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Abstract—Optimal linear minimum mean square error
(MMSE) transceiver design techniques are proposed for Bayesian
learning (BL)-based sparse parameter vector estimation in a
multiple-input multiple-output (MIMO) wireless sensor network
(WSN). Our proposed transceiver designs rely on majorization
theory and hyperparameter estimates obtained from the BL
module for minimizing the mean square error (MSE) of param-
eter estimation at the fusion center (FC). The linear transceiver
design framework is initially proposed for the general scenario
with arbitrary SNR sensor observations, followed by a special
case with high-SNR sensor observations scenario. Our analysis
also incorporates the channel correlation. The MMSE channel
estimates are determined for the sensors (SNs), followed by a
robust transceiver design procedure that is resilient to the channel
state information (CSI) uncertainty arising due to the channel
estimation error, an aberration that is unavoidable in practical
implementations. Our simulation results demonstrate the im-
proved performance of the proposed BL framework and optimal
MMSE transceiver design in sparse parameter estimation relying
on realistic imperfect channel estimates over the benchmarks.

Index Terms—Sensor networks, multiple access channel
(MAC), Bayesian learning (BL), decentralized estimation, sparse
parameter estimation, transceiver design, stochastic CSI uncer-
tainty

I. INTRODUCTION

The Internet of things (IoT), which connects a large number
of devices to the network, has enjoyed popularity owing to
its ability to support cutting edge applications, such as smart
homes/ cities, remote healthcare, industrial automation, among
several others. At the heart of a typical IoT implementation
is a large number of miniature sensor nodes (SNs) or sensor-
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equipped devices, which continuously sense the events/ phe-
nomena of interest. After conversion to electrical signals and
suitable processing, the SNs transmit their measurements over
wireless links to a central entity termed the fusion center
(FC) for further processing toward efficient estimation of
multiple parameters. Needless to say, the reliable operation
of any IoT application critically depends on the accuracy of
the parameter estimates at the FC, with erroneous estimates
potentially leading to disruptions, and in extreme cases, a
complete breakdown of services. This task becomes even more
challenging due to the severe bandwidth and power limitations
at the SNs of the IoT network. Thus, it is imperative to
improve the accuracy of parameter estimation subject to the
limited resources of a typical sensor network. To this end,
multiple-input multiple-output (MIMO) technology can play a
significant role in sensor networks by facilitating simultaneous
estimation of multiple parameters at high accuracy via its
spatial multiplexing and diversity gain. MIMO transmission,
coupled with efficient transmit pre-processing in the form of
precoding at the SNs and receiver combining (RC) at the FC,
can play a key role in obtaining accurate parameter estimates.
Several impressive contributions have addressed various facets
of this complex and interesting problem. A brief review of the
salient contributions is presented next.

A. Prior work
Linear decentralized estimation schemes for WSNs have

been the focus of [1]–[4], where linear transmit precoders
(TPCs) are used at the SNs complemented by linear RCs at the
FC, for MSE minimization. In such a framework, the SNs typi-
cally use an amplify and forward strategy for transmitting their
observations to the FC, because such an analog forwarding
strategy is known to achieve the best power versus distortion
trade-off for Gaussian parameter estimation for transmission
over an additive white Gaussian noise (AWGN) channel, as
shown in [5]. More importantly, it has also been established in
[5], [6], that linear precoding of a Gaussian source is optimal in
terms of MSE for transmission over a multiple access channel
(MAC) channel, which motivated other researchers to focus
on optimal linear processing schemes. The authors of [2] pro-
posed one of the first models for vector parameter estimation in
a MIMO sensor network relying on a coherent wireless MAC.
However, in order to simplify the analysis, the MIMO channel
matrix between each SN and the FC was assumed to be diago-
nal in nature, which restricts the applicability of the framework
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TABLE I
CONTRASTING OUR CONTRIBUTIONS TO THE LITERATURE

Feature [3],[7] [12] [17],[21]-[24] [36] [37] [38] [52] our work
MIMO sensor network X × × X X X X X
Decentralized estimation X X × X X X X X
Coherent MAC X X × X X X X X
Classical parameter estimation × × × × × × X ×
Bayesian parameter estimation X X × X X X × ×
Antenna correlation × × × × × × × X
Robust design for CSI uncertainty × × × X X X × X
Joint channel and parameter est. × × × × X × × X
Closed-form estimate X × × X X × X X
Arbitrary observation SNR X X X X X X X X
High observation SNR × × × X × × X X
Theoretical analysis for MSE floor × × × × × × × X

proposed therein. This limitation was subsequently overcome
by the framework developed in [3] that proposed an efficient
iterative procedure for optimal MMSE transceiver design
for vector parameter estimation in MIMO sensor networks.
Although the algorithm developed in [3] is quite general, it is
only applicable in scenarios wherein the number of transmit
antennas (TAs) at the SNs is lower than the number of receive
antennas (RAs) at the FC or the dimension of the parameter
vector of interest. The authors of [7] conceive decentralized
and distributed algorithms based on the two-block coordinate
descent (2-BCD) framework for achieving the MMSE. Whilst
the transceiver designs proposed in [7] are novel, they are
based on second order cone programming, which leads to a
high computational complexity. Other recent treatises, such as
[8]–[13], have also addressed this challenging problem. In [8],
the authors propose optimal linear TPC designs maximizing
the throughput, power and energy efficiency of a MIMO-aided
WSN. The authors of [9] design their TPC for maximizing the
transmission rate between the FC and SNs. Linear TPCs have
also been developed for systems having a very large number
of antennas at the FC [10], [11]. Liu and Chang [12] have
proposed distributed estimation schemes both for deterministic
as well as random parameters for a hybrid MAC relying on
a combination of coherent and orthogonal MACs. Zhan et al.
[13] have proposed trajectory design for efficient measurement
collection from SNs in an unmanned ariel vehicle (UAV)-
aided WSN. The authors of [14] have proposed an efficient
framework for the detection and estimation of a Gaussian
signal in a massive MIMO based WSN. Ciuonzo et al. [15]
have proposed an interesting decision fusion scheme which
reports the local decision of the sensors to the FC over the
MAC for an improved global decision, once again in a massive
MIMO WSN. This novel decision fusion paradigm is further
explored in [16] for wideband collaborative spectrum sensing
and sharing in a cognitive radio network.

At this juncture, it is worth noting that many researchers
have reported several instances where the observations of the
SNs are sparse in nature [17]. For instance, a compressive
data gathering framework has been designed for large sensor
networks [18], which has been shown to be well-suited for
sensing image, audio and other naturally occurring signals that
are sparse in a suitable transform domain, as exemplified by
image signals in the wavelet domain. Furthermore, the param-
eter vectors of a narrowband stationary process exhibit low-

rate temporal fluctuation, hence they can be readily captured
using delta or differential pulse coded modulation (DPCM) for
encoding the sparse innovations rather than the observations.
This becomes even more critical in an IoT setup, since the
data compression arising from exploiting sparsity may lead to
significant bandwidth saving [19], [20]. Thus, sparse signal
recovery from sensor transmissions has emerged as an impor-
tant research area. The authors of [21]–[25] propose distributed
schemes for joint sparse signal recovery both with and without
quantization where each sensor observes the signal of interest
and subsequently computes an estimate of the underlying
parameter by exchanging its observations exclusively with its
single hop neighbours. Although the distributed scheme is
robust to node failures, it necessitates inter-sensor communi-
cation that potentially imposes a high control/ communication
cost on the system. The problem of detecting a sparse signal in
presence of non-Gaussian noise is explored in [26], [27]. The
authors of [26] have considered generalized-Gaussian sparse
parameters and noise in their analysis and conceived a novel
scheme for parameter detection using 1-bit quantized measure-
ments to reduce the bandwidth required. Jacques et al. have
proposed another interesting framework [27] for the detection
of sparse signal considering non-Gaussian noise relying on
uniformly quantized measurement transmissions. However, to
the best of our knowledge, none of the existing contributions
consider the problem of sparse parameter estimation in a
network wherein multiple SNs observe a spatially correlated
sparse signal, followed by optimal pre-processing and recovery
at the FC.

Furthermore, most of the above contributions assume the
availability of perfect CSI at the FC, which is unrealizable in
practice. Therefore, it is vitally important to develop TPC/ RC
design techniques relying on imperfect CSI. In this context, the
authors of [28]–[31], have considered training-based channel
estimation followed by imperfect CSI based transceiver de-
signs. However, these designs do not proactively take the CSI
imperfections into account which represent channel estimation
error. As a further development Banavar et al. [32] design a
scheme for distributed estimation relying on partial channel
feedback and analyze its performance. The asymptotic perfor-
mance derived for a large number of SNs communicating over
different fading channels and using feedback are also presented
in [32]. Based on this framework, the authors of [33], [34]
have proposed limited feedback based optimal TPC codebook
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designs. However, designing such a codebook requires solving
complex optimization problems. Zhu et al. [35], Venkategowda
et al. [36], and Liu et al. [37] have proposed robust TPC
designs for scalar parameter estimation considering different
CSI uncertainty models. As a further advance, Rostami and
Falahati [38] have proposed robust TPC designs for vector
parameter estimation considering CSI uncertainty. However,
the TPC designs of [36] and [38] are based on the zero-
forcing (ZF) criterion, and hence result in noise enhancement
at the FC. Moreover, all the above-mentioned contributions
have considered only non-sparse parameter estimation and do
not include the realistic effects of antenna correlations at the
SNs and FC in their analysis.

To overcome the above limitations we harness the pow-
erful Bayesian learning (BL) framework [39] for sparse sig-
nal estimation, explicitly, we propose novel BL-based linear
decentralized TPC/ RC design techniques for sparse vector
parameter recovery in a sensor network explicitly considering
the CSI uncertainty. The key reason behind choosing the BL
framework over other existing sparse estimation schemes, such
as FOCUSS (FOcal Underdetermined System Solver) [40],
BP (Basis Pursuit) [41], and MP (Matching Pursuit) [42] is
that the global minima of the BL-cost function guarantees the
sparsest representation of the observation using the columns
of the dictionary matrix as demonstrated in [39]. Further-
more, its convergence to a fixed point of the log-likelihood
is guaranteed from any initialization by virtue of the well-
established expectation-maximization (EM) framework. The
new contributions of this paper are clearly itemized next and
they are also boldly contrasted to the literature in Table-I. The
related existing contributions in the literature have also been
classified into two broad categories: classical1 and Bayesian2

estimation.

B. New Contributions and Organization of the Work

• We propose attractive TPC/ RC designs for sparse pa-
rameter estimation in MIMO WSNs relying on imperfect
CSI. In order to exploit the sparsity of the unknown
parameter vector, a BL-based scheme is conceived for
linear decentralized estimation. The key advantage of
this BL-based sparse parameter estimation scheme is that
it yields the ‘maximally-sparse’ solution and guaranteed
convergence at a low number of iterations.

• First, majorization theory based optimal MMSE TPC/ RC
designs are developed for the more general scenario of
arbitrary-SNR noisy sensor observations for minimizing
the MSE of parameter estimation at the FC. Subsequently,
linear transceivers are derived for a scenario of high-SNR
sensor observations.

1In the classical framework, the unknown parameter is considered as
a deterministic quantity and the techniques such as Maximum Likelihood
Estimate (MLE) [43, Sec. 7.3] and Best Linear Unbiased Estimate (BLUE)
are used [43, Sec. 6.4] for estimation.

2In Bayesian parameter estimation, the unknown parameter is considered
to be random in nature with a known a priori distribution. Subsequently, one
can employ the MMSE/ MAP [43, Sec. 11.4/11.5] and LMMSE [43, Sec.
12.3] schemes for parameter estimation.

• The effects of transmit and receive antenna correlations
have also been incorporated in the parameter estimation
process and its effects on the performance are analyzed.

• The MMSE channel estimate is determined by incorpo-
rating the channel correlation, followed by characterizing
the resultant channel estimation error.

• A robust linear transceiver design is proposed that directly
incorporates the CSI uncertainty.

• Finally, simulation results are presented to show the
efficacy of the proposed schemes.

The rest of the paper is organized as follows. Section-II
describes the MIMO system model of the linear decentralized
estimation of a sparse vector parameter. Subsequently, Section-
III describes the BL technique and majorization theory based
optimal MMSE TPC/ RC design minimizing the MSE at the
FC for an arbitrary SNR sensor observations scenario, fol-
lowed by an interesting scenario with high-SNR sensor obser-
vations in Section-III-A. In Section-IV, MMSE-based channel
estimation is presented, followed by our robust transceiver
design. This is followed by our simulation results in Section-V
and concluding remarks in Section-VI. For seamless reading,
the proofs of the different propositions are relegated to the
Appendices.

A collective description of the notation used in this paper
is as follows. The Hermitian and transpose operations are de-
noted by (.)H and (.)T , respectively. Tr(A) denotes the trace
of the matrix A, A = diag(a) defines a diagonal matrix that
contains the elements of the vector a on its principal diagonal,
and a = diag(A) is a vector whose elements are the diago-
nal elements of matrix A. A = blkdiag[A1,A2, · · · ,AL]
denotes a block-diagonal matrix A with the matrices Ai’s,
1 ≤ i ≤ L, on its principal diagonal. Also, E[·] represents
the expectation operator. CN (µx,Rx) denotes the probability
density function (pdf) of a symmetric complex Gaussian
random vector x ∈ Cm×1 with mean µx ∈ Cm×1 and
covariance matrix Rx ∈ Cm×m. The symbol ⊗ denotes the
Kronecker product. In represents an n × n identity matrix,
while λmax denotes the maximum eigenvalue of the matrix
X.

II. MIMO WSN SYSTEM AND CHANNEL MODEL

Consider a MIMO WSN comprised of L SNs, with each
sensor communicating with the FC over a coherent MAC as
shown in Fig 1. Let ti and r denote the number of TAs at SN
i, 1 ≤ i ≤ L, and the number of RAs at the FC, respectively.
Similar to other contributions [2], [3], the measurement vector
xi ∈ Cqi×1 of the ith SN can be modeled as

xi = Giθ + vi, (1)

where Gi ∈ Cqi×m represents the observation matrix for the
ith SN and the number of observations qi, 1 ≤ i ≤ L, is
typically less than the length of the parameter vector [2],
which allows us to compress the measurements. The quantity
vi ∈ Cqi×1 denotes the additive observation noise at the
ith SN that has been modeled as CN (0,Rv,i). The quantity
θ ∈ Cm×1 denotes the parameter vector to be estimated. This
work considers the parameter vector θ to be sparse in nature.
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Fig. 1. System model for sparse parameter estimation in the MIMO wireless sensor network

Note that θ can be either itself sparse or rendered sparse in
many scenarios with suitable processing. For instance, since
the parameter vectors of a narrowband stationary process
exhibit low-rate temporal fluctuation, they can be readily
captured using delta or DPCM for encoding the resultant
sparse innovations rather than the observations. On the other
hand, many naturally occurring signals are sparse in a suitable
transform domain [44], as exemplified by image signals in
the wavelet domain. In such scenarios, the original non-sparse
parameter θ̃ can be expressed as θ̃ = Ψθ, where Ψ represents
a transformation matrix [44], also known as sparsifying-
dictionary, and θ denotes the sparse representation of θ̃. For
this case, the measurement vector xi of the ith SN can be
modeled as xi = GiΨθ+vi = G̃iθ+vi, where G̃i = GiΨ.
Therefore, without loss of generality, we proceed with the
measurement model considered in (1). The observation vector
xi obtained at each SN is first passed through a whitening filter
Wi ∈ Cqi×qi , which yields the whitened observation vector
x̃i ∈ Cqi×1 as x̃i = Wixi = WiGiθ+ Wivi. The whitened
observation vector x̃i at the ith SN is then pre-processed by
the TPC matrix Bi ∈ Cti×qi , followed by transmission to the
FC. Finally, the signal vector y ∈ Cr×1 received by the FC
over the coherent MAC is given by

y =

L∑
i=1

HiBiWiGiθ +

L∑
i=1

HiBiWivi + n, (2)

where Hi ∈ Cr×ti denotes the channel matrix between the ith
SN and the FC, while the vector n ∈ Cr×1 denotes the AWGN
at the FC modeled as CN (0,Rn). In order to incorporate
correlation, the MIMO channel matrix Hi between the ith SN
and the FC has been modeled using the standard Kronecker
MIMO channel model, as described in [45],

Hi =
(
RRx

)1/2
Si
(
RTx
i

)T/2
, (3)

where the matrices RRx ∈ Cr×r and RTx
i ∈ Cti×ti denote

the spatial receive and transmit correlation matrices, respec-
tively. The quantity Si ∈ Cr×ti represents a stochastic matrix,
whose elements are independent and identically distributed
(i.i.d) as CN (0, 1). Thus, when the antenna correlations are
negligible, i.e., RRx ≈ Ir and RTx

i ≈ Iti , the channel model
of (3) reduces to an uncorrelated MIMO channel comprising
i.i.d. elements. The resultant covariance matrix of the vector-
ized channel hi = vec (Hi), denoted by Ri ∈ Crti×rti , can
be obtained as

Ri = E
[
hih

H
i

]
= RTx

i ⊗RRx. (4)

Let the block diagonal TPC, whitened matrix and observation
noise covariance matrices, denoted by B ∈ Ct×q , W ∈ Cq×q
and Rv ∈ Cq×q , respectively, with t =

∑L
i=1 ti and q =∑L

i=1 qi, be defined as

B = blkdiag[B1,B2, · · · ,BL],

Rv = blkdiag[Rv,1,Rv,2, · · · ,Rv,L],

W = blkdiag[W1,W2, . . . ,WL], (5)

while the concatenated observation and channel matrices G ∈
Cq×m and H ∈ Cr×t, respectively, be defined as

G = [GT
1 ,G

T
2 , · · · ,GT

L]T ,H = [H1,H2, · · · ,HL]. (6)

The equivalent system model in (2) can be written in a compact
form as

y = HBWGθ + HBWv + n, (7)

where the stacked observation noise vector is v =[
vT1 ,v

T
2 , · · · ,vTL

]T ∈ Cq×1. Let the stacked observation
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vector be x =
[
xT1 ,x

T
2 , · · · ,xTL

]T ∈ Cq×1. The average
transmit power of the ith SN can be evaluated as

E
[
‖Bix̃i‖2

]
= Tr

(
BiE

[
x̃ix̃

H
i

]
BH
i

)
= Tr

(
Bi

(
WiGiRθG

H
i WH

i + WiRv,iW
H
i

)
BH
i

)
= Tr

(
Bi

(
WiGiRθG

H
i WH

i + Iqi
)
BH
i

)
, (8)

where WiRv,iW
H
i = Iqi and Rθ ∈ Cm×m is the prior

covariance matrix of the parameter vector θ. From (8), the
average total transmit power of the WSN can be expressed as

L∑
i=1

E
[
‖Bix̃i‖2

]
= Tr

(
B
(
WGRθG

HWH + Iq
)
BH
)
.

(9)

Let θ̂ denote the estimate of the sparse parameter vector θ
obtained after the subsequent processing at the FC. The error
covariance matrix E ∈ Cm×m pertaining to the estimate of
the parameter θ, and the resultant MSE are defined as

E = E
[(

θ̂ − θ
)(

θ̂ − θ
)H]

, MSE = Tr (E) . (10)

The problem of optimizing the sensor precoding matrices
Bi, 1 ≤ i ≤ L, which minimize the MSE of estimation at the
FC, subject to the power constraint, can be formulated as

minimize
B

MSE

subject to Tr
(
B
(
WGRθG

HWH + Iq
)
BH
)
≤ PT ,

(11)
where PT denotes the total transmit power budget of the WSN.
The BL-based estimation framework of the sparse parameter
vector θ and the optimal MMSE TPC designs for an arbitrary-
SNR scenarios is described next.

III. BL-BASED SPARSE PARAMETER ESTIMATION AND
TPC DESIGN FOR NOISY SENSOR OBSERVATIONS

The received signal in (7) can be further written in a
compact form as

y = F̃G̃θ + F̃Wv + n, (12)

where the matrices G̃ ∈ Cq×m and F̃ = HB ∈ Cr×q are
defined as

G̃ =
[
G̃T

1 , G̃
T
2 , . . . , G̃

T
L

]T
=
[
GT

1 WT
1 ,G

T
2 WT

2 , . . . ,G
T
LWT

L

]T
, (13)

F̃ =
[
F̃1, F̃2, · · · , F̃L

]
= [H1B1,H2B2, · · · ,HLBL].

(14)

The main mathematical steps of the proposed BL-based sparse
parameter estimation and TPC design in this scenario are as
follows.

1) Gaussian parametrized prior assignment over the sparse
parameter vector θ followed by the estimation of hyper-
parameters using the EM framework.

2) Estimated hyperparameters are then utilized to derive an
upper bound of the MSE at the FC.

3) Finally, the majorization theory based TPC framework is
once again developed for minimizing the resultant MSE.

We now derive the above steps in detail. In contrast to
other popular sparse signal recovery techniques, such as the
FOCUSS [40] and Basis Pursuit (BP) [41], which assume a
fixed prior, the proposed BL framework begins with assigning
the following parameterized Gaussian prior to the parameter
vector θ [39]

p(θ; Γ) =

m∏
i=1

(πγi)
−1exp

(
− |θ(i)|2

γi

)
, (15)

where γi, 1 ≤ i ≤ m, denotes the hyperparameter corre-
sponding to the ith component of θ and Γ is the diago-
nal matrix of hyperparameters that can be written as Γ =
diag(γ1, γ2, · · · , γm) ∈ Rm×m. Note that the hyperparame-
ters γi, 1 ≤ i ≤ m, are unknown and they have to be estimated
from the observation y. Since both the likelihood p (y|θ) and
prior p(θ; Γ), are Gaussian, the a posteriori pdf p(θ|y; Γ)
also becomes Gaussian [43], whose mean and covariance
can be computed using closed-form expressions. Thus, the
parametrized Gaussian prior assignment makes the proposed
EM-based framework tractable for hyperparameter estimation,
since it requires to compute the a posteriori pdf p(θ|y; Γ)
of the sparse parameter θ in the expectation-step (E-step),
as described subsequently in this section. Furthermore, as
described in [39], for a noiseless scenario, the global-minima
of the BL-cost function is achieved at the sparsest solution.
Even for a noisy scenario, all the local minima also yield
sparse solutions. Therefore, upon convergence of the EM-
procedure, many of the γi values are driven to zero, effectively
forcing the corresponding elements of the parameter vector θ
to zero. The linear MMSE (LMMSE) estimate θ̂ ∈ Cm×1
and the corresponding covariance matrix Σθ ∈ Cm×m of the
parameter θ is given by

µθ = ΣθG̃
HF̃HR̃−1n y, (16)

Σθ =
(
Γ−1 + G̃HF̃HR̃−1n F̃WG̃

)−1
, (17)

where R̃n = F̃WRvW
HF̃H + Rn ∈ Cr×r. Observe

from the expressions above that the LMMSE estimate of the
sparse parameter θ depends on the hyperparameter matrix
Γ. Thus, the estimation of the sparse parameter vector θ
boils down to the estimation of the hyperparameter vector
γ = [γ1, γ2, · · · , γm]

T ∈ Rm×1. The proposed BL approach
maximizes the Bayesian evidence p(y; Γ) with respect to
the hyperparameter θ, which leads to an enhanced sparse
estimation performance. The Bayesian evidence p(y; Γ) is
determined by the marginal pdf of

p (y; Γ) =
1

(π)rdet (Σy)
exp

(
−yHΣ−1y y

)
, (18)

where Σy = R̃n + F̃G̃ΓG̃HF̃H ∈ Cr×r is the covariance
matrix of the receive vector y. The corresponding maximum-
likelihood (ML) objective is given by

γ̂ = arg max
γ

log [p(y; Γ)]

≡ arg max
γ
− log [det(Σy)]− yHΣ−1y y. (19)
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As discussed in [39], the direct maximization of the above
optimization objective with respect to γ becomes intractable.
Therefore, the proposed BL-framework employs the well-
established iterative EM algorithm [46], [47]. The key steps
in the EM procedure are outlined below.

Let Γ̂(k−1) and B(k−1) denote the estimates of the hyper-
parameter and TPC matrices in the (k − 1)st EM iteration3.
Employing the TPC matrix B(k−1), one obtains the vector
y(k) received at FC as

y(k) = HB(k−1)WGθ(k) + n(k) = F̃(k−1)G̃θ(k) + n(k),
(20)

where θ(k) denotes the sparse parameter vector at time-
instant k. Furthermore, it is assumed that the sparsity profile,
i.e. the locations of the non-zero elements, of the sparse
parameter vector θ(k) do not change. In the kth iteration, the
expectation step (E-step) evaluates the average log-likelihood

L
(

Γ | Γ̂
(k−1)

)
of the complete-data set

{
y(k),θ(k)

}
as

L
(

Γ | Γ̂
(k−1)

)
= Eθ(k)|y(k);Γ̂(k−1)

[
log
[
p
(
y(k),θ(k); Γ

)]]
= E

[
log
[
p
(
y(k) | θ(k)

)]
+ log

[
p
(
θ(k); Γ

)]]
. (21)

The first term inside the expectation operator in (21) can be
simplified as

log
[
p
(
y(k) | θ(k)

)]
= −κ1 −

(
y(k) − F̃(k)G̃θ(k)

)H
R̃−1n

(
y(k) − F̃(k)G̃θ(k)

)
,

(22)

where the constant κ1 = log [(π)rdet (Rn)]. It can be ob-
served that log

[
p
(
y(k) | θ(k)

)]
is independent of the hyper-

parameter vector γ and hence can be ignored in the maxi-
mization of the subsequent M-step. To evaluate the second
term inside the expectation in (21), the a posteriori pdf of the
parameter θ(k) can be evaluated as [43]

p
(
θ(k) | y(k); Γ̂(k−1)

)
= CN

(
µ

(k)
θ ,Σ

(k)
θ

)
, (23)

where the a posteriori mean µ
(k)
θ ∈ Cm×1 and covariance

matrix Σ
(k)
θ ∈ Cm×m can be determined as

µ
(k)
θ = Σ

(k)
θ G̃H

(
F̃(k−1)

)H
R̃−1n y(k), (24)

Σ
(k)
θ =

((
Γ̂(k−1)

)−1
+ G̃H

(
F̃(k−1)

)H
R̃−1n F̃(k−1)G̃

)−1
.

(25)

3The authors appreciate the helpful query from one of the anonymous
Reviewers regarding how and when the observations y(k) are obtained in
this setting. We would like to clarify that in this discussion, the terms time-
instant and EM iteration are used interchangeably, since one EM iteration is
performed at each time-instant. Initially, the TPCs B(0)

i for each sensor i, are
designed using γ̂(0)j = 1 for 1 ≤ j ≤ m, followed by receiving observations
y(0) with these precoders. Subsequently, the EM procedure updates the
hyperparameters. These updated hyperparameters are employed in the next
iteration to design TPCs and collecting measurements. This procedure repeats
until convergence is achieved. Algorithm 1 and its graphical description in Fig.
2 clearly illustrate these aspects.

Using the above a posteriori pdf of θ(k), the second term in
(21) can be written as

Eθ(k)|y(k);Γ̂(k−1)

{
log
[
p
(
θ(k); Γ

)]}
=

r∑
i=1

−log (πγi)−
1

γi
Eθ(k)|y(k);Γ̂(k−1)

{∣∣∣θ(k) (i)
∣∣∣2} . (26)

Furthermore, the maximization problem in the M-step can be
written as

γ̂(k) = max
γ

Eθ(k)|y(k);Γ̂(k−1)

{
log
[
p
(
θ(k); Γ

)]}
. (27)

It can be readily observed from (27) that the above maximiza-
tion problem is decoupled with respect to each γi. Thus, it
can be solved to obtain the estimates γ̂(k)i as

γ̂
(k)
i = Eθ(k)|y(k);Γ̂(k−1)

{∣∣∣θ(k) (i)
∣∣∣2} = Σ

(k)
θ (i, i)+ | µ(k)

θ (i) |2 .

(28)

The BL-based estimate of the hyperparameter matrix Γ in the
kth time-instant is given as Γ̂(k) = diag

(
γ̂
(k)
1 , γ̂

(k)
2 , ..., γ̂

(k)
m

)
,

which can be subsequently employed for the TPC design. Note
that the a priori pdf p(θ; Γ) in (15) is Gaussian, furthermore,
as described in (22), the likelihood p (y | θ), and the a
posteriori pdf p

(
θ | y; Γ̂

)
described in (23) both are also

Gaussian. For this scenario, exploiting the well-established
result given in [43, Sec. 12.3], the estimation error covariance
matrix E(k) of the LMMSE estimate in the kth EM iteration
can be derived in a closed-form expression as

E(k) =

((
Γ̂(k)

)−1
+ G̃H

(
F̃(k)

)H
R̃−1n F̃(k)G̃

)−1
. (29)

Let the singular value decomposition (SVD) of matrix G̃
be G̃ = UG̃ΣG̃VH

G̃
and EVD of the matrix R̃n be

R̃n = UnΛnUH
n . Substituting these in the expression for

the error covariance E(k) in (29) and exploiting the property
WRvW

H = Iq , the resultant MSE can be obtained as shown
in (30). Choosing F̃(k) = UnΩ̃(k)UH

G̃
, the MSE expression

in (30) reduces to

MSE(k)

=Tr
(
Υ(k) + ΣH

G̃

(
Ω̃(k)

)H (
Ω̃(k)

(
Ω̃(k)

)H
+ Λn

)−1
Ω̃(k)ΣG̃

)−1
= Tr

(
Υ(k) + D(k)

)−1
, (31)

where Υ(k) = VH
G̃

(
Γ̂(k)

)−1
VG̃, D(k) =

ΣH
G̃

(
Ω̃(k)

)H (
Ω̃(k)

(
Ω̃(k)

)H
+ Λn

)−1
Ω̃(k)ΣG̃ and

Ω̃(k) =

 diag(p(k)) 0m×(q−m)

0(r−m)×q

 . (32)

The following result from [48], which is applicable for any
two Hermitian matrices X and Y of size n × n has been
employed for simplifying the MSE expression in (31)

Tr(X + Y)
−1 ≤

n∑
i=1

1

λ1(X) + λi(Y)
. (33)
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MSE(k) = Tr

((
Γ̂(k)

)−1
+ VG̃ΣH

G̃
UH
G̃

(
F̃(k)

)H (
F̃(k)

(
F̃(k)

)H
+ UnΛnUH

n

)−1
F̃(k)UG̃ΣG̃VH

G̃

)−1

= Tr

(
VH
G̃

(
Γ̂(k)

)−1
VG̃ + ΣH

G̃
UH
G̃

(
F̃(k)

)H
Un

(
UH
n F̃(k)

(
F̃(k)

)H
Un + Λn

)−1
UH
n F̃(k)UG̃ΣG̃

)−1
. (30)

Upon using the above result in (31), one can determine the
following upper bound for the MSE in the kth EM iteration

Tr
(
Υ(k) + D(k)

)−1
≤

m∑
j=1

γ̂(k)max +
p
(k)
j σ2

j

(
G̃
)

p
(k)
j + λj(Rn)

−1

=

m∑
j=1

 p
(k)
j + λj(Rn)

p
(k)
j

(
γ̂
(k)
max + σ2

j

(
G̃
)) + γ̂(k)maxλj(Rn)

−1, (34)

where γ̂(k)max = maxi{γ̂(k)i }. Using (9), and replacing the prior
covariance matrix Rθ by Γ̂(k), one can obtain the expression
for the average total transmitted power for this scenario is
given as

L∑
i=1

E
[
||Bixi||2

]
=

L∑
i=1

Tr

(
B

(k)
i

(
G̃iΓ̂

(k)G̃H
i + Iqi

)(
B

(k)
i

)H )
. (35)

Subsequently, using (13) and (14), one can substitute the
matrices G̃i = UG̃i

ΣG̃VG̃ and B
(k)
i = H†i F̃

(k)
i =

H†iUnΩ(k)UH
G̃i

, in the above equation to obtain the ex-

pression in (36). Furthermore, defining the matrices Φ
(k)
i =

UH
G̃i

UG̃i

(
ΣG̃VH

G̃
Γ̂(k)VG̃ΣH

G̃
+ Iqi

)
UH
G̃i

UG̃i
∈ Cqi×qi ,

and Ψi = UH
n

(
H†i

)H
H†iUn ∈ Cr×r, the total transmit

power can be constrained as

L∑
i=1

Tr

(
ΨiΩ̃

(k)Φ
(k)
i

(
Ω̃(k)

)H)

≤
L∑
i=1

λmax(Ψi)

m∑
j=1

p
(k)
j

[
Φ

(k)
i

]
jj
≤ PT . (37)

The inequality in (37) relies on the following property
Tr(XY) ≤ λmax (X) Tr (Y) [49], which is once again valid
for any Hermitian symmetric matrices X and Y. Therefore,
the optimization problem of MSE minimization can now be
formulated using the results in (34) and (37) as follows

minimize
p(k)

m∑
j=1

p
(k)
j + λj(Rn)

p
(k)
j

(
γ̂
(k)
max + σ2

j

(
G̃
))

+ γ̂
(k)
maxλj(Rn)

subject to

L∑
i=1

λmax(Ψi)

m∑
j=1

p
(k)
j

[
Φ

(k)
i

]
jj
≤ PT .

(38)

Using the KKT framework [50], the optimal value p(k)j and
the Lagrange multiplier µ(k)

0 for the above problem can be
derived as follows :

p
(k)
j =

(
µ
(k)
0

√
σ2
j (G̃)λj(Rn)∑L

i=1 λmax(Φi)[Ψi]jj
− γ̂(k)maxλj(Rn)

)+

(γ̂
(k)
max + σ2

j (G̃))
,

(39)

µ
(k)
0 =

PT +
∑m
j=1

∑L
i=1

λmax

(
Φ

(k)
i

)
[Ψi]jjλj(Rn)γ̂

(k)
max(

γ̂
(k)
max +σ

2
j (G̃)

)
∑m
j=1

√∑L
i=1 λmax

(
Φ

(k)
i

)
[Ψi]jjλj(Rn)σ2

j (G̃)(
γ̂
(k)
max +σ

2
j (G̃)

)2

. (40)

Substituting the optimal values p
(k)
j into (32) yields the

matrix Ω̃(k), from which one can obtain the matrix F̃(k).
Subsequently, the TPC matrix B

(k)
i can be determined using

the relationship

B
(k)
i = H†i F̃

(k)
i , (41)

where H†i represents the pseudo-inverse of the matrix Hi. Note
that in a typical WSN, the condition r >> ti holds true,
since the FC can afford a large number of antennas, whereas
the SNs are miniature devices. Assuming that the elements
of the channel matrix Hi are i.i.d., it is guaranteed to be
of full column rank with a high probability. The BL-based
sparse estimate of the parameter vector θ(k) is obtained as
θ̂
(k)

= µ
(k)
θ . A concise summary of the various steps in the

BL-based technique proposed for sparse parameter estimation
and optimal MMSE TPC design is given in Algorithm-1,
with its graphical description is shown in Fig.2. Interestingly,
the MSE of estimation for this scenario with noisy sensor
observations exhibits a floor at higher values of the SNR at
the fusion center, which arises due to amplification of the
observation noise. An analytical expression has been derived
in Section-III of our technical report [51] for this error floor.
The next subsection presents an interesting analysis for the
high-SNR observations scenario.

A. BL-based Sparse Parameter Estimation and Optimal
MMSE TPC Design for High-SNR Sensor Observations

In the high-SNR scenario [52], [53], where the observation
noise vector obeys v = 0 in (7), the received signal vector y
at the FC is given by

y = HBGθ + n. (42)
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E
[
||Bixi||2

]
=

L∑
i=1

Tr

(
H†iUnΩ̃(k)UH

G̃i

(
UG̃i

ΣG̃VH
G̃

Γ̂(k)VG̃ΣH
G̃

UH
G̃i

+ Iqi

)
UG̃i

(
Ω̃(k)

)H
UH
n

(
H†i

)H )

=

L∑
i=1

Tr

(
UH
n

(
H†i

)H
H†iUnΩ̃(k)UH

G̃i
UG̃i

(
ΣG̃VH

G̃
Γ̂(k)VG̃ΣH

G̃
+ Iqi

)
UH
G̃i

UG̃i

(
Ω̃(k)

)H)
. (36)

Algorithm 1 BL-based sparse parameter estimation and op-
timal MMSE TPC design for the noisy sensor observations
scenario described in Section-III

1: Input: Observation vector y(k), noise covariance ma-
trix R̃n, observation noise whitening matrix W, stacked
observation matrix G, concatenated channel matrix H,
stopping parameters ε and kmax

2: Initialization: γ̂(0)i = 1, 1 ≤ i ≤ m ⇒ Γ̂(0) = I, set
counter k = 0 and Γ̂(−1) = 0

3: while ‖ γ̂(k) − γ̂(k−1) ‖2≥ ε and k < kmax do
4: Compute p(k)j using (39) and Ω(k) using (32)
5: Compute matrix F̃(k) = UnΩ̃(k)UH

G̃

6: Compute TPC B
(k)
i for each sensor i using (41)

7: Obtain the receive vector y(k) using (20)
8: E-Step: Evaluate the a posteriori mean Σ

(k)
θ and

covariance µ
(k)
θ using (24) and (25)

9: M-Step: Evaluate the hyperparameters γ̂(k)i using (28)
10: end while
11: Output: θ̂

(k)
= µ

(k)
θ

Fig. 2. Graphical illustration of the Algorithm-1.

The BL technique proposed for this high-SNR observation
scenario once again assigns the parameterized Gaussian prior
p(θ; Γ) to the sparse parameter vector θ as given in (15). The a
posteriori probability density function of the sparse parameter
vector θ can be evaluated as [43]

p(θ | y; Γ) ∼ CN (µθ,Σθ) ,

where the a posteriori mean and covariance matrix, µθ ∈
Cm×1 and Σθ ∈ Cm×m, respectively, can be determined as

θ̂ = ΣθG
HBHHHR−1n y, (43)

Σθ =
(
Γ−1 + GHBHHHR−1n HBG

)−1
. (44)

The Bayesian evidence p(y; Γ) can once again be maximized
using the EM procedure stated in Section-III. The hyperpa-
rameter update in the kth EM iteration can be obtained as

γ̂
(k)
i = Σ

(k)
θ (i, i)+ | µ(k)

θ (i) |2, (45)

where the posterior mean µ
(k)
θ and covariance Σ

(k)
θ can

be obtained by replacing y → y(k), B → B(k−1), and
Γ → Γ̂(k−1) in (43) and (44). The BL-based estimate of the
hyperparameter matrix Γ(k) is subsequently employed for TPC
design in the kth EM iteration. The estimation error covariance
matrix E(k) can be obtained as [43, Sec. 12.3]

E(k) =

((
Γ̂
(k)
)−1

+ GH
(
B(k)

)H
HHR−1n HB(k)G

)−1
.

(46)

Let the matrix H̃ = HHR−1n H ∈ Ct×t with its eigenvalue
decomposition (EVD) given as H̃ = UtΛtU

H
t and F(k) =

B(k)G ∈ Ct×m. It follows from (5) and (6) that

F(k) =
[
F

(k)
1 ,F

(k)
2 , · · · ,F(k)

L

]
=
[
B

(k)
1 G1,B

(k)
2 G2, · · · ,B(k)

L GL

]
. (47)

The expression for the error covariance matrix E(k) can be
further simplified as

E(k) =

((
Γ̂
(k)
)−1

+
(
F(k)

)H
UtΛtUt

HF(k)

)−1
. (48)

Choose the TPC matrix F(k) = UtΩ
(k) , where the matrix

Ω(k) is defined as

Ω(k) =

[
diag

(
p(k)

)
0(t−m)×m

]
∈ Rt×m, t ≥ m (49)

and p(k) =

[√
p
(k)
1 ,

√
p
(k)
2 , · · · ,

√
p
(k)
m

]T
∈ Rm×1 with

p
(k)
i ≥ 0 ∀i. An interesting analysis for the scenario when
m > t is given in our technical report [51]. Employing
the above substitution in (48), the expression of the error
covariance matrix E(k) and that of the MSE cost function
Tr
(
E(k)

)
can be simplified as

E(k) =

((
Γ̂
(k)
)−1

+
(
Ω(k)

)H
ΛtΩ

(k)

)−1
, (50)

MSE(k) = Tr
(
E(k)

)
=

m∑
i=1

(
1

γ̂
(k)
i

+ p
(k)
i λi

(
H̃
))−1

.

(51)
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The total transmit power of the WSN, formulated in (9) for
the high-SNR scenario, can be further simplified as

Tr

(
F(k)Γ̂

(k)
(
F(k)

)H)
= Tr

(
Ω(k)Γ̂

(k)
(
Ω(k)

)H)
=

m∑
i=1

p
(k)
i γ̂

(k)
i . (52)

Hence, the optimization problem of minimizing the estimation
MSE of the parameter vector θ, in the coherent MAC-based
WSN can be equivalently formulated as

minimize
p(k)

m∑
i=1

(
1

γ̂
(k)
i

+ p
(k)
i λi

(
H̃
))−1

subject to

m∑
i=1

p
(k)
i γ̂

(k)
i ≤ PT .

(53)

The solution to the above optimization problem can be found
using the Karush-Kuhn-Tucker (KKT) framework [50]. The
optimal values p(k)i , 1 ≤ i ≤ m, and the pertinent Lagrange
multiplier µ0 are obtained as

p
(k)
i =

µ(k)
0

√√√√ 1

γ̂
(k)
i λi

(
H̃
) − 1

γ̂
(k)
i λi

(
H̃
)

+

, (54)

µ
(k)
0 =

PT +
∑m
i=1

1

λi(H̃)∑m
i=1

√
γ̂
(k)
i

λi(H̃)

. (55)

Upon substituting the optimal values p(k)i into (49) we arrive
at the matrix Ω(k), from which one can obtain the matrix F(k).
Subsequently, the TPC matrix B

(k)
i can be determined using

the relationship

B
(k)
i = F

(k)
i G†i , (56)

where G†i represents the pseudo-inverse of the matrix Gi.
Note that as described in several related contributions [2], [36],
it is a common practice to compress the SN measurement xi
prior to transmission. Moreover, when the parameter vector θ
is sparse, as described in the theory of compressive sensing
(CS) [44], the measurement xi can be significantly com-
pressed, typically, to a much lower dimension than the size of
the parameter θ. Thus, in order to achieve this, the observation
matrix Gi for 1 ≤ i ≤ L are set with qi ≤ m. Furthermore,
assuming the elements of the observation matrix Gi to be i.i.d.,
it is guaranteed to be of full row rank with high probability.
The BL-based sparse estimate of the parameter vector θ(k) is
obtained as θ̂

(k)
= µ

(k)
θ . An interesting theoretical result in

Section-IV of our technical report [51] shows that the MSE(k)

in (51) is a monotonically decreasing function of SNRFC. The
next section describes the MMSE channel estimation proce-
dure, followed by the robust transceiver design conceived for
sparse parameter estimation in the presence of CSI uncertainty.

IV. CHANNEL ESTIMATION AND ROBUST TRANSCEIVER
DESIGN IN MIMO WSNS

A majority of the schemes in the existing literature, such
as [3], [7]–[9] have relied on the idealized simplifying as-
sumption that the FC has perfect knowledge of the underlying
MIMO channel between the SNs and the FC. With an eye
toward practical implementation, in this section we conceive
a comprehensive procedure for decentralized parameter esti-
mation using the imperfect CSI obtained via the estimation
module. The various key steps of this section are as follows.

1) We begin with estimating the underlying channels be-
tween each sensor and the FC using the proposed MMSE
channel estimation procedure.

2) Furthermore, employing the imperfect CSI and its error
covariance obtained via the estimation module together
with the parametrized prior assignment over the sparse
parameter vector θ, we develop an EM-based framework
for estimating the hyperparameters.

3) Furthermore, the robust transceiver design is proposed
that incorporates knowledge of the channel uncertainty
and the estimated hyperparameters for minimizing the
average MSE.

We now describe the above steps in detail.

A. MMSE CSI Estimation in MIMO WSNs

A flat fading MIMO channel is considered between the
FC and each SN in the time-division-duplexing (TDD) mode,
wherein the MIMO channel between the FC and the ith SN
is denoted by HT

i ∈ Cti×r. For the purpose of channel
estimation, the FC broadcasts pilot symbols to all the SNs,
and the pilot observations of each SN are fed back to the
FC, which then estimates the MIMO channel for each SN.
Let xp(n) ∈ Cr×1, 1 ≤ n ≤ N, denote the pilot vectors
transmitted by the FC, where N represents the number of
pilot vectors. The pilot vector yi(n) ∈ Cti×1 received by the
ith SN is given as

yi(n) = HT
i xp(n) + wi(n), (57)

where wi(n) ∈ Cti×1 denotes the AWGN vector distributed
as CN (0,Rwi). The received pilot matrix Yi ∈ Cti×N cor-
responding to the ith SN, after concatenation of the received
pilot vectors yi(n), 1 ≤ n ≤ N , can be modeled as

Yi = [yi(1),yi(2), · · · ,yi(N)] = HT
i Xp + Wi, (58)

where Xp = [xp(1),xp(2), · · · ,xp(N)] ∈ Cr×N and Wi =
[wi(1),wi(2), · · · ,wi(N)] ∈ Cti×N denote the concatenated
pilot and noise matrices. For the sake of low complexity, an
orthogonal pilot matrix satisfying XpX

H
p = PpI is chosen,

where Pp represents the pilot power. The vectorized channel
estimation model corresponding to (58) is obtained by consid-
ering the stacked columns of the observation Yi as

yi = X̃phi + wi, (59)

where yi = vec(Yi) ∈ CNti×1, X̃p = (Xp ⊗ I) ∈ CNti×rti ,
hi = vec

(
HT
i

)
∈ Crti×1 and wi = vec(Wi) ∈ CNti×1. The
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E [E] = MH
(
ĤBWGRθG

HWHBHĤH + Tr
(
BWGRθG

HWHBH
)
RRx

)
M + MHRnM + Rθ

+ MH
(
ĤBWRvW

HBHĤH + Tr
(
BBH

)
RRx

)
M−MHĤBWGRθ −RθG

HWHBHĤHM

= MHĤBWGRθG
HWHBHĤHM−RθG

HWHBHĤHM + MHĤBBHĤHM + Rθ

−MHĤBWGRθ + MHR̆nM. (67)

LMMSE estimate ĥi of the vectorized channel hi is obtained
as

ĥi = RiX̃
H
p

(
X̃pRiX̃

H
p + Rwi

)−1
yi, (60)

where Ri ∈ Crti×rti denotes the covariance matrix of the ith
channel hi.

B. Robust Transceiver Design Subjected to CSI Uncertainty

The error covariance matrix Ehi corresponding to the
LMMSE estimate ĥi can be determined as

Ehi
= E

{(
hi − ĥi

)(
hi − ĥi

)H}
=
(
R−1i + X̃H

p R−1wi
X̃p

)−1
.

(61)

Using (4) and setting Rwi
= σ2

wi
I, where σ2

wi
denotes the

variance of the noise for the ith SN, the error covariance matrix
Ehi

above reduces to

Ehi
=

((
RRx

)−1 ⊗ (RTx,i
)−1

+
Pp
σ2
wi

Irti

)−1
. (62)

Furthermore, setting RTx,i = Iti , the above expression sim-
plifies to

Ehi
=

((
RRx

)−1 ⊗ Iti +
Pp
σ2
wi

Irti

)−1
= R̃Rx ⊗ Iti , (63)

where R̃Rx =
( (

RRx
)−1

+
Pp

σ2
wi

Ir

)−1
∈ Cr×r denotes the

equivalent spatial correlation matrix at the receiver. The rela-
tionship between the true and the estimated/ known channel
between the FC and the ith SN is given as Hi = Ĥi+R̃

1/2
Rx Si,

where ĤT
i is obtained by the inverse vectorization operation

applied to ĥi found in (60) and the elements of Si are assumed
to be i.i.d. CN (0, 1). Hence, the resultant distribution of Hi

is Hi ∼ CN
(
Ĥi,

(
Iti ⊗ R̃Rx

))
. Similar to the previous

sections, the concatenated channel matrix H can be derived
as

H = Ĥ +
(
R̃Rx

)1/2
S, (64)

where the above quantities are defined as Ĥ =[
Ĥ1, Ĥ2, · · · , ĤL

]
∈ Cr×t,S = [ S1,S2, · · · ,SL ] ∈ Cr×t.

Thus, the distribution of H with CSI uncertainty is given as

H ∼ CN
(
Ĥ,
(
It ⊗ R̃Rx

))
. (65)

The robust transceiver design for the general scenario with
arbitrary SNR sensor observations is described next, while that
for the special case of high-SNR sensor observations is given
in Section-V of our technical report [51]. Starting with the

Algorithm 2 MMSE CSI acquisition and BL-based robust
sparse parameter estimation for the scenario described in
Section-IV

1: Input: Observation vector y(k), equivalent noise covari-
ance matrix R̆n, stacked observation matrix G, pilot
vector yi for each sensor 1 ≤ i ≤ L, stopping parameters
ε and kmax

2: Initialization: γ̂(0)i = 1, 1 ≤ i ≤ m ⇒ Γ̂(0) = I, set
counter k = 0 and Γ̂(−1) = 0

3: Using with XpX
H
p = PpI

4: Compute ĥi using (60)
5: while ‖ γ̂(k) − γ̂(k−1) ‖2≥ ε and k < kmax do
6: Compute Ω̃

(k)
using (32)

7: Compute the matrix F̃(k) = UnΩ̃(k)UH
G̃

8: Compute the TPC B
(k)
i for each sensor i using (41)

9: Equivalent Sensing Matrix Calculation: Φ̂(k) =
ĤB(k)G

10: Obtain the receive vector y(k) using (20)
11: E-Step: Evaluate the a posteriori covariance and mean

Σ̄
(k)
θ =

(
Φ̂H

(
R̆n

)−1
Φ̂ +

(
Γ̂(k)

)−1)−1
∈ Cm×m

µ̄
(k)
θ = Σ̄

(k)
θ Φ̂H

(
R̆′n

)−1
y(k) ∈ Cm×1

12: M-Step: Evaluate the hyperparameter estimates
13: for j = 1→ m do
14: γ̂

(k+1)
j = Σ̄

(k)
θ (j, j)+ | µ̄(k)

θ (j) |2
15: end for
16: end while
17: Output: θ̂

(k)
= µ

(k)
θ

expression for the received vector y in (12), the estimate θ̂
of the unknown sparse parameter θ can be obtained as θ̂ =
MHy. The corresponding error covariance matrix is given as

E =
(
MHHBWG− I

)
Rθ

(
GHWHBHHHM− I

)
+

MH
(
HBWRvW

HBHHH + Rn

)
M. (66)

Using the uncertainty model in (65), substituting the channel
H into (66), and employing the result from Lemma A given
in Appendix-A, the expression for the resulting average error
covariance matrix reduces to (67), which can further be written
in a compact form as

E [E] =
(
MHĤBWG− I

)
Rθ

(
GHWHBHĤHM− I

)
+ MH

(
ĤBBHĤH + R̆n + I

)
M. (68)
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Fig. 3. Graphical illustration of the Algorithm-2.

The matrix R̆n represents the equivalent noise covariance
matrix, the expression for which can be expressed as

R̆n = Rn + Tr
(
BWGRθG

HWHBH + BBH
)
R̃Rx

= Rn + PT R̃Rx, (69)

where the second equality follows from the fact
that for a power-constrained system the quantity
Tr
(
BWGRθG

HWHBH + BBH
)

equals PT . The optimal
combiner matrix M is obtained via differentiating the average
error covariance matrix with respect to M, followed by
setting the derivative equal to zero. The optimal combiner
matrix M thus determined and the ensuing MSE are given as

M =

(
ĤBWGRθW

HGHBHĤH + ĤBBHĤH + R̆n

)−1
ĤBWGRθ,

MSE =Tr
((

R−1θ + GHWHBHĤH
(
ĤBBHĤH + R̆n

)−1
ĤBWG

)−1)
. (70)

The optimization problem minimizing the average MSE given
in (70), subject to the total power constraint is given as

minimize
B

MSE

subject to Tr
(
B
(
WGRθG

HWH + Iq
)
BH
)
≤ PT .

(71)

The above optimization problem can be solved using the pro-
cedure described in Section-III after replacing H with Ĥ and
Rn with R̆n. The step-by-step procedure of our robust TPC
design and sparse parameter vector estimation is formulated in
Algorithm-2 with its graphical description is shown in Fig.3.
Considering a scenario where the perfect knowledge of the
noise covariance matrix Rn is also unavailable, following
the procedure described in our technical report [51], one can
model the uncertainty in the matrix Rn as Rn = R̂n − σ2I,
where R̂n denotes the estimate of the noise covariance matrix
and σ2 represents the variance of the measurement error of
the noise.

V. SIMULATION RESULTS

This section presents the results of a Monte Carlo simulation
study to illustrate the performance of various algorithms and

also to verify our proposed analytical formulations. The spatial
correlation matrix at the FC, denoted by RRx, is set as a stan-
dard Toeplitz matrix with elements RRx(j, k) = ρ

|j−k|
r , where

the quantity ρr, 0 ≤ ρr ≤ 1, is the receive antenna correlation
coefficient. Similarly, the elements of the transmit antenna
correlation matrix RTx

i are defined as RTx
i (j, k) = ρ

|j−k|
t ,

where ρt, 0 ≤ ρt ≤ 1, is the transmit antenna correlation
coefficient. The antenna correlation coefficient values at the
FC and each sensor are set as ρr = 0.6 and ρt = 0.6,
respectively, unless stated otherwise. The equivalent channel
matrix H defined in (64) for the coherent MAC-based WSN
is generated according to (65). The elements of the stacked
observation matrix G are generated as i.i.d symmetric complex
Gaussian random variables with zero mean and unit variance.
The dimension of the parameter vector θ and its sparsity-level,
i.e the number of non-zero elements in the sparse parameter
vector, are set as m = 6 and 2, respectively, unless otherwise
mentioned explicitly. The number of TA and RA at each SN
i and the FC are set as ti = 2 and r = 6, respectively.
The number of observations is set to qi = 6 ,∀ i. The
observation noise and channel noise covariance matrices are
set as Rv = σ2

vIq and Rn = σ2
nIr, respectively. The SNR at

each SN and the FC is defined as SNROB = 1
σ2
v

, SNRFC = 1
σ2
n

,
respectively.

Fig. 4(a) depicts the MSE performance of sparse parameter
estimation, for various values of the number of SNs L, against
the SNRFC, for noiseless sensor observations. It is shown that
the MSE monotonically decreases as the value of SNRFC
increases. The MSE performance of the proposed BL-based
sparse parameter estimation scheme coincides with that of
a ‘Genie’ receiver that is assumed to have knowledge of
the exact locations of the non-zero coefficient indices of the
parameter vector. The performance of the proposed sparsity-
oriented BL-based design is also compared to that of the con-
ventional sparsity-‘agnostic’ estimator. The conventional spar-
sity agnostic LMMSE estimator sets the a priori covariance
Rθ = Im, and thus yields a poor MSE performance. By con-
trast, the proposed BL-based design considers a parametrized
a priori covariance matrix Rθ = Γ, as described in (15),
and estimates the associated hyperparameters γi using the
EM framework developed in (16)-(28). As described in [39],
upon convergence, most of the hyperparameters γi are actually
driven to zero, leading to a sparse estimate of θ. Finally,
as the number of SNs L increases, the MSE performance is
seen to progressively improve at the FC, which is consistent
with the higher number of correlated observations that are
available for decentralized parameter estimation. This leads to
an improvement in the quality of the estimate of the unknown
parameter θ.

Fig. 4(b) also considers a scenario, where the size of the
parameter vector θ is higher than the total number of transmit
antennas in the WSN considered, i.e. m > t. This is a chal-
lenging scenario, since the size of the received vector y at the
FC is still r = 6, whereas the length of the sparse parameter
vector θ is m = 30. This results in a highly under-determined
system, as seen from (42). Interestingly, for this challenging
scenario, the performance of the agnostic-design exhibits a
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Fig. 4. (a) MSE versus SNRFC parametrized by the number of SNs L ∈ {10, 30} considering high-SNR sensor observations (b) MSE versus SNRFC
parametrized by the dimension m of the unknown parameter vector θ, m ∈ {6, 30} considering high-SNR sensor observations.
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Fig. 5. (a) MSE versus SNRFC for L ∈ {10, 40} number of SNs considering arbitrary-SNR noisy sensor observations, and the MSE floors are calculated
using (16) in Section-III of our technical report [51] (b) MSE versus the number of SNs (L) for noisy sensor observations and SNRFC ∈ {10, 20} dB.

floor, as seen in the figure, whereas the the proposed BL-based
framework yields a performance comparable to the scenario
of t ≥ m, thanks to the sparse signal recovery guarantees
available from the compressed measurements together with
the superior convergence properties of the BL-framework, as
established in [39].

Fig. 5(a) shows the MSE performance of the proposed
BL-based sparse parameter estimation scheme developed in
Section-III for noisy sensor observations, once again versus
SNRFC. Interestingly, whilst the MSE can be seen to pro-
gressively decrease in the low-SNR regime, the performance
gradually flattens and attains a floor at higher values of SNRFC.
An analytical expression for this phenomenon which has been
derived in Section-III of our technical report [51]. This is

due to the amplification of the observation noise by the TPC
matrix B. Similar to the previous scenarios, the proposed
scheme is once again seen to match the ideal ‘Genie’ bench-
mark associated with known sparsity, which demonstrates
the efficacy of the former. A significant performance gain is
also observed over the conventional agnostic estimator. Fig.
5(b) demonstrates the MSE performance of the noisy sensor
observations scenario versus the number of SNs L. The MSE
performance at the FC improves upon increasing L, as it is
expected.

Fig. 6(a) examines the effect of channel correlation on the
MSE performance by plotting the MSE for different values of
the receive and transmit correlation parameters ρr ∈ {0.2, 0.8}
and ρt ∈ {0.2, 0.8}, respectively. It is observed that channels
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Fig. 6. (a) MSE versus SNRFC for different values of receive and transmit correlation coefficients ρr ∈ {0.2, 0.8}, ρt ∈ {0.2, 0.8} (b) MSE performance
comparison of the proposed upper bound and the actual MSE expression.
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Fig. 7. (a) MSE versus SNRFC for the scheme proposed in Section-IV with PT = 20, L = 20, and SNROB = 10dB (b) MSE versus Pilot power (Pp) for
the scheme proposed in Section-IV with SNROB = 10dB, PT = 20, ρr = 0.6 and L ∈ {10, 20}.

having lower correlation at the transmitter and the receiver
yield the best MSE performance. At high SNR, the receive
correlation has a greater influence on the MSE. Fig. 6(b)
illustrates the tightness of the Weyl’s lemma based upper
bound of (34) applied to the MSE. For this study, the MSE
performance using the precoder Bi obtained after minimizing
the upper bound (34) and the same upon substituting this Bi

into the expression of the true MSE (31) is plotted. It can
be readily observed that the proposed upper bound is a tight
approximation of the true MSE expression of (31).

Fig. 7(a) depicts the MSE performance of the robust
transceiver designed using the MMSE channel estimate and
its error covariance, as described in Section-IV, against the
SNRFC. As observed from the figure, the proposed robust
design has a better MSE performance than the conventional de-
sign that ignores the CSI uncertainty contaminating the chan-
nel estimate. The MSE performance of a receiver with perfect

CSI is also presented to benchmark the MSE performance.
It is important to note that the performance gap between the
proposed robust and conventional designs is significant in the
low-pilot-power regime, where the uncertainty in the available
channel estimate is higher. Naturally, the proposed robust
design, which takes the CSI uncertainty into consideration
leads to improved performance. Fig. 7(b) shows the MSE
performance of parameter estimation against the pilot power
(Pp) used for CSI acquisition, as described in Section-IV. It
can once again be seen that the proposed robust estimator
has a significant performance gain over the agnostic design,
especially when the pilot power is low. This reinforces the
trend seen in Fig. 7(a).

Fig. 8(a) shows the MSE performance comparison of the
proposed BL-based sparse parameter estimation scheme de-
veloped in Section-III with that of the minimum variance
distortionless precoding (MVDP) scheme of [54]. As expected,
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Fig. 8. (a) MSE vs SNRFC performance comparison of the proposed scheme in Section-III with the MVDP scheme [54] in the existing literature for
L ∈ {10, 30} (b) MSE performance comparison of the proposed robust BL-based sparse signal recovery scheme with other sparse signal recovery schemes
like OMP and FOCUSS.

the proposed BL-based scheme outperforms the MVDP, since
the latter does not have any mechanism to exploit the sparsity
of the unknown parameter vector of interest. For instance,
at SNRFC = 15 dB, the proposed BL-based scheme yields
approximately 10 dB MSE reduction compared to the MVDP
scheme.

Fig. 8(b) compares the MSE performance of the proposed
BL-based robust transceiver design to other popular sparse sig-
nal recovery techniques, such as the orthogonal matching pur-
suit (OMP) [42] and FOcal Underdetermined System Solver
(FOCUSS) [40] techniques in presence of CSI uncertainty. It
can be readily observed that the proposed design significantly
outperforms the OMP and FOCUSS techniques. The poor
performance of the OMP can be attributed to its sensitivity to
the stopping parameter as well as to the sensing matrix Φ̂(k),
while the poor performance of the FOCUSS arises due to its
convergence deficiencies and sensitivity to the regularization
parameter [39]. By contrast, the proposed BL-based design is
robust to the sensing matrix Φ̂(k), and the well-established
properties of its cost-function of (19), as described in [39],
followed by the EM-framework, guarantees convergence to
sparse solutions.

VI. CONCLUSIONS

A coherent MAC-based MIMO WSN relying on novel BL-
based schemes employed for linear decentralized estimation of
a sparse parameter vector was proposed. Both ideal noiseless
as well as non-ideal noisy SNs were considered, and both,
the transmitting as well as receiving antenna correlation of
the MIMO channels were incorporated. Furthermore, MMSE
channel estimation considering the channel’s correlation was
conceived, followed by a robust transceiver design, which
directly takes into accounts the channel estimation error.
Finally, extensive simulation results were presented for char-
acterizing the performance of the proposed schemes. Future
research may also consider a quality of service (QoS) based
formulation, where the objective is to minimize the total power

consumption in the network, while satisfying a given MSE
threshold in presence of CSI uncertainty. Furthermore, one
can also explore the problem of sparse parameter estimation
with quantized measurement transmission with and without
CSI uncertainty.

APPENDIX A
LEMMA FROM [55]

Lemma 1. Let Y ∈ Ca×b be a random matrix with mean Ȳ ∈
Ca×b, covariance matrix σ2

y(K ⊗ T) where K ∈ Cb×b and
T ∈ Ca×a are positive definite matrices. Then Y is distributed
as

Y ∼ CN
[
Ȳ, σ2

y(K⊗T)
]
.

For any matrix A of appropriate size

E
[
YHAY

]
= ȲHAȲ + σ2

y Tr (TA) KT ,

E
[
YAYH

]
= ȲAȲH + σ2

y Tr
(
AKT

)
T.
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