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As part of various obstruction theories, non-trivial Massey 
products have been studied in symplectic and complex 
geometry, commutative algebra and topology for a long 
time. We introduce a general approach to constructing non-
trivial Massey products in the cohomology of moment-angle 
complexes, using homotopy theoretical and combinatorial 
methods. Our approach sets a unifying way of constructing 
higher Massey products of arbitrary cohomological classes 
and generalises all existing examples of non-trivial Massey 
products in moment-angle complexes. As a result, we obtain 
explicit constructions of infinitely many non-formal manifolds 
that appear in topology, complex geometry and algebraic 
geometry.
© 2021 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

A moment-angle complex ZK over a simplicial complex K on m vertices is built from 
ordered products of discs and circles in Cm that are glued together along the face category 
of K. The coordinate Tm-action on Cm descends to a natural Tm action on moment-
angle complexes. If K is a triangulation of a sphere, the moment-angle complex ZK is a 
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manifold that admits a smooth complex structure. These manifolds also generalise many 
well-known smooth complex manifolds such as Hopf and Calabi-Eckmann manifolds.

Massey products are higher operations in the homology of differential graded alge-
bras. In the context of commutative algebra, supposing k is a field or Z, the cohomology 
algebra of ZK is isomorphic to the Tor-algebra Tork[m](k[K], k) of the face ring k[K], 
due to [10] and [4, Theorem 1]. The face ring k[K] is Golod if all Massey products 
in Tork[m](k[K], k) vanish. Hence, Massey products in ZK are obstructions to Golod-
ness of k[K]. From the perspective of complex geometry, by identifying ZK with the 
complement U(K) of a coordinate subspace arrangement corresponding to K, moment-
angle complexes are LVM manifolds [6,23] when K is the boundary of the dual of a 
simple polytope. Massey products are obstructions to the formality of these manifolds. 
The combinatorial approach to Massey products in moment-angle complexes has been 
used to prove cohomological rigidity of Löbell manifolds [8], which are built from 3-
dimensional polytopes in the Pogorelov class. However, currently, most known examples 
of Massey products in moment-angle complexes are sporadic due to how difficult they 
are to calculate explicitly.

The first non-trivial Massey products in moment-angle complexes were discov-
ered by Baskakov [5], who constructed an infinite family of triple Massey products. 
Limonchenko [18] constructed the first family of non-trivial n-Massey products for n � 2
on lowest-degree classes in moment-angle complexes. Families of non-trivial Massey 
products in moment-angle complexes associated to special geometric direct families of 
2-truncated cubes (flag nestohedra) are due to Buchstaber and Limonchenko [9], who 
also applied these families to the differentials in Eilenberg-Moore and Milnor spectral 
sequences. In [20], Limonchenko constructs non-trivial higher Massey products in highly-
connected moment-angle complexes by using the simplicial multiwedge operation (or 
J-construction), which takes a simplicial complex and builds a new one that has the 
same combinatorial structure as the original.

Using combinatorics and homotopy theory, we give the first systematic and unifying 
approach for constructing non-trivial Massey products in the cohomology of moment-
angle complexes. We show that the combinatorics of K encodes Massey products. By 
doing this, we expose some of the structural behaviour of Massey products with respect 
to combinatorial operations, and spark the ability to construct concrete examples of non-
trivial Massey products in commutative algebra, complex geometry and combinatorics, 
as well as toric topology.

Our starting point is the cup product, which is a 2-Massey product. The categorical 
product of simplicial complexes is the join, which is mirrored by the product of moment-
angle complexes ZK1∗K2 = ZK1 ×ZK2 and the existence of a non-trivial cup product in 
the cohomology of ZK1∗K2 . Unlike cup products, Massey products are higher operations 
so certain (n −1)-Massey products must be trivial in order to define n-Massey products.

There is a classification result for 3-Massey products of cohomological classes in lowest 
degree in moment-angle complexes [12, Theorem 6.1.1], [15], but it vitally relies on the 
fact that the lowest degree classes are represented combinatorially by cycles in the 1-
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skeleton of K. This technique does not generalise to higher dimensions since it is unknown 
how to combinatorially realise an arbitrary n-cycle. So far there has not been a systematic 
way to construct triple Massey, or any n-Massey, products of higher dimensional classes. 
We give two constructions that address these drawbacks.

In Construction 3.5, to construct non-trivial n-Massey products in moment-angle com-
plexes, we start with the join of n simplicial complexes Ki. To trivialise the lower Massey 
products, we systematically remove certain simplices from the join by an operation called 
star deletion and call the constructed simplicial complex K. We show that ZK has a non-
trivial n-Massey product in Theorem 3.17. It is important to emphasise that we do not 
impose any restrictions on n-arity of these Massey products, on the choice of simplicial 
complexes Ki for any i, nor on the dimension of classes in the Massey product. This 
construction generalises Baskakov’s [5] family of non-trivial triple Massey products in 
the cohomology of moment-angle complexes, taking triangulations of spheres for K1, K2
and K3. Also it generalises Limonchenko’s [18, Theorem 2] family of n-Massey products, 
which are built by removing simplices from the join of n 0-spheres.

Notably, our construction produces the first examples of non-trivial Massey products 
on torsion classes, as well as examples with non-trivial indeterminacy. Such an example 
is constructed by star deleting simplices in the join of the projective plane RP 2 and two 
copies of the 0-sphere, as illustrated in Example 3.21. We also create the first infinite 
families of higher Massey products with non-trivial indeterminacy in moment-angle com-
plexes, on arbitrary cohomological classes, by extending our construction in Section 3.2.

The topological properties and homotopy type of K do not determine the topology of 
the moment-angle complex ZK. However, unexpectedly, in Construction 4.6 we deform 
K up to homotopy to create a new simplicial complex L such that ZL has an explicitly 
constructed n-Massey product if ZK has an n-Massey product. Crucially, the Massey 
product in ZL can be of different dimensional cohomological classes to those in ZK. 
In this construction, the simplicial complex L has the same homotopy type as K and is 
obtained by systematically “stretching” certain simplices of K. In Theorem 4.12, we show 
that these Massey products are non-trivial, even if they have non-trivial indeterminacy.

Consequently, we can construct infinite families of non-trivial Massey products from 
known examples by “stretching” simplices in a controlled way. For example, from each 
of the obstruction graphs in the classification of lowest-degree triple Massey products in 
moment-angle complexes [12,15], we obtain infinite families of non-trivial triple Massey 
products of higher dimensional classes. We give an alternative proof of known examples of 
non-trivial triple Massey products in moment-angle manifolds, such as those associated 
with Pogorelov polytopes [26] and permutahedra or stellohedra [19,20] using “stretched” 
obstruction graphs. Also, the two constructions, Constructions 3.5 and 4.6, can be com-
bined to create new higher Massey products. We use this to create k-Massey products in 
moment-angle manifolds associated with n-dimensional permutahedra and stellohedra 
for every k < n, including Massey products with non-trivial indeterminacy.

Even though it has been known for decades that Massey products are important ob-
structions in many fields, we have the first general methods to calculate and construct 



4 J. Grbić, A. Linton / Advances in Mathematics 387 (2021) 107837
n-Massey products of classes in any degree, for any n, including Massey products with 
non-trivial indeterminacy. The first infinite family of examples of non-formal spaces 
or non-Golod face rings were constructed by Limonchenko [20, Theorem 4.10] using 
moment-angle complexes associated to graph associahedra. There are other explicit fam-
ilies constructed in [18], [20] and [9]. More generally, our framework constructs infinitely 
many families of such examples, confirming that non-trivial higher Massey products 
are much more common in moment-angle complexes and moment-angle manifolds than 
previously thought.

Furthermore, these techniques do not just apply to moment-angle complexes. We 
study Massey products in moment-angle complexes via combinatorics; one key fact to do 
this is that the cohomology of ZK decomposes into a direct sum of cohomology groups 
of full subcomplexes of K [4, Theorem 1]. For a topological pair (X, A), a polyhedral 
product (X, A)K is a generalisation of a moment-angle complex since ZK = (D2, S1)K. 
In the case of a topological space A and its cone CA, Bahri, Bendersky, Cohen and 
Gitler [2, Theorem 1.12] showed that the cohomology of (CA, A)K also decomposes in 
terms of H∗(A) and the cohomology of full subcomplexes of K when H∗(A) satisfies the 
strong Künneth formula. Using this decomposition and our constructions, it is possible 
to produce non-trivial Massey products in (CA, A)K by incorporating cohomological 
classes of A to the classes we construct in the cohomology of full subcomplexes of K in 
order to create Massey products in ZK.

2. Preliminaries

2.1. Moment-angle complexes

Let K be a simplicial complex on the vertex set [m] = {1, . . . , m}. The moment-angle 
complex ZK [7, Definition 3.2.1] is

ZK =
⋃
σ∈K

(
D2, S1)σ ⊂ (D2)m

where (D2, S1)σ =
∏m

i=1 Yi for Yi = D2 if i ∈ σ, and Yi = S1 if i /∈ σ. A moment-angle 
complex ZK is a manifold if K is a triangulation of a sphere.

In this paper, all coefficients are in k, which is a field or Z. As a subspace of the 
polydisc, ZK has a cellular decomposition that induces a multigrading on the cellular 
cochain groups C∗(ZK). For J ⊂ [m], the full subcomplex KJ is {σ ∈ K | σ ⊂ J}. Let 
C̃∗(KJ ) be the augmented simplicial cochain complex. The cohomology ring of ZK can 
be expressed in combinatorial terms.

Theorem 2.1. [4] There is an isomorphism of cochains

C̃∗−1(KJ) → C∗−|J|,2J(ZK) ⊂ C∗+|J|(ZK)
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that induces an isomorphism of algebras

H∗(ZK) ∼=
⊕

J⊂[m]

H̃∗(KJ) (2.1)

where H̃−1(K∅) = k.

We refer to the cohomology decomposition (2.1) as Hochster’s formula [16]. Let 
Cp(KJ) be simplicial chain complex for KJ . The cochain group Cp(KJ )=Hom(Cp(KJ), k)
has a basis of χL for a p-simplex L ∈ KJ , where χL takes the value 1 on L and 0 oth-
erwise. A subset J ⊂ [m] has an order inherited from [m]. If j is the rth element of J , 
define

ε(j, J) = (−1)r−1 (2.2)

and for L ⊂ J , define ε(L, J) =
∏

j∈L ε(j, J). For simplices L = {l1, . . . , lp}, 
M = {m1, . . . , mq}, we denote {l1, . . . , lp, m1, . . . , mq} by L ∪ M . The product on ⊕

J⊂[m] H̃
∗(KJ ) is induced by Cp−1(KI) ⊗ Cq−1(KJ ) → Cp+q−1(KI∪J ),

χL ⊗ χM �→
{
cL∪M χL∪M if I ∩ J = ∅,

0 otherwise
(2.3)

where cL∪M = ε(L, I) ε(M, J) ζ ε(L ∪M, I ∪ J) and ζ =
∏

k∈I\L ε(k, k ∪ J \M).
For a cochain a ∈ Cp(KJ), let the support of a be the set Sa of p-simplices σ ∈ KJ

such that a =
∑

σ∈Sa
aσχσ for a nontrivial coefficient aσ ∈ k. For a cohomology class 

α ∈ H̃p(KJ ), we say that α is supported on KJ .

Lemma 2.2. For a simplicial complex K, let a ∈ Cp(KI) and b ∈ Cq(KJ ). Let the order of 
vertices in K be such that i < j for every i ∈ I and j ∈ J . Suppose that a =

∑
σ∈Sa

aσχσ

and b =
∑

τ∈Sb
bτχτ for p-simplices σ ∈ Sa ⊂ KI , q-simplices τ ∈ Sb ⊂ KJ and 

coefficients aσ, bτ ∈ k. Then the product ab ∈ Cp+q+1(KI∪J ) is given by

ab = (−1)|I|(q+1)
∑
σ∈Sa

∑
τ∈Sb

aσbτχσ∪τ .

Proof. The product ab is given by

ab =
( ∑

σ∈Sa

aσχσ

)(∑
τ∈Sb

bτχτ

)

=
∑
σ∈Sa

∑
τ∈Sb

aσ bτ ε(σ, I) ε(τ, J) ζ ε(σ ∪ τ, I ∪ J) χσ∪τ

where ζ = 1 since all vertices of I are ordered before vertices of J in K.
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By the definition of ε, and since all elements I are ordered before J , ε(σ ∪ τ, I ∪ J) =
ε(σ, I)ε(τ, I ∪ J). Furthermore, for each q-simplex τ = {i1, . . . , iq+1} ⊂ J ,

ε(τ, I ∪ J) =
∏

j∈{1,...,q+1}
ε(ij , I ∪ J) =

∏
j∈{1,...,q+1}

(−1)|I|ε(ij , J)

= (−1)|I|(q+1)ε(τ, J).

Therefore, since ε(I, J)2 = 1 for any sets I, J , the statement follows. �
2.2. Massey products

Massey products are higher cohomology operations that were introduced in a short 
note by Massey [21] and were thereafter first used by Massey and Uehara in [25] to 
prove that Whitehead products satisfy the Jacobi identity. They have many applica-
tions for example as topological invariants, obstructions to formality and for calculating 
differentials in spectral sequences.

Definition 2.3. Let (A, d) be a differential graded algebra with classes αi in Hpi(A, d)
for 1 � i � n. Let ai,i ∈ Api be a representative for αi. A defining system associated to 
〈α1, . . . , αn〉 is a set of elements (ai,k) for 1 � i � k � n and (i, k) �= (1, n) such that 
ai,k ∈ Api+···+pk−k+i and

d(ai,k) =
k−1∑
r=i

ai,rar+1,k

where ai,r = (−1)1+deg ai,rai,r. To each defining system of 〈α1, . . . , αn〉, the associated 
cocycle is defined as

n−1∑
r=1

a1,rar+1,n ∈ Ap1+···+pn−n+2.

The n-Massey product 〈α1, . . . , αn〉 is the set of cohomology classes of associated cocycles 
for all possible defining systems. The indeterminacy of a Massey product is the set of 
differences between elements in 〈α1, . . . , αn〉. The Massey product is called trivial if 
0 ∈ 〈α1, . . . , αn〉.

We use Theorem 2.1 to give a correspondence between defining systems in C∗(ZK)
and in 

⊕
J⊂[m]

C∗(KJ ). For any a ∈ Cp+|J|+1(ZK) with p � 0 and J ⊂ [m], there is a 

corresponding a ∈ Cp(KJ).

Definition 2.4. For a ∈ Cp(KJ), let deg(a) = p + |J | + 1 and let a = (−1)1+deg aa =
(−1)p+|J|a.
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Fig. 1. A simplicial complex K for which ZK has a non-trivial 3-Massey product with non-trivial indetermi-
nacy.

Let 〈α1, . . . , αn〉 ⊂ H∗(ZK), where each class αi ∈ Hpi+|Ji|+1(ZK) corresponds to 
αi ∈ Hpi(KJi

). Let (ai,k) ⊂ C∗(ZK) be a defining system for 〈α1, . . . , αn〉, where 
ai,i = ai is a cocycle representative for αi. Then ai,k ∈ Cpi+···+pk+|Ji∪···∪Jk|+1(ZK)
and d(ai,k) =

∑k−1
r=i ai,rar+1,k. By Theorem 2.1, there are corresponding cochains 

ai,k ∈ Cpi+···+pk(KJi∪···∪Jk
) and

deg(ai,k) = pi + · · · + pk + |Ji ∪ · · · ∪ Jk| + 1

= (pi + |Ji| + 1) + · · · + (pk + |Jk| + 1) − k + i

= deg(ai) + · · · + deg(ak) − k + i.

By the product in (2.3), d(ai,k) =
∑k−1

r=i ai,rar+1,k. Hence (ai,k) ⊂
⊕

J⊂[m]
C∗(KJ) is 

a defining system that corresponds to the defining system (ai,k) ⊂ C∗(ZK) and the 
associated cocycle ω ∈ Cp1+···+pn+|J1∪···∪Jn|+2(ZK) corresponds to the associated cocycle 
ω ∈ Cp1+···+pn+1(KJ1∪···∪Jn

).
Let 〈α1, α2, α3〉 be a triple Massey product on αi ∈ Hpi+|Ji|+1(ZK) for i = 1, 2, 3. 

The indeterminacy of a triple Massey product is

α1 ·Hp2+p3+|J2∪J3|+1(ZK) + α3 ·Hp1+p2+|J1∪J2|+1(ZK).

By Theorem 2.1, αi corresponds to αi ∈ H̃pi(KJi
) and the indeterminacy of 〈α1, α2, α3〉

is

α1 · H̃p2+p3(KJ2∪J3) + α3 · H̃p1+p2(KJ1∪J2). (2.4)

In general, the indeterminacy of an n-Massey product can be expressed in terms of 
matric Massey products [22, Proposition 2.3], but this is not a helpful expression for 
calculations.

Example 2.5. Let K be the simplicial complex in Fig. 1. Let α1, α2, α3 ∈ H3(ZK) cor-
respond to α1 = [χ1] ∈ H̃0(K12), α2 = [χ3] ∈ H̃0(K34), α3 = [χ5] ∈ H̃0(K56). Since 
H̃1(K1234) and H̃1(K3456) = 0, the products α1α2 ∈ H̃1(K1234) and α2α3 ∈ H̃1(K3456)
are zero.
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A cochain a12 ∈ C0(K1234) such that d(a12) = χ1χ3 = 0 is of the form a12 =
c1χ3 + c2(χ1 + χ4 + χ2), for any c1, c2 ∈ k. A cochain a23 ∈ C0(K3456) such that 
d(a23) = χ3 ·χ5 = χ35 is of the form a23 = c3(χ4+χ6+χ3+χ5) +χ5 for any c3 ∈ k. Then 
the associated cocycle ω ∈ C1(K) is a1a23 + a12a3 = c3(χ14 +χ16 +χ15) +χ15 + c1χ35 +
c2(χ15 +χ25). For χ1, χ5 ∈ C0(K), ω = c3d(χ1) +χ15 +(c1−c2)χ35 +c2d(χ5). Also, [ω] =
[χ15 + (c1 − c2)χ35] �= 0 for any c1, c2, c3 ∈ k. Therefore 〈α1, α2, α3〉 ⊂ H8(ZK) is non-
trivial with non-trivial indeterminacy, α1 · H̃0(K3456) +α3 · H̃0(K1234) = α3 · H̃0(K1234).

3. Massey products via join and star deletion

The categorical product of simplicial complexes K1 and K2 is the join K1 ∗ K2. This 
induces a product in moment-angle complexes, ZK1∗K2 = ZK1 × ZK2 . In this way cup 
products in H∗(ZK1∗K2) can be seen combinatorially. Since Massey products are higher 
operations, we require lower Massey products to be trivial. The idea is to start with 
the join of simplicial complexes and remove certain simplices in order to trivialise lower 
Massey products. To remove simplices, we use star deletion.

For a simplicial complex K, the star and link of a simplex I ∈ K are

stK I = {J ∈ K | I ∪ J ∈ K} and lkK I = {J ∈ K | I ∪ J ∈ K, I ∩ J = ∅}.

The boundary of the star of I ∈ K is ∂ stK I = {J ∈ K | I ∪ J ∈ K, I �⊂ J}. Let 
s̊tKI = stK I \ ∂ stK I.

Definition 3.1. The star deletion sdI K of K at I is sdI K = K \ s̊tKI.

Alternatively, sdI K = {J ∈ K | I �⊂ J}. Star deletions sdI1 and sdI2 can be applied 
iteratively providing that I1 �⊂ I2 and I2 �⊂ I1. We show that the order of star deletions 
on a simplicial complex does not affect the result.

Lemma 3.2. Let K be a simplicial complex. Let I1, I2 ∈ K be simplices such that I1∩I2 �=
I1, I2. Then sdI2 sdI1 K = sdII sdI2 K.

Proof. Since I1 ∩ I2 �= I1, I2, neither I1 ⊂ I2 nor I2 ⊂ I1. Thus I1 ∈ sdI2 K and
I2 ∈ sdI1 K. So sdI2 sdI1 K = K \ (s̊tKI1 ∪ s̊tKI2) = sdI1 sdI2 K. �
Example 3.3. Let K be the boundary of an octahedron with opposing vertices labelled 
i, i + 1 for i = 1, 3, 5. Let I1 = {1, 6} and I2 = {3, 6}. The star stK I1 contains maximal 
simplices {1, 4, 6} and {1, 3, 6}, and stK I2 contains {1, 3, 6} and {2, 3, 6}. If the star 
of I1 is deleted from K first, then stsdI1 K I2 contains the maximal simplex {2, 3, 6}. 
Hence sdI2 sdI1 K removes the simplices {1, 4, 6}, {1, 3, 6} and {2, 3, 6} from K. The 
same simplices are removed from K in sdI1 sdI2 K, as shown in Fig. 2.
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Fig. 2. The star deleted complex is not affected by the order of star deletions.

3

1

6

4

5

2

Fig. 3. A stellar subdivision at {1, 6} in the octahedron.

Remark 3.4. Star deletion is equivalent to doing a stellar subdivision ssI K = (K \
s̊tKI) ∪∂ stK I cone(∂ stK I) then restricting to the original vertices V (K). For example, 
see Fig. 3 compared to Fig. 2a. If K is a triangulation of an n-sphere on m vertices, then 
ZK is an (m + n + 1)-dimensional manifold. As ssI K � K, ssI K is a triangulation of 
an n-sphere on m + 1 vertices. Hence ZssI K is an (m + n + 2)-dimensional manifold. 
Since Massey products are obstructions to formality, a non-trivial Massey product in 
H∗(ZssI K) implies that ZssI K is a non-formal.

3.1. A construction of non-trivial Massey products

We aim to construct a simplicial complex K such that there is a non-trivial n-Massey 
product in H∗(ZK). We start with the join of n-simplicial complexes K1 ∗ · · · ∗ Kn and 
classes αi ∈ H̃pi(Ki

Ji
) for each i ∈ {1, . . . , n}. In K1 ∗ · · · ∗ Kn, all cup products between 

αis are non-trivial, so in order to define a higher Massey product we first remove simplices 
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vσ

σ σ′σ′′

Fig. 4. For this choice of vertex vσ ∈ σ, σ′ ∈ Pσ but σ′′ /∈ Pσ.

to make certain cup products trivial. To define which simplices to remove, we define two 
sets of simplices, Sai

⊂ Ki and Pai
⊂ Ki for each Ki. In order to create K, we star 

delete K1 ∗ · · · ∗ Kn at every simplex σi ∪ σk for σi ∈ Sai
and σk ∈ Pak

, 1 ≤ i < k ≤ n, 
(i, k) �= (1, n). The star deletions at σ1 ∪σ2 and σ2 ∪σ3 trivialise the cup products α1α2
and α2α3 respectively, which is required to define a triple Massey product 〈α1, α2, α3〉. 
By star deleting at σ1 ∪ σ3, we trivialise 〈α1, α2, α3〉. If we also star delete at simplices 
σ3 ∪ σ4 and σ2 ∪ σ4, then 〈α2, α3, α4〉 is defined and trivial, so the 4-Massey product 
〈α1, α2, α3, α4〉 is defined. We define the Massey product 〈α1, . . . , αn〉 ⊂ H∗(ZK) by 
iterating this process.

Construction 3.5. For i ∈ {1, . . . , n}, let Ki be a simplicial complex on [mi] vertices that 
is not an (mi − 1)-simplex. Since Ki is not a simplex, there is a non-zero cohomology 
class αi ∈ H̃pi(Ki

Ji
) for pi ∈ N, Ji ⊆ [mi]. Let ai ∈ Cpi(Ki

Ji
) be a cocycle representative 

for αi that is supported on pi-simplices Sai
⊂ K so that ai =

∑
σi∈Sai

cσi
χσi

∈ Cpi(Ki
Ji

)
for a non-zero coefficient cσi

∈ k. For every simplex σi ∈ Sai
, let vσi

denote one vertex 
in σi. Let Pσi

be the set

Pσi
= {σ′

i ∈ Ki | σ′
i is a pi-simplex, σi ∩ σ′

i = σi \ vσi
}.

An example is shown in Fig. 4.
We start by constructing the set Pai

for each i, in order to define star deletions of 
K1 ∗ · · · ∗ Kn. We fix an order on the simplices in Sai

and define an ordered subsequence 
of simplices σ(1)

i , . . . , σ(l)
i ⊂ Sai

. Let σ(1)
i be the first element of Sai

. Then let S(1)
ai =

Sai
\ P

σ
(1)
i

. Let σ(2)
i be the next element after σ(1)

i in S(1)
ai . Then let S(2)

ai = S
(1)
ai \ P

σ
(2)
i

. 

We continue repeatedly until σ(l)
i is the last element of S(l−1)

ai , and let

Pai
= P

σ
(1)
i

∪ · · · ∪ P
σ

(l)
i
. (3.1)

Since σ(l)
i /∈ P

σ
(l)
i

, the set Sai
\Pai

= S
(l−1)
ai \P

σ
(l)
i

contains at least the last element σ(l)
i . 

So Pai
�= Sai

.
Let K̄ = K1∗· · ·∗Kn, so K̄[mi] = Ki for every i ∈ {1, . . . , n}. The vertices in each vertex 

set V (Ki) = [mi] have an order. Suppose that the vertex set V (K̄) = �i∈{1,...,n} V (Ki)
is ordered so that u < v for all u ∈ V (Ki) and v ∈ V (Kj) for i < j. We construct a 
simplicial complex K by star deleting K̄ at each simplex σi ∪ σk one at a time, where 
σi ∈ Sai

and σk ∈ Pak
, 1 ≤ i < k ≤ n, (i, k) �= (1, n). Let K denote the resulting 

simplicial complex.
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3

4

5
6

(a) The simplicial complex 
K2

3

4
5

6

2

1

(b) K after star deletions at 
{1, 4}, {1, 5}, {1, 6}

3

4
5

8

6

7

(c) K′
3,4,5,6,7,8 after star dele-

tions at {3, 8}, {4, 8}, {5, 8}

Fig. 5. Example of the star deletions in Construction 3.5.

Lemma 3.6. For any i ∈ {1, . . . , n}, the set Pai
is non-empty.

Proof. If pi = 0 and H̃0(K) �= 0, then K is a disjoint union of at least two vertices. 
For any v, w ∈ K, v ∩ w = ∅ = v \ v. Hence w ∈ Pv. Alternatively let pi > 0. Since 
αi ∈ H̃pi(KJi

) is non-zero, there is a non-zero cycle x ∈ Cpi
(KJi

) such that ai(x) �= 0. 
Let x =

∑
τ∈Sx

cτΔτ with non-zero coefficients cτ and pi-simplices τ . Let σ ∈ Sai
∩ Sx. 

Let ∂ : Cpi
(KJi

) → Cpi−1(KJi
) be the boundary homomorphism. Since x is a cycle and 

∂Δσ �= 0, for any vertex v ∈ σ there exists a different simplex τ ∈ Sx with σ \ v =
σ ∩ τ = τ \ u for some vertex u ∈ τ . Hence for any σ ∈ Sai

∩ Sx, τ ∈ Pσ and so Pai
is 

non-empty. �
Example 3.7. (a). Let K1 be the disjoint union of two vertices {1}, {2} and K2 the 
simplicial complex in Fig. 5a. The join K1 ∗ K2 is homotopy equivalent to S2 ∨ S1. Let 
α1 ∈ H̃0(K1), α2 ∈ H̃0(K2) be represented by the cochains a1 = χ1 and a2 = χ3+χ4+χ5, 
respectively. Then Sa1 = {{1}}, and Sa2 = {{3}, {4}, {5}}. Following the construction 
above, for σ2 = {3} there is only one choice of a vertex v = 3. Then P{3} = {{4}, {5}, {6}}
so S(1)

a2 = {{3}} and Pa2 = P{3}. The simplicial complex

K = sd{1,6} sd{1,5} sd{1,4} K1 ∗ K2

is shown in Fig. 5b. Since K is contractible, the cup product α1α2 is trivial.
(b). In addition to K1 and K2 in Part (a), let K3 be the disjoint union of two vertices 

{7}, {8}. Let α3 ∈ H̃0(K3) be represented by a3 = χ7. Then Sa3 = {{7}} and Pa3 =
P{7} = {{8}}. By Construction 3.5, we star delete K1 ∗ K2 ∗ K3 at σi ∪ σk for every 
σi ∈ Sai

and σk ∈ Pak
for i = 1, 2 and k = i + 1. Since Sa2 = {{3}, {4}, {5}}, we obtain 

the simplicial complex

K′ = sd{5,8} sd{4,8} sd{3,8} sd{1,6} sd{1,5} sd{1,4} K1 ∗ K2 ∗ K3.

The full subcomplex K′
3,4,5,6,7,8 is shown in Fig. 5c. Theorem 3.17 will show that there 

is a non-trivial triple Massey product in H∗(ZK′).
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Lemma 3.8. The simplicial complex K is independent of the order of simplices in Pak
.

Proof. For any σk, σ′
k ∈ Pak

, we have (σi ∪ σk) ∩ (σi ∪ σ′
k) �= σi ∪ σk, σi ∪ σ′

k. So by 
Lemma 3.2, the order of Pak

does not affect K. �
Lemma 3.9. The simplicial complex K is independent of the order in which the pairs 
{i, k}, 1 � i < k � n, are chosen.

Proof. Let {i1, k1} and {i2, k2} be two pairs of indices. For 1 � ij < kj � n, j =
1, 2, let σij ∈ Saij

and σkj
∈ Pakj

. The intersection (σi1 ∪ σk1) ∩ (σi2 ∪ σk2) is empty 
since the vertices of any σj ∈ Saj

are a subset of Jj for every j ∈ {1, . . . , n} and 
(Ji1 ∪ Jk1) ∩ (Ji2 ∪ Jk2) = ∅. Therefore by Lemma 3.2, we can star delete at simplices 
σi1 ∪ σk1 and simplices σi2 ∪ σk2 in either order. �
Lemma 3.10. In Construction 3.5, the simplicial complex K depends on the order of 
simplices in Sak

.

Proof. Suppose that σk ∈ Sak
, σ′

k ∈ Pσk
and let σi ∈ Sai

for an i ∈ {1, . . . , k − 1}. If 
σ′
k ∈ Sak

∩ Pσk
, then either σ′

k > σk or σ′
k < σk in the order of simplices in Sak

. In 
the first case, σ′

k ∈ Pak
so we perform a star deletion at σi ∪ σ′

k. If there is no simplex 
σ′′
k ∈ Sak

such that σ′′
k > σk and σk ∈ Pσ′′

k
, then σk /∈ Pak

. So σi∪σk ∈ K and σi∪σ′
k /∈ K. 

In the second case, if the chosen vertex vk′ ∈ σ′
k is such that σ′

k \ vk′ = σk \ vk, then 
σk ∈ Pσ′

k
. Since σ′

k < σk, σk ∈ Pak
and therefore σi ∪σk /∈ K. Hence K is different in the 

two cases. �
Lemma 3.11. The choice of vertex vσk

∈ σk affects the number of stars deletions per-
formed in Construction 3.5.

Proof. We demonstrate this with an example. Consider the join K1 ∗ K2 ∗ K3 of three 
simplicial complexes. Suppose that K2 is the boundary of a tetrahedron on the vertices 
1, 2, 3, 4. Also suppose that a2 ∈ C1(K2) is χ123 + χ234. We fix the order on Sa2 =
{{1, 2, 3}, {2, 3, 4}}. First let v{123} = 3 ∈ {1, 2, 3} and v{234} = 2 ∈ {2, 3, 4}. By defini-
tion, P{123} = {σ ∈ K2 | σ is a 1-simplex and σ∩{1, 2, 3} = {1, 2, 3} \v{123}} = {1, 2, 4}. 
Similarly P{234} = {1, 3, 4}. Therefore Pa2 = {{1, 2, 4}, {1, 3, 4}}. To construct K from 
K1 ∗ K2 ∗ K3, we perform |Sa1 ||Pa2 | + |Sa2 ||Pa3 | = 2|Sa1 | + |Sa2 ||Pa3 | star deletions.

Compare this to the case when v{123} = 1, so P{123} = {2, 3, 4}. Since {1, 2, 3} comes 
before {2, 3, 4} in Sa2 and Sa2 \ P{123} = {1, 2, 3}, Pa2 = P{123} = {2, 3, 4}. In this case, 
to construct K we perform |Sa1 | + |Sa2 ||Pa3 | star deletions. Since Sa1 and Pa3 do not 
depend on v{123} or v{234}, this is fewer star deletions than when v{123} = 3. �

We will prove that the Massey product 〈α1, . . . , αn〉 ⊂ H∗(ZK) is non-trivial in several 
steps, first showing that it is defined.
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Proposition 3.12. Let K be a simplicial complex constructed in Construction 3.5. Then 
〈α1, . . . , αn〉 ⊂ H∗(ZK) is defined.

Proof. Let ai =
∑

σi∈Sai
cσi

χσi
be a representative cocycle for αi ∈ H̃pi(KJi

) for 
each i ∈ {1, . . . , n − 1}. We construct a defining system (ai,k) for the Massey product 
〈α1, . . . , αn〉 ⊂ Hp1+···+pn+|J1∪···∪Jn|+2(ZK).

For 1 � i � k � n, (i, k) �= (1, n), let ai,k ∈ Cpi+···+pk(KJi∪···∪Jk
) be the cochain 

given by

ai,k =
∑

σi∈Sai

∑
σi+1∈S̃ai+1

· · ·
∑

σk∈S̃ak

cσi
. . . cσk

θi,k χ
σi∪···∪σk\(vi+1∪···∪vk) (3.2)

where S̃ai
= Sai

\ Pai
, vertices vi = vσi

∈ σi are fixed, and θi,k = 1 when i = k or 
otherwise

θi,k = (−1)k−i+|Ji|(pi+1+···+pk)+|Ji+1|(pi+2+···+pk)+···+|Jk−1|pk

· ε(vi+1, σi+1) . . . ε(vk, σk). (3.3)

For any σi ∈ S̃ai
and σk ∈ S̃ak

, σi ∪ σk ∈ K and so σi ∪ · · · ∪ σk \ (vi+1 ∪ · · · ∪ vk) ∈ K. 
Since every coefficient cσi

is non-zero and each χσi∪···∪σk\(vi+1∪···∪vk) is a different basis 
element of Cpi+···+pk(KJi∪···∪Jk

), the cochain ai,k is not trivial.
We will verify that d(ai,k) =

∑k−1
r=i ai,r · ar+1,k. By the definition of the coboundary 

map,

d(ai,k) =
∑

σi∈Sai

∑
σi+1∈S̃ai+1

· · ·
∑

σk∈S̃ak

cσi
. . . cσk

θi,k·

·

⎛⎝∑
j∈B

ε(j, j ∪ σi ∪ · · · ∪ σk \ (vi+1 ∪ · · · ∪ vk)) χj∪σi∪···∪σk\(vi+1∪···∪vk)

⎞⎠ (3.4)

where B is the set {j ∈ Ji∪· · ·∪Jk\(σi∪· · ·∪σk\(vi+1∪· · ·∪vk)) | j∪σi∪· · ·∪σk\(vi+1∪
· · ·∪vk) ∈ K}. First we show that the only non-zero summands are when j ∈ vi+1∪· · ·∪vk. 
For fixed σi, . . . , σk, suppose that there is a vertex j ∈ Ji ∪ · · · ∪ Jk \ (σi ∪ · · · ∪ σk) such 
that j ∪ σi ∪ · · · ∪ σk \ (vi+1 ∪ · · · ∪ vk) ∈ K. So j /∈ vi+1 ∪ · · · ∪ vk. Consider two cases, 
either j ∈ Ji or j ∈ Jl \ σl for l ∈ {i + 1, . . . , k}.

(i) In the first case, j ∈ Ji. By the definition of the coboundary map and since ai is a 
cocycle,

d(ai) =
∑

σ∈S

cσ
∑

ε(j, j ∪ σ)χj∪σ = 0.

ai j∈Ji\V (σ)
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We extend this sum by taking the union of each j∪σ with σi+1∪· · ·∪σk \(vi+1∪· · ·∪vk). 
Since σl /∈ Pal

for every l ∈ {i + 1, . . . , k}, j ∪ σ ∪ σi+1 ∪ · · · ∪ σk \ (vi+1 ∪ · · · ∪ vk) ∈ K
for any j ∪ σ ∈ KJi

. Hence

∑
σ∈Sai

cσ
∑

j∈Ji\V (σ)

ε(j, j ∪ σ ∪ σi+1 ∪ · · · ∪ σk \ (vi+1 ∪ · · · ∪ vk))·

· χj∪σ∪σi+1∪···∪σk\(vi+1∪···∪vk) = 0.

(ii) In the second case, j ∈ Jl for l ∈ {i + 1, . . . , k}, so j ∪ σl \ vl ∈ KJl
and hence 

j ∪ σl \ vl ∈ Pσl
⊂ Pal

. By Construction 3.5, σi ∪ j ∪ σl \ vl /∈ K. Hence j ∪ σi ∪ · · · ∪ σk \
(vi+1 ∪ · · · ∪ vk) /∈ K for any j ∈ Ji ∪ · · · ∪ Jk \ (vi+1 ∪ · · · ∪ vk).

Since the only non-zero summands in (3.4) are when j ∈ vi+1∪· · ·∪vk, d(ai,k) reduces 
to

d(ai,k) =
∑

σi∈Sai

∑
σi+1∈S̃ai+1

· · ·
∑

σk∈S̃ak

cσi
. . . cσk

θi,k·

·
∑

j∈vi+1∪···∪vk|
j∪σi∪···∪σk\(vi+1∪···∪vk)∈K

ε(j, j ∪ σi ∪ · · · ∪ σk \ (vi+1 ∪ · · · ∪ vk)) χj∪σi∪···∪σk\(vi+1∪···∪vk).

Denote j ∈ vi+1 ∪ · · · ∪ vk by vr+1 for r ∈ {i, . . . , k − 1}, and rewrite d(ai,k) as

d(ai,k) =
k−1∑
r=i

θi,k
∑

σi∈Sai

∑
σi+1∈S̃ai+1

· · ·
∑

σk∈S̃ak

cσi
. . . cσk

·

· ε(vr+1, σi ∪ · · · ∪ σk \ (vi+1 ∪ · · · ∪ v̂r+1 ∪ · · · ∪ vk))·

· χσi∪···∪σk\(vi+1∪···∪v̂r+1∪···∪vk) (3.5)

where v̂r+1 denotes that vr+1 is deleted from the sequence vi+1, . . . , vk.
To show that d(ai,k) =

∑k−1
r=i ai,r · a(r+1),k, we write out ai,r and a(r+1),k so that ∑k−1

r=i ai,r · a(r+1),k is

k−1∑
r=i

(−1)1+deg(ai,r)

⎛⎜⎝ ∑
σi∈Sai

∑
σi+1∈S̃ai+1

· · ·
∑

σr∈S̃ar

ci,r χσi∪···∪σr\(vi+1∪···∪vr)

⎞⎟⎠ ·

·

⎛⎜⎝ ∑
σr+1∈Sar+1

∑
σr+2∈S̃ar+2

· · ·
∑

σk∈S̃ak

cr+1,k χσr+1∪···∪σk\(vr+2∪···∪vk)

⎞⎟⎠
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where ci,r = cσi
. . . cσr

θi,r and cr+1,k = cσr+1 . . . cσk
θr+1,k. For any σr+1 ∈ Sar+1 \ S̃ar+1 , 

by definition σr+1 ∈ Par+1 and σi∪σr+1 /∈ K. Therefore (σi ∪ · · · ∪ σr\ (vi+1 ∪ · · · ∪ vr))∪
(σr+1 ∪ · · · ∪ σk \ (vr+2 ∪ · · · ∪ vk)) ∈ K only if σr+1 ∈ S̃ar+1 . Then by expanding the 
above expression and using the sign from Lemma 2.2, 

∑k−1
r=i ai,r · a(r+1),k is

k−1∑
r=i

∑
σi∈Sai

∑
σi+1∈S̃ai+1

· · ·
∑

σk∈S̃ak

(−1)1+deg(ai,r)+|Ji∪···∪Jr|(pr+1+···+pk+1)·

· cσi
. . . cσk

θi,r θr+1,k χ
σi∪···∪σk\(vi+1∪···∪v̂r+1∪···∪vk).

(3.6)

Since deg(ai,r) = |Ji ∪ · · · ∪ Jr| + pi + · · · + pr + 1,

(−1)1+deg(ai,r)+|Ji∪···∪Jr|(pr+1+···+pk+1) = (−1)(pi+···+pr)+|Ji∪···∪Jr|(pr+1+···+pk).

We next prove that (3.5) is equal to (3.6) by showing that

θi,k ε(vr+1, σi ∪ · · · ∪ σk \ (vi+1 ∪ · · · ∪ v̂r+1 ∪ · · · ∪ vk))

= (−1)(pi+···+pr)+|Ji∪···∪Jr|(pr+1+···+pk)θi,r θr+1,k. (3.7)

Since

θi,r = (−1)r−i+|Ji|(pi+1+···+pr)+···+|Jr−1|pr ε(vi+1, σi+1) · · · ε(vr, σr)

and

θr+1,k = (−1)k−r−1+|Jr+1|(pr+2+···+pk)+···+|Jk−1|pk ε(vr+2, σr+2) · · · ε(vk, σk)

the right hand side of (3.7) becomes

(−1)k−i−1+(pi+···+pr)+|Ji|(pi+1+···+pk)+|Ji+1|(pi+2+···+pk)+···+|Jk−1|pk

· ε(vi+1, σi+1) . . . ε(vr, σr)ε(vr+2, σr+2) . . . ε(vk, σk).

This is simplified as

(−1)pi+···+pr−1 ε(vr+1, σr+1) θi,k. (3.8)

Next consider the left hand side of (3.7). For any r ∈ {i, . . . , k − 1}, suppose that 
vr+1 ∈ σr+1 is the lth vertex in the vertex set of σi∪· · ·∪σk \(vi+1∪· · ·∪ v̂r+1∪· · ·∪vk). 
Then by (2.2),

ε(vr+1, σi ∪ · · · ∪ σk \ (vi+1 ∪ · · · ∪ v̂r+1 ∪ · · · ∪ vk)) = (−1)l−1.
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Since vr+1 ∈ σr+1, l is given by

l = |σi| + (|σi+1| − 1) + · · · + (|σr| − 1) + lr+1

where lr+1 is the position of vr+1 in σr+1. Since |σi| = pi + 1 for every i, l = (pi + 1) +
pi+1 + · · · + pr + lr+1, and hence

ε(vr+1, σi∪· · ·∪σk \ (vi+1∪· · ·∪ v̂r+1∪· · ·∪vk)) = (−1)pi+···+pr+1 ε(vr+1, σr+1). (3.9)

Thus (3.7) may be rewritten as (−1)pi+···+pr+1 θi,k ε(vr+1, σr+1), which is equal to (3.8). 
Hence (3.5) is equal to (3.6) so d(ai,k) =

∑k−1
r=i ai,r · a(r+1),k, which proves that (ai,k)

corresponds to a defining system for 〈α1, . . . , αn〉. �
We aim to show that the constructed n-Massey product 〈α1, . . . , αn〉 is non-trivial. 

We build a cycle x ∈ Cp1+...+pn+1(KJ1∪···∪Jn
) and show that for any [ω] ∈ 〈α1, . . . , αn〉

there is a cycle x′ homologous to x such that ω(x′) �= 0. This will conclude that [ω] �= 0.

Construction 3.13. Fix σ1 ∈ Sa1 , σi ∈ S̃ai
= Sai

\ Pai
for 2 � i < n and σn ∈ Pan

. Since 
α1 ∈ H̃p1(KJ1) is non-zero, there is a cycle x1 ∈ Cp1(KJ1) such that a1(x1) �= 0. We 
write the cycle x1 as

x1 =
∑

σ̃1∈Sx1

cσ̃1Δσ̃1

for a collection of p1-simplices Sx1 ⊂ KJ1 and non-zero coefficients cσ̃1 , where Δσ̃1 is a 
basis element of Cp1(KJ1).

After the star deletion of σ2 ∪ σn, the boundary complex ∂(σ2 ∪ σn) is contained in 
K. Let x2 ∈ Cp2+pn

(∂(σ2 ∪ σn)) be the cycle

x2 =
∑

w2∈σ2∪σn

cw2Δσ2∪σn\w2

for vertices w2 ∈ σ2 ∪ σn and non-zero coefficients cw2 . Similarly for 3 � i � n − 1, let 
xi ∈ Cpi−1(∂(σi)) be the cycle given by

xi =
∑

wi∈σi

cwi
Δσi\wi

for vertices wi ∈ σi and non-zero coefficients cwi
.

Let x ∈ Cp1+...+pn+1(KJ1∪···∪Jn
) be the chain

x =
∑

σ̃1∈Sx1

∑
w2∈σ2∪σn

∑
w3∈σ3

· · ·
∑

wn−1∈σn−1

cσ̃1cw2 · · · cwn−1 ·

· Δσ̃1∪σ2∪···∪σn−1∪σn\(w2∪···∪wn−1).
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Let Sx be the support of x, consisting of simplices

σ = σ̃1 ∪ σ2 ∪ · · · ∪ σn−1 ∪ σn \ (w2 ∪ · · · ∪ wn−1) (3.10)

for a p1-simplex σ̃1 ∈ Sx1 , and a choice of vertices w2 ∈ σ2∪σn, wi ∈ σi for 3 � i � n −1.

Lemma 3.14. The cochain x ∈ Cp1+...+pn+1(KJ1∪···∪Jn
) is a cycle.

Proof. We show that x is a cycle by explicitly calculating ∂(x). By the definition of the 
boundary map,

∂(x) =
∑

σ̃1∈Sx1

∑
w2∈σ2∪σn

∑
w3∈σ3

· · ·
∑

wn−1∈σn−1

∑
v∈σ

ε(v, σ) cσ̃1cw2 · · · cwn−1Δσ\v

where σ ∈ Sx as in (3.10). Since σ̃1 ⊂ J1, σi ⊂ Ji for 2 � i � n, and Ji ∩ Jj = ∅ for 
i �= j, any choice of vertex v ∈ σ is contained in a simplex σ̃1 or σi for 2 � i � n. If 
v ∈ σ̃1, then ε(v, σ) = ε(v, ̃σ1). Also if v ∈ σi for i > 1, then

ε(v, σ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(−1)p1+1 ε(v, σ2) if w2 ∈ σn and i = 2,
(−1)p1+···+pi−1+2 ε(v, σi \ w̃i) if w2 ∈ σn and i > 2,
(−1)p1+···+pn−1+1 ε(v, σn) if w2 ∈ σ2 and i = n,

(−1)p1+···+pi−1+1 ε(v, σi \ wi) if w2 ∈ σ2 and i < n

where w̃i = wi for 1 < i < n, and w̃n = w2. We rewrite ∂(x) as

∂(x) =
∑

σ̃1∈Sx1

∑
w2∈σ2∪σn

∑
w3∈σ3

· · ·
∑

wn−1∈σn−1

n∑
i=1

∑
v∈σ̃i\w̃i

ε(v, σ) cσ̃1cw2 · · · cwn−1Δσ\v

where σ̃1 \ w̃1 = σ̃1 and σ̃i = σi for i > 1. Let Δσ\v|J denote the restriction of Δσ\v to 
its vertices in J ⊂ V (K), where V (K) is the vertex set of K. Then

∂(x) =
∑

σ̃1∈Sx1

∑
w2∈σ2∪σn

∑
w3∈σ3

· · ·
∑

wn−1∈σn−1⎛⎝ n∑
i=1

∑
v∈σ̃i\w̃i

ε(v, σ) cσ̃1cw2 · · · cwn−1(Δσ\v|Ji
)(Δσ\v|V (K)\Ji

)

⎞⎠ .

We rearrange ∂(x) into four sums, one in which v ∈ σ̃1, another for v ∈ σ2 ∪ σn \ w2, 
and two more when v ∈ σi \wi for 3 � i � n − 1 where either w2 ∈ σ2 or w2 ∈ σ2. Then 
expanding ε(v, σ), ∂(x) is
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∑
w2∈σ2∪σn

∑
w3∈σ3

· · ·
∑

wn−1∈σn−1

cw2 · · · cwn−1 ·

· (Δσ\v|V (K)\J1)

⎛⎝ ∑
σ̃1∈Sx1

∑
v∈σ̃1

ε(v, σ̃1) cσ̃1(Δσ\v|J1)

⎞⎠+

+
∑

σ̃1∈Sx1

∑
w3∈σ3

· · ·
∑

wn−1∈σn−1

cσ̃1cw3 · · · cwn−1(−1)p1+p3+···+pn−1+1(Δσ\v|V (K)\J2∪Jn
)·

·

⎛⎝ ∑
w2∈σ2∪σn

∑
v∈σ2∪σn\w2

ε(v, σ2 ∪ σn \ w2) cw2(Δσ\v|J2∪Jn
)

⎞⎠+

+
∑

σ̃1∈Sx1

∑
w2∈σ2

∑
w3∈σ3

· · ·
∑

wn−1∈σn−1

cσ̃1cw2 · · · cwn−1 ·

·

⎛⎝n−1∑
i=3

(−1)p1+···+pi−1+1(Δσ\v|V (K)\Ji
)

⎛⎝ ∑
v∈σi\wi

ε(v, σi \ wi)(Δσ\v|Ji
)

⎞⎠⎞⎠+

+
∑

σ̃1∈Sx1

∑
w2∈σn

∑
w3∈σ3

· · ·
∑

wn−1∈σn−1

cσ̃1cw2 · · · cwn−1 ·

·

⎛⎝n−1∑
i=3

(−1)p1+···+pi−1+2(Δσ\v|V (K)\Ji
)

⎛⎝ ∑
v∈σi\wi

ε(v, σi \ wi)(Δσ\v|Ji
)

⎞⎠⎞⎠
.

Each sum can be written in terms of ∂(xi), that is,

∂(x) =
∑

w2∈σ2∪σn

∑
w3∈σ3

· · ·
∑

wn−1∈σn−1

cw2 · · · cwn−1(Δσ\v|V (K)\J1) ∂(x1)+

+
∑

σ̃1∈Sx1

∑
w3∈σ3

· · ·
∑

wn−1∈σn−1

cσ̃1cw3 · · · cwn−1 ·

· (−1)p1+p3···+pn−1+1(Δσ\v|V (K)\J2∪Jn
) ∂(x2)+

+
∑

σ̃1∈Sx1

∑
w2∈σ2

n−1∑
i=3

∑
w3∈σ3

· · ·
∑̂

wi∈σi

· · ·
∑

wn−1∈σn−1

cσ̃1cw2 · · · ĉwi
· · · cwn−1 ·

·
(
(−1)p1+···+pi−1+1(Δσ\v|V (K)\Ji

) ∂(xi)
)
+

+
∑

σ̃1∈Sx1

∑
w2∈σn

n−1∑
i=3

∑
w3∈σ3

· · ·
∑̂

wi∈σi

· · ·
∑

wn−1∈σn−1

cσ̃1cw2 · · · ĉwi
· · · cwn−1 ·

·
(
(−1)p1+···+pi−1+2(Δσ\v|V (K)\Ji

) ∂(xi)
)

where ̂ denotes omission. Since ∂(xi) = 0 for every i, x is a cycle as well. �
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Fig. 6. Example of the cycle x defined in Construction 3.13.

Example 3.15. Let K be the simplicial complex in Fig. 6a, where the simplices σ1 ∪ σ′
2, 

σ2 ∪ σ′
3 were star deleted and Sa1 = {σ1}, Sa2 = {σ2}, Sa3 = {σ3}, Pa2 = {σ′

2}, 
Pa3 = {σ′

3}. The cycle x is supported on simplices of the form

σ = σ̃1 ∪ σ2 ∪ σ′
3 \ (w2)

where σ̃1 is either σ1 or σ′
1 and w2 ∈ σ2 ∪ σ′

3. Therefore Sx contains σ1 ∪ σ2, σ′
1 ∪ σ2, 

σ′
1 ∪ σ′

3 and σ1 ∪ σ′
3, as shown in Fig. 6b.

If a1 = χσ1 ∈ C0(Kσ1,σ′
1
), a2 = χσ2 ∈ C0(Kσ2,σ′

2
) and a3 = χσ3 ∈ C0(Kσ3,σ′

3
), 

then the rest of the defining system constructed in Proposition 3.12 is a12 = −χσ1 and 
a23 = −χσ2 . The associated cocycle to this defining system is

ω = −χσ1∪σ3 − χσ1∪σ2 .

There is exactly one simplex σ1 ∪ σ2 = Sx ∩ Sω. So by evaluating ω on x, ω(x) �= 0.

Proposition 3.16. The n-Massey product 〈α1, . . . , αn〉 ⊂ H∗(ZK) is non-trivial.

Proof. For any [ω] ∈ 〈α1, . . . , αn〉, we consider a corresponding cocycle ω ∈ Cp1+···+pn+1

(KJ1∪···∪Jn
) with the cycle x from Construction 3.13 and aim to show that Sω ∩ Sx

contains only one simplex. This implies that ω(x) is non-zero, and therefore [ω] �= 0.
First we define a subcollection of simplices in Sω. Let (ai,k) be any defining system of 

〈α1, . . . , αn〉. Let Sai,k
be the support of ai,k so that

ai,k =
∑

σ∈Sa

cσχσ
i,k
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for non-zero coefficients cσ ∈ k. The image of the coboundary map is a cochain obtained 
by adding a vertex to the simplices in Sai,k

. Since d(ai,k) =
∑k−1

r=i ai,rar+1,k, for any 
σi,r ∈ Sai,r

and σr+1,k ∈ Sar+1,k there is a simplex σ ∈ Sai,k
and vertex ui ∈ σi,r∪σr+1,k

such that σ = σi,r ∪ σr+1,k \ ui. We extend this principle to say that there is a simplex 
σ ∈ Sa2,n such that σ = σ2 ∪ · · · ∪ σn \ (u2 ∪ · · · ∪ un−1) for σi ∈ S̃ai

= Sai
\ Pai

and 
vertices ui ∈ σ2 ∪ · · · ∪ σn for 2 � i � n, ui �= uj . Let ω be the associated cocycle for 
this defining system,

ω =
∑
τ∈Sω

cτχτ

for non-zero coefficients cτ ∈ k. The support of the first summand a1a2,n of ω contains 
a simplex of the form

τ = σ1 ∪ σ2 ∪ · · · ∪ σn−1 ∪ σn \ (u2 ∪ · · · ∪ un−1) (3.11)

for σ1 ∈ Sa1 , σi ∈ S̃ai
and vertices ui ∈ σ2 ∪ · · · ∪ σn for 2 � i � n, ui �= uj . Hence 

τ ∈ Sω.
We compare the simplices τ ∈ Sω in (3.11) and σ ∈ Sx in (3.10) where

σ = σ̃1 ∪ σ2 ∪ · · · ∪ σn−1 ∪ σ′
n \ (w2 ∪ · · · ∪ wn−1)

for σ̃1 ∈ Sx1 , σi ∈ S̃ai
for i ∈ {2, . . . , n −1}, σ′

n ∈ Pan
and a choice of vertices w2 ∈ σ2∪σn, 

wi ∈ σi for 3 � i � n − 1. For σ1 ∈ Sa1 and σi ∈ S̃ai
for 2 � i � n, the simplex 

σ1 ∪ · · · ∪ σn ∈ K was not removed by star deletion in Construction 3.5. Both τ and σ
are (p1 + · · ·+pn +1)-dimensional faces of σ1∪ · · ·∪σn. If there is no τ ∈ Sω and σ ∈ Sx

such that τ = σ, then there is a cochain b ∈ Cp1+···+pn(K) whose support consists of 
(p1 + · · ·+ pn)-simplices contained in σ1 ∪ · · · ∪σn and the support of d(b) contains both 
τ and σ. Let ω′ = ω + cτ cd(b),σd(b) where cτ is the coefficient of τ ∈ Sω and cd(b),σ
is the coefficient of σ ∈ Sd(b). Then Sω′ contains σ and does not contain τ . Therefore 
σ ∈ Sω′ ∩ Sx. However there could be other simplices in Sω′ ∩ Sx that cancel, so we 
cannot conclude that ω′(x) is non-zero. To resolve this, we change the representatives of 
[ω] and [x] so that there is only one term in their evaluation.

Suppose that there is τ ′ ∈ Sω′ ∩ Sx, τ �= τ ′. If lkK(τ ′) �= ∅, then there is a (p1 + . . .+
pk + 2)-dimensional simplex A ∈ KJ1∪···∪Jn

containing τ ′ in its boundary. Suppose that 
Sω′ does not contain an additional face of A. Then replace x by x′, where the simplex 
τ ′ ∈ Sx is replaced by the (p1+. . .+pk+1)-simplices in ∂(A) \τ ′ to form Sx′ as illustrated 
in Fig. 7. Therefore x′ is the cycle x − cτ ′ ε(v, A) ∂(ΔA), where cτ ′ is the coefficient of 
the summand Δτ ′ in x, v is the vertex such that v∪ τ ′ = A, and ε(v, A) is the coefficient 
of Δτ in ∂(ΔA). Thus [x] = [x′] and τ ′ /∈ Sω′ ∩ Sx′ .

Alternatively, suppose that lkK(τ ′) = ∅, or lkK(τ ′) �= ∅ and Sω′ contains an additional 
face τ ′′ of A. Since x is a cycle, there is another simplex t �= τ ′ ∈ Sx such that τ ′ ∩ t �= ∅
(as shown in Fig. 7c). Let ω′′ = ω′−cτ ′ ε(τ ′\τ ′∩t, τ ′) d(χτ ′∩t) where cτ ′ is the coefficient 
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s

A
τ ′

(a) The cycle x

s

A
τ ′

(b) The cycle x′

τ ′′

t

A
τ ′

(c) There is a simplex t ∈ Sx

that shares a boundary with τ ′

Fig. 7. If the link of τ ′ is non-empty, then the cycle x can be changed to x′.

of the summand χτ ′ in ω′ and ε(τ ′ \ τ ′ ∩ t, τ ′) is its coefficient in d(χτ ′∩t). So [ω′′] = [ω′]
and Sω′′ contains t but Sω′′ ∩ Sx does not contain τ ′.

By this process of replacing simplices in the intersection of the supports one-by-one, we 
obtain a cocycle ω′ ∈ Cp1+...+pn+1(KJ1∪···∪Jn

) and a cycle x′ ∈ Cp1+...+pn+1(KJ1∪···∪Jn
)

such that [ω′] = [ω], [x′] = [x] and Sω′ ∩Sx′ contains only one simplex. Thus ω′(x′) �= 0, 
and so [ω′] = [ω] is non-zero. �

By combining Propositions 3.12 and 3.16, we have proved the main theorem.

Theorem 3.17. For i ∈ {1, . . . , n}, let Ki be a simplicial complex on [mi] that is not an 
(mi − 1)-simplex. Then there exists a simplicial complex K, obtained by performing star 
deletions on K1 ∗ · · · ∗ Kn, with a non-trivial n-Massey product in H∗(ZK). �
Example 3.18. For i = 1, 2, 3, let Ki be the simplicial complexes as in Example 3.7 and 
let

K = sd{5,8} sd{4,8} sd{3,8} sd{1,6} sd{1,5} sd{1,4} K1 ∗ K2 ∗ K3.

Suppose that a1 = χ1 ∈ C0(K1), a2 = χ3 + χ4 + χ5 ∈ C0(K2), a3 = χ7 ∈ C0(K3). Then 
Sa1 = {1}, Sa2 = {{3}, {4}, {5}}, Sa3 = {{7}} and Pa2 = {4, 5, 6}, Pa3 = {8}. The rest 
of the defining system constructed in (3.2) is

a1,2 = θ1,2χ1 = −χ1

a2,3 = θ2,3(χ3 + χ4 + χ5) = −(χ3 + χ4 + χ5).

The associated cocycle ω for this defining system is

ω = −χ1(χ3 + χ4 + χ5) − χ1χ7.

Therefore ω ∈ C1(K) evaluates non-trivially on the 1-cycle x = Δ{1,3}−Δ{2,3}+Δ{2,8}−
Δ{1,8}. Another defining system could have a′2,3 = χ8 + χ6 + χ7. Then the associated 
cocycle ω′ for this defining system is given by
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σ2

σ1

σ3′

σ2′

σ3

σ1′

(a) K1 ∗ K2 ∗ K3

σ1

σ′
1 σ2

σ′
2

σ′
3

σ3

(b) ss{σ1,σ2′} ss{σ2,σ3} K1 ∗ K2 ∗ K3 with cone 
vertices coloured

Fig. 8. The simplest example of both Baskakov and Limonchenko’s families of non-trivial Massey products 
in moment-angle complexes.

ω′ = χ1(χ6 + χ7 + χ8) + −χ1χ7 = χ17 + χ18 − χ17 = χ18.

Thus ω′ also evaluates non-trivially on x. By Proposition 3.16, the associated cocycle 
of any defining system evaluates non-trivially on some cycle. Hence 〈[a1], [a2], [a3]〉 ⊂
H10(ZK) is a non-trivial Massey product.

Two particular examples of Theorem 3.17 are the families of Baskakov and 
Limonchenko.

Example 3.19 (Baskakov’s family [5]). For i = 1, 2, 3, let Ki be a triangulation of a 
(ni−1)-sphere on [mi]. Let σ1 ∈ K1, σ2, σ′

2 ∈ K2, σ3 ∈ K3 be maximal simplices such that 
σ2 and σ′

2 are adjacent, that is, there is a vertex v2′ ∈ K2 such that (σ2 ∩ σ′
2) ∪ v2′ = σ′

2. 
Similarly, let σ′

3 ∈ K3 be a maximal simplex adjacent to σ3 so that there exists a vertex 
v3′ ∈ K3 such that (σ3 ∩ σ′

3) ∪ v3′ = σ′
3. Let a1 = χσ1 , a2 = χσ2′ , and a3 = χσ3′

be cocycle representatives of αi ∈ H̃ni−1(Ki) for i = 1, 2, 3. Baskakov [5] constructed 
K′ = ss{σ1,σ2′} ss{σ2,σ3} K1 ∗K2 ∗K3 and showed that 〈α1, α2, α3〉 is a non-trivial Massey 
product in H∗(ZK) where K is the restriction of K′ to the vertex set [m1] ∪ [m2] ∪ [m3]. 
Since K = sd{σ1,σ2′} sd{σ2,σ3} K1 ∗ K2 ∗ K3, Theorem 3.17 recovers Baskakov’s family of 
examples of non-trivial triple Massey products in H∗(ZK). The simplest example when 
K1, K2, K3 are S0 is shown in Fig. 8 and its restriction to the original 6 vertices is in 
Fig. 6a after swapping the labels σ3, σ3′

Example 3.20 (Limonchenko’s family [18]). Let F be a face of a polytope P and suppose 
that there is a hyperplane H that does not include any vertices of P but separates the 
vertices of F from the other vertices in P . If H1, H2 are the half spaces defined by H and 
F ⊂ H2, then the polytope P∩H1 is called a truncation of P at F . A family of non-trivial 
n-Massey products is constructed by truncating the unit n-cube In = I×· · ·×I as follows. 
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F1

F2

F3

F2′ →

← F1′

↖ F3′

Fig. 9. A 3-cube truncated at the faces F1 ∩F2′ and F2 ∩F3′ , which is dual to Fig. 8b with the labels σ3, σ3′

swapped.

Suppose that opposite facets of In are labelled Fl, Fl′ for l = 1, . . . , n. The boundary 
of the dual K = KIn = ∂(In)∗ is the join of n copies of S0, for example KI3 is shown 
in Fig. 8a. To create a non-trivial n-Massey product, Limonchenko [18, Construction 1]
truncated In at the intersection of facets Fi and Fk′ for 1 � i < k � n, (i, k) �= (1, n). 
For example see Fig. 9. These truncations correspond to stellar subdividing KIn at the 
edges σi ∪ σk′ , where σl, σl′ ∈ KIn are the vertices that are dual to the facets Fl, Fl′ in 
In. Let K be the restriction of the stellar subdivided complex to the 2n vertices σl, σl′

for l = 1, . . . , n, and let αl be the generator of H̃0(Kσl,σl′ ). Limonchenko showed that 
the n-Massey product 〈α1, . . . , αn〉 ⊂ H∗(ZK) is non-trivial. Since this construction is 
recovered by star deleting KIn as described in Construction 3.5, Theorem 3.17 gives an 
alternative proof that 〈α1, . . . , αn〉 is non-trivial.

Theorem 3.17 does not just give alternative proofs of existing results about non-trivial 
Massey products in the cohomology of moment-angle complexes, it creates non-trivial n-
Massey products from any non-zero cohomology classes supported on a full subcomplex 
of any simplicial complex Ki. Therefore there is no limit on n or the dimension of the 
classes αi. Using this construction it is also possible to construct Massey products on 
torsion elements.

Example 3.21. Let K1 be a triangulation of RP 2 on 6 vertices as in Fig. 10. Let K2, K3

be copies of two disjoint vertices labelled 6, 7 and 8, 9, respectively. Let α1 ∈ H̃2(K1)
be represented by χ012. For i = 2, 3, let αi ∈ H̃0(Ki) be represented by a2 = χ6 and 
a3 = χ8, respectively. By Construction 3.5, Pa2 = {{7}} and Pa3 = {{9}}. Then let

K = sd{0127} sd{69} K1 ∗ K2 ∗ K3.

By Theorem 3.17, there is a non-trivial triple Massey product 〈α1, α2, α3〉 ⊂ H14(ZK). 
This is the smallest example of a non-trivial triple Massey product on a torsion class 
since K1 is the triangulation of RP 2 on the least number of vertices.

Since α1 is the generator of H̃2(K1) ∼= H̃2(RP 2), α1 is a torsion element. The associ-
ated cocycle for the defining system constructed in (3.2) is ω = −χ0126 −χ0128 ∈ C3(K). 
The corresponding class [ω] ∈ 〈α1, α2, α3〉 is not a torsion element in H14(ZK).
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Fig. 10. A 6-vertex triangulation of RP 2.

Also, there is a cochain a′1,2 = χ126+χ124−χ147−χ347+χ037+χ027 such that d(a′1,2) =
χ0126 ∈ C3(K01234567), which is different to a1,2 constructed in (3.2). The associated 
cocycle to this defining system is ω′ = −χ0126+χ1268+χ1248−χ1478−χ3478+χ0378+χ0278

with [ω′] �= 0 and [ω] �= [ω′]. Therefore 〈α1, α2, α3〉 has non-trivial indeterminacy. In 
particular, the indeterminacy is given by α1 · H̃0(K6789) + α3 · H̃2(K01234567) = α3 ·
H̃2(K01234567), where H̃2(K01234567) ∼= Z.

We also extend Construction 3.5 by allowing more general star deletions in order to 
construct more non-trivial Massey products. These often only require a difference in 
the technical details of the proof of Theorem 3.17 and do not change the nature of the 
construction. For example, if Ki is the disjoint union of two vertices {i} and {i′}, then 
let K be the simplicial complex that is obtained from K1 ∗ K2 ∗ K3 ∗ K4 by the sequence 
of star deletions

sd{1,4} sd{1,4′} sd{1′,4′} sd{2,4} sd{2′,4′} sd{2,4′} sd{1,3} sd{1′,3′} sd{1,3′} sd{3,4′} sd{2,3′} sd{1,2′}.

This is a full subcomplex of the icosahedron I as shown in [3, Theorem 4.6]. Also, no 
obstruction graph from the classification [12,15] is a full subcomplex of I. In [3], this 
example is given in order to demonstrate a non-trivial 4-Massey product of lowest-degree 
classes in H∗(ZI) where there are no non-trivial 3-Massey products of lowest-degree 
classes in H∗(ZI).

Let us consider another example of more general star deletions. Suppose we have a sim-
plicial complex K with n � 3 disjoint subsets of its vertices J1, . . . , Jn ⊂ V (K) such that 
there are n non-trivial classes αi ∈ H̃pi(KJi

). Limonchenko [20, Lemma 3.3] showed that 
if a Massey product 〈α1, . . . , αn〉 ⊂ H∗(ZK) is defined and H̃pi+···+pk(KJi∪···∪Jk

) = 0
for every 1 � i < k � n, (i, k) �= (1, n), then the Massey product has trivial indeter-
minacy. The following example shows that this is not a necessary condition for trivial 
indeterminacy.
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Example 3.22. For i = 1, 2, 3, 4, let Ki be the disjoint union of two vertices Ji = {i, i′}. 
Let K be a simplicial complex obtained by Construction 3.5 with an additional star 
deletion at the edge {1′, 2′}, that is,

K = sd{2,4′} sd{1,3′} sd{3,4′} sd{2,3′} sd{1′,2′} sd{1,2′} K1 ∗ K2 ∗ K3 ∗ K4.

For each 1 � i � 4, let ai = χi ∈ C0(KJi
) and set αi = [ai] ∈ H̃0(KJi

). The star deletions 
at {1, 2′} and {1′, 2′} imply that any cochain a1,2 ∈ C0(KJ1∪J2) such that d(a1,2) = a1a2
is of the form

a1,2 = −χ1 + c1(χ1 + χ1′ + χ2) + c′1χ2′

for any c1, c′1 ∈ k. However, a cochain a1,3 such that d(a1,3) = a1a2,3 + a1,2a3 is only 
defined when c′1 = c1. Thus, any defining system for 〈α1, α2, α3, α4〉 ⊂ H∗(ZK) is of the 
form

a1,2 = −χ1 + c1(χ1 + χ1′ + χ2 + χ2′)

a2,3 = −χ2 + c2(χ2 + χ2′ + χ3 + χ3′)

a3,4 = −χ3 + c3(χ3 + χ3′ + χ4 + χ4′)

a1,3 = −(c2 − 1)χ1 + c1χ3 + c4(χ1 + χ1′ + χ2 + χ2′ + χ3 + χ3′)

a2,4 = −(c3 − 1)χ2 + c2χ4 + c5(χ2 + χ2′ + χ3 + χ3′ + χ4 + χ4′)

for coefficients c1, . . . , c5 ∈ k. These are the same defining systems we would get if we 
had not star deleted K1 ∗ K2 ∗ K3 ∗ K4 at the edge {1′, 2′}. The associated cocycle ω to 
any of these defining systems is

ω = −χ14′ − d(χ1) + c3d(χ1) − c1d(χ3) + c4d(χ4) − c5d(χ1)+

+ c1c3(−d(χ1) − d(χ1′) − d(χ2) − d(χ2′)).

Thus, 〈α1, α2, α3, α4〉 = [ω] = [−χ14′ ] and hence this Massey product is non-trivial 
and has no indeterminacy. However, the star deletions at {1, 2′} and {1′, 2′} imply that 
H̃0(KJ1∪J2) = Z �= 0. Therefore this is an example of a non-trivial Massey product with 
trivial indeterminacy that does not satisfy the conditions of [20, Lemma 3.3].

3.2. Infinite families of Massey products with non-trivial indeterminacy

In the last example, we saw that doing Construction 3.5 followed by an extra star 
deletion at {1′, 2′} produced more choices of cochains a1,2 such that d(a1,2) = a1a2. 
We extend this technique to create the first infinite families of moment-angle complexes 
with non-trivial Massey products that have non-trivial indeterminacy. These are the first 
known examples of non-trivial indeterminacy in n-Massey products in H∗(ZK) for n � 4.
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The idea in Construction 3.5 was to create a non-trivial Massey product 〈α1, . . . , αn〉
by defining two sets of simplices Sai

, Pai
for each 1 � i � n and star deleting the join of 

n simplicial complexes at the simplices σi ∪ σ′
k for σi ∈ Sai

, σ′
k ∈ Pak

, 1 � i < k � n, 
(i, k) �= (1, n). A star deletion at σi ∪ σ′

k made the Massey product 〈αi, . . . , αk〉 trivial 
by allowing us to define a cochain ai,k such that d(ai,k) represents a (trivial) class 
in the lower Massey product 〈αi, . . . , αk〉. Supposing that 〈α1, . . . , αk〉 has non-trivial 
indeterminacy, we construct indeterminacy in the higher Massey product 〈α1, . . . , αn〉
by making more than one class in the lower product 〈α1, . . . , αk〉 trivial. In this version 
of the construction, we star delete at σ1 ∪ σ′

k for σ′
k ∈ Pak

, k �= n, and any p1-simplex 
σ1 ∈ K1, rather than σ1 ∈ Sa1 ⊂ K1. These extra star deletions create choices for a1,k

in the defining system for 〈α1, . . . , αn〉, and do not affect the proof of Theorem 3.17. 
We will show that these choices result in non-trivial indeterminacy in 〈α1, . . . , αn〉 when 
n > 2.

Theorem 3.23. Let Ki be a simplicial complex on the vertex set [mi] that is not an 
(mi − 1)-simplex, for i ∈ {1, . . . , n}, n > 2. Then there exists a simplicial complex K
obtained by star deletions on K1 ∗ · · · ∗Kn such that H∗(ZK) has a non-trivial n-Massey 
product with non-trivial indeterminacy.

Proof. Since Ki is not an (mi − 1)-simplex, there is a non-trivial class αi ∈ H̃pi(Ki
Ji

)
for Ji ⊂ [mi]. We will construct two different defining systems for a Massey product 
〈α1, . . . , αn〉 and show that the two associated cocycles are non-zero and not cohomolo-
gous. Therefore this concludes there is non-trivial indeterminacy in 〈α1, . . . , αn〉.

Let ai be a cocycle representative for αi. Recall that in Construction 3.5, we had a 
set of pi-simplices Sai

⊂ Ki for each i such that ai =
∑

σi∈Sai
cσi

χσi
. For any σi ∈ Sai

, 
the set Pσi

⊂ Ki contains all pi-simplices σ′
i ∈ Ki such that there is a vertex vσ′

i
and 

σi \ vσi
= σ′

i \ vσ′
i
, where vσi

is a fixed choice of vertex in σi. We will use these fixed 
choices of vσi

∈ σi ∈ Sai
and vσ′

i
∈ σ′

i ∈ Pσi
throughout this proof. Also recall the set

Pai
= P

σ
(1)
i

∪ · · · ∪ P
σ

(l)
i

for σ(1)
i , . . . , σ(l)

i ⊂ Sai
. To define a simplicial complex K so that 〈α1, . . . , αn〉 ⊂ H∗(ZK)

has non-trivial indeterminacy, we star delete K1 ∗ · · · ∗Kn at σ1∪σ′
k for every p1-simplex 

σ1 ∈ K1 and σ′
k ∈ Pak

, 1 < k < n, as well as at each σi ∪ σ′
k for σi ∈ Sai

and σ′
k ∈ Pak

, 
1 < i < k ≤ n. This is more star deletions than in Construction 3.5, where we used 
σ1 ∈ Sa1 instead of σ1 ∈ K1. Let S̃ak

= Sak
\ Pak

. If there are simplices σk ∈ Sak
\ S̃ak

for any k, then we also star delete at σ′
i∪σk for every σ′

i ∈ Pai
, i < k. This is for technical 

purposes, to ensure that σk ∈ Sak
and σ′

i ∪ σk ∈ K implies that σk ∈ S̃ak
.

We construct two different defining systems for 〈α1, . . . , αn〉. Recall from (3.2) in 
Proposition 3.12 that ai,k ∈ Cpi+···+pk(KJi∪···∪Jk

) for 1 � i � k � n, (i, k) �= (1, n) is 
the cochain
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ai,k =
∑

σi∈Sai

∑
σi+1∈S̃ai+1

· · ·
∑

σk∈S̃ak

cσi
. . . cσk

θi,k χ
σi∪···∪σk\(vi+1∪···∪vk)

where S̃ai
= Sai

\ Pai
and θi,k = 1 when i = k or otherwise

θi,k = (−1)k−i+|Ji|(pi+1+···+pk)+|Ji+1|(pi+2+···+pk)+···+|Jk−1|pk

· ε(vσi+1 , σi+1) . . . ε(vσk
, σk). (3.12)

The defining system (ai,k) is a defining system for 〈α1, . . . , αn〉 by the same proof as for 
Proposition 3.12, since neither the simplices σ1∪σk for σ1 /∈ Sa1 and σk ∈ Pak

, 1 < k < n, 
nor σ′

i ∪ σk for σ′
i ∈ Pai

and σk ∈ (Sak
\ S̃ak

), i < k, play an active role in the proof. To 
construct a different defining system, for any 1 < k � n, let b1,k ∈ Cp1+···+pk(KJ1∪···∪Jk

)
be the cochain

b1,k =
∑

σ1∈Sa1

∑
σ2∈S̃a2

· · ·
∑

σk∈S̃ak

∑
σ′
i∈Pσ2∪···∪Pσk

�1,k χ
vσ′

i
∪σ1∪···∪σk\(vσ1∪···∪vσk

)

where �1,k = cσ1 . . . cσk
ε(vσ′

i
, vσ′

i
∪ σ1 ∪ · · · ∪ σk \ (vσ1 ∪ · · · ∪ vσk

))θ1,k. Also let bi,k = 0
for i �= 1 or i = k = 1, so a′i,k = ai,k + bi,k for all 1 � i � k � n, (i, k) �= (1, n). We will 
show that (a′i,k) is a defining system for 〈α1, . . . , αn〉.

First we check that d(b1,k) =
∑k−1

r=1 b1,rar+1,k, where

d(b1,k) =
∑

σ1∈Sa1

∑
σ2∈S̃a2

· · ·
∑

σk∈S̃ak

∑
σ′
i∈Pσ2∪···∪Pσk

∑
j∈KJ1∪···∪Jn

�1,k·

· ε(j, j ∪ vσ′
i
∪ σ1 ∪ · · · ∪ σk \ (vσ1 ∪ · · · ∪ vσk

)) χj∪vσ′
i
∪σ1∪···∪σk\(vσ1∪···∪vσk

).

Fix a simplex τ = vσ′
i
∪ σ1 ∪ · · · ∪ σk \ (vσ1 ∪ · · · ∪ vσk

) ∈ Sb1,k . For any 1 � r � k, 
recall from the definition of Pσr

that since σr ∈ Sar
, if there is a vertex v ∈ Kr such that 

v ∪ (σr \ vσr
) ∈ Kr, then v ∪ (σr \ vσr

) ∈ Pσr
. Thus σ′

i = vσ′
i
∪ (σi \ vσi

) ∈ Pσi
. Consider 

the link of τ in KJ1∪···∪Jk
. There is no vertex v ∈ K1 in this link since if v∪σ1 \vσ1 ∈ K1, 

then (v ∪ σ1 \ vσ1) ∪ σ′
i /∈ K because there was a star deletion at that simplex. Similarly, 

for any r < i, there is no vertex vσr
in the link of τ because σr ∪ σ′

i /∈ K. Therefore the 
only vertices in the link of τ are vσ′

r
for σr′ ∈ Pσr

and any r, and vσr
for σr ∈ Sar

and 
r > i.

Consider the summands of d(b1,k) when j = vσ′
r

for σr′ ∈ Pσr
and any r. If vσ′

i
∪vσ′

r
∪

σ1 ∪ · · · ∪σk \ (vσ1 ∪ · · · ∪ vσk
) ∈ K, then the coefficient of χvσ′

i
∪vσ′

r
∪σ1∪···∪σk\(vσ1∪···∪vσk

)
is the product of cσ1 . . . cσk

θ1,k and

ε(vσ′
i
, vσ′

i
∪ σ1 ∪ · · · ∪ σk \ (vσ1 ∪ · · · ∪ vσk ))ε(vσ′

r
, vσ′

i
∪ vσ′

r
∪ σ1 ∪ · · · ∪ σk \ (vσ1 ∪ · · · ∪ vσk ))+

ε(vσ′
r
, vσ′

r
∪ σ1 ∪ · · · ∪ σk \ (vσ1 ∪ · · · ∪ vσk ))ε(vσ′

i
, vσ′

i
∪ vσ′

r
∪ σ1 ∪ · · · ∪ σk \ (vσ1 ∪ · · · ∪ vσk )).

(3.13)
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First suppose that σ′
i, σ

′
r ∈ Ki, so σ′

i ∪ vσ′
r

= σ′
r ∪ vσ′

i
∈ Ki. Also suppose, without loss 

of generality, that vσ′
i
< vσ′

r
in the order of the vertex set of K and that vσ′

r
is the 

lth vertex in σ′
r. Since vσ′

i
< vσ′

r
and ε(vσ′

i
, vσ′

i
∪ σ1 ∪ · · · ∪ σk \ (vσ1 ∪ · · · ∪ vσk

)) =
(−1)p1+···+pi−1ε(vσ′

i
, σ′

i) by the definition of ε in (2.2), we rewrite (3.13) as

ε(vσ′
i
, σ′

i)ε(vσ′
r
, σ′

i ∪ vσ′
r
) + ε(vσ′

r
, σ′

r)ε(vσ′
i
, σ′

i ∪ vσ′
r
) =

(−1)lε(vσ′
i
, σ′

i) − (−1)l−1ε(vσ′
i
, σ′

i ∪ vσ′
r
).

Also ε(vσ′
i
, σ′

i) = ε(vσ′
i
, σ′

i ∪ vσ′
r
) because vσ′

i
< vσ′

r
, so (3.13) is zero. In particular, when 

k = i = 2, then d(b1,2) = 0. So d(a′1,2) = d(a1,2) = a1a2.
Alternatively, suppose that σ′

i ∈ Ki, σ′
r ∈ Kr and, without loss of generality, i < r. 

By using the definition of ε in (2.2), then (3.13) becomes

(−1)p1+···+pi−1ε(vσ′
i
, σ′

i)(−1)p1+···+pr−1+1ε(vσ′
r
, σ′

r)+

(−1)p1+···+pr−1ε(vσ′
r
, σ′

r)(−1)p1+···+pi−1ε(vσ′
i
, σ′

i) = 0.

Since all of these summands cancel out, we conclude that d(b1,k) only has non-zero 
summands when j = vσr

for σr ∈ Sar
and r > i. By rewriting r as r+1 for r ∈ {1, . . . , n}

and i ∈ {2, . . . , r}, d(b1,k) is equal to

∑
σ1∈Sa1

∑
σ2∈S̃a2

· · ·
∑

σk∈S̃ak

k−1∑
r=1

∑
σ′
i∈Pσ2∪···∪Pσr

�i,k ·

·ε(vσr+1 , vσ′
i
∪ vσr+1 ∪ σ1 ∪ · · · ∪ σk \ (vσ1 ∪ · · · ∪ vσk

)) χvσ′
i
∪vσr+1∪σ1∪···∪σk\(vσ1∪···∪vσk

).

(3.14)

Since the simplices σ′
i ∪ σr were star deleted for σ′

i ∈ Pai
and σr ∈ Sar

\ S̃ar
, this sum is 

the same whether we use 
∑

σr∈S̃ar
or 

∑
σr∈Sar

. Therefore we split this sum into products 

so that d(b1,k) =
∑k−1

r=1 b1,rar+1,k, by using the fact that

�1,kε(vσr+1 , vσ′
i
∪ vσr+1 ∪ σ1 ∪ · · · ∪ σk \ (vσ1 ∪ · · · ∪ vσk

)) =

(−1)p1+···+pr+|J1∪···∪Jr|(pr+1+···+pk)�1,r cσr+1 . . . cσk
θr+1,k.

Then

d(a′i,k) = d(ai,k) + d(bi,k)

=
k−1∑
r=1

a1,rar+1,k +
k−1∑
r=1

b1,rar+1,k =
k−1∑
r=1

a′1,rar+1,k.

Hence (a′i,k) is a defining system for 〈α1, . . . , αn〉.
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The associated cocycle for (a′i,k) is

ω′ = ω +
n−1∑
r=1

b1,rar+1,n

where ω is the associated cocycle for (ai,k). We show that the difference ω′ − ω is not a 
coboundary by constructing a cycle x′ ∈ Cp1+...+pn+1(KJ1∪···∪Jn

) such that (ω′−ω)(x) �=
0. We use a similar method to Construction 3.13. Fix σi ∈ S̃ai

for i = 1, 3, . . . , n − 1 and 
fix σ′

2 ∈ Pa2 . Since it was star deleted, σ1 ∪σ′
2 /∈ K but the boundary complex ∂(σ1∪σ′

2)
is contained in K. Also, since αn ∈ H̃pn(KJn

) is non-zero, there is a cycle xn ∈ Cpn
(KJn

)
such that an(xn) �= 0. Define x′ ∈ Cp1+...+pn+1(KJ1∪···∪Jn

) to be the chain

x′ =
∑

w2∈σ1∪σ′
2

∑
w3∈σ3

· · ·
∑

wn−1∈σn−1∑
σ̃n∈Sxn

cw2 · · · cwn−1cσ̃n
Δσ1∪σ′

2∪σ3···∪σn−1∪σ̃n\(w2∪···∪wn−1)

where cσ̃n
are the non-zero coefficients from xn, and cw2 , . . . , cwn−1 are the coefficients 

of cycles in Cp1+p2(∂(σ1 ∪ σ′
2)), Cpi

(∂(σi)) for 3 � i � n − 1. Every simplex σ in the 
support Sx of x is a simplex in K since none of them were star deleted. By an analogous 
proof to Lemma 3.14, the chain x′ is a cycle.

We want to compare the supports Sω′−ω of ω′−ω and Sx′ of x′. The cochain ω′−ω =∑n−1
r=1 b1,rar+1,n is given in (3.14) when k = n. A simplex σ is in Sω′−ω ∩ Sx′ precisely 

when w2 = vσ1 , wj = vσj
for 3 � j � n − 1, r = n − 1 so that σr+1 = σn ∈ Sxn

, and 
i = 2 ∈ {2, . . . , r} so that σ′

i = σ′
2 ∈ Pa2 . Hence Sω′−ω ∩ Sx′ contains only one simplex, 

σ. Thus (ω′ − ω)(x) = ±χσ(Δσ) �= 0. Therefore ω′ − ω is not a coboundary and so 
[ω′] �= [ω].

The proof that 〈α1, . . . , αn〉 is non-trivial is the same as the proof of Proposition 3.16
since neither the simplices σ1 ∪ σ′

k for σ1 /∈ Sa1 and σ′
k ∈ Pak

, nor σ′
i ∪ σk for σi ∈ Pai

and σk ∈ (Sak
\ S̃ak

), i < k, play a role so the extra star deletions do not change the 
proof. Hence 〈α1, . . . , αn〉 is non-trivial with non-trivial indeterminacy. �
Example 3.24. For i = 1, 2, 3, suppose Ki is a pair of disjoint vertices labelled σi, σ′

i. Let 
αi ∈ H̃0(Ki) be represented by the cocycle ai = χσi

. Then Sai
= {σi} and Pai

= {σ′
i}. 

Following the construction in the proof of Theorem 3.23, we define

K = sdσ1∪σ′
2
sdσ′

1∪σ′
2
sdσ2∪σ′

3
K1 ∗ K2 ∗ K3.

This simplicial complex is shown in Fig. 11. The Massey product 〈α1, α2, α3〉 is one of 
the simplest examples of a Massey product in a moment-angle complex with non-trivial 
indeterminacy. It is one of the obstruction graphs in the classification of lowest degree 
non-trivial triple Massey products in [15]. Since it is a triple Massey product, its inde-
terminacy is given by α1 · H̃0(Kσ2,σ′ ,σ3,σ′ ) +α3 · H̃0(Kσ1,σ′ ,σ2,σ′ ) = α3 · H̃0(Kσ1,σ′ ,σ2,σ′ ).
2 3 1 2 1 2
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σ′
1

σ1

σ′
2

σ2

σ′
3

σ3

Fig. 11. A simplicial complex K such that a triple Massey product in H∗(ZK) has indeterminacy.

4. Massey products constructed by edge contractions

A simplicial homotopy map ϕ : K → K̂ induces a map on the cohomology of moment-
angle complexes ϕ∗ : H∗(ZK̂) → H∗(ZK). However, a property of Massey products [17, 
Section 2] is that ϕ∗〈α̂1, . . . , α̂n〉 ⊂ 〈ϕ∗(α̂1), . . . , ϕ∗(α̂n)〉. Hence if 〈ϕ∗(α̂1), . . . , ϕ∗(α̂n)〉
has non-trivial indeterminacy, it may be trivial even if 〈α̂1, . . . , α̂n〉 is non-trivial.

In this section we use edge contractions ϕ : K → K̂ as a simplicial homotopy op-
eration to construct non-trivial Massey products. Given a non-trivial Massey product 
〈α̂1, . . . , α̂n〉 ⊂ H∗(ZK̂) with α̂i ∈ H̃pi(K̂Ĵi

), Ĵi �= Ĵj for i �= j, we explicitly construct a 
defining system to show that 〈α1, . . . , αn〉 ⊂ H∗(ZK) is defined where αi is the pullback 
of α̂i along ϕ. Then we also show that it is non-trivial to conclude the main result of 
this section, Theorem 4.12.

Definition 4.1. Let K, K̂ be simplicial complexes with an edge {u, w} ∈ K, and a vertex 
z ∈ V (K̂) such that V (K̂) \ {z} = V (K) \ {{u}, {w}}. The simplicial complex K̂ is 
obtained from K by an edge contraction of {u, w} if there is a map ϕV : V (K) → V (K̂)

ϕV (v) =
{
z for v ∈ {u,w}
v for v /∈ {u,w}

that extends to a surjective map ϕ : K → K̂, where ϕ(I) = {ϕV (v1), . . . , ϕV (vn)} for 
I = {v1, . . . , vn} ∈ K. The map ϕ : K → K̂ is called the edge contraction of {u, w} ∈ K.

Edge contractions are simplicial maps, but they do not preserve the topology of K in 
general. Attali, Lieutier and Salinas [1, Theorem 2] showed that the homotopy type of a 
simplicial complex is preserved under edge contractions that satisfy the link condition.

Theorem 4.2 ([1]). For any simplicial complex K, if an edge {u, w} ∈ K satisfies the link 
condition

lkK({u}) ∩ lkK({w}) = lkK({u,w}) (4.1)

then the edge contraction of {u, w} preserves the homotopy type of K.
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Example 4.3. The following is a series of edge contractions that satisfy the link condition.

Example 4.4. Without the link condition, the homotopy type of a simplicial complex 
under edge contractions can change, such as in the following example.

1

2

3

z

The links of the vertices {2} and {3} both contain the vertex {1}, but lkK({2, 3}) is 
empty, so the link condition is not satisfied.

Example 4.5. An edge contraction that does not satisfy the link condition may cre-
ate a non-trivial cycle. For example, suppose that K̂ is a triangulation of S2 on four 
vertices, and let K be a 2-dimensional simplicial complex on 5 vertices with facets 
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {3, 4, 5}, {2, 5} as shown in Fig. 12. There is no non-trivial 
2-cycle in K so H2(K) = 0, but the contraction {2, 5} �→ z results in a 2-cycle and 
H2(K̂) �= 0. In this case the link condition is not satisfied because lkK{2, 5} = ∅ but 
lkK{2} ∩ lkK{5} = {{3}, {4}}.

Fig. 12. An edge contraction without the link condition can create a non-trivial cycle.

We construct cohomological classes in H∗(ZK) on which a new pulled-back Massey 
product will be defined.

Construction 4.6. Let K̂ be a simplicial complex with a non-trivial n-Massey product 
〈α̂1, . . . , α̂n〉 ⊂ H∗(ZK̂). By Hochster’s theorem, every class α̂i ∈ H∗(ZK̂) has a corre-
sponding class

α̂i ∈ H̃pi(K̂Ĵ )

i
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for a set of vertices Ĵi ⊂ V (K̂). When 〈α̂1, . . . , α̂n〉 is non-trivial, the sets of vertices Ĵi, 
Ĵj are disjoint for any i �= j.

Suppose that there is a simplicial complex K and a series of edge contractions ϕ : K →
K̂ satisfying the link condition. Let the vertices in V (K̂) be ordered and suppose that all 
of the vertices in Ĵi come before those of Ĵi+1. For a set of p-simplices P ⊂ K̂, let

ϕ−1
p (P ) = {σ ∈ K | |σ| = p + 1 and ϕ(σ) = σ̂ for σ̂ ∈ P}.

Suppose that the vertices V (K) are ordered in such a way that for any vertex v̂ that 
comes before ŵ in K̂, each vertex v ∈ ϕ−1

0 (v̂) comes before every w ∈ ϕ−1
0 (ŵ). Let 

Ji = ϕ−1
0 (Ĵi) ⊂ V (K). Then by the order on V (K), all vertices in Ji come before those 

in Ji+1. Also Ji ∩ Jj = ∅ for any i �= j since Ĵi ∩ Ĵj = ∅ and ϕ−1
0 (v̂) ∩ ϕ−1

0 (ŵ) = ∅ for 
any vertices v̂, ŵ ∈ K̂, v̂ �= ŵ.

Let âi be a cocycle representing α̂i ∈ H̃pi(K̂Ĵi
). Let Sâi

be the support of âi, that is, 
the set of pi-simplices σ̂i ∈ K̂Ĵi

such that

âi =
∑

σ̂∈Sâi

cσ̂χσ̂ ∈ Cpi(K̂Ĵi
)

for non-zero coefficients cσ̂i
∈ k. Define ai ∈ Cpi(KJi

) to be the cochain

ai =
∑

σ̂∈Sâi

cσ̂
∑

σ∈ϕ−1
pi (σ̂)

χσ. (4.2)

Since ai is a pullback of âi along ϕ, ai is a cocycle and αi = [ai] ∈ H̃pi(KJi
) is non-zero.

Example 4.7. Let KJi
, K̂Ĵi

be the simplicial complexes as shown below, where K̂Ĵi
is 

obtained from KJi
by contracting the edges e2 = {2, 3} �→ {2̂} and e5 = {4, 5} �→ {3̂}. 

The cohomology class α̂i ∈ H̃1(K̂Ĵi
) is represented by the cocycle χê, so let Sâi

= {ê}.

4

5
1

e1

e2

e3

e4

e5

e6

3

2

1̂

2̂3̂

ê

The contraction of e2 satisfies the link condition, since lkK(e2) = lkK{2} ∩ lkK{3} = {1}. 
Under the map ϕ : K → K̂, ϕ−1

1 (ê) = {e1, e3}. So by (4.2), ai is the cochain

ai = χe1 + χe3 ∈ C1(KJi
).
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This is a cocycle since d(ai) = χ{1,2,3} − χ{1,2,3} = 0.

For the Massey product 〈α̂1, . . . , α̂n〉 ⊂ H(p1+···+pn)+|Ĵ1∪···∪Ĵn|+2(ZK̂), there is a 
defining system (âi,k) for cochains âi,k ∈ Cpi+···+pk(K̂Ĵi∪...∪Ĵk

), 1 � i � k � n and 
(i, k) �= (1, n). Suppose that

âi,k =
∑

τ̂∈Sâi,k

cτ̂χτ̂ (4.3)

for simplices τ̂ ∈ Sâi,k
⊂ K̂Ĵi∪...∪Ĵk

, non-zero coefficients cτ̂ ∈ k. Then

d(âi,k) =
∑

τ̂∈Sâi,k

cτ̂

⎛⎝ ∑
ĵ∈Ĵi∪···∪Ĵk\V (τ̂)

ε(ĵ, ĵ ∪ τ̂)χĵ∪τ̂

⎞⎠
is equal to

k−1∑
r=i

(−1)1+deg(âi,r)âi,râr,k =
k−1∑
r=i

(−1)1+deg(âi,r)c

⎛⎝ ∑
ν̂∈Sâi,r

∑
η̂∈Sâr+1,k

cν̂cη̂χν̂∪η̂

⎞⎠ (4.4)

where c = (−1)|Ĵi∪···∪Ĵr|(pr+1+···+pk+1) comes from the product of âi,r and âr,k, as in 
Lemma 2.2, and (−1)1+deg(âi,r) = (−1)(pi+...+pr)+|Ĵi∪···∪Ĵr|. We use this defining system 
to construct a defining system for 〈α1, . . . , αn〉.

Proposition 4.8. Let K be a simplicial complex that maps to K̂ by edge contractions 
satisfying the link condition. Then there is an n-Massey product 〈α1, . . . , αn〉 defined on 
H∗(ZK).

Proof. For every i ∈ {1, . . . , n}, let αi = [ai] for ai as in (4.2). We start by constructing 
a defining system (ai,k) for 〈α1, . . . , αn〉 ⊂ H∗(ZK), where ai,k ∈ Cpi+···+pk(KJi∪···∪Jk

). 
Define

ai,k = θi,k θ̂i,k
∑

τ̂∈Sâi,k

cτ̂

⎛⎜⎝ ∑
τ∈ϕ−1

pi+···+pk
(τ̂)

χτ

⎞⎟⎠ (4.5)

for Sâi,k
and cτ̂ ∈ k from (4.3), θi,i = 1 = θ̂i,i, and

θi,k = (−1)|Ji|(pi+1+···+pk)(−1)|Ji+1|(pi+2+···+pk) · · · (−1)|Jk−1|pk

θ̂i,k = (−1)|Ĵi|(pi+1+···+pk)(−1)|Ĵi+1|(pi+2+···+pk) · · · (−1)|Ĵk−1|pk .
(4.6)

Since θi,i = 1 = θ̂i,i, ai,i = ai as in (4.2). We show that d(ai,k) =
∑k−1

r=i ai,rar,k, where 
ai,r = (−1)1+deg ai,rai,r as in Definition 2.4.
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Applying the coboundary map to ai,k, d(ai,k) is

θi,k θ̂i,k
∑

τ̂∈Sâi,k

cτ̂

⎛⎜⎝ ∑
τ∈ϕ−1

pi+···+pk
(τ̂)

∑
j∈Ji∪···∪Jk\V (τ)

ε(j, j ∪ τ)χj∪τ

⎞⎟⎠

= θi,k θ̂i,k
∑

τ̂∈Sâi,k

cτ̂

⎛⎜⎝ ∑
τ∈ϕ−1

pi+···+pk
(τ̂)

∑
j∈Ji∪···∪Jk\ϕ−1

0 (V (τ̂))

ε(j, j ∪ τ)χj∪τ

⎞⎟⎠ +

(4.7)

+ θi,k θ̂i,k
∑

τ̂∈Sâi,k

cτ̂

⎛⎜⎝ ∑
τ∈ϕ−1

pi+···+pk
(τ̂)

∑
j∈ϕ−1

0 (V (τ̂))\V (τ)

ε(j, j ∪ τ)χj∪τ

⎞⎟⎠
.

(4.8)

For any (pi+· · ·+pk)-simplex τ̂ ∈ Sâi,k
and any τ ∈ ϕ−1

pi+···+pk
(τ̂), first suppose that there 

is a vertex j ∈ ϕ−1
0 (V (τ̂)) \ V (τ) such that j ∪ τ ∈ K. Then j ∪ τ = τ̄ ∈ ϕ−1

pi+···+pk+1(τ̂)
and there is a vertex i ∈ V (τ) such that ϕ(i) = ϕ(j). Thus j ∪ τ \ i ∈ ϕ−1

pi+···+pk
(τ̂). 

Moreover, i, j are consecutive vertices in V (τ̄) by the order of vertices in K defined in 
Construction 4.6, so ε(j, ̄τ) = −ε(i, ̄τ). Therefore (4.8) is zero since all summands cancel 
out in pairs, that is, for any τ̂ ∈ Sâi,k

,∑
τ∈ϕ−1

pi+···+pk
(τ̂)

∑
j∈ϕ−1

0 (V (τ̂))\V (τ)

ε(j, j ∪ τ)χj∪τ

=
∑

τ̄∈ϕ−1
pi+···+pk+1(τ̂),

i,j∈τ̄ | ϕ(i)=ϕ(j)

ε(j, τ̄)χτ̄ + ε(i, τ̄)χτ̄ = 0.

Consider summands in (4.7). For any j ∈ Ji∪· · ·∪Jk \ϕ−1
0 (V (τ̂)), ϕ(j) /∈ V (ĵ). So for 

any simplex j ∪ τ ∈ K with j ∈ Ji∪ · · ·∪Jk \ϕ−1
0 (V (τ̂)), there is a simplex ϕ(j) ∪ τ̂ ∈ K̂. 

Therefore any summand in (4.7) has a corresponding summand in the expression for 
d(âi,k). Hence we rewrite (4.7) as

d(ai,k) = θi,k θ̂i,k
∑

τ̂∈Sâi,k

cτ̂

⎛⎜⎝ ∑
ĵ∈Ĵi∪···∪Ĵk\V (τ̂)

∑
j∪τ∈ϕ−1

pi+···+pk+1(ĵ∪τ̂)

ε(j, j ∪ τ)χj∪τ

⎞⎟⎠
(4.9)

where, by the order of vertices in K, ε(j, j∪τ) = ε(ĵ, ̂j∪ τ̂). Since d(âi,k) =
∑k−1

r=i âi,râr,k, 
the expression in (4.9) can be written in terms of the expression in (4.4). Thus d(ai,k) is 
equal to
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θi,k θ̂i,k

k−1∑
r=i

(−1)1+deg(âi,r)c

⎛⎜⎝ ∑
ν̂∈Sâi,r

∑
η̂∈Sâr+1,k

cν̂cη̂

⎛⎜⎝ ∑
ζ∈ϕ−1

pi+···+pk+1(ν̂∪η̂)

χζ

⎞⎟⎠
⎞⎟⎠ (4.10)

where c = (−1)|Ĵi∪···∪Ĵr|(pr+1+···+pk+1) comes from the product of âi,r and âr,k, as in 
Lemma 2.2, and (−1)1+deg(âi,r) = (−1)(pi+···+pr)+|Ĵi∪···∪Ĵr|.

Any simplex ζ ∈ ϕ−1
pi+···+pk+1(ν̂ ∪ η̂) is on pi + · · · + pk + 2 vertices and so can be 

written as ν ∪ η for ν the restriction of ζ to its first pi + · · · + pr + 1 vertices, and η
the restriction of ζ to its last pr+1 + · · · + pk + 1 vertices. Then ν ∈ ϕ−1

pi+···+pr
(ν̂) and 

η ∈ ϕ−1
pr+1+···+pk

(η̂). Furthermore, θ̂i,k (−1)1+deg(âi,r) c = (−1)(pi+···+pr) θ̂i,r θ̂r+1,k. So 
(4.10) may be rewritten as

d(ai,k) =
k−1∑
r=i

(−1)(pi+···+pr) θi,k θ̂i,r θ̂r+1,k·

·

⎛⎜⎝ ∑
ν̂∈Sâi,r

∑
η̂∈Sâr+1,k

cν̂ cη̂

⎛⎜⎝ ∑
ν∈ϕ−1

pi+···+pr
(ν̂)

∑
η∈ϕ−1

pr+1+···+pk
(η̂)

χν∪η

⎞⎟⎠
⎞⎟⎠

.

(4.11)

Comparatively, the product 
∑k−1

r=i (−1)1+deg(ai,r)ai,rar,k is

k−1∑
r=i

(−1)1+deg(ai,r)(−1)|Ji∪···∪Jr|(pr+1+···+pk+1)θi,r θr+1,k θ̂i,r θ̂r+1,k·

·

⎛⎜⎝ ∑
ν̂∈Sâi,r

∑
η̂∈Sâr+1,k

cν̂ cη̂

⎛⎜⎝ ∑
ν∈ϕ−1

pi+···+pr
(ν̂)

∑
η∈ϕ−1

pr+1+···+pk
(η̂)

χν∪η

⎞⎟⎠
⎞⎟⎠ (4.12)

where the sign (−1)|Ji∪···∪Jr|(pr+1+···+pk+1) comes from the product of ai,r and ar+1,k as 
in Lemma 2.2, and (−1)1+deg(ai,r) = (−1)(pi+···+pr)+|Ji∪···∪Jr|. Using the expression for 
θi,k in (4.6),

(−1)1+deg(ai,r)(−1)|Ji∪···∪Jr|(pr+1+···+pk+1) θi,r θr+1,k = (−1)(pi+···+pr) θi,k.

Therefore the expressions in (4.11) and (4.12) are equal.
Hence d(ai,k) =

∑k−1
r=i ai,rar,k, and so (ai,k) is a defining system for the Massey 

product 〈α1, . . . , αn〉. �
Example 4.9. Let J1 = {1, 2, 3}, Ĵ1 = {1̂, ̂2}, J2 = {4, 5} and Ĵ2 = {4̂, ̂5}. Suppose that 
KJ1∪J2 and K̂Ĵ1∪Ĵ2

are the simplicial complexes shown below, where KJ1∪J2 maps onto 

K̂Ĵ ∪Ĵ by the edge contraction {2, 3} �→ {2̂}.

1 2
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3

2

4

1 5

2̂4̂

1̂ 5̂

Suppose that â1 = χ
2̂ ∈ C0(K̂Ĵ1

), â2 = χ
4̂ ∈ C0(K̂Ĵ2

), and â1,2 = −χ
2̂ ∈ C0(K̂Ĵ1∪Ĵ2

). 
Then d(â1,2) = χ

2̂,4̂ = (−1)1+deg â1 â1â2. By (4.2), a1 = χ2 + χ3 ∈ C0(KJ1) and a2 =
χ4 ∈ C0(KJ2). By (4.5), a1,2 = −χ2 − χ3 ∈ C0(KJ1∪J2), since θ1,2 = 1. We check that 
d(a1,2) = (χ2,4 + χ2,3) − χ2,3 = χ2,4 = (−1)1+deg a1a1a2. Hence d(a1,2) = a1a2.

Example 4.10. (a). Let K̂1 be a triangulation of S1 on three vertices, {1̂, ̂2, ̂3}. Let K̂2 =
{{5̂}, {6̂}}, and let K̂3 = {{7̂}, {8̂}}. Let α̂1 = [χ1̂3̂] ∈ H̃1(K̂1), α̂2 = [χ5̂] ∈ H̃0(K̂2) and 
α̂3 = [χ7̂] ∈ H̃0(K̂3). Let K̂ = sd{5̂,8̂} sd{1̂,3̂,6̂} K̂1 ∗ K̂2 ∗ K̂3 be a simplicial complex on 

the vertices {1̂, ̂2, ̂3, ̂5, ̂6, ̂7, ̂8}. The simplicial complex K̂1̂,2̂,3̂,5̂,6̂ is shown in Fig. 13b. By 
Theorem 3.17, there is a non-trivial triple Massey product 〈α̂1, α̂2, α̂3〉 ⊂ H∗(ZK̂).

Fig. 13. The simplicial complex K1,2,3,4,5,6 maps to K̂1̂,2̂,3̂,5̂,6̂ by contracting the edge {1, 4} �→ {1̂}.

Let K be the simplicial complex on vertices {1, . . . , 8} that edge contracts to K̂ by 
contracting the edge {1, 4} �→ {1̂}, which satisfies the link condition. The contrac-
tion of the full subcomplex KJ1∪J2 is shown in Fig. 13a. By Construction 4.6, there 
are cocycles a1 = χ13 ∈ C1(KJ1), a2 = χ5 ∈ C0(KJ2), a3 = χ7 ∈ C0(KJ3). The 
product a1a2 is χ13χ5 = (−1)4χ135 = χ135. If â1,2 = χ

1̂3̂, then using (4.5) we con-
struct a1,2 = θ1,2θ̂1,2χ13 = −χ13. Alternatively, if â1,2 = −χ

1̂6̂ − χ
1̂2̂ − χ

1̂5̂, then 
Sâ1,2 = {{1̂, ̂6}, {1̂, ̂2}, {1̂, ̂5}}. So ϕ−1

1 ({1̂, ̂6}) = {{1, 6}, {4, 6}}, ϕ−1
1 ({1̂, ̂2}) = {{2, 4}}, 
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and ϕ−1
1 ({1̂, ̂5}) = {{1, 5}, {4, 5}}. By (4.5), a1,2 = −θ1,2θ̂1,2(χ16+χ46+χ24+χ45+χ15) =

χ16 + χ46 + χ24 + χ45 + χ15.
(b). In the proof of Proposition 4.8, we showed that the pullback of a defining system 

〈α̂1, . . . , α̂n〉 is a defining system for 〈α1, . . . , αn〉. However there are defining systems 
for 〈α1, . . . , αn〉 that are not pullbacks of defining systems for 〈α̂1, . . . , α̂n〉. For example, 
let a1, a2, a3, ̂a1, ̂a2, ̂a3 be as in Part (a). Let a1,2 = −χ16 − χ14 − χ15. For the edge 
{1, 4} ∈ K, {1, 4} /∈ ϕ−1

1 (ê) for any edge ê ∈ K̂, so a1,2 is not a pullback of any â1,2. 
However for χ1 ∈ C∗(K1,2,3,4,5,6),

a1,2 − d(χ1) = −χ16 − χ14 − χ15 − (χ16 + χ14 + χ15 + χ13)

= −χ13 = θ1,2θ̂1,2
∑

τ∈ϕ−1
p1+p2 (1̂3̂)

χτ .

Therefore a1,2 differs from the pullback of â1,2 = χ
1̂3̂ by a coboundary.

In order to prove that 〈α1, . . . , αn〉 is non-trivial, we show that for every defining sys-
tem for 〈α1, . . . , αn〉, its associated cocycle is homologous to the pullback of an associated 
cocycle for a defining system for the non-trivial Massey product 〈α̂1, . . . , α̂n〉.

Proposition 4.11. The n-Massey product 〈α1, . . . , αn〉 is non-trivial.

Proof. Suppose that ϕ : K → K̂ is the contraction of just one edge {u, v} ∈ K. By 
Construction 4.6, {u, v} ⊂ Ji for i ∈ {1, . . . , n}.

For ai,i = ai the representative cocycle for αi as defined in (4.2), let (ai,k) be a defining 
system for 〈α1, . . . , αn〉,

ai,k =
∑

σ∈Sai,k

cσχσ ∈ Cpi+···+pk(KJi∪···∪Jk
).

We show that any defining system (ai,k) corresponds to a defining system (âi,k) for 
〈α̂1, . . . , α̂n〉 in H∗(ZK̂). There are two main stages to this proof. Firstly, for a defining 
system (ai,k) such that for any {i, k}, {u, v} /∈ σ for any σ ∈ Sai,k

, we construct a 
corresponding defining system (ϕ∗(ai,k)) for 〈α̂1, . . . , α̂n〉. Secondly, for any other defining 
system (ai,k), we change ai,k to create a different defining system (ãi,k) for 〈α1, . . . , αn〉
such that the associated cocycles are homologous and for any {i, k}, {u, v} /∈ σ for any 
σ ∈ Sãi,k

. Applying the first step to (ãi,k), we have a defining system (ϕ∗(ãi,k)) that 
corresponds to (ai,k).

For this first step, suppose that for any {i, k}, {u, v} /∈ σ for any σ ∈ Sai,k
. We 

define a tool ϕ∗, which will only be well-defined for certain specified cochains such as 
ai,k ∈ Cp(KJi∪···∪Jk

) or ai,rar+1,k ∈ Cp(KJi∪···∪Jk
) where p = pi + · · · + pk or p =

pi + · · · + pk + 1 respectively. We check three properties of ϕ∗ in order to construct a 
defining system (ϕ∗(ai,k)) for 〈α̂1, . . . , α̂n〉. Let a ∈ Cp(KJi∪···∪Jk

) be a general cochain 
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such that {u, v} /∈ σ for any σ ∈ Sa, where either p = pi+ · · ·+pk or p = pi+ · · ·+pk +1. 
For J ⊂ [m], let Ĵ = ϕ(J). Define

ϕ∗(a) = ci,k
∑

σ̂∈ϕ(Sa)

cσ̂χσ̂ ∈ Cp(K̂Ĵi∪···∪Ĵk
) (4.13)

where cσ̂ = cσ for any σ ∈ Sa such that ϕ(σ) = σ̂, ci,i = 1 and

ci,k = (−1)(|Ji|−|Ĵi|)pi+1+(|Ji∪Ji+1|−|Ĵi∪Ĵi+1|)pi+2+···+(|Ji∪···∪Jk−1|−|Ĵi∪···∪Ĵk−1|)pk .

(i) First note that for any constant c′ ∈ k and for χσ, χτ in Cp(KJi∪···∪Jk
) where p is 

either pi + · · · + pk or pi + · · · + pk + 1 and {u, v} /∈ σ, τ ,

ϕ∗(c′cσχσ) = ci,k c′cσχϕ(σ) = c′ϕ∗(cσχσ) and

ϕ∗(cσχσ + cτχτ ) = ci,k (cσχϕ(σ) + cτχϕ(τ)) = ϕ∗(cσχσ) + ϕ∗(cτχτ ).
(4.14)

(ii) Next we show that ϕ∗(d(ai,k)) = d(ϕ∗(ai,k)). Suppose that for a simplex σ ∈ Sai,k
, 

there is a simplex j ∪ σ ∈ KJi∪···∪Jk
for j ∈ Ji ∪ · · · ∪ Jk \ σ that is contracted. That is, 

{u, v} ∈ j ∪ σ. By the definition of a defining system, d(ai,k) =
∑k−1

r=i ai,rar,k. Therefore 
either cσ ε(j, j ∪ σ) χj∪σ is cancelled by other terms in d(ai,k), or there exists i � r < k

and simplices τ ∈ Sai,r
, η ∈ Sar+1,k such that τ ∪ η = j ∪ σ. In the latter case, if 

{u, v} ∈ j ∪ σ, then {u, v} ∈ τ ∪ η. This implies that either {u, v} ∈ τ or {u, v} ∈ η, 
since by construction {u, v} ⊂ Ji for an 1 � i � n and τ ∈ Sai,r

⊂ Ji ∪ · · · ∪ Jr, 
η ∈ Sar+1,k ⊂ Jr+1 ∪ · · · ∪ Jk. This then contradicts the assumption that {u, v} /∈ σ for 
any σ ∈ Sai,k

and any {i, k}. Hence a summand of the form cσ ε(j, j ∪ σ) χj∪σ, where 
{u, v} ∈ j ∪ σ, is cancelled out by other summands.

Let a =
∑

σ∈Sa
cσχσ ∈ Cpi+···+pk(KJi∪···∪Jk

) be a cochain such that for any simplex 
j∪σ ∈ KJi∪···∪Jk

for σ ∈ Sa and j ∈ Ji∪· · ·∪Jk \σ, either cσ ε(j, j∪σ) χj∪σ is cancelled 
by other terms in d(a) or j ∪ σ does not contract. Applying ϕ∗ to

d(a) =
∑
σ∈Sa

∑
j∈Ji∪···∪Jk\σ,
j∪σ∈KJi∪···∪Jk

cσ ε(j, j ∪ σ) χj∪σ,

we write

ϕ∗(d(a)) = ci,k
∑

σ̂∈ϕ(Sa)

cσ̂

( ∑
ĵ∈Ĵi∪···∪Ĵk\σ̂,
ĵ∪σ̂∈K̂Ĵi∪···∪Ĵk

ε(ĵ, ĵ ∪ σ̂) χĵ∪σ̂

)

where ε(j, j ∪ σ) = ε(ĵ, ̂j ∪ σ̂) due to the order on vertices in K and since j ∪ σ does not 
contract. Let Ŝ = {ϕ(σ) | σ ∈ Sa, |ϕ(σ)| = pi + · · · + pk + 1} and let b =

∑
σ̂∈Ŝ cσ̂χσ̂ ∈

Cpi+···+pk(K̂Ĵ ∪···∪Ĵ ). Then

i k
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ϕ∗(d(a)) = d(b). (4.15)

In particular, ϕ∗(d(ai,k)) = d(ϕ∗(ai,k)).
(iii) We also show that

k−1∑
r=i

ϕ∗(ai,r)ϕ∗(ar+1,k) = ϕ∗

(
k−1∑
r=i

ai,rar+1,k

)
. (4.16)

Let ai,r ∈ Cpi+···+pr (KJi∪···∪Jr
) and ar+1,k ∈ Cpr+1+···+pk(KJr+1∪···∪Jk

) be represented 
by 

∑
τ∈Sai,r

cτχτ and 
∑

η∈Sar+1,k
cηχη respectively. The left hand side of (4.16) is

k−1∑
r=i

ϕ∗(ai,r)ϕ∗(ar+1,k)

=
k−1∑
r=i

(−1)1+degϕ∗(ai,r)

⎛⎝ci,r
∑

τ̂∈ϕ(Sai,r
)

cτχτ̂

⎞⎠ ·

⎛⎝cr+1,k
∑

η̂∈ϕ(Sar+1,k )

cηχη̂

⎞⎠
=

k−1∑
r=i

C

⎛⎝ ∑
τ̂∈ϕ(Sai,r

)

∑
η̂∈ϕ(Sar+1,k )

cτ cηχτ̂∪η̂

⎞⎠
where

C = (−1)1+degϕ∗(ai,r)+|Ĵi∪···∪Ĵr|(pr+1+···+pk+1)ci,rcr+1,k.

Using the expressions for ci,r and cr+1,k, and using degϕ∗(ai,r) = 1 + pi + · · · + pr +
|Ĵi ∪ · · · ∪ Ĵr|,

C =(−1)pi+···+pr+|Ĵi∪···∪Ĵr|+|Ĵi∪···∪Ĵr|(pr+1+···+pk+1)

· (−1)(|Ji|−|Ĵi|)pi+1+···+(|Ji∪···∪Jr−1|−|Ĵi∪···∪Ĵr−1|)pr

· (−1)(|Jr+1|−|Ĵr+1|)pr+2+···+(|Jr+1∪···∪Jk−1|−|Ĵr+1∪···∪Ĵk−1|)pk

=(−1)pi+···+pr+(|Ji|−|Ĵi|)pi+1+···+(|Ji∪···∪Jr−1|−|Ĵi∪···∪Ĵr−1|)pr+|Ĵi∪···∪Ĵr|pr+1

· (−1)(|Jr+1|−|Ĵi∪···∪Ĵr+1|)pr+2+···+(|Jr+1∪···∪Jk−1|−|Ĵi∪···∪Ĵk−1|)pk

=(−1)1+deg ai,r (−1)|Ji∪···∪Jr|(pr+1+·+pk+1)ci,k.

By assumption, {u, v} /∈ σ for any σ ∈ Sai,k
and any {i, k}. Thus {u, v} /∈ τ and 

{u, v} /∈ η for any i � r < k and any simplices τ ∈ Sai,r
, η ∈ Sar+1,k . Also, {u, v} ⊂

Ji for an index 1 � i � n, so {u, v} /∈ τ ∪ η. Hence ϕ(τ ∪ η) = ϕ(τ) ∪ ϕ(η) is a 
(pi + · · · + pk + 1)-simplex. Therefore using the definition of ϕ∗, the property (i), and 
the fact that ϕ(τ ∪ η) = ϕ(τ) ∪ ϕ(η) = τ̂ ∪ η̂,
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k−1∑
r=i

ϕ∗(ai,r)ϕ∗(ar+1,k)

=
k−1∑
r=i

C

⎛⎝ ∑
τ̂∈ϕ(Sai,r

)

∑
η̂∈ϕ(Sar+1,k )

cτ cηχτ̂∪η̂

⎞⎠ = ϕ∗

(
k−1∑
r=i

ai,rar+1,k

)
.

Using properties (i), (ii) and (iii), we prove that a defining system (ai,k) for 
〈α1, . . . , αn〉 and its associated cocycle ω are mapped by ϕ∗ onto a defining system 
for 〈α̂1, . . . , α̂n〉 and its associated cocycle is ϕ∗(ω). By the definition of ai = ai,i in 
(4.2), ϕ∗(ai,i) = âi,i = âi. By properties (ii) and (iii), we see that

d(ϕ∗(ai,k)) = ϕ∗(d(ai,k)) = ϕ∗

(
k−1∑
r=i

ai,rar+1,k

)
=

k−1∑
r=i

ϕ∗(ai,r)ϕ∗(ar+1,k).

Hence (ϕ∗(ai,k)) is a defining system for 〈α̂1, . . . , α̂n〉 if (ai,k) is a defining system such 
that {u, v} /∈ σ for any σ ∈ Sai,k

and any pair {i, k}. Also, for the associated cocycle ω
for (ai,k),

ϕ∗(ω) = ϕ∗

(
n−1∑
r=1

a1,rar+1,n

)
=

n−1∑
r=1

ϕ∗(a1,r)ϕ∗(ar+1,n)

so ϕ∗(ω) is the associated cocycle for (ϕ∗(ai,k)).
Lastly we prove that [ω] �= 0. If [ω] = 0, then there is a cochain a ∈ Cp1+···+pn

(KJ1∪···∪Jn
) such that ω = d(a). Since {u, v} ∈ Jj for some j ∈ {1, . . . , n} and {u, v} /∈ σ

for any σ ∈ Sai,k
and any {i, k}, no simplices in Sω contract. Thus no simplices in 

Sd(a). So by applying ϕ∗ and (4.15) from property (ii), ϕ∗(ω) = ϕ∗(d(a)) = d(b) for a 
cochain b ∈ Cpi+···+pk(K̂Ĵi∪···∪Ĵk

). So [ϕ∗(ω)] = 0, which contradicts the non-triviality 
of 〈α̂1, . . . , α̂n〉. Therefore [ω] �= 0.

For the second stage of this proof, suppose that (ai,k) is a defining system for 
〈α1, . . . , αn〉 such that there is a pair of indices {i, k} with {u, v} ∈ σ for some σ ∈ Sai,k

. 
We will define a new defining system (ãi,k) such that {u, v} /∈ σ for any σ ∈ Sãi,k

and 
such that [ω] = [ω̃] where ω and ω̃ are the associated cocycles for (ai,k) and (ãi,k), 
respectively.

The cocycle ai = ai,i as defined in (4.2) is such that {u, v} /∈ σ for every σ ∈ Sai
. 

Therefore, let {i, k} be a pair of indices such that there is a simplex σ ∈ Sai,k
with 

{u, v} ∈ σ, and for every i < i′′ < k′′ < k, {u, v} /∈ τ for any τ ∈ Sai′′,k′′ . Let σ ∈ Sai,k

be a simplex such that {u, v} ∈ σ, and let cσ be the non-zero coefficient of χσ in ai,k. 
Then for every pair {i′, k′} ⊂ [n], let c = (−1)deg ai,kcσ ε(u, σ) and define
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ãi′,k′ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ai,k − cσ ε(u, σ) d(χσ\u) if i′ = i < k = k′,

ai′,k + cσ ε(u, σ) ai′,i−1χσ\u if i′ < i < k = k′,

ai,k′ + c χσ\uak+1,k′ if i′ = i < k < k′,

ai′,k′ if i′ < i < k < k′ or i < i′ < k′ < k

(4.17)

where χσ\u ∈ Cpi+···pk−1(KJi∪···∪Jk
). We show that (ãi′,k′) is a defining system for 

〈α1, . . . , αn〉. Firstly since k− i > 1, ãi′,i′ = ai′,i′ for every i′ ∈ [n]. We also need to show 

that d(ãi′,k′) =
∑k′−1

r=i′ ãi′,rãr+1,k′ for every {i′, k′}.
(i) For i < i′ < k′ < k, we have ãi′,k′ = ai′,k′ so

d(ãi′,k′) = d(ai′,k′) =
k′−1∑
r=i′

ai′,rar+1,k′ =
k′−1∑
r=i′

ãi′,rãr+1,k′ .

(ii) For i′ = i < k = k′,

d(ãi,k) = d(ai,k − cσ ε(u, σ) d(χσ\u)) = d(ai,k).

Also d(χσ\u) ∈ Cpi+···pk(KJi∪···∪Jk
) since χσ\u ∈ Cpi+···pk−1(KJi∪···∪Jk

). Hence ãi,k ∈
Cpi+···pk(KJi∪···∪Jk

) and deg ãi,k = deg ai,k. Additionally,

d(χσ\u) =
∑

j∈Ji∪···∪Jk\(σ\u),
j∪σ\u∈KJ

ε(j, j ∪ σ \ u)χj∪σ\u.

So χσ is the only summand of d(χσ\u) such that {u, v} ∈ σ. Thus ai,k−cσ ε(u, σ) d(χσ\u)
no longer contains the summand χσ and also

|{τ ∈ Sãi,k
| {u, v} ∈ τ}| < |{τ ∈ Sai,k

| {u, v} ∈ τ}|.

(iii) Next, for i′ < i < k = k′, we have ai′,i−1 ∈ Cpi′+···+pi−1(KJi′∪···∪Ji−1). So 
ai′,i−1χσ\u ∈ Cpi′+···+pk(KJi′∪···∪Jk

). Hence ãi′,k ∈ Cpi′+···+pk(KJi′∪···∪Jk
). Also,

d(ãi′,k) = d(ai′,k + cσ ε(u, σ) ai′,i−1χσ\u)

=
k−1∑
r=i′

ai′,rar+1,k+

+ cσ ε(u, σ)
(

i−2∑
r=i′

ai′,rar+1,i−1

)
χ
σ\u − cσ ε(u, σ) ai′,i−1d(χσ\u)

=
i−2∑

ai′,r(ar+1,k + cσ ε(u, σ) ar+1,i−1χσ\u)+

r=i′
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+ ai′,i−1(ai,k − cσ ε(u, σ) d(χσ\u)) +
k−1∑
r=i

ai′,rar+1,k

=
k−1∑
r=i′

ãi′,rãr+1,k.

(iv) For i′ = i < k < k′, we have ãi,k′ ∈ Cpi+···+pk′ (KJi∪···∪Jk′ ) since χσ\uak+1,k′ ∈
Cpi+···+pk′ (KJi∪···∪Jk′ ). Furthermore, d(ãi,k′) is

d(ai,k′ + (−1)deg ai,kcσ ε(u, σ) χσ\uak+1,k′)

=
k′−1∑
r=i

ai,rar+1,k′ + (−1)deg ai,kcσ ε(u, σ) d(χσ\u)ak+1,k′ ·

· (−1)deg ai,kcσ ε(u, σ) (−1)degχσ\uχ
σ\u

⎛⎝ k′−1∑
r=k+1

ak+1,rar+1,k′

⎞⎠
=

k−1∑
r=i

ai,rar+1,k − (−1)deg ai,k(ai,k − cσ ε(u, σ) d(χσ\u))ak+1,k′+

+
k′−1∑

r=k+1

(
(−1)deg ai,kcσ ε(u, σ) (−1)degχσ\uχ

σ\uak+1,r + ai,r

)
ar+1,k′ .

More specifically, let c = (−1)deg ai,kcσ ε(u, σ). Then in the last sum,

c (−1)degχσ\uχ
σ\uak+1,r

= (−1)pi+···+pk+|Ji∪···∪Jk|+pk+1+···+pr+|Jk+1∪···∪Jr| c χσ\uak+1,r

= (−1)1+deg ai,r c χσ\uak+1,r.

Therefore

d(ãi,k′) =
k−1∑
r=i

ai,rar+1,k + (−1)1+deg ai,k(ai,k − cσ ε(u, σ) d(χσ\u))ak+1,k′

+
k′−1∑

r=k+1

(−1)1+deg ai,r ( c χσ\uak+1,r + ai,r)ar+1,k′

=
k−1∑
r=i′

ãi′,rãr+1,k.

(v) Lastly when i′ < i < k < k′, ãi′,k′ = ai′,k′ and we want to show that d(ãi′,k′) =∑k′−1
r=i′ ãi′,rãr+1,k′ . The right hand side is
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k′−1∑
r=i′

ãi′,rãr+1,k′ = ai′,i−1ãi,k′ + ãi′,kak+1,k′ +
∑

r∈{i′,...,̂i−1,...,k̂,...k′−1}

ai′,rar+1,k′

where ̂ denotes omission. By expanding ãi,k′ , ãi′,k and the signs in this expression, ∑k′−1
r=i′ ãi′,rãr+1,k′ is

(−1)1+deg ai′,i−1ai′,i−1

(
ai,k′ + (−1)deg ai,kcσ ε(u, σ)χσ\uak+1,k′

)
+

+ (−1)1+deg ai′,k
(
ai′,k + cσ ε(u, σ) ai′,i−1χσ\u

)
ak+1,k′+

+
∑

r∈{i′,...,̂i−1,...,k̂,...k′−1}

ai′,rar+1,k′

=
k′−1∑
r=i′

ai′,rar+1,k′ +
(
(−1)1+deg ai′,i−1+deg ai,k + (−1)1+deg ai′,k

)
·

· cσ ε(u, σ) ai′,i−1χσ\uak+1,k′

= d(ai′,k′) +
(
(−1)deg ai′,k + (−1)1+deg ai′,k

)
cσ ε(u, σ) ai′,i−1χσ\uak+1,k′

= d(ai′,k′) = d(ãi′,k′)

since deg ai′,k = |Ji′ ∪ · · · ∪ Jk| + pi′ + · · · pk + 1 = deg ãi′,k.
Therefore for all {i′, k′}, ãi′,k′ ∈ Cpi′+···+pk′ (KJi′∪···∪Jk′ ) and d(ãi′,k′) =∑k′−1
r=i′ ãi′,rãr+1,k′ . So (ãi′,k′) is a defining system for 〈α1, . . . , αn〉. Also σ /∈ τ for any 

τ ∈ Sãi′,k′ and any {i′, k′}. The associated cocycle ω̃ for this defining system is given 

by 
∑n−1

r=1 ã1,rãr+1,n. By calculating 
∑n−1

r=1 ã1,rãr+1,n in a similar manner as in the above 
calculations,

ω̃ =

⎧⎪⎪⎨⎪⎪⎩
ω if i �= 1, k �= n,

ω + cσ ε(u, σ) d(ai′,i−1χσ\u) if 1 = i < k = n,

ω − (−1)1+deg ai,kcσ ε(u, σ)d(χσ\uak+1,k′) if 1 = i < k < n

(4.18)

where ω is the associated cocycle for (ai′,k′). So [ω̃] = [ω]. Therefore [ω̃] = 0 if and only 
if [ω] = 0.

If there is cochain ãi′,k′ in the defining system (ãi,k) such that there is a simplex 
σ ∈ Sãi′,k′ with {u, v} ∈ σ, then we repeat the above procedure to construct (˜̃ai′,k′), 
etc. After a finite number of iterations, we obtain a defining system (ãi′,k′) such that 
for any {i′, k′} and any simplex σ ∈ Sãi′,k′ , the edge {u, v} is not contained in σ. Then 
we can construct a defining system (ϕ∗(ãi′,k′)) for 〈α̂1, . . . , α̂n〉. Let ω and ω̃ be the 
associated cocycles for (ai,k) and (ãi,k), respectively. If [ω] = [ω̃] = 0, then [ϕ∗(ω̃)] = 0, 
which contradicts the assumption that 〈α̂1, . . . , α̂n〉 is non-trivial. Hence if 〈α̂1, . . . , α̂n〉
is non-trivial, then 〈α1, . . . , αn〉 is non-trivial.
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Fig. 14. Edge contraction example.

If K → K̂ by a series of more than one edge contractions, we repeat the steps in this 
proof for each edge contraction in turn. �

Putting together Proposition 4.8 and Proposition 4.11, we have proved the following 
statement.

Theorem 4.12. Let K̂ be a simplicial complex with a non-trivial n-Massey product in 
H∗(ZK̂). Let K be a simplicial complex that maps onto K̂ by a series of edge contractions 
ϕ : K → K̂ that satisfy the link condition. Then there is a non-trivial n-Massey product 
in H∗(ZK). �

By construction, αi ∈ H |Ji|+pi+1(ZK) and α̂i ∈ H |Ĵi|+pi+1(ZK̂) with |Ji| � |Ĵi| for 
each i. Hence the degree of 〈α1, . . . , αn〉 ⊂ H |J1∪···∪Jn|+(p1+···+pn)+2(ZK) is greater than 
the degree of 〈α̂1, . . . , α̂n〉 ⊂ H |Ĵ1∪···∪Ĵn|+(p1+···+pn+1)+1(ZK̂). Also, if 〈α̂1, . . . , α̂n〉 has 
non-trivial indeterminacy, then 〈α1, . . . , αn〉 also has non-trivial indeterminacy. As noted 
earlier, the converse does not necessarily hold: the pullback Massey product in H∗(ZK)
might have non-trivial indeterminacy even if it is a pullback of a uniquely defined Massey 
product in H∗(ZK̂).

Example 4.13. Let K̂ be the simplicial complex in Fig. 14b. Since the 1-skeleton of K̂
is one of the obstruction graphs in the classification of lowest degree non-trivial triple 
Massey products [15], there is a non-trivial triple Massey product 〈α̂1, α̂2, α̂3〉 ⊂ H8(ZK̂)
where α̂1 ∈ H̃0(K̂1̂2̂), α̂2 ∈ H̃0(K̂3̂4̂) and α̂3 ∈ H̃0(K̂5̂6̂). This Massey product has non-
trivial indeterminacy, since the indeterminacy of this triple Massey product is given by 
α̂1 · H̃0(K̂3̂4̂5̂6̂) + α̂3 · H̃0(K̂1̂2̂3̂4̂) = α̂3 · H̃0(K̂1̂2̂3̂4̂).

Let K be the simplicial complex on 9 vertices in Fig. 14a. Let ϕ : K → K̂ be the 
simplicial map that takes i �→ î for i = 1, 2, 3, 6 and contracts the bold coloured edges 
{4, 5} �→ 4̂, {7, 8}, {8, 9} �→ 5̂. By Theorem 4.12 and Construction 4.6, there is a non-
trivial Massey product 〈α1, α2, α3〉 ⊂ H11(ZK) where α1 ∈ H̃0(K12), α2 ∈ H̃0(K345)
and α3 ∈ H̃0(K6789). Also the indeterminacy of this Massey product is non-trivial since 
it is given by α1 · H̃0(K3456789) + α3 · H̃0(K12345) = α3 · H̃0(K12345).



J. Grbić, A. Linton / Advances in Mathematics 387 (2021) 107837 45
Fig. 15. Massey products in Pogorelov polytopes.

For any simple polytope P , define KP = ∂(P ∗) to be the boundary of the dual 
polytope. This is a simplicial complex and the moment-angle complex ZP = ZKP

is a 
moment-angle manifold. The simplicial complex K in Fig. 14a is a full-subcomplex of KP

when P is a truncated octahedron, otherwise known as the 3-dimensional permutahedron. 
A truncated octahedron is a 3-dimensional simple polytope whose facets are 6 squares 
and 8 hexagons, so there are 6 vertices of KP with valency 4 and 8 with valency 6. 
Since K ⊂ KP , the non-trivial Massey product in H∗(ZK) lifts to a non-trivial Massey 
product in H∗(ZP ) with non-trivial indeterminacy. Hence we found a non-trivial Massey 
product in H∗(ZP ) using only Theorem 4.12 and the classification of lowest-degree non-
trivial triple Massey products in [12,15]. This technique also recovers the first example 
of a triple Massey product in H∗(ZP ) that was given in [20, Lemma 4.9(2)], where the 
constructed full subcomplex edge contracts to one of the obstruction graphs that give 
trivial indeterminacy.

Example 4.14. A Pogorelov polytope is a 3-dimensional polytope that can be realised 
in hyperbolic (Lobachevsky) space as a bounded right-angled polytope. The Pogorelov 
class is large and includes all fullerenes, whose facets are pentagons and hexagons. Zhu-
ravleva [26, Theorem 3.2] showed that for any Pogorelov polytope P , KP = ∂(P ∗) has 
a full subcomplex K as shown in Fig. 15a. This full subcomplex was used to explicitly 
construct a non-trivial Massey product 〈α1, α2, α3〉 ⊂ H∗(ZP ) where α1 ∈ H̃0(K567), 
α2 ∈ H̃0(K2b0...bn) and α3 ∈ H̃0(K34). Moment-angle manifolds ZP have a non-trivial 
triple Massey product using the full subcomplex in Fig. 15a.

Edge contracting the coloured edges of K, {bi, bi+1} �→ b̂0, {6, 7} �→ 6̂, we obtain the 
simplicial complex in Fig. 15b. This simplicial complex has a non-trivial triple Massey 
product, since its 1-skeleton is one of the obstruction graphs from the classification in 
[12,15]. Since the edge contractions satisfy the link condition, Theorem 4.12 gives an 
alternative proof of non-trivial triple Massey products in Zhuravleva’s work.
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4.1. Massey products constructed by edge stretching

For an edge contraction K �→ K̂ that satisfies the link condition, we call the inverse 
K̂ �→ K edge stretching.

Corollary 4.15. Let K̂ be a simplicial complex with a non-trivial n-Massey product 
〈α̂1, . . . , α̂n〉 ⊂ H∗(ZK̂). Suppose that ψ : K̂ → K is a series of edge stretchings. Then 
there is a non-trivial n-Massey product in H∗(ZK).

Proof. Since ψ : K̂ → K is a series of edge stretchings, there is a series of edge contractions 
ϕ : K → K̂. Given 〈α̂1, . . . , α̂n〉 in H∗(ZK̂), there is a non-trivial n-Massey product 
〈α1, . . . , αn〉 ⊂ H∗(ZK) by Theorem 4.12. �

We may use edge stretchings to build infinite families of examples of Massey prod-
ucts in moment-angle complexes given any known Massey product in a moment-angle 
complex. For example we can start with one of the obstruction graphs for lowest-degree 
triple Massey products [12,15] and produce infinite families of simplicial complexes that 
contain non-trivial triple Massey products of classes on different degrees. This illustrates 
that non-trivial Massey products are very common in moment-angle complexes, contrary 
to previous belief.

5. Non-trivial Massey products in nestohedra

Theorems 3.17 and 4.12 can be applied together to construct non-trivial higher Massey 
products of classes in various degrees in the cohomology of moment-angle complexes. 
Recall that for any simple polytope P , there is a simplicial complex KP = ∂(P ∗) and 
ZP = ZKP

is a moment-angle manifold. In this section we show that there are families 
of polytopes P for which H∗(ZP ) has non-trivial higher Massey products.

Nestohedra are a large family of simple polytopes built out of Minkowski sums 
of simplices, introduced by Feichtner and Sturmfels [14]. They include all simplices, 
permutahedra, Stasheff’s associahedra and more generally Carr and Devadoss’ graph as-
sociahedra [11]. Alternatively nestohedra are interpreted as hypergraph polytopes [13]. 
The first examples of Massey products in moment-angle manifolds associated to nesto-
hedra were in [19, Proposition 4.1] and [20, Lemma 4.9] and were triple Massey products 
constructed either by explicit calculation or using the classification of lowest degree 
Massey products [12,15]. We will use Theorems 3.17 and 4.12 to construct families of 
new non-trivial higher Massey products in moment-angle manifolds associated to certain 
nestohedra. We use a construction of nestohedra due to Postnikov [24, Theorem 7.4].

Definition 5.1. A building set B is a collection of non-empty subsets of [n + 1] such that

1. {i} ∈ B for every i ∈ [n + 1],
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2. S1 ∪ S2 ∈ B for any S1, S2 ∈ B with S1 ∩ S2 �= ∅.

A convex polytope is the convex hull of a finite number of points in Rn. If M1 and 
M2 are convex polytopes in Rn, then the Minkowski sum

M1 + M2 = {x ∈ Rn | x = x1 + x2, x1 ∈ M1, x2 ∈ M2}

is also a convex polytope.

Definition 5.2. For a building set B ⊂ [n +1], a nestohedron PB is the polytope 
∑

S∈B ΔS , 
where ΔS = conv{ei, i ∈ S} is the convex hull of the basis elements ei ∈ Rn+1.

For example, the n-simplex is a nestohedron with building set {{1}, . . . , {n + 1}, [n +
1]}. Other key examples of nestohedra are graph associahedra PBΓ , which are associated 
to a graph Γ on the vertex set [n + 1]. The graphical building set BΓ consists of subsets 
S ⊂ [n + 1] such that the restriction of Γ to the vertices in S is a connected graph.

Since every nestohedron PB is simple [14,24], we will consider the corresponding sim-
plicial complex KPB

= ∂(P ∗
B), which is the boundary of the dual polytope. Let Bmax be 

the set of maximal sets in B with respect to inclusion.

Proposition 5.3 ([24]). The simplicial complex KPB
is isomorphic to the nested set com-

plex N (B), which contains a simplex {S1, . . . , Sk} ⊂ B \Bmax if

1. for any Si, Sj ∈ {S1, . . . , Sk}, either Si ⊂ Sj, Sj ⊂ Si or Si ∩ Sj = ∅,
2. for any Si1 , . . . , Sip ∈ {S1, . . . , Sk} with Sij ∩ Sil = ∅, Si1 � · · · � Sip /∈ B. �

For example if PB is the polytopal n-simplex, then KPB
is the boundary of an n-

simplex. Another example is shown in Fig. 16. We denote the moment-angle complex 
ZKPB

by ZPB
.

5.1. Permutahedra

A permutahedron is an example of a graph associahedron, when the associated graph 
is a complete graph on n + 1 vertices. Limonchenko [18, Theorem 3] showed that the 
3-dimensional permutahedron P has no non-trivial triple Massey product 〈α1, α2, α3〉 for 
three-dimensional classes αi ∈ H3(ZP ), using the classification by [12, Theorem 6.1.1]
and [15]. However, there are other non-trivial triple Massey products in H∗(ZP ), as illus-
trated in Example 4.13. Via an explicit example, it was also shown in [19, Proposition 4.1]
and [20, Lemma 4.9] that there are triple Massey products of three-dimensional classes 
in H∗(ZP ) for n-dimensional permutahedra P with n > 3. Here we will generalise this 
and show that ZP , for the n-dimensional permutahedron P , has a non-trivial k-Massey 
product for k � n.



48 J. Grbić, A. Linton / Advances in Mathematics 387 (2021) 107837
v234

v124

v134

v2

v12

v4

v23

v123 v1

v13

v3

v14

v34

Fig. 16. The simplicial complex KP , without the vertex v24, when P is the 3-dimensional permutahedron.

Proposition 5.4. When P is the n-dimensional permutahedron, H∗(ZP ) has a non-trivial 
k-Massey product for every k � n.

Proof. The building set B of the n-dimensional permutahedron P contains all possible 
subsets of [n + 1]. Let vS be the vertex in KPB

corresponding to a set S ∈ B \ [n + 1]. 
By Proposition 5.3, {vS1 , . . . , vSk

} is a simplex in KPB
if for any Si, Sj ∈ {S1, . . . , Sk}, 

either Si ⊂ Sj , Sj ⊂ Si. From now on we denote KPB
by K. We construct a k-Massey 

product 〈α1, . . . , αk〉 ⊂ H∗(ZK) by explicitly defining Ji and αi ∈ H̃0(KJi
). Then we 

edge contract KJ1∪···∪Jk
to a simplicial complex that by Construction 3.5 has a non-

trivial Massey product. For k < n, let

α1 ∈ H̃0(Kv{1},v{2})

αi ∈ H̃0(Kv{1,...,i,k+1},v{2,...,i+1}) for 1 < i < k

αk ∈ H̃0(Kv{1,...,k+1},v{1,...,k,k+2})

so αi corresponds to a class αi ∈ H3(ZK). In this case |Ji| = 2, so there are no edges to 
contract. Let K̂ = KJ1∪···∪Jk

. There is no edge {v{1}, v{2,...,i+1}} in K̂ for v{1} ∈ J1 and 
v{2,...,i+1} ∈ Ji since {1} �⊂ {2, . . . , i + 1}. Also there is no edge {v{1,...,i,k+1}, v{2,...,j+1}}
nor {v{1,...,i,k+1}, v{1,...,k,k+2}} for v{1,...,i,k+1} ∈ Ji, v{2,...,j+1} ∈ Jj with 1 < i < j < k

and v{1,...,k,k+2} ∈ Jk. All the other edges are in K̂. That is, {v{1}, v{1,...,i,k+1}} ∈ K̂ and 
{v{1}, v{1,...,k,k+2}} ∈ K̂ for v{1} ∈ J1, v{1,...,i,k+1} ∈ Ji for any i � k and v{1,...,k,k+2} ∈
Jk. Similarly, {v{1,...,i,k+1}, v{1,...,j,k+1}} ∈ K̂ for v{1,...,i,k+1} ∈ Ji and v{1,...,j,k+1} ∈ Jj
with 1 < i < j � k. Also {v{2,...,i+1}, vSj

} ∈ K̂ for v{2,...,i+1} ∈ Ji and any vSj
∈ Jj with 

1 � i < j � k. Therefore K̂ is obtained from the join KJ1 ∗ · · · ∗ KJk
by star deleting 

at the edges {v{1}, v{2,...,i+1}}, {v{1,...,i,k+1}, v{2,...,j+1}} and {v{1,...,i,k+1}, v{1,...,k,k+2}}
for v{1} ∈ J1, v{2,...,i+1} ∈ Ji, v{1,...,i,k+1} ∈ Ji, v{2,...,j+1} ∈ Jj with 1 < i < j < k

and v{1,...,k,k+2} ∈ Jk. Hence by Theorem 3.17, the Massey product 〈α1, . . . , αk〉 ⊂
H2k+2(ZK) is non-trivial.

For k = n, let

α1 ∈ H̃0(Kv{1},v{2,...,n+1},v{3,...,n+1})
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αi ∈ H̃0(Kv{1,...,i},v{2,...,i},v{3,...,i+1}) for 1 < i < n

αn ∈ H̃0(Kv{1,...,n},v{2,...,n},v{1,3,...,n+1}).

Since |Ji| = 3 for every i ∈ {1, . . . , n}, we will perform n edge contractions in order to 
obtain a simplicial complex K̂ on 2n vertices. There is an edge {v{2,...,n+1}, v{3,...,n+1}} ∈
KJ1 since {3, . . . , n + 1} ⊂ {2, . . . , n + 1}. Also there are edges {v{1,...,i}, v{2,...,i}} ∈ KJi

for 1 < i � n. Since P is a simple polytope, K is a triangulation of a sphere so the 
contraction of these edges satisfies the link condition. Let K̂ be obtained from KJ1∪···∪Jn

by contracting these n edges. Then as in the case when k < n, K̂ is a simplicial complex 
obtained from the join of n pairs of disjoint vertices by star deletions as described by 
Construction 3.17. Hence by Theorem 3.17, there is a non-trivial k-Massey product in 
H∗(ZK̂). By Theorem 4.12, the Massey product 〈α1, . . . , αk〉 ⊂ H∗(ZK) is also non-
trivial. �

A similar technique to that used in Proposition 5.4 can be applied to other simple 
polytopes. An example is the family of stellohedra: graph associahedra corresponding 
to star graphs, which are graphs with a central vertex and edges attaching every other 
vertex to the central one. It was shown in [18, Theorem 3] that there are 3-Massey 
products on 3-dimensional classes in H∗(ZP ) when P is a 3-dimensional stellohedron, 
using the classification in [12,15]. By applying Theorems 3.17 and 4.12, we generalise 
that result by constructing non-trivial n-Massey products in moment-angle manifolds 
over n-dimensional stellohedron.

Proposition 5.5. When P is the n-dimensional stellohedron, H∗(ZP ) has a non-trivial 
n-Massey product.

Proof. As in Proposition 5.4, we construct αi ∈ H̃0(KJi
) where K = KP . Let the star 

graph associated to P be labelled so that the central vertex is 1 and the other vertices 
are 2, . . . , n + 1. The building set for P is

{{1}, . . . , {n + 1}, {1, 2}, . . . , {1, n + 1}, . . . , {1, . . . , n}, {1, . . . , n− 1, n + 1}, [n + 1]}.

Let

α1 ∈ H̃0(Kv{2},v{1})

αi ∈ H̃0(Kv{1,...,i},v{1,3,...,i+2},v{1,4,...,i+2}) for 1 < i < n

αn ∈ H̃0(Kv{1,3},v{3},v{1,2,4,...,n+1}).

By contracting the edges {v{1,3,...,i+2}, v{1,4,...,i+2}} ∈ KJi
for 1 < i < n and the edge 

{v{1,3}, v{3}} ∈ KJn
, we obtain a simplicial complex K̂ that is constructed from the join 

of n disjoint points by star deletions as in Construction 3.5. �
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Propositions 5.4 and 5.5 reiterate that the moment-angle manifolds associated to 
permutahedra and stellohedra are non-formal [20]. Also, the families of permutahedra 
and stellohedra are examples of geometric direct families of polytopes, whose moment-
angle manifolds are studied in [9]. Hence, Propositions 5.4 and 5.5 answer Problems 5.32, 
5.34 and 5.35 in [9], which ask if there are geometric direct families of polytopes with 
non-trivial higher Massey products.

5.2. Non-trivial indeterminacy and permutahedra

Massey products with non-trivial indeterminacy can be found in moment-angle man-
ifolds. We illustrate this in moment-angle manifolds associated with permutahedra. We 
first construct an example of a 4-Massey product with non-trivial indeterminacy in a 
moment-angle complex using Theorem 3.23, then find a full-subcomplex of a permuta-
hedron that edge contracts to this example and apply Theorem 4.12.

Example 5.6. Let Ki be a pair of disjoint points Ji = {i, i′} for i = 1, . . . , 4 and define

K = sd{1,2′} sd{1,3′} sd{2,3′} sd{2,4′} sd{3,4′} sd{1′,2′} sd{1′,3′} K1 ∗ K2 ∗ K3 ∗ K4.

Let αi = [ai] and ai = χi ∈ C0(KJi
). By Theorem 3.23, 〈α1, α2, α3, α4〉 ⊂ H∗(ZK) is 

non-trivial with non-trivial indeterminacy.

Proposition 5.7. There are non-trivial Massey products with non-trivial indeterminacy 
in moment-angle manifolds corresponding to permutahedra.

Proof. Let P be the 5-dimensional permutahedron. Denote KP by K. Recall that by 
Proposition 5.3, {vS1 , . . . , vSk

} is a simplex in K if for any Si, Sj ∈ {S1, . . . , Sk}, either 
Si ⊂ Sj or Sj ⊂ Si. Let

J1 = {v{1}, v{2}, v{2,5}, v{5}}
J2 = {v{1,2}, v{3}}
J3 = {v{1,2,3}, v{2,3}, v{3,4}}
J4 = {v{1,2,3,4}, v{2,3,4}, v{1,3,4,5}}

and let αi ∈ H̃0(KJi
). Let K̂ be the simplicial complex in Example 5.6, so there is a non-

trivial 4-Massey product in H∗(ZK̂). Consider the map ϕ : K → K̂ that takes Ji �→ {i, i′}
by contracting the edges

{v{2}, v{2,5}}, {v{2,5}, v{5}} �→ 1′

{v{1,2,3}, v{2,3}} �→ 3

{v{1,2,3,4}, v{2,3,4}} �→ 4.
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Since K is a triangulation of a sphere, these edge contractions satisfy the link condition. 
Therefore by Theorem 4.12, there is a non-trivial 4-Massey product 〈α1, α2, α3, α4〉 ⊂
H∗(ZK) for αi ∈ H0(Ki), and this 4-Massey product has non-trivial indeterminacy. �

This example of a non-trivial n-Massey product with non-trivial indeterminacy can 
be reproduced in any (n + 1)-dimensional permutahedron.
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