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Abstract

About 21% of the African population directly depends on rangeland resources. As this number is predicted
to grow, it is important to understand the response of African rangelands to global environmental change and
formulate, in turn, better hypotheses on their capacity to support livelihoods. Here we used three decades of
satellite data and a dynamic global vegetation model to study the response of rangeland vegetation to recent
climate change and to describe changes in the vegetation structure accompanying greening and browning
trends. Long-term climate change was the dominant driver of vegetation dynamics in ca. 2,495,000 km? of
African rangelands (22.7% of the total extent). Examples of these rangelands are in Mauritania, Senegal,
Chad, Namibia, Botswana, and South Africa, where the vegetation greened up due to an overall increase in
trees, shrubs, and short herbaceous vegetation. We further identified a more extended different type of
rangeland (ca. 2,915,000 km?) where vegetation dynamics appeared to be largely unrelated to long-term
climate variations. In these rangelands, we observed opposite trends between woody cover (trees and shrubs)
and short vegetation (mostly representative of the herbaceous layer). Greening (West Africa, South Sudan)
was associated with an overall increase in woody cover (+4.4%) and a concomitant decline in short vegetation
(-3.4%), while browning (Angola, Mozambique) resulted from a decrease in woody cover (-2.6%) and an
increase in short vegetation (+4.3%) (total per cent change average during 1982-2015). Our results offer a
nuanced perspective to frame greening and browning trends in rangeland systems. While greening may
mitigate climate change via higher carbon uptake, the encroachment of less palatable woody species reduces
the resources available to pastoral communities. On the other hand, browning due to a reduction in the
woody cover attenuates carbon sequestration rates, but the observed increase in short herbaceous vegetation

may hint a relative increase in forage resources.
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1 Introduction

The International Grassland Congress and the International Rangeland Congress defined rangelands as
domestic or wildlife grazing lands generally including grasslands, woodlands, shrublands, and some extent of
deserts (Allen et al., 2011). Estimates of the proportion of Africa’s land covered by rangeland range from ca.
22,000,000 km? (Flintan, 2012), ca. 14,500,000 km2 (White et al., 2000), ca. 13,000,000 km? (Hoffman and
Vogel, 2008), ca. 8,100,000 km? (Ellis et al., 2010), to ca. 6,700,000 km? (Dixon et al., 2001) (depending on
definitions and data sources). They provide the primary (e.g., meat, bones, hide) and secondary (e.g., milk,
manure, fibre, wool, traction, eggs) animal products for the livestock rearing activities of some 270,000,000
people, both pastoralists and agro-pastoralists (FAO, 2017; Phelps and Kaplan, 2017). Other ecosystem
services supplied by rangelands include the provision of water resources, shade, heritage and recreation,

wildlife habitat conservation, and carbon sequestration (Lal, 2004; Sala et al., 2017).

The dependency on African rangeland resources is expected to grow due to the estimated increase of the
Aftrican population to double by 2050 (UN DESA, 2019). Principally, this implies that livestock products will
be increasingly transported to urban (i.e., non-rangeland) areas and will accelerate rangelands conversion to
croplands to meet the food demand (Alkemade et al., 2013; van Ittersum et al., 2016). However, the opposite
is also possible, since deforestation and the rural-urban migration (i.e., farmland abandonment) may foster the
creation of new rangeland-type spaces (Benayas et al., 2007; Bond and Zaloumis, 2016). In addition to
increasing social demands, the future of rangelands will also depend on the impacts of rising temperature and
changes in the distribution and intensity of climate extremes (Kharin et al.,, 2007; Niang et al., 2014). For
instance, although large disagreements still exist on the response of African ecosystems to different climate
change scenarios (Midgley and Bond, 2015), drought may become more severe and frequent in southern and
western Africa (Gizaw and Gan, 2017), while in eastern Africa this appears to be happening already
(Nicholson, 2016). Similarly, recent studies have linked short-term shifts in rainfall patterns (Brandt et al,,
2019; Zhang et al., 2019), rising levels of atmospheric COz (Stevens et al., 2016; Wigley et al., 2010), or
significant declines in large mammals (Daskin et al., 2016) to woody encroachment in African savannas. The

persistence of drier and warmer conditions and shifts in the vegetation composition represents a major risk
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not only for the regular food security of rangeland communities (Thornton et al., 2009), but also for

rangeland biodiversity richness and carbon stock dynamics (Bond, 2016; Lange et al., 2015).

One way to better understand how future climate change will influence the rangelands of Africa is to evaluate
historical data to assess how the vegetation has responded to climate in the past. However, despite the
increasing availability of global long-term satellite data, this information is still not readily available. In fact,
while the vegetation of Africa is reported to be largely sensitive to water availability (mostly in arid and semi-
arid environments) (Anyamba et al., 2014; Herrmann et al., 2005; Moncrieff et al., 2016) or recent CO»
fertilization (tropical regions) (Nemani et al,, 2003; Zhu et al,, 2016), many non-climatic disturbances
influence its dynamics at different spatiotemporal scales. These may include land-use change and
fragmentation (Hobbs et al., 2008; Song et al., 2018), land management (Kiage, 2013; Stevens et al., 2010),
armed conflicts (Bromley, 2010; Gorsevski et al., 2012), or infrastructure (Dobson et al., 2010), among others.
Thus, the location and extent of the African rangelands where climate is the predominant or subordinate
driver of long-term vegetation dynamics are nowadays unclear. Relevant to this conundrum are ecological
studies assessing what limits savanna boundaries and the tree-grass coexistence. These have explained that a
wotld without fire would be forest-dominated (Bond et al., 2005), or that forests prevail in regions receiving
mote than 2,500 mm/yr of rainfall while grass-dominated systems occur below 650 mm/yr (Sankaran et al.,
2005), 750 mm/yr (Hirota et al., 2011) or 1000 mm/ytr (Staver et al., 2011). Between these end memberts,
ecosystems can persist as either forest or savanna depending on rainfall seasonality and disturbances (e.g., fire,
mammalian herbivory) (Mayer and Khalyani, 2011). For instance, fire suppression would promote woody
plant and canopy closure, which reduces light and hence grasses (that in turn reduces fire), while a strong
rainfall seasonality would enhance fuel curing, fire frequency, open canopy and therefore a light-demanding
grass state (that in turn favours fire) (Lehmann et al., 2011; Oliveras and Malhi, 2016; Pausas and Bond,
2020). However, accounting for spatial and temporal inter-relationships between these elements remains
complex and still represents a barrier to our understanding of potential future biome shifts (Wei et al., 2020).
Remote sensing studies have tried to overcome such complexity by focusing on the dynamics of one specific

structural component of the vegetation, i.e. woody plants. Not only this is because the phenomenon of
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“woody plant encroachment” came into the spotlight of recent research (e.g., Axelsson and Hanan, 2018;
Brandt et al., 2020; Li et al., 2020; Skowno et al., 2017; Stevens et al.,, 2016; Venter et al., 2018), but also
because long-term assessments of woody vegetation dynamics were made feasible by new data such as
vegetation optical depth (Andela et al., 2013; Brandt et al., 2017). As a consequence, less is known about long-
term changes in the short vegetation layer and the relative availability of herbaceous plants. It is however
important to better understand the dynamics of all vegetation layers to formulate appropriate hypotheses on
the current and future provision of ecosystem services from rangelands as well as to improve our knowledge
on rangeland carbon dynamics. Building on the existing knowledge of woody vegetation dynamics, our study
includes an assessment of short vegetation to provide a more comprehensive picture of potential implications
associated with long-term changes in rangeland vegetation cover. More specifically, here we (a) identify those
rangelands where changes in vegetation greenness were either mostly driven or unaffected by long-term
climate change and (b) combine the properties of different satellite data to disentangle these changes in terms
of the vegetation structure. By doing so, this study provides a long-term overview of how rangeland natural

vegetation cover has changed across Africa in the last three decades.

2 Materials and methods

2.1 Study area

An accurate definition of rangeland would allow to effectively estimate their spatial extent, facilitate the
identification of owners or administrators, and yield more appropriate management strategies (Lund, 2007).
However, ca. 300 rangeland definitions have been suggested in over a century of rangeland science and,
nowadays, this term is still rather nebulous (Reeves et al., 2015). Much of this confusion likely exists because
no clear distinction is made between the land use and land cover features or due to the misuse and
misclassification of different classes (e.g., woodland, savanna, forest) (Lund, 2007; Phelps and Kaplan, 2017).
In turn, this may explain why most terrestrial ecosystem studies have focused on better-defined regions such
as drylands or forests. For our purpose, here we focused on observed land cover as defined in the moderate

resolution imaging spectroradiometer (MODIS) global land cover product (MCD12C1 collection 6) (Sulla-
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Menashe and Friedl, 2018). From this product, we selected only the land cover classes that are typically
included within rangeland definitions (Supplementary Fig. S1), i.e., shrublands, savannas, and grasslands, and
therefore excluded forests, croplands, wetlands, urban and barren lands. According to this classification, we
calculated that rangelands cover 10,999,375 km? of the African continent, ie., 92,500 km? of closed
shrublands, 1,453,125 km? of open shrublands, 574,375 km? of woody savannas, 3,236,250 km? of savanna,
and 5,598,125 km? of grasslands (Fig. 1). We acknowledge that this value may best represent the potential
rather than actual rangeland extent for Africa given that no land use evidences were included herein.
However, for simplicity of terminology, our study area is hereafter referred to as rangeland. Alternative
rangeland maps for Africa could be derived from White (1983), a continent-wide potential natural vegetation
classification system, or Ellis et al. (2010), who produced an anthropogenic biome classification based on how
humans transformed terrestrial biosphere (Supplementary Fig. S2). We opted for the MODIS-based product
as the map from White (1983) would likely include extended areas now converted to croplands, while the
Ellis et al. (2010) product was shown to be affected by problematic statistical inventory data and land use

assumptions (Phelps and Kaplan, 2017; Sayre et al., 2017).

a
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Fig.1 Rangeland extent derived from the MODIS MCD12C1 collection 6 global land cover product (Sulla-Menashe

and Friedl, 2018). The classes follow the International Geosphere-Biosphere Programme (IGBP) classification scheme.
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Forests, croplands, wetlands, utban, and barren lands were not included and are indicated as non rangeland (see
Supplementary Fig. S1). The extent of ca. 11,000,000 km? fits well within existing rangeland extent estimations for Africa
(a). Herdsman and cattle in rangelands of Ethiopia (photo credit: Camille Hanotte, International Livestock Research

Institute) (b). Kenya wildlife-rich rangelands (photo credit: Dave Elsworth, International Livestock Research Institute)
(©).

2.2 Data sources and preprocessing

Multiple, independent, and complementary datasets should be used to overcome the limitations of individual
datasets and reduce uncertainties. To this end, we investigated rangeland dynamics in Africa during 1982-
2015 using an ensemble of optical and microwave satellite data as well as a dynamic global vegetation model.
Given the differences in the nominal spatial resolution, all data were resampled at the common pixel size of
25 km x 25 km using the aggregate and resample functions (bilinear algorithm) from the R package ‘raster’
(Hijmans et al., 2021). We determined annual means over growing season integrated metrics to avoid
uncertainties caused by the seasonal complexity that exists throughout Africa. This is a common approach in
broad-scale terrestrial ecosystem studies (Fensholt et al., 2009; Helldén and Tottrup, 2008; Mueller et al.,

2014). All analyses were performed within the R environment (R Core Team, 2018).

2.2.1  Normalised Difference 1 egetation Index (ND11)

The AVHRR-derived GIMMS NDVI3g.v1 (8 km x 8 km, 1981-2015) (Pinzon and Tucker, 2014) is one of
the few datasets enabling vegetation greenness trend analysis over more than 30 years (Forkel et al., 2013).
The NDVI3g.vl comes with three main differences compared to the previous NDVI3g.v0. First, errors in
the cross-calibration with SeaWiF'S data were addressed to minimize overestimations of NDVI values in
sparsely vegetated regions (Burrell et al.,, 2018). Second, it covers two extra years by integrating data from
NOAA-17 and NOAA-18 satellites and, third, the quality flags, three instead of seven, are embedded
separately to simplify the use of the dataset. After removing NDVI values that did not represent vegetated
areas (NDVI =< 0), NDVI was further filtered to account for spurious signals due to soil-vegetation spectral
mixing, which overestimates vegetation index over both dark-background and, to a lesser extent, bright-

background soils typical of rangeland areas (Elvidge and Lyon, 1985; Huete, 1988). Previous studies overcame
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this issue by masking out values smaller than 0.1 (Bi et al., 2013), 0.15 (Eastman et al., 2013) or 0.2 (Zhu and
Southworth, 2013). We tested all these thresholds and eventually chose the threshold at 0.1, as 0.15 and 0.2
would mask out too many rangeland pixels (36% and 48% respectively, only 9% at 0.1). Monthly mean
NDVI was then calculated by averaging the two maximum-value composite (MVC) values provided for each
month (one for day 1-15 and one for day 16-end of the month per pixel). Instead of averaging, some studies
aggregate bi-monthly values using again the MVC approach because it further reduces residual cloud cover
effects (Bao et al., 2015; Ibrahim et al., 2015; Zhu and Southworth, 2013). However, this was not necessary as
we excluded tropical forests and only used good quality pixels (i.e., flag 0), which refer to NDVI values
without apparent issues (e.g., cloud-free pixels). Also, the MVC approach would represent just fifteen days of
the month, whilst averaging enabled a more representative mean of a given month. Annual mean NDVI
composites were then produced averaging January to December data. However, because good quality pixels
did not necessarily represent all months during the time-series, it was essential to check the consistency in the
annual availability of good quality pixels. The best-case scenario corresponded to a pixel having a good quality
value in every month (i.c., annual mean calculated with 12 values). This case represented 91% of the African
rangelands. For the remaining 9%, we conducted a sensitivity analysis aimed at determining the minimum
number of months needed to obtain a representative annual mean. Using those pixels with 12-months of
good quality data, randomly selected months were progressively removed. We then calculated the difference
between the mean obtained with the full and reduced number of months and defined the acceptable number
of months as that needed to achieve an average difference < 5%. On average, annual mean NDVI
composites were calculated with 12 to a minimum of 10 months, meaning that annual mean values calculated
with 9 or less good quality pixels produced a difference with the 12-months good quality mean > 5%
(Supplementary Fig. S3). In each year, the random approach was changed to ensure that the order in which
pixels were removed varied to prevent the introduction of seasonal biases. The R package ‘gimms’ (Detsch,

2016) was used to download the GIMMS dataset, rasterize the data, and apply the quality flags.
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2.2.2  Vegetation Continnous Fields (17CFs)

VCFs (5 km x 5 km, 1982-2016) are produced from the different AVHRR sensors by compiling the fourth
version of the Long Term Data Record (LTDR) (Song et al., 2018). Other satellite information derived from
MODIS, ETM+, QuickBird, WorldView, IKONOS, and GeoEye was used at different stages of the VCFs
realization (e.g., radiometric, atmospheric, and geolocation corrections, conversion of daily LTDR to yeartly
VCFs, annual metrics normalization, validation) (Song et al., 2018). VCFs include global annual data of tree
cover, short vegetation, and bare ground. Tree cover data refer to vegetation taller than 5 m, and it is
calculated considering the portion of land covered by the vertical projection of the tree canopy (Song et al.,
2018). Tree cover is not synonymous of forest cover, but it can be used to classify an area as forested or non-
forested (depending on the size of the area and the amount of surface covered by trees taller than 5 m). Short
vegetation data include crops, herbaceous vegetation, shrubs, and mosses, while bare ground data represents
non-vegetated areas. Every pixel reports the percentage of tree cover, short vegetation, and bare ground at
the peak of the local growing season (i.e., each pixel sums up to a value of 100). Applying established
validation protocols, the accuracy of the VCFs data was assessed in 475 locations globally using the best long-
term reference datasets currently available, i.e., the Landsat-derived VCFs and the United States Geological
Survey (USGS) tree cover reference database (Pengra et al., 2015). For all combinations (i.e., AVHRR TC vs.
Landsat TC, AVHRR SV vs. Landsat SV, AVHRR BG vs. Landsat BG, and AVHRR TC vs. USGS TC),
Song et al. (2018) calculated an overall accuracy higher than 90%, and a mean absolute error comprised
between 4.4% (AVHRR BG vs. Landsat BG) and 9.9% (AVHRR TC vs. USGS TC). It is however hard to
assess how these uncertainties may affect the spatial distribution of long-term trends in tree cover, short
vegetation, and bare ground. This is because the mean absolute error provided is obtained from a global
validation (i.e., averaging the errors in each location used for the validation) and therefore the error is not
spatially explicit. No data are available for 1994 and 2000 due to the lack of data in the LTDR. Hereafter, tree
cover refers only to the woody component of the Song et al. (2018) datasets, while woody cover refers to

woody vegetation as a whole.
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2.2.3  Vegetation Optical Depth (17OD)

VOD retrievals (25 km x 25 km, 1992-2011) (Liu et al, 2015) are derived from passive microwave
observations which are insensitive to cloud cover and atmospheric contamination (Brandt et al., 2017). The
VOD signal is sensitive to the total water content of all plant components in the upper canopy layer, which
include leaves, stems, and branches (Tian et al., 2017). It is described by a negative exponential function of
the transmissivity of vegetation and represents a dimensionless measure of how much of the microwave
radiation emitted by the soils and the vegetation is attenuated by the vegetation itself (Liu et al., 2011). In
other words, VOD tends towards zero when the transmissivity is one, meaning that no microwave energy is
attenuated by soil or vegetation. This is the case of bare soils. Vice versa, VOD reaches maximum values
when the transmissivity is zero, which happens when most microwave emissions are attenuated by vegetation.
This is the case of densely vegetated areas (Liu et al., 2011). The VOD dataset used in this study was created
merging passive microwave obsetvations from three sensors (e, SSM/I, AMSR-E, and WindSat
radiometers) (Liu et al.,, 2015), using the NASA and Vrije Universiteit Amsterdam land parameter retrieval
radiative transfer model (Meesters et al., 2005; Owe et al., 2008). Recent studies testing the consistency of
VOD during 1992-2011 showed that no errors occurred at the time of sensor shifts thanks to the long
overlapping period existing between the SSM/I, AMSR-E, and WindSat instruments (Tian et al., 2016). Here
we used annual minimum VOD from monthly data to reduce the contribution of herbaceous vegetation and
apply these data as a proxy for woody cover (Brandt et al., 2019, 2017). Annual minimum VOD was also used
as a proxy for aboveground standing biomass given its ability to detect the biomass signal (Liu et al., 2011;
Owe et al., 2001). Since both NDVI and VCFs data are derived from optical AVHRR data, VOD represented

an independent microwave data stream.

2.2.4  Precipitation

The CHIRPSv2.0 precipitation dataset (5 km x 5 km, 1981-present) (Funk et al., 2015) was produced from
microwave, infrared, reanalysis, and gauge data. In summary, the Climate Hazard Precipitation Climatology
(CHPclim), which represents a historical precipitation climatology created from different physiographic

rainfall indicators and monthly long-term estimates of rainfall, brightness temperature, and land surface
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temperature, is multiplied with infrared precipitation estimates (IRP) obtained from a regression model of
cold cloud duration. This unbiased gridded rainfall product, known as the Climate Hazards Group IR
Precipitation (CHIRP), is blended with ground station data into the CHIRPS product using a per-pixel
inverse distance weighted average algorithm based on the five spatially closets stations to each CHIRP
gridded location (Funk et al., 2014). Information about the uncertainty of this algorithm is yet unavailable
(Funk et al.,, 2015). CHIRPS provides rainfall in millimetres per month and comes with no missing data.
Annual mean rainfall composites were built by averaging December to the following November data (i.c.,
one-month lag). This is because rainfall effects on vegetation are not immediate and, generally, the water of
the previous month influences plants more than the water of the current month (Papagiannopoulou et al.,
2017; Svoray and Karnieli, 2011). However, we also tested no lag composites (i.c., averaging same-year
January to December data) and found them to be significantly similar to the one-month lag composites

(Supplementary Fig. S4).

2.2.5  Soil moisture

ESA CCI data fulfil the need for a long-term multi-satellite soil moisture product (Dorigo et al., 2017), and it
represents the only available dataset able to span the time-series of this study. The ESA CCI v04.2 soil
moisture dataset (25 km x 25 km, 1978-20106) is available as an active, passive, or active-passive merged
product. Active observations are derived from AMI-WS and ASCAT scatterometers, the passive from seven
different radiometers (SMMR, SSM/I, TMI, AMSR-E, WindSat, AMSR2, SMOS). Hetre we used the merged
dataset because it brings together the advantages of active observations, better performing on medium to
densely vegetated areas, and passive ones, which are more precise over sparse vegetation and can better
discriminate between dry and wet soils (Chung et al., 2018a; Dorigo et al., 2010; Dorigo et al., 2017). The
merging scheme is different from all other versions. While, previously, active and passive observations were
firstly merged in one single active and one single passive product and later converted together in the final
merged dataset (Chung et al., 2018b), in the v04.2 all active and passive datasets are weighted-average blended
into the combined product in one single step to reduce uncertainties (Gruber et al., 2019). ESA CCI soil

moisture data are provided in volumetric unit (m3 m-3). Common practice assumes that satellite soil moisture

11
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data refer to the first 5 cm of soil (Dorigo et al., 2010). More confidence on deeper soil moisture content was
given by a study showing a significant correlation between remotely sensed soil moisture data of the upper 5
cm and ground-based observations within the first 10 cm (Dorigo et al., 2015), yet the impact of soil moisture
on plants that can access water beyond this depth may be underestimated. Further, we noticed that some
pixels have uncertainties higher than the actual soil moisture signal. This is because the way uncertainties are
estimated (i.e., triple collocation analysis and error propagation), may not converge to a robust estimate cither
in case only a few observations were available or when the signals from different datasets diverged
significantly (Chung et al., 2018b). For this reason, the soil moisture signal may still be relatively accurate even
if it is lower than the uncertainty (Dorigo, personal communication, 2019). Due to the scarcity in good quality
soil moisture data between 1982 and 1991 (only two opetrational radiometers, i.e., SMMR and SSM/I) and
between 2003 and 2006 (ERS-2 on-board storage failure) (Dorigo et al., 2017), we increased the coverage of
soil moisture values by aggregating all available daily flag O pixels to monthly level (McNally et al., 2015).
Annual mean soil moisture composites were then created applying the same sensitivity analysis used to
calculate annual mean NDVI composites (at least 9 months were needed to have a difference with the full 12-

months good quality mean < 5%) (see section 2.2.1).

2.2.6  Simulated biomass carbon

The dynamic global vegetation model LPJ-GUESS simulates how the structure and function of ecosystems
vary in response to changes in environmental conditions (Smith et al., 2014, 2001). The model simulates the
per-pixel composition of vegetation fractional coverage as a combination of twelve possible plant functional
types (PFTs), ten woody and two grassy (Sitch et al., 2003; Smith et al., 2014). Here we simulated the PFT
composition as per biomass carbon, which is represented by leaves, roots, sapwood, and heartwood carbon
pools (i.e., the four pools where the living biomass is distributed). Total aboveground carbon (AGC) was
computed as the sum of leaves, sapwood, and heartwood, while woody biomass carbon (WDC) is calculated
by adding sapwood and heartwood only. WDC thus represents the woody carbon content and relates to
woody cover (Brandt et al., 2017). To bring the model from the initial condition (i.e., landscape with no

vegetation) to a steady state at the start of the subsequent scenario phase (here 1st January 1901), we run a 500
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years spin-up phase consisting in the iterative application of the first 30 years of the input climate variables.
Later, our 1982-2015 simulations at 50 km spatial resolution were based on environmental conditions that
included monthly climate data of temperature, precipitation and sunshine duration from the Climate Research
Unit, version TS 3.24.01 (Harris et al., 2014), estimates of monthly nitrogen deposition (Lamarque et al.,
2013), and ice-core and flask measurement derived annual mean atmospheric CO> data (Etheridge et al,,
1996). Given that these climate data are unrelated to the CHIRPS and ESA CCI, we could evaluate our
results by means of distinct products. Because we were interested in the vegetation dynamic of rangelands,
which are regions dominated by natural vegetation, LPJ-GUESS simulations did not take into account any
human influences such as land use or land-use change (Tong et al., 2018). The uncertainties in these
simulations originate from processes that are lacking or pootly parameterised in the model, as well as from
error propagation through erroneous environmental forcing data and spatial and temporal averaging in these.
However, LPJ-GUESS has been shown to capture the interannual variability of the terrestrial uptake of CO»
at the global scale (Ahlstrém et al., 2015; Piao et al., 2013; Schurgers et al., 2018) and, more specifically, the
interannual and decadal dynamics of biomass changes in Africa (Brandt et al., 2018, 2017; Lehsten et al.,
2009; Sallaba et al., 2017), both of which are primarily driven by climatic variations. This gives us confidence

in using LPJ-GUESS as a tool to estimate expected climate-driven trends in this study.

2.3 Abnalysis

Our analysis aimed to understand the response of rangeland natural vegetation cover to recent climate change
and to describe greening and browning as per changes in the structural component of the vegetation. We did
this in three consecutive steps. First, we defined long-term changes in vegetation greenness (i.e., GIMMS
NDVI). Second, we established the spatiotemporal relationship between these changes in vegetation
greenness and water availability represented by precipitation and soil moisture. Third, we assessed five other
climate variables affecting plant growth by employing the LP]-GUESS simulated biomass carbon data and

used VOD and VCFs to discern between woody and short herbaceous vegetation.
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2.3.1  Trends in vegetation greenness

A per-pixel trend analysis allowed us to statistically evaluate whether in each pixel there was a monotonic
increase or decrease in vegetation greenness over time. Linear trends were obtained by calculating the slope of
the regression of annual mean NDVI composites during 1982-2015 (n = 34). The non-parametric Spearman’s

rank test was used to calculate the significance of the trends at the 95% level (p < 0.05).

2.3.2  Relationship between vegetation greenness and water availability

It is well established that plant growth in arid and semi-arid areas is largely limited by water availability
(Fensholt et al.,, 2012). Because ca. 65.5% of African rangelands occur within arid and semi-arid regions
(Supplementary Fig. S5), we were first interested in understanding how much of the observed trends in
vegetation greenness can be explained by changes in precipitation and soil moisture. To this end, we started
by calculating and mapping the per-pixel Spearman’s rank correlation coefficient (p) between NDVI and
precipitation, and between NDVI and soil moisture during 1982-2015 (p < 0.05). These two maps described
the spatiotemporal relationship between vegetation greenness and water availability. Similar to previous
studies (Andela et al., 2013; Hoscilo et al., 2015), we then assessed whether an increase or decrease in
vegetation greenness was attributable to changes in precipitation or soil moisture by extracting pixels with
significant trends in NDVI as well as significant relationships between NDVI and water availability. Thus,
these pixels identify rangelands where NDVI, precipitation, and soil moisture increased or decreased together
during 1982-2015, while the remaining pixels identify rangelands where this relationship was missing. While
we only discussed statistically significant relationships, we acknowledged that some relationships between

NDVI, rainfall, and soil moisture may be insignificant due to some unavoidable data uncertainties.

2.3.3  Rangeland vegetation cover dynamics

To define greening and browning trends as either controlled or unrelated to climate variability, other climate
variables must be assessed in addition to water availability. The LPJ-GUESS model, which is able to detect
more complex climate dynamics (e.g., higher temperature combined with changes in precipitation patterns)
than correlation analyses (Sitch et al., 2003), was used to check whether the full set of its climatic drivers (i.e.,

temperature, precipitation, sunshine duration, nitrogen deposition, and CO» concentration) could reproduce
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the observed changes in vegetation greenness assuming that greening/browning trends should relate to an
increase/decrease in the simulated biomass catbon. In addition, we looked at trends in VOD given that,
despite the shorter time-series (1992-2011 vs. 1982-2015), VOD was shown to provide clear indications of
aboveground biomass carbon (Liu et al., 2015). Therefore, we defined changes in vegetation greenness as
climatic if VOD, NDVI, AGC, and WDC showed concomitant and comparable trends during 1982-2015
(i.e., LPJ-GUESS could reproduce changes in vegetation based on climate variables), and areas of
disagreement between trends in NDVI and VOD and trends in AGC and WDC were described as non-
climatic. While intermediate conditions still exist at different spatiotemporal scales (e.g., disturbances such as
fire to affect climatic rangeland dynamics or changes in precipitation regimes affecting non-climatic rangeland
dynamics), this change attribution approach still allowed us to identify, at an annual timescale, those areas
where long-term climate was the main or subordinate driver of vegetation dynamics. Finally, we moved
beyond the simple greening and browning label by using VCF and VOD data to decompose changes in
NDVI into the woody and short components of the vegetation. While the tree cover data by Song et al.
(2018) map only trees taller than 5 m, the annual minimum VOD signal includes also small trees and shrubs
(Brandt et al., 2019). This aspect is decisive as the combined use of these two products allowed our analysis to
fully represent the general rangeland woody cover community. Noticeably, shrubs are part of both VOD and
short vegetation signals, yet we believe these woody species to be better detected by the VOD signal given
the more extensive evidence of VOD to well represent woody plants regardless of their size or canopy
closure (Brandt et al., 2017, 2016; Liu et al., 2015; Tian et al., 2017). Also, as herbaceous-shrub interactions
occur at a much higher spatial resolution than most long-term remote sensing products, the full
disaggregation of rangeland vegetation into its shrubby and herbaceous component is challenging. As we did
not consider croplands in the analysis (see section 2.1), we ultimately assumed short vegetation data to remain
largely representative of short non-woody herbaceous species.

Methodologically, we used standardised anomalies calculated with the z-score formula, i.e., z-score = (value —
mean) / standard deviation (dimensionless). Standardising is an effective approach to convert different scales

to the same comparable scale, and it tells, for each pixel value, the number of standard deviation away from
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its time-series mean (i.e., anomaly) (Helldén and Tottrup, 2008). Standardised anomalies in VOD, VCFs,
AGC, and WDC were calculated in those rangelands previously characterised in relation to water availability
alone (i.e., section 2.3.2). To represent the time-series, we then averaged all per-pixel standardised anomalies
in every year and presented the results showing the slope of the regression of these anomalies expressed as

total per cent change during 1982-2015 (1992-2011 for VOD).

3 Results

3.1 Trends in vegetation greenness

Significant linear trends (p < 0.05) in vegetation greenness were observed in approximately half of African
rangelands (ca. 5,410,000 km?2) between 1982-2015. Approximately 4,140,000 km? of these changes were
positive (i.e., greening) and mostly occurred across the Sahel, West Africa, Chad, South Sudan, Namibia,
Botswana, and South Africa. Negative trends (i.e., browning) were mostly clustered in Angola and
Mozambique, yet their extent was significantly smaller (ca. 1,270,000 km?) compared to the greening areas

(Fig. 2).

NDVI trend 1982-2015
(regression slope)

- - T—
-0.00351 0.00565
[ 1p>005

[ ] Non rangeland

Fig.2 Trends in vegetation greenness in rangelands during 1982-2015 as indicated by the GIMMS3g.vl NDVI
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(NDVT unit yr'). Trends over time were indicated by the slope of the regression (n = 34, Spearman’s rank test, p <
0.05). Vegetation greenness overall increased (6,623 pixels) between 1982 and 2015 (browning accounted for 2,030
pixels). Supplementary Figs. S6 and S7 report the trends in vegetation greenness for the African rangelands as derived

from the White (1983) and Ellis et al. (2010) maps.
3.2 Relationship between vegetation greenness and water availability

The relationship between annual mean NDVI and annual mean precipitation (Fig. 3a) and between annual
mean NDVI and annual mean soil moisture (Fig. 3b) displayed similar outputs. In both cases, statistically
significant (p < 0.05) correlation coefficients showed a comparable positive strength (p = 0.567 and p =
0.546, average) and covered the same regions (northwestern Maghreb, western Sahel, southern Chad, eastern

Africa, Namibia, Botswana, and South Africa).

Correlation 1982-2015
(p value)

[ .
-0.5773 0.9211

[ Jp>005
Non rangeland

Fig.3 Relationship between the GIMMS3gwvl NDVI and CHIRPSv2.0 precipitation (a), and between the
GIMMS3g.vl NDVI and ESA CCIv04.2 soil moisture (b). Long-term relationships were defined by per-pixel
Spearman’s rank correlation coefficients (p) calculated on annual mean composite during 1982-2015 (p < 0.05). The
NDVI-precipitation (a) and NDVI-soil moisture (b) relationships were significantly similar in terms of strength, type,
and spatial distribution. Total pixel count: 10,586 positive vs. 16 negative (a), and 7,628 positive vs. 71 negative (b).

Supplementary Figs. S6 and S7 teport the relationships between NDVI and precipitation/soil moisture for the African
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rangelands as derived from the White (1983) and Ellis et al. (2010) maps.

Statistically significant pixels of these correlation coefficient maps that also showed statistically significant
greening and browning trends (i.e., Fig. 2) represented rangeland systems where vegetation was mostly
controlled by long-term changes in precipitation and soil moisture (Fig. 4, turquoise and purple shaded areas).
Greening (ca. 2,110,000 km?) was mostly observed in three similar arid and semi-arid regions, i.e., southern
Mauritania, Senegal, Mali (hereafter western Sahel), Chad, and Namibia, Botswana, South Africa (hereafter
southern Africa), while browning accounted for small and patchy areas totalling ca. 385,000 km?2. Conversely,
the remaining pixels (i.e., statistically significant trends in NDVI but no statistically significant correlation
between NDVI and water availability) indicated greening and browning largely unrelated to long-term
precipitation and soil moisture (Fig. 4, blue and orange shaded areas). Greening (ca. 2,030,000 km?) was
observed in Ghana, Guinea, Ivory Coast (hereafter West Africa), and South Sudan, while browning (ca.
885,000 km?) was clustered in Angola and Mozambique. In total, ca. 2,915,000 km? of the African rangelands

(26.5% of the total extent) showed trends in vegetation greenness unrelated to water availability.

- %«%@

3 % bt .
Insignificant trends in NDVI .

-4 Non rangeland

Soil moisture
+ -
Tl

Fig.4 Co-relationships between trends in NDVI and precipitation (a) and between trends in NDVI and soil moisture

NDVI

NDVI
1

(b). NDVT increased together with precipitation and soil moisture across parts of western Sahel (southern Mauritania,

Senegal, Mali), Chad, and southern Africa (Namibia, Botswana, and South Africa) (turquoise), while no major regions of
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browning due to a decrease in precipitation and soil moisture were observed (purple). Changes in NDVI resulted
unrelated to changes in water availability mostly in West Africa (Ghana, Guinea, Ivory Coast) and South Sudan

(greening; blue), and Angola and Mozambique (browning; orange).

3.3 Rangeland vegetation cover dynamics

Precipitation and soil moisture alone do not provide enough insights into the greenness response to overall
climate. At the same time, vegetation greening and browning cannot be necessarily linked to improvement
and deterioration of ecosystem conditions, since the provisioning of ecological services strongly depends on
the composition of the vegetation. Building on the two types of rangeland identified in Fig. 4, i.c., water-
limited rangelands of western Sahel, Chad, and southern Africa (turquoise and purple shaded areas), and non-
water limited rangelands of West Africa, South Sudan, Angola, and Mozambique (blue and orange shaded
areas), the analysis of ACG, WDC, VOD, and VCFs addressed these gaps (NDVI, precipitation, and soil

moisture were also included in the following z-score analyses).

3.3.1  Vegetation dynamics in the rangelands of western Sabel, Chad, and southern Africa

Western Sahel and Chad showed similar patterns in all indicators (Fig. 5 and Supplementary Fig. S8).
Increasing NDVI (5.7% and 6.1%) was associated with a total increase in tree cover (2.0% and 4.7%), VOD
(8.0% and 9.6%), and short vegetation (2.4% and 5.1%) during 1982-2015. Bare ground counterbalanced
these changes decreasing by 5.5% and 5.7% respectively. The AGC simulations from LPJ-GUESS
reproduced the positive changes in NDVI, tree cover, and short vegetation (2.4% and 2.3%), while WDC
increased at a comparable rate (1.6%) only in Chad (-0.3% in western Sahel). Similar results were observed in
southern Africa (Fig. 5 and Supplementary Fig. S9). Most satellite data (i.e., NDVI 5.0%, VOD 10.6%, short
vegetation 2.4%), simulated AGC (1.6%), and precipitation (2.0%) showed a positive trend, while WDC

remained unchanged reproducing trends in tree cover (-0.5%).
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Western Sahel Chad Southern Africa
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NDVI TC VOD SV BG AGC WDC P SM NDVI TC VOD SV BG AGC WDC P SM NDVI TC VOD SV BG AGC WDC P SM

Fig.5 Vegetation dynamics in the climatic rangelands of western Sahel (southern Mauritania, Senegal, Mali), Chad,
and southern Africa (Namibia, Botswana, and South Aftica), as indicated by the slope of the regression of standardised
anomalies in normalised difference vegetation index (NDVI), tree cover (T'C), vegetation optical depth (VOD), short
vegetation (SV), bare ground (BG), simulated aboveground carbon (AGC), simulated woody biomass carbon (WDC),
precipitation (P), and soil moisture (SM). All indicators increased in western Sahel and Chad dutring 1982-2015 (except
for bare ground). Some discrepancies were observed in southern African rangelands, where changes in NDVI, AGC,
SV, and precipitation were comparable but trends in tree cover and WDC did not reproduce trends in VOD. Black lines
indicate standard errors (no significant mask was applied). Slope values are reported as total per cent change during
1982-2015 (1992-2011 for VOD) (see Supplementary Figs. S8 and S9). The colour of the bar plots recalls the turquoise

of Fig. 4.

3.3.2  Vegetation dynamics in the rangelands of West Africa, South Sudan, Angola, and Mozambigue

Different scenarios were observed in West Africa, South Sudan, Angola, and Mozambique. The greening of
both West Africa and South Sudan was associated with increasing woody cover, as shown by positive trends
in tree cover (4.3% and 6.0%) and VOD (2.0% and 5.3%) (Fig. 6 and Supplementary Fig. S10). However,
here we observed a decline (-3.0% and -3.7%) in short vegetation during 1982-2015, meaning that the key
contribution to the greening of vegetation was mostly due to woody plants. To some extent, an increase in
tree cover and a concomitant decline in short vegetation may also depict trees that during 1982-2015 grew
above the 5 m height threshold. Importantly, AGC and WDC experienced very little change in West Africa (-
0.3% and -0.5%) and decreased significantly in South Sudan (-7.5% and -7.8%), implying that LPJ-GUESS
was unable to reproduce the greening trend observed from satellite data. Changes in woody cover were also
responsible for the browning of Angolan and Mozambican rangelands, yet this was more evident in

Mozambique, where trends in tree cover (-5.0%) were in line with trends in VOD (-3.1%), than in Angola
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(tree cover -3.7% and VOD +1.5%) (Fig. 6 and Supplementary Fig. S11). Noticeably, trends in short
vegetation were positive in both regions (3.7% and 5.0%), suggesting that this vegetation is replacing woody
cover. Despite the overall browning shown by vegetation data streams, strong positive variations in AGC and
WDC were observed in rangelands of Angola (6.2% average), while in Mozambique these were slightly
negative (-1.6% average). Therefore, also in these two regions the climate variables used to force LPJ-GUESS
failed to reproduce the vegetation browning. Importantly, VOD and short vegetation showing diametrically
opposite trends in all four areas implies that shrubs are unlikely to be included in both the VOD and short
vegetation signals (e.g., if VOD increases and SV decreases, shrubs increase together with VOD, and the
decrease in SV will mostly represent a reduction in the herbaceous layer, and vice versa). This evidence thus
reinforced our assumption of VOD to better detect the woody component of the vegetation, with short

vegetation data representing the short non-woody cover.

o | West Africa South Sudan
- - [ ]
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g
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u?_ .II
NDVI TC VOD SV BG AGC WDC P SM NDVI TC VOD SV BG AGC WDC P SM
o Angola Mozambique
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Fig.6 Vegetation dynamics in the non-climatic rangelands of West Africa (Ghana, Guinea, Ivory Coast), South
Sudan, Angola, and Mozambique, as indicated by the slope of the regression of standardised anomalies in normalised
difference vegetation index (NDVI), tree cover (TC), vegetation optical depth (VOD), short vegetation (SV), bare
ground (BG), simulated aboveground carbon (AGC), simulated woody biomass carbon (WDC), precipitation (P), and
soil moisture (SM). The biomass carbon parameters largely failed to reproduce changes in vegetation greenness. Also,
woody cover increased where short vegetation decreased (West Africa, South Sudan), and woody cover declined whete

short vegetation increased (Angola, Mozambique). Black lines indicate standard errors (no significant mask was applied).
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Slope values are reported as total per cent change during 1982-2015 (1992-2011 for VOD) (see Supplementary Figs. S10

and S11). The colours of the bar plots recall the blue and orange of Fig. 4.

4 Discussion

The overall greening of the African rangelands during 1982-2015 supports the evidence of a recently greening
Earth (Zhu et al., 2016). Regions of vegetation green-up were observed in West Africa, the Sahel, and
southern Africa, while vegetation browning was mostly confined in Angola and Mozambique. Vegetation
greenness as indicated by NDVI is known to be correlated with vegetation productivity, i.e., a key indicator of
measuring land degradation (Abel et al., 2019). Thus, changes in NDVI are often used as a proxy to assess
environmental conditions of a given area and, generally, greening is linked to an increase in vegetation
productivity (i.e., better conditions) while browning indicates a reduction in productivity (i.e., degradation)
(Wessels et al., 2007). However, remotely sensed measures of greening do not always imply healthier lands, as
greening may also result from loss in biodiversity (e.g., monoculture plantations) or increasing concentration
of invasive species (Herrmann and Tappan, 2013). For instance, reforestation of old-growth grasslands
deemed suitable to offset deforestation may reduce plant and animal richness as well as carbon storage rates
via changes in the surface albedo (Bond, 2016; Veldman et al., 2019). Similarly, the encroachment of woody
plants is the main driver of greening trends in Africa (Brandt et al., 2017; Venter et al., 2018), yet often
perceived as a degradation of ecosystems by livestock keepers as the non-palatability of encroaching species
reduces the land grazing capacity (Gillson and Hoffman, 2007; Munyati et al., 2011; Sandhage-Hofmann et al.,
2015). On the other hand, associating browning uniquely with land degradation would be an
oversimplification, particularly from a rangeland perspective. This is because rangelands are such dynamic and
heterogeneous systems, where the interactions of different disturbances (e.g., climate variability, fire regimes,
herbivore pressure) may lead to different forms of land degradation (Engler and von Wehrden, 2018) or, as
we show here, may be even associated with an increase in short herbaceous vegetation and hence resources.
Likewise, recent local-scale studies have shown that the long-lasting presence of herders did not cause the
depletion of nutrient-rich hotspots of some African savannas, but it actually enhanced their longevity over

time (Marshall et al., 2018).
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4.1 Climatic vegetation cover changes

The connection between water availability and vegetation greening in the arid and semi-arid Sahel is well-
established, as shown by many studies (Anyamba and Tucker, 2005; Fensholt et al., 2009; Herrmann and
Hutchinson, 2005; Hickler et al., 2005; Huber et al., 2011; Nicholson, 2005). As expected, our findings based
on precipitation and soil moisture satellite data confirmed this evidence. Further, LPJ-GUESS simulations
forced with precipitation, temperature, sunshine duration, nitrogen deposition, and CO: suggested the overall
climatic behaviour of the greening Sahel. In southern Africa, trends in the different indicators were less
consistent. On the one hand, the discrepancies observed within satellite and model data may reflect dynamics
in shrub vegetation, which are part of the VOD and aboveground carbon signals but not captured by tree
cover and woody biomass carbon signals (e.g., if large trees are removed, the tree cover signal reduces even if
shrubs and bushes increase). On the other, they leave room for other interpretations embracing interactions
between human and non-human forces (e.g., rainfall variability, fire, soil fertility, large mammals, rising CO»)
(Lehmann et al., 2011; Parr et al., 2014). While understanding how these factors feedback to determine the
woody-herbaceous distribution remains a key and complex issue (Osborne et al., 2018), here we show that the
greening of western Sahel, Chad, and southern Africa was not only associated with an increase in trees and
shrubs (Brandt et al., 20106, 2015; Stevens et al., 2016; Venter et al., 2018), but also in herbaceous vegetation.
One could argue that these species are often in competition (e.g., encroaching shrubs reduces the herbaceous
cover), yet coexistence may still occur given the different rooting depth and temporal water use (Staver,
2018). Meanwhile, the concomitant long-term decrease in bare ground observed in these regions represents a

direct data-driven clue against desert expansion claims.

4.2 Non-climatic vegetation cover changes

Both the greening of West Africa and South Sudan and the browning of Angola and Mozambique appeared
not to be linked to changes in water availability. In addition to this, the biomass carbon simulated by LP]J-
GUESS reinforced these findings and indicated that ecosystem responses to other climatic factors cannot

provide an adequate explanation for the observed trends either. For instance, LPJ-GUESS was unable to
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reproduce the greening observed in West African rangelands principally because it was forced with climate
variables that did not change significantly during 1982-2015. Similarly, in Angola the model failed to
reproduce the vegetation browning observed from satellite data because precipitation (and likely the other
input variables) increased between 1982 and 2015 and, in turn, simulated an increase in vegetation greenness.
Ultimately, we suggest these trends to be largely driven by non-climatic forces such as herbivores, land use
change, or fire, among others (not investigated in this study) (Archibald and Hempson, 2016). The vegetation
structure of these rangelands (i.e., woody and short vegetation showing opposing trends) being significantly
different from the climatic ones (i.e., woody and short vegetation both increasing) highlights how regional
variability in the intensity and interactions of biotic and abiotic factors can produce quite different responses
in vegetation growth (Osborne et al., 2018).

Non-climatic vegetation dynamics were controlled by changes in woody cover, with short vegetation having
no influence on the overall greenness level. A decrease in short vegetation did not result in a decrease in
greenness where woody cover increased (West Africa, South Sudan). Vice versa, vegetation browned as
woody cover decreased even if the short vegetation increased (Angola, Mozambique). The West Africa and
South Sudan green-up may relate to conflicts, lowering the pressure on land as people get displaced (e.g.,
reduced land clearance for agriculture and settlement, reduced grazing pressure) (Hugo, 1996; Olsson et al.,
2005), or to other important rangeland disturbances including fire (e.g., fire suppression), or changes in
wildlife and livestock numbers (Andela et al., 2017; Venter et al., 2017). However, disentangling their net
effect on vegetation cover is more locally than continentally detectable (Archer et al., 2017; Devine et al,,
2017). Further, recent studies showed that woody encroachment in savannas was fuelled by short-term
changes in rainfall patterns (Brandt et al., 2019; Gherardi and Sala, 2015; Zhang et al., 2019), meaning that
more attention should be given to the role of rainfall shifts that may not be visible in annual mean products.
Short-term disturbances may indeed produce fast variations in vegetation greenness, introducing potential
uncertainties in the identification of slower long-term trends (Broich et al., 2014). On the other hand, the
browning of Angolan and Mozambican rangelands is likely explained by deforestation, as highlighted by the

decrease in tree cover (i.e., plants = 5 m) and previous studies (Achard et al., 2014; Cherlet et al., 2018;
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Chiteculo et al., 2018; Hansen et al., 2013). Still, the latitudinal proximity of Madagascar also experiencing
browning suggests that climate might have contributed, to some extent, to the final vegetation cover

composition of these rangelands.

5 Implications and conclusions

The observed changes in the vegetation structure in West Africa, South Sudan, Angola, and Mozambique do
not allow for a simple evaluation of greening and browning trends on the ecosystem service provision by
rangelands. Although browning generally implies a reduction in the carbon uptake by terrestrial ecosystems
(i.e., low climate change mitigation potential), the increase in short vegetation may hint that more herbaceous
vegetation, and therefore resources, are available for pastoral communities and their livestock. On the other
hand, greening trends related to woody plant encroachment increase the standing biomass, which is desirable
for climate change mitigation, yet unpalatable woody species replacing short herbaceous vegetation informs
of degradation of rangelands in terms of their socio-economic use. Therefore, these results suggest that future
rangeland management strategies may have to balance pastoral welfare and climate change mitigation goals.
Also, while the use of LPJ-GUESS corroborates the identification of climatic and non-climatic rangelands, it
is worth mentioning that uncertainties in the parameterization of ecosystem processes (Zachle et al., 2005)
and in the use of large-scale climate data (Wu et al., 2017) within DGVMs contribute to uncertainties in the
simulated response to climatic variability and trends, which will be particularly pronounced in the case of
climatic signals with opposing impacts on simulated AGC or WDC. However, our simulation results are in
many cases corroborated by the analysis of precipitation and soil moisture impacts, and agreement in the
trends of simulated carbon pools and VOD provide confidence in the use of a DGVM to derive expected
climate-driven trends. Finally, it is worth recalling that we considered woody shrubs to be best represented by
VOD and short vegetation to mostly include herbaceous plants. Herbaceous-shrub mixing occurs at a spatial
resolution undetectable from most long-term remote sensing products, and future assessments of greening
and browning trends at higher spatial resolution will lift this current drawback of our study (e.g., Cheng et al.,

2020; Li et al., 2020). Nonetheless, we believe that our findings still represent an important starting point for
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those national and local governments aiming to devise effective rangeland management strategies. This is
particularly the case of rangelands in developing countries (e.g., South Sudan, Chad, Angola), where field-

based rangeland assessments are often lacking due to inadequate resources and political instability.
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Data availability

The GIMMS NDVI3g.vl product is available in NetCDF file format at the NASA ECOCAST portal

https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/. VOD raster data and the LPJ-GUESS model outputs

are available from Martin Brandt and Guy Schurgers. Vegetation continuous fields are available from the

USGS LP DAAC catalogue https://Ipdaac.usgs.gov/products/vcfSkyrv001/. The NetCDF monthly

CHIRPS precipitation dataset is available from the Climate Hazard Group, UC Santa Barbara

(ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0). The ESA CCI soil moisture product can be

obtained at http://www.esa-soilmoisture-cci.org/node/145. The MODIS MCD12C1 land cover product

collection 6 was accessed and downloaded via Google Earth Engine (https://code.carthengine.google.com).
The Ellis et al. (2010) anthropogenic biome classification is available at

http://ecotope.org/anthromes/v2/data/. The UNESCO White (1983) Vegetation of Africa map is available

from the UNEP Environmental Data Explorer (https://ede.grid.unep.ch/). The aridity index map is available

from the FAO (http://ref.data.fao.org/maprentryld={8cf2780-88fd-11da-a88f-000d939bc5d8).
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