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Part I

Summary





Executive Summary
Event-B is a formal method for system-level modelling and analysis. The
Rodin platform is an Eclipse-based toolset for Event-B that provides effective
support for modelling and automated proof. The platform is open source and
is further extendable with plug-ins. A range of plug-ins has already been
developed including ones that support animation, model checking, UML-B
and text editor. While much of the development and usage of Rodin takes
place within past and present EU/UK-funded projects: RODIN, DEPLOY,
Advance, EBRP, HiClass, HD-Sec, there is a growing group of users and
plug-in developers outside these projects.

The purpose of the 9th Rodin User and Developer Workshop was to bring
together existing and potential users and developers of the Rodin toolset and
to foster a broader community of Rodin users and developers. For Rodin
users, the workshop provided an opportunity to share tool experiences and to
gain an understanding of ongoing tool developments. For plugin developers,
the workshop provided an opportunity to showcase their tools and to achieve
better coordination of tool development effort.

The one-day programme consisted of presentations on tool development
and tool usage. The presentations are delivered by participants from academia
and industry. This volume contains the abstracts of the presentations at the
Rodin workshop on June 8th, 2021. The presentations are also available
online at https://wiki.event-b.org/index.php/Rodin_Workshop_2021.

The workshop was co-located with the ABZ 2021 conference and held vir-
tually. The Rodin Workshop was supported by the University of Southamp-
ton and Toulouse National Polytechnique Institute.

Finally, we would like to thank the contributors and participants, the most
important part of our successful workshop. Our special thanks to Jonathan
Hammond for giving the keynote speech “Safety and Security Case Study
Experiences with Event-B and Rodin”, and to Alexander Raschke for the
organisational support of the virtual event.

Organisers

Asieh Salehi Fathabad, University of Southampton
Yamine Aït Ameur, Toulouse National Polytechnique Institute
Thai Son Hoang, University of Southampton
Colin Snook, University of Southampton
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Domain knowledge as Ontology-based Event-B
Theories

I. Mendil1, Y. Aït-Ameur1, N. K. Singh1, D. Méry2, and P. Palanque3

1INPT-ENSEEIHT/IRIT, University of Toulouse, France
2Telecom Nancy, LORIA, Université de Lorraine, France

3IRIT, Université de Toulouse, France
{ismail.mendil,yamine,nsingh}@enseeiht.fr, dominique.mery@loria.fr,

palanque@irit.fr

1 Context of the study

In general system engineering approaches, particularly formal methods, do not
offer specific constructs allowing the designer to define formal models of domain
knowledge, nor mechanisms allowing to import such existing models. However,
there exist formal modelling languages and/or meta-models sometimes standard-
ised [6] that support the formalisation of such domain knowledge.

In this paper, we show how Event-B theories [1,3,5] can be defined to for-
malise such domain knowledge and the Rodin Platform [2] is used to carry out
the formal development and the verification process. We first give a generic the-
ory defining an ontology modelling language and then show its instantiation
in the case of the ARINC 661 standard describing interactive cockpits as an
example of critical interactive systems.

This work has been achived in the context of the French national research
agency (ANR) project FORMEDICIS [7]1 FORmal MEthods for the Develop-
ment and the engIneering of Critical Interactive Systems

2 A theory for ontologies

Since we are interested in formalising the domain knowledge associated to critical
interactive interfaces and use the domain properties in our Event-B models, we
need a framework to express such knowledge.

In our case, domain knowledge is formalised using ontologies. Therefore, as a
first step, we have developed a generic theory allowing to describe ontologies. An
extract of this theory is given in Listing 1. Classes C, properties P and instances I
are defined as type parameters and a set of other relevant operators is provided.

OntologiesTheory entails several useful theorems thanks to the definition
of the operators. thm1 is an example, of a theorem establishing the transitivity
of the isA operator. Another example is thm2 which is trivial but has a great
benefit for discharging poof-obligations in Event-B models.
1 https://anr.fr/Projet-ANR-16-CE25-0007
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THEORY OntologiesTheory
TYPE PARAMETERS C,P, I
DATA TYPES Ontology (C,P, I )
CONSTRUCTORS consOntology ( c l a s s e s :P(C) , p r op e r t i e s :P(P) , i n s t an c e s :P( I ) ,
c l a s sP r o p e r t i e s :P(C×P) , c l a s s I n s t a n c e s :P(C× I ) , c l a s sA s s o c i a t i o n s :P(C×P×C)

, i n s t an c eAs s o c i a t i on s :P( I×P× I ) )
OPERATORS
isWDInstancesAssociations <predicate> (o : Ontology (C, P, I ) . . .
getInstanceAssociations <expression> (o : Ontology (C, P, I ) )
well−definedness i sWDInstancesAssoc iat ions ( o ) . . .
isWDOntology <predicate> (o : Ontology (C, P, I ) )
direct def init ion i sWDClassProper ites ( o ) ∧ i sWDClassInstances ( o ) ∧

i sWDClassAssoc iat ions ( o ) ∧ i sWDInstancesAssoc iat ions ( o )
isA <predicate >(o : Ontology (C, P, I ) , c1 : C, c2 : C)
well−definedness isWDOntology ( o ) , onto logyConta insClas se s ( o , {c1 , c2 })
direct def init ion ge t Ins tance sOfaClas s ( o , c1 )⊆ge t Ins tance sOfaCla s s ( o , c2 )
addInstancesToAClass <expression> (o : Ontology (C, P, I ) , c : C, i i : P( I ) )
well−definedness isWDOntology ( o ) , onto logyConta insClas se s ( o , {c }) ,

onto logyConta ins Ins tances ( o , i i ) ,¬ c l a s sCon ta in s In s t anc e s ( o , c , i i )
direct def init ion consOntology ( g e tC la s s e s ( o ) , g e tP rope r t i e s ( o ) ,
g e t In s t anc e s ( o ) , g e tC l a s sP rope r t i e s ( o ) , g e tC l a s s In s t anc e s ( o ) ∪ ({ c} × i i ) ,

g e tC l a s sAs s o c i a t i on s ( o ) , g e t I n s t anc eAs s o c i a t i on s ( o ) )
isVariableOfOntology <predicate> (o : Ontology (C,P, I ) , ipvs :P( I×P× I ) )
well−definedness isWDOntology ( o )
direct def init ion i pvs ⊆ { i 1 7→ p 7→ i 2 | i 1 ∈ I ∧ p ∈ P ∧ i 2 ∈ I ∧
i 1 7→ p 7→ i 2 ∈ i n s t an c e s ( o ) × p r op e r t i e s ( o ) × i n s t an c e s ( o ) ∧

(∃c1 , c2 · c1 ∈ C ∧ c2 ∈ C ∧ {c1 , c2} ⊆ ge tC la s s e s ( o ) ⇒
( c1 7→p 7→c2∈ge tC l a s sAs s o c i a t i on s ( o )∧p∈ge tC l a s sP rope r t i e s ( o ) [ { c1 } ] ∧

i 1∈ge tC l a s s In s t anc e s ( o ) [ { c1 } ]∧ i 2∈ge tC l a s s In s t anc e s ( o ) [ { c2 } ] ) ) }
THEOREMS
thm1 : ∀o , c1 , c2 , c3· o ∈ Ontology (C, P, I ) ∧ isWDOntology ( o ) ∧ c1 ∈ C ∧

c2 ∈ C ∧ c3 ∈ C ∧ onto logyConta insClas se s ( o , {c1 , c2 , c3 })
⇒ ( isA (o , c1 , c2 ) ∧ isA (o , c2 , c3 ) ⇒ isA (o , c1 , c3 ) )

thm2 : ∀o , cs1 , cs2 · o ∈ Ontology (C, P, I ) ∧ isWDOntology ( o ) ∧ cs1 ⊆ C ∧
cs2 ⊆ C ∧ cs1 6= ∅ ∧ cs2 6= ∅ ∧ onto logyConta insClas se s ( o , cs1 ) ∧

onto logyConta insClas se s ( o , cs2 )
⇒( onto logyConta insClas se s ( o , cs1∪cs2 ) )

. . .
END

Listing 1: Ontology Modelling Language Data Type

3 The case of Arinc 661

ARINC 661 [4] defines a standard Cockpit Display System (CDS) interface in-
tended for all types of aircraft installations. The primary objective is to minimize
the cost to the airlines, directly or indirectly. It normalises the definition of cock-
pit display system (CDS) interface and the communication protocol with user
applications. In particular, its objective is to

– minimize the cost of acquiring new avionic systems to the extent it is driven
by the cost of CDS development;

– minimize the cost of adding new display function to the cockpit during the
life of an aircraft;

– minimize the cost of managing hardware obsolescence in an area of rapidly
evolving technology;

– introduce interactivity to the cockpit, thus providing a basis for airframe
manufacturers to standardize the Human Machine Interface (HMI) in the
cockpit.
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he standard defines two external interfaces between the CDS and the aircraft
systems. The first is the interface between the avionics equipment (user systems)
and the display system graphics generators. The second is a means by which
symbology and its related behavior are defined.

3.1 ARINC 661 Concepts Declaration

We have considered the ARINC 661 specification document aiming to describe
specific case studies —weather radar system. We have identified a set of relevant
concepts, after a thorough analysis of the specification document. The formali-
sation of the ARINC 661 proceeds by instantiating OntologiesTheory, it yields
the Event-B theory ARINC661Theory in Listings 2, 3 and 4. Retained concepts
are often ARINC 661 widgets like Label, CheckButton, etc. However other ele-
ments are introduced for organisation purposes where the widgets may be used
like wellBuiltClassProperties and wellBuiltTtypesElements.

THEORY ARINC661Theory
IMPORT THEORY PROJECTS OntologiesTheory
AXIOMATIC DEFINITIONS ARINC661Axiomatisation :
TYPES ARINC661Classes , ARINC66Properties , ARINC661Instances
OPERATORS
ARINC661_BOOL <expression> () : ARINC661Classes
A661_TRUE <expression> () : ARINC661Instances
A661_FALSE <expression> () : ARINC661Instances
CheckButtonStateClass <expression> () : ARINC661Classes
Label <expression> () : ARINC661Classes
A661_EDIT_BOX_NUMERIC_VALUES_CLASS <expression> () :

ARINC661Classes
RadioBox <expression> () : ARINC661Classes
CheckButton <expression> () : ARINC661Classes
EditBoxNumeric <expression> () : ARINC661Classes
hasChildrenForRadioBox <expression> () : ARINC66Properties
hasCheckButtonState <expression> () : ARINC66Properties
hasValue <expression> () : ARINC66Properties
SELECTED <expression> () : ARINC661Instances
UNSELECTED <expression> () : ARINC661Instances
wellBuiltClassProperties<expression >() :P( ARINC661Classes×ARINC66Properties )
wellBuiltClassAssociations <expression> () : P( ARINC661Classes ×

ARINC66Properties × ARINC661Classes )
wellbuiltTypesElements<expression >() :P( ARINC661Classes×ARINC661Instances )
isWDRadioBox <predicate> (o : Ontology (ARINC661Classes ,

ARINC66Properties , ARINC661Instances ) ) :
well−definedness isWDOntology ( o )
isWDARINC661Ontology <predicate> (o : Ontology (ARINC661Classes ,

ARINC66Properties , ARINC661Instances ) ) :
consARINC661Ontology <expression> ( i i : P( ARINC661Instances ) ,
c i i : P( ARINC661Classes×ARINC661Instances ) ,
ipvs :P( ARINC661Instances ×ARINC66Properties×ARINC661Instances ) ) :
Ontology (ARINC661Classes , ARINC66Properties , ARINC661Instances )
well−definedness isWDARINC661Ontology ( consOntology (ARINC661Classes ,
ARINC66Properties , i i , we l lBu i l tC l a s sP rope r t i e s , we l lbu i l tTypesElements∪ c i i
, we l lBu i l tC l a s sAs s o c i a t i on s , ipvs ) )
isVariableOfARINC661Ontology <predicate> (o : Ontology (ARINC661Classes ,
ARINC66Properties , ARINC661Instances ) ,
u i : P( ARINC661Instances × ARINC66Properties × ARINC661Instances ) ) :
well−definedness isWDOntology ( o )
. . .

Listing 2: ARINC 661 theory declarations
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3.2 ARINC 661 Concepts Definition

Since ontology standards do not define explicitly operators (they rely on ad’hoc
APIs on their XML representation) to manipulate the concepts they describe,
we have defined a set of operators allowing to manipulate the concepts of the
ARINC661Theory. Moreover, the definition of the concepts are given in the shape
of axioms. In particular, the effective type parameters for ontology instanti-
ation are defined in ARINC661ClassesDef, ARINC661PropertiesDef and AR-
INC661InstancesDef. Also, consARINC661Ontology is provided for a valid con-
struction of operator under the condition —formalised as well-definedness condi-
tion—that the arguments are valid. In addition, isWDARINC661Ontology allows
the checking of the validity of a given ARINC 661 ontology.

AXIOMS
ARINC661ClassesDef : p a r t i t i o n (ARINC661Classes , {ARINC661_BOOL} ,

{ARINC661_STRING_CLASS} , {Label } ,{RadioBox } , {CheckButton } , . . . )

ARINC66PropertiesDef : p a r t i t i o n ( ARINC66Properties , { ha sV i s i b l e } ,
{hasEnable } ,{ hasAnonymous } ,{ hasChildrenForRadioBox } , . . . )

ARINC661InstancesDef : p a r t i t i o n ( ARINC661Instances , {A661_TRUE} ,
{A661_FALSE} ,{A661_TRUE_WITH_VALIDATION} , Labe l Instances , . . . )

wellBuiltClassProperties :
w e l lBu i l tC l a s sP r op e r t i e s = ({ Label } × { hasVi s ib l e , . . . } ) ∪

({RadioBox} × {hasWidgetType , hasParentIdent , hasVi s ib l e , . . . } ) ∪
({ CheckButton}×{hasWidgetType , hasVi s ib l e , hasEnable , . . . } ) ∪ . . . )

consARINC661Ontology : ∀ i i , c i i , i pvs · i i ∈ P( ARINC661Instances ) ∧
c i i ∈ P( ARINC661Classes × ARINC661Instances ) ∧
i pvs ∈ P( ARINC661Instances×ARINC66Properties × ARINC661Instances ) ∧
wel lbu i l tTypesElements ∩ c i i = ∅ ∧ i i ⊆ WidgetsInstances
⇒ consARINC661Ontology ( i i , c i i , i pvs ) =

consOntology (ARINC661Classes , ARINC66Properties , i i ,
we l lBu i l tC l a s sP rope r t i e s , we l lbu i l tTypesElements ∪ c i i ,
we l lBu i l tC l a s sAs s o c i a t i on s , ipvs ) )

isWDEditBoxNumeric :
∀o·o∈ Ontology (ARINC661Classes , ARINC66Properties , ARINC661Instances )⇒
( isWDRadioBox( o )⇔ ( (∀ed , v·ed 7→hasValue 7→v∈g e t In s t anc eAs s o c i a t i on s ( o )
⇒v ∈ A661_EDIT_BOX_NUMERIC_ADMISSIBLE_VALUES) )

isWDARINC661Ontology :
∀o· o ∈ Ontology (ARINC661Classes , ARINC66Properties , ARINC661Instances )

⇒( isWDOntology ( o )∧isWDRadioBox( o )∧isWDEditBoxNumeric ( o )⇒
isWDARINC661Ontology ( o ) )

. . .

Listing 3: ARINC 661 theory definitions

3.3 ARINC 661 theory Theorems

Last, the most important part concerns the properties embedded in the theory
in the form of theorems. They are particularly useful to formalise standard re-
quirements. Moreover, the validation of the fact that the ontology has the right
structure is done through the theorems thm1 and thm2. There are two important
properties ensuring that the structure of the ontology is valid: the classes are
related to properties already defined and similarly that the class associations
component encompasses only the provided classes and properties. The theorem
proofs are discharged thanks to the definition of wellBuiltClassProperties,
wellBuiltClassAssociations and wellBuiltTypesElements
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THEOREMS
thm1 : ∀ i i , c i i , i pvs ·
i i ∈ P( ARINC661Instances ) ∧ c i i ∈ P( ARINC661Classes×ARINC661Instances )∧
i pvs ∈ P( ARINC661Instances × ARINC66Properties × ARINC661Instances ) ∧
wel lbu i l tTypesElements ∩ c i i = ∅ ∧ i i ⊆ WidgetsInstances

⇒ i sWDClassProper ites ( consARINC661Ontology ( i i , c i i , i pvs ) )
thm2 : ∀ i i , c i i , i pvs ·
i i ∈ P( ARINC661Instances ) ∧ c i i∈ P( ARINC661Classes×ARINC661Instances ) ∧
i pvs ∈ P( ARINC661Instances× ARINC66Properties×ARINC661Instances ) ∧
wel lbu i l tTypesElements ∩ c i i = ∅ ∧ i i ⊆ WidgetsInstances

⇒ i sWDClassAssoc iat ions ( consARINC661Ontology ( i i , c i i , i pvs ) )
END

Listing 4: ARINC 661 theory theorems

4 Conclusion

This approach shows that axiomatising domain knowledge as ontologies ex-
pressed in Event-B theories is a suitable solution to handle standard requirements
in system design. The defined theory for ARINC 661 standard specification has
been used to develop Event-B models for several case studies like WXR user
interface and TCAS application. We have used the defined data types to type
state variables. Axioms and theorems have been used to prove specific properties
on these case studies. The ontology description theory is presented as playing
a the role of scaffolding for producing a domain-specific theories thanks to the
Event-B theories featuring type genericity.

Due to the complexity of the theories developed for the aforementioned ob-
jective, we reported a serious bug to the development team of Plug-in Theory
which was fixed and integrated in a future release. All Event-B developments
are available and interested reader may contact the first author for a copy.
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OntoEventB: A Generator of Event-B contexts
from Ontologies

Idir Ait-Sadoune

LMF, CentraleSupelec, Paris-Saclay University
Plateau de Saclay, Gif-Sur-Yvette, France
idir.aitsadoune@centralesupelec.fr

1 Introduction

When designing hardware or software system, the integration of domain con-
straints becomes a determining factor to ensure a great match with the system
requirements. This domain knowledge is most often modelled using ontologies
that allow the expression of the domain properties. In the IMPEX project1, we
propose an approach to integrate domain ontologies into a system development
process based on Event-B. It consists to annotate Event-B models using the
ontology concepts, this assumes a formalization of the domain ontology in the
Event-B method. Therefore, we propose an extensible generic transformation
approach that develops an Event-B specification based on an ontology described
in an ontological language. The integration of the domain ontology allows to
constrain the system under design with the domain ontology and to validate
domain properties.

In this paper, we present a generic approach to integrate domain description
formalized by ontologies (OWL, OntoML, ...) into an Event-B formal develop-
ment process. The proposed approach is conducted by transformation rules that
define each ontological concept, the corresponding Event-B formalisation leading
to build Event-B contexts expressing ontology concepts. This approach is imple-
mented by the OntoEventB plug-in that has been developed to automatically
support the formalisation of ontologies using the Event-B method.

2 Domain constraints integration approach

In order to integrate domain ontologies in the Event-B development process,
we propose to formalize the ontology as a system data model within a context
component. Thus, the machine variables take their values in ontology concepts
and inherit domain constraints. The proposed integration approach is operated
in a three steps process:

1 This work was supported by a grant from the French national research agency ANR
ANR-13-INSE-0001 (IMPEX Project http://impex.loria.fr).
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2 OntoEventB: A Generator of Event-B contexts from Ontologies

1. Formalization step. The first step in the development process consists to for-
malize the system in the Event-B method. This leads to developing the ma-
chine component modelling the system behaviour using variables and events.

2. Transformation step. During this step, the domain ontology is translated
into Event-B formalism. An ontology is translated into an Event-B context
using sets, constants and axioms.

3. Annotation step. Once the context describing the ontology obtained, the inte-
gration of domain constraints is carried out by annotating machine variables
by ontology context entities.

3 Ontology transformation : The OntoEventB plugin

The development of a transformation approach emerges as a natural choice for
the expression of an ontology description in the Event-B language. This approach
allows the transformation of an ontology described into an ontology language
into an Event-B specification. It takes as inputs the constructs used to describe
an ontology in the different ontology languages and as outputs Event-B lan-
guage constructions. The transformation approach is based on correspondences
between ontology languages and the Event-B language semantics.

The proposed ontology transformation approach in Event-B, detailed in [2,1],
is fully supported by the OntoEventB RODIN plug-in2 that automatically pro-
duces the Event-B formalization related to an ontology (OWL or Plib). The
OntoEventB plugin takes as input an ontology description file and generates the
corresponding Event-B Context.

4 Conclusion

Our results show that it is possible to handle formally domain knowledge in
formal system developments with Event-B and the Rodin platform. Ontologies
have been formalized within Event-B as contexts and a Rodin plug-in has been
developed for this purpose. The proposed approach consists of defining models
allowing to handle formal verification techniques and make it possible to handle
explicit domain knowledge in such formal models.
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EVBT — an Event-B tool for code generation and documentation

Fredrik Öhrström
May 13, 2021

fredrik.ohrstrom@viklauverk.com

Evbt is a command line tool for generating code and documentation from Event-B models created
using the Rodin toolset. It contains its own independent implementation of an Event-B formula
parser and a typing system. The tool expects already proven Event-B models as input. Even
though the tool is work in progress, it can already generate documentation and code for several
existing models, for example the model for traffic lights controlling access to a bridge.1

To generate documentation for a Rodin workspace, you run:
evbt docgen tex workspace/BridgeTrafficLights to create BridgeTrafficLights.tex.

To generate code, you run: evbt codegen c++ workspace/BridgeTrafficLights/m3.bum to cre-
ate a BridgeTrafficLights.h and a .cc file. For this model you also need to add #define d 17
to the cc file since that constant is undefined in the model. You also need to add suitable set/get
events to read and modify the state from the outside.

The evbt code generation creates a state machine hidden behind an API in a header file. The API
will consist of events which in the final refinement still have parameters. Such events are translated
into API functions with parameters mirroring the event parameters.
EVENT addLoan
Loan a book to a borrower, the book must not be on loan already.

ANY
borr
book

WHERE
grd1: borr ∈ borrowers Valid borrower.
grd2: book ∈ books Valid book.
grd3: book 7→ borr /∈ loans Not a necessary test, but used for this example anyway.
grd4: book /∈ dom(loans) The book is not loaned out already.

THEN
act1: loans(book) := borr Add a new loan in the storage.

END

bool LibraryImplementation::addLoan(uint64_t borr,uint64_t book)
{

// Valid borrower.
bool grd1 = borrowers.count(borr);
if (!grd1) return false;
// Valid book.
bool grd2 = books.count(book);
if (!grd2) return false;
// Not a necessary test, but used for this example anyway.
bool grd3 = loans.count(book)==0 || loans[book] != borr;
if (!grd3) return false;
// The book is not loaned out already.
bool grd4 = loans.count(book)==0;
if (!grd4) return false;
// Add a new loan in the storage.
loans[book] = borr;
traceEvent("addLoan");
return true;

}
1Jean-Raymond Abrial (2010). Modeling in Event-B: System and Software Engineering. Cambridge University
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Values are returned from the API function through parameters prefixed with “out_”.
EVENT whoBorrowsBook
Return who is borrowing a book.

ANY
book
out_borrower

WHERE
grd1: book ∈ books Querying a valid book?
grd2: book ∈ dom(loans) That is on loan?
grd3: out_borrower = loans(book) Return the result through out.

END

bool LibraryImplementation::whoBorrowsBook(uint64_t book,uint64_t *out_borrower)
{

// Querying a valid book?
bool grd1 = books.count(book);
if (!grd1) return false;
// That is on loan?
bool grd2 = loans.count(book);
if (!grd2) return false;
// Return the result through out.
*out_borrower = loans[book];
traceEvent("whoBorrowsBook");
return true;

}

The evbt tool also provides a console for exploration of Event-B models and formulas. You start
the console with: evbt console and you can now type for example: add defaults to fill the
symbol table with a few default symbols for predicates and variables. You can now type show
formula "(P & x:BOOL) => Q" and it will parse and print this formula: (P ∧ x ∈ BOOL)⇒ Q

If you start the console with a Rodin workspace as an argument:
evbt console workspace/Library then you can also print parts of the model with the command:
show part "Library/events/whoBorrowsBook/guards" or an invariant:
show part "Library/invariants/inv3"

You can embed evbt console commands inside a tex document:
evbt docmod tex source.tex dest.tex workspace/Library
You can now write EVBT(...console command...) in the source.tex file. These commands will
be picked up by evbt, executed, and the result inserted into dest.tex. For example the event
whoBorrowsBook described earlier was inserted into this document with the command EVBT(show
part "Library/events/whoBorrowsBook")

The workshop covering the evbt tool will discuss the current features in more detail and how they
are implemented in evbt as well as future directions for code generation. The evbt source can be
downloaded here:
https://github.com/viklauverk/EventBTool and is available under the AGPLv3 license.
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Scenario Checker: An Event-B tool for
validating abstract models

Colin Snook, Thai Son Hoang, Asieh Salehi Fathabadi, Dana Dghaym, and
Michael Butler

ECS, University of Southampton, Southampton, U.K.
{a.salehi-fathabadi, cfs, t.s.hoang, d.dghaym, m.j.butler}@soton.ac.uk

The Scenario Checker is a plugin tool for the Rodin platform for Event-B.
It allows scenarios to be animated on Event-B models for validation purposes.
Scenarios can be recorded, re-played and extended. The model can be annotated
to distinguish and prioritise internal events and designate private variables. Dur-
ing recording, events that are designated as internal are automatically executed
when enabled so that a form of ‘run to completion’ (or big step) is provided
to represent the systems responses to changes in its environment. This allows
the user to focus on developing the scenario in the environment while efficiently
executing the response of the system. If necessary the user can take control of
the response by executing internal events singly. This may be useful when the
model still contains non-deterministic behaviour. The recorded sequence of ex-
ternal events and the values of non-private variables at each step can be saved
in a scenario file. During playback, the sequence of external events to be exe-
cuted is taken from the recorded scenario file while the internal events are again
fired automatically. Hence the same scenario can be replayed after the model
has been changed in order to test that scenario is still correctly executed in the
new version of the model. At the end of each big step, critical (i.e. non-private)
variables are compared with previous recorded values in order to highlight de-
viations. While replaying a scenario, the tool can be changed to record mode at
any point so that an alternative ending to the scenario can be explored. This
allows alternative scenarios to be efficiently developed from a common preamble.

The Scenario Checker is based on the ProB model checker and can be run in
parallel with state visualisation tools such as BmotionStudio (which is included
within ProB) and UML-B State-machine animation. The tool consists of the
following views:

– Scenario Checker Control Panel view consisting of buttons to change the
mode of the tool and to restart or save the recording. It also allows external
events to be selected in record mode or shows the next external event to be
executed in replay mode.

– Scenario Checker State view showing the state of non-private variables and,
during replay mode, highlighting any differences.

– Scenario Checker Console view showing the execution of big step runs and
other significant events.

The Scenario Checker is designed to allow abstract models to be validated. This
implies that correspondingly abstract scenarios will be developed and refined (or

12



2 C Snook et al.

abstracted) in line with the model refinements. We have proposed a method for
scenario based modelling (using the Scenario Checker) in [1]. Figure 1 shows the
scenario checker in record mode (bottom 3 views) with BMotionStudio (top left)
and Statemachine animation (top right). Figure 2 shows the scenario checker in
playback mode, replaying the scenario recorded in Figure 1.

Fig. 1: Scenario Checker in recording mode

Fig. 2: Scenario Checker in playback mode

Acknowledgement: This work is supported by the following projects: - Hi-
Class project (113213), which is part of the ATI Programme, a joint Government
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and industry investment to maintain and grow the UK’s competitive position in
civil aerospace design and manufacture.
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1 Introduction

The Rodin platform [1] offers an integrated development environment for designing software with
Event-B [2]. One of the limitations of its core language is the lack of genericity: it is not possible
to define generic data structures or to prove abstract theorems that hold for any type. When
such generic constructs are needed, users end up copying and pasting large parts of contexts just
to change a type. This approach is obviously cumbersome and error-prone. Alternatively, some
plug-ins offer facilities for type parametricity. In particular, the Theory plug-in [4] provides many
extensions to the mathematical language that can be used in Rodin, one of them enabling type
parametricity. However, these extensions are introduced through a new type of files, theories,
requiring users to learn how to write these theories and to go through a process of deployment to
make them available in Rodin contexts.

As part of the EBRP project, a new, lighter approach has been proposed by Jean-Raymond
Abrial. It is based on existing contexts and simply adds an option to instantiate theorems of a
context in another one. Intuitively, it is similar to the copy-and-paste method, but done in a safe
way by a plug-in rather than manually.

2 Plug-in usage

Defining a generic context can be done using just core Rodin tools, without the plug-in itself.
Any context can be instantiated; its carrier sets and constants can be used as generic parameters
and substituted with a concrete type or value during instantiation.

Instantiating theorems of a generic context is done by creating an axiom and specifying what
it instantiates in the comment box. This specification identifies the instantiated theorem (its
name, the name of the context in which it is defined and optionally the name of the project) and
may provide some type or value substitutions. It can be manually written or generated through a
graphical wizard.

In its most basic operating mode, the plug-in checks that the predicate of the axiom matches
the predicate of the instantiated theorem, after applying the substitutions if necessary. Therefore,

*This work is supported by the French ANR project Event-B Rodin Plus (EBRP, ANR-19-CE25-0010).
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Rodin users who used to manually copy-and-paste generic theorems can just add comments
describing the instantiation and the plug-in will check that no errors were made.

For new developments, users can leave the predicate empty and merely provide the specification
of the instantiation: the plug-in can generate the predicate of the instantiated theorem.

Since the plug-in uses Rodin’s contexts, users of the plug-in can freely share their work with
other users who do not have the plug-in installed: they will see normal contexts with comments
describing the instantiations and will be able to use them as any other context.

3 Future improvements

This new plug-in is still in an early stage of development and could use various improvements.
The features highlighted in this document are therefore subject to change.

Instantiation is currently done on a theorem basis, which can be cumbersome if one wants
to instantiate many theorems from a single context, although the wizard can generate all the
instantiations at once. It could be more user-friendly to instantiate contexts first, similarly to the
import mechanism, and then be able to use their theorems freely.

When a theorem is instantiated, an axiom is created: considering that the theorem has been
proved on some abstract types and constants, there is no need to ask users to reprove it on more
specific types or values. However, some issues appear if the proof of the instantiated theorem
depends on axioms that may not hold on the substituted types or values [3]. Different solutions
have been proposed, such as imposing some restrictions on axioms in instantiated contexts or
adding these axioms as proof obligations of the instantiation.

4 Conclusion

The context instantiation plug-in offers a new approach to genericity in the Rodin platform
directly integrated in contexts. It should be easy to adopt in existing projects and require little
changes to be useful. It is already being used by members of the EBRP project. In particular,
Jean-Raymond Abrial and Dominique Cansell have implemented an extensive set of generic
contexts ranging from generic data types (such as lists and binary trees) to mathematical theories.

The plug-in is still under active development and should be publicly released soon.
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Examples of using the Instantiation Plug-in
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In a companion paper [1], Guillaume Verdier and Laurent Voisin presented a new approach
to genericity in the Rodin toolset: this approach is made practical by means of an Instantiation
Plug-in. In the present short paper1 we propose some examples of using this new approach.
Note that we constructed more examples: we only present here the most important ones. These
examples are preliminary as the plug-in is still under development as stated in [1]. The key to
this presentation is to show how such examples can be structured using the Instantiation Plug-in.

Two basic examples are independent: Fixpoint and Wellfoundedness. Other examples depend
directly or indirectly of them. This is indicated in the following diagram.

Fixpoint −→ Recursion ←− Wellfoundedness
↓ ↓

Closure Theorems on N
↓

Theorems

1 Fixpoint

Given a set S and a set function h built on S: h ∈ P(S)→ P(S), a fixpoint of h is a subset fix(h)
of S such that fix(h) = h(fix(h)). Here is a proposal:

fix(h) =̂ inter({s | s ⊆ S ∧ h(s) ⊆ s})

Assuming that the function h is monotone; we have (Tarski)

(∀a, b · a ⊆ b ⇒ h(a) ⊆ h(b)) ⇒ fix(h) = h(fix(h)

Moreover fix(h) is the least fixpoint:

∀t · t = h(t) ⇒ fix(h) ⊆ t

2 Closure

Given a set S and a relation r built on S: r ∈ S↔S, the closure(r) is defined to be the following
fixpoint:

closure(r) = fix(λs · s ∈ S↔ S | r ∪ (s ; r))

Since we use the fixpoint operator, we have to instantiate (adapt) its definition as provided within
the corresponding section. This is exactly what is allowed by the Instantiation Plug-in.
1 This work is supported by the French ANR project Event-B Rodin Plus (EBRP, ANR-19-CE25-0010)
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3 Closure Theorems

We now instantiate the closure definition and prove the following theorems:

closure(r) = fix(λs · s ∈ S↔ S | r ∪ (s ; r))

closure(r−1) = (closure(r))−1

4 Wellfoundedness

We are given a set S and a binary relation r built on S: r ∈ S↔ S. If for any x belonging to the
range of r, we follow r−1 and reach a point which is not in the range of r after a finite travel, the
relation r is said to be well-founded: wf(r). It can be given the following formal definition:

wf(r) =̂ ∀p · p ⊆ S ∧ p ⊆ r[p] ⇒ p = ∅

It can be proved that we have an induction rule for a set with a well-founded relation. Here is
the corresponding formal definition:

∀q · q ⊆ S ∧ (∀x · x ∈ S ∧ r−1[{x}] ⊆ q ⇒ x ∈ q) ⇒ S ⊆ q

5 Theorems on Natural Numbers

We now instantiate the set S of previous section to the set N of natural numbers. It can be
proved that the relation "+1" on N is well-founded. As a consequence, we can deduce the classical
induction rule for N

6 Recursion

We are given a set S and a well-founded relation r built on S. We are given another set B and a
function g defined as follows: g ∈ (S × (S 7→B)) 7→B. Then there exists a unique total function
f from S to B with the following property:

∀x · x ∈ S ⇒ f(x) = g(x 7→ r−1[{x}]� f)

This function is defined by means of a fixpoint. We have thus to instantiate the definition of
wellfoundedness and that of fixpoints defined in earlier sections.

7 Conclusion

All proofs alluded in this paper were successfully performed using the Instantiation Plug-in and
the Rodin Tool.

References
1. Guillaume Verdier and Laurent Voisin: Context Instantiation Plug-in: a new approach to genericity
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1 Introduction

In the context of the French national research agency (ANR) EBRP-EventB-
Rodin-Plus [4]1 (Enhancing Event-B and Rodin) project, an extension of the
Rodin platform [2] supporting the design of Event-B [1] models has been de-
signed in the form of a plugin [6], namely the context Instantiation plugin. It
allows the definition of generic contexts and their instantiation to define generic
and reusable theories. Instantiable Sets and Constants with their axioms and
theorems are defined in a context has been designed. A mechanism for instanti-
ating such generic contexts by importing useful axioms and theorems in another
context. A language for describing such instantiations has been defined. It is
parsed in order to generate instantiated contexts.

In the work of [3,5], a mathematical extension of Event-B allowing the defi-
nition of theories was proposed and implemented in the so-called Theory Plugin.

In this paper, we investigate the correspondence between theories formalised
in the theory plugin and those formalised in the context instantiation plugin.
We present transformation rules that allow us to describe theories through con-
texts and their instantiation. The goal of these transformations is to provide an
additional way to model theories in the core Event-B modelling language.

These correspondences for possible data-type definitions are described further
below.

2 Direct definitions of data-types

The correspondence between data-types (non-inductive) and operators defined
as direct definitions in the Theory Plugin is presented in this section.

2.1 Data-type transformation

Figures 1a and 1b show the correspondence between a data-type defined in a
theory with type parameters and constructors (parameterised or not) and a
context. Only two type parameters and two constructors have been defined for
the sake of clarity in the presentation.

1 https://www.irit.fr/EBRP/
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THEORY Data Type Schema
TYPE PARAMETERS T1 ,T2
DATATYPES

Struct :
cons1 // b a s e c a s e 1
cons2 ( e l 1 :T1 , e l 2 :T2) // b a s e

c a s e 2

(a) Type parameters and constructor
definitions

CONTEXT Data Type Schema
SETS T1 , T2 , Struct
CONSTANTS cons1 , cons2 , cons2Type , e l1

, e l 2
AXIOMS
axm1 : Partition(Struct, {cons1}, cons2Type)
axm2 : cons2 ∈ T1 × T2�→ cons2Type
axm3 : el1 ∈ cons2Type → T1
axm4 : el2 ∈ cons2Type → T2

(b) A corresponding context with sets
and constants

Fig. 1: Data-type correspondence

2.2 Direct definitions of Operators: expressions

As shown on Figures 2a and 2b, theory based direct definitions of operators
correspond to partial functions (defined using a lambda expression) where typ-
ing and the Well-definedness conditions are used to define the domain of these
functions.

THEORY Direct Expr Schema
TYPE PARAMETERS T1 ,T2
OPERATORS

op <e x p r e s s i o n >
(arg1 : T1, arg2 : T2)

well−definedness WD1,WD2
direct def init ion
Exp(arg1, arg2...)

(a) Theory based Direct definitions of
operators: expression

CONTEXT Direct Expr Schema
SET T1 ,T2
CONSTANTS op
AXIOMS
axmn : op = (λargs1 7→ args2·

args1 ∈ T1∧
args2 ∈ T2∧
WD1 ∧WD2 |
Exp(args1, args2))

(b) A context for operators definitions:
expression

Fig. 2: Direct definitions of operators: expression

2.3 Direct definitions of Operators: predicates

The same principle applies to operators defining predicates as it does to operators
defining expressions. The correspondence for operators defined as predicates is
shown in Figures 3a and 3b.

THEORY Direct Pred icate Schema
TYPE PARAMETERS T1 ,T2
OPERATORS

op <p r e d i c a t e >
(arg1 : T1, arg2 : T2)

well−definedness WD1,WD2
direct def init ion
P (arg1, arg2...)

(a) Theory based Direct definitions of
operators: predicate

CONTEXT Direct Pred icate Schema
SET T1 ,T2
CONSTANTS op
AXIOMS
axmn : op = (λargs1 7→ args2·

args1 ∈ T1∧
args2 ∈ T2∧
WD1 ∧WD2 |
bool(P (args1, args2)))

(b) A context for operators definitions:
predicate

Fig. 3: Direct definitions of operators: predicates
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3 Axiomatic data-types definitions

Axiomatic definitions on Figures 4a and 4b correspond to direct definitions in
Section 2, except that the expression or predicate is not given in the function def-
inition. In axiom axmDefOp, an axiomatically defined operator is formalised as
a total function on the domain restricted by the well-definedness conditions and
a resulting type (Res Type). Then, in the theory, each axiom that characterises
this operator is translated as an axiom in the context.

THEORY Axm Schema
TYPE PARAMETERS T1 , T2
AXIOMS OPERATORS

op <e x p r e s s i o n >
(arg1 : T1, arg2 : T2) : res : Res type

well−definedness WD1,WD2. . .
AXIOMS

axm1 : Exp1(op, . . . )
. . .
axmn : Expn(op, . . . )

(a) A theory based definition of ax-
iomatic operators.

CONTEXT Axm Schema
SET T1 ,T2
CONSTANTS op
AXIOMS

axmDefOp : op ∈ {args1 7→ args2·
arg1 ∈ T1 ∧ arg2 ∈ T2 ∧WD1 ∧WD2}
→ Res type

axm1 : Exp1(op, . . . )
. . .
axmn : Expn(op, . . . )

(b) A context based definition of ax-
iomatic operators.

Fig. 4: Correspondence for axiomatic definitions of operators.

4 Inductive data-types definitions

In the Event-B modelling language, inductively defined data-types do not have
their direct correspondence. This correspondence requires the introduction of a
generic definition for inductive structures.

4.1 Generic context for inductive definitions by JR. Abrial and D.
Cansell

To define Theory based inductive data-types correspondence, we use the generic
definitions introduced by J.R. Abrial and D. Cansell in the EBRP project.

CONTEXT SchemaRecGen
SETS S type , B type
CONSTANTS well founded , f i x , FrSB , S , B
AXIOMS
axm0 : S ⊆ Stype
axm6 : B ⊆ Btype
@axm1 : wellfounded = {r · r ∈ S ↔ S ∧ (∀p · p ⊆ S ∧ p ⊆ r[p] ⇒ p = ∅}
@axm2 : fix ∈ (P(S × B) → P(S × B)) → P(S × B)
@axm3 : ∀h · h ∈ P(S × B → P(S × B) ∧ (, b · a ⊆ b ∧ b ⊆ S × B ⇒ h(a) ⊆ h(b)) ⇒ fix(h) = h(fix(h))
axm4 : FrSb = {r 7→ g 7→ fr | r ∈ wellfounded ∧ g ∈ S × (S 7→ B) 7→ B∧

(∀x, f · x ∈ S ∧ f ∈ S 7→ B ∧ r̃[{x}](f) ⇒ x 7→ f ∈ dom(g))∧
fr = fix(λp · p ∈ S ↔ B |
{x, h · x ∈ S ∧ r̃[{x}] C h ⊆ p ∧ r̃[{x}] C h ∈ r̃[{x}] → B | x 7→ g(x 7→ r̃[{x}] C h)})}

l em1 : FrSb ∈ {r 7→ g | r ∈ wellfounded ∧ g ∈ S(S 7→ B) 7→ B ∧ (∀x, f · x ∈ S ∧ f ∈ S 7→ B ∧ r̃[{x}] ⊆ dom(f)
⇒ x 7→ f ∈ dom(g))} → (S ↔ B)

THEOREMS
t hm1 : ∀r, g, fr · r 7→ g 7→ fr ∈ FrSB ⇒ fr ∈ S → B

t hm2 : ∀r, g, fr · r 7→ g 7→ fr ∈ FrSB ⇒ (∀x · x ∈ S ⇒ fr(x) = g(x 7→ r̃[{x}] C fr))

Fig. 5: A generic context with inductive sets definition operator FrSb.
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The context SchemaRecGen of Figure 5 uses the definitions of well-founded
relations and the fixpoint operator from contexts not shown in this paper. They
are brought up for clarity.

The most important feature is the constant FrSB allowing to define the
semantics of operators defined on inductive types. It use the type constructors
and the fixpoint operator. This function is further applied to formalise the theory
based defined inductive types and operators.

4.2 Correspondence schema

Inductive definitions are given in two steps: first the data-type definition using
inductive sets definitions and second the operators manipulating this data-type.

Inductive data-type definition. A recursive definition is based on an in-
ductive type, which is depicted in Figures 6a and 6b as a set comprehension in
which the inductive properties are encoded and the constants are elements of
this set. The IndType theory data-type corresponds to the set IndType, which
is defined from the carrier set IndTypeTY PE. The IndTypeSET defines the
set of n-uplets corresponding to the n constructors of the data-type. In our case,
cons1 El 7→ cons2 El 7→ consinduc1 El 7→ consinduc2 El.

THEORY Ind Data Type Schema
TYPE PARAMETERS T
DATATYPES

IndType :
cons1

// b a s e c a s e 1
cons2 ( e l :T)

// b a s e c a s e 2
consinduc1 ( e l : IndType )

// i n d u c t i v e c a s e 1
consinduc2 ( e l 1 : T, e l 2 IndType )

// i n d u c t i v e c a s e 2

(a) Inductive type definition

CONTEXT Ind Data Type Schema
SETS IndTypeTYPE , T
CONSTANTS IndType , IndTypeSET , cons1 , cons2 ,

consinduc1 , consinduc2
AXIOMS
axm1 : IndTypeSET =

{indtype El 7→ cons1 El 7→ cons2 El 7→
consinduc1 El 7→ consinduc2 El |

indtype El ⊆ IndTypeTY PE∧
cons1 El ∈ indtype El∧
cons2 El ∈ T � (indtype El \

(ran(consinduc1 El)∪
ran(consinduc2 El) ∪ {cons1 El}))∧

consinduc1 El ∈ indtype El� (indtype El \
(ran(cons2 El) ∪ ran(consinduc2 El)∪
{cons1 El}))∧

consinduc2 El ∈ T � (indtype El \
(ran(consinduc1 El) ∪ ran(cons2 El)∪
{cons1 El}))∧

(∀tr · cons1 El ∈ tr ∧ cons2 El[T ] ⊆ tr∧
consinduc1 El[tr] ⊆ tr∧
consinduc2 2[T × tr] ⊆ tr

⇒ indtype El ⊆ tr)
}

axm2 : IndType 7→
cons1 7→ cons2 7→
consinduc1 7→ consinduc2

∈ IndTypeSET

(b) Corresponding context with sets and con-
stants

Fig. 6: Correspondence for inductive type
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Inductive data-type operator definition. The correspondence for an in-
ductively defined operator is shown in Figures 7a and 7b. The FrSb operator
is used for the defined inductive data-type IndType in both base (with defi-
nitions of expressions exp1 and exp2) and inductive cases (with definitions of
expressions ExpInd1 and ExpInd2).

THEORY
TYPE PARAMETERS T1 ,T2
OPERATORS

op <e x p r e s s i o n > (
arg1 : T1, arg2 : T2

)
well−definedness

WD1,WD2. . .
recursive def init ion
case cons1 =

Exp1( · · ·)
// b a s e c a s e 1

case cons2 =
Exp2( · · ·)

// b a s e c a s e 2
case consinduc1 =

ExpInd1(op, · · ·)
// i n d u c t i v e c a s e 1

case consinduc2 =
ExpInd2(op, · · ·)

// i n d u c t i v e c a s e 2

(a) A theory based on Re-
cursive definition

CONTEXT
INSTANCIATES SchemaRecGen Ind Data Type Schema
SETS T,T1 ,T2
CONSTANTS op
AXIOMS
axmn : op = FrSB(

{
e 7→ ind el | e ∈ IndType∧
ind el ∈ IndType∧

(∃el · el ∈ T∧
ind el = consinduc1(el 7→ e)∨

(∃el · el ∈ T∧
ind el = consinduc2(el 7→ e))
} 7→
{
e 7→ f 7→ res |
e ∈ IndType∧
f ∈ {ind el | ind el ∈ IndType ∧WD1 ∧WD2} → Res Type

// F u n c t i o n domain d e f i n i t i o n
(∀el, ind el · el ∈ T ∧ ind el ∈ IndType∧

(e = consinduc1(el 7→ ind el)∨
e = consinduc2(el 7→ ind el))

⇒ ind el ∈ dom(f))∧
// D e f i n i t i o n o f b a s e c a s e

(
e = cons1(. . . ) ⇒ res = Exp1(. . . )∨
e = cons2(. . . ) ⇒ res = Exp2(. . . )
)∧

// D e f i n i t i o n o f i n d u c t i v e c a s e
((∃el, ind el · el ∈ T ∧ ind el ∈ IndType∧

e = consinduc1(el 7→ ind el) ⇒ res = ExpInd1(f, ...))∨
(∃el, ind el · el ∈ T ∧ ind el ∈ IndType∧

e = consinduc2(el 7→ ind el) ⇒ res = ExpInd2(f, ...)))
}

)

(b) A context based on Recursive definition

Fig. 7: Corresponding schema of recursive definition of operators

5 Conclusion

We provided a set of correspondences that allow theory-based data types to be
translated as contexts. Except for the inductive definitions, which require the
use of operators defining inductive sets borrowed from a generic context, this
transformation is straightforward.

When we translate theories to context, we obtain context definitions ex-
pressed in the native Event-B modeling language, but we lose the structuring
and semantic information available in the theories.
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The CamilleX Framework [3] provides a textual representation of Event-B
models for the Rodin Platform (Rodin) platform. It supports both (1) direct ex-
tensions of the Event-B syntax to support modelling extensions such as machine
inclusion [2] and record structure [1], and (2) indirect extensions via containment
mechanism to such as UML-B diagrams [4]. In this presentation, we will take a
look at some of the remaining issues and proposal to address them in the next
release of CamilleX.

Element Ordering. Currently, CamilleX relies on the Event-B Eclipse Modelling
Framework (EMF) framework to store the semantics model of the Event-B ma-
chines and contexts. Modelling elements of the Event-B constructs are stored
in different “collections”, one for each carrier sets, constants, axioms, variables,
invariants, events, and “extensions” (e.g., record structure). As a result, there
is no ordering information is kept between the different modelling elements. For
example, the current implementation of record structure generates the record-
related invariants after all normal context axioms (similarly for records in a
machine). This could cause problems when the order of the elements matter.
Consider the following declarations of a record r with a field A of type S. Axiom
@axm1 indicates the surjectivity of S with respect to field A.

// CamilleX context with Record

sets S
axioms
@axm1: ∀s · s ∈ S⇒ s ∈ ran(A)

record r
A : one S

// Translated Rodin context

sets S r
constantsA
axioms

@axm1: ∀s · s ∈ S⇒ s ∈ ran(A)
// record field translation axiom

@axm r A:A ∈ r→ S

This translated model is ill-formed as the type for A can not be determined for
axiom @axm1. We will need to be able to interleave the record declaration and
axioms as necessary.

As result, the new version of Event-B EMF (currently under development)
will store the modelling elements in a generic collection, named orderedChildren
(the other collections will become derived attributes to minimise the impact of
the changes). The syntax of CamilleX for XMachines and XContexts can be
updated to allow the interleaving of modelling elements. We are working on
updating the record-structure generator to take advantage of the new ordering.

Identifier Declaration Taking advantage of the ordering allowing us to interleave
the modelling elements, we can eliminate the block such as axioms, invariants,
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events. Each element will be prefixed with a singular keyword, such as axiom,
invariant, event (notice that the event keyword already exists). Moreover, iden-
tifier elements such as constants, variables, and parameters can be declared
together with their types and their (initial) values. This allows all information
related to the constants and variables in one place. For example, instead of

variables a
invariants
@a−typeof: a ∈N
event INITIALISATION
begin
@a−init: a := 0

end

we can have

variable a :N := 0

and the relevant invariants can be
generated accordingly.

Support Context Instantiation For context instantiation [5], we will need to
distinguish between the abstract sets and constants that need to be instantiated
and the properties of them that need to be proved during the instantiation.
These elements can be added to the syntax of CamilleX for instantiated and
instantiating contexts.

context c0
abstract sets S
abstract constants c
axiomA(S, c)

context d0
setsT
constants d
axiomA(S, c)
instantiates c0(T, d)

The translation from CamilleX will flatten the instantiated and instantiating
contexts into the facility provided by the instantiation plug-in [5].
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1 Introduction

Biological systems are typically very large and complex, so much that it is re-
markably di�cult to capture all the necessary details in one modeling step. The
concept of re�nement � gradually adding details to a model while preserving
its consistency � is thus instrumental. We provide an Event-B based modeling
framework for the modeling of large and complex biological systems. Other for-
mal modeling methods such as process algebra, Petri nets and many others has
also been used for biomodeling see [1], [3]. The advantage that Event-B brings
is that it has re�nement as the key concept of the development method. System
details can be introduced in several steps and the tool manages all the links be-
tween all the intermediary models. Consistency of re�nement ensures that all the
properties of a model Mi are still valid in its direct re�nement successor Mi+1.
At each re�nement step, one can focus on the new elements that are introduced
and on their consistency with the previous model.

In this work, we model two biological systems using re�nement in Event-B,
i.e., we �rst model a simple, more abstract model of the system and then we add
more details in a correct-by-construction manner. The two systems we address
are the heat shock response and the ErbB signaling pathway. Modeling the heat
shock response in Event-B succeeded before [4]: we started with the abstract
model having 10 variables and 17 events and ended up with the concrete model
having 22 variables and 57 events. Modeling the ErbB signaling pathway only
succeeded earlier [2] for the abstract model, with 110 variables and 242 events.
The concrete model would have 1320 events, which was not supported by Rodin.
With our current approach we are able to handle such a big model.

2 Modelling reaction networks in Event-B

We model reaction networks as sets of biochemical reactions, where each reaction
speci�es its reactants, products, and possibly inhibitors and catalyzers. These
reactions can be either reversible or irreversible and each reaction could also
have an associated �ux, describing the rate at which its products are produced
and its reactants consumed. With these assumptions, a reaction r can be written
as a rewriting rule of the form:

27



2 Usman Sanwal, Thai Son Hoang, Luigia Petre, and Ion Petre

r : m1X1 +m2X2 + ...+mnXn → m′
1X1 +m′

2X2 + ...+m′
nXn, (R)

where S = {X1, . . . , Xn} is the set of reactants and m1, ...,mn,m
′
1, ...,m

′
n ∈ N

are non-negative integers.
To model reaction networks in Event-B: every reactant is modeled by a vari-

able and every reaction is modeled by an event. Invariants ensure the correctness
of each reactant and biological properties of interest, for instance the mass con-
servation rule that ensure that the number of certain reactants is constant.

Thus,X1, X2 , ..., Xn are the variables of the model, their type being speci�ed
by corresponding invariants. Initial values for all of these variables are set in the
initialisation event. For each reaction r of the reaction network, we specify in
its guard that it must have enough of each reactant in order for the reaction
to be enabled, while the action of the event speci�es the changes to happen to
each variable. This general scheme can be applied to model any reaction network
in Event-B. We have demonstrated its applicability for the case studies of heat
shock response model and the ErbB signalling pathway model in [4] and [2]
respectively.

In this work, we revisited the Event-B model of heat shock response model
and the ErbB signalling pathway model to make them more scalable. We demon-
strate here that how a particular modeling feature of Event-B � the common
mathematical function � enables us to signi�cantly reduce the concrete models
sizes. The relation between the abstract and the concrete forms of a reactant
is captured with a function. This enables us to model the concrete reactions
more elegantly and concisely, and as a result, the total number of events in the
re�ned model is reduced signi�cantly. In the case of the heat shock response, the
complete model is described through 21 events, instead of the 57 events of the
model in [4]. The di�erence in the case of the ErbB model is drastic, as we now
need only 242 events for the full model of the ErbB signaling pathway in Rodin,
instead of 1320 events. We have successfully implemented the model in Rodin
and all of the proof obligations were dischrged automatically. To the best of our
knowledge, this is the largest-ever model built in Rodin.
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Abstract  

Advancements in technology have improved the safety of railway transportation systems. However, 

railway operators face challenges when constructing and maintaining systems that use components from 

a variety of suppliers. Obsolescence may result in the need to replace complex components with 

equivalent parts while ensuring that the operation and safety of the overall system are not compromised. 

This abstract presents a model-based systems engineering (MBSE) approach for the specification of 

Deutsche Bahn's railway interlocking system (RIS) to address two issues: The first issue is the separation 

of the life cycles of the interlocking core and the field elements to reduce the vendor lock-in risks when 

upgrading or renewing railway field elements such as a level crossing, point machine etc. The second issue 

is achieving the required assurance that safety properties are preserved by the specification. 

In the EULYNX consortium, European railway infrastructure managers develop standard interfaces and 

subsystems for the next generation command, control and signaling (CCS) architecture. Model-based 

systems engineering (MBSE) is used to ensure soundness and completeness of the specified interfaces. In 

order to achieve this, we propose a diagrammatic MBSE framework so that safety compliant standardized 

models of the interface specifications can be handed over to the railway suppliers. In this framework, 

Infrastructure managers define the appropriate use case descriptions and modelling experts convert the 

use cases into executable SysML models using the Windchill Modeler3 tool. Subsequently, infrastructure 

managers evaluate whether the specified interfaces are sound regarding their intended use applying 

simulation-based testing. Modelling of the interlocking system interfaces using SysML which is a semi-

formal language has already led to significant improvements in the quality of created specifications but 

does not allow formal verification of system properties. Our proposed framework enables the 

transformation of SysML models into the Event-B formal language to prove the safety requirements. 

Figure 1 depicts the overall verification and validation approach. 
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Figure 1: The principle behind formal modelling and verification 

Initially, we achieved the transformation in step (1a) manually using UML-B which is a UML-like front end 

for Event-B and performed the formal verification of safety requirements. This transformation was applied 

on multiple EULYNX interface models. The following Use Case 1 shows one of the equivalent UML-B model 

of SysML model achieved using manual transformation. 

  

Use Case 1: SysML Model and equivalent UML-B Model  

During this formal transformation and verification, we observed that, the manual transformation of 

models is time consuming especially when the complexity of models increase (as we can see in Use Case 

1).  This led to the idea of having the automatic transformation, which will reduce the efforts require for 

manual transformation and makes the overall V&V approach more efficient.  

The objectives of the automatic transformation are as follows: (1) The main objective is to propose a 

methodology and tool-chain to automate the transformation of SysML specification models into formal 

models (Event-B). (2) The traceability should be maintained between informal requirements and the 

modeled system, specifically for the safety properties. (3) The model should be verified against such safety 
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