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Abstract

As part of various obstruction theories, non-trivial Massey products have been
studied in symplectic and complex geometry, commutative algebra and topol-
ogy for a long time. We introduce a general approach to constructing non-
trivial Massey products in the cohomology of moment-angle complexes, using
homotopy theoretical and combinatorial methods. Our approach sets a unifying
way of constructing higher Massey products of arbitrary cohomological classes
and generalises all existing examples of non-trivial Massey products in moment-
angle complexes. As a result, we obtain explicit constructions of infinitely many
non-formal manifolds that appear in topology, complex geometry and algebraic
geometry.

1. Introduction

A moment-angle complex Zx over a simplicial complex I on m vertices is
built from ordered products of discs and circles in C™ that are glued together
along the face category of K. The coordinate T™-action on C™ descends to
a natural 7™ action on moment-angle complexes. If K is a triangulation of
a sphere, the moment-angle complex Zx is a manifold that admits a smooth
complex structure. These manifolds also generalise many well-known smooth
complex manifolds such as Hopf and Calabi-Eckmann manifolds.

Massey products are higher operations in the homology of differential graded
algebras. In the context of commutative algebra, supposing k is a field or Z,
the cohomology algebra of Z is isomorphic to the Tor-algebra Tory,,) (k[K], k)
of the face ring k[K], due to [10] and [4, Theorem 1]. The face ring k[K] is
Golod if all Massey products in Tory(,(k[K], k) vanish. Hence, Massey prod-
ucts in Zx are obstructions to Golodness of k[K]. From the perspective of
complex geometry, by identifying Zx with the complement U(K) of a coordi-
nate subspace arrangement corresponding to X, moment-angle complexes are
LVM manifolds [6, 23] when K is the boundary of the dual of a simple polytope.

Preprint submitted to Elsevier June 17, 2021



Massey products are obstructions to the formality of these manifolds. The com-
binatorial approach to Massey products in moment-angle complexes has been
used to prove cohomological rigidity of Lobell manifolds [8], which are built
from 3-dimensional polytopes in the Pogorelov class. However, currently, most
known examples of Massey products in moment-angle complexes are sporadic
due to how difficult they are to calculate explicitly.

The first non-trivial Massey products in moment-angle complexes were dis-
covered by Baskakov [5], who constructed an infinite family of triple Massey
products. Limonchenko [18] constructed the first family of non-trivial n-Massey
products for n > 2 on lowest-degree classes in moment-angle complexes. Fami-
lies of non-trivial Massey products in moment-angle complexes associated to
special geometric direct families of 2-truncated cubes (flag nestohedra) are
due to Buchstaber and Limonchenko [9], who also applied these families to
the differentials in Eilenberg-Moore and Milnor spectral sequences. In [20],
Limonchenko constructs non-trivial higher Massey products in highly-connected
moment-angle complexes by using the simplicial multiwedge operation (or J-
construction), which takes a simplicial complex and builds a new one that has
the same combinatorial structure as the original.

Using combinatorics and homotopy theory, we give the first systematic and
unifying approach for constructing non-trivial Massey products in the cohomol-
ogy of moment-angle complexes. We show that the combinatorics of K encodes
Massey products. By doing this, we expose some of the structural behaviour of
Massey products with respect to combinatorial operations, and spark the ability
to construct concrete examples of non-trivial Massey products in commutative
algebra, complex geometry and combinatorics, as well as toric topology.

Our starting point is the cup product, which is a 2-Massey product. The
categorical product of simplicial complexes is the join, which is mirrored by the
product of moment-angle complexes Zi, .k, = Zxk, X Zi, and the existence of
a non-trivial cup product in the cohomology of Zi, .x,. Unlike cup products,
Massey products are higher operations so certain (n — 1)-Massey products must
be trivial in order to define n-Massey products.

There is a classification result for 3-Massey products of cohomological classes
in lowest degree in moment-angle complexes [12, Theorem 6.1.1], [15], but it
vitally relies on the fact that the lowest degree classes are represented combi-
natorially by cycles in the 1-skeleton of IC. This technique does not generalise
to higher dimensions since it is unknown how to combinatorially realise an ar-
bitrary n-cycle. So far there has not been a systematic way to construct triple
Massey, or any n-Massey, products of higher dimensional classes. We give two
constructions that address these drawbacks.

In Construction 3.5, to construct non-trivial n-Massey products in moment-
angle complexes, we start with the join of n simplicial complexes C;. To trivialise
the lower Massey products, we systematically remove certain simplices from the
join by an operation called star deletion and call the constructed simplicial com-
plex K. We show that Zx has a non-trivial n-Massey product in Theorem 3.17.
It is important to emphasise that we do not impose any restrictions on n-arity
of these Massey products, on the choice of simplicial complexes IC; for any i, nor



on the dimension of classes in the Massey product. This construction generalises
Baskakov’s [5] family of non-trivial triple Massey products in the cohomology
of moment-angle complexes, taking triangulations of spheres for K1, Ko and £s.
Also it generalises Limonchenko’s [18, Theorem 2] family of n-Massey products,
which are built by removing simplices from the join of n 0-spheres.

Notably, our construction produces the first examples of non-trivial Massey
products on torsion classes, as well as examples with non-trivial indeterminacy.
Such an example is constructed by star deleting simplices in the join of the pro-
jective plane RP? and two copies of the O-sphere, as illustrated in Example 3.21.
We also create the first infinite families of higher Massey products with non-
trivial indeterminacy in moment-angle complexes, on arbitrary cohomological
classes, by extending our construction in Section 3.2.

The topological properties and homotopy type of K do not determine the
topology of the moment-angle complex Zx. However, unexpectedly, in Con-
struction 4.6 we deform C up to homotopy to create a new simplicial complex
L such that Z; has an explicitly constructed n-Massey product if Zx has an
n-Massey product. Crucially, the Massey product in Z; can be of different
dimensional cohomological classes to those in Zx. In this construction, the
simplicial complex £ has the same homotopy type as K and is obtained by sys-
tematically “stretching” certain simplices of K. In Theorem 4.12, we show that
these Massey products are non-trivial, even if they have non-trivial indetermi-
nacy.

Consequently, we can construct infinite families of non-trivial Massey prod-
ucts from known examples by “stretching” simplices in a controlled way. For ex-
ample, from each of the obstruction graphs in the classification of lowest-degree
triple Massey products in moment-angle complexes [12, 15], we obtain infi-
nite families of non-trivial triple Massey products of higher dimensional classes.
We give an alternative proof of known examples of non-trivial triple Massey
products in moment-angle manifolds, such as those associated with Pogorelov
polytopes [26] and permutahedra or stellohedra [19, 20] using “stretched” ob-
struction graphs. Also, the two constructions, Constructions 3.5 and 4.6, can be
combined to create new higher Massey products. We use this to create k-Massey
products in moment-angle manifolds associated with n-dimensional permutahe-
dra and stellohedra for every k < n, including Massey products with non-trivial
indeterminacy.

Even though it has been known for decades that Massey products are impor-
tant obstructions in many fields, we have the first general methods to calculate
and construct n-Massey products of classes in any degree, for any n, includ-
ing Massey products with non-trivial indeterminacy. The first infinite family
of examples of non-formal spaces or non-Golod face rings were constructed by
Limonchenko [20, Theorem 4.10] using moment-angle complexes associated to
graph associahedra. There are other explicit families constructed in [18], [20]
and [9]. More generally, our framework constructs infinitely many families of
such examples, confirming that non-trivial higher Massey products are much
more common in moment-angle complexes and moment-angle manifolds than
previously thought.



Furthermore, these techniques do not just apply to moment-angle complexes.
We study Massey products in moment-angle complexes via combinatorics; one
key fact to do this is that the cohomology of Zx decomposes into a direct
sum of cohomology groups of full subcomplexes of K [4, Theorem 1]. For a
topological pair (X, A), a polyhedral product (X, A)* is a generalisation of a
moment-angle complex since Zx = (D?,S")*. In the case of a topological
space A and its cone C' A, Bahri, Bendersky, Cohen and Gitler [2, Theorem
1.12] showed that the cohomology of (CA, A)* also decomposes in terms of
H*(A) and the cohomology of full subcomplexes of K when H*(A) satisfies the
strong Kiinneth formula. Using this decomposition and our constructions, it is
possible to produce non-trivial Massey products in (CA, A)* by incorporating
cohomological classes of A to the classes we construct in the cohomology of full
subcomplexes of I in order to create Massey products in Z.

2. Preliminaries

2.1. Moment-angle complexes

Let K be a simplicial complex on the vertex set [m] = {1,...,m}. The
moment-angle complex Zx [7, Definition 3.2.1] is

Ze=J (D*.8") c (D)™
ocek
where (D?,8)7 =[], Y, for Y; = D*ifi € 0, and V; = ST if i ¢ 0. A
moment-angle complex Zx is a manifold if K is a triangulation of a sphere.

In this paper, all coefficients are in k, which is a field or Z. As a subspace
of the polydisc, Zx has a cellular decomposition that induces a multigrading
on the cellular cochain groups C*(Zx). For J C [m], the full subcomplex K is
{c € K| o cCJ} Let C*(Ky) be the augmented simplicial cochain complex.
The cohomology ring of Zx can be expressed in combinatorial terms.

Theorem 2.1. [4] There is an isomorphism of cochains
C(Ky) = €V (Z) € et N2y

that induces an isomorphism of algebras

H*(Z0)= P H*(K)) (2.1)

JC[m]
where H1(Kg) = k.

We refer to the cohomology decomposition (2.1) as Hochster’s formula [16].
Let Cp,(K ) be simplicial chain complex for K;. The cochain group CP(K;) =
Hom(C,(K ), k) has a basis of X, for a p-simplex L € K;, where X, takes the



value 1 on L and 0 otherwise. A subset J C [m] has an order inherited from
[m]. If j is the rth element of J, define

e(j,J) = (1) (2.2)

and for L C J, define e(L, J) = [];c, €(j,J). For simplices L = {l1,...,l,},
M = {mq,...,my}, we denote {l,...,l,,m1,...,mq} by L UM. The product

on ®JC[m] H*(Kj) is induced by CP~1(K;) @ C1=YK ) — CPHI= (K10 y),

X, & Xpr (2.3)

crum Xpum i INJ =,
otherwise

where crun = (L, I) (M, J) ¢ e(LUM,TUJ) and ¢ = [[cp 1 e(k, kUJ\ M).
For a cochain a € CP(K ), let the support of a be the set S, of p-simplices
o € Ky such that a = ZUGSa asX, for a nontrivial coefficient a, € k. For a

cohomology class a € ﬁp(ICJ)7 we say that « is supported on K.

Lemma 2.2. For a simplicial complex K, let a € CP(Ky) and b € CUKy).
Let the order of vertices in K be such that i < j for everyi € I and j € J.
Suppose that a = Zo—esa asXy and b = ZTESb b X, for p-simplices o0 € S, C
Kr, q-simplices 7 € Sy, C Ky and coefficients a,,b; € k. Then the product
ab € CPTITY(Kuy) is given by

ab = <_1)|I|(q+1) Z Z 507 XoUr-
c€S, TES)H

Proof. The product ab is given by

ab = <Z aUXg> <Z bTXT>
oc€Sa TESY

=> Y asbre(o, 1) e(r,J) Celo UT, TUT) Xour
og€S, TESy
where ¢ = 1 since all vertices of I are ordered before vertices of J in K.
By the definition of &, and since all elements I are ordered before J, e(oUt, IU
J) =¢e(o,1)e(r,1UJ). Furthermore, for each g-simplex 7 = {i1,...,ig41} C J,

e(rrul)= ] e run= [ (0G0

JE{1,...,q+1} J€{l,....q+1}
= (-1 e(r, )

Therefore, since (1, J)? = 1 for any sets I, J, the statement follows. O

2.2. Massey products

Massey products are higher cohomology operations that were introduced in a
short note by Massey [21] and were thereafter first used by Massey and Uehara
in [25] to prove that Whitehead products satisfy the Jacobi identity. They
have many applications for example as topological invariants, obstructions to
formality and for calculating differentials in spectral sequences.



Definition 2.3. Let (4,d) be a differential graded algebra with classes «; in
HPi(A,d) for 1 < i < n. Let a;; € AP* be a representative for o;. A defining
system associated to (ai,...,qp,) is a set of elements (a; %) for 1 < i< k< n
and (i,k) # (1,n) such that a; € APiTFPe=k+i and

k—1
d(aik) = Z Qi rr4 1,k
r=i

where @;, = (—1)1Tde8%irq; . To each defining system of (ay,...,q,), the
associated cocycle is defined as

n—1

Zmar%—l,n S Ap1+m+pnin+2-

r=1
The n-Massey product {aq,...,ay) is the set of cohomology classes of associ-
ated cocycles for all possible defining systems. The indeterminacy of a Massey
product is the set of differences between elements in (a1, ..., a,). The Massey

product is called trivial if 0 € (o, ..., ap).

We use Theorem 2.1 to give a correspondence between defining systems in
C*(Z2x) and in @ C*(Kj). For any a € CPH/IH1(Zx) with p > 0 and
JC[m]
J C [m], there is a corresponding a € CP(K).

Definition 2.4. For a € CP(K;), let deg(a) = p+ |J| + 1 and let @ =
(—1)tHdesag — (—1)ptl7lq,

Let (ay,...,a,) C H*(Zx), where each class o € HP:iFTIil+1(Zx) cor-
responds to o; € HPi(Ky,). Let (a;x) C C*(Z2x) be a defining system for
(0a,...,an), where a;; = a; is a cocycle representative for ;. Then a;) €
Cpitrtpetl iU UL (20 and d(a; x) = E’:;; @i rar41,5. By Theorem 2.1,
there are corresponding cochains a; j € CPi+ TP (K .., ) and

deg(ain) =pi+ -+ pp+ LU Udil +1
=@+ L+ 1)+ e+ [Te| +1) =k +1i
zdieg(ai)—l—”-—kdieg(ak)—k—ki.

By the product in (2.3), d(a; ) = Zf;ll @i rar41,5. Hence (a; 1) C @ C*(Ky)
JC[m]
is a defining system that corresponds to the defining system (a; ) C C*(2k)
and the associated cocycle w € CP1t - FTPntlibUJnl+2( Z,) corresponds to the
associated cocycle w € CPA+FPntl(IC; ;).
Let (a1, as,as3) be a triple Massey product on o; € HPiHil+1(Z) for
t =1,2,3. The indeterminacy of a triple Massey product is

o .sz+p3+|J2uJ3\+1(ZK) +as - HP1+p2+\J1UJ2|+1(Z’C).



By Theorem 2.1, a; corresponds to «a; € HP: (Kj,) and the indeterminacy of
(0, g, as) is

ay - HP21P3 (K g0 0.) + ag - HP7PP2 (K g0 g,)- (2.4)

In general, the indeterminacy of an n-Massey product can be expressed in terms
of matric Massey products [22, Proposition 2.3], but this is not a helpful ex-
pression for calculations.

Example 2.5. Let I be the simplicial complex in Figure 1. Let aq,as, a3 €
Hg(Z)c) correspond to a1 = [Xl] S ﬁO(K12), Qg = [Xg] (S EO(’C34), a3 = [X5] S
ﬁO (IC56). Since ﬁl(,C1234) and EI(K3456) = 0, the products 10 € fll(K1234)
and asas € H' (Ksgs6) are zero.

A cochain ajz € C°(Ki234) such that d(ajz) = X.:X3 = 0 is of the form
a1s = c1X3 + Cg(Xl + X4 + XQ), for any ci,ca € k. A cochain as3 € CO(IC3456)
such that d(as3) = X:3-X5 = X35 is of the form ass = c3(X4 + X6 + X3+ X5) + X5
for any c3 € k. Then the associated cocycle w € C1(K) is @iag3 + G12a3 =
63(X14 + X16 —|— X15) —|— X15 —|— 61X35 + C2(X15 —|— X25). FOI‘ X17X5 € CO(’C), w =
ng(X1)+X15+(Cl 762)X35+02d(X5). AISO, [w} = [X15+(Cl 702)X35] 7é 0 for any
c1,c2,c3 € k. Therefore (ay,az,a3) C H¥(Zx) is non-trivial with non-trivial
indeterminacy, aq - ﬁO(IC3456) + as - f_j’O (]C1234) = Q3 - ﬁ'O (IC1234).
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Figure 1: A simplicial complex K for which Zx has a non-trivial 3-Massey product with
non-trivial indeterminacy.

3. Massey products via join and star deletion

The categorical product of simplicial complexes K1 and /Cs is the join Ky %/Cs.
This induces a product in moment-angle complexes, Zi,«x, = 2k, X Zk,. In
this way cup products in H*(Z, .x,) can be seen combinatorially. Since Massey
products are higher operations, we require lower Massey products to be trivial.
The idea is to start with the join of simplicial complexes and remove certain
simplices in order to trivialise lower Massey products. To remove simplices, we
use star deletion.

For a simplicial complex K, the star and link of a simplex I € K are

stx[={JeK | ITuJeK}tand Ik I={JeK | IUJ e, INJ =0}

The boundary of the star of I e Kis st I ={J e K | ITUJ e K, I ¢ J}. Let
St;cIZStKI\BSt;CI.



Definition 3.1. The star deletion sdy K of K at [ is sd; K =K\ sticl.

Alternatively, sd; K = {J € K | I ¢ J}. Star deletions sd;, and sd;, can
be applied iteratively providing that Iy ¢ Iy and Is ¢ I;. We show that the
order of star deletions on a simplicial complex does not affect the result.

Lemma 3.2. Let K be a simplicial complex. Let I, I € KC be simplices such
that 11 N I 7& Iy,I5. Then Sd]2 Sd]1 K= SdII Sd]2 K.

P’I‘OOf. Since I; N I3 7é 11,12, neither Iy C I nor I C Iy. Thus I; € Sd]2 IC and
Iy e Sd[1 K. So Sd]2 Sd[1 K= ’C\ (St;c]l U St;c]g) = Sd]l Sd[2 K. O

A AR AV A AW

5 5 5

sd sd K
q K b) sd K (c) sdys,6} sd{1,6}
(2) sdg1,6) (b) sdga.o) = sdy1,6} sdys,63 K

Figure 2: The star deleted complex is not affected by the order of star deletions.

Example 3.3. Let K be the boundary of an octahedron with opposing vertices
labelled 4,7 + 1 for ¢ = 1,3,5. Let I; = {1,6} and I, = {3,6}. The star
st I; contains maximal simplices {1,4,6} and {1,3,6}, and stx [> contains
{1,3,6} and {2,3,6}. If the star of I; is deleted from K first, then stsq, x I2
contains the maximal simplex {2,3,6}. Hence sdy, sd;, K removes the simplices
{1,4,6}, {1,3,6} and {2,3,6} from K. The same simplices are removed from K
in sdy, sdy, KC, as shown in Figure 2.

Remark 3.4. Star deletion is equivalent to doing a stellar subdivision ss; K =
(K \ stx]) Ui, 1 cone(dstx I) then restricting to the original vertices V (K).
For example, see Figure 3 compared to Figure 2a. If K is a triangulation of an
n-sphere on m vertices, then Zx is an (m + n + 1)-dimensional manifold. As
ss; IC ~ K, ssy K is a triangulation of an n-sphere on m+1 vertices. Hence Zg, x
is an (m+n+2)-dimensional manifold. Since Massey products are obstructions
to formality, a non-trivial Massey product in H*(Z, k) implies that Z, ¢ is
a non-formal.
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Figure 3: A stellar subdivision at {1,6} in the octahedron

8.1. A construction of non-trivial Massey products

We aim to construct a simplicial complex K such that there is a non-trivial
n-Massey product in H*(Zx). We start with the join of n-simplicial complexes
Kl - %K™ and classes a; € flpi(le]i) foreachi € {1,...,n}. In Klx-- K", all
cup products between «;s are non-trivial, so in order to define a higher Massey
product we first remove simplices to make certain cup products trivial. To
define which simplices to remove, we define two sets of simplices, S,, C K¢ and
P,, C K for each K. In order to create K, we star delete K1 - --x K™ at every
simplex o; Uoy, for o; € Sy, and o, € P,,, 1 <i <k <m, (i,k) # (1,n). The
star deletions at o1 U oy and o4 U o3 trivialise the cup products ayas and asas
respectively, which is required to define a triple Massey product (o, as,as).
By star deleting at o1 U o3, we trivialise (aq, a9, as). If we also star delete at
simplices o3 U o4 and o3 U g4, then (as,as3,ay4) is defined and trivial, so the
4-Massey product (@i, as, az,ay) is defined. We define the Massey product
(o1, ...,an) C H*(Zx) by iterating this process.

Construction 3.5. For i € {1,...,n}, let K’ be a simplicial complex on [m;]
vertices that is not an (m; —1)-simplex. Since K’ is not a simplex, there is a non-
zero cohomology class a; € HPi (K%.) for p; € N, J; C [my]. Let a; € CPi(KY,)
be a cocycle representative for o; that is supported on p;-simplices S,, C K so
that a; = >, cg. €0 Xo, € CPi(KY) for a non-zero coefficient ¢,, € k. For
every simplex o; c Sa;, let vy, denote one vertex in o;. Let P,, be the set

P,, = {0, € K' | o} is a p-simplex, 0; N o} = 0 \ vy, }.

An example is shown in Figure 4.
We start by constructing the set P, for each 4, in order to define star dele-

tions of K! % -+ % K. We fix an order on the simplices in S,, and define an
ordered subsequence of simplices 051), ey Jfl) C Sq,;- Let 051) be the first ele-

ment of S,,. Then let S,S}) =S, \Pagl). Let 01(2) be the next element after agl)



Figure 4: For this choice of vertex v, € o, 0/ € Py but 0’/ ¢ P,

in S&). Then let Sc(f) = S((ﬁ) \ P 2. We continue repeatedly until O’,El) is the
last element of S((lli_l), and let

P, = Paﬁl) U"'UPUU)' (3.1)

Since UZ@ ¢ P a), the set Sg, \ P, = S((Llfl) \Pg@ contains at least the last

element agl). So P,, # S,

Let X =K'%---xK", so /C[mi] = K for every i € {1,...,n}. The vertices
in each vertex set V(K%) = [m;] have an order. Suppose that the vertex set
V(K) = Uiegr,...ny V(K?) is ordered so that u < v for all u € V(K') and
v € V(K7) for i < j. We construct a simplicial complex K by star deleting K at
each simplex o; Uoy, one at a time, where 0; € S, and o, € Py, 1 <1 <k < n,
(i,k) # (1,n). Let K denote the resulting simplicial complex.

Lemma 3.6. For any i € {1,...,n}, the set P,, is non-empty.

Proof. If p; = 0 and f—jo(lC) # 0, then K is a disjoint union of at least two
vertices. For any v,w € K, vNw =0 =v\ v. Hence w € P,. Alternatively let
pi > 0. Since a; € HP(K,) is non-zero, there is a non-zero cycle z € C,, (K ,)
such that a;(z) # 0. Let z = ZTESx c- A, with non-zero coefficients ¢, and p;-
simplices 7. Let 0 € Sy, N Sy. Let 0: Cp, (Kj,) — Cp,—1(Ky,) be the boundary
homomorphism. Since x is a cycle and A, # 0, for any vertex v € o there
exists a different simplex 7 € S, with ¢ \ v = o N7 = 7\ u for some vertex
u € 7. Hence for any o € S,, NSy, 7 € P, and so P,, is non-empty. O

Example 3.7 (a). Let K! be the disjoint union of two vertices {1}, {2} and K2
the simplicial complex in Figure 5a. The join IC! % KC? is homotopy equivalent
to S? v St Let oy € HY(K'), az € H°(K?) be represented by the cochains
ap = Xy and as = X3 + X4 + X5, respectively. Then S,, = {{1}}, and S,, =
{{3},{4},{5}}. Following the construction above, for oo = {3} there is only
one choice of a vertex v = 3. Then Pg3y; = {{4},{5},{6}} so St(é) = {{3}} and
Py, = P3y. The simplicial complex

K= Sd{l,ﬁ} Sd{1’5} Sd{174} Kl * ICQ

is shown in Figure 5b. Since K is contractible, the cup product a;as is trivial.
(b). In addition to K and K2 in Part (a), let K3 be the disjoint union

of two vertices {7},{8}. Let as € H°(K3) be represented by as = X;. Then

10



Sa; = {{7}} and P,, = Pg7y = {{8}}. By Construction 3.5, we star delete
KL% K2xK3 at 0;Uoy, for every o; € S,, and oy, € P,, fori=1,2and k =i+1.
Since S,, = {{3}, {4}, {5}}, we obtain the simplicial complex

K:/ = Sd{5,8} Sd{478} Sd{g)g} Sd{1’6} Sd{1,5} Sd{1}4} ICl * ’C2 * IC3.

The full subcomplex K3 , 5 6 7 5 is shown in Figure 5c. Theorem 3.17 will show
that there is a non-trivial triple Massey product in H*(Zx/).

6@

4

(32 The simplicial complex
K

(b) K after star deletions at ()

ter star deletions at

Figure 5

Lemma 3.8. The simplicial complex K is independent of the order of simplices
n Py, .

Proof. For any oy, 0}, € Py, , we have (0; Uoy) N (0;Uoy,) # o; Uog, 0, Uoy. So
by Lemma 3.2, the order of F,, does not affect K. O

Lemma 3.9. The simplicial complex IC is independent of the order in which
the pairs {i,k}, 1 <1i < k < n, are chosen.

Proof. Let {i1,k1} and {i2, k2} be two pairs of indices. For 1 < i; < k; < n,
j=121let 0;; € So; and op; € P, . The intersection (04, Uog,) N (04, Uok,)
is empty since the vertices of any o; € S,; are a subset of J; for every j €
{1,...,n} and (J;, U Jg,) N (Ji, U Jg,) = O. Therefore by Lemma 3.2, we can
star delete at simplices o;, U oy, and simplices o;, U oy, in either order. O

Lemma 3.10. In Construction 3.5, the simplicial complex K depends on the
order of simplices in Sg, .

Proof. Suppose that oy, € Sq,, 0}, € Py, andlet 0; € Sy, forani € {1,...,k—1}.
If o, € Sa, N P,,, then either o}, > o, or o), < oy, in the order of simplices in
Sa, - In the first case, o}, € P,, so we perform a star deletion at o; Uoy,. If there
is no simplex o} € S,, such that o}/ > o} and o}, € Py, then oy & Py, So
oiUoy € K and 0; U oy, ¢ K. In the second case, if the chosen vertex vy € oy,
is such that o}, \ vpr = oy \ vk, then oy, € P,,. Since o}, < ok, o € P,, and
therefore o; U oy, ¢ K. Hence K is different in the two cases. O
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Lemma 3.11. The choice of vertex v,, € o affects the number of stars dele-
tions performed in Construction 3.5.

Proof. We demonstrate this with an example. Consider the join ! x K2 % K3 of
three simplicial complexes. Suppose that K? is the boundary of a tetrahedron on
the vertices 1,2,3,4. Also suppose that as € C1(K?) is X123 + Xa34. We fix the
order on S,, = {{1,2,3},{2,3,4}}. First let vf193y =3 € {1,2,3} and vyo34} =
2 € {2,3,4}. By definition, Pfa3y = {0 € K? | o is a l-simplex and o N
{1,2,3} = {1,2,3} \ vpi2sy} = {1,2,4}. Similarly Ppogsy = {1,3,4}. There-
fore P,, = {{1,2,4},{1,3,4}}. To construct K from K! * K2 x K3, we perform
[Sarl|Pas| + [Sasl|Pas| = 2|Sa; | + [Sas||Pas| star deletions.

Compare this to the case when vijo3y = 1, so Pyio3y = {2,3,4}. Since
{1,2,3} comes before {2,3,4} in S,, and Sa, \ Pri23y = {1,2,3}, Pa, = Pp123) =
{2,3,4}. In this case, to construct K we perform |Sy, |+ |Sa, || Pas| star deletions.
Since S,, and P, do not depend on w23y Or vy234}, this is fewer star deletions
than when vy93y = 3. U

We will prove that the Massey product {a, ..., a,) C H*(Zx) is non-trivial
in several steps, first showing that it is defined.

Proposition 3.12. Let K be a simplicial complex constructed in Construc-

tion 3.5. Then (aq,...,an) C H*(Zx) is defined.

Proof. Let a; = Y, 5 €, X5, be a representative cocycle for a; € HPpi (KJ,)
foreachi e {1,...,n— 1l}. We construct a defining system (a; ) for the Massey
product (aq,...,ap,) C HPrETPatliU-Unl+2(Z,)

For 1 <i <k < n, (i,k) # (1,n), let a;, € CPiTFPe(K . (..0g,) be the
cochain given by

Qi) = Z Z S Z Co; -+ Coy, 91‘)/C XUI.U...ng\(viﬂu...uw) (32)

Jiesf‘i ai+16§ai+1 O'kegak

where S,, = S,, \ Pa,, vertices v; = vy, € 0; are fixed, and 6; , =1 when ¢ = k
or otherwise

0. _(_1)k—i+‘v]iI(Pi+1+'“+pk)+‘tli+1‘(pi+2+“‘+17k)+“'+‘¢]k—1‘Pk
i,k —

~€(Ui+1,()’1‘+1)...E(Uk,dk). (33)

For any o; € gai and oy, € gak, o;Uo € K and so o;U- - -Uoy \ (vi41U- - -Ung) €
K. Since every coefficient ¢, is non-zero and each X, ...uo;\ (viy,U---Uvy) 18 @
different basis element of C?i Pk (I . ,...uz, ), the cochain a;  is not trivial.

We will verify that d(a; ) = Zf;lﬁ - @ry1,,- By the definition of the
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coboundary map,

d(a; k) g E g Coy - Cap Ok

oi€5, i 01+1€S‘1i+1 Jkeg"'k

Z E(.jaj UoiU---Uoy \ (Ui-i-l u---u Uk)) Xon'iU»--Uak\(vi+1u---ka)
jeB
(3.4)
where B is the set {j € J;U---UJg \ (0;U---Uoy \ (vig1U---Uwyg)) | jUo; U
~Uok\ (041U - -Uvg) € K}. First we show that the only non-zero summands
are when j € v;41 U---Uwy. For fixed oy, ..., 0k, suppose that there is a vertex
je JiU---UJg\ (o0;U---Uoyg) such that jUo;U---Uog \ (vip1 U---Uwg) € K.
So j € vit1 U---Uwg. Consider two cases, either j € J; or j € J; \ oy for
lef{i+1,...,k}
(i) In the first case, j € J;. By the definition of the coboundary map and

since a; is a cocycle,
)= > ¢ > e(ijuo)Xu =0.
0€Sa, JE€J\V (o)

We extend this sum by taking the union of each j U o with o;41 U~ - Uoy \
(Vig1 U Uwyg). Since o7 ¢ Py, forevery l € {i+1,...,k}, jUoc Uiy U---U
o\ (Wig1 U---Uuwyg) € K for any jUo € Kj,. Hence

Y e Y. e jUocUoii U U\ (vigr U-- Ung))-

: XjUO’U(Ti+1U"‘UU}C\(U@+1U“'ka) = O

(ii) In the second case, j € Jy forl € {i+1,...,k},s0 jUo; \ v, € Ky, and
hence jUo; \ v € P,, C P,,. By Construction 3.5, o; UjUo; \ v; ¢ K. Hence
jUoiU - Uop \ (041U Uwg) ¢ K forany j € J;U---UJg \ (v U+ - Uovg).

Since the only non-zero summands in (3.4) are when j € v U -+ U vy,
d(a; 1) reduces to

az k: E § : E Co; - Cak i,k"

0i€Sa; 0'l+1ESai+1 O'kESa,C

Z E(jajUUiU' . 'ng\(vi—i-lu' . 'ka)) XjUO'iU---UO'k\(Ui+1U--'ka)'

jEleu---ka\
JUo U Uok \ (vir1U--Uvg ) EX

Denote j € v41 U---Uwy by vy for r € {i,...,k — 1}, and rewrite d(a; ) as

d(a; 1) Zalk Z Z Z Cos - Cop®

r=i 0i€Sa; Uz+1€Sai+1 akegak (35)
E(UTJrl,O'iU~-~U0'k\(U¢+1U~-~U1A}T+1U---U’Uk))-

: XO'iU'"UUk\(Ui+1U'"U'ﬁr+1U"'UU]C)

13



where 0,41 denotes that v,11 is deleted from the sequence v;41, ..., vg.
To show that d(a; ) = Zf;zl Qir - Q(r41),k, We Write out a;, and a(41) S0
k_l pr— .
that > =) @iy - agrgy e 18

k-1 o
1+deg(a;
E (_1) glasr) E E T E Ci,r Xa'iu~~-U0T\(vi+1U---U7JT)
r=i 0i€5a; 0;41€84,,,  0rESa,
E E e § Cr+1,k XarJrlU~~-Uak\(vr+gu---U'uk)
Or41€85a,. 44 UT+QE§QT+2 ake§ak

where ¢;, = Co,...C5,. 0;py and cr11 1 = Co,py - Cop Org1,k. For any o,.11 €

Sarir \ Sa,.., by definition 0,11 € P, ., and o; Uo.p1 ¢ K. Therefore

(JiU-~-UgT\(vi+1 U Uv))U(oppr U~ Uog \ (Vg2 U---Uwyg)) € K only

if 0741 € S4,,,- Then by expanding the above expression and using the sign
k—1— .

from Lemma 2.2, > "/ @ - a(rq1) k18

kil Z Z Z (_1)1+Fg(aim)+\JiUwUJrl(pwrl+"'+Pk+1).

r=i ”1€S“i 0'i+1€§a O'kegak

(3.6)
it+1
: Co'i o Co'k 9i7T 9T+1,]€ Xo'iU~~-U0'k\(Ui+1U~--U’LA)T+1U“-U’U)€)'

Since deg(a; ) = |J; U+ UJp| +p;i + -+ +pr + 1,

(_1)1+dTg(ai,T)+\JiU~-UJT\(pr+1+---+pk+1) _ (_1)(177‘,-‘1-"'+Pr)+|J1',U‘"UJT|(pr+1+"'+Pk).
We next prove that (3.5) is equal to (3.6) by showing that

ei,k E(UT+1,UZ‘U"'UU]€\(U¢+1 U"'Uﬁr+1 U“'U’U/C))
— (71)(pi+"'+p7~)+|Jz‘U"-UJrl(p'r~+1+"'+pk)01_77, i1k (3.7)

Since

0;, = (_1)7"—i+\J11|(pi+1+"'+pr)+"'+\Jr71|pT 5(

)

Vit1,0i41) - €(Up, 0p)
and
O i1 = (_1)k*T*1+"]r+lI(pr+2+'“+pk)+“'+|']kfl|pk e(Vpto,0p42) - (vk, k)
the right hand side of (3.7) becomes
(_1)k_i_1+(1777+"'+p7‘)+|*]7?‘(pi+1+"'+pk)+“]i+l|(p71+2+'“+Pk)+“‘+|Jk—1|Pk

ce(Vig1,0i41) - - €(Up, 01)E(Vp g2, Org2) .. E(V, OF).
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This is simplified as
(—D)PH et e (v, 0041) ik (3.8)

Next consider the left hand side of (3.7). For any r € {i,...,k—1}, suppose
that v.11 € 041 is the lth vertex in the vertex set of o; U---Uoyg \ (vi41 U---U
Op41 U---Uwg). Then by (2.2),

(g1, 0 U Uop \ (0ig1 U--- U  U---Uwy)) = (=1)1 L
Since v,41 € 041, [ is given by
l=loi| + (loixa| = 1)+ + (lov] = 1) + lr 11

where ;1 is the position of v,11 in o.41. Since |o;| = p; + 1 for every i,
l=i+1)+piy1+- -+ pr+ 41, and hence

€(UT+1, o;U-- 'UUk\(Ui+1 U-- 'U@T+1 U-- 'ka)) = (_1);071+'~~+pr+1 8(’UT_|_17 UT+1).

(3.9)
Thus (3.7) may be rewritten as (—1)Pi T +PrT1 g, . e(v,41,0,41), which is equal
to (3.8). Hence (3.5) is equal to (3.6) so d(a; ) = Zf;;ﬁ “ G(r41),k, Which

proves that (a; ) corresponds to a defining system for (aq,...,ap).

We aim to show that the constructed n-Massey product (g, ..., q,) is non-
trivial. We build a cycle z € Cp, 4. 4p,+1(Ksu..us,) and show that for any
[w] € (a1,...,q,) there is a cycle 2’ homologous to x such that w(z’) # 0. This
will conclude that [w] # 0.

Construction 3.13. Fix 01 € S,,, 0; € §a =S4, \ Py, for 2 < i < n and
on € P,,. Since a; € HP*(K,) is non-zero, there is a cycle z1 € Cp, (K, ) such
that ai(x1) # 0. We write the cycle z; as

Tr1 = E CglAC;l
G1€Sz,

for a collection of p;-simplices S, C Kj and non-zero coefficients cz,, where
A, is a basis element of Cp, (K, ).

After the star deletion of o9 U o, the boundary complex 9(oqy U 0y,) is
contained in K. Let z2 € Cp,4p, (0(02 Uoy)) be the cycle

T = § Cwsy AO’zUO’n\’IUQ

woEoaUo,

for vertices we € o9Uo,, and non-zero coefficients c,,. Similarly for 3 <i < n—1,
let x; € Cp,—1(0(0;)) be the cycle given by

Ty = § Cw; Aai\wi

w; €T
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for vertices w; € o; and non-zero coefficients c,, .
Let xz € Cp1+...+p"+1 (KJlLJ-”UJn) be the chain

xTr = E E E “ee E C(}l ng e C'wn—l .

G1€8y, w2€02U0y w3Eos Wn—-1€E0n—1

. A&lUcrgu---Uan_1Uan\(w2U--<an_1)-
Let S, be the support of x, consisting of simplices
c=61UoaU---Uop_1Uop \ (waU---Uwy_1) (3.10)

for a pi-simplex 61 € S;,, and a choice of vertices wa € o9 U 0y, w; € oy for
3<t<n—1.

Lemma 3.14. The cochain € Cp, 4. +p, +1(Kju.-00,) 18 a cycle.

Proof. We show that x is a cycle by explicitly calculating 9(x). By the definition
of the boundary map,

o(z) = Z Z Z e Z Za(v,a) C51Cws """ Cuy 1 Do\

5165,51 woEogUo, w3z€Eo3 Wp—1€E0n—1 VET

where o € S as in (3.10). Since 61 C Jy, 0; C J; for 2<i < n,and J;NJ; =0
for i # j, any choice of vertex v € o is contained in a simplex 61 or o; for
2<i<n Ifveay,then e(v,0) =¢(v,51). Also if v € o; for ¢ > 1, then

(=P * e(v,02) if wy € 0y, and @ = 2,
(v, 0) (—1)prtFPicat2 g(y o\ w;)  if wy € 0y, and i > 2,
e(v,0) = . .
(—1)prttPaaitl o(y gy) if wy € 09 and 7 = n,
(=1)

1)prt-Fpioit1 5(11,0'1‘ \ wl) ifwy, €09 and i <n

where @; = w; for 1 < i < n, and W, = wy. We rewrite d(z) as
n
8(;17) = Z Z Z Z Z Z E('U,O') C51 Cwsy "'Cwn,lAa\v
G1€Sy, w2€02Uoy w3€ET3 Wn—1€0p—1 =1 vEF;\W;

where &1 \ @1 = 61 and &; = 0; for i > 1. Let A,\,|; denote the restriction of A\,
to its vertices in J C V(K), where V(K) is the vertex set of . Then

RN D S S

G1€Sg, w2€o2Uon w3Eoy Wp_—1€0n—1

YooY e,0) coicunCuny (Aovui) Doy ionas)

i=1 ved;\w;

We rearrange 9(z) into four sums, one in which v € &1, another for v € o2 U oy \ w2,
and two more when v € o; \ w; for 3 < ¢ < n — 1 where either ws € o2 or w2 € os.
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Then expanding (v, o), d(x) is

DR DR T

wo€ogUoy, wz€og Wp—-1€07—1

Aovwvoornn) | DL D ew,61) oy (Dovurn) | +

G1E€Sy, vEFL

DD Y CerCug e Cup ()PP A e s, )

616511 W3ET3 Wp_1€0,_1

Z Z 5(”702 UUTL \w2)cw2(Ad\v\J2UJn) +

wa€ogUon vEogaUoy \wa

T SED DED DTS S

&165’11 woEog W3EOTS Wy _1€E0p_1
n—1
cepi_1+1
Z(_l)m+ +pi—1+ (Agvolv s, Z e(v,0i \ wi) (Ao\o|g;) +
i=3 vET;\w;
5 50D i) DRI DR
G1€Sy, w2€0y W3ET3 Wp—1€0n—1
n—1
i1 2
Z(il)pﬁ +pi—1+ (Apvolv oy, Z e(v, 00 \ wi)(Ao\o|g;)
i=3 vET; \w;

Each sum can be written in terms of d(z;), that is,

d(z) = Z Z T Z Cwy *** Cu_y (Ao vons ) O(@1)+

wz€02Uon w3zE€ogy Wn—1€0p—1
+ E § E Co1Cwg "+ Cupy 1

61€Sq; w3€o3 Wn—1€0n_1

p1+p3-+pp—1+1
(1) " A\ v\, ) O(2)+
n—1 —

+ E E E E E E Co1Cwsy "+ Cuy "+ Capy_q

G1E€Sy, w2€02 1=3 w3€o3 w; €0 Wy 1€0, 1

()PP A v o) O@)) +

—

Y S S S S nicun e Cun

G1€Sy, w2€op i=3 wz€os w; €Eo; Wy 1 €01
Pit P 142
((=nm Ay o) 0(i))
where ~ denotes omission. Since d(z;) = 0 for every i, z is a cycle as well. O

Example 3.15. Let K be the simplicial complex in Figure 6a, where the sim-
plices o1 Ua}h, 0oUc% were star deleted and S,, = {01}, Sa, = {02}, Sus = {03},
P,, = {04}, P,, = {04}. The cycle z is supported on simplices of the form

0:5'1U02U0'é\(’w2)
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where &7 is either o1 or of and wy € o3 U g}. Therefore S, contains o1 U o,
oy Uog, oy Udh and o1 U o}, as shown in Figure 6b.

If aq = X,, € CO(ICUI,UQ, ag = X,, € C’O(ICU%U&) and a3 = X, €
CO(ICU&UQ’), then the rest of the defining system constructed in Proposition 3.12
is @12 = —X4, and ags = —X,,. The associated cocycle to this defining system
is

w = *X0'1Ua'3 - X0'1Ua'2-

There is exactly one simplex o1 Uos = S, NS,. So by evaluating w on z,

w(z) # 0.
03

!
03

(a) A simplicial complex K constructed
by star deletions at o1 Ua’é and oo U o'g.

(b) The cycle z.

Figure 6

Proposition 3.16. The n-Massey product {(aq,...,can) C H*(Zx) is non-
trivial.

Proof. For any [w] € (ai,...,a,), we consider a corresponding cocycle w €
CPittPat (K, . uy, ) with the cycle x from Construction 3.13 and aim to
show that S,, NS, contains only one simplex. This implies that w(x) is non-
zero, and therefore [w] # 0.

First we define a subcollection of simplices in S,,. Let (a; ) be any defining
system of (a,...,a,). Let Sy, be the support of a; ;. so that

Qi = E CO'XO'

0€Sa; 1

for non-zero coefficients ¢, € k. The image of the coboundary map is a
cochain obtained by adding a vertex to the simplices in S,, ,. Since d(a;x) =

k—1— . .
Y orei Girlri1k, for any o, € Sy, and 0,11 € Sq,,,, there is a simplex
o € Sg,, and vertex w; € oy, U opp1, such that ¢ = oy, U opprp \ 4.

We extend this principle to say that there is a simplex ¢ € S,, such that

2,n
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oc=o0yU---Uop\ (ugU---Uup_q) for o; € §ai = S, \ P,, and vertices
u; € oo U---Uoy, for 2 <7 < n, u; # u;. Let w be the associated cocycle for
this defining system,

w = Z cr Xy

TES,

for non-zero coefficients ¢, € k. The support of the first summand a@jas, of w
contains a simplex of the form

T=01UoaU---Uop_1Uop \ (ug U+ Utp_1) (3.11)

for o1 € Sq,, 0; € §ai and vertices u; € o U--- U, for 2 <1 < n, u; # uj.
Hence 7 € S,,.
We compare the simplices 7 € S, in (3.11) and ¢ € S, in (3.10) where

o=01UoaU---Uog,_1Uo, \ (weU---Uwy,_1)

for 51 € Sy,, 05 € Sy, fori € {2,...,n— 1}, o/, € P, and a choice of vertices
we € g Uoy, w; € 0 for 3 <i<n—-1 Foro €95, and 0; € §ai for
2 < i < n, the simplex 01 U---U o, € K was not removed by star deletion
in Construction 3.5. Both 7 and o are (p; + - - + pn + 1)-dimensional faces of
oy U---Uoy,. If there isno 7 € S, and o € S, such that 7 = o, then there is
a cochain b € CP1 P (K) whose support consists of (p; + - - - + p,, )-simplices
contained in o1 U --- U o, and the support of d(b) contains both 7 and o. Let
W' = w + crcqp),0d(b) where ¢, is the coefficient of 7 € S, and cq),o is the
coefficient of o € Sy). Then S,/ contains o and does not contain 7. Therefore
o € S, NS;. However there could be other simplices in S, NS, that cancel,
so we cannot conclude that w’(z) is non-zero. To resolve this, we change the
representatives of [w] and [z] so that there is only one term in their evaluation.

Suppose that there is 7/ € S,y NS, 7 # 7'. If lkie(7') # 0, then there is
a (p1 + ...+ pr + 2)-dimensional simplex A € Kj,...us, containing 7/ in its
boundary. Suppose that S, does not contain an additional face of A. Then
replace x by z’, where the simplex 7/ € S, is replaced by the (p; +...+pr +1)-
simplices in 9(A) \ 7/ to form S, as illustrated in Figure 7. Therefore 2’ is the
cycle x — ¢, (v, A) (A 4), where ¢,/ is the coefficient of the summand A,/ in
x, v is the vertex such that v U7’ = A, and e(v, A) is the coefficient of A, in
O(A4). Thus [z] = [2'] and 7/ ¢ S, N Sy

Alternatively, suppose that lki(7') = 0, or lk(7') # 0 and S, contains
an additional face 7”7 of A. Since z is a cycle, there is another simplex ¢ #
7/ € S, such that 7/ Nt # 0 (as shown in Figure 7c). Let w” = w' — ¢;r e(7'\
7' Nt, ") d(X;nt) where ¢, is the coefficient of the summand X,/ in w’ and
e(r'\ 7' Nt,7’') is its coefficient in d(X,n). So [w”] = [w'] and S, contains ¢
but S,,» N S, does not contain 7’.

By this process of replacing simplices in the intersection of the supports
one-by-one, we obtain a cocycle w’ € CP1T-+Patl(kC; ;) and a cycle 2’ €
Cpr+..Apnt1(Kpyu.0g,) such that [w'] = [w], [#'] = [z] and S,y NSy contains
only one simplex. Thus w’(z") # 0, and so [w'] = [w] is non-zero. O
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P
/ A - /\\A
7/

° [ ]
o o o o (c) There is a simplex t € S,

(a) The cycle (b) The cycle z’ tl/lat shares a boundary with
-

Figure 7: If the link of 7/ is non-empty, then the cycle z can be changed to z’

By combining Propositions 3.12 and 3.16, we have proved the main theorem.

Theorem 3.17. Fori € {1,...,n}, let K be a simplicial complex on [m;] that
is not an (m;—1)-simplex. Then there exists a simplicial complex K, obtained by
performing star deletions on KC' % --- % K™, with a non-trivial n-Massey product
in H*(Z2x). O

Example 3.18. For i = 1,2, 3, let K’ be the simplicial complexes as in Exam-
ple 3.7 and let

K= Sd{5’8} Sd{4’8} Sd{g}g} Sd{Lg} Sd{1’5} Sd{1’4} /Cl * K:Z * /Cg.

Suppose that a; = X; € C°(K1), ag = X3+X4+X5 € C°(K?), a3 = X7 € C°(K3).
Then So, = {1}, Sa, = {{3}, {4}, {5}}, Sas = {{7}} and P, = {4,5,6},
P,, = {8}. The rest of the defining system constructed in (3.2) is

ai2 = 012X1 = = X1
az3 = 023(Xs + Xa + X5) = —(X3 + Xa + Xs).

The associated cocycle w for this defining system is
w = —Xl(Xg + X4 + X5) — X1X7.

Therefore w € C*(K) evaluates non-trivially on the 1-cycle z = A3y —Ape3+
Ag2,8y — Aq1,8y- Another defining system could have a’273 = Xg + Xg + X7. Then
the associated cocycle w’ for this defining system is given by

W' =X1(Xe + X7+ Xg) + —X1X7 = X17 + X185 — X17 = X1s.

Thus w’ also evaluates non-trivially on z. By Proposition 3.16, the associated
cocycle of any defining system evaluates non-trivially on some cycle. Hence
([a1], [a2], [as]) € H'(Zk) is a non-trivial Massey product.

Two particular examples of Theorem 3.17 are the families of Baskakov and
Limonchenko.
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Example 3.19 (Baskakov’s family [5]). For i = 1,2, 3, let K¢ be a triangulation
of a (n; — 1)-sphere on [m;]. Let o1 € K, 09,04 € K?, 03 € K? be maximal
simplices such that o9 and o} are adjacent, that is, there is a vertex vy € K2 such
that (03 N oh) Uvy = ob. Similarly, let o} € K3 be a maximal simplex adjacent
to o3 so that there exists a vertex vy € K3 such that (o3 N o%) Uwvsy = o}.
Let a1 = X5,, a2 = Xo,,, and a3 = X,,, be cocycle representatives of a; €
H™~Y(K?) for i = 1,2, 3. Baskakov [5] constructed K/ = SS{01,05} {05} K *
K2 % K2 and showed that (a1, as, a3) is a non-trivial Massey product in H*(Zx)
where K is the restriction of K’ to the vertex set [m;] U [ma] U [ms]. Since
K =5d{0,,0,} 8d{0s,05) K" * K? % K3, Theorem 3.17 recovers Baskakov’s family
of examples of non-trivial triple Massey products in H*(Zx). The simplest
example when KC!, K2, K3 are S° is shown in Figure 8 and its restriction to the
original 6 vertices is in Figure 6a after swapping the labels o3, o3/

[RY 03
09 02
(% 0/2
g1 v‘
g3 03
(a) KL+ K2 % KC3 (b) ss{gl_ay}ss{azme’}lcl * K2 % K2 with

cone vertices coloured

Figure 8: The simplest example of both Baskakov and Limonchenko’s families of non-trivial
Massey products in moment-angle complexes

Example 3.20 (Limonchenko’s family [18]). Let F be a face of a polytope P
and suppose that there is a hyperplane H that does not include any vertices
of P but separates the vertices of F' from the other vertices in P. If Hy, Hs
are the half spaces defined by H and F C Hs, then the polytope PN H; is
called a truncation of P at F. A family of non-trivial n-Massey products is
constructed by truncating the unit n-cube I = I x --- x I as follows. Suppose
that opposite facets of I are labelled F;, Fjs for [ = 1,...,n. The boundary
of the dual K = K= = 9(I™)* is the join of n copies of S, for example K;s is
shown in Figure 8a. To create a non-trivial n-Massey product, Limonchenko [18,
Construction 1] truncated I™ at the intersection of facets F; and Fys for 1 < i <
k< m, (i,k) # (1,n). For example see Figure 9. These truncations correspond
to stellar subdividing Ky» at the edges o; U oy, where oy, 0 € Kyn are the

21



(—Fll

FQ/ —

N Fy

Figure 9: A 3-cube truncated at the faces F} N Fy/ and F> N F3/, which is dual to Figure 8b
with the labels 03, 03/ swapped.

vertices that are dual to the facets Fj, Fyr in I™. Let K be the restriction
of the stellar subdivided complex to the 2n vertices o;,0p for | = 1,...,n,
and let o; be the generator of H O(IC(,N,Z,). Limonchenko showed that the n-
Massey product {aq,...,a,) C H*(Z)) is non-trivial. Since this construction is
recovered by star deleting Kj» as described in Construction 3.5, Theorem 3.17
gives an alternative proof that (a1, ..., ,) is non-trivial.

Theorem 3.17 does not just give alternative proofs of existing results about
non-trivial Massey products in the cohomology of moment-angle complexes, it
creates non-trivial n-Massey products from any non-zero cohomology classes
supported on a full subcomplex of any simplicial complex C*. Therefore there
is no limit on n or the dimension of the classes ;. Using this construction it is
also possible to construct Massey products on torsion elements.

Example 3.21. Let K! be a triangulation of RP? on 6 vertices as in Figure 10.
Let K2, IC3~be copies of two disjoint vertices labelled 6,7 and 8,9, respectively.
Let oy € H?(K') be represented by Xg12. For i = 2,3, let a; € H(K?) be
represented by as = Xg and ag = Xg, respectively. By Construction 3.5, P,, =
{{7}} and P,, = {{9}}. Then let

K= Sd{0127} Sd{ﬁg} ’Cl * ’C2 * IC?).

By Theorem 3.17, there is a non-trivial triple Massey product (i, as,as) C
H'(Zx). This is the smallest example of a non-trivial triple Massey product
on a torsion class since K! is the triangulation of RP? on the least number of
vertices. _ _

Since « is the generator of H2(K!) = H2(RP?), o is a torsion element. The
associated cocycle for the defining system constructed in (3.2) is w = —Xg126 —
Xo12s € C3(K). The corresponding class [w] € (i, as,a3) is not a torsion
element in H'4(Zx).

Also, there is a cochain a’LQ = X126+ X124 — X147 — X347+ X037+ X027 such that
d(aj 5) = Xo126 € C3(Ko1234567), which is different to a1 2 constructed in (3.2).
The associated cocycle to this defining system is w’ = —Xg126 + X1268 + X1248 —
X1478 — X3478 + Xo0378 + X278 With [w’] # 0 and [w] #+ [w']. Therefore <Ot1, a2, 043>
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has non-trivial indeterminacy. In particular, the indeterminacy is given by a; -
H°(Ke780) + a3 - H*(Kor23aser) = a3 - H*(Ko123aser), where H? (Koiasaser) = Z.

Figure 10: A 6-vertex triangulation of RP2.

We also extend Construction 3.5 by allowing more general star deletions in
order to construct more non-trivial Massey products. These often only require
a difference in the technical details of the proof of Theorem 3.17 and do not
change the nature of the construction. For example, if ? is the disjoint union
of two vertices {7} and {i'}, then let K be the simplicial complex that is obtained
from KC! * K2 % IC3 * KC* by the sequence of star deletions

Sd{174} Sd{114/} Sd{1/14/} Sd{214} Sd{r_,/A/} Sd{?,‘l,} Sd{l,B} Sd{1/13/} Sd{l,S’} Sd{3‘4/} Sd{2y3/} Sd{1,2’}'

This is a full subcomplex of the icosahedron Z as shown in [3, Theorem 4.6].
Also, no obstruction graph from the classification [12, 15] is a full subcomplex of
Z. In [3], this example is given in order to demonstrate a non-trivial 4-Massey
product of lowest-degree classes in H*(Zz) where there are no non-trivial 3-
Massey products of lowest-degree classes in H*(Zz).

Let us consider another example of more general star deletions. Suppose
we have a simplicial complex K with n > 3 disjoint subsets of its vertices
J1, ...y Jn C V(K) such that there are n non-trivial classes a; € HPi(Ky,).
Limonchenko [20, Lemma 3.3] showed that if a Massey product (aq,...,a,) C
H*(Zx) is defined and HPi+ 75 (K, ..uy) = 0 for every 1 < i < k < n,
(i, k) # (1,7n), then the Massey product has trivial indeterminacy. The following
example shows that this is not a necessary condition for trivial indeterminacy.

Example 3.22. For i = 1,2,3,4, let K’ be the disjoint union of two vertices
J; = {i,i'}. Let K be a simplicial complex obtained by Construction 3.5 with
an additional star deletion at the edge {1’,2'}, that is,

K= Sd{2’4/} Sd{Lgl} Sd{3’4/} Sd{2’3/} Sd{l/’gl} Sd{l’z/} ’Cl * IC2 * IC3 * IC4.

For each 1 < i < 4, let a; = X; € C°(Ky,) and set oy = [a;] € H°(Ky,). The
star deletions at {1,2'} and {1’,2'} imply that any cochain a5 € C*(K,u,)
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such that d(ay 2) = @yas is of the form
a2 = —X1 + Cl(Xl + X1 + Xg) + C/1X2’

for any ¢q, ¢} € k. However, a cochain ay 3 such that d(a13) = aras 3 + a1 2a3
is only defined when ¢} = ¢;. Thus, any defining system for (ay, s, a3, aq) C
H*(Z) is of the form

ar 2 = —X1+c1(Xa + Xor + Xo + Xor)
a3 = —Xg + ca(Xa + Xor + X3 + X3/)
asga = —Xg + c3(Xs + Xgr + Xg + Xo/)
a1,3 = —(ca — D)Xy + 1 X3 + ca(X1 + X1/ + X2 + Xor + X3 + X3/)
asa = —(c3 — )Xo 4+ caXy + ¢c5(Xo + Xor + X3 + X3/ + X4 + Xy/)

for coeflicients ¢y, ..., c5 € k. These are the same defining systems we would get
if we had not star deleted K! % K2 % K3 + K% at the edge {1’,2'}. The associated
cocycle w to any of these defining systems is

w = 7X14/ — d(Xl) + ng(Xl) — Cld(Xg) + C4d(X4) — C5d(X1)+
+ 8103(—d(X1) — d(Xll) — d(XQ) — d(Xg/)).

Thus, (a7, as, a3, a4) = [w] = [—X14] and hence this Massey product is non-
trivial and has no indeterminacy. However, the star deletions at {1,2'} and
{1,2'} imply that H°(K;,uys,) = Z # 0. Therefore this is an example of a
non-trivial Massey product with trivial indeterminacy that does not satisfy the
conditions of [20, Lemma 3.3].

3.2. Infinite families of Massey products with non-trivial indeterminacy

In the last example, we saw that doing Construction 3.5 followed by an
extra star deletion at {1’,2'} produced more choices of cochains a; 2 such that
d(a1,2) = @raz. We extend this technique to create the first infinite families of
moment-angle complexes with non-trivial Massey products that have non-trivial
indeterminacy. These are the first known examples of non-trivial indeterminacy
in n-Massey products in H*(Zx) for n > 4.

The idea in Construction 3.5 was to create a non-trivial Massey product
(a1, ..., ap) by defining two sets of simplices S,,, P,, for each 1 < ¢ < n and star
deleting the join of n simplicial complexes at the simplices o; U o}, for o; € S,,,
o), € Py, 1 <i<k<mn,(i,k) # (1,n). A star deletion at o; U o}, made the
Massey product (o, ..., ax) trivial by allowing us to define a cochain a; j such
that d(a; 1) represents a (trivial) class in the lower Massey product (o, ..., ax).
Supposing that (aq,...,ax) has non-trivial indeterminacy, we construct inde-
terminacy in the higher Massey product {aq,...,a,) by making more than one
class in the lower product {aq,..., ) trivial. In this version of the construc-
tion, we star delete at oy Uo}, for o, € Py, , k # n, and any p;-simplex o1 € K!,
rather than o1 € S,, C K!. These extra star deletions create choices for aik
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in the defining system for (aq,...,a,), and do not affect the proof of Theo-
rem 3.17. We will show that these choices result in non-trivial indeterminacy in
(a1, ...,ap) when n > 2.

Theorem 3.23. Let K be a simplicial complex on the vertex set [m;] that is
not an (m; —1)-simplex, fori € {1,...,n}, n > 2. Then there exists a simplicial
complex K obtained by star deletions on K' -+ x K" such that H*(Zx) has a
non-trivial n-Massey product with non-trivial indeterminacy.

Proof. Since K is not an (m; — 1)-simplex, there is a non-trivial class «; €
HP# (K, ) for J; C [m;]. We will construct two different defining systems for

a Massey product (ag,...,a,) and show that the two associated cocycles are
non-zero and not cohomologous. Therefore this concludes there is non-trivial
indeterminacy in (aq, ..., a,).

Let a; be a cocycle representative for a;. Recall that in Construction 3.5, we
had a set of p;-simplices S,, C K* for each ¢ such that a; = ZoiESa. Co; Xo;. For

any o; € S,,, the set P,, C K! contains all p;-simplices o} € K such that there
is a vertex vy, and 0; \ vy, = 0} \ v,r, Where v,, is a fixed choice of vertex in o;.
We will use these fixed choices of v,, € 0; € S,; and v,/ € 0} € P, throughout
this proof. Also recall the set
P, = Pargl) J---u Pagz)

for 051), e ,02(1) C Sq,;. To define a simplicial complex K so that (aq,...,a,) C
H*(Zj) has non-trivial indeterminacy, we star delete K % --- % K™ at o1 U o},
for every pi-simplex o3 € K! and o}, € P,,, 1 < k < n, as well as at each
o;Uoy, for o; € S, and 0, € P,,, 1 < i < k < n. This is more star deletions
than in Construction 3.5, where we used o1 € S,, instead of o7 € K!. Let
Sap = Sa, \ Pay. If there are simplices o), € S, \ S, for any k, then we also
star delete at o} U oy, for every o) € P,,, i < k. This is for technical purposes,
to ensure that oy € Sy, and o} U oy € K implies that oy, € gak.

We construct two different defining systems for (aq,...,a,). Recall from
(3.2) in Proposition 3.12 that a; € CPtTPr (K .0y, ) for 1 < i < k < n,
(i, k) # (1,n) is the cochain

Qi k= § § t § Coi -+ Coy ei,k XUiU---UJk\(’L}i+1U'“U7jk)

Jies"’i Ui+16§ai+1 O’kegak

where §ai =S4, \ Pa; and 6, ;, = 1 when ¢ = k or otherwise

9. —(_1)k7i+‘*]i|(pi+l+"‘+pk)+‘<]i+l‘(pi+2+"'+pk)+'“+‘t]kfl‘pk
ik —

)

(Vo1 Tig1) - - E(Voy, 0%).  (3.12)

The defining system (a; ) is a defining system for (aq,..., ) by the same
proof as for Proposition 3.12, since neither the simplices o1 U oy, for o1 ¢ S,
and o, € P,,, 1 < k < n, nor o, Uoy, for o, € P,, and o), € (Sa,, \ Sa,), ¢ <k,
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play an active role in the proof. To construct a different defining system, for
any 1 < k < n, let by € CPr+TPr(K 7 (...ug,) be the cochain

bl,k: = Z Z e Z Z 01,k XvG;UUIU---UJk\(vglU-~~ch,k)

Ulesal 0'2€§a2 o-kegak O-QEPUQU"'UPU,C

where 011 = ¢, caka(va/,va UoiU---Uog \ (Vg U+~ Uvy, )01 k. Also let
blk—Oforz;élorz—k;—l soak—alk+blkforalll<z k < n,
(i,k) # (1,n). We will show that (a; ;) is a defining system for (a1, ..., an).

First we check that d(b; ) = Zr:l b17»,«a,7«+17]§, where

dbu)= D > > ) 2. o

01€8Sa, 02650,2 a'kES 0,€P;,U-UP,, JEK  U...uJ,
E(jaj U 'Ualf UorU---Uoy \ (Ual u---u ng)) Xija/_U01U~~»U0k\(valu---Uvak)-

Fix a simplex 7 = vpy Uop U -~ Uoy \ (Ug, U - Uvg) € Sy, . For any
1 < r < k, recall from the definition of P, that since o, € S,,, if there is a
vertex v € K" such that v U (0, \ v,,) € K", then v U (0, \ v5,.) € P,.. Thus
ol = Vg1 U (0 \ v5;) € P,,. Consider the link of 7 in K, ...us,. There is no
vertex v € K1 in this link since if v Uy \ v,, € K1, then (vU oy \ vy, ) U0 & K
because there was a star deletion at that simplex. Similarly, for any r < i, there
is no vertex v,, in the link of 7 because o, Uac; ¢ K. Therefore the only vertices
in the link of 7 are v,/ for 0,» € P, and any r, and v,, for o, € S,, and r > 1.
Consider the summands of d(b;x) when j = v, for o € P, and any
r. I vgr Uvgr Uor U=~ Uy \ (Vs U+~ Uy, ) € K, then the coefficient of
XUGQUUH,TUUIU...UU,C\(Q,”U_..UU%) is the product of ¢, ...cs, 01, and

s(vag s Vgr U1 U - Uok\ (Ve U- -Uvak))a(vglr, Vot Uvgr U1 U- - Uok\ (Ve U- - -Ung,, )+
e(vglr, Vgr Ua1U- - Uog\ (Vo U- - -Uvak))s(vag s Vgt Uy Uo1 U - Uog\ (Vo U- - -Une, ).
(3.13)

First suppose that o}, 0. € K, so o} U Vor, = = o/ Uw,, € K'. Also suppose, without
loss of generality, that v, 1 < Vg in the order of the vertex set of K and that Uy 18

the Ith vertex in o). Slnce Vg1 < Vg1 and €(Vgr, Vor U1 U Uy \ (Voy U+ Uve, ) =
(71)”1*““7’7—15(1;0{,0;) by the definition of ¢ in (2.2), we rewrite (3.13) as
e(vyr, aé)a(v(,;, o U Vo1 ) + €V or)e(vyr, 07 U Vo1 ) =
(—1)'e(vyr,07) — (=1)' ' e(vyr, 07 Uvgr).
Also e(vgr,0%) = e(vyr, 00 U Vo1 ) because v, < Vg, so (3.13) is zero. In particular,
when k =i = 2, then d(b12) = 0. So d(a} ») = d(a1,2) = a1as.

Alternatively, suppose that o} € K, o/. € K" and, without loss of generality, i < r.
By using the definition of € in (2.2), then (3.13) becomes

(71)p1+»~+p1‘,—1€(v647Jg)(il)m+~~~+pr—1+1€(va;70;.)+

(71)P1+~-+pr—1E(ﬂgiﬂ7 U:«)(fl)p1+"'+pi_1€(vg;,01/-) =0.
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Since all of these summands cancel out, we conclude that d(b1,x) only has non-zero
summands when j = v,, for o, € S, and r > i. By rewriting r as r + 1 for
re{l,...,n}and i € {2,...,r}, d(b1,x) is equal to

S Y YY Y e

01€Sa, 02g§a2 gke§ak r=1ol€Py,U--UP,,
.g(’l)o-r+1 , UGQUUJT_H Uo1U- - Ui\ (Ve U- - -Uvg, ) XUU{U“UTJA Uoq U Uo g\ (vary Ur-Uvg, ) -
k2

(3.14)

Since the simplices o U o, were star deleted for o} € P,, and o, € S, \ga,,,, this sum
is the same whether we use Zwe 3, or ZUT es, - Therefore we split this sum into

products so that d(b1,x) = Z’:;ll mar+1,k, by using the fact that

Ql,kg('UorJrlvUU; U’UUrJrl UoirU---Uog \ (UUl U--- U’U"’k)) =
4P| J U U, +-
(1) pr|J1 rl(Prt1 Pk)glm Copiy - - Coplri1 k-

Then

d(aj ) = d(ai ) + d(bik)
k-1
r=1

Hence (aj ;) is a defining system for (ai,. .., on).
The associated cocycle for (aj ) is

k—

1 k—1
— E PV
a1,rQr41,k + bl,rar+1,k - al,rar-&-l,k-
r=1 r=1

n—1

, E
W =w+ E b1,7'a7'+1,n

r=1

where w is the associated cocycle for (a; ). We show that the difference w’' — w is
not a coboundary by constructing a cycle ' € Cp 4. 4p,+1(Ksu...ug,) such that
(w' — w)(z) # 0. We use a similar method to Construction 3.13. Fix o; € S,, for i =
1,3,...,n—1 and fix 0 € P,,. Since it was star deleted, 01 Uo5 ¢ K but the boundary
complex 8(c1 U o) is contained in K. Also, since a, € HP"(K,) is non-zero, there
is a cycle z,, € Cp,, (K,,) such that an(zn) # 0. Define 2’ € Cp, .. 4pn+1(Ksyu-uan)
to be the chain

- Y Yy

w2€o'1Uo"2 w3 €03 Wn—1€Tp—1
E Cuwy " * c’wn—lC6nAdlUU%UUgH»UUTL,lU&n\(wQLL“an,l)
Gn €Sy,
where c5,, are the non-zero coefficients from x,, and cuw,, ..., cw,_, are the coefficients

of cycles in Cp, 4, (0(01 Uas)), Cp, (0(0;)) for 3 < i < n— 1. Every simplex o in the
support Sy of z is a simplex in /C since none of them were star deleted. By an analogous
proof to Lemma 3.14, the chain 2’ is a cycle.

We want to compare the supports S,/ _, of w' —w and S,/ of 2’. The cochain

w —w=3""1b1rari1,n is given in (3.14) when k = n. A simplex o is in S,/_., N S,/
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precisely when wy = vo,, w; = Vo, for3<j<n—-1,r =n—1sothat or41 = 0n € Sz,
and i = 2 € {2,...,r} so that o] = 03 € P,,. Hence S,/_, NS,/ contains only one
simplex, o. Thus (w’ — w)(z) = £X,(A,) # 0. Therefore w’ — w is not a coboundary
and so [w'] # [w].

The proof that {a1,...,as,) is non-trivial is the same as the proof of Proposi-
tion 3.16 since neither the simplices o1 U o}, for 01 ¢ S,, and o}, € Py, , nor o; U oy
for o; € P,, and oy, € (Sq, \gak), 1 < k, play a role so the extra star deletions do not
change the proof. Hence (a1, ..., @) is non-trivial with non-trivial indeterminacy. O

Example 3.24. For i = 1,2,3, suppose K’ is a pair of disjoint vertices labelled
oi,0h. Let a; € H°(K?) be represented by the cocycle a; = X,,. Then S,, = {o;}
and P,, = {o}}. Following the construction in the proof of Theorem 3.23, we
define

K= Sdglugé Sdgiugé Sdg2ugé ’Cl * ’C2 * ’CS.

This simplicial complex is shown in Figure 11. The Massey product (g, s, as3)
is one of the simplest examples of a Massey product in a moment-angle complex
with non-trivial indeterminacy. It is one of the obstruction graphs in the classi-
fication of lowest degree non-trivial triple Massey products in [15]. Since it is a
triple Massey product, its indeterminacy is given by «y 'fIO(ICGQ,,,éﬁ.&Jé) +as-
H° (ICUl,Ui,O'Q,Ué) = Qg - HO(’Col,o"l,dz,ﬂé)'

02

01
/ . !

01 03

Figure 11: A simplicial complex K such that a triple Massey product in H*(Zx) has indeter-
minacy.

4. Massey products constructed by edge contractions

A simplicial homotopy map ¢: K — K induces a map on the cohomology
of moment-angle complexes p*: H*(Z2¢) — H*(Z2x). However, a property of
Massey products [17, Section 2] is that ¢*(&1,...,4,) C (9*(d1),..., ¢ (4n)).
Hence if (p*(41),...,9©*(&,)) has non-trivial indeterminacy, it may be trivial
even if (4q,...,d&y,) is non-trivial.

In this section we use edge contractions ¢: K — K as a simplicial homotopy
operation to construct non-trivial Massey products. Given a non-trivial Massey
product (G1,...,4,) C H*(2¢) with &; € Hpi(leji), Ji # Jj for i # j, we
explicitly construct a defining system to show that {(ay,...,a,) C H*(Zk) is
defined where «; is the pullback of &; along ¢. Then we also show that it is
non-trivial to conclude the main result of this section, Theorem 4.12.
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Definition 4.1. Let K, K be simplicial complexes with an edge {u,w} € K, and
a vertex z € V(K) such that V(K) \ {z} = V(K) \ {{u},{w}}. The simplicial
complex K is obtained from K by an edge contraction of {u,w} if there is a map

ov: V(K) = V(K)
BN for v € {u, w}
v (v) {v for v ¢ {u,w}

that extends to a surjective map ¢: K — K, where o(I) = {¢v(v1),...,¢v(vn)}
for I = {vy,...,v,} € K. The map ¢: K — K is called the edge contraction of
{u,w} € K.

Edge contractions are simplicial maps, but they do not preserve the topology
of K in general. Attali, Lieutier and Salinas [1, Theorem 2] showed that the
homotopy type of a simplicial complex is preserved under edge contractions that
satisfy the link condition.

Theorem 4.2 ([1]). For any simplicial complex K, if an edge {u,w} € K
satisfies the link condition,

Ik ({u}) N ke ({w}) = e ({u, w}), (4.1)

then the edge contraction of {u,w} preserves the homotopy type of K.

Example 4.3. The following is a series of edge contractions that satisfy the
link condition.

— — —

Example 4.4. Without the link condition, the homotopy type of a simplicial
complex under edge contractions can change, such as in the following example.

2
z

—

The links of the vertices {2} and {3} both contain the vertex {1}, but
ki ({2,3}) is empty, so the link condition is not satisfied.

Example 4.5. An edge contraction that does not satisfy the link condition may
create a non-trivial cycle. For example, suppose that K is a triangulation of S?
on four vertices, and let I be a 2-dimensional simplicial complex on 5 vertices
with facets {1,2,3}, {1,2,4}, {1,3,4}, {3,4,5}, {2,5} as shown in Figure 12.
There is no non-trivial 2-cycle in K so H2(K) = 0, but the contraction {2,5} +— z
results in a 2-cycle and H2(K) # 0. In this case the link condition is not satisfied
because lkx{2,5} = 0 but ke {2} N1k {5} = {{3}, {4} }.
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N\, -
N\,

Figure 12

3

We construct cohomological classes in H*(Zx) on which a new pulled-back
Massey product will be defined.

Construction 4.6. Let K be a simplicial complex with a non-trivial n-Massey
product (d1,...,d4,) C H*(Zg). By Hochster’s theorem, every class &; €
H*(Zy) has a corresponding class

&; € H™(K ;)

for a set of vertices J; C V(l@) When (é&1,...,d&,) is non-trivial, the sets of
vertices J;, jj are disjoint for any i # j.

Suppose that there is a simplicial complex K and a series of edge contractions
@: K — K satisfying the link condition. Let the vertices in V(l@) be ordered

and suppose that all of the vertices in ji come before those of J; ;1. For a set
of p-simplices P C K, let

¢, (P)={oc €Kk | |[o|] =p+1and p(0) =6 for 6 € P}.

Suppose that the vertices V(K) are ordered in such a way that for any vertex
o that comes before @ in K, each vertex v € 05 H(0) comes before every w €
@ L) Let J; = ¢ ' (J;) € V(K). Then by the order on V(K), all vertices in
J; come before those in Ji1. Also J; N J; = 0 for any i # j since jl N jj =0
and g 1 () Ny () = 0 for any vertices 0,w € K, 0 # .

Let a; be a cocycle representing &; € HP: (l@,) Let S, be the support of
a;, that is, the set of p;-simplices ¢; € K . such that

&i = Z C&Xa— S Cp1(’€jl)

G€ESa,

for non-zero coefficients ¢5, € k. Define a; € CP*(K;,) to be the cochain

ai:AZ Y. X (4.2)

Since a; is a pullback of @; along ¢, a; is a cocycle and «; = [a;] € HP: (Ky,) is
non-zero.
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Example 4.7. Let K, K 7, be the simplicial complexes as shown below, where
Iﬁji is obtained from Kj, by contracting the edges e; = {2,3} — {2} and

es = {4,5} = {3}. The cohomology class &; € f[l(I@J) is represented by the
cocycle Xg, so let Si, = {é}.

1 1
5 <6
€1
és es 2 é €
€2 o A
4 €q 3 2
3

The contraction of ey satisfies the link condition, since lkg(e2) = lkic{2} N
Ik {3} = {1}. Under the map ¢: K — K, ¢7 ' (é) = {e1,e3}. So by (4.2), a; is
the cochain
ai = Xe, + Xey € CHK ).
0.

This is a cocycle since d(a;) = X{1,2,3y — X{1,2,3} =
For the Massey product {41, ...,4,) C H(pl+"'+p")+‘jlu"“j"|+2(

z.
is a defining system (a; x) for cochains a; € CPit TP (Iéjiu...ujk)’ 1<
n and (¢,k) # (1,n). Suppose that

&i’k: Z C{-Xf' (43)

‘T'ESai ®

), there
1< k<

for simplices 7 € Sg, , C K, j,, non-zero coeflicients ¢ € k. Then

d(aip) = Y o > e(j, U)Xz

T€5a; JEJi U UT\V (%)
is equal to
k—1 - k-1 -
1+d Air ~ ~ J— 1+d Air
d (-~ =y (~1)traesine |y > cociXous
r=i r=i DESa; . NE€Sa,

(4.4)
where ¢ = (—1)1/:Y e lPreat+pe+1) comes from the product of a;r and @k,
as in Lemma 2.2, and (—1)'+dee(@ir) — (—1)Pit-tpr)+lJiU-UJrl YWe use this
defining system to construct a defining system for {(aq, ..., a,).

Proposition 4.8. Let IC be a simplicial complex that maps to K by edge con-
tractions satisfying the link condition. Then there is an n-Massey product
(a1, ..., ) defined on H*(Zx).

31



Proof. For every i € {1,...,n}, let a; = [a;] for a; as in (4.2). We start by
constructing a defining system (a; ) for (oa,...,a,) C H*(Zk), where a; €
CPitFPr (K 5.0y, )- Define

aik = 0i O Z cs Z X, (4.5)

%Es‘ii,k TEW;;F..HFP,C (71)

for S, , and c; € k from (4.3), 0;; =1 = ém, and

= (—=1)Vil@irrtetpe) ()il Piratetpe) (1) e-alpe
W (4.6)

= (-1 [(Pit1+- +pk)( 1)|ji+1|(17i+2+'“+pk) o (_1)|jk—1|17k'
Since 0;;, =1 = ém,ﬂi = a; as in (4.2). We show that d(a; ) = Zf;zl @i rQr ks
where @, = (—1)!Tde8%.rq, . as in Definition 2.4.

Applying the coboundary map to a; x, d(a;x) is

0.k 0 Z ¢ Z Z e(J,J UT)X;ur
ik T€¢;i1+_,_+pk (7) JEJ U UJ\V (1)

=0ix0ix > cr > > (4, uT) jUT)
#€8a; TE€, Ly (F) GETiU-UTi\pg H(V (7))
(4.7)
+0ikbin Y o > > (j,juT) ]UT)
€84, , TE€P iy (F) G€0G H(V(F)\V(7)
(4.8)

For any (p; +- - -+ px)-simplex 7 € S, , and any 7 € 901;:1-5-~~~+pk- (7), first suppose
that there is a vertex j € g ' (V(7)) \ V() such that j U7 € K. Then jUT =
T € <p;il+m+pk+1(7ﬁ') and there is a vertex ¢ € V(1) such that ¢(i) = ¢(j). Thus
jut\i € @;{l’_.“_i_pk (7). Moreover, 4,j are consecutive vertices in V(7) by
the order of vertices in K defined in Construction 4.6, so €(j,7) = —&(i,7).
Therefore (4.8) is zero since all summands cancel out in pairs, that is, for any

T e S{“’k,

Z Z €(jaj UT)XjUT -

TE€PL iy, (B) GEQGH(VED\V (1)

- Z (4, 7)Xs +e(i, 7)X+ = 0.

= —1 ~
T€lh it tpp+1(T);
LIET | w(D)=¢(j)
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Consider summands in (4.7). For any j € J; U---UJ}, \ o5 " (V(7)), v(j) ¢
V(7). So for any simplex j U7 € K with j € J; U---UJi, \ ¢ ' (V (%)), there is
a simplex p(j)UT € K. Therefore any summand in (4.7) has a corresponding
summand in the expression for d(d; ). Hence we rewrite (4.7) as

d(aig) = 0ik ik > o > > e(j,j UT)Xjur
7E€S5a, 4, JEJ; U UJE\V () jUTELP;11+...+pk+1(3U7A')
(4.9)
where, by the order of vertices in K, £(j,j UT) = 5(}',3’ U 7). Since d(a;x) =

k—1% 4 . . . . .
r—; GirQr L, the expression in (4.9) can be written in terms of the expression

in (4.4). Thus d(a; ) is equal to

k-1
91‘);~C éi7k Z (—1)1'*'&(&”)0 Z Z CyCq Z XC
r=i v€5a; . N€Sa, C€<P;;+...+pk+1(ﬁuﬁ)
(4.10)
where ¢ = (—1)‘jiu”'uj"'|(p"'+1+"'+pk+1) comes from the product of a; , and a, j,
as in Lemma 2.2, and (_1)1+deg(&i,T) = (_1)(pi+-~~+pr)+\J1:U~~UJr\.

Any simplex ¢ € <,0;i1+.‘.+pk+1(17 U") is on p; + - - + pg + 2 vertices and so
can be written as v Un for v the restriction of ¢ to its first p; +--- +p,. + 1
vertices, and 7 the restriction of ¢ to its last p,41 + -+ + pr + 1 vertices. Then
ve cp;jﬂ_,,,erT(z?) and n € 90;r1+1+~--+pk (7). Furthermore, élk (fl)Hﬁ(d”) c=
(—1)(pit-tpr) OAW OAHLk. So (4.10) may be rewritten as

k-1
d(a; ) = Z (fl)(pi+---+pr) 0;.k éi,’r‘ ér—i—l,k'
Yo D e > 3 Xuim (4.11)

0€5a; . N€Sa, 4y ), VEP, L, (B) MEQLT oy ()

Comparatively, the product Zf;il(—1)1+dicg(ai’r)ai,rar7k is

k—1
Z (71)1+d7‘3g(ai,r)(71)‘Jiu"'UJr‘(p1'+1+“'+pk+1)0i,r 0

r=1

r+1,k oi,r 9r+1,k'

Z Z Cp Cﬁ Z Z XUUn (412)

ves ﬁesé'v'+1=k l/ELp;i1+”.+pT(ﬁ) W€@;:+l+...+pk (ﬁ)

Qs r

where the sign (—1)I/:YUrl(Preat+prtl) comes from the product of a;, and
ari1k as in Lemma 2.2, and (—1)Fdes(@ir) = (_1)it-+pr)+[JiUULl - Using
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the expression for 6; j in (4.6),

(_1)1+d7€g(lli,r)(_1)\JiU"'UJr|(pr+1+"'+;Dk+1) 0; 6 — (_1)(Pi+"'+pr) 0; k.

r+1,k

Therefore the expressions in (4.11) and (4.12) are equal.

Hence d(a; ) = Z:f;zl @;rar ), and so (a; ) is a defining system for the
Massey product {asq, ..., qp). O
Example 4.9. Let J; = {1,2,3}, Ji = {1,2}, J; = {4,5} and J» = {4,5}.
Suppose that Ky, and Kj ;, are the simplicial complexes shown below,

where K 7,1, maps onto ,Cj1Uj2 by the edge contraction {2,3} — {2}.

2
4 p;
4 3
—
1 5 1 5
Suppose that a1 = X5 € CO(I@L), Gy = X; € CO(IéjQ), and a12 = —X5 €

CO(ICjIsz). Then d(&l,Q) = XQ,ZL = (—1)1+T%&1&1&2. By (42), a; = Xo+ X3 €
CO(KJI) and as = X4 € CO(ICJQ). By (45), a2 = —Xo—X3 € CO(Kjlujz), since
01,2 = 1. We check that d(a12) = (Xea+Xa3)—Xa3 = Xo 4 = (—1)1+Teg“1a1a2.
Hence d(aq 2) = aras.

Example 4.10 (a). Let K; be a triangulation of S on three vertices, {1,2, 3}.
Let Ky = {{5},{6}}, and let K3 = {{7},{8}}. Let &y = [Xi3] € H'(K}), Go =
[Xs] € H(K3) and a3 = [X;] € H(K3). Let K = sdys 5y 5d(i 3.6y K1 %KqKs be

Massey product (&1, Go, dg) C H*(Zy).

Let K be the simplicial complex on vertices {1,...,8} that edge contracts
to K by contracting the edge {1,4} ~ {1}, which satisfies the link condition.
The contraction of the full subcomplex Ky, is shown in Figure 13a. By
Construction 4.6, there are cocycles a; = X153 € C1(Ky,), a2 = X5 € CO(K 1,),
as = X7 € C%(Ky,). The product ajas is X13X5 = (—1)*X135 = Xi35. If 412 =
Xi3, then using (4.5) we construct a; s = 91,24§1’2X13 = —X13. Alternatively, if
ar2 = —Xig — Xi5 — Xy, then Sfl1,2 = {{iaé}a {172}’ {1,5}} So 901_1({176}) =
{{L 6}’ {4’ 6}}7 SDIAI({17 2}) = {{2a 4}}7 and ‘pfl({17 5}) = {{1’ 5}7 {47 5}} By
(4.5), a1,2 = —01 201, 2(X16 +Xa6 +Xoa +Xas5+X15) = X16+ Xa6 + Xoa +Xas +X15.

(b). In the proof of Proposition 4.8, we showed that the pullback of a defining
system (&q,...,d,) is a defining system for {aq,...,a,). However there are
defining systems for (a1,...,q,) that are not pullbacks of defining systems
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6 6

{1,4} — {1}.

for (41,...,4,). For example, let a1,as,as,a1,ds2,a3 be as in Part (a). Let
a12 = —X16 — X14 — X15. For the edge {1,4} € K, {1,4} ¢ ¢ '(é) for any edge
é e I@, S0 ay.2 is not a pullback of any a1 2. However for X; € C*(K1,2.345,6),

a2 —d(X1) = —Xi — X1a — X15 — (X16 + X1a + X15 + X13)
= —Xy3 = 03 261 Z X
T€¢;11+p2(13)
Therefore a; o differs from the pullback of a4, 2 = X;5 by a coboundary.

In order to prove that («ai,...,a,) is non-trivial, we show that for every
defining system for (a1,...,qa,), its associated cocycle is homologous to the
pullback of an associated cocycle for a defining system for the non-trivial Massey
product (&1, ..., d,).

Proposition 4.11. The n-Massey product (a1, ..., q,) is non-trivial.

Proof. Suppose that ¢: K — K is the contraction of just one edge {u,v} € K.
By Construction 4.6, {u,v} C J; for i € {1,...,n}.

For a;; = a; the representative cocycle for «; as defined in (4.2), let (a; %)
be a defining system for (aq,...,an),

— 2 : it
Qi k = CUXU cCP Pk (/CJiU...UJk).
UESai'k

We show that any defining system (a; x) corresponds to a defining system (é; )
for (41,...,dy) in H*(Zg). There are two main stages to this proof. Firstly, for
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a defining system (a;,x) such that for any {4, k}, {u,v} ¢ o for any o0 € S,, , , we
construct a corresponding defining system (¢*(a; x)) for (&1, ..., ay,). Secondly,
for any other defining system (a; ), we change a; j, to create a different defining
system (a; i) for (ai,...,a,) such that the associated cocycles are homologous
and for any {i,k}, {u,v} ¢ o for any o € S5, ,. Applying the first step to (a;,x),
we have a defining system (¢*(a;%)) that corresponds to (a; ).

For this first step, suppose that for any {i,k}, {u,v} ¢ o for any o €
Sa; - We define a tool ¢*, which will only be well-defined for certain specified
cochains such as a;, € CP(Kju...us,) O QirGrp1k € CP(Kyu..ug,) where
p=pi+---+pgorp=p;+---+pr+1respectively. We check three properties
of ¢* in order to construct a defining system (¢*(a;)) for (&1,...,d,). Let
a € CP(Kj,u..ug,) be a general cochain such that {u,v} ¢ o for any o € S,,
where either p = p;+---+pg or p = pi+---+pr+1. For J C [m], let J = o(J).
Define .

v (a) =cix Z csXs € CP(ICJAZ-UWUJ,C) (4.13)
6€p(Sa)

where ¢z = ¢, for any o € S, such that p(c) =4, ¢;; = 1 and

Cik = (_1)(|J7?‘_‘jil)pi+1+(|J'iU']i+l‘_ljiujiJrl|)p'i+2+'“+(|JiU"'UJk—lI_‘j'iU“‘Ujlclepk.

(i) First note that for any constant ¢’ € k and for X,, X, in CP(Kj,u...u,)
where p is either p; + -+ pg or p; +---+pi + 1 and {u,v} ¢ o, 7,

©*('caXg) = Cih ' caXpo) = ¢ ¢*(caX,) and

. . R (4.14)
©*(coXo + e X7) = ik (CUXQ(,(U) + e Xp(r)) = " (coXo) + @™ (e X7).

(ii) Next we show that ¢*(d(a;x)) = d(¢*(a;)). Suppose that for a simplex
0 € Sa,,, there is a simplex jUo € Kj,u..ug, for j € J;U--- U Jj \ o that
is contracted. That is, {u,v} € jUo. By the definition of a defining system,

d(a; ) = Zf;zl @; rar . Therefore either ¢, €(j,j U o) X,ue is cancelled by
other terms in d(a; ), or there exists i < r < k and simplices 7 € S,, ,
n € Sa,,,, such that 7Un = jUo. In the latter case, if {u,v} € jUo,
then {u,v} € 7Un. This implies that either {u,v} € 7 or {u,v} € n, since
by construction {u,v} C J; foran1 <i<mnandt €S, CJ;U:---UJ,
n € Sapiry C Jry1 U--- U Jp. This then contradicts the assumption that
{u,v} ¢ o for any o € S,,, and any {i,k}. Hence a summand of the form
¢o €(3,7 U 0) Xjus, where {u,v} € jU o, is cancelled out by other summands.

Let a = Y g CoXo € CPTHPR(K.0g,) be a cochain such that for
any simplex jUo € Kju.ug, for o € S, and j € J; U---U J \ o, either
¢s €(J,7U0) X,jus is cancelled by other terms in d(a) or jUo does not contract.
Applying ¢* to

d(&): Z Z Co 8(j,jUO') XjUa';

0€S, jeJ;U---UJ\o,
JUoEK 5;u- Uy,
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we write

P (da) =cix Y. ¢ > eG,iU6) X,
G€p(Sa) ( jeJiu--Udi\s, )

JUUEICJ U Uy,

where (j,j Uo) =¢(7,7
does not contract. Let S
b=73 scqCsXs € CPITT

ue to the order on vertices in K and since j U o

ué)d
Z({ o(o )\oeSme( ) =pi+-+pr+ 1} and let
J

j.)- Then

¢ (d(a)) = d(b). (4.15)

In particular, *(d(a; k) = d(¢*(a;k))-
(iii) We also show that

k-1
Z ©*(ai,r)@" (ars1,k) (Z Qi rQri1, k) (4.16)

r=i

Let a;, € Cpittprr (ICJiU‘..UJT) and ary1,k € CPrit+pi (]CJTJrlu...UJk) be rep-
resented by > o ;X7 and ) cn X, respectively. The left hand side

of (4.16) is

Z 90* Q; r ar+1 k)
k—1 o
_ Z(_1)1+deg@ (ai,r) Cir Z CTX‘f' | 1k Z Cnxﬁ
r=i

7€p(Sa; ) NE€EP(Sa,yq p)

k—1
= Z C Z Z CrenXzun

”A'E‘P(Sai_’r) ﬁELP(Sarﬁ,l,k)

N€Sa, 1k

where

C = (_1)1+degsa (ai,r)-‘-IJiU---UJT|(pr+1+--~+pk+1)cimcr+1’k.

Using the expressions for ¢; , and ¢,11 k, and using dieggo* (@gip) =1+pi+---+
+ | iU Uy,

=(-1

piteAprt | LU U |+ T30 U | (prs - +pe+1)

)

(= 1)(\JL| [ipirte -+ JiU-UTr 1| = [ ;U0 Dy

(- 1) (Trs1l=1Frp1Dproate (| Trg1U Uk 1| = Jrga U UJk_1 )Pk

— ()PP (T TPt (T2 U | = iU s Dot iU U g
( 1)(\JT+1| [J;UUd 1 Dprgot o+ (| g1 U Udg 1 | = JiU-- U1 ) pe

=(— 1)1+dcgalr( )\JiU-A-UJr\(Pr+1+~+m+l)ci,k.
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By assumption, {u,v} ¢ o for any o € S,,, and any {i,k}. Thus {u,v} ¢ 7
and {u,v} ¢ 7 for any i < r < k and any simplices 7 € S, M€ Sa - Also,
{u,v} C J; for an index 1 < i < n, so {u,v} ¢ 7Un. Hence <p(7'U77) o(T)Up(n)
isa (p;+---+pr+1)-simplex. Therefore using the definition of ¢*, the property
(i), and the fact that p(7Un) = (1) Up(n) =7Un,

Z ©*(ai )" (art1k) =
_ k—1
= Z C Z Z C.,—CUX.;—Uﬁ = (,0* <Z %arﬂ)k) .
r=i r=i

#€¢(Sa;,) N€EP(Sa, 4y 1)

Using properties (i), (ii) and (iii), we prove that a defining system (a; )
for (aq,...,q,) and its associated cocycle w are mapped by ¢* onto a defining
system for (&1, ..., &,) and its associated cocycle is ¢*(w). By the definition of
a; = a;; in (4.2), p*(a;;) = a;; = a;. By properties (ii) and (iii), we see that

d(%’* (ai,k)) =" (d ai, k (Z Qi rQrt1, k:) Z 90 ar+1 k)

Hence (¢*(a;,1)) is a defining system for (&1, .. ., Gy, if (a; %) is a defining system
such that {u,v} ¢ o for any 0 € S,,, and any pair {i,k}. Also, for the
associated cocycle w for (a; ),

n—1

n—1

o« —_— *

=@ § a1,70r41,n <P al 7‘ ar+l n)
r=1

r=1

s0 ¢*(w) is the associated cocycle for (¢*(a;x)).

Lastly we prove that [w] # 0. If [w] = 0, then there is a cochain a €
CPrt 4P (5 .uy,) such that w = d(a). Since {u,v} € J; for some j €
{1,...,n} and {u,v} ¢ o for any 0 € S,,, and any {7, k}, no simplices in
S, contract. Thus no simplices in Sg(,). So by applying ¢* and (4.15) from
property (ii), p*(w) = ¢*(d(a)) = d(b) for a cochain b € CPi* " +Pk (Iejiumujk).
So [¢*(w)] = 0, which contradicts the non-triviality of (&q,...,d&y,). Therefore
(] #0.

For the second stage of this proof, suppose that (a; ) is a defining system
for {aq,...,ay) such that there is a pair of indices {i,k} with {u,v} € o for
some o € Sg, ,. We will define a new defining system (a;,x) such that {u,v} ¢ o
for any o € Sz,, and such that [w] = [W] where w and W are the associated
cocycles for (a; ;) and (a; k), respectively.

The cocycle a; = a;; as defined in (4.2) is such that {u,v} ¢ o for every
o € Sg,. Therefore, let {i,k} be a pair of indices such that there is a simplex
o € Sq,, with {u,v} € o, and for every i <’ < k" <k, {u,v} ¢ 7 for any
T € Sa - Let o € 8, be a simplex such that {u,v} € o, and let ¢, be
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the non-zero coefficient of X, in a; k. Then for every pair {i/,k¥'} C [n], let
c=(—1)dedirc, g(u,0) and define

ik — Co £(u,0) d(Xp\y) ifi'=i<k=¥F,
- Ay + Co (U, 0) i 1Xp\, ifd <i<k=F,
Qir oy = S ,
Qi gt + € X\ uQht1, k7 if i/ =i <k <k,
ir g fi'<i<k<kori<i<k <k

(4.17)

where X;\, € CPitPr= (K ..0g, ). We show that (a; x) is a defining system

for (a1,...,ap). Firstly since k —i > 1, @y = ay i for every i/ € [n]. We also

need to show that d(ay i) = Z:f:;,l Qi rary1, i for every {i' k'}.
(i) For i < i’ < k' <k, we have a; j» = ay j SO

k' —1 k'—1
d(ay ) = d(ay ) = g Qi rQpg1 k= E @it Qg 1,17 -
r=i’ r=i’

(ii) For i =i <k =k,
d(ai,k) = d(ai,k — Co 5(”7 J) d(XU\u)) = d(ai7k)'

Also d(Xp\y) € CPF Pk (K 5.0, ) since Xy, € CPH PR (K 7y g, ). Hence
ZiiJC € CPit Pk (’CJiU...UJk) and diegAdi,k = diegai’k. Additionally,

d(X(r\u) = Z €<j,jU0'\U>Xjug\u-
JEJ U Uk \(o\u),
jUo\u€eK s

So X, is the only summand of d(X,\,) such that {u,v} € o. Thus a;; —
o €(u,0) d(X4\y) no longer contains the summand X, and also

HreSa . [ {uv} e} <[{7 € Sayy [ {u,v} €7},

(iii) Next, for i’ < i < k =k, we have a; ;1 € CP« TPt (K, Guy,_,).
So ai/’i,lxo\u € Cpi T tpk (’CJWU...UJ,C). Hence ai/,k € Oyt tpk (’C.]i,U.A.UJk).
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Also,

d(ai’,k) - d(ai’,k + o 5(“7 U) ai’,i—lxo\u>

k—1
= E ai/,rar+1,k+

r=i’
i—2
+ ¢ e(u, 0) (Z ai'ﬂ“aT-‘rl,i—l) Xo\u — Co 6(’(1,, U) ai',i—ld(XU\u)
r=1i’
i—2
=Y Gtk + o £(U,0) arg1io1Xovu)+
,,.:,i/

k—1
+ @ik — o £(u,0) d(Xo\u)) + > T rlrg1p

r=i

k—1
= § @it Q41 k-

r=i/

(iv) For ' = i < k < K/, we have G;p € CPiT TP (Kju..uy,,) since
Xo\ukt1,h € CPT PR (K 70,0, ). Furthermore, d(a; ) is

d(ai,k' + (_1)degai,k’ca 5(u, 0’) Xg\uakJrLk/)
k' —1 L
= Z ﬁar+1,k” + (_1)degai’kco 5(“7 U) d(Xa\u)ak-‘rl,k"
r=1%

k' —1

. (71)degai,kcg s(u,o_) (71)degxa\uxg\u Z ak+1,rar+17k/
r=k+1

k-1
= Trarsrp — (1) (a5 — ¢o £(u,0) d(Xo\a))ars1 w0+
r=t

k' —1

+ Z ((71)degai,kcg 5('&, O') (71)degxo\u){0\uak+1m +ﬁ) ar+1,k’~
r=k+1

More specifically, let ¢ = (—1)38% k¢, ¢(u, o). Then in the last sum,

c (71)deg Xa\'u, Xo\uiak—&-l,r

e JUUJ oot Pt T Un-UJ,
— (_1)P1+ +pi+1J; k| +Pr+1 Prt|Jk41 lCXa\ualc-i-l,r

= (_1)1+dcgam c Xa\uak-‘rl,r-
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Therefore

az k’ Z Qi rQri41,k + ( 1)1+deg Gik (ai,k — Co E(u; U) d(XU\u))ak+1,k/

+ Z (71)1+deg ai’T( c Xa\uak+l,r + ai,r)ar—i-l,k/
r=k+1

k—1
= Z Qi Q41K+

r=i’

(v) Lastly when ¢/ < i < k < ¥, @y j» = ay  and we want to show that
d(@p 1) = ¥ @ p@pi1 . The right hand side is

K —1
E Qi Q1 k' = G4 ;105 k' + Qi7 kQkt1,k" T E : @i, rr 41,k
r=i’ re{i . i—1,... . k,...k'—1}

where ~ denotes omission. By expanding a; s, @i, and the signs in this

expression, Z 1, it pOrg1 k1S

(71)1+d76gai/‘¢71a1,,’i_1 (ai,k’ + (71)&“1‘,1‘-00 E(’U,,CT) Xo-\uak+17k/> +

+ (71)1+deg a;r g (a'i’,k + ¢y (—:(”U,7 0’) ai’,’i—lxo\u) ak+l,k’+

+ § Qi Q41 k!

re{iiimT,... k. k' —1}

= 3 T () T ()

r=q’

o €(U,0) it i1 X\ Akt 1,17
= az/ k’ + ( degai/,k —+ (71)1+d7€‘gai/,k) Co €(U7O') ai/,i—lxo'\uak—i-l,k'
= d(ai 1) = d(@ir 1)
since @gaizyk = |Jz’ J---uU Jk| +pir + P+ 1= T%ai’,k-
Therefore for all {i',k'}, @y € CP¥ T 4P (K; u.uy,) and d(ay p) =

Zf _1,1 5, rlrt1kr. S0 (@ ) is a defining system for (aq,...,q,). Also o ¢ 7
for any 7 € Sz, , and any {i’,k’}. The associated cocycle w for this defining

system is given by S} fﬂﬁﬂ_l,n. By calculating 7'~} iﬁﬂ_l,n in a similar
manner as in the above calculations,
w ifi#£1,k+#mn,
W= w+coe(u,0) dlayi—1Xq\u) ifl=i<k=mn, (418)
w— (=1)trdesaire, e(u, 0)d(Xp\warpr,er) fl=i<k<n
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where w is the associated cocycle for (a; k). So [0] = [w]. Therefore [&] = 0 if
and only if [w] = 0.

If there is cochain a; ks in the defining system (a; ) such that there is a
a simplex o € Sz with {u,v} € o, then we repeat the above procedure to

il k!
construct (d; /), etc. After a finite number of iterations, we obtain a defin-
ing system (ay 1) such that for any {i’,%’'} and any simplex ¢ € Sz, ,,, the

edge {u,v} is not contained in o. Then we can construct a defining system

(¢*(aj g)) for (é1,...,4y). Let w and w be the associated cocycles for (a; )
and (@), respectively. If [w] = [&0] = 0, then [¢*(@)] = 0, which contradicts the
assumption that (&, ..., &) is non-trivial. Hence if (&1, ..., &,) is non-trivial,

then (i, ..., ay) is non-trivial.
If £ — K by a series of more than one edge contractions, we repeat the steps
in this proof for each edge contraction in turn. O

Putting together Proposition 4.8 and Proposition 4.11, we have proved the
following statement.

Theorem 4.12. Let K be a simplicial complex with a non-trivial n-Massey
product in H*(Z). Let K be a simplicial complex that maps onto K by a series
of edge contractions p: IC — K that satisfy the link condition. Then there is a
non-trivial n-Massey product in H*(Z). O

By construction, «; € H!/i+Pi+1(Z) and &; € HIVIFPit1(Z) with | ;] >
| J;| for each i. Hence the degree of (v, . .., an) C HIT1O O Inlt @it 4pn)+2( Z,)
is greater than the degree of (a1,...,4,) C H|j1u"'Uj"‘+(p1+“'+pn+1)+1(Z,€).
Also, if (&4q,...,d&,) has non-trivial indeterminacy, then (aq,...,a;,) also has
non-trivial indeterminacy. As noted earlier, the converse does not necessarily
hold: the pullback Massey product in H*(Zx) might have non-trivial indeter-
minacy even if it is a pullback of a uniquely defined Massey product in H*(Zg).

(b) A simplicial complex K such that Z has

(a) A full subcomplex K C Kp, when P is a non-trivial triple Massey product with inde-

truncated octahedron terminacy.

Figure 14: Edge contraction example
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Example 4.13. Let K be the simplicial complex in Figure 14b. Since the
1-skeleton of K is one of the obstruction graphs in the classification of low-
est degree non-trivial triple Massey products [15], there is a non-trivial triple
Massey product (d4, a2, ds) C H®(Z;) where &y € I;TO(IQQ), Go € ﬁo(lﬁga)
and a3 € H O(Kéé‘)' This Massey product has non-trivial indeterminacy, since

the indeterminacy of this triple Massey product is given by &g 'HO(IC%%) +as -
HO(Kis33) = as - H°(Kjs34)- A

Let K be the simplicial complex on 9 vertices in Figure 14a. Let p: K — K
be the simplicial map that takes i — ¢ for i = 1,2,3,6 and contracts the bold
coloured edges {4,5} ~ 4, {7,8},{8,9} — 5. By Theorem 4.12 and Construc-
tion 4.6, there is a non-trivial Massey product (ai,aq,a3) C H'(Zx) where
a1 € I;TO(ICH), Qo € ﬁO(IC345) and as € ﬁo(lCmgg). Also the indeterminacy of
this Massey product is non-trivial since it is given by «y - fIO(IC3456789) + ag -
HY(K12345) = a3 - HO(K12345).

For any simple polytope P, define Xp = 9(P*) to be the boundary of the
dual polytope. This is a simplicial complex and the moment-angle complex
Zp = Zx, is a moment-angle manifold. The simplicial complex K in Figure 14a
is a full-subcomplex of p when P is a truncated octahedron, otherwise known
as the 3-dimensional permutahedron. A truncated octahedron is a 3-dimensional
simple polytope whose facets are 6 squares and 8 hexagons, so there are 6 vertices
of Kp with valency 4 and 8 with valency 6. Since K C Kp, the non-trivial
Massey product in H*(Z)) lifts to a non-trivial Massey product in H*(Zp)
with non-trivial indeterminacy. Hence we found a non-trivial Massey product
in H*(Zp) using only Theorem 4.12 and the classification of lowest-degree non-
trivial triple Massey products in [12, 15]. This technique also recovers the
first example of a triple Massey product in H*(Zp) that was given in [20,
Lemma 4.9(2)], where the constructed full subcomplex edge contracts to one of
the obstruction graphs that give trivial indeterminacy.

Example 4.14. A Pogorelov polytope is a 3-dimensional polytope that can
be realised in hyperbolic (Lobachevsky) space as a bounded right-angled poly-
tope. The Pogorelov class is large and includes all fullerenes, whose facets
are pentagons and hexagons. Zhuravleva [26, Theorem 3.2] showed that for
any Pogorelov polytope P, Kp = 9(P*) has a full subcomplex K as shown
in Figure 15a. This full subcomplex was used to explicitly construct a non-
trivial Massey product (a1, as,a3) C H*(Zp) where a; € H°(Ksg7), aa €
.FNIO(ICgbO,__bn) and a3 € ﬁO(K34). moment-angle manifolds Zp have a non-
trivial triple Massey product using the full subcomplex in Figure 15a.

Edge contracting the coloured edges of K, {b;,b;11} — bo, {6,7} — 6, we
obtain the simplicial complex in Figure 15b. This simplicial complex has a
non-trivial triple Massey product, since its 1-skeleton is one of the obstruction
graphs from the classification in [12, 15]. Since the edge contractions satisfy
the link condition, Theorem 4.12 gives an alternative proof of non-trivial triple
Massey products in Zhuravleva’s work.
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(b) An edge-contracted full subcomplex of
a simplicial complex corresponding to any
Pogorelov polytope

(a) A full subcomplex K C Kp when P is
any Pogorelov polytope [26]

Figure 15: Massey products in Pogorelov polytopes

4.1. Massey products constructed by edge stretching

For an edge contraction K +— K that satisfies the link condition, we call the
inverse K +— K edge stretching.

Corollary 4.15. Let K be a simplicial complex with a non-trivial n-Massey
product (i, ...,&,) C H*(Zg). Suppose that : KK — K is a series of edge
stretchings. Then there is a non-trivial n-Massey product in H*(Zx).

Proof. Since : K — K is a series of edge stretchings, there is a series of edge
contractions ¢: K — K. Given (&y,...,d,) in H*(Z;), there is a non-trivial
n-Massey product (a1, ...,a,) C H*(Zx) by Theorem 4.12. O

We may use edge stretchings to build infinite families of examples of Massey
products in moment-angle complexes given any known Massey product in a
moment-angle complex. For example we can start with one of the obstruction
graphs for lowest-degree triple Massey products [12, 15] and produce infinite
families of simplicial complexes that contain non-trivial triple Massey products
of classes on different degrees. This illustrates that non-trivial Massey products
are very common in moment-angle complexes, contrary to previous belief.

5. Non-trivial Massey products in nestohedra

Theorems 3.17 and 4.12 can be applied together to construct non-trivial
higher Massey products of classes in various degrees in the cohomology of
moment-angle complexes. Recall that for any simple polytope P, there is a
simplicial complex Kp = 9(P*) and Zp = Zi,, is a moment-angle manifold. In
this section we show that there are families of polytopes P for which H*(Zp)
has non-trivial higher Massey products.
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Nestohedra are a large family of simple polytopes built out of Minkowski
sums of simplices, introduced by Feichtner and Sturmfels [14]. They include all
simplices, permutahedra, Stasheff’s associahedra and more generally Carr and
Devadoss’ graph associahedra [11]. Alternatively nestohedra are interpreted as
hypergraph polytopes [13]. The first examples of Massey products in moment-
angle manifolds associated to nestohedra were in [19, Proposition 4.1] and [20,
Lemma 4.9] and were triple Massey products constructed either by explicit cal-
culation or using the classification of lowest degree Massey products [12, 15]. We
will use Theorems 3.17 and 4.12 to construct families of new non-trivial higher
Massey products in moment-angle manifolds associated to certain nestohedra.
We use a construction of nestohedra due to Postnikov [24, Theorem 7.4].

Definition 5.1. A building set B is a collection of non-empty subsets of [n+ 1]
such that

1. {i} € B for every i € [n+ 1],
2. S1US, € B for any S1, 5, € B with SN Sy # 0.

A convex polytope is the convex hull of a finite number of points in R™. If
M; and M are convex polytopes in R", then the Minkowski sum

My + My = {ZL’ e R"” ‘ r =1 +T2,T1 € Ml,SUQ € Mg}
is also a convex polytope.

Definition 5.2. For a building set B C [n+1], a nestohedron Pg is the polytope
> sen A%, where AS = conv{e;,i € S} is the convex hull of the basis elements
e; € R+,

For example, the n-simplex is a nestohedron with building set {{1},...,{n+
1}, [n+1]}. Other key examples of nestohedra are graph associahedra Pp.., which
are associated to a graph ' on the vertex set [n + 1]. The graphical building set
Br consists of subsets S C [n 4 1] such that the restriction of T' to the vertices
in S is a connected graph.

Since every nestohedron Pp is simple [14, 24], we will consider the corre-
sponding simplicial complex Kp, = 9(P};), which is the boundary of the dual
polytope. Let Bpax be the set of maximal sets in B with respect to inclusion.

Proposition 5.3 ([24]). The simplicial complex Kp, is isomorphic to the nested
set complex N'(B), which contains a simplex {S1,...,Sx} C B\ Bmax if

1. for any S;,Sj € {S1,...,Sk}, either S; C S;, S; C S; or S;NS; =0,
2. for any Si,,...,S;, € {S1,..., Sk} with S;; NS;; =0, S;, U---US;, ¢ B.
]

For example if Pp is the polytopal n-simplex, then Kp, is the boundary of
an n-simplex. Another example is shown in Figure 16. We denote the moment-
angle complex Zyc, = by Zp,.
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5.1. Permutahedra

A permutahedron is an example of a graph associahedron, when the as-
sociated graph is a complete graph on n + 1 vertices. Limonchenko [18, Theo-
rem 3] showed that the 3-dimensional permutahedron P has no non-trivial triple
Massey product (i, as,as) for three-dimensional classes «; € H3(Zp), using
the classification by [12, Theorem 6.1.1] and [15]. However, there are other non-
trivial triple Massey products in H*(Zp), as illustrated in Example 4.13. Via an
explicit example, it was also shown in [19, Proposition 4.1] and [20, Lemma 4.9]
that there are triple Massey products of three-dimensional classes in H*(Zp)
for n dimensional permutahedra P with n > 3. Here we will generalise this
and show that Zp, for the n-dimensional permutahedron P, has a non-trivial
k-Massey product for k < n.

V2 V124
V12
U123 U1
23 U1 V14
U3
13
V34
V234 Vs

Figure 16: The simplicial complex Kp, without the vertex va4, when P is the 3-dimensional
permutahedron

Proposition 5.4. When P is the n-dimensional permutahedron, H*(Zp) has
a non-trivial k-Massey product for every k < n.

Proof. The building set B of the n-dimensional permutahedron P contains all
possible subsets of [n + 1]. Let vg be the vertex in Kp, corresponding to a set
S € B\ [n+1]. By Proposition 5.3, {vs,,--..,vs, } is a simplex in p,, if for any
S, S; € {S1,..., Sk}, either S; C §;, S; C S;. From now on we denote Kp,
by K. We construct a k-Massey product (ay,...,a;) C H*(Zx) by explicitly
defining J; and a; € I;'O(ICLL.). Then we edge contract Kz, u...us, to a simplicial
complex that by Construction 3.5 has a non-trivial Massey product. For k < n,
let

a1 € HO(]C
770
a; €H (ICUU ,,,,, i k+1350{2,...,i+1}

ap € ﬁO(K

”{1}7”{2})
Yfor 1 <i<k
V{1,..., k+1}Y{1,..., k,k+2})

so ; corresponds to a class a; € H?(Z). In this case |J;| = 2, so there are no
edges to contract. Let K = Kj,u...us,. There is no edge {vf1y,vq2,. i+13} in K
for viyy € Jy and vy, i1y € Jisince {1} ¢ {2,...,i41}. Also there is no edge
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{U{l,...,i,k+1},U{2,...,j+1}} nor {U{l,...,i,k+1}aU{l,...,k,k+2}} for V(1. ik+1} € Ji,
Vi, j+1y € Jj with 1 <4 < j < k and vy g ryoy € Ji. All the other
edges are in K. That is, {vay, va, ey} € K and {vay,va, ke ) € K
for viry € J1, v, iksry € Ji for any @ < Kk and vy g g2y € Ji. Similarly,

{(vir k1) v, keny s € K for vg i1y € Ji and vgy
1 <i<j<k Also{vp. it1},0s,} € K for via,..iy1} € Ji and any vg, €
J; with 1 < i < j < k. Therefore K is obtained from the join Ky, * --- *
Kj, by star deleting at the edges {v{1},v2,. i+1} )} {V{1,.ikt1}s V{2, j+1} )

and {1, ik+1) V{1, kkt2} ) TOT viy € Ji, vgo g1y € Ji, Vg iks1y €
,,,,, j+1y € J5 with 1 <4 < j < k and vy, gry2y € Jx- Hence by

Theorem 3.17, the Massey product {(aq,...,ax) C H**+2(Zx) is non-trivial.
For k =n, let

g k+1} € Jj with

o] € f‘jo(’C
o; € IA{TO(IC
o, € ﬁO(IC

V{1}:Y{2,..., n+1}:Y(3,..., n+1})

Since |J;] = 3 for every i € {1,...,n}, we will perform n edge contractions
in order to obtain a simplicial complex K on 2n vertices. There is an edge
{vg2,...n41}> V43, n41} ) € Ky since {3,...,n+1} C {2,...,n+ 1}. Also there
are edges {v(1,.. i}, V2,1 } € Ky, for 1 <i <n. Since P is a simple polytope,
K is a triangulation of a sphere so the contraction of these edges satisfy the
link condition. Let K be obtained from K Jyu---UJ, by contracting these n edges.
Then as in the case when k& < n, Kisa simplicial complex obtained from the join
of n pairs of disjoint vertices by star deletions as described by Construction 3.17.
Hence by Theorem 3.17, there is a non-trivial k-Massey product in H*(Zg).
By Theorem 4.12, the Massey product (aq,...,qr) C H*(Zk) is also non-
trivial. O

A similar technique to that used in Proposition 5.4 can be applied to other
simple polytopes. An example is the family of stellohedra: graph associahedra
corresponding to star graphs, which are graphs with a central vertex and edges
attaching every other vertex to the central one. It was shown in [18, Theorem 3|
that there are 3-Massey products on 3-dimensional classes in H*(Zp) when P
is a 3-dimensional stellohedron, using the classification in [12, 15]. By applying
Theorems 3.17 and 4.12, we generalise that result by constructing non-trivial
n-Massey products in moment-angle manifolds over n-dimensional stellohedron.

Proposition 5.5. When P is the n-dimensional stellohedron, H*(Zp) has a
non-trivial n-Massey product.

Proof. As in Proposition 5.4, we construct a; € ﬁO(KJi) where K = Kp. Let
the star graph associated to P be labelled so that the central vertex is 1 and
the other vertices are 2,...,n + 1. The building set for P is

{{1},...,{n+1},{1,2},....{,n+1},...,{1,...,n},{1,...,n—1,n+ 1}, [n + 1]}.
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Let
o1 € H'(Kuyyp0y)
oy € ﬁ[o(’CU{l
an € ﬁO(IC

,,,,, i}au{l,B,...,i+2}7”{1,4,...,i+2}) forl<i<n

V{1,3}>Y{3}>Y{1,2,4,...,n+1} )

By contracting the edges {v{1,3,....i4+2},V{1,4,....i+2} } € Ky, for 1 < i < n and the edge
{v{1,31,v¢33} € K,, we obtain a simplicial complex K that is constructed from the
join of n disjoint points by star deletions as in Construction 3.5. O

.....

Propositions 5.4 and 5.5 reiterate that the moment-angle manifolds associ-
ated to permutahedra and stellohedra are non-formal [20]. Also, the families
of permutahedra and stellohedra are examples of geometric direct families of
polytopes, whose moment-angle manifolds are studied in [9]. Hence, Propo-
sitions 5.4 and 5.5 answer Problems 5.32, 5.34 and 5.35 in [9], which ask if
there are geometric direct families of polytopes with non-trivial higher Massey
products.

5.2. Non-trivial indeterminacy and permutahedra

Massey products with non-trivial indeterminacy can be found in moment-
angle manifolds. We illustrate this in moment-angle manifolds associated with
permutahedra. We first construct an example of a 4-Massey product with non-
trivial indeterminacy in a moment-angle complex using Theorem 3.23, then find
a full-subcomplex of a permutahedron that edge contracts to this example and
apply Theorem 4.12.

Example 5.6. Let K' be a pair of disjoint points J; = {i,i'} for i = 1,...,4
and define

K= Sd{l,g/} Sd{l’gl} Sd{273/} Sd{2’4/} Sd{374/} Sd{1/72/} Sd{1/73/} K:l * ’C2 * IC3 * IC4.

Let o; = [a;] and a; = X; € C°(K,). By Theorem 3.23, (a1, az,as,as) C
H*(Zx) is non-trivial with non-trivial indeterminacy.

Proposition 5.7. There are non-trivial Massey products with non-trivial inde-
terminacy in moment-angle manifolds corresponding to permutahedra.

Proof. Let P be the 5-dimensional permutahedron. Denote Cp by K. Recall
that by Proposition 5.3, {vs,,...,vs, } is a simplex in K if for any S;,S; €
{Sl, e Sk}, either S; C Sj or Sj C S;. Let

J1 = {vgy,v02), V42,51, V53

J2 =A{v(12y, v}

J3 = {v{1,2,3),V{2,3}, V{3,4} }

Jy = {v{1,2,34},V{2,34}> V{1,3,4,5} }
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and let oy; € H° (KJ,). Let K be the simplicial complex in Example 5.6, so there
is a non-trivial 4-Massey product in H*(Z). Consider the map ¢: K — K that
takes J; — {i,4'} by contracting the edges

{viay, vi2 5 b {25y, vy} = 1
{vf1,2,3), V42,31 = 3
{U{1,2,374}7 U{2,374}} 4.

Since K is a triangulation of a sphere, these edge contractions satisfy the link
condition. Therefore by Theorem 4.12, there is a non-trivial 4-Massey product
(a1, a9,a3,a4) C H*(Zx) for a; € H(K;), and this 4-Massey product has
non-trivial indeterminacy. O

This example of a non-trivial n-Massey product with non-trivial indetermi-
nacy can be reproduced in any (n + 1)-dimensional permutahedron.
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