Continuous Fields (VCFs) 179 

VCFs (5 km x 5 km, 1982-2016) are produced from the different AVHRR sensors by compiling the fourth 180 

version of the Long Term Data Record (LTDR) (Song et al., 2018). Other satellite information derived from 181 

MODIS, ETM+, QuickBird, WorldView, IKONOS, and GeoEye was used at different stages of the VCFs 182 

realization (e.g., radiometric, atmospheric, and geolocation corrections, conversion of daily LTDR to yearly 183 

VCFs, annual metrics normalization, validation) (Song et al., 2018). VCFs include global annual data of tree 184 

cover, short vegetation, and bare ground. Tree cover data refer to vegetation taller than 5 m, and it is 185 

calculated considering the portion of land covered by the vertical projection of the tree canopy (Song et al., 186 

2018). Tree cover is not synonymous of forest cover, but it can be used to classify an area as forested or non-187 

forested (depending on the size of the area and the amount of surface covered by trees taller than 5 m). Short 188 

vegetation data include crops, herbaceous vegetation, shrubs, and mosses, while bare ground data represents 189 

non-vegetated areas. Every pixel reports the percentage of tree cover, short vegetation, and bare ground at 190 

the peak of the local growing season (i.e., each pixel sums up to a value of 100). Applying established 191 

validation protocols, the accuracy of the VCFs data was assessed in 475 locations globally using the best long-192 

term reference datasets currently available, i.e., the Landsat-derived VCFs and the United States Geological 193 

Survey (USGS) tree cover reference database (Pengra et al., 2015). For all combinations (i.e., AVHRR TC vs. 194 

Landsat TC, AVHRR SV vs. Landsat SV, AVHRR BG vs. Landsat BG, and AVHRR TC vs. USGS TC), 195 

Song et al. (2018) calculated an overall accuracy higher than 90%, and a mean absolute error comprised 196 

between 4.4% (AVHRR BG vs. Landsat BG) and 9.9% (AVHRR TC vs. USGS TC). It is however hard to 197 

assess how these uncertainties may affect the spatial distribution of long-term trends in tree cover, short 198 

vegetation, and bare ground. This is because the mean absolute error provided is obtained from a global 199 

validation (i.e., averaging the errors in each location used for the validation) and therefore the error is not 200 

spatially explicit. No data are available for 1994 and 2000 due to the lack of data in the LTDR. Hereafter, tree 201 

cover refers only to the woody component of the Song et al. (2018) datasets, while woody cover refers to 202 

woody vegetation as a whole.  203 
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2.2.3 Vegetation Optical Depth (VOD) 204 

VOD retrievals (25 km x 25 km, 1992-2011) (Liu et al., 2015) are derived from passive microwave 205 

observations which are insensitive to cloud cover and atmospheric contamination (Brandt et al., 2017). The 206 

VOD signal is sensitive to the total water content of all plant components in the upper canopy layer, which 207 

include leaves, stems, and branches (Tian et al., 2017). It is described by a negative exponential function of 208 

the transmissivity of vegetation and represents a dimensionless measure of how much of the microwave 209 

radiation emitted by the soils and the vegetation is attenuated by the vegetation itself (Liu et al., 2011). In 210 

other words, VOD tends towards zero when the transmissivity is one, meaning that no microwave energy is 211 

attenuated by soil or vegetation. This is the case of bare soils. Vice versa, VOD reaches maximum values 212 

when the transmissivity is zero, which happens when most microwave emissions are attenuated by vegetation. 213 

This is the case of densely vegetated areas (Liu et al., 2011). The VOD dataset used in this study was created 214 

merging passive microwave observations from three sensors (i.e., SSM/I, AMSR-E, and WindSat 215 

radiometers) (Liu et al., 2015), using the NASA and Vrije Universiteit Amsterdam land parameter retrieval 216 

radiative transfer model (Meesters et al., 2005; Owe et al., 2008). Recent studies testing the consistency of 217 

VOD during 1992-2011 showed that no errors occurred at the time of sensor shifts thanks to the long 218 

overlapping period existing between the SSM/I, AMSR-E, and WindSat instruments (Tian et al., 2016). Here 219 

we used annual minimum VOD from monthly data to reduce the contribution of herbaceous vegetation and 220 

apply these data as a proxy for woody cover (Brandt et al., 2019, 2017). Annual minimum VOD was also used 221 

as a proxy for aboveground standing biomass given its ability to detect the biomass signal (Liu et al., 2011; 222 

Owe et al., 2001). Since both NDVI and VCFs data are derived from optical AVHRR data, VOD represented 223 

an independent microwave data stream. 224 

2.2.4 Precipitation 225 

The CHIRPSv2.0 precipitation dataset (5 km x 5 km, 1981-present) (Funk et al., 2015) was produced from 226 

microwave, infrared, reanalysis, and gauge data. In summary, the Climate Hazard Precipitation Climatology 227 

(CHPclim), which represents a historical precipitation climatology created from different physiographic 228 

rainfall indicators and monthly long-term estimates of rainfall, brightness temperature, and land surface 229 



 11 

temperature, is multiplied with infrared precipitation estimates (IRP) obtained from a regression model of 230 

cold cloud duration. This unbiased gridded rainfall product, known as the Climate Hazards Group IR 231 

Precipitation (CHIRP), is blended with ground station data into the CHIRPS product using a per-pixel 232 

inverse distance weighted average algorithm based on the five spatially closets stations to each CHIRP 233 

gridded location (Funk et al., 2014). Information about the uncertainty of this algorithm is yet unavailable 234 

(Funk et al., 2015). CHIRPS provides rainfall in millimetres per month and comes with no missing data. 235 

Annual mean rainfall composites were built by averaging December to the following November data (i.e., 236 

one-month lag). This is because rainfall effects on vegetation are not immediate and, generally, the water of 237 

the previous month influences plants more than the water of the current month (Papagiannopoulou et al., 238 

2017; Svoray and Karnieli, 2011). However, we also tested no lag composites (i.e., averaging same-year 239 

January to December data) and found them to be significantly similar to the one-month lag composites 240 

(Supplementary Fig. S4). 241 

2.2.5 Soil moisture 242 

ESA CCI data fulfil the need for a long-term multi-satellite soil moisture product (Dorigo et al., 2017), and it 243 

represents the only available dataset able to span the time-series of this study. The ESA CCI v04.2 soil 244 

moisture dataset (25 km x 25 km, 1978-2016) is available as an active, passive, or active-passive merged 245 

product. Active observations are derived from AMI-WS and ASCAT scatterometers, the passive from seven 246 

different radiometers (SMMR, SSM/I, TMI, AMSR-E, WindSat, AMSR2, SMOS). Here we used the merged 247 

dataset because it brings together the advantages of active observations, better performing on medium to 248 

densely vegetated areas, and passive ones, which are more precise over sparse vegetation and can better 249 

discriminate between dry and wet soils (Chung et al., 2018a; Dorigo et al., 2010; Dorigo et al., 2017). The 250 

merging scheme is different from all other versions. While, previously, active and passive observations were 251 

firstly merged in one single active and one single passive product and later converted together in the final 252 

merged dataset (Chung et al., 2018b), in the v04.2 all active and passive datasets are weighted-average blended 253 

into the combined product in one single step to reduce uncertainties (Gruber et al., 2019). ESA CCI soil 254 

moisture data are provided in volumetric unit (m3 m-3). Common practice assumes that satellite soil moisture 255 
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data refer to the first 5 cm of soil (Dorigo et al., 2010). More confidence on deeper soil moisture content was 256 

given by a study showing a significant correlation between remotely sensed soil moisture data of the upper 5 257 

cm and ground-based observations within the first 10 cm (Dorigo et al., 2015), yet the impact of soil moisture 258 

on plants that can access water beyond this depth may be underestimated. Further, we noticed that some 259 

pixels have uncertainties higher than the actual soil moisture signal. This is because the way uncertainties are 260 

estimated (i.e., triple collocation analysis and error propagation), may not converge to a robust estimate either 261 

in case only a few observations were available or when the signals from different datasets diverged 262 

significantly (Chung et al., 2018b). For this reason, the soil moisture signal may still be relatively accurate even 263 

if it is lower than the uncertainty (Dorigo, personal communication, 2019). Due to the scarcity in good quality 264 

soil moisture data between 1982 and 1991 (only two operational radiometers, i.e., SMMR and SSM/I) and 265 

between 2003 and 2006 (ERS-2 on-board storage failure) (Dorigo et al., 2017), we increased the coverage of 266 

soil moisture values by aggregating all available daily flag 0 pixels to monthly level (McNally et al., 2015). 267 

Annual mean soil moisture composites were then created applying the same sensitivity analysis used to 268 

calculate annual mean NDVI composites (at least 9 months were needed to have a difference with the full 12-269 

months good quality mean ≤ 5%) (see section 2.2.1). 270 

2.2.6 Simulated biomass carbon 271 

The dynamic global vegetation model LPJ-GUESS simulates how the structure and function of ecosystems 272 

vary in response to changes in environmental conditions (Smith et al., 2014, 2001). The model simulates the 273 

per-pixel composition of vegetation fractional coverage as a combination of twelve possible plant functional 274 

types (PFTs), ten woody and two grassy (Sitch et al., 2003; Smith et al., 2014). Here we simulated the PFT 275 

composition as per biomass carbon, which is represented by leaves, roots, sapwood, and heartwood carbon 276 

pools (i.e., the four pools where the living biomass is distributed). Total aboveground carbon (AGC) was 277 

computed as the sum of leaves, sapwood, and heartwood, while woody biomass carbon (WDC) is calculated 278 

by adding sapwood and heartwood only. WDC thus represents the woody carbon content and relates to 279 

woody cover (Brandt et al., 2017). To bring the model from the initial condition (i.e., landscape with no 280 

vegetation) to a steady state at the start of the subsequent scenario phase (here 1st January 1901), we run a 500 281 
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years spin-up phase consisting in the iterative application of the first 30 years of the input climate variables. 282 

Later, our 1982-2015 simulations at 50 km spatial resolution were based on environmental conditions that 283 

included monthly climate data of temperature, precipitation and sunshine duration from the Climate Research 284 

Unit, version TS 3.24.01 (Harris et al., 2014), estimates of monthly nitrogen deposition (Lamarque et al., 285 

2013), and ice-core and flask measurement derived annual mean atmospheric CO2 data (Etheridge et al., 286 

1996). Given that these climate data are unrelated to the CHIRPS and ESA CCI, we could evaluate our 287 

results by means of distinct products. Because we were interested in the vegetation dynamic of rangelands, 288 

which are regions dominated by natural vegetation, LPJ-GUESS simulations did not take into account any 289 

human influences such as land use or land-use change (Tong et al., 2018). The uncertainties in these 290 

simulations originate from processes that are lacking or poorly parameterised in the model, as well as from 291 

error propagation through erroneous environmental forcing data and spatial and temporal averaging in these. 292 

However, LPJ-GUESS has been shown to capture the interannual variability of the terrestrial uptake of CO2 293 

at the global scale (Ahlström et al., 2015; Piao et al., 2013; Schurgers et al., 2018) and, more specifically, the 294 

interannual and decadal dynamics of biomass changes in Africa (Brandt et al., 2018, 2017; Lehsten et al., 295 

2009; Sallaba et al., 2017), both of which are primarily driven by climatic variations. This gives us confidence 296 

in using LPJ-GUESS as a tool to estimate expected climate-driven trends in this study. 297 

2.3 Analysis 298 

Our analysis aimed to understand the response of rangeland natural vegetation cover to recent climate change 299 

and to describe greening and browning as per changes in the structural component of the vegetation. We did 300 

this in three consecutive steps. First, we defined long-term changes in vegetation greenness (i.e., GIMMS 301 

NDVI). Second, we established the spatiotemporal relationship between these changes in vegetation 302 

greenness and water availability represented by precipitation and soil moisture. Third, we assessed five other 303 

climate variables affecting plant growth by employing the LPJ-GUESS simulated biomass carbon data and 304 

used VOD and VCFs to discern between woody and short herbaceous vegetation.  305 
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2.3.1 Trends in vegetation greenness 306 

A per-pixel trend analysis allowed us to statistically evaluate whether in each pixel there was a monotonic 307 

increase or decrease in vegetation greenness over time. Linear trends were obtained by calculating the slope of 308 

the regression of annual mean NDVI composites during 1982-2015 (n = 34). The non-parametric Spearman’s 309 

rank test was used to calculate the significance of the trends at the 95% level (p < 0.05). 310 

2.3.2 Relationship between vegetation greenness and water availability 311 

It is well established that plant growth in arid and semi-arid areas is largely limited by water availability 312 

(Fensholt et al., 2012). Because ca. 65.5% of African rangelands occur within arid and semi-arid regions 313 

(Supplementary Fig. S5), we were first interested in understanding how much of the observed trends in 314 

vegetation greenness can be explained by changes in precipitation and soil moisture. To this end, we started 315 

by calculating and mapping the per-pixel Spearman’s rank correlation coefficient (ρ) between NDVI and 316 

precipitation, and between NDVI and soil moisture during 1982-2015 (p < 0.05). These two maps described 317 

the spatiotemporal relationship between vegetation greenness and water availability. Similar to previous 318 

studies (Andela et al., 2013; Hoscilo et al., 2015), we then assessed whether an increase or decrease in 319 

vegetation greenness was attributable to changes in precipitation or soil moisture by extracting pixels with 320 

significant trends in NDVI as well as significant relationships between NDVI and water availability. Thus, 321 

these pixels identify rangelands where NDVI, precipitation, and soil moisture increased or decreased together 322 

during 1982-2015, while the remaining pixels identify rangelands where this relationship was missing. While 323 

we only discussed statistically significant relationships, we acknowledged that some relationships between 324 

NDVI, rainfall, and soil moisture may be insignificant due to some unavoidable data uncertainties. 325 

2.3.3 Rangeland vegetation cover dynamics 326 

To define greening and browning trends as either controlled or unrelated to climate variability, other climate 327 

variables must be assessed in addition to water availability. The LPJ-GUESS model, which is able to detect 328 

more complex climate dynamics (e.g., higher temperature combined with changes in precipitation patterns) 329 

than correlation analyses (Sitch et al., 2003), was used to check whether the full set of its climatic drivers (i.e., 330 

temperature, precipitation, sunshine duration, nitrogen deposition, and CO2 concentration) could reproduce 331 
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the observed changes in vegetation greenness assuming that greening/browning trends should relate to an 332 

increase/decrease in the simulated biomass carbon. In addition, we looked at trends in VOD given that, 333 

despite the shorter time-series (1992-2011 vs. 1982-2015), VOD was shown to provide clear indications of 334 

aboveground biomass carbon (Liu et al., 2015). Therefore, we defined changes in vegetation greenness as 335 

climatic if VOD, NDVI, AGC, and WDC showed concomitant and comparable trends during 1982-2015 336 

(i.e., LPJ-GUESS could reproduce changes in vegetation based on climate variables), and areas of 337 

disagreement between trends in NDVI and VOD and trends in AGC and WDC were described as non-338 

climatic. While intermediate conditions still exist at different spatiotemporal scales (e.g., disturbances such as 339 

fire to affect climatic rangeland dynamics or changes in precipitation regimes affecting non-climatic rangeland 340 

dynamics), this change attribution approach still allowed us to identify, at an annual timescale, those areas 341 

where long-term climate was the main or subordinate driver of vegetation dynamics. Finally, we moved 342 

beyond the simple greening and browning label by using VCF and VOD data to decompose changes in 343 

NDVI into the woody and short components of the vegetation. While the tree cover data by Song et al. 344 

(2018) map only trees taller than 5 m, the annual minimum VOD signal includes also small trees and shrubs 345 

(Brandt et al., 2019). This aspect is decisive as the combined use of these two products allowed our analysis to 346 

fully represent the general rangeland woody cover community. Noticeably, shrubs are part of both VOD and 347 

short vegetation signals, yet we believe these woody species to be better detected by the VOD signal given 348 

the more extensive evidence of VOD to well represent woody plants regardless of their size or canopy 349 

closure (Brandt et al., 2017, 2016; Liu et al., 2015; Tian et al., 2017). Also, as herbaceous-shrub interactions 350 

occur at a much higher spatial resolution than most long-term remote sensing products, the full 351 

disaggregation of rangeland vegetation into its shrubby and herbaceous component is challenging. As we did 352 

not consider croplands in the analysis (see section 2.1), we ultimately assumed short vegetation data to remain 353 

largely representative of short non-woody herbaceous species. 354 

Methodologically, we used standardised anomalies calculated with the z-score formula, i.e., z-score = (value – 355 

mean) / standard deviation (dimensionless). Standardising is an effective approach to convert different scales 356 

to the same comparable scale, and it tells, for each pixel value, the number of standard deviation away from 357 
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its time-series mean (i.e., anomaly) (Helldén and Tottrup, 2008). Standardised anomalies in VOD, VCFs, 358 

AGC, and WDC were calculated in those rangelands previously characterised in relation to water availability 359 

alone (i.e., section 2.3.2). To represent the time-series, we then averaged all per-pixel standardised anomalies 360 

in every year and presented the results showing the slope of the regression of these anomalies expressed as 361 

total per cent change during 1982-2015 (1992-2011 for VOD). 362 

3 Results 363 

3.1 Trends in vegetation greenness 364 

Significant linear trends (p < 0.05) in vegetation greenness were observed in approximately half of African 365 

rangelands (ca. 5,410,000 km2) between 1982-2015. Approximately 4,140,000 km2 of these changes were 366 

positive (i.e., greening) and mostly occurred across the Sahel, West Africa, Chad, South Sudan, Namibia, 367 

Botswana, and South Africa. Negative trends (i.e., browning) were mostly clustered in Angola and 368 

Mozambique, yet their extent was significantly smaller (ca. 1,270,000 km2) compared to the greening areas 369 

(Fig. 2). 370 

 371 

Fig. 2 Trends in vegetation greenness in rangelands during 1982-2015 as indicated by the GIMMS3g.v1 NDVI 372 
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(NDVI unit yr-1). Trends over time were indicated by the slope of the regression (n = 34, Spearman’s rank test, p < 373 

0.05). Vegetation greenness overall increased (6,623 pixels) between 1982 and 2015 (browning accounted for 2,030 374 

pixels). Supplementary Figs. S6 and S7 report the trends in vegetation greenness for the African rangelands as derived 375 

from the White (1983) and Ellis et al. (2010) maps. 376 

3.2 Relationship between vegetation greenness and water availability 377 

The relationship between annual mean NDVI and annual mean precipitation (Fig. 3a) and between annual 378 

mean NDVI and annual mean soil moisture (Fig. 3b) displayed similar outputs. In both cases, statistically 379 

significant (p < 0.05) correlation coefficients showed a comparable positive strength (ρ = 0.567 and ρ = 380 

0.546, average) and covered the same regions (northwestern Maghreb, western Sahel, southern Chad, eastern 381 

Africa, Namibia, Botswana, and South Africa). 382 

 383 

Fig. 3 Relationship between the GIMMS3g.v1 NDVI and CHIRPSv2.0 precipitation (a), and between the 384 

GIMMS3g.v1 NDVI and ESA CCIv04.2 soil moisture (b). Long-term relationships were defined by per-pixel 385 

Spearman’s rank correlation coefficients (ρ) calculated on annual mean composite during 1982-2015  (p < 0.05). The 386 

NDVI-precipitation (a) and NDVI-soil moisture (b) relationships were significantly similar in terms of strength, type, 387 

and spatial distribution. Total pixel count: 10,586 positive vs. 16 negative (a), and 7,628 positive vs. 71 negative (b). 388 

Supplementary Figs. S6 and S7 report the relationships between NDVI and precipitation/soil moisture for the African 389 
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rangelands as derived from the White (1983) and Ellis et al. (2010) maps. 390 

Statistically significant pixels of these correlation coefficient maps that also showed statistically significant 391 

greening and browning trends (i.e., Fig. 2) represented rangeland systems where vegetation was mostly 392 

controlled by long-term changes in precipitation and soil moisture (Fig. 4, turquoise and purple shaded areas). 393 

Greening (ca. 2,110,000 km2) was mostly observed in three similar arid and semi-arid regions, i.e., southern 394 

Mauritania, Senegal, Mali (hereafter western Sahel), Chad, and Namibia, Botswana, South Africa (hereafter 395 

southern Africa), while browning accounted for small and patchy areas totalling ca. 385,000 km2. Conversely, 396 

the remaining pixels (i.e., statistically significant trends in NDVI but no statistically significant correlation 397 

between NDVI and water availability) indicated greening and browning largely unrelated to long-term 398 

precipitation and soil moisture (Fig. 4, blue and orange shaded areas). Greening (ca. 2,030,000 km2) was 399 

observed in Ghana, Guinea, Ivory Coast (hereafter West Africa), and South Sudan, while browning (ca. 400 

885,000 km2) was clustered in Angola and Mozambique. In total, ca. 2,915,000 km2 of the African rangelands 401 

(26.5% of the total extent) showed trends in vegetation greenness unrelated to water availability. 402 

 403 

Fig. 4 Co-relationships between trends in NDVI and precipitation (a) and between trends in NDVI and soil moisture 404 

(b). NDVI increased together with precipitation and soil moisture across parts of western Sahel (southern Mauritania, 405 

Senegal, Mali), Chad, and southern Africa (Namibia, Botswana, and South Africa) (turquoise), while no major regions of 406 
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browning due to a decrease in precipitation and soil moisture were observed (purple). Changes in NDVI resulted 407 

unrelated to changes in water availability mostly in West Africa (Ghana, Guinea, Ivory Coast) and South Sudan 408 

(greening; blue), and Angola and Mozambique (browning; orange). 409 

3.3 Rangeland vegetation cover dynamics 410 

Precipitation and soil moisture alone do not provide enough insights into the greenness response to overall 411 

climate. At the same time, vegetation greening and browning cannot be necessarily linked to improvement 412 

and deterioration of ecosystem conditions, since the provisioning of ecological services strongly depends on 413 

the composition of the vegetation. Building on the two types of rangeland identified in Fig. 4, i.e., water-414 

limited rangelands of western Sahel, Chad, and southern Africa (turquoise and purple shaded areas), and non-415 

water limited rangelands of West Africa, South Sudan, Angola, and Mozambique (blue and orange shaded 416 

areas), the analysis of ACG, WDC, VOD, and VCFs addressed these gaps (NDVI, precipitation, and soil 417 

moisture were also included in the following z-score analyses). 418 

3.3.1 Vegetation dynamics in the rangelands of western Sahel, Chad, and southern Africa 419 

Western Sahel and Chad showed similar patterns in all indicators (Fig. 5 and Supplementary Fig. S8). 420 

Increasing NDVI (5.7% and 6.1%) was associated with a total increase in tree cover (2.0% and 4.7%), VOD 421 

(8.0% and 9.6%), and short vegetation (2.4% and 5.1%) during 1982-2015. Bare ground counterbalanced 422 

these changes decreasing by 5.5% and 5.7% respectively. The AGC simulations from LPJ-GUESS 423 

reproduced the positive changes in NDVI, tree cover, and short vegetation (2.4% and 2.3%), while WDC 424 

increased at a comparable rate (1.6%) only in Chad (-0.3% in western Sahel). Similar results were observed in 425 

southern Africa (Fig. 5 and Supplementary Fig. S9). Most satellite data (i.e., NDVI 5.0%, VOD 10.6%, short 426 

vegetation 2.4%), simulated AGC (1.6%), and precipitation (2.0%) showed a positive trend, while WDC 427 

remained unchanged reproducing trends in tree cover (-0.5%). 428 
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 429 

Fig. 5 Vegetation dynamics in the climatic rangelands of western Sahel (southern Mauritania, Senegal, Mali), Chad, 430 

and southern Africa (Namibia, Botswana, and South Africa), as indicated by the slope of the regression of standardised 431 

anomalies in normalised difference vegetation index (NDVI), tree cover (TC), vegetation optical depth (VOD), short 432 

vegetation (SV), bare ground (BG), simulated aboveground carbon (AGC), simulated woody biomass carbon (WDC), 433 

precipitation (P), and soil moisture (SM). All indicators increased in western Sahel and Chad during 1982-2015 (except 434 

for bare ground). Some discrepancies were observed in southern African rangelands, where changes in NDVI, AGC, 435 

SV, and precipitation were comparable but trends in tree cover and WDC did not reproduce trends in VOD. Black lines 436 

indicate standard errors (no significant mask was applied). Slope values are reported as total per cent change during 437 

1982-2015 (1992-2011 for VOD) (see Supplementary Figs. S8 and S9). The colour of the bar plots recalls the turquoise 438 

of Fig. 4. 439 

3.3.2 Vegetation dynamics in the rangelands of West Africa, South Sudan, Angola, and Mozambique 440 

Different scenarios were observed in West Africa, South Sudan, Angola, and Mozambique. The greening of 441 

both West Africa and South Sudan was associated with increasing woody cover, as shown by positive trends 442 

in tree cover (4.3% and 6.0%) and VOD (2.0% and 5.3%) (Fig. 6 and Supplementary Fig. S10). However, 443 

here we observed a decline (-3.0% and -3.7%) in short vegetation during 1982-2015, meaning that the key 444 

contribution to the greening of vegetation was mostly due to woody plants. To some extent, an increase in 445 

tree cover and a concomitant decline in short vegetation may also depict trees that during 1982-2015 grew 446 

above the 5 m height threshold. Importantly, AGC and WDC experienced very little change in West Africa (-447 

0.3% and -0.5%) and decreased significantly in South Sudan (-7.5% and -7.8%), implying that LPJ-GUESS 448 

was unable to reproduce the greening trend observed from satellite data. Changes in woody cover were also 449 

responsible for the browning of Angolan and Mozambican rangelands, yet this was more evident in 450 

Mozambique, where trends in tree cover (-5.0%) were in line with trends in VOD (-3.1%), than in Angola 451 
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(tree cover -3.7% and VOD +1.5%) (Fig. 6 and Supplementary Fig. S11). Noticeably, trends in short 452 

vegetation were positive in both regions (3.7% and 5.0%), suggesting that this vegetation is replacing woody 453 

cover. Despite the overall browning shown by vegetation data streams, strong positive variations in AGC and 454 

WDC were observed in rangelands of Angola (6.2% average), while in Mozambique these were slightly 455 

negative (-1.6% average). Therefore, also in these two regions the climate variables used to force LPJ-GUESS 456 

failed to reproduce the vegetation browning. Importantly, VOD and short vegetation showing diametrically 457 

opposite trends in all four areas implies that shrubs are unlikely to be included in both the VOD and short 458 

vegetation signals (e.g., if VOD increases and SV decreases, shrubs increase together with VOD, and the 459 

decrease in SV will mostly represent a reduction in the herbaceous layer, and vice versa). This evidence thus 460 

reinforced our assumption of VOD to better detect the woody component of the vegetation, with short 461 

vegetation data representing the short non-woody cover. 462 

 463 

Fig. 6 Vegetation dynamics in the non-climatic rangelands of West Africa (Ghana, Guinea, Ivory Coast), South 464 

Sudan, Angola, and Mozambique, as indicated by the slope of the regression of standardised anomalies in normalised 465 

difference vegetation index (NDVI), tree cover (TC), vegetation optical depth (VOD), short vegetation (SV), bare 466 

ground (BG), simulated aboveground carbon (AGC), simulated woody biomass carbon (WDC), precipitation (P), and 467 

soil moisture (SM). The biomass carbon parameters largely failed to reproduce changes in vegetation greenness. Also, 468 

woody cover increased where short vegetation decreased (West Africa, South Sudan), and woody cover declined where 469 

short vegetation increased (Angola, Mozambique). Black lines indicate standard errors (no significant mask was applied). 470 
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Slope values are reported as total per cent change during 1982-2015 (1992-2011 for VOD) (see Supplementary Figs. S10 471 

and S11). The colours of the bar plots recall the blue and orange of Fig. 4. 472 

4 Discussion 473 

The overall greening of the African rangelands during 1982-2015 supports the evidence of a recently greening 474 

Earth (Zhu et al., 2016). Regions of vegetation green-up were observed in West Africa, the Sahel, and 475 

southern Africa, while vegetation browning was mostly confined in Angola and Mozambique. Vegetation 476 

greenness as indicated by NDVI is known to be correlated with vegetation productivity, i.e., a key indicator of 477 

measuring land degradation (Abel et al., 2019). Thus, changes in NDVI are often used as a proxy to assess 478 

environmental conditions of a given area and, generally, greening is linked to an increase in vegetation 479 

productivity (i.e., better conditions) while browning indicates a reduction in productivity (i.e., degradation) 480 

(Wessels et al., 2007). However, remotely sensed measures of greening do not always imply healthier lands, as 481 

greening may also result from loss in biodiversity (e.g., monoculture plantations) or increasing concentration 482 

of invasive species (Herrmann and Tappan, 2013). For instance, reforestation of old-growth grasslands 483 

deemed suitable to offset deforestation may reduce plant and animal richness as well as carbon storage rates 484 

via changes in the surface albedo (Bond, 2016; Veldman et al., 2019). Similarly, the encroachment of woody 485 

plants is the main driver of greening trends in Africa (Brandt et al., 2017; Venter et al., 2018), yet often 486 

perceived as a degradation of ecosystems by livestock keepers as the non-palatability of encroaching species 487 

reduces the land grazing capacity (Gillson and Hoffman, 2007; Munyati et al., 2011; Sandhage-Hofmann et al., 488 

2015). On the other hand, associating browning uniquely with land degradation would be an 489 

oversimplification, particularly from a rangeland perspective. This is because rangelands are such dynamic and 490 

heterogeneous systems, where the interactions of different disturbances (e.g., climate variability, fire regimes, 491 

herbivore pressure) may lead to different forms of land degradation (Engler and von Wehrden, 2018) or, as 492 

we show here, may be even associated with an increase in short herbaceous vegetation and hence resources. 493 

Likewise, recent local-scale studies have shown that the long-lasting presence of herders did not cause the 494 

depletion of nutrient-rich hotspots of some African savannas, but it actually enhanced their longevity over 495 

time (Marshall et al., 2018). 496 
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4.1 Climatic vegetation cover changes 497 

The connection between water availability and vegetation greening in the arid and semi-arid Sahel is well-498 

established, as shown by many studies (Anyamba and Tucker, 2005; Fensholt et al., 2009; Herrmann and 499 

Hutchinson, 2005; Hickler et al., 2005; Huber et al., 2011; Nicholson, 2005). As expected, our findings based 500 

on precipitation and soil moisture satellite data confirmed this evidence. Further, LPJ-GUESS simulations 501 

forced with precipitation, temperature, sunshine duration, nitrogen deposition, and CO2 suggested the overall 502 

climatic behaviour of the greening Sahel. In southern Africa, trends in the different indicators were less 503 

consistent. On the one hand, the discrepancies observed within satellite and model data may reflect dynamics 504 

in shrub vegetation, which are part of the VOD and aboveground carbon signals but not captured by tree 505 

cover and woody biomass carbon signals (e.g., if large trees are removed, the tree cover signal reduces even if 506 

shrubs and bushes increase). On the other, they leave room for other interpretations embracing interactions 507 

between human and non-human forces (e.g., rainfall variability, fire, soil fertility, large mammals, rising CO2) 508 

(Lehmann et al., 2011; Parr et al., 2014). While understanding how these factors feedback to determine the 509 

woody-herbaceous distribution remains a key and complex issue (Osborne et al., 2018), here we show that the 510 

greening of western Sahel, Chad, and southern Africa was not only associated with an increase in trees and 511 

shrubs (Brandt et al., 2016, 2015; Stevens et al., 2016; Venter et al., 2018), but also in herbaceous vegetation. 512 

One could argue that these species are often in competition (e.g., encroaching shrubs reduces the herbaceous 513 

cover), yet coexistence may still occur given the different rooting depth and temporal water use (Staver, 514 

2018). Meanwhile, the concomitant long-term decrease in bare ground observed in these regions represents a 515 

direct data-driven clue against desert expansion claims. 516 

4.2 Non-climatic vegetation cover changes 517 

Both the greening of West Africa and South Sudan and the browning of Angola and Mozambique appeared 518 

not to be linked to changes in water availability. In addition to this, the biomass carbon simulated by LPJ-519 

GUESS reinforced these findings and indicated that ecosystem responses to other climatic factors cannot 520 

provide an adequate explanation for the observed trends either. For instance, LPJ-GUESS was unable to 521 
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reproduce the greening observed in West African rangelands principally because it was forced with climate 522 

variables that did not change significantly during 1982-2015. Similarly, in Angola the model failed to 523 

reproduce the vegetation browning observed from satellite data because precipitation (and likely the other 524 

input variables) increased between 1982 and 2015 and, in turn, simulated an increase in vegetation greenness. 525 

Ultimately, we suggest these trends to be largely driven by non-climatic forces such as herbivores, land use 526 

change, or fire, among others (not investigated in this study) (Archibald and Hempson, 2016). The vegetation 527 

structure of these rangelands (i.e., woody and short vegetation showing opposing trends) being significantly 528 

different from the climatic ones (i.e., woody and short vegetation both increasing) highlights how regional 529 

variability in the intensity and interactions of biotic and abiotic factors can produce quite different responses 530 

in vegetation growth (Osborne et al., 2018). 531 

Non-climatic vegetation dynamics were controlled by changes in woody cover, with short vegetation having 532 

no influence on the overall greenness level. A decrease in short vegetation did not result in a decrease in 533 

greenness where woody cover increased (West Africa, South Sudan). Vice versa, vegetation browned as 534 

woody cover decreased even if the short vegetation increased (Angola, Mozambique). The West Africa and 535 

South Sudan green-up may relate to conflicts, lowering the pressure on land as people get displaced (e.g., 536 

reduced land clearance for agriculture and settlement, reduced grazing pressure) (Hugo, 1996; Olsson et al., 537 

2005), or to other important rangeland disturbances including fire (e.g., fire suppression), or changes in 538 

wildlife and livestock numbers (Andela et al., 2017; Venter et al., 2017). However, disentangling their net 539 

effect on vegetation cover is more locally than continentally detectable (Archer et al., 2017; Devine et al., 540 

2017). Further, recent studies showed that woody encroachment in savannas was fuelled by short-term 541 

changes in rainfall patterns (Brandt et al., 2019; Gherardi and Sala, 2015; Zhang et al., 2019), meaning that 542 

more attention should be given to the role of rainfall shifts that may not be visible in annual mean products. 543 

Short-term disturbances may indeed produce fast variations in vegetation greenness, introducing potential 544 

uncertainties in the identification of slower long-term trends (Broich et al., 2014). On the other hand, the 545 

browning of Angolan and Mozambican rangelands is likely explained by deforestation, as highlighted by the 546 

decrease in tree cover (i.e., plants ≥ 5 m) and previous studies (Achard et al., 2014; Cherlet et al., 2018; 547 
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Chiteculo et al., 2018; Hansen et al., 2013). Still, the latitudinal proximity of Madagascar also experiencing 548 

browning suggests that climate might have contributed, to some extent, to the final vegetation cover 549 

composition of these rangelands. 550 

5 Implications and conclusions 551 

The observed changes in the vegetation structure in West Africa, South Sudan, Angola, and Mozambique do 552 

not allow for a simple evaluation of greening and browning trends on the ecosystem service provision by 553 

rangelands. Although browning generally implies a reduction in the carbon uptake by terrestrial ecosystems 554 

(i.e., low climate change mitigation potential), the increase in short vegetation may hint that more herbaceous 555 

vegetation, and therefore resources, are available for pastoral communities and their livestock. On the other 556 

hand, greening trends related to woody plant encroachment increase the standing biomass, which is desirable 557 

for climate change mitigation, yet unpalatable woody species replacing short herbaceous vegetation informs 558 

of degradation of rangelands in terms of their socio-economic use. Therefore, these results suggest that future 559 

rangeland management strategies may have to balance pastoral welfare and climate change mitigation goals. 560 

Also, while the use of LPJ-GUESS corroborates the identification of climatic and non-climatic rangelands, it 561 

is worth mentioning that uncertainties in the parameterization of ecosystem processes (Zaehle et al., 2005) 562 

and in the use of large-scale climate data (Wu et al., 2017) within DGVMs contribute to uncertainties in the 563 

simulated response to climatic variability and trends, which will be particularly pronounced in the case of 564 

climatic signals with opposing impacts on simulated AGC or WDC. However, our simulation results are in 565 

many cases corroborated by the analysis of precipitation and soil moisture impacts, and agreement in the 566 

trends of simulated carbon pools and VOD provide confidence in the use of a DGVM to derive expected 567 

climate-driven trends. Finally, it is worth recalling that we considered woody shrubs to be best represented by 568 

VOD and short vegetation to mostly include herbaceous plants. Herbaceous-shrub mixing occurs at a spatial 569 

resolution undetectable from most long-term remote sensing products, and future assessments of greening 570 

and browning trends at higher spatial resolution will lift this current drawback of our study (e.g., Cheng et al., 571 

2020; Li et al., 2020). Nonetheless, we believe that our findings still represent an important starting point for 572 
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those national and local governments aiming to devise effective rangeland management strategies. This is 573 

particularly the case of rangelands in developing countries (e.g., South Sudan, Chad, Angola), where field-574 

based rangeland assessments are often lacking due to inadequate resources and political instability. 575 
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