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Abstract

As part of various obstruction theories, non-trivial Massey products have been
studied in symplectic and complex geometry, commutative algebra and topol-
ogy for a long time. We introduce a general approach to constructing non-
trivial Massey products in the cohomology of moment-angle complexes, using
homotopy theoretical and combinatorial methods. Our approach sets a unifying
way of constructing higher Massey products of arbitrary cohomological classes
and generalises all existing examples of non-trivial Massey products in moment-
angle complexes. As a result, we obtain explicit constructions of infinitely many
non-formal manifolds that appear in topology, complex geometry and algebraic
geometry.

1. Introduction

A moment-angle complex ZK over a simplicial complex K on m vertices is
built from ordered products of discs and circles in Cm that are glued together
along the face category of K. The coordinate Tm-action on Cm descends to
a natural Tm action on moment-angle complexes. If K is a triangulation of
a sphere, the moment-angle complex ZK is a manifold that admits a smooth
complex structure. These manifolds also generalise many well-known smooth
complex manifolds such as Hopf and Calabi-Eckmann manifolds.

Massey products are higher operations in the homology of differential graded
algebras. In the context of commutative algebra, supposing k is a field or Z,
the cohomology algebra of ZK is isomorphic to the Tor-algebra Tork[m](k[K],k)
of the face ring k[K], due to [10] and [4, Theorem 1]. The face ring k[K] is
Golod if all Massey products in Tork[m](k[K],k) vanish. Hence, Massey prod-
ucts in ZK are obstructions to Golodness of k[K]. From the perspective of
complex geometry, by identifying ZK with the complement U(K) of a coordi-
nate subspace arrangement corresponding to K, moment-angle complexes are
LVM manifolds [6, 23] when K is the boundary of the dual of a simple polytope.
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Massey products are obstructions to the formality of these manifolds. The com-
binatorial approach to Massey products in moment-angle complexes has been
used to prove cohomological rigidity of Löbell manifolds [8], which are built
from 3-dimensional polytopes in the Pogorelov class. However, currently, most
known examples of Massey products in moment-angle complexes are sporadic
due to how difficult they are to calculate explicitly.

The first non-trivial Massey products in moment-angle complexes were dis-
covered by Baskakov [5], who constructed an infinite family of triple Massey
products. Limonchenko [18] constructed the first family of non-trivial n-Massey
products for n > 2 on lowest-degree classes in moment-angle complexes. Fami-
lies of non-trivial Massey products in moment-angle complexes associated to
special geometric direct families of 2-truncated cubes (flag nestohedra) are
due to Buchstaber and Limonchenko [9], who also applied these families to
the differentials in Eilenberg-Moore and Milnor spectral sequences. In [20],
Limonchenko constructs non-trivial higher Massey products in highly-connected
moment-angle complexes by using the simplicial multiwedge operation (or J-
construction), which takes a simplicial complex and builds a new one that has
the same combinatorial structure as the original.

Using combinatorics and homotopy theory, we give the first systematic and
unifying approach for constructing non-trivial Massey products in the cohomol-
ogy of moment-angle complexes. We show that the combinatorics of K encodes
Massey products. By doing this, we expose some of the structural behaviour of
Massey products with respect to combinatorial operations, and spark the ability
to construct concrete examples of non-trivial Massey products in commutative
algebra, complex geometry and combinatorics, as well as toric topology.

Our starting point is the cup product, which is a 2-Massey product. The
categorical product of simplicial complexes is the join, which is mirrored by the
product of moment-angle complexes ZK1∗K2

= ZK1
×ZK2

and the existence of
a non-trivial cup product in the cohomology of ZK1∗K2 . Unlike cup products,
Massey products are higher operations so certain (n−1)-Massey products must
be trivial in order to define n-Massey products.

There is a classification result for 3-Massey products of cohomological classes
in lowest degree in moment-angle complexes [12, Theorem 6.1.1], [15], but it
vitally relies on the fact that the lowest degree classes are represented combi-
natorially by cycles in the 1-skeleton of K. This technique does not generalise
to higher dimensions since it is unknown how to combinatorially realise an ar-
bitrary n-cycle. So far there has not been a systematic way to construct triple
Massey, or any n-Massey, products of higher dimensional classes. We give two
constructions that address these drawbacks.

In Construction 3.5, to construct non-trivial n-Massey products in moment-
angle complexes, we start with the join of n simplicial complexesKi. To trivialise
the lower Massey products, we systematically remove certain simplices from the
join by an operation called star deletion and call the constructed simplicial com-
plex K. We show that ZK has a non-trivial n-Massey product in Theorem 3.17.
It is important to emphasise that we do not impose any restrictions on n-arity
of these Massey products, on the choice of simplicial complexes Ki for any i, nor
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on the dimension of classes in the Massey product. This construction generalises
Baskakov’s [5] family of non-trivial triple Massey products in the cohomology
of moment-angle complexes, taking triangulations of spheres for K1,K2 and K3.
Also it generalises Limonchenko’s [18, Theorem 2] family of n-Massey products,
which are built by removing simplices from the join of n 0-spheres.

Notably, our construction produces the first examples of non-trivial Massey
products on torsion classes, as well as examples with non-trivial indeterminacy.
Such an example is constructed by star deleting simplices in the join of the pro-
jective plane RP 2 and two copies of the 0-sphere, as illustrated in Example 3.21.
We also create the first infinite families of higher Massey products with non-
trivial indeterminacy in moment-angle complexes, on arbitrary cohomological
classes, by extending our construction in Section 3.2.

The topological properties and homotopy type of K do not determine the
topology of the moment-angle complex ZK. However, unexpectedly, in Con-
struction 4.6 we deform K up to homotopy to create a new simplicial complex
L such that ZL has an explicitly constructed n-Massey product if ZK has an
n-Massey product. Crucially, the Massey product in ZL can be of different
dimensional cohomological classes to those in ZK. In this construction, the
simplicial complex L has the same homotopy type as K and is obtained by sys-
tematically “stretching” certain simplices of K. In Theorem 4.12, we show that
these Massey products are non-trivial, even if they have non-trivial indetermi-
nacy.

Consequently, we can construct infinite families of non-trivial Massey prod-
ucts from known examples by “stretching” simplices in a controlled way. For ex-
ample, from each of the obstruction graphs in the classification of lowest-degree
triple Massey products in moment-angle complexes [12, 15], we obtain infi-
nite families of non-trivial triple Massey products of higher dimensional classes.
We give an alternative proof of known examples of non-trivial triple Massey
products in moment-angle manifolds, such as those associated with Pogorelov
polytopes [26] and permutahedra or stellohedra [19, 20] using “stretched” ob-
struction graphs. Also, the two constructions, Constructions 3.5 and 4.6, can be
combined to create new higher Massey products. We use this to create k-Massey
products in moment-angle manifolds associated with n-dimensional permutahe-
dra and stellohedra for every k < n, including Massey products with non-trivial
indeterminacy.

Even though it has been known for decades that Massey products are impor-
tant obstructions in many fields, we have the first general methods to calculate
and construct n-Massey products of classes in any degree, for any n, includ-
ing Massey products with non-trivial indeterminacy. The first infinite family
of examples of non-formal spaces or non-Golod face rings were constructed by
Limonchenko [20, Theorem 4.10] using moment-angle complexes associated to
graph associahedra. There are other explicit families constructed in [18], [20]
and [9]. More generally, our framework constructs infinitely many families of
such examples, confirming that non-trivial higher Massey products are much
more common in moment-angle complexes and moment-angle manifolds than
previously thought.
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Furthermore, these techniques do not just apply to moment-angle complexes.
We study Massey products in moment-angle complexes via combinatorics; one
key fact to do this is that the cohomology of ZK decomposes into a direct
sum of cohomology groups of full subcomplexes of K [4, Theorem 1]. For a
topological pair (X,A), a polyhedral product (X,A)K is a generalisation of a
moment-angle complex since ZK = (D2, S1)K. In the case of a topological
space A and its cone CA, Bahri, Bendersky, Cohen and Gitler [2, Theorem
1.12] showed that the cohomology of (CA,A)K also decomposes in terms of
H∗(A) and the cohomology of full subcomplexes of K when H∗(A) satisfies the
strong Künneth formula. Using this decomposition and our constructions, it is
possible to produce non-trivial Massey products in (CA,A)K by incorporating
cohomological classes of A to the classes we construct in the cohomology of full
subcomplexes of K in order to create Massey products in ZK.

2. Preliminaries

2.1. Moment-angle complexes

Let K be a simplicial complex on the vertex set [m] = {1, . . . ,m}. The
moment-angle complex ZK [7, Definition 3.2.1] is

ZK =
⋃
σ∈K

(
D2, S1

)σ ⊂ (D2)m

where (D2, S1)σ =
∏m
i=1 Yi for Yi = D2 if i ∈ σ, and Yi = S1 if i /∈ σ. A

moment-angle complex ZK is a manifold if K is a triangulation of a sphere.
In this paper, all coefficients are in k, which is a field or Z. As a subspace

of the polydisc, ZK has a cellular decomposition that induces a multigrading
on the cellular cochain groups C∗(ZK). For J ⊂ [m], the full subcomplex KJ is

{σ ∈ K | σ ⊂ J}. Let C̃∗(KJ) be the augmented simplicial cochain complex.
The cohomology ring of ZK can be expressed in combinatorial terms.

Theorem 2.1. [4] There is an isomorphism of cochains

C̃∗−1(KJ)→ C∗−|J|,2J(ZK) ⊂ C∗+|J|(ZK)

that induces an isomorphism of algebras

H∗(ZK) ∼=
⊕
J⊂[m]

H̃∗(KJ) (2.1)

where H̃−1(K∅) = k.

We refer to the cohomology decomposition (2.1) as Hochster’s formula [16].
Let Cp(KJ) be simplicial chain complex for KJ . The cochain group Cp(KJ) =
Hom(Cp(KJ),k) has a basis of χL for a p-simplex L ∈ KJ , where χL takes the
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value 1 on L and 0 otherwise. A subset J ⊂ [m] has an order inherited from
[m]. If j is the rth element of J , define

ε(j, J) = (−1)r−1 (2.2)

and for L ⊂ J , define ε(L, J) =
∏
j∈L ε(j, J). For simplices L = {l1, . . . , lp},

M = {m1, . . . ,mq}, we denote {l1, . . . , lp,m1, . . . ,mq} by L ∪M . The product

on
⊕

J⊂[m] H̃
∗(KJ) is induced by Cp−1(KI)⊗ Cq−1(KJ)→ Cp+q−1(KI∪J),

χ
L ⊗ χM 7→

{
cL∪M χ

L∪M if I ∩ J = ∅,
0 otherwise

(2.3)

where cL∪M = ε(L, I) ε(M,J) ζ ε(L∪M, I∪J) and ζ =
∏
k∈I\L ε(k, k∪J \M).

For a cochain a ∈ Cp(KJ), let the support of a be the set Sa of p-simplices
σ ∈ KJ such that a =

∑
σ∈Sa aσ

χ
σ for a nontrivial coefficient aσ ∈ k. For a

cohomology class α ∈ H̃p(KJ), we say that α is supported on KJ .

Lemma 2.2. For a simplicial complex K, let a ∈ Cp(KI) and b ∈ Cq(KJ).
Let the order of vertices in K be such that i < j for every i ∈ I and j ∈ J .
Suppose that a =

∑
σ∈Sa aσ

χσ and b =
∑
τ∈Sb bτ

χτ for p-simplices σ ∈ Sa ⊂
KI , q-simplices τ ∈ Sb ⊂ KJ and coefficients aσ, bτ ∈ k. Then the product
ab ∈ Cp+q+1(KI∪J) is given by

ab = (−1)|I|(q+1)
∑
σ∈Sa

∑
τ∈Sb

aσbτχσ∪τ .

Proof. The product ab is given by

ab =

(∑
σ∈Sa

aσχσ

)(∑
τ∈Sb

bτχτ

)
=
∑
σ∈Sa

∑
τ∈Sb

aσ bτ ε(σ, I) ε(τ, J) ζ ε(σ ∪ τ, I ∪ J) χσ∪τ

where ζ = 1 since all vertices of I are ordered before vertices of J in K.
By the definition of ε, and since all elements I are ordered before J , ε(σ∪τ, I∪

J) = ε(σ, I)ε(τ, I ∪ J). Furthermore, for each q-simplex τ = {i1, . . . , iq+1} ⊂ J ,

ε(τ, I ∪ J) =
∏

j∈{1,...,q+1}

ε(ij , I ∪ J) =
∏

j∈{1,...,q+1}

(−1)|I|ε(ij , J)

= (−1)|I|(q+1)ε(τ, J).

Therefore, since ε(I, J)2 = 1 for any sets I, J , the statement follows.

2.2. Massey products

Massey products are higher cohomology operations that were introduced in a
short note by Massey [21] and were thereafter first used by Massey and Uehara
in [25] to prove that Whitehead products satisfy the Jacobi identity. They
have many applications for example as topological invariants, obstructions to
formality and for calculating differentials in spectral sequences.
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Definition 2.3. Let (A, d) be a differential graded algebra with classes αi in
Hpi(A, d) for 1 6 i 6 n. Let ai,i ∈ Api be a representative for αi. A defining
system associated to 〈α1, . . . , αn〉 is a set of elements (ai,k) for 1 6 i 6 k 6 n
and (i, k) 6= (1, n) such that ai,k ∈ Api+···+pk−k+i and

d(ai,k) =

k−1∑
r=i

ai,rar+1,k

where ai,r = (−1)1+deg ai,rai,r. To each defining system of 〈α1, . . . , αn〉, the
associated cocycle is defined as

n−1∑
r=1

a1,rar+1,n ∈ Ap1+···+pn−n+2.

The n-Massey product 〈α1, . . . , αn〉 is the set of cohomology classes of associ-
ated cocycles for all possible defining systems. The indeterminacy of a Massey
product is the set of differences between elements in 〈α1, . . . , αn〉. The Massey
product is called trivial if 0 ∈ 〈α1, . . . , αn〉.

We use Theorem 2.1 to give a correspondence between defining systems in
C∗(ZK) and in

⊕
J⊂[m]

C∗(KJ). For any a ∈ Cp+|J|+1(ZK) with p > 0 and

J ⊂ [m], there is a corresponding a ∈ Cp(KJ).

Definition 2.4. For a ∈ Cp(KJ), let deg(a) = p + |J | + 1 and let a =

(−1)1+deg aa = (−1)p+|J|a.

Let 〈α1, . . . , αn〉 ⊂ H∗(ZK), where each class αi ∈ Hpi+|Ji|+1(ZK) cor-
responds to αi ∈ Hpi(KJi). Let (ai,k) ⊂ C∗(ZK) be a defining system for
〈α1, . . . , αn〉, where ai,i = ai is a cocycle representative for αi. Then ai,k ∈
Cpi+···+pk+|Ji∪···∪Jk|+1(ZK) and d(ai,k) =

∑k−1
r=i ai,rar+1,k. By Theorem 2.1,

there are corresponding cochains ai,k ∈ Cpi+···+pk(KJi∪···∪Jk) and

deg(ai,k) = pi + · · ·+ pk + |Ji ∪ · · · ∪ Jk|+ 1

= (pi + |Ji|+ 1) + · · ·+ (pk + |Jk|+ 1)− k + i

= deg(ai) + · · ·+ deg(ak)− k + i.

By the product in (2.3), d(ai,k) =
∑k−1
r=i ai,rar+1,k. Hence (ai,k) ⊂

⊕
J⊂[m]

C∗(KJ)

is a defining system that corresponds to the defining system (ai,k) ⊂ C∗(ZK)
and the associated cocycle ω ∈ Cp1+···+pn+|J1∪···∪Jn|+2(ZK) corresponds to the
associated cocycle ω ∈ Cp1+···+pn+1(KJ1∪···∪Jn).

Let 〈α1, α2, α3〉 be a triple Massey product on αi ∈ Hpi+|Ji|+1(ZK) for
i = 1, 2, 3. The indeterminacy of a triple Massey product is

α1 ·Hp2+p3+|J2∪J3|+1(ZK) + α3 ·Hp1+p2+|J1∪J2|+1(ZK).
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By Theorem 2.1, αi corresponds to αi ∈ H̃pi(KJi) and the indeterminacy of
〈α1, α2, α3〉 is

α1 · H̃p2+p3(KJ2∪J3
) + α3 · H̃p1+p2(KJ1∪J2

). (2.4)

In general, the indeterminacy of an n-Massey product can be expressed in terms
of matric Massey products [22, Proposition 2.3], but this is not a helpful ex-
pression for calculations.

Example 2.5. Let K be the simplicial complex in Figure 1. Let α1, α2, α3 ∈
H3(ZK) correspond to α1 = [χ1] ∈ H̃0(K12), α2 = [χ3] ∈ H̃0(K34), α3 = [χ5] ∈
H̃0(K56). Since H̃1(K1234) and H̃1(K3456) = 0, the products α1α2 ∈ H̃1(K1234)

and α2α3 ∈ H̃1(K3456) are zero.

A cochain a12 ∈ C0(K1234) such that d(a12) = χ
1
χ

3 = 0 is of the form
a12 = c1χ3 + c2(χ1 + χ

4 + χ
2), for any c1, c2 ∈ k. A cochain a23 ∈ C0(K3456)

such that d(a23) = χ
3 ·χ5 = χ

35 is of the form a23 = c3(χ4 +χ
6 +χ

3 +χ
5) +χ

5

for any c3 ∈ k. Then the associated cocycle ω ∈ C1(K) is a1a23 + a12a3 =
c3(χ14 + χ

16 + χ
15) + χ

15 + c1χ35 + c2(χ15 + χ
25). For χ1, χ5 ∈ C0(K), ω =

c3d(χ1)+χ15 +(c1−c2)χ35 +c2d(χ5). Also, [ω] = [χ15 +(c1−c2)χ35] 6= 0 for any
c1, c2, c3 ∈ k. Therefore 〈α1, α2, α3〉 ⊂ H8(ZK) is non-trivial with non-trivial

indeterminacy, α1 · H̃0(K3456) + α3 · H̃0(K1234) = α3 · H̃0(K1234).

3 5

2

4

6

1

Figure 1: A simplicial complex K for which ZK has a non-trivial 3-Massey product with
non-trivial indeterminacy.

3. Massey products via join and star deletion

The categorical product of simplicial complexes K1 and K2 is the join K1∗K2.
This induces a product in moment-angle complexes, ZK1∗K2 = ZK1 × ZK2 . In
this way cup products in H∗(ZK1∗K2) can be seen combinatorially. Since Massey
products are higher operations, we require lower Massey products to be trivial.
The idea is to start with the join of simplicial complexes and remove certain
simplices in order to trivialise lower Massey products. To remove simplices, we
use star deletion.

For a simplicial complex K, the star and link of a simplex I ∈ K are

stK I = {J ∈ K | I ∪ J ∈ K} and lkK I = {J ∈ K | I ∪ J ∈ K, I ∩ J = ∅}.

The boundary of the star of I ∈ K is ∂ stK I = {J ∈ K | I ∪ J ∈ K, I 6⊂ J}. Let
s̊tKI = stK I \ ∂ stK I.
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Definition 3.1. The star deletion sdI K of K at I is sdI K = K \ s̊tKI.

Alternatively, sdI K = {J ∈ K | I 6⊂ J}. Star deletions sdI1 and sdI2 can
be applied iteratively providing that I1 6⊂ I2 and I2 6⊂ I1. We show that the
order of star deletions on a simplicial complex does not affect the result.

Lemma 3.2. Let K be a simplicial complex. Let I1, I2 ∈ K be simplices such
that I1 ∩ I2 6= I1, I2. Then sdI2 sdI1 K = sdII sdI2 K.

Proof. Since I1 ∩ I2 6= I1, I2, neither I1 ⊂ I2 nor I2 ⊂ I1. Thus I1 ∈ sdI2 K and
I2 ∈ sdI1 K. So sdI2 sdI1 K = K \ (s̊tKI1 ∪ s̊tKI2) = sdI1 sdI2 K.

3

1

6

4

5

2

(a) sd{1,6} K

3

1

6

4

5

2

(b) sd{3,6} K

3

1

6

4

5

2

(c) sd{3,6} sd{1,6} K
= sd{1,6} sd{3,6} K

Figure 2: The star deleted complex is not affected by the order of star deletions.

Example 3.3. Let K be the boundary of an octahedron with opposing vertices
labelled i, i + 1 for i = 1, 3, 5. Let I1 = {1, 6} and I2 = {3, 6}. The star
stK I1 contains maximal simplices {1, 4, 6} and {1, 3, 6}, and stK I2 contains
{1, 3, 6} and {2, 3, 6}. If the star of I1 is deleted from K first, then stsdI1 K I2
contains the maximal simplex {2, 3, 6}. Hence sdI2 sdI1 K removes the simplices
{1, 4, 6}, {1, 3, 6} and {2, 3, 6} from K. The same simplices are removed from K
in sdI1 sdI2 K, as shown in Figure 2.

Remark 3.4. Star deletion is equivalent to doing a stellar subdivision ssI K =
(K \ s̊tKI) ∪∂ stK I cone(∂ stK I) then restricting to the original vertices V (K).
For example, see Figure 3 compared to Figure 2a. If K is a triangulation of an
n-sphere on m vertices, then ZK is an (m + n + 1)-dimensional manifold. As
ssI K ' K, ssI K is a triangulation of an n-sphere on m+1 vertices. Hence ZssI K
is an (m+n+2)-dimensional manifold. Since Massey products are obstructions
to formality, a non-trivial Massey product in H∗(ZssI K) implies that ZssI K is
a non-formal.
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1

6

4

5

2

Figure 3: A stellar subdivision at {1, 6} in the octahedron

3.1. A construction of non-trivial Massey products

We aim to construct a simplicial complex K such that there is a non-trivial
n-Massey product in H∗(ZK). We start with the join of n-simplicial complexes

K1∗· · ·∗Kn and classes αi ∈ H̃pi(KiJi) for each i ∈ {1, . . . , n}. In K1∗· · ·∗Kn, all
cup products between αis are non-trivial, so in order to define a higher Massey
product we first remove simplices to make certain cup products trivial. To
define which simplices to remove, we define two sets of simplices, Sai ⊂ Ki and
Pai ⊂ Ki for each Ki. In order to create K, we star delete K1 ∗ · · · ∗Kn at every
simplex σi ∪ σk for σi ∈ Sai and σk ∈ Pak , 1 ≤ i < k ≤ n, (i, k) 6= (1, n). The
star deletions at σ1 ∪ σ2 and σ2 ∪ σ3 trivialise the cup products α1α2 and α2α3

respectively, which is required to define a triple Massey product 〈α1, α2, α3〉.
By star deleting at σ1 ∪ σ3, we trivialise 〈α1, α2, α3〉. If we also star delete at
simplices σ3 ∪ σ4 and σ2 ∪ σ4, then 〈α2, α3, α4〉 is defined and trivial, so the
4-Massey product 〈α1, α2, α3, α4〉 is defined. We define the Massey product
〈α1, . . . , αn〉 ⊂ H∗(ZK) by iterating this process.

Construction 3.5. For i ∈ {1, . . . , n}, let Ki be a simplicial complex on [mi]
vertices that is not an (mi−1)-simplex. Since Ki is not a simplex, there is a non-

zero cohomology class αi ∈ H̃pi(KiJi) for pi ∈ N, Ji ⊆ [mi]. Let ai ∈ Cpi(KiJi)
be a cocycle representative for αi that is supported on pi-simplices Sai ⊂ K so
that ai =

∑
σi∈Sai

cσiχσi ∈ Cpi(KiJi) for a non-zero coefficient cσi ∈ k. For

every simplex σi ∈ Sai , let vσi denote one vertex in σi. Let Pσi be the set

Pσi = {σ′i ∈ Ki | σ′i is a pi-simplex, σi ∩ σ′i = σi \ vσi}.

An example is shown in Figure 4.
We start by constructing the set Pai for each i, in order to define star dele-

tions of K1 ∗ · · · ∗ Kn. We fix an order on the simplices in Sai and define an

ordered subsequence of simplices σ
(1)
i , . . . , σ

(l)
i ⊂ Sai . Let σ

(1)
i be the first ele-

ment of Sai . Then let S
(1)
ai = Sai \Pσ(1)

i
. Let σ

(2)
i be the next element after σ

(1)
i
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vσ

σ σ′σ′′

Figure 4: For this choice of vertex vσ ∈ σ, σ′ ∈ Pσ but σ′′ /∈ Pσ

in S
(1)
ai . Then let S

(2)
ai = S

(1)
ai \ Pσ(2)

i
. We continue repeatedly until σ

(l)
i is the

last element of S
(l−1)
ai , and let

Pai = P
σ

(1)
i
∪ · · · ∪ P

σ
(l)
i
. (3.1)

Since σ
(l)
i /∈ P

σ
(l)
i

, the set Sai \ Pai = S
(l−1)
ai \ P

σ
(l)
i

contains at least the last

element σ
(l)
i . So Pai 6= Sai .

Let K̄ = K1 ∗ · · · ∗ Kn, so K̄[mi] = Ki for every i ∈ {1, . . . , n}. The vertices
in each vertex set V (Ki) = [mi] have an order. Suppose that the vertex set
V (K̄) =

⊔
i∈{1,...,n} V (Ki) is ordered so that u < v for all u ∈ V (Ki) and

v ∈ V (Kj) for i < j. We construct a simplicial complex K by star deleting K̄ at
each simplex σi∪σk one at a time, where σi ∈ Sai and σk ∈ Pak , 1 ≤ i < k ≤ n,
(i, k) 6= (1, n). Let K denote the resulting simplicial complex.

Lemma 3.6. For any i ∈ {1, . . . , n}, the set Pai is non-empty.

Proof. If pi = 0 and H̃0(K) 6= 0, then K is a disjoint union of at least two
vertices. For any v, w ∈ K, v ∩ w = ∅ = v \ v. Hence w ∈ Pv. Alternatively let

pi > 0. Since αi ∈ H̃pi(KJi) is non-zero, there is a non-zero cycle x ∈ Cpi(KJi)
such that ai(x) 6= 0. Let x =

∑
τ∈Sx cτ∆τ with non-zero coefficients cτ and pi-

simplices τ . Let σ ∈ Sai ∩ Sx. Let ∂ : Cpi(KJi)→ Cpi−1(KJi) be the boundary
homomorphism. Since x is a cycle and ∂∆σ 6= 0, for any vertex v ∈ σ there
exists a different simplex τ ∈ Sx with σ \ v = σ ∩ τ = τ \ u for some vertex
u ∈ τ . Hence for any σ ∈ Sai ∩ Sx, τ ∈ Pσ and so Pai is non-empty.

Example 3.7 (a). Let K1 be the disjoint union of two vertices {1}, {2} and K2

the simplicial complex in Figure 5a. The join K1 ∗ K2 is homotopy equivalent
to S2 ∨ S1. Let α1 ∈ H̃0(K1), α2 ∈ H̃0(K2) be represented by the cochains
a1 = χ

1 and a2 = χ
3 + χ

4 + χ
5, respectively. Then Sa1

= {{1}}, and Sa2
=

{{3}, {4}, {5}}. Following the construction above, for σ2 = {3} there is only

one choice of a vertex v = 3. Then P{3} = {{4}, {5}, {6}} so S
(1)
a2 = {{3}} and

Pa2
= P{3}. The simplicial complex

K = sd{1,6} sd{1,5} sd{1,4}K1 ∗ K2

is shown in Figure 5b. Since K is contractible, the cup product α1α2 is trivial.
(b). In addition to K1 and K2 in Part (a), let K3 be the disjoint union

of two vertices {7}, {8}. Let α3 ∈ H̃0(K3) be represented by a3 = χ
7. Then
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Sa3 = {{7}} and Pa3 = P{7} = {{8}}. By Construction 3.5, we star delete
K1 ∗K2 ∗K3 at σi∪σk for every σi ∈ Sai and σk ∈ Pak for i = 1, 2 and k = i+1.
Since Sa2

= {{3}, {4}, {5}}, we obtain the simplicial complex

K′ = sd{5,8} sd{4,8} sd{3,8} sd{1,6} sd{1,5} sd{1,4}K1 ∗ K2 ∗ K3.

The full subcomplex K′3,4,5,6,7,8 is shown in Figure 5c. Theorem 3.17 will show
that there is a non-trivial triple Massey product in H∗(ZK′).

3

4

5
6

(a) The simplicial complex
K2

3

4 5
6

2

1

(b) K after star deletions at
{1, 4}, {1, 5}, {1, 6}

3

4 5

8

6

7

(c) K′3,4,5,6,7,8 af-
ter star deletions at
{3, 8}, {4, 8}, {5, 8}

Figure 5

Lemma 3.8. The simplicial complex K is independent of the order of simplices
in Pak .

Proof. For any σk, σ
′
k ∈ Pak , we have (σi ∪ σk)∩ (σi ∪ σ′k) 6= σi ∪ σk, σi ∪ σ′k. So

by Lemma 3.2, the order of Pak does not affect K.

Lemma 3.9. The simplicial complex K is independent of the order in which
the pairs {i, k}, 1 6 i < k 6 n, are chosen.

Proof. Let {i1, k1} and {i2, k2} be two pairs of indices. For 1 6 ij < kj 6 n,
j = 1, 2, let σij ∈ Saij and σkj ∈ Pakj . The intersection (σi1 ∪ σk1

)∩ (σi2 ∪ σk2
)

is empty since the vertices of any σj ∈ Saj are a subset of Jj for every j ∈
{1, . . . , n} and (Ji1 ∪ Jk1

) ∩ (Ji2 ∪ Jk2
) = ∅. Therefore by Lemma 3.2, we can

star delete at simplices σi1 ∪ σk1
and simplices σi2 ∪ σk2

in either order.

Lemma 3.10. In Construction 3.5, the simplicial complex K depends on the
order of simplices in Sak .

Proof. Suppose that σk ∈ Sak , σ′k ∈ Pσk and let σi ∈ Sai for an i ∈ {1, . . . , k−1}.
If σ′k ∈ Sak ∩ Pσk , then either σ′k > σk or σ′k < σk in the order of simplices in
Sak . In the first case, σ′k ∈ Pak so we perform a star deletion at σi∪σ′k. If there
is no simplex σ′′k ∈ Sak such that σ′′k > σk and σk ∈ Pσ′′k , then σk 6∈ Pak . So
σi ∪ σk ∈ K and σi ∪ σ′k /∈ K. In the second case, if the chosen vertex vk′ ∈ σ′k
is such that σ′k \ vk′ = σk \ vk, then σk ∈ Pσ′k . Since σ′k < σk, σk ∈ Pak and
therefore σi ∪ σk /∈ K. Hence K is different in the two cases.
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Lemma 3.11. The choice of vertex vσk ∈ σk affects the number of stars dele-
tions performed in Construction 3.5.

Proof. We demonstrate this with an example. Consider the join K1 ∗K2 ∗K3 of
three simplicial complexes. Suppose that K2 is the boundary of a tetrahedron on
the vertices 1, 2, 3, 4. Also suppose that a2 ∈ C1(K2) is χ123 + χ

234. We fix the
order on Sa2 = {{1, 2, 3}, {2, 3, 4}}. First let v{123} = 3 ∈ {1, 2, 3} and v{234} =
2 ∈ {2, 3, 4}. By definition, P{123} = {σ ∈ K2 | σ is a 1-simplex and σ ∩
{1, 2, 3} = {1, 2, 3} \ v{123}} = {1, 2, 4}. Similarly P{234} = {1, 3, 4}. There-
fore Pa2

= {{1, 2, 4}, {1, 3, 4}}. To construct K from K1 ∗ K2 ∗ K3, we perform
|Sa1
||Pa2

|+ |Sa2
||Pa3

| = 2|Sa1
|+ |Sa2

||Pa3
| star deletions.

Compare this to the case when v{123} = 1, so P{123} = {2, 3, 4}. Since
{1, 2, 3} comes before {2, 3, 4} in Sa2 and Sa2 \P{123} = {1, 2, 3}, Pa2 = P{123} =
{2, 3, 4}. In this case, to construct K we perform |Sa1

|+|Sa2
||Pa3

| star deletions.
Since Sa1

and Pa3
do not depend on v{123} or v{234}, this is fewer star deletions

than when v{123} = 3.

We will prove that the Massey product 〈α1, . . . , αn〉 ⊂ H∗(ZK) is non-trivial
in several steps, first showing that it is defined.

Proposition 3.12. Let K be a simplicial complex constructed in Construc-
tion 3.5. Then 〈α1, . . . , αn〉 ⊂ H∗(ZK) is defined.

Proof. Let ai =
∑
σi∈Sai

cσiχσi be a representative cocycle for αi ∈ H̃pi(KJi)
for each i ∈ {1, . . . , n−1}. We construct a defining system (ai,k) for the Massey
product 〈α1, . . . , αn〉 ⊂ Hp1+···+pn+|J1∪···∪Jn|+2(ZK).

For 1 6 i 6 k 6 n, (i, k) 6= (1, n), let ai,k ∈ Cpi+···+pk(KJi∪···∪Jk) be the
cochain given by

ai,k =
∑

σi∈Sai

∑
σi+1∈S̃ai+1

· · ·
∑

σk∈S̃ak

cσi . . . cσk θi,k χσi∪···∪σk\(vi+1∪···∪vk) (3.2)

where S̃ai = Sai \ Pai , vertices vi = vσi ∈ σi are fixed, and θi,k = 1 when i = k
or otherwise

θi,k = (−1)k−i+|Ji|(pi+1+···+pk)+|Ji+1|(pi+2+···+pk)+···+|Jk−1|pk

· ε(vi+1, σi+1) . . . ε(vk, σk). (3.3)

For any σi ∈ S̃ai and σk ∈ S̃ak , σi∪σk ∈ K and so σi∪· · ·∪σk\(vi+1∪· · ·∪vk) ∈
K. Since every coefficient cσi is non-zero and each χ

σi∪···∪σk\(vi+1∪···∪vk) is a
different basis element of Cpi+···+pk(KJi∪···∪Jk), the cochain ai,k is not trivial.

We will verify that d(ai,k) =
∑k−1
r=i ai,r · ar+1,k. By the definition of the
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coboundary map,

d(ai,k) =
∑

σi∈Sai

∑
σi+1∈S̃ai+1

· · ·
∑

σk∈S̃ak

cσi . . . cσk θi,k·

∑
j∈B

ε(j, j ∪ σi ∪ · · · ∪ σk \ (vi+1 ∪ · · · ∪ vk)) χj∪σi∪···∪σk\(vi+1∪···∪vk)


(3.4)

where B is the set {j ∈ Ji ∪ · · · ∪ Jk \ (σi ∪ · · · ∪ σk \ (vi+1 ∪ · · · ∪ vk)) | j ∪ σi ∪
· · ·∪σk \ (vi+1∪· · ·∪vk) ∈ K}. First we show that the only non-zero summands
are when j ∈ vi+1 ∪ · · · ∪ vk. For fixed σi, . . . , σk, suppose that there is a vertex
j ∈ Ji ∪ · · · ∪Jk \ (σi ∪ · · · ∪σk) such that j ∪σi ∪ · · · ∪σk \ (vi+1 ∪ · · · ∪ vk) ∈ K.
So j /∈ vi+1 ∪ · · · ∪ vk. Consider two cases, either j ∈ Ji or j ∈ Jl \ σl for
l ∈ {i+ 1, . . . , k}.

(i) In the first case, j ∈ Ji. By the definition of the coboundary map and
since ai is a cocycle,

d(ai) =
∑
σ∈Sai

cσ
∑

j∈Ji\V (σ)

ε(j, j ∪ σ)χj∪σ = 0.

We extend this sum by taking the union of each j ∪ σ with σi+1 ∪ · · · ∪ σk \
(vi+1 ∪ · · · ∪ vk). Since σl /∈ Pal for every l ∈ {i+ 1, . . . , k}, j ∪ σ ∪ σi+1 ∪ · · · ∪
σk \ (vi+1 ∪ · · · ∪ vk) ∈ K for any j ∪ σ ∈ KJi . Hence∑

σ∈Sai

cσ
∑

j∈Ji\V (σ)

ε(j, j ∪ σ ∪ σi+1 ∪ · · · ∪ σk \ (vi+1 ∪ · · · ∪ vk))·

· χj∪σ∪σi+1∪···∪σk\(vi+1∪···∪vk) = 0.

(ii) In the second case, j ∈ Jl for l ∈ {i+ 1, . . . , k}, so j ∪ σl \ vl ∈ KJl and
hence j ∪ σl \ vl ∈ Pσl ⊂ Pal . By Construction 3.5, σi ∪ j ∪ σl \ vl /∈ K. Hence
j ∪σi ∪ · · · ∪σk \ (vi+1 ∪ · · · ∪ vk) /∈ K for any j ∈ Ji ∪ · · · ∪Jk \ (vi+1 ∪ · · · ∪ vk).

Since the only non-zero summands in (3.4) are when j ∈ vi+1 ∪ · · · ∪ vk,
d(ai,k) reduces to

d(ai,k) =
∑

σi∈Sai

∑
σi+1∈S̃ai+1

· · ·
∑

σk∈S̃ak

cσi . . . cσkθi,k·

·
∑

j∈vi+1∪···∪vk|
j∪σi∪···∪σk\(vi+1∪···∪vk)∈K

ε(j, j∪σi∪· · ·∪σk\(vi+1∪· · ·∪vk)) χj∪σi∪···∪σk\(vi+1∪···∪vk).

Denote j ∈ vi+1 ∪ · · · ∪ vk by vr+1 for r ∈ {i, . . . , k − 1}, and rewrite d(ai,k) as

d(ai,k) =

k−1∑
r=i

θi,k
∑

σi∈Sai

∑
σi+1∈S̃ai+1

· · ·
∑

σk∈S̃ak

cσi . . . cσk ·

· ε(vr+1, σi ∪ · · · ∪ σk \ (vi+1 ∪ · · · ∪ v̂r+1 ∪ · · · ∪ vk))·
· χσi∪···∪σk\(vi+1∪···∪v̂r+1∪···∪vk)

(3.5)
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where v̂r+1 denotes that vr+1 is deleted from the sequence vi+1, . . . , vk.

To show that d(ai,k) =
∑k−1
r=i ai,r · a(r+1),k, we write out ai,r and a(r+1),k so

that
∑k−1
r=i ai,r · a(r+1),k is

k−1∑
r=i

(−1)1+deg(ai,r)

 ∑
σi∈Sai

∑
σi+1∈S̃ai+1

· · ·
∑

σr∈S̃ar

ci,r χσi∪···∪σr\(vi+1∪···∪vr)

 ·
·

 ∑
σr+1∈Sar+1

∑
σr+2∈S̃ar+2

· · ·
∑

σk∈S̃ak

cr+1,k
χ
σr+1∪···∪σk\(vr+2∪···∪vk)


where ci,r = cσi . . . cσr θi,r and cr+1,k = cσr+1 . . . cσk θr+1,k. For any σr+1 ∈
Sar+1

\ S̃ar+1
, by definition σr+1 ∈ Par+1

and σi ∪ σr+1 /∈ K. Therefore
(σi ∪ · · · ∪ σr \ (vi+1 ∪ · · · ∪ vr))∪(σr+1 ∪ · · · ∪ σk \ (vr+2 ∪ · · · ∪ vk)) ∈ K only

if σr+1 ∈ S̃ar+1
. Then by expanding the above expression and using the sign

from Lemma 2.2,
∑k−1
r=i ai,r · a(r+1),k is

k−1∑
r=i

∑
σi∈Sai

∑
σi+1∈S̃ai+1

· · ·
∑

σk∈S̃ak

(−1)1+deg(ai,r)+|Ji∪···∪Jr|(pr+1+···+pk+1)·

· cσi . . . cσk θi,r θr+1,k
χ
σi∪···∪σk\(vi+1∪···∪v̂r+1∪···∪vk).

(3.6)

Since deg(ai,r) = |Ji ∪ · · · ∪ Jr|+ pi + · · ·+ pr + 1,

(−1)1+deg(ai,r)+|Ji∪···∪Jr|(pr+1+···+pk+1) = (−1)(pi+···+pr)+|Ji∪···∪Jr|(pr+1+···+pk).

We next prove that (3.5) is equal to (3.6) by showing that

θi,k ε(vr+1, σi ∪ · · · ∪ σk \ (vi+1 ∪ · · · ∪ v̂r+1 ∪ · · · ∪ vk))

= (−1)(pi+···+pr)+|Ji∪···∪Jr|(pr+1+···+pk)θi,r θr+1,k. (3.7)

Since

θi,r = (−1)r−i+|Ji|(pi+1+···+pr)+···+|Jr−1|pr ε(vi+1, σi+1) · · · ε(vr, σr)

and

θr+1,k = (−1)k−r−1+|Jr+1|(pr+2+···+pk)+···+|Jk−1|pk ε(vr+2, σr+2) · · · ε(vk, σk)

the right hand side of (3.7) becomes

(−1)k−i−1+(pi+···+pr)+|Ji|(pi+1+···+pk)+|Ji+1|(pi+2+···+pk)+···+|Jk−1|pk

· ε(vi+1, σi+1) . . . ε(vr, σr)ε(vr+2, σr+2) . . . ε(vk, σk).
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This is simplified as

(−1)pi+···+pr−1 ε(vr+1, σr+1) θi,k. (3.8)

Next consider the left hand side of (3.7). For any r ∈ {i, . . . , k−1}, suppose
that vr+1 ∈ σr+1 is the lth vertex in the vertex set of σi ∪ · · · ∪σk \ (vi+1 ∪ · · · ∪
v̂r+1 ∪ · · · ∪ vk). Then by (2.2),

ε(vr+1, σi ∪ · · · ∪ σk \ (vi+1 ∪ · · · ∪ v̂r+1 ∪ · · · ∪ vk)) = (−1)l−1.

Since vr+1 ∈ σr+1, l is given by

l = |σi|+ (|σi+1| − 1) + · · ·+ (|σr| − 1) + lr+1

where lr+1 is the position of vr+1 in σr+1. Since |σi| = pi + 1 for every i,
l = (pi + 1) + pi+1 + · · ·+ pr + lr+1, and hence

ε(vr+1, σi∪· · ·∪σk \(vi+1∪· · ·∪ v̂r+1∪· · ·∪vk)) = (−1)pi+···+pr+1 ε(vr+1, σr+1).
(3.9)

Thus (3.7) may be rewritten as (−1)pi+···+pr+1 θi,k ε(vr+1, σr+1), which is equal

to (3.8). Hence (3.5) is equal to (3.6) so d(ai,k) =
∑k−1
r=i ai,r · a(r+1),k, which

proves that (ai,k) corresponds to a defining system for 〈α1, . . . , αn〉.

We aim to show that the constructed n-Massey product 〈α1, . . . , αn〉 is non-
trivial. We build a cycle x ∈ Cp1+...+pn+1(KJ1∪···∪Jn) and show that for any
[ω] ∈ 〈α1, . . . , αn〉 there is a cycle x′ homologous to x such that ω(x′) 6= 0. This
will conclude that [ω] 6= 0.

Construction 3.13. Fix σ1 ∈ Sa1
, σi ∈ S̃ai = Sai \ Pai for 2 6 i < n and

σn ∈ Pan . Since α1 ∈ H̃p1(KJ1
) is non-zero, there is a cycle x1 ∈ Cp1

(KJ1
) such

that a1(x1) 6= 0. We write the cycle x1 as

x1 =
∑

σ̃1∈Sx1

cσ̃1∆σ̃1

for a collection of p1-simplices Sx1
⊂ KJ1

and non-zero coefficients cσ̃1
, where

∆σ̃1 is a basis element of Cp1(KJ1).
After the star deletion of σ2 ∪ σn, the boundary complex ∂(σ2 ∪ σn) is

contained in K. Let x2 ∈ Cp2+pn(∂(σ2 ∪ σn)) be the cycle

x2 =
∑

w2∈σ2∪σn

cw2
∆σ2∪σn\w2

for vertices w2 ∈ σ2∪σn and non-zero coefficients cw2
. Similarly for 3 6 i 6 n−1,

let xi ∈ Cpi−1(∂(σi)) be the cycle given by

xi =
∑
wi∈σi

cwi∆σi\wi
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for vertices wi ∈ σi and non-zero coefficients cwi .
Let x ∈ Cp1+...+pn+1(KJ1∪···∪Jn) be the chain

x =
∑

σ̃1∈Sx1

∑
w2∈σ2∪σn

∑
w3∈σ3

· · ·
∑

wn−1∈σn−1

cσ̃1cw2 · · · cwn−1 ·

·∆σ̃1∪σ2∪···∪σn−1∪σn\(w2∪···∪wn−1).

Let Sx be the support of x, consisting of simplices

σ = σ̃1 ∪ σ2 ∪ · · · ∪ σn−1 ∪ σn \ (w2 ∪ · · · ∪ wn−1) (3.10)

for a p1-simplex σ̃1 ∈ Sx1
, and a choice of vertices w2 ∈ σ2 ∪ σn, wi ∈ σi for

3 6 i 6 n− 1.

Lemma 3.14. The cochain x ∈ Cp1+...+pn+1(KJ1∪···∪Jn) is a cycle.

Proof. We show that x is a cycle by explicitly calculating ∂(x). By the definition
of the boundary map,

∂(x) =
∑

σ̃1∈Sx1

∑
w2∈σ2∪σn

∑
w3∈σ3

· · ·
∑

wn−1∈σn−1

∑
v∈σ

ε(v, σ) cσ̃1
cw2
· · · cwn−1

∆σ\v

where σ ∈ Sx as in (3.10). Since σ̃1 ⊂ J1, σi ⊂ Ji for 2 6 i 6 n, and Ji ∩ Jj = ∅
for i 6= j, any choice of vertex v ∈ σ is contained in a simplex σ̃1 or σi for
2 6 i 6 n. If v ∈ σ̃1, then ε(v, σ) = ε(v, σ̃1). Also if v ∈ σi for i > 1, then

ε(v, σ) =


(−1)p1+1 ε(v, σ2) if w2 ∈ σn and i = 2,

(−1)p1+···+pi−1+2 ε(v, σi \ w̃i) if w2 ∈ σn and i > 2,

(−1)p1+···+pn−1+1 ε(v, σn) if w2 ∈ σ2 and i = n,

(−1)p1+···+pi−1+1 ε(v, σi \ wi) if w2 ∈ σ2 and i < n

where w̃i = wi for 1 < i < n, and w̃n = w2. We rewrite ∂(x) as

∂(x) =
∑

σ̃1∈Sx1

∑
w2∈σ2∪σn

∑
w3∈σ3

· · ·
∑

wn−1∈σn−1

n∑
i=1

∑
v∈σ̃i\w̃i

ε(v, σ) cσ̃1cw2 · · · cwn−1∆σ\v

where σ̃1 \ w̃1 = σ̃1 and σ̃i = σi for i > 1. Let ∆σ\v|J denote the restriction of ∆σ\v
to its vertices in J ⊂ V (K), where V (K) is the vertex set of K. Then

∂(x) =
∑

σ̃1∈Sx1

∑
w2∈σ2∪σn

∑
w3∈σ3

· · ·
∑

wn−1∈σn−1 n∑
i=1

∑
v∈σ̃i\w̃i

ε(v, σ) cσ̃1cw2 · · · cwn−1(∆σ\v|Ji)(∆σ\v|V (K)\Ji)

 .

We rearrange ∂(x) into four sums, one in which v ∈ σ̃1, another for v ∈ σ2 ∪ σn \ w2,
and two more when v ∈ σi \ wi for 3 6 i 6 n − 1 where either w2 ∈ σ2 or w2 ∈ σ2.
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Then expanding ε(v, σ), ∂(x) is∑
w2∈σ2∪σn

∑
w3∈σ3

· · ·
∑

wn−1∈σn−1

cw2 · · · cwn−1 ·

· (∆σ\v|V (K)\J1
)

 ∑
σ̃1∈Sx1

∑
v∈σ̃1

ε(v, σ̃1) cσ̃1(∆σ\v|J1
)

+

+
∑

σ̃1∈Sx1

∑
w3∈σ3

· · ·
∑

wn−1∈σn−1

cσ̃1cw3 · · · cwn−1(−1)p1+p3+···+pn−1+1(∆σ\v|V (K)\J2∪Jn)·

·

 ∑
w2∈σ2∪σn

∑
v∈σ2∪σn\w2

ε(v, σ2 ∪ σn \ w2) cw2(∆σ\v|J2∪Jn)

+

+
∑

σ̃1∈Sx1

∑
w2∈σ2

∑
w3∈σ3

· · ·
∑

wn−1∈σn−1

cσ̃1cw2 · · · cwn−1 ·

·

n−1∑
i=3

(−1)p1+···+pi−1+1(∆σ\v|V (K)\Ji)

 ∑
v∈σi\wi

ε(v, σi \ wi)(∆σ\v|Ji)

+

+
∑

σ̃1∈Sx1

∑
w2∈σn

∑
w3∈σ3

· · ·
∑

wn−1∈σn−1

cσ̃1cw2 · · · cwn−1 ·

·

n−1∑
i=3

(−1)p1+···+pi−1+2(∆σ\v|V (K)\Ji)

 ∑
v∈σi\wi

ε(v, σi \ wi)(∆σ\v|Ji)


.

Each sum can be written in terms of ∂(xi), that is,

∂(x) =
∑

w2∈σ2∪σn

∑
w3∈σ3

· · ·
∑

wn−1∈σn−1

cw2 · · · cwn−1(∆σ\v|V (K)\J1
) ∂(x1)+

+
∑

σ̃1∈Sx1

∑
w3∈σ3

· · ·
∑

wn−1∈σn−1

cσ̃1cw3 · · · cwn−1 ·

· (−1)p1+p3···+pn−1+1(∆σ\v|V (K)\J2∪Jn) ∂(x2)+

+
∑

σ̃1∈Sx1

∑
w2∈σ2

n−1∑
i=3

∑
w3∈σ3

· · ·
∑̂
wi∈σi

· · ·
∑

wn−1∈σn−1

cσ̃1cw2 · · · ĉwi · · · cwn−1 ·

·
(
(−1)p1+···+pi−1+1(∆σ\v|V (K)\Ji) ∂(xi)

)
+

+
∑

σ̃1∈Sx1

∑
w2∈σn

n−1∑
i=3

∑
w3∈σ3

· · ·
∑̂
wi∈σi

· · ·
∑

wn−1∈σn−1

cσ̃1cw2 · · · ĉwi · · · cwn−1 ·

·
(
(−1)p1+···+pi−1+2(∆σ\v|V (K)\Ji) ∂(xi)

)
where ̂ denotes omission. Since ∂(xi) = 0 for every i, x is a cycle as well.

Example 3.15. Let K be the simplicial complex in Figure 6a, where the sim-
plices σ1∪σ′2, σ2∪σ′3 were star deleted and Sa1 = {σ1}, Sa2 = {σ2}, Sa3 = {σ3},
Pa2

= {σ′2}, Pa3
= {σ′3}. The cycle x is supported on simplices of the form

σ = σ̃1 ∪ σ2 ∪ σ′3 \ (w2)
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where σ̃1 is either σ1 or σ′1 and w2 ∈ σ2 ∪ σ′3. Therefore Sx contains σ1 ∪ σ2,
σ′1 ∪ σ2, σ′1 ∪ σ′3 and σ1 ∪ σ′3, as shown in Figure 6b.

If a1 = χ
σ1
∈ C0(Kσ1,σ′1

), a2 = χ
σ2
∈ C0(Kσ2,σ′2

) and a3 = χ
σ3
∈

C0(Kσ3,σ′3
), then the rest of the defining system constructed in Proposition 3.12

is a12 = −χσ1
and a23 = −χσ2

. The associated cocycle to this defining system
is

ω = −χσ1∪σ3
− χσ1∪σ2

.

There is exactly one simplex σ1 ∪ σ2 = Sx ∩ Sω. So by evaluating ω on x,
ω(x) 6= 0.

σ′1

σ1

σ2

σ3

σ′2

σ′3

(a) A simplicial complex K constructed
by star deletions at σ1∪σ′2 and σ2∪σ′3.

σ′3

σ1

σ2

σ′1

(b) The cycle x.

Figure 6

Proposition 3.16. The n-Massey product 〈α1, . . . , αn〉 ⊂ H∗(ZK) is non-
trivial.

Proof. For any [ω] ∈ 〈α1, . . . , αn〉, we consider a corresponding cocycle ω ∈
Cp1+···+pn+1(KJ1∪···∪Jn) with the cycle x from Construction 3.13 and aim to
show that Sω ∩ Sx contains only one simplex. This implies that ω(x) is non-
zero, and therefore [ω] 6= 0.

First we define a subcollection of simplices in Sω. Let (ai,k) be any defining
system of 〈α1, . . . , αn〉. Let Sai,k be the support of ai,k so that

ai,k =
∑

σ∈Sai,k

cσχσ

for non-zero coefficients cσ ∈ k. The image of the coboundary map is a
cochain obtained by adding a vertex to the simplices in Sai,k . Since d(ai,k) =∑k−1
r=i ai,rar+1,k, for any σi,r ∈ Sai,r and σr+1,k ∈ Sar+1,k

there is a simplex
σ ∈ Sai,k and vertex ui ∈ σi,r ∪ σr+1,k such that σ = σi,r ∪ σr+1,k \ ui.
We extend this principle to say that there is a simplex σ ∈ Sa2,n

such that
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σ = σ2 ∪ · · · ∪ σn \ (u2 ∪ · · · ∪ un−1) for σi ∈ S̃ai = Sai \ Pai and vertices
ui ∈ σ2 ∪ · · · ∪ σn for 2 6 i 6 n, ui 6= uj . Let ω be the associated cocycle for
this defining system,

ω =
∑
τ∈Sω

cτχτ

for non-zero coefficients cτ ∈ k. The support of the first summand a1a2,n of ω
contains a simplex of the form

τ = σ1 ∪ σ2 ∪ · · · ∪ σn−1 ∪ σn \ (u2 ∪ · · · ∪ un−1) (3.11)

for σ1 ∈ Sa1
, σi ∈ S̃ai and vertices ui ∈ σ2 ∪ · · · ∪ σn for 2 6 i 6 n, ui 6= uj .

Hence τ ∈ Sω.
We compare the simplices τ ∈ Sω in (3.11) and σ ∈ Sx in (3.10) where

σ = σ̃1 ∪ σ2 ∪ · · · ∪ σn−1 ∪ σ′n \ (w2 ∪ · · · ∪ wn−1)

for σ̃1 ∈ Sx1
, σi ∈ S̃ai for i ∈ {2, . . . , n − 1}, σ′n ∈ Pan and a choice of vertices

w2 ∈ σ2 ∪ σn, wi ∈ σi for 3 6 i 6 n − 1. For σ1 ∈ Sa1 and σi ∈ S̃ai for
2 6 i 6 n, the simplex σ1 ∪ · · · ∪ σn ∈ K was not removed by star deletion
in Construction 3.5. Both τ and σ are (p1 + · · ·+ pn + 1)-dimensional faces of
σ1 ∪ · · · ∪ σn. If there is no τ ∈ Sω and σ ∈ Sx such that τ = σ, then there is
a cochain b ∈ Cp1+···+pn(K) whose support consists of (p1 + · · ·+ pn)-simplices
contained in σ1 ∪ · · · ∪ σn and the support of d(b) contains both τ and σ. Let
ω′ = ω + cτ cd(b),σd(b) where cτ is the coefficient of τ ∈ Sω and cd(b),σ is the
coefficient of σ ∈ Sd(b). Then Sω′ contains σ and does not contain τ . Therefore
σ ∈ Sω′ ∩ Sx. However there could be other simplices in Sω′ ∩ Sx that cancel,
so we cannot conclude that ω′(x) is non-zero. To resolve this, we change the
representatives of [ω] and [x] so that there is only one term in their evaluation.

Suppose that there is τ ′ ∈ Sω′ ∩ Sx, τ 6= τ ′. If lkK(τ ′) 6= ∅, then there is
a (p1 + . . . + pk + 2)-dimensional simplex A ∈ KJ1∪···∪Jn containing τ ′ in its
boundary. Suppose that Sω′ does not contain an additional face of A. Then
replace x by x′, where the simplex τ ′ ∈ Sx is replaced by the (p1 + . . .+pk + 1)-
simplices in ∂(A) \ τ ′ to form Sx′ as illustrated in Figure 7. Therefore x′ is the
cycle x − cτ ′ ε(v,A) ∂(∆A), where cτ ′ is the coefficient of the summand ∆τ ′ in
x, v is the vertex such that v ∪ τ ′ = A, and ε(v,A) is the coefficient of ∆τ in
∂(∆A). Thus [x] = [x′] and τ ′ /∈ Sω′ ∩ Sx′ .

Alternatively, suppose that lkK(τ ′) = ∅, or lkK(τ ′) 6= ∅ and Sω′ contains
an additional face τ ′′ of A. Since x is a cycle, there is another simplex t 6=
τ ′ ∈ Sx such that τ ′ ∩ t 6= ∅ (as shown in Figure 7c). Let ω′′ = ω′ − cτ ′ ε(τ ′ \
τ ′ ∩ t, τ ′) d(χτ ′∩t) where cτ ′ is the coefficient of the summand χ

τ ′ in ω′ and
ε(τ ′ \ τ ′ ∩ t, τ ′) is its coefficient in d(χτ ′∩t). So [ω′′] = [ω′] and Sω′′ contains t
but Sω′′ ∩ Sx does not contain τ ′.

By this process of replacing simplices in the intersection of the supports
one-by-one, we obtain a cocycle ω′ ∈ Cp1+...+pn+1(KJ1∪···∪Jn) and a cycle x′ ∈
Cp1+...+pn+1(KJ1∪···∪Jn) such that [ω′] = [ω], [x′] = [x] and Sω′ ∩ Sx′ contains
only one simplex. Thus ω′(x′) 6= 0, and so [ω′] = [ω] is non-zero.
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s

Aτ ′

(a) The cycle x

s

Aτ ′

(b) The cycle x′

τ ′′

t

Aτ ′

(c) There is a simplex t ∈ Sx
that shares a boundary with
τ ′

Figure 7: If the link of τ ′ is non-empty, then the cycle x can be changed to x′

By combining Propositions 3.12 and 3.16, we have proved the main theorem.

Theorem 3.17. For i ∈ {1, . . . , n}, let Ki be a simplicial complex on [mi] that
is not an (mi−1)-simplex. Then there exists a simplicial complex K, obtained by
performing star deletions on K1 ∗ · · · ∗ Kn, with a non-trivial n-Massey product
in H∗(ZK).

Example 3.18. For i = 1, 2, 3, let Ki be the simplicial complexes as in Exam-
ple 3.7 and let

K = sd{5,8} sd{4,8} sd{3,8} sd{1,6} sd{1,5} sd{1,4}K1 ∗ K2 ∗ K3.

Suppose that a1 = χ
1 ∈ C0(K1), a2 = χ

3+χ4+χ5 ∈ C0(K2), a3 = χ
7 ∈ C0(K3).

Then Sa1
= {1}, Sa2

= {{3}, {4}, {5}}, Sa3
= {{7}} and Pa2

= {4, 5, 6},
Pa3

= {8}. The rest of the defining system constructed in (3.2) is

a1,2 = θ1,2
χ

1 = −χ1

a2,3 = θ2,3(χ3 + χ
4 + χ

5) = −(χ3 + χ
4 + χ

5).

The associated cocycle ω for this defining system is

ω = −χ1(χ3 + χ
4 + χ

5)− χ1
χ

7.

Therefore ω ∈ C1(K) evaluates non-trivially on the 1-cycle x = ∆{1,3}−∆{2,3}+
∆{2,8}−∆{1,8}. Another defining system could have a′2,3 = χ

8 +χ
6 +χ

7. Then
the associated cocycle ω′ for this defining system is given by

ω′ = χ
1(χ6 + χ

7 + χ
8) +−χ1

χ
7 = χ

17 + χ
18 − χ17 = χ

18.

Thus ω′ also evaluates non-trivially on x. By Proposition 3.16, the associated
cocycle of any defining system evaluates non-trivially on some cycle. Hence
〈[a1], [a2], [a3]〉 ⊂ H10(ZK) is a non-trivial Massey product.

Two particular examples of Theorem 3.17 are the families of Baskakov and
Limonchenko.
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Example 3.19 (Baskakov’s family [5]). For i = 1, 2, 3, let Ki be a triangulation
of a (ni − 1)-sphere on [mi]. Let σ1 ∈ K1, σ2, σ

′
2 ∈ K2, σ3 ∈ K3 be maximal

simplices such that σ2 and σ′2 are adjacent, that is, there is a vertex v2′ ∈ K2 such
that (σ2 ∩ σ′2)∪ v2′ = σ′2. Similarly, let σ′3 ∈ K3 be a maximal simplex adjacent
to σ3 so that there exists a vertex v3′ ∈ K3 such that (σ3 ∩ σ′3) ∪ v3′ = σ′3.
Let a1 = χ

σ1 , a2 = χ
σ2′ , and a3 = χ

σ3′ be cocycle representatives of αi ∈
H̃ni−1(Ki) for i = 1, 2, 3. Baskakov [5] constructed K′ = ss{σ1,σ2′} ss{σ2,σ3}K1 ∗
K2 ∗K3 and showed that 〈α1, α2, α3〉 is a non-trivial Massey product in H∗(ZK)
where K is the restriction of K′ to the vertex set [m1] ∪ [m2] ∪ [m3]. Since
K = sd{σ1,σ2′} sd{σ2,σ3}K1 ∗ K2 ∗ K3, Theorem 3.17 recovers Baskakov’s family
of examples of non-trivial triple Massey products in H∗(ZK). The simplest
example when K1,K2,K3 are S0 is shown in Figure 8 and its restriction to the
original 6 vertices is in Figure 6a after swapping the labels σ3, σ3′

σ2

σ1

σ3′

σ2′

σ3

σ1′

(a) K1 ∗ K2 ∗ K3

σ1

σ′1 σ2

σ′2

σ′3

σ3

(b) ss{σ1,σ2′ }
ss{σ2,σ3} K

1 ∗ K2 ∗ K3 with

cone vertices coloured

Figure 8: The simplest example of both Baskakov and Limonchenko’s families of non-trivial
Massey products in moment-angle complexes

Example 3.20 (Limonchenko’s family [18]). Let F be a face of a polytope P
and suppose that there is a hyperplane H that does not include any vertices
of P but separates the vertices of F from the other vertices in P . If H1, H2

are the half spaces defined by H and F ⊂ H2, then the polytope P ∩ H1 is
called a truncation of P at F . A family of non-trivial n-Massey products is
constructed by truncating the unit n-cube In = I × · · · × I as follows. Suppose
that opposite facets of In are labelled Fl, Fl′ for l = 1, . . . , n. The boundary
of the dual K = KIn = ∂(In)∗ is the join of n copies of S0, for example KI3 is
shown in Figure 8a. To create a non-trivial n-Massey product, Limonchenko [18,
Construction 1] truncated In at the intersection of facets Fi and Fk′ for 1 6 i <
k 6 n, (i, k) 6= (1, n). For example see Figure 9. These truncations correspond
to stellar subdividing KIn at the edges σi ∪ σk′ , where σl, σl′ ∈ KIn are the
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F1

F2

F3

F2′ →

← F1′

↖ F3′

Figure 9: A 3-cube truncated at the faces F1 ∩ F2′ and F2 ∩ F3′ , which is dual to Figure 8b
with the labels σ3, σ3′ swapped.

vertices that are dual to the facets Fl, Fl′ in In. Let K be the restriction
of the stellar subdivided complex to the 2n vertices σl, σl′ for l = 1, . . . , n,
and let αl be the generator of H̃0(Kσl,σl′ ). Limonchenko showed that the n-
Massey product 〈α1, . . . , αn〉 ⊂ H∗(ZK) is non-trivial. Since this construction is
recovered by star deleting KIn as described in Construction 3.5, Theorem 3.17
gives an alternative proof that 〈α1, . . . , αn〉 is non-trivial.

Theorem 3.17 does not just give alternative proofs of existing results about
non-trivial Massey products in the cohomology of moment-angle complexes, it
creates non-trivial n-Massey products from any non-zero cohomology classes
supported on a full subcomplex of any simplicial complex Ki. Therefore there
is no limit on n or the dimension of the classes αi. Using this construction it is
also possible to construct Massey products on torsion elements.

Example 3.21. Let K1 be a triangulation of RP 2 on 6 vertices as in Figure 10.
Let K2, K3 be copies of two disjoint vertices labelled 6, 7 and 8, 9, respectively.
Let α1 ∈ H̃2(K1) be represented by χ

012. For i = 2, 3, let αi ∈ H̃0(Ki) be
represented by a2 = χ

6 and a3 = χ
8, respectively. By Construction 3.5, Pa2 =

{{7}} and Pa3 = {{9}}. Then let

K = sd{0127} sd{69}K1 ∗ K2 ∗ K3.

By Theorem 3.17, there is a non-trivial triple Massey product 〈α1, α2, α3〉 ⊂
H14(ZK). This is the smallest example of a non-trivial triple Massey product
on a torsion class since K1 is the triangulation of RP 2 on the least number of
vertices.

Since α1 is the generator of H̃2(K1) ∼= H̃2(RP 2), α1 is a torsion element. The
associated cocycle for the defining system constructed in (3.2) is ω = −χ0126 −
χ

0128 ∈ C3(K). The corresponding class [ω] ∈ 〈α1, α2, α3〉 is not a torsion
element in H14(ZK).

Also, there is a cochain a′1,2 = χ
126+χ124−χ147−χ347+χ037+χ027 such that

d(a′1,2) = χ
0126 ∈ C3(K01234567), which is different to a1,2 constructed in (3.2).

The associated cocycle to this defining system is ω′ = −χ0126 +χ
1268 +χ

1248 −
χ

1478−χ3478 +χ
0378 +χ

0278 with [ω′] 6= 0 and [ω] 6= [ω′]. Therefore 〈α1, α2, α3〉
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has non-trivial indeterminacy. In particular, the indeterminacy is given by α1 ·
H̃0(K6789)+α3 ·H̃2(K01234567) = α3 ·H̃2(K01234567), where H̃2(K01234567) ∼= Z.

34

5

3 4

5

0

1

2

Figure 10: A 6-vertex triangulation of RP 2.

We also extend Construction 3.5 by allowing more general star deletions in
order to construct more non-trivial Massey products. These often only require
a difference in the technical details of the proof of Theorem 3.17 and do not
change the nature of the construction. For example, if Ki is the disjoint union
of two vertices {i} and {i′}, then let K be the simplicial complex that is obtained
from K1 ∗ K2 ∗ K3 ∗ K4 by the sequence of star deletions

sd{1,4} sd{1,4′} sd{1′,4′} sd{2,4} sd{2′,4′} sd{2,4′} sd{1,3} sd{1′,3′} sd{1,3′} sd{3,4′} sd{2,3′} sd{1,2′}.

This is a full subcomplex of the icosahedron I as shown in [3, Theorem 4.6].
Also, no obstruction graph from the classification [12, 15] is a full subcomplex of
I. In [3], this example is given in order to demonstrate a non-trivial 4-Massey
product of lowest-degree classes in H∗(ZI) where there are no non-trivial 3-
Massey products of lowest-degree classes in H∗(ZI).

Let us consider another example of more general star deletions. Suppose
we have a simplicial complex K with n > 3 disjoint subsets of its vertices
J1, . . . , Jn ⊂ V (K) such that there are n non-trivial classes αi ∈ H̃pi(KJi).
Limonchenko [20, Lemma 3.3] showed that if a Massey product 〈α1, . . . , αn〉 ⊂
H∗(ZK) is defined and H̃pi+···+pk(KJi∪···∪Jk) = 0 for every 1 6 i < k 6 n,
(i, k) 6= (1, n), then the Massey product has trivial indeterminacy. The following
example shows that this is not a necessary condition for trivial indeterminacy.

Example 3.22. For i = 1, 2, 3, 4, let Ki be the disjoint union of two vertices
Ji = {i, i′}. Let K be a simplicial complex obtained by Construction 3.5 with
an additional star deletion at the edge {1′, 2′}, that is,

K = sd{2,4′} sd{1,3′} sd{3,4′} sd{2,3′} sd{1′,2′} sd{1,2′}K1 ∗ K2 ∗ K3 ∗ K4.

For each 1 6 i 6 4, let ai = χ
i ∈ C0(KJi) and set αi = [ai] ∈ H̃0(KJi). The

star deletions at {1, 2′} and {1′, 2′} imply that any cochain a1,2 ∈ C0(KJ1∪J2
)
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such that d(a1,2) = a1a2 is of the form

a1,2 = −χ1 + c1(χ1 + χ
1′ + χ

2) + c′1χ2′

for any c1, c
′
1 ∈ k. However, a cochain a1,3 such that d(a1,3) = a1a2,3 + a1,2a3

is only defined when c′1 = c1. Thus, any defining system for 〈α1, α2, α3, α4〉 ⊂
H∗(ZK) is of the form

a1,2 = −χ1 + c1(χ1 + χ
1′ + χ

2 + χ
2′)

a2,3 = −χ2 + c2(χ2 + χ
2′ + χ

3 + χ
3′)

a3,4 = −χ3 + c3(χ3 + χ
3′ + χ

4 + χ
4′)

a1,3 = −(c2 − 1)χ1 + c1χ3 + c4(χ1 + χ
1′ + χ

2 + χ
2′ + χ

3 + χ
3′)

a2,4 = −(c3 − 1)χ2 + c2χ4 + c5(χ2 + χ
2′ + χ

3 + χ
3′ + χ

4 + χ
4′)

for coefficients c1, . . . , c5 ∈ k. These are the same defining systems we would get
if we had not star deleted K1 ∗K2 ∗K3 ∗K4 at the edge {1′, 2′}. The associated
cocycle ω to any of these defining systems is

ω = −χ14′ − d(χ1) + c3d(χ1)− c1d(χ3) + c4d(χ4)− c5d(χ1)+

+ c1c3(−d(χ1)− d(χ1′)− d(χ2)− d(χ2′)).

Thus, 〈α1, α2, α3, α4〉 = [ω] = [−χ14′ ] and hence this Massey product is non-
trivial and has no indeterminacy. However, the star deletions at {1, 2′} and

{1′, 2′} imply that H̃0(KJ1∪J2
) = Z 6= 0. Therefore this is an example of a

non-trivial Massey product with trivial indeterminacy that does not satisfy the
conditions of [20, Lemma 3.3].

3.2. Infinite families of Massey products with non-trivial indeterminacy

In the last example, we saw that doing Construction 3.5 followed by an
extra star deletion at {1′, 2′} produced more choices of cochains a1,2 such that
d(a1,2) = a1a2. We extend this technique to create the first infinite families of
moment-angle complexes with non-trivial Massey products that have non-trivial
indeterminacy. These are the first known examples of non-trivial indeterminacy
in n-Massey products in H∗(ZK) for n > 4.

The idea in Construction 3.5 was to create a non-trivial Massey product
〈α1, . . . , αn〉 by defining two sets of simplices Sai , Pai for each 1 6 i 6 n and star
deleting the join of n simplicial complexes at the simplices σi ∪ σ′k for σi ∈ Sai ,
σ′k ∈ Pak , 1 6 i < k 6 n, (i, k) 6= (1, n). A star deletion at σi ∪ σ′k made the
Massey product 〈αi, . . . , αk〉 trivial by allowing us to define a cochain ai,k such
that d(ai,k) represents a (trivial) class in the lower Massey product 〈αi, . . . , αk〉.
Supposing that 〈α1, . . . , αk〉 has non-trivial indeterminacy, we construct inde-
terminacy in the higher Massey product 〈α1, . . . , αn〉 by making more than one
class in the lower product 〈α1, . . . , αk〉 trivial. In this version of the construc-
tion, we star delete at σ1 ∪σ′k for σ′k ∈ Pak , k 6= n, and any p1-simplex σ1 ∈ K1,
rather than σ1 ∈ Sa1 ⊂ K1. These extra star deletions create choices for a1,k
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in the defining system for 〈α1, . . . , αn〉, and do not affect the proof of Theo-
rem 3.17. We will show that these choices result in non-trivial indeterminacy in
〈α1, . . . , αn〉 when n > 2.

Theorem 3.23. Let Ki be a simplicial complex on the vertex set [mi] that is
not an (mi−1)-simplex, for i ∈ {1, . . . , n}, n > 2. Then there exists a simplicial
complex K obtained by star deletions on K1 ∗ · · · ∗ Kn such that H∗(ZK) has a
non-trivial n-Massey product with non-trivial indeterminacy.

Proof. Since Ki is not an (mi − 1)-simplex, there is a non-trivial class αi ∈
H̃pi(KiJi) for Ji ⊂ [mi]. We will construct two different defining systems for
a Massey product 〈α1, . . . , αn〉 and show that the two associated cocycles are
non-zero and not cohomologous. Therefore this concludes there is non-trivial
indeterminacy in 〈α1, . . . , αn〉.

Let ai be a cocycle representative for αi. Recall that in Construction 3.5, we
had a set of pi-simplices Sai ⊂ Ki for each i such that ai =

∑
σi∈Sai

cσiχσi . For

any σi ∈ Sai , the set Pσi ⊂ Ki contains all pi-simplices σ′i ∈ Ki such that there
is a vertex vσ′i and σi \ vσi = σ′i \ vσ′i , where vσi is a fixed choice of vertex in σi.
We will use these fixed choices of vσi ∈ σi ∈ Sai and vσ′i ∈ σ

′
i ∈ Pσi throughout

this proof. Also recall the set

Pai = P
σ

(1)
i
∪ · · · ∪ P

σ
(l)
i

for σ
(1)
i , . . . , σ

(l)
i ⊂ Sai . To define a simplicial complex K so that 〈α1, . . . , αn〉 ⊂

H∗(ZK) has non-trivial indeterminacy, we star delete K1 ∗ · · · ∗ Kn at σ1 ∪ σ′k
for every p1-simplex σ1 ∈ K1 and σ′k ∈ Pak , 1 < k < n, as well as at each
σi ∪ σ′k for σi ∈ Sai and σ′k ∈ Pak , 1 < i < k ≤ n. This is more star deletions
than in Construction 3.5, where we used σ1 ∈ Sa1

instead of σ1 ∈ K1. Let

S̃ak = Sak \ Pak . If there are simplices σk ∈ Sak \ S̃ak for any k, then we also
star delete at σ′i ∪ σk for every σ′i ∈ Pai , i < k. This is for technical purposes,

to ensure that σk ∈ Sak and σ′i ∪ σk ∈ K implies that σk ∈ S̃ak .
We construct two different defining systems for 〈α1, . . . , αn〉. Recall from

(3.2) in Proposition 3.12 that ai,k ∈ Cpi+···+pk(KJi∪···∪Jk) for 1 6 i 6 k 6 n,
(i, k) 6= (1, n) is the cochain

ai,k =
∑

σi∈Sai

∑
σi+1∈S̃ai+1

· · ·
∑

σk∈S̃ak

cσi . . . cσk θi,k χσi∪···∪σk\(vi+1∪···∪vk)

where S̃ai = Sai \ Pai and θi,k = 1 when i = k or otherwise

θi,k = (−1)k−i+|Ji|(pi+1+···+pk)+|Ji+1|(pi+2+···+pk)+···+|Jk−1|pk

· ε(vσi+1
, σi+1) . . . ε(vσk , σk). (3.12)

The defining system (ai,k) is a defining system for 〈α1, . . . , αn〉 by the same
proof as for Proposition 3.12, since neither the simplices σ1 ∪ σk for σ1 /∈ Sa1

and σk ∈ Pak , 1 < k < n, nor σ′i ∪ σk for σ′i ∈ Pai and σk ∈ (Sak \ S̃ak), i < k,
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play an active role in the proof. To construct a different defining system, for
any 1 < k 6 n, let b1,k ∈ Cp1+···+pk(KJ1∪···∪Jk) be the cochain

b1,k =
∑

σ1∈Sa1

∑
σ2∈S̃a2

· · ·
∑

σk∈S̃ak

∑
σ′i∈Pσ2

∪···∪Pσk

%1,k
χ
vσ′
i
∪σ1∪···∪σk\(vσ1∪···∪vσk )

where %1,k = cσ1
. . . cσkε(vσ′i , vσ′i ∪ σ1 ∪ · · · ∪ σk \ (vσ1

∪ · · · ∪ vσk))θ1,k. Also let
bi,k = 0 for i 6= 1 or i = k = 1, so a′i,k = ai,k + bi,k for all 1 6 i 6 k 6 n,
(i, k) 6= (1, n). We will show that (a′i,k) is a defining system for 〈α1, . . . , αn〉.

First we check that d(b1,k) =
∑k−1
r=1 b1,rar+1,k, where

d(b1,k) =
∑

σ1∈Sa1

∑
σ2∈S̃a2

· · ·
∑

σk∈S̃ak

∑
σ′i∈Pσ2

∪···∪Pσk

∑
j∈KJ1∪···∪Jn

%1,k·

· ε(j, j ∪ vσ′i ∪ σ1 ∪ · · · ∪ σk \ (vσ1
∪ · · · ∪ vσk)) χj∪vσ′

i
∪σ1∪···∪σk\(vσ1∪···∪vσk ).

Fix a simplex τ = vσ′i ∪ σ1 ∪ · · · ∪ σk \ (vσ1 ∪ · · · ∪ vσk) ∈ Sb1,k . For any
1 6 r 6 k, recall from the definition of Pσr that since σr ∈ Sar , if there is a
vertex v ∈ Kr such that v ∪ (σr \ vσr ) ∈ Kr, then v ∪ (σr \ vσr ) ∈ Pσr . Thus
σ′i = vσ′i ∪ (σi \ vσi) ∈ Pσi . Consider the link of τ in KJ1∪···∪Jk . There is no

vertex v ∈ K1 in this link since if v ∪ σ1 \ vσ1 ∈ K1, then (v ∪ σ1 \ vσ1)∪ σ′i /∈ K
because there was a star deletion at that simplex. Similarly, for any r < i, there
is no vertex vσr in the link of τ because σr ∪σ′i /∈ K. Therefore the only vertices
in the link of τ are vσ′r for σr′ ∈ Pσr and any r, and vσr for σr ∈ Sar and r > i.

Consider the summands of d(b1,k) when j = vσ′r for σr′ ∈ Pσr and any
r. If vσ′i ∪ vσ′r ∪ σ1 ∪ · · · ∪ σk \ (vσ1

∪ · · · ∪ vσk) ∈ K, then the coefficient of
χ
vσ′
i
∪vσ′r∪σ1∪···∪σk\(vσ1∪···∪vσk ) is the product of cσ1

. . . cσk θ1,k and

ε(vσ′i , vσ′i∪σ1∪· · ·∪σk\(vσ1∪· · ·∪vσk ))ε(vσ′r , vσ′i∪vσ′r∪σ1∪· · ·∪σk\(vσ1∪· · ·∪vσk ))+

ε(vσ′r , vσ′r∪σ1∪· · ·∪σk\(vσ1∪· · ·∪vσk ))ε(vσ′i , vσ′i∪vσ′r∪σ1∪· · ·∪σk\(vσ1∪· · ·∪vσk )).

(3.13)

First suppose that σ′i, σ
′
r ∈ Ki, so σ′i ∪ vσ′r = σ′r ∪ vσ′i ∈ K

i. Also suppose, without
loss of generality, that vσ′i < vσ′r in the order of the vertex set of K and that vσ′r is

the lth vertex in σ′r. Since vσ′i < vσ′r and ε(vσ′i , vσ′i ∪σ1 ∪ · · · ∪σk \ (vσ1 ∪ · · · ∪ vσk )) =

(−1)p1+···+pi−1ε(vσ′i , σ
′
i) by the definition of ε in (2.2), we rewrite (3.13) as

ε(vσ′i , σ
′
i)ε(vσ′r , σ

′
i ∪ vσ′r ) + ε(vσ′r , σ

′
r)ε(vσ′i , σ

′
i ∪ vσ′r ) =

(−1)lε(vσ′i , σ
′
i)− (−1)l−1ε(vσ′i , σ

′
i ∪ vσ′r ).

Also ε(vσ′i , σ
′
i) = ε(vσ′i , σ

′
i ∪ vσ′r ) because vσ′i < vσ′r , so (3.13) is zero. In particular,

when k = i = 2, then d(b1,2) = 0. So d(a′1,2) = d(a1,2) = a1a2.
Alternatively, suppose that σ′i ∈ Ki, σ′r ∈ Kr and, without loss of generality, i < r.

By using the definition of ε in (2.2), then (3.13) becomes

(−1)p1+···+pi−1ε(vσ′i , σ
′
i)(−1)p1+···+pr−1+1ε(vσ′r , σ

′
r)+

(−1)p1+···+pr−1ε(vσ′r , σ
′
r)(−1)p1+···+pi−1ε(vσ′i , σ

′
i) = 0.
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Since all of these summands cancel out, we conclude that d(b1,k) only has non-zero
summands when j = vσr for σr ∈ Sar and r > i. By rewriting r as r + 1 for
r ∈ {1, . . . , n} and i ∈ {2, . . . , r}, d(b1,k) is equal to

∑
σ1∈Sa1

∑
σ2∈S̃a2

· · ·
∑

σk∈S̃ak

k−1∑
r=1

∑
σ′i∈Pσ2

∪···∪Pσr

%i,k ·

·ε(vσr+1 , vσ′i∪vσr+1∪σ1∪· · ·∪σk\(vσ1∪· · ·∪vσk )) χvσ′
i
∪vσr+1

∪σ1∪···∪σk\(vσ1
∪···∪vσk )

.

(3.14)

Since the simplices σ′i ∪ σr were star deleted for σ′i ∈ Pai and σr ∈ Sar \ S̃ar , this sum
is the same whether we use

∑
σr∈S̃ar

or
∑
σr∈Sar

. Therefore we split this sum into

products so that d(b1,k) =
∑k−1
r=1 b1,rar+1,k, by using the fact that

%1,kε(vσr+1 , vσ′i ∪ vσr+1 ∪ σ1 ∪ · · · ∪ σk \ (vσ1 ∪ · · · ∪ vσk )) =

(−1)p1+···+pr+|J1∪···∪Jr|(pr+1+···+pk)%1,r cσr+1 . . . cσkθr+1,k.

Then

d(a′i,k) = d(ai,k) + d(bi,k)

=

k−1∑
r=1

a1,rar+1,k +

k−1∑
r=1

b1,rar+1,k =

k−1∑
r=1

a′1,rar+1,k.

Hence (a′i,k) is a defining system for 〈α1, . . . , αn〉.
The associated cocycle for (a′i,k) is

ω′ = ω +

n−1∑
r=1

b1,rar+1,n

where ω is the associated cocycle for (ai,k). We show that the difference ω′ − ω is
not a coboundary by constructing a cycle x′ ∈ Cp1+...+pn+1(KJ1∪···∪Jn) such that

(ω′ − ω)(x) 6= 0. We use a similar method to Construction 3.13. Fix σi ∈ S̃ai for i =
1, 3, . . . , n−1 and fix σ′2 ∈ Pa2 . Since it was star deleted, σ1∪σ′2 /∈ K but the boundary
complex ∂(σ1 ∪ σ′2) is contained in K. Also, since αn ∈ H̃pn(KJn) is non-zero, there
is a cycle xn ∈ Cpn(KJn) such that an(xn) 6= 0. Define x′ ∈ Cp1+...+pn+1(KJ1∪···∪Jn)
to be the chain

x′ =
∑

w2∈σ1∪σ′2

∑
w3∈σ3

· · ·
∑

wn−1∈σn−1∑
σ̃n∈Sxn

cw2 · · · cwn−1cσ̃n∆σ1∪σ′2∪σ3···∪σn−1∪σ̃n\(w2∪···∪wn−1)

where cσ̃n are the non-zero coefficients from xn, and cw2 , . . . , cwn−1 are the coefficients
of cycles in Cp1+p2(∂(σ1 ∪ σ′2)), Cpi(∂(σi)) for 3 6 i 6 n− 1. Every simplex σ in the
support Sx of x is a simplex in K since none of them were star deleted. By an analogous
proof to Lemma 3.14, the chain x′ is a cycle.

We want to compare the supports Sω′−ω of ω′ − ω and Sx′ of x′. The cochain

ω′−ω =
∑n−1
r=1 b1,rar+1,n is given in (3.14) when k = n. A simplex σ is in Sω′−ω ∩Sx′
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precisely when w2 = vσ1 , wj = vσj for 3 6 j 6 n−1, r = n−1 so that σr+1 = σn ∈ Sxn ,
and i = 2 ∈ {2, . . . , r} so that σ′i = σ′2 ∈ Pa2 . Hence Sω′−ω ∩ Sx′ contains only one
simplex, σ. Thus (ω′ − ω)(x) = ±χσ(∆σ) 6= 0. Therefore ω′ − ω is not a coboundary
and so [ω′] 6= [ω].

The proof that 〈α1, . . . , αn〉 is non-trivial is the same as the proof of Proposi-
tion 3.16 since neither the simplices σ1 ∪ σ′k for σ1 /∈ Sa1 and σ′k ∈ Pak , nor σ′i ∪ σk
for σi ∈ Pai and σk ∈ (Sak \ S̃ak ), i < k, play a role so the extra star deletions do not
change the proof. Hence 〈α1, . . . , αn〉 is non-trivial with non-trivial indeterminacy.

Example 3.24. For i = 1, 2, 3, suppose Ki is a pair of disjoint vertices labelled
σi, σ

′
i. Let αi ∈ H̃0(Ki) be represented by the cocycle ai = χ

σi . Then Sai = {σi}
and Pai = {σ′i}. Following the construction in the proof of Theorem 3.23, we
define

K = sdσ1∪σ′2 sdσ′1∪σ′2 sdσ2∪σ′3 K
1 ∗ K2 ∗ K3.

This simplicial complex is shown in Figure 11. The Massey product 〈α1, α2, α3〉
is one of the simplest examples of a Massey product in a moment-angle complex
with non-trivial indeterminacy. It is one of the obstruction graphs in the classi-
fication of lowest degree non-trivial triple Massey products in [15]. Since it is a

triple Massey product, its indeterminacy is given by α1 · H̃0(Kσ2,σ′2,σ3,σ′3
) +α3 ·

H̃0(Kσ1,σ′1,σ2,σ′2
) = α3 · H̃0(Kσ1,σ′1,σ2,σ′2

).

σ′1

σ1

σ′2

σ2

σ′3

σ3

Figure 11: A simplicial complex K such that a triple Massey product in H∗(ZK) has indeter-
minacy.

4. Massey products constructed by edge contractions

A simplicial homotopy map ϕ : K → K̂ induces a map on the cohomology
of moment-angle complexes ϕ∗ : H∗(ZK̂) → H∗(ZK). However, a property of
Massey products [17, Section 2] is that ϕ∗〈α̂1, . . . , α̂n〉 ⊂ 〈ϕ∗(α̂1), . . . , ϕ∗(α̂n)〉.
Hence if 〈ϕ∗(α̂1), . . . , ϕ∗(α̂n)〉 has non-trivial indeterminacy, it may be trivial
even if 〈α̂1, . . . , α̂n〉 is non-trivial.

In this section we use edge contractions ϕ : K → K̂ as a simplicial homotopy
operation to construct non-trivial Massey products. Given a non-trivial Massey
product 〈α̂1, . . . , α̂n〉 ⊂ H∗(ZK̂) with α̂i ∈ H̃pi(K̂Ĵi), Ĵi 6= Ĵj for i 6= j, we
explicitly construct a defining system to show that 〈α1, . . . , αn〉 ⊂ H∗(ZK) is
defined where αi is the pullback of α̂i along ϕ. Then we also show that it is
non-trivial to conclude the main result of this section, Theorem 4.12.
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Definition 4.1. Let K, K̂ be simplicial complexes with an edge {u,w} ∈ K, and
a vertex z ∈ V (K̂) such that V (K̂) \ {z} = V (K) \ {{u}, {w}}. The simplicial
complex K̂ is obtained from K by an edge contraction of {u,w} if there is a map
ϕV : V (K)→ V (K̂)

ϕV (v) =

{
z for v ∈ {u,w}
v for v /∈ {u,w}

that extends to a surjective map ϕ : K → K̂, where ϕ(I) = {ϕV (v1), . . . , ϕV (vn)}
for I = {v1, . . . , vn} ∈ K. The map ϕ : K → K̂ is called the edge contraction of
{u,w} ∈ K.

Edge contractions are simplicial maps, but they do not preserve the topology
of K in general. Attali, Lieutier and Salinas [1, Theorem 2] showed that the
homotopy type of a simplicial complex is preserved under edge contractions that
satisfy the link condition.

Theorem 4.2 ([1]). For any simplicial complex K, if an edge {u,w} ∈ K
satisfies the link condition,

lkK({u}) ∩ lkK({w}) = lkK({u,w}), (4.1)

then the edge contraction of {u,w} preserves the homotopy type of K.

Example 4.3. The following is a series of edge contractions that satisfy the
link condition.

Example 4.4. Without the link condition, the homotopy type of a simplicial
complex under edge contractions can change, such as in the following example.

1

2

3

z

The links of the vertices {2} and {3} both contain the vertex {1}, but
lkK({2, 3}) is empty, so the link condition is not satisfied.

Example 4.5. An edge contraction that does not satisfy the link condition may
create a non-trivial cycle. For example, suppose that K̂ is a triangulation of S2

on four vertices, and let K be a 2-dimensional simplicial complex on 5 vertices
with facets {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {3, 4, 5}, {2, 5} as shown in Figure 12.
There is no non-trivial 2-cycle in K so H2(K) = 0, but the contraction {2, 5} 7→ z
results in a 2-cycle and H2(K̂) 6= 0. In this case the link condition is not satisfied
because lkK{2, 5} = ∅ but lkK{2} ∩ lkK{5} = {{3}, {4}}.
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1

2

4

53

z

Figure 12

We construct cohomological classes in H∗(ZK) on which a new pulled-back
Massey product will be defined.

Construction 4.6. Let K̂ be a simplicial complex with a non-trivial n-Massey
product 〈α̂1, . . . , α̂n〉 ⊂ H∗(ZK̂). By Hochster’s theorem, every class α̂i ∈
H∗(ZK̂) has a corresponding class

α̂i ∈ H̃pi(K̂Ĵi)

for a set of vertices Ĵi ⊂ V (K̂). When 〈α̂1, . . . , α̂n〉 is non-trivial, the sets of
vertices Ĵi, Ĵj are disjoint for any i 6= j.

Suppose that there is a simplicial complex K and a series of edge contractions
ϕ : K → K̂ satisfying the link condition. Let the vertices in V (K̂) be ordered
and suppose that all of the vertices in Ĵi come before those of Ĵi+1. For a set
of p-simplices P ⊂ K̂, let

ϕ−1
p (P ) = {σ ∈ K | |σ| = p+ 1 and ϕ(σ) = σ̂ for σ̂ ∈ P}.

Suppose that the vertices V (K) are ordered in such a way that for any vertex
v̂ that comes before ŵ in K̂, each vertex v ∈ ϕ−1

0 (v̂) comes before every w ∈
ϕ−1

0 (ŵ). Let Ji = ϕ−1
0 (Ĵi) ⊂ V (K). Then by the order on V (K), all vertices in

Ji come before those in Ji+1. Also Ji ∩ Jj = ∅ for any i 6= j since Ĵi ∩ Ĵj = ∅
and ϕ−1

0 (v̂) ∩ ϕ−1
0 (ŵ) = ∅ for any vertices v̂, ŵ ∈ K̂, v̂ 6= ŵ.

Let âi be a cocycle representing α̂i ∈ H̃pi(K̂Ĵi). Let Sâi be the support of

âi, that is, the set of pi-simplices σ̂i ∈ K̂Ĵi such that

âi =
∑
σ̂∈Sâi

cσ̂χσ̂ ∈ Cpi(K̂Ĵi)

for non-zero coefficients cσ̂i ∈ k. Define ai ∈ Cpi(KJi) to be the cochain

ai =
∑
σ̂∈Sâi

cσ̂
∑

σ∈ϕ−1
pi

(σ̂)

χ
σ. (4.2)

Since ai is a pullback of âi along ϕ, ai is a cocycle and αi = [ai] ∈ H̃pi(KJi) is
non-zero.
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Example 4.7. Let KJi , K̂Ĵi be the simplicial complexes as shown below, where

K̂Ĵi is obtained from KJi by contracting the edges e2 = {2, 3} 7→ {2̂} and

e5 = {4, 5} 7→ {3̂}. The cohomology class α̂i ∈ H̃1(K̂Ĵi) is represented by the
cocycle χê, so let Sâi = {ê}.

4

5
1

e1

e2

e3

e4

e5

e6

3

2

1̂

2̂3̂

ê

The contraction of e2 satisfies the link condition, since lkK(e2) = lkK{2} ∩
lkK{3} = {1}. Under the map ϕ : K → K̂, ϕ−1

1 (ê) = {e1, e3}. So by (4.2), ai is
the cochain

ai = χ
e1 + χ

e3 ∈ C1(KJi).

This is a cocycle since d(ai) = χ{1,2,3} − χ{1,2,3} = 0.

For the Massey product 〈α̂1, . . . , α̂n〉 ⊂ H(p1+···+pn)+|Ĵ1∪···∪Ĵn|+2(ZK̂), there

is a defining system (âi,k) for cochains âi,k ∈ Cpi+···+pk(K̂Ĵi∪...∪Ĵk), 1 6 i 6 k 6
n and (i, k) 6= (1, n). Suppose that

âi,k =
∑

τ̂∈Sâi,k

cτ̂χτ̂ (4.3)

for simplices τ̂ ∈ Sâi,k ⊂ K̂Ĵi∪...∪Ĵk , non-zero coefficients cτ̂ ∈ k. Then

d(âi,k) =
∑

τ̂∈Sâi,k

cτ̂

 ∑
ĵ∈Ĵi∪···∪Ĵk\V (τ̂)

ε(ĵ, ĵ ∪ τ̂)χĵ∪τ̂


is equal to

k−1∑
r=i

(−1)1+deg(âi,r)âi,râr,k =

k−1∑
r=i

(−1)1+deg(âi,r)c

 ∑
ν̂∈Sâi,r

∑
η̂∈Sâr+1,k

cν̂cη̂χν̂∪η̂


(4.4)

where c = (−1)|Ĵi∪···∪Ĵr|(pr+1+···+pk+1) comes from the product of âi,r and âr,k,

as in Lemma 2.2, and (−1)1+deg(âi,r) = (−1)(pi+...+pr)+|Ĵi∪···∪Ĵr|. We use this
defining system to construct a defining system for 〈α1, . . . , αn〉.

Proposition 4.8. Let K be a simplicial complex that maps to K̂ by edge con-
tractions satisfying the link condition. Then there is an n-Massey product
〈α1, . . . , αn〉 defined on H∗(ZK).
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Proof. For every i ∈ {1, . . . , n}, let αi = [ai] for ai as in (4.2). We start by
constructing a defining system (ai,k) for 〈α1, . . . , αn〉 ⊂ H∗(ZK), where ai,k ∈
Cpi+···+pk(KJi∪···∪Jk). Define

ai,k = θi,k θ̂i,k
∑

τ̂∈Sâi,k

cτ̂

 ∑
τ∈ϕ−1

pi+···+pk
(τ̂)

χ
τ

 (4.5)

for Sâi,k and cτ̂ ∈ k from (4.3), θi,i = 1 = θ̂i,i, and

θi,k = (−1)|Ji|(pi+1+···+pk)(−1)|Ji+1|(pi+2+···+pk) · · · (−1)|Jk−1|pk

θ̂i,k = (−1)|Ĵi|(pi+1+···+pk)(−1)|Ĵi+1|(pi+2+···+pk) · · · (−1)|Ĵk−1|pk .
(4.6)

Since θi,i = 1 = θ̂i,i, ai,i = ai as in (4.2). We show that d(ai,k) =
∑k−1
r=i ai,rar,k,

where ai,r = (−1)1+deg ai,rai,r as in Definition 2.4.
Applying the coboundary map to ai,k, d(ai,k) is

θi,k θ̂i,k
∑

τ̂∈Sâi,k

cτ̂

 ∑
τ∈ϕ−1

pi+···+pk
(τ̂)

∑
j∈Ji∪···∪Jk\V (τ)

ε(j, j ∪ τ)χj∪τ


= θi,k θ̂i,k

∑
τ̂∈Sâi,k

cτ̂

 ∑
τ∈ϕ−1

pi+···+pk
(τ̂)

∑
j∈Ji∪···∪Jk\ϕ−1

0 (V (τ̂))

ε(j, j ∪ τ)χj∪τ

+

(4.7)

+ θi,k θ̂i,k
∑

τ̂∈Sâi,k

cτ̂

 ∑
τ∈ϕ−1

pi+···+pk
(τ̂)

∑
j∈ϕ−1

0 (V (τ̂))\V (τ)

ε(j, j ∪ τ)χj∪τ

 .

(4.8)

For any (pi+ · · ·+pk)-simplex τ̂ ∈ Sâi,k and any τ ∈ ϕ−1
pi+···+pk(τ̂), first suppose

that there is a vertex j ∈ ϕ−1
0 (V (τ̂)) \ V (τ) such that j ∪ τ ∈ K. Then j ∪ τ =

τ̄ ∈ ϕ−1
pi+···+pk+1(τ̂) and there is a vertex i ∈ V (τ) such that ϕ(i) = ϕ(j). Thus

j ∪ τ \ i ∈ ϕ−1
pi+···+pk(τ̂). Moreover, i, j are consecutive vertices in V (τ̄) by

the order of vertices in K defined in Construction 4.6, so ε(j, τ̄) = −ε(i, τ̄).
Therefore (4.8) is zero since all summands cancel out in pairs, that is, for any
τ̂ ∈ Sâi,k ,∑

τ∈ϕ−1
pi+···+pk

(τ̂)

∑
j∈ϕ−1

0 (V (τ̂))\V (τ)

ε(j, j ∪ τ)χj∪τ =

=
∑

τ̄∈ϕ−1
pi+···+pk+1(τ̂),

i,j∈τ̄ | ϕ(i)=ϕ(j)

ε(j, τ̄)χτ̄ + ε(i, τ̄)χτ̄ = 0.
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Consider summands in (4.7). For any j ∈ Ji ∪ · · · ∪ Jk \ ϕ−1
0 (V (τ̂)), ϕ(j) /∈

V (ĵ). So for any simplex j ∪ τ ∈ K with j ∈ Ji ∪ · · · ∪ Jk \ ϕ−1
0 (V (τ̂)), there is

a simplex ϕ(j) ∪ τ̂ ∈ K̂. Therefore any summand in (4.7) has a corresponding
summand in the expression for d(âi,k). Hence we rewrite (4.7) as

d(ai,k) = θi,k θ̂i,k
∑

τ̂∈Sâi,k

cτ̂

 ∑
ĵ∈Ĵi∪···∪Ĵk\V (τ̂)

∑
j∪τ∈ϕ−1

pi+···+pk+1(ĵ∪τ̂)

ε(j, j ∪ τ)χj∪τ


(4.9)

where, by the order of vertices in K, ε(j, j ∪ τ) = ε(ĵ, ĵ ∪ τ̂). Since d(âi,k) =∑k−1
r=i âi,râr,k, the expression in (4.9) can be written in terms of the expression

in (4.4). Thus d(ai,k) is equal to

θi,k θ̂i,k

k−1∑
r=i

(−1)1+deg(âi,r)c

 ∑
ν̂∈Sâi,r

∑
η̂∈Sâr+1,k

cν̂cη̂

 ∑
ζ∈ϕ−1

pi+···+pk+1(ν̂∪η̂)

χ
ζ




(4.10)

where c = (−1)|Ĵi∪···∪Ĵr|(pr+1+···+pk+1) comes from the product of âi,r and âr,k,

as in Lemma 2.2, and (−1)1+deg(âi,r) = (−1)(pi+···+pr)+|Ĵi∪···∪Ĵr|.
Any simplex ζ ∈ ϕ−1

pi+···+pk+1(ν̂ ∪ η̂) is on pi + · · · + pk + 2 vertices and so
can be written as ν ∪ η for ν the restriction of ζ to its first pi + · · · + pr + 1
vertices, and η the restriction of ζ to its last pr+1 + · · ·+ pk + 1 vertices. Then

ν ∈ ϕ−1
pi+···+pr (ν̂) and η ∈ ϕ−1

pr+1+···+pk(η̂). Furthermore, θ̂i,k (−1)1+deg(âi,r) c =

(−1)(pi+···+pr) θ̂i,r θ̂r+1,k. So (4.10) may be rewritten as

d(ai,k) =

k−1∑
r=i

(−1)(pi+···+pr) θi,k θ̂i,r θ̂r+1,k·

·

 ∑
ν̂∈Sâi,r

∑
η̂∈Sâr+1,k

cν̂ cη̂

 ∑
ν∈ϕ−1

pi+···+pr
(ν̂)

∑
η∈ϕ−1

pr+1+···+pk
(η̂)

χ
ν∪η



.

(4.11)

Comparatively, the product
∑k−1
r=i (−1)1+deg(ai,r)ai,rar,k is

k−1∑
r=i

(−1)1+deg(ai,r)(−1)|Ji∪···∪Jr|(pr+1+···+pk+1)θi,r θr+1,k θ̂i,r θ̂r+1,k·

·

 ∑
ν̂∈Sâi,r

∑
η̂∈Sâr+1,k

cν̂ cη̂

 ∑
ν∈ϕ−1

pi+···+pr
(ν̂)

∑
η∈ϕ−1

pr+1+···+pk
(η̂)

χ
ν∪η


 (4.12)

where the sign (−1)|Ji∪···∪Jr|(pr+1+···+pk+1) comes from the product of ai,r and

ar+1,k as in Lemma 2.2, and (−1)1+deg(ai,r) = (−1)(pi+···+pr)+|Ji∪···∪Jr|. Using
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the expression for θi,k in (4.6),

(−1)1+deg(ai,r)(−1)|Ji∪···∪Jr|(pr+1+···+pk+1) θi,r θr+1,k = (−1)(pi+···+pr) θi,k.

Therefore the expressions in (4.11) and (4.12) are equal.

Hence d(ai,k) =
∑k−1
r=i ai,rar,k, and so (ai,k) is a defining system for the

Massey product 〈α1, . . . , αn〉.

Example 4.9. Let J1 = {1, 2, 3}, Ĵ1 = {1̂, 2̂}, J2 = {4, 5} and Ĵ2 = {4̂, 5̂}.
Suppose that KJ1∪J2

and K̂Ĵ1∪Ĵ2
are the simplicial complexes shown below,

where KJ1∪J2 maps onto K̂Ĵ1∪Ĵ2
by the edge contraction {2, 3} 7→ {2̂}.

3

2

4

1 5

2̂4̂

1̂ 5̂

Suppose that â1 = χ
2̂ ∈ C0(K̂Ĵ1

), â2 = χ
4̂ ∈ C0(K̂Ĵ2

), and â1,2 = −χ2̂ ∈
C0(K̂Ĵ1∪Ĵ2

). Then d(â1,2) = χ
2̂,4̂ = (−1)1+deg â1 â1â2. By (4.2), a1 = χ

2 + χ
3 ∈

C0(KJ1) and a2 = χ
4 ∈ C0(KJ2). By (4.5), a1,2 = −χ2−χ3 ∈ C0(KJ1∪J2), since

θ1,2 = 1. We check that d(a1,2) = (χ2,4 +χ2,3)−χ2,3 = χ
2,4 = (−1)1+deg a1a1a2.

Hence d(a1,2) = a1a2.

Example 4.10 (a). Let K̂1 be a triangulation of S1 on three vertices, {1̂, 2̂, 3̂}.
Let K̂2 = {{5̂}, {6̂}}, and let K̂3 = {{7̂}, {8̂}}. Let α̂1 = [χ1̂3̂] ∈ H̃1(K̂1), α̂2 =

[χ5̂] ∈ H̃0(K̂2) and α̂3 = [χ7̂] ∈ H̃0(K̂3). Let K̂ = sd{5̂,8̂} sd{1̂,3̂,6̂} K̂1∗K̂2∗K̂3 be

a simplicial complex on the vertices {1̂, 2̂, 3̂, 5̂, 6̂, 7̂, 8̂}. The simplicial complex
K̂1̂,2̂,3̂,5̂,6̂ is shown in Figure 13b. By Theorem 3.17, there is a non-trivial triple
Massey product 〈α̂1, α̂2, α̂3〉 ⊂ H∗(ZK̂).

Let K be the simplicial complex on vertices {1, . . . , 8} that edge contracts
to K̂ by contracting the edge {1, 4} 7→ {1̂}, which satisfies the link condition.
The contraction of the full subcomplex KJ1∪J2

is shown in Figure 13a. By
Construction 4.6, there are cocycles a1 = χ13 ∈ C1(KJ1

), a2 = χ5 ∈ C0(KJ2
),

a3 = χ
7 ∈ C0(KJ3

). The product a1a2 is χ13
χ

5 = (−1)4χ
135 = χ

135. If â1,2 =
χ

1̂3̂, then using (4.5) we construct a1,2 = θ1,2θ̂1,2
χ

13 = −χ13. Alternatively, if
â1,2 = −χ1̂6̂ − χ1̂2̂ − χ1̂5̂, then Sâ1,2 = {{1̂, 6̂}, {1̂, 2̂}, {1̂, 5̂}}. So ϕ−1

1 ({1̂, 6̂}) =

{{1, 6}, {4, 6}}, ϕ−1
1 ({1̂, 2̂}) = {{2, 4}}, and ϕ−1

1 ({1̂, 5̂}) = {{1, 5}, {4, 5}}. By

(4.5), a1,2 = −θ1,2θ̂1,2(χ16 +χ
46 +χ

24 +χ
45 +χ

15) = χ
16 +χ

46 +χ
24 +χ

45 +χ
15.

(b). In the proof of Proposition 4.8, we showed that the pullback of a defining
system 〈α̂1, . . . , α̂n〉 is a defining system for 〈α1, . . . , αn〉. However there are
defining systems for 〈α1, . . . , αn〉 that are not pullbacks of defining systems
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1

3

5

4

6

2

(a) The simplicial complex K1,2,3,4,5,6,
which is missing the simplex {1, 3, 6}

1̂

3̂

5̂

2̂

6̂

(b) The simplicial complex K̂1̂,2̂,3̂,5̂,6̂,

which is missing the simplex {1̂, 3̂, 6̂}.

Figure 13: The simplicial complex K1,2,3,4,5,6 maps to K̂1̂,2̂,3̂,5̂,6̂ by contracting the edge

{1, 4} 7→ {1̂}.

for 〈α̂1, . . . , α̂n〉. For example, let a1, a2, a3, â1, â2, â3 be as in Part (a). Let
a1,2 = −χ16 − χ14 − χ15. For the edge {1, 4} ∈ K, {1, 4} /∈ ϕ−1

1 (ê) for any edge

ê ∈ K̂, so a1,2 is not a pullback of any â1,2. However for χ1 ∈ C∗(K1,2,3,4,5,6),

a1,2 − d(χ1) = −χ16 − χ14 − χ15 − (χ16 + χ
14 + χ

15 + χ
13)

= −χ13 = θ1,2θ̂1,2

∑
τ∈ϕ−1

p1+p2
(1̂3̂)

χ
τ .

Therefore a1,2 differs from the pullback of â1,2 = χ
1̂3̂ by a coboundary.

In order to prove that 〈α1, . . . , αn〉 is non-trivial, we show that for every
defining system for 〈α1, . . . , αn〉, its associated cocycle is homologous to the
pullback of an associated cocycle for a defining system for the non-trivial Massey
product 〈α̂1, . . . , α̂n〉.

Proposition 4.11. The n-Massey product 〈α1, . . . , αn〉 is non-trivial.

Proof. Suppose that ϕ : K → K̂ is the contraction of just one edge {u, v} ∈ K.
By Construction 4.6, {u, v} ⊂ Ji for i ∈ {1, . . . , n}.

For ai,i = ai the representative cocycle for αi as defined in (4.2), let (ai,k)
be a defining system for 〈α1, . . . , αn〉,

ai,k =
∑

σ∈Sai,k

cσχσ ∈ Cpi+···+pk(KJi∪···∪Jk).

We show that any defining system (ai,k) corresponds to a defining system (âi,k)
for 〈α̂1, . . . , α̂n〉 in H∗(ZK̂). There are two main stages to this proof. Firstly, for
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a defining system (ai,k) such that for any {i, k}, {u, v} /∈ σ for any σ ∈ Sai,k , we
construct a corresponding defining system (ϕ∗(ai,k)) for 〈α̂1, . . . , α̂n〉. Secondly,
for any other defining system (ai,k), we change ai,k to create a different defining
system (ãi,k) for 〈α1, . . . , αn〉 such that the associated cocycles are homologous
and for any {i, k}, {u, v} /∈ σ for any σ ∈ Sãi,k . Applying the first step to (ãi,k),
we have a defining system (ϕ∗(ãi,k)) that corresponds to (ai,k).

For this first step, suppose that for any {i, k}, {u, v} /∈ σ for any σ ∈
Sai,k . We define a tool ϕ∗, which will only be well-defined for certain specified
cochains such as ai,k ∈ Cp(KJi∪···∪Jk) or ai,rar+1,k ∈ Cp(KJi∪···∪Jk) where
p = pi + · · ·+ pk or p = pi + · · ·+ pk + 1 respectively. We check three properties
of ϕ∗ in order to construct a defining system (ϕ∗(ai,k)) for 〈α̂1, . . . , α̂n〉. Let
a ∈ Cp(KJi∪···∪Jk) be a general cochain such that {u, v} /∈ σ for any σ ∈ Sa,

where either p = pi+ · · ·+pk or p = pi+ · · ·+pk+1. For J ⊂ [m], let Ĵ = ϕ(J).
Define

ϕ∗(a) = ci,k
∑

σ̂∈ϕ(Sa)

cσ̂χσ̂ ∈ Cp(K̂Ĵi∪···∪Ĵk) (4.13)

where cσ̂ = cσ for any σ ∈ Sa such that ϕ(σ) = σ̂, ci,i = 1 and

ci,k = (−1)(|Ji|−|Ĵi|)pi+1+(|Ji∪Ji+1|−|Ĵi∪Ĵi+1|)pi+2+···+(|Ji∪···∪Jk−1|−|Ĵi∪···∪Ĵk−1|)pk .

(i) First note that for any constant c′ ∈ k and for χσ, χτ in Cp(KJi∪···∪Jk)
where p is either pi + · · ·+ pk or pi + · · ·+ pk + 1 and {u, v} /∈ σ, τ ,

ϕ∗(c′cσχσ) = ci,k c
′cσχϕ(σ) = c′ϕ∗(cσχσ) and

ϕ∗(cσχσ + cτχτ ) = ci,k (cσχϕ(σ) + cτχϕ(τ)) = ϕ∗(cσχσ) + ϕ∗(cτχτ ).
(4.14)

(ii) Next we show that ϕ∗(d(ai,k)) = d(ϕ∗(ai,k)). Suppose that for a simplex
σ ∈ Sai,k , there is a simplex j ∪ σ ∈ KJi∪···∪Jk for j ∈ Ji ∪ · · · ∪ Jk \ σ that
is contracted. That is, {u, v} ∈ j ∪ σ. By the definition of a defining system,

d(ai,k) =
∑k−1
r=i ai,rar,k. Therefore either cσ ε(j, j ∪ σ) χj∪σ is cancelled by

other terms in d(ai,k), or there exists i 6 r < k and simplices τ ∈ Sai,r ,
η ∈ Sar+1,k

such that τ ∪ η = j ∪ σ. In the latter case, if {u, v} ∈ j ∪ σ,
then {u, v} ∈ τ ∪ η. This implies that either {u, v} ∈ τ or {u, v} ∈ η, since
by construction {u, v} ⊂ Ji for an 1 6 i 6 n and τ ∈ Sai,r ⊂ Ji ∪ · · · ∪ Jr,
η ∈ Sar+1,k

⊂ Jr+1 ∪ · · · ∪ Jk. This then contradicts the assumption that
{u, v} /∈ σ for any σ ∈ Sai,k and any {i, k}. Hence a summand of the form
cσ ε(j, j ∪ σ) χj∪σ, where {u, v} ∈ j ∪ σ, is cancelled out by other summands.

Let a =
∑
σ∈Sa cσ

χ
σ ∈ Cpi+···+pk(KJi∪···∪Jk) be a cochain such that for

any simplex j ∪ σ ∈ KJi∪···∪Jk for σ ∈ Sa and j ∈ Ji ∪ · · · ∪ Jk \ σ, either
cσ ε(j, j∪σ) χj∪σ is cancelled by other terms in d(a) or j∪σ does not contract.
Applying ϕ∗ to

d(a) =
∑
σ∈Sa

∑
j∈Ji∪···∪Jk\σ,
j∪σ∈KJi∪···∪Jk

cσ ε(j, j ∪ σ) χj∪σ,
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we write

ϕ∗(d(a)) = ci,k
∑

σ̂∈ϕ(Sa)

cσ̂
( ∑

ĵ∈Ĵi∪···∪Ĵk\σ̂,
ĵ∪σ̂∈K̂Ĵi∪···∪Ĵk

ε(ĵ, ĵ ∪ σ̂) χĵ∪σ̂
)

where ε(j, j ∪ σ) = ε(ĵ, ĵ ∪ σ̂) due to the order on vertices in K and since j ∪ σ
does not contract. Let Ŝ = {ϕ(σ) | σ ∈ Sa, |ϕ(σ)| = pi + · · · + pk + 1} and let
b =

∑
σ̂∈Ŝ cσ̂

χ
σ̂ ∈ Cpi+···+pk(K̂Ĵi∪···∪Ĵk). Then

ϕ∗(d(a)) = d(b). (4.15)

In particular, ϕ∗(d(ai,k)) = d(ϕ∗(ai,k)).
(iii) We also show that

k−1∑
r=i

ϕ∗(ai,r)ϕ
∗(ar+1,k) = ϕ∗

(
k−1∑
r=i

ai,rar+1,k

)
. (4.16)

Let ai,r ∈ Cpi+···+pr (KJi∪···∪Jr ) and ar+1,k ∈ Cpr+1+···+pk(KJr+1∪···∪Jk) be rep-
resented by

∑
τ∈Sai,r

cτχτ and
∑
η∈Sar+1,k

cηχη respectively. The left hand side

of (4.16) is

k−1∑
r=i

ϕ∗(ai,r)ϕ
∗(ar+1,k)

=

k−1∑
r=i

(−1)1+degϕ∗(ai,r)

ci,r ∑
τ̂∈ϕ(Sai,r )

cτχτ̂

 ·
cr+1,k

∑
η̂∈ϕ(Sar+1,k

)

cηχη̂


=

k−1∑
r=i

C

 ∑
τ̂∈ϕ(Sai,r )

∑
η̂∈ϕ(Sar+1,k

)

cτ cηχτ̂∪η̂


where

C = (−1)1+degϕ∗(ai,r)+|Ĵi∪···∪Ĵr|(pr+1+···+pk+1)ci,rcr+1,k.

Using the expressions for ci,r and cr+1,k, and using degϕ∗(ai,r) = 1 + pi + · · ·+
pr + |Ĵi ∪ · · · ∪ Ĵr|,

C =(−1)pi+···+pr+|Ĵi∪···∪Ĵr|+|Ĵi∪···∪Ĵr|(pr+1+···+pk+1)

· (−1)(|Ji|−|Ĵi|)pi+1+···+(|Ji∪···∪Jr−1|−|Ĵi∪···∪Ĵr−1|)pr

· (−1)(|Jr+1|−|Ĵr+1|)pr+2+···+(|Jr+1∪···∪Jk−1|−|Ĵr+1∪···∪Ĵk−1|)pk

=(−1)pi+···+pr+(|Ji|−|Ĵi|)pi+1+···+(|Ji∪···∪Jr−1|−|Ĵi∪···∪Ĵr−1|)pr+|Ĵi∪···∪Ĵr|pr+1

· (−1)(|Jr+1|−|Ĵi∪···∪Ĵr+1|)pr+2+···+(|Jr+1∪···∪Jk−1|−|Ĵi∪···∪Ĵk−1|)pk

=(−1)1+deg ai,r (−1)|Ji∪···∪Jr|(pr+1+·+pk+1)ci,k.
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By assumption, {u, v} /∈ σ for any σ ∈ Sai,k and any {i, k}. Thus {u, v} /∈ τ
and {u, v} /∈ η for any i 6 r < k and any simplices τ ∈ Sai,r , η ∈ Sar+1,k

. Also,
{u, v} ⊂ Ji for an index 1 6 i 6 n, so {u, v} /∈ τ∪η. Hence ϕ(τ∪η) = ϕ(τ)∪ϕ(η)
is a (pi+ · · ·+pk+1)-simplex. Therefore using the definition of ϕ∗, the property
(i), and the fact that ϕ(τ ∪ η) = ϕ(τ) ∪ ϕ(η) = τ̂ ∪ η̂,

k−1∑
r=i

ϕ∗(ai,r)ϕ
∗(ar+1,k) =

=

k−1∑
r=i

C

 ∑
τ̂∈ϕ(Sai,r )

∑
η̂∈ϕ(Sar+1,k

)

cτ cηχτ̂∪η̂

 = ϕ∗

(
k−1∑
r=i

ai,rar+1,k

)
.

Using properties (i), (ii) and (iii), we prove that a defining system (ai,k)
for 〈α1, . . . , αn〉 and its associated cocycle ω are mapped by ϕ∗ onto a defining
system for 〈α̂1, . . . , α̂n〉 and its associated cocycle is ϕ∗(ω). By the definition of
ai = ai,i in (4.2), ϕ∗(ai,i) = âi,i = âi. By properties (ii) and (iii), we see that

d(ϕ∗(ai,k)) = ϕ∗(d(ai,k)) = ϕ∗

(
k−1∑
r=i

ai,rar+1,k

)
=

k−1∑
r=i

ϕ∗(ai,r)ϕ
∗(ar+1,k).

Hence (ϕ∗(ai,k)) is a defining system for 〈α̂1, . . . , α̂n〉 if (ai,k) is a defining system
such that {u, v} /∈ σ for any σ ∈ Sai,k and any pair {i, k}. Also, for the
associated cocycle ω for (ai,k),

ϕ∗(ω) = ϕ∗

(
n−1∑
r=1

a1,rar+1,n

)
=

n−1∑
r=1

ϕ∗(a1,r)ϕ
∗(ar+1,n)

so ϕ∗(ω) is the associated cocycle for (ϕ∗(ai,k)).
Lastly we prove that [ω] 6= 0. If [ω] = 0, then there is a cochain a ∈

Cp1+···+pn(KJ1∪···∪Jn) such that ω = d(a). Since {u, v} ∈ Jj for some j ∈
{1, . . . , n} and {u, v} /∈ σ for any σ ∈ Sai,k and any {i, k}, no simplices in
Sω contract. Thus no simplices in Sd(a). So by applying ϕ∗ and (4.15) from

property (ii), ϕ∗(ω) = ϕ∗(d(a)) = d(b) for a cochain b ∈ Cpi+···+pk(K̂Ĵi∪···∪Ĵk).
So [ϕ∗(ω)] = 0, which contradicts the non-triviality of 〈α̂1, . . . , α̂n〉. Therefore
[ω] 6= 0.

For the second stage of this proof, suppose that (ai,k) is a defining system
for 〈α1, . . . , αn〉 such that there is a pair of indices {i, k} with {u, v} ∈ σ for
some σ ∈ Sai,k . We will define a new defining system (ãi,k) such that {u, v} /∈ σ
for any σ ∈ Sãi,k and such that [ω] = [ω̃] where ω and ω̃ are the associated
cocycles for (ai,k) and (ãi,k), respectively.

The cocycle ai = ai,i as defined in (4.2) is such that {u, v} /∈ σ for every
σ ∈ Sai . Therefore, let {i, k} be a pair of indices such that there is a simplex
σ ∈ Sai,k with {u, v} ∈ σ, and for every i < i′′ < k′′ < k, {u, v} /∈ τ for any
τ ∈ Sai′′,k′′ . Let σ ∈ Sai,k be a simplex such that {u, v} ∈ σ, and let cσ be
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the non-zero coefficient of χσ in ai,k. Then for every pair {i′, k′} ⊂ [n], let

c = (−1)deg ai,kcσ ε(u, σ) and define

ãi′,k′ =


ai,k − cσ ε(u, σ) d(χσ\u) if i′ = i < k = k′,

ai′,k + cσ ε(u, σ) ai′,i−1
χ
σ\u if i′ < i < k = k′,

ai,k′ + c χσ\uak+1,k′ if i′ = i < k < k′,

ai′,k′ if i′ < i < k < k′ or i < i′ < k′ < k

(4.17)
where χσ\u ∈ Cpi+···pk−1(KJi∪···∪Jk). We show that (ãi′,k′) is a defining system
for 〈α1, . . . , αn〉. Firstly since k − i > 1, ãi′,i′ = ai′,i′ for every i′ ∈ [n]. We also

need to show that d(ãi′,k′) =
∑k′−1
r=i′ ãi′,rãr+1,k′ for every {i′, k′}.

(i) For i < i′ < k′ < k, we have ãi′,k′ = ai′,k′ so

d(ãi′,k′) = d(ai′,k′) =

k′−1∑
r=i′

ai′,rar+1,k′ =

k′−1∑
r=i′

ãi′,rãr+1,k′ .

(ii) For i′ = i < k = k′,

d(ãi,k) = d(ai,k − cσ ε(u, σ) d(χσ\u)) = d(ai,k).

Also d(χσ\u) ∈ Cpi+···pk(KJi∪···∪Jk) since χσ\u ∈ Cpi+···pk−1(KJi∪···∪Jk). Hence

ãi,k ∈ Cpi+···pk(KJi∪···∪Jk) and deg ãi,k = deg ai,k. Additionally,

d(χσ\u) =
∑

j∈Ji∪···∪Jk\(σ\u),
j∪σ\u∈KJ

ε(j, j ∪ σ \ u)χj∪σ\u.

So χ
σ is the only summand of d(χσ\u) such that {u, v} ∈ σ. Thus ai,k −

cσ ε(u, σ) d(χσ\u) no longer contains the summand χ
σ and also

|{τ ∈ Sãi,k | {u, v} ∈ τ}| < |{τ ∈ Sai,k | {u, v} ∈ τ}|.

(iii) Next, for i′ < i < k = k′, we have ai′,i−1 ∈ Cpi′+···+pi−1(KJi′∪···∪Ji−1
).

So ai′,i−1
χ
σ\u ∈ Cpi′+···+pk(KJi′∪···∪Jk). Hence ãi′,k ∈ Cpi′+···+pk(KJi′∪···∪Jk).
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Also,

d(ãi′,k) = d(ai′,k + cσ ε(u, σ) ai′,i−1
χ
σ\u)

=

k−1∑
r=i′

ai′,rar+1,k+

+ cσ ε(u, σ)

(
i−2∑
r=i′

ai′,rar+1,i−1

)
χ
σ\u − cσ ε(u, σ) ai′,i−1d(χσ\u)

=

i−2∑
r=i′

ai′,r(ar+1,k + cσ ε(u, σ) ar+1,i−1
χ
σ\u)+

+ ai′,i−1(ai,k − cσ ε(u, σ) d(χσ\u)) +

k−1∑
r=i

ai′,rar+1,k

=

k−1∑
r=i′

ãi′,rãr+1,k.

(iv) For i′ = i < k < k′, we have ãi,k′ ∈ Cpi+···+pk′ (KJi∪···∪Jk′ ) since
χ
σ\uak+1,k′ ∈ Cpi+···+pk′ (KJi∪···∪Jk′ ). Furthermore, d(ãi,k′) is

d(ai,k′ + (−1)deg ai,kcσ ε(u, σ) χσ\uak+1,k′)

=

k′−1∑
r=i

ai,rar+1,k′ + (−1)deg ai,kcσ ε(u, σ) d(χσ\u)ak+1,k′ ·

· (−1)deg ai,kcσ ε(u, σ) (−1)degχσ\uχ
σ\u

 k′−1∑
r=k+1

ak+1,rar+1,k′


=

k−1∑
r=i

ai,rar+1,k − (−1)deg ai,k(ai,k − cσ ε(u, σ) d(χσ\u))ak+1,k′+

+

k′−1∑
r=k+1

(
(−1)deg ai,kcσ ε(u, σ) (−1)degχσ\uχ

σ\uak+1,r + ai,r

)
ar+1,k′ .

More specifically, let c = (−1)deg ai,kcσ ε(u, σ). Then in the last sum,

c (−1)degχσ\uχ
σ\uak+1,r

= (−1)pi+···+pk+|Ji∪···∪Jk|+pk+1+···+pr+|Jk+1∪···∪Jr| c χσ\uak+1,r

= (−1)1+deg ai,r c χσ\uak+1,r.
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Therefore

d(ãi,k′) =

k−1∑
r=i

ai,rar+1,k + (−1)1+deg ai,k(ai,k − cσ ε(u, σ) d(χσ\u))ak+1,k′

+

k′−1∑
r=k+1

(−1)1+deg ai,r ( c χσ\uak+1,r + ai,r)ar+1,k′

=

k−1∑
r=i′

ãi′,rãr+1,k.

(v) Lastly when i′ < i < k < k′, ãi′,k′ = ai′,k′ and we want to show that

d(ãi′,k′) =
∑k′−1
r=i′ ãi′,rãr+1,k′ . The right hand side is

k′−1∑
r=i′

ãi′,rãr+1,k′ = ai′,i−1ãi,k′ + ãi′,kak+1,k′ +
∑

r∈{i′,...,̂i−1,...,k̂,...k′−1}

ai′,rar+1,k′

where ̂ denotes omission. By expanding ãi,k′ , ãi′,k and the signs in this

expression,
∑k′−1
r=i′ ãi′,rãr+1,k′ is

(−1)1+deg ai′,i−1ai′,i−1

(
ai,k′ + (−1)deg ai,kcσ ε(u, σ)χσ\uak+1,k′

)
+

+ (−1)1+deg ai′,k
(
ai′,k + cσ ε(u, σ) ai′,i−1

χ
σ\u
)
ak+1,k′+

+
∑

r∈{i′,...,̂i−1,...,k̂,...k′−1}

ai′,rar+1,k′

=

k′−1∑
r=i′

ai′,rar+1,k′ +
(

(−1)1+deg ai′,i−1+deg ai,k + (−1)1+deg ai′,k

)
·

· cσ ε(u, σ) ai′,i−1
χ
σ\uak+1,k′

= d(ai′,k′) +
(

(−1)deg ai′,k + (−1)1+deg ai′,k

)
cσ ε(u, σ) ai′,i−1

χ
σ\uak+1,k′

= d(ai′,k′) = d(ãi′,k′)

since deg ai′,k = |Ji′ ∪ · · · ∪ Jk|+ pi′ + · · · pk + 1 = deg ãi′,k.
Therefore for all {i′, k′}, ãi′,k′ ∈ Cpi′+···+pk′ (KJi′∪···∪Jk′ ) and d(ãi′,k′) =∑k′−1
r=i′ ãi′,rãr+1,k′ . So (ãi′,k′) is a defining system for 〈α1, . . . , αn〉. Also σ /∈ τ

for any τ ∈ Sãi′,k′ and any {i′, k′}. The associated cocycle ω̃ for this defining

system is given by
∑n−1
r=1 ã1,rãr+1,n. By calculating

∑n−1
r=1 ã1,rãr+1,n in a similar

manner as in the above calculations,

ω̃ =


ω if i 6= 1, k 6= n,

ω + cσ ε(u, σ) d(ai′,i−1
χ
σ\u) if 1 = i < k = n,

ω − (−1)1+deg ai,kcσ ε(u, σ)d(χσ\uak+1,k′) if 1 = i < k < n

(4.18)
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where ω is the associated cocycle for (ai′,k′). So [ω̃] = [ω]. Therefore [ω̃] = 0 if
and only if [ω] = 0.

If there is cochain ãi′,k′ in the defining system (ãi,k) such that there is a
a simplex σ ∈ Sãi′,k′ with {u, v} ∈ σ, then we repeat the above procedure to

construct (˜̃ai′,k′), etc. After a finite number of iterations, we obtain a defin-
ing system (ãi′,k′) such that for any {i′, k′} and any simplex σ ∈ Sãi′,k′ , the
edge {u, v} is not contained in σ. Then we can construct a defining system
(ϕ∗(ãi′,k′)) for 〈α̂1, . . . , α̂n〉. Let ω and ω̃ be the associated cocycles for (ai,k)
and (ãi,k), respectively. If [ω] = [ω̃] = 0, then [ϕ∗(ω̃)] = 0, which contradicts the
assumption that 〈α̂1, . . . , α̂n〉 is non-trivial. Hence if 〈α̂1, . . . , α̂n〉 is non-trivial,
then 〈α1, . . . , αn〉 is non-trivial.

If K → K̂ by a series of more than one edge contractions, we repeat the steps
in this proof for each edge contraction in turn.

Putting together Proposition 4.8 and Proposition 4.11, we have proved the
following statement.

Theorem 4.12. Let K̂ be a simplicial complex with a non-trivial n-Massey
product in H∗(ZK̂). Let K be a simplicial complex that maps onto K̂ by a series

of edge contractions ϕ : K → K̂ that satisfy the link condition. Then there is a
non-trivial n-Massey product in H∗(ZK).

By construction, αi ∈ H |Ji|+pi+1(ZK) and α̂i ∈ H |Ĵi|+pi+1(ZK̂) with |Ji| >
|Ĵi| for each i. Hence the degree of 〈α1, . . . , αn〉 ⊂ H |J1∪···∪Jn|+(p1+···+pn)+2(ZK)

is greater than the degree of 〈α̂1, . . . , α̂n〉 ⊂ H |Ĵ1∪···∪Ĵn|+(p1+···+pn+1)+1(ZK̂).
Also, if 〈α̂1, . . . , α̂n〉 has non-trivial indeterminacy, then 〈α1, . . . , αn〉 also has
non-trivial indeterminacy. As noted earlier, the converse does not necessarily
hold: the pullback Massey product in H∗(ZK) might have non-trivial indeter-
minacy even if it is a pullback of a uniquely defined Massey product in H∗(ZK̂).

1

2

3

4
5

6

7

8 9

(a) A full subcomplex K ⊂ KP , when P is a
truncated octahedron

3̂ 6̂

5̂ 2̂

4̂

1̂

(b) A simplicial complex K̂ such that ZK̂ has
non-trivial triple Massey product with inde-
terminacy.

Figure 14: Edge contraction example
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Example 4.13. Let K̂ be the simplicial complex in Figure 14b. Since the
1-skeleton of K̂ is one of the obstruction graphs in the classification of low-
est degree non-trivial triple Massey products [15], there is a non-trivial triple

Massey product 〈α̂1, α̂2, α̂3〉 ⊂ H8(ZK̂) where α̂1 ∈ H̃0(K̂1̂2̂), α̂2 ∈ H̃0(K̂3̂4̂)

and α̂3 ∈ H̃0(K̂5̂6̂). This Massey product has non-trivial indeterminacy, since

the indeterminacy of this triple Massey product is given by α̂1 · H̃0(K̂3̂4̂5̂6̂)+ α̂3 ·
H̃0(K̂1̂2̂3̂4̂) = α̂3 · H̃0(K̂1̂2̂3̂4̂).

Let K be the simplicial complex on 9 vertices in Figure 14a. Let ϕ : K → K̂
be the simplicial map that takes i 7→ î for i = 1, 2, 3, 6 and contracts the bold
coloured edges {4, 5} 7→ 4̂, {7, 8}, {8, 9} 7→ 5̂. By Theorem 4.12 and Construc-
tion 4.6, there is a non-trivial Massey product 〈α1, α2, α3〉 ⊂ H11(ZK) where

α1 ∈ H̃0(K12), α2 ∈ H̃0(K345) and α3 ∈ H̃0(K6789). Also the indeterminacy of

this Massey product is non-trivial since it is given by α1 · H̃0(K3456789) + α3 ·
H̃0(K12345) = α3 · H̃0(K12345).

For any simple polytope P , define KP = ∂(P ∗) to be the boundary of the
dual polytope. This is a simplicial complex and the moment-angle complex
ZP = ZKP is a moment-angle manifold. The simplicial complex K in Figure 14a
is a full-subcomplex of KP when P is a truncated octahedron, otherwise known
as the 3-dimensional permutahedron. A truncated octahedron is a 3-dimensional
simple polytope whose facets are 6 squares and 8 hexagons, so there are 6 vertices
of KP with valency 4 and 8 with valency 6. Since K ⊂ KP , the non-trivial
Massey product in H∗(ZK) lifts to a non-trivial Massey product in H∗(ZP )
with non-trivial indeterminacy. Hence we found a non-trivial Massey product
in H∗(ZP ) using only Theorem 4.12 and the classification of lowest-degree non-
trivial triple Massey products in [12, 15]. This technique also recovers the
first example of a triple Massey product in H∗(ZP ) that was given in [20,
Lemma 4.9(2)], where the constructed full subcomplex edge contracts to one of
the obstruction graphs that give trivial indeterminacy.

Example 4.14. A Pogorelov polytope is a 3-dimensional polytope that can
be realised in hyperbolic (Lobachevsky) space as a bounded right-angled poly-
tope. The Pogorelov class is large and includes all fullerenes, whose facets
are pentagons and hexagons. Zhuravleva [26, Theorem 3.2] showed that for
any Pogorelov polytope P , KP = ∂(P ∗) has a full subcomplex K as shown
in Figure 15a. This full subcomplex was used to explicitly construct a non-
trivial Massey product 〈α1, α2, α3〉 ⊂ H∗(ZP ) where α1 ∈ H̃0(K567), α2 ∈
H̃0(K2b0...bn) and α3 ∈ H̃0(K34). moment-angle manifolds ZP have a non-
trivial triple Massey product using the full subcomplex in Figure 15a.

Edge contracting the coloured edges of K, {bi, bi+1} 7→ b̂0, {6, 7} 7→ 6̂, we
obtain the simplicial complex in Figure 15b. This simplicial complex has a
non-trivial triple Massey product, since its 1-skeleton is one of the obstruction
graphs from the classification in [12, 15]. Since the edge contractions satisfy
the link condition, Theorem 4.12 gives an alternative proof of non-trivial triple
Massey products in Zhuravleva’s work.
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b0

b1 bn−1

bn

(a) A full subcomplex K ⊂ KP when P is
any Pogorelov polytope [26]

5̂ 2̂
4̂

6̂

b̂0

3̂

(b) An edge-contracted full subcomplex of
a simplicial complex corresponding to any
Pogorelov polytope

Figure 15: Massey products in Pogorelov polytopes

4.1. Massey products constructed by edge stretching

For an edge contraction K 7→ K̂ that satisfies the link condition, we call the
inverse K̂ 7→ K edge stretching.

Corollary 4.15. Let K̂ be a simplicial complex with a non-trivial n-Massey
product 〈α̂1, . . . , α̂n〉 ⊂ H∗(ZK̂). Suppose that ψ : K̂ → K is a series of edge
stretchings. Then there is a non-trivial n-Massey product in H∗(ZK).

Proof. Since ψ : K̂ → K is a series of edge stretchings, there is a series of edge
contractions ϕ : K → K̂. Given 〈α̂1, . . . , α̂n〉 in H∗(ZK̂), there is a non-trivial
n-Massey product 〈α1, . . . , αn〉 ⊂ H∗(ZK) by Theorem 4.12.

We may use edge stretchings to build infinite families of examples of Massey
products in moment-angle complexes given any known Massey product in a
moment-angle complex. For example we can start with one of the obstruction
graphs for lowest-degree triple Massey products [12, 15] and produce infinite
families of simplicial complexes that contain non-trivial triple Massey products
of classes on different degrees. This illustrates that non-trivial Massey products
are very common in moment-angle complexes, contrary to previous belief.

5. Non-trivial Massey products in nestohedra

Theorems 3.17 and 4.12 can be applied together to construct non-trivial
higher Massey products of classes in various degrees in the cohomology of
moment-angle complexes. Recall that for any simple polytope P , there is a
simplicial complex KP = ∂(P ∗) and ZP = ZKP is a moment-angle manifold. In
this section we show that there are families of polytopes P for which H∗(ZP )
has non-trivial higher Massey products.
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Nestohedra are a large family of simple polytopes built out of Minkowski
sums of simplices, introduced by Feichtner and Sturmfels [14]. They include all
simplices, permutahedra, Stasheff’s associahedra and more generally Carr and
Devadoss’ graph associahedra [11]. Alternatively nestohedra are interpreted as
hypergraph polytopes [13]. The first examples of Massey products in moment-
angle manifolds associated to nestohedra were in [19, Proposition 4.1] and [20,
Lemma 4.9] and were triple Massey products constructed either by explicit cal-
culation or using the classification of lowest degree Massey products [12, 15]. We
will use Theorems 3.17 and 4.12 to construct families of new non-trivial higher
Massey products in moment-angle manifolds associated to certain nestohedra.
We use a construction of nestohedra due to Postnikov [24, Theorem 7.4].

Definition 5.1. A building set B is a collection of non-empty subsets of [n+ 1]
such that

1. {i} ∈ B for every i ∈ [n+ 1],

2. S1 ∪ S2 ∈ B for any S1, S2 ∈ B with S1 ∩ S2 6= ∅.

A convex polytope is the convex hull of a finite number of points in Rn. If
M1 and M2 are convex polytopes in Rn, then the Minkowski sum

M1 +M2 = {x ∈ Rn | x = x1 + x2, x1 ∈M1, x2 ∈M2}.

is also a convex polytope.

Definition 5.2. For a building set B ⊂ [n+1], a nestohedron PB is the polytope∑
S∈B ∆S , where ∆S = conv{ei, i ∈ S} is the convex hull of the basis elements

ei ∈ Rn+1.

For example, the n-simplex is a nestohedron with building set {{1}, . . . , {n+
1}, [n+1]}. Other key examples of nestohedra are graph associahedra PBΓ

, which
are associated to a graph Γ on the vertex set [n+ 1]. The graphical building set
BΓ consists of subsets S ⊂ [n+ 1] such that the restriction of Γ to the vertices
in S is a connected graph.

Since every nestohedron PB is simple [14, 24], we will consider the corre-
sponding simplicial complex KPB = ∂(P ∗B), which is the boundary of the dual
polytope. Let Bmax be the set of maximal sets in B with respect to inclusion.

Proposition 5.3 ([24]). The simplicial complex KPB is isomorphic to the nested
set complex N (B), which contains a simplex {S1, . . . , Sk} ⊂ B \Bmax if

1. for any Si, Sj ∈ {S1, . . . , Sk}, either Si ⊂ Sj, Sj ⊂ Si or Si ∩ Sj = ∅,

2. for any Si1 , . . . , Sip ∈ {S1, . . . , Sk} with Sij ∩ Sil = ∅, Si1 t · · · t Sip /∈ B.

For example if PB is the polytopal n-simplex, then KPB is the boundary of
an n-simplex. Another example is shown in Figure 16. We denote the moment-
angle complex ZKPB by ZPB .
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5.1. Permutahedra

A permutahedron is an example of a graph associahedron, when the as-
sociated graph is a complete graph on n + 1 vertices. Limonchenko [18, Theo-
rem 3] showed that the 3-dimensional permutahedron P has no non-trivial triple
Massey product 〈α1, α2, α3〉 for three-dimensional classes αi ∈ H3(ZP ), using
the classification by [12, Theorem 6.1.1] and [15]. However, there are other non-
trivial triple Massey products in H∗(ZP ), as illustrated in Example 4.13. Via an
explicit example, it was also shown in [19, Proposition 4.1] and [20, Lemma 4.9]
that there are triple Massey products of three-dimensional classes in H∗(ZP )
for n dimensional permutahedra P with n > 3. Here we will generalise this
and show that ZP , for the n-dimensional permutahedron P , has a non-trivial
k-Massey product for k 6 n.

v234

v124

v134

v2
v12

v4

v23

v123 v1

v13

v3

v14

v34

Figure 16: The simplicial complex KP , without the vertex v24, when P is the 3-dimensional
permutahedron

Proposition 5.4. When P is the n-dimensional permutahedron, H∗(ZP ) has
a non-trivial k-Massey product for every k 6 n.

Proof. The building set B of the n-dimensional permutahedron P contains all
possible subsets of [n+ 1]. Let vS be the vertex in KPB corresponding to a set
S ∈ B \ [n+1]. By Proposition 5.3, {vS1

, . . . , vSk} is a simplex in KPB if for any
Si, Sj ∈ {S1, . . . , Sk}, either Si ⊂ Sj , Sj ⊂ Si. From now on we denote KPB
by K. We construct a k-Massey product 〈α1, . . . , αk〉 ⊂ H∗(ZK) by explicitly

defining Ji and αi ∈ H̃0(KJi). Then we edge contract KJ1∪···∪Jk to a simplicial
complex that by Construction 3.5 has a non-trivial Massey product. For k < n,
let

α1 ∈ H̃0(Kv{1},v{2})

αi ∈ H̃0(Kv{1,...,i,k+1},v{2,...,i+1}) for 1 < i < k

αk ∈ H̃0(Kv{1,...,k+1},v{1,...,k,k+2})

so αi corresponds to a class αi ∈ H3(ZK). In this case |Ji| = 2, so there are no
edges to contract. Let K̂ = KJ1∪···∪Jk . There is no edge {v{1}, v{2,...,i+1}} in K̂
for v{1} ∈ J1 and v{2,...,i+1} ∈ Ji since {1} 6⊂ {2, . . . , i+1}. Also there is no edge
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{v{1,...,i,k+1}, v{2,...,j+1}} nor {v{1,...,i,k+1}, v{1,...,k,k+2}} for v{1,...,i,k+1} ∈ Ji,
v{2,...,j+1} ∈ Jj with 1 < i < j < k and v{1,...,k,k+2} ∈ Jk. All the other

edges are in K̂. That is, {v{1}, v{1,...,i,k+1}} ∈ K̂ and {v{1}, v{1,...,k,k+2}} ∈ K̂
for v{1} ∈ J1, v{1,...,i,k+1} ∈ Ji for any i 6 k and v{1,...,k,k+2} ∈ Jk. Similarly,

{v{1,...,i,k+1}, v{1,...,j,k+1}} ∈ K̂ for v{1,...,i,k+1} ∈ Ji and v{1,...,j,k+1} ∈ Jj with

1 < i < j 6 k. Also {v{2,...,i+1}, vSj} ∈ K̂ for v{2,...,i+1} ∈ Ji and any vSj ∈
Jj with 1 6 i < j 6 k. Therefore K̂ is obtained from the join KJ1

∗ · · · ∗
KJk by star deleting at the edges {v{1}, v{2,...,i+1}}, {v{1,...,i,k+1}, v{2,...,j+1}}
and {v{1,...,i,k+1}, v{1,...,k,k+2}} for v{1} ∈ J1, v{2,...,i+1} ∈ Ji, v{1,...,i,k+1} ∈
Ji, v{2,...,j+1} ∈ Jj with 1 < i < j < k and v{1,...,k,k+2} ∈ Jk. Hence by

Theorem 3.17, the Massey product 〈α1, . . . , αk〉 ⊂ H2k+2(ZK) is non-trivial.
For k = n, let

α1 ∈ H̃0(Kv{1},v{2,...,n+1},v{3,...,n+1})

αi ∈ H̃0(Kv{1,...,i},v{2,...,i},v{3,...,i+1}) for 1 < i < n

αn ∈ H̃0(Kv{1,...,n},v{2,...,n},v{1,3,...,n+1}).

Since |Ji| = 3 for every i ∈ {1, . . . , n}, we will perform n edge contractions
in order to obtain a simplicial complex K̂ on 2n vertices. There is an edge
{v{2,...,n+1}, v{3,...,n+1}} ∈ KJ1

since {3, . . . , n+ 1} ⊂ {2, . . . , n+ 1}. Also there
are edges {v{1,...,i}, v{2,...,i}} ∈ KJi for 1 < i 6 n. Since P is a simple polytope,
K is a triangulation of a sphere so the contraction of these edges satisfy the
link condition. Let K̂ be obtained from KJ1∪···∪Jn by contracting these n edges.
Then as in the case when k < n, K̂ is a simplicial complex obtained from the join
of n pairs of disjoint vertices by star deletions as described by Construction 3.17.
Hence by Theorem 3.17, there is a non-trivial k-Massey product in H∗(ZK̂).
By Theorem 4.12, the Massey product 〈α1, . . . , αk〉 ⊂ H∗(ZK) is also non-
trivial.

A similar technique to that used in Proposition 5.4 can be applied to other
simple polytopes. An example is the family of stellohedra: graph associahedra
corresponding to star graphs, which are graphs with a central vertex and edges
attaching every other vertex to the central one. It was shown in [18, Theorem 3]
that there are 3-Massey products on 3-dimensional classes in H∗(ZP ) when P
is a 3-dimensional stellohedron, using the classification in [12, 15]. By applying
Theorems 3.17 and 4.12, we generalise that result by constructing non-trivial
n-Massey products in moment-angle manifolds over n-dimensional stellohedron.

Proposition 5.5. When P is the n-dimensional stellohedron, H∗(ZP ) has a
non-trivial n-Massey product.

Proof. As in Proposition 5.4, we construct αi ∈ H̃0(KJi) where K = KP . Let
the star graph associated to P be labelled so that the central vertex is 1 and
the other vertices are 2, . . . , n+ 1. The building set for P is

{{1}, . . . , {n+ 1}, {1, 2}, . . . , {1, n+ 1}, . . . , {1, . . . , n}, {1, . . . , n− 1, n+ 1}, [n+ 1]}.
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Let

α1 ∈ H̃0(Kv{2},v{1})

αi ∈ H̃0(Kv{1,...,i},v{1,3,...,i+2},v{1,4,...,i+2}) for 1 < i < n

αn ∈ H̃0(Kv{1,3},v{3},v{1,2,4,...,n+1}).

By contracting the edges {v{1,3,...,i+2}, v{1,4,...,i+2}} ∈ KJi for 1 < i < n and the edge

{v{1,3}, v{3}} ∈ KJn , we obtain a simplicial complex K̂ that is constructed from the
join of n disjoint points by star deletions as in Construction 3.5.

Propositions 5.4 and 5.5 reiterate that the moment-angle manifolds associ-
ated to permutahedra and stellohedra are non-formal [20]. Also, the families
of permutahedra and stellohedra are examples of geometric direct families of
polytopes, whose moment-angle manifolds are studied in [9]. Hence, Propo-
sitions 5.4 and 5.5 answer Problems 5.32, 5.34 and 5.35 in [9], which ask if
there are geometric direct families of polytopes with non-trivial higher Massey
products.

5.2. Non-trivial indeterminacy and permutahedra

Massey products with non-trivial indeterminacy can be found in moment-
angle manifolds. We illustrate this in moment-angle manifolds associated with
permutahedra. We first construct an example of a 4-Massey product with non-
trivial indeterminacy in a moment-angle complex using Theorem 3.23, then find
a full-subcomplex of a permutahedron that edge contracts to this example and
apply Theorem 4.12.

Example 5.6. Let Ki be a pair of disjoint points Ji = {i, i′} for i = 1, . . . , 4
and define

K = sd{1,2′} sd{1,3′} sd{2,3′} sd{2,4′} sd{3,4′} sd{1′,2′} sd{1′,3′}K1 ∗ K2 ∗ K3 ∗ K4.

Let αi = [ai] and ai = χ
i ∈ C0(KJi). By Theorem 3.23, 〈α1, α2, α3, α4〉 ⊂

H∗(ZK) is non-trivial with non-trivial indeterminacy.

Proposition 5.7. There are non-trivial Massey products with non-trivial inde-
terminacy in moment-angle manifolds corresponding to permutahedra.

Proof. Let P be the 5-dimensional permutahedron. Denote KP by K. Recall
that by Proposition 5.3, {vS1

, . . . , vSk} is a simplex in K if for any Si, Sj ∈
{S1, . . . , Sk}, either Si ⊂ Sj or Sj ⊂ Si. Let

J1 = {v{1}, v{2}, v{2,5}, v{5}}
J2 = {v{1,2}, v{3}}
J3 = {v{1,2,3}, v{2,3}, v{3,4}}
J4 = {v{1,2,3,4}, v{2,3,4}, v{1,3,4,5}}
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and let αi ∈ H̃0(KJi). Let K̂ be the simplicial complex in Example 5.6, so there
is a non-trivial 4-Massey product in H∗(ZK̂). Consider the map ϕ : K → K̂ that
takes Ji 7→ {i, i′} by contracting the edges

{v{2}, v{2,5}}, {v{2,5}, v{5}} 7→ 1′

{v{1,2,3}, v{2,3}} 7→ 3

{v{1,2,3,4}, v{2,3,4}} 7→ 4.

Since K is a triangulation of a sphere, these edge contractions satisfy the link
condition. Therefore by Theorem 4.12, there is a non-trivial 4-Massey product
〈α1, α2, α3, α4〉 ⊂ H∗(ZK) for αi ∈ H0(Ki), and this 4-Massey product has
non-trivial indeterminacy.

This example of a non-trivial n-Massey product with non-trivial indetermi-
nacy can be reproduced in any (n+ 1)-dimensional permutahedron.
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