Probing hole spin transport of disorder quantum dots via Pauli spin-blockade in standard silicon transistors

Joseph Hillier¹, Keiji Ono², Kouta Ibukuro¹, Fayong Liu¹, Zuo Li¹, Muhammad Husain Khaled¹, Harvey Nicholas Rutt¹, Isao Tomita¹, Yoshishige Tsuchiya¹, Koji Ishibashi² and Shinichi Saito¹

1 Department of Electronics and Computer Science, University of Southampton, SO17 1BJ, United Kingdom
2 Advanced Device Laboratory, RIKEN Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
3 Department of Electrical and Computer Engineering, National Institute of Technology, Gifu college, 2236-2 Kamimakuwa, Motosu, Gifu, 501-0495, Japan
E-mail: J.W.Hillier@soton.ac.uk

Abstract. Single hole transport and spin detection is achievable in standard p-type silicon transistors owing to the strong orbital quantization of disorder based quantum dots. Through the use of the well acting as a pseudo-gate, we discover the formation of a double-quantum dot system exhibiting Pauli spin-blockade and investigate the magnetic field dependence of the leakage current. This enables attributes that are key to hole spin state control to be determined, where we calculate a tunnel coupling t_c of 57 μeV and a short spin-orbit length l_{SO} of 250 nm. The demonstrated strong spin-orbit interaction at the interface when using disorder based quantum dots supports electric-field mediated control. These results provide further motivation that a readily scalable platform such as industry standard silicon technology can be used to investigate interactions which are useful for quantum information processing.
1. Introduction

Silicon (Si) based devices have become the cornerstone of modern technology, and are now a leading candidate for quantum information processing architectures \[1-8\]. Promising alternatives to traditional metal-oxide-semiconductor field-effect transistors (MOSFETs) take the form of quantum dots (QDs) as qubits in single electron devices through the use of charge and spin as the fundamental building blocks \[9-15\]. The use of multi-gate device architectures in particular has led to many breakthroughs by tuning the potential profiles defining QDs as well as the inter-dot tunneling barriers for precise control, where development is undertaken by academia and large industrial fabrication facilities \[16-22\]. Using Si for spin based quantum computing regimes is a natural choice for not only scalability and ease of integration with industrial fabrication techniques, but also long coherence times owing to isotopically enriched zero nuclear spin \(^{28}\)Si \[23-31\]. The feasibility of spin qubits has also been demonstrated by high fidelities exceeding 99.8%, which can be utilized in combination with quantum error correction towards achieving fault-tolerant quantum computing, promoting spin as a competitive candidate in this space with respect to trapped ion and superconducting platforms \[32-40\].

Efforts have also been made to take advantage of features already present at the single electron level in Si VLSI technology. The use of trap states within Si quantum devices can complement and even enhance single charge transport, with applications ranging from quantum information and quantum metrology, to bio-sensing and hardware security \[40-50\]. In quantum metrology, record high frequency benchmarking for single electron pump operation was achieved as a consequence of a coupling between a QD and trap state, yielding improved operation for establishing a new current standard \[51-53\]. In addition, hole spin resonance of trap states within a p-type MOSFET was achieved using Pauli spin-blockade (PSB) to study spin-orbit (SO) state mixing \[52\].

Alongside scalability, another technological obstacle to overcome is that of electric-field mediated control, which relies on a strong SO interaction, but in the case of electrons in Si is intrinsically weak \[54-60\]. This has given rise to investigations into transport schemes with an enhanced SO interaction, where attempts using holes, valley states and the inversion asymmetry at the oxide interface has led to strong SO effects \[61-66\]. PSB, a common measurement tool used throughout quantum information protocols, is also dependant on the SO interaction when detecting spin states \[67-73\]. This is manifested as the suppression of current through a double-QD system in a triplet state as a consequence of the Pauli exclusion principle. Such a technique effectively allows individual spins to be read by correlating the spin state with the charge state through monitoring the double-QD current \[74-76\]. Within this regime, singlet-triplet (S-T) state mixing, relaxation mechanisms, and SO coupling can be probed, since the SO interaction offers a mechanism for coupling hole spin with their orbital motion.

In this work, we investigate the coupling and SO interaction of disorder based states present in p-type Si MOSFETs through PSB, achieved via tuning gate and well voltage to form a double-QD. This allows the determination of the tunnel coupling \((t_c)\) and SO length \((l_{SO})\), which offers a direct measure of the SO interaction strength and therefore a method to evaluate the potential of a given system for electric-field mediated control, as well as high frequency spin manipulation. As a result, we take advantage standard Si MOSFETs to find enhanced SO effects of disorder QDs at the oxide interface and obtain a \(l_{SO}\) much shorter than anticipated using Si QDs.

2. Methodology

![Figure 1](image.png)

A schematic of the Si p-type MOSFET sample measured is displayed in Figure 1(a), with a 2.4 nm thick SiON gate dielectric and a highly doped poly-Si gate with a channel length/width of 120 nm and 500 nm respectively. As the channel becomes inverted a 2 dimensional hole-gas (2DHG) begins to form and single charging characteristics from QDs can be observed...
due to quantum confinement. In our device, this is a consequence of surface edge roughness by poly-Si grains in the gate and traps at, or close to the Si-oxide interface based on the charging properties observed, as depicted in Figure 1(b). Typically, temperatures below 4 K are sufficient to observe single hole tunneling due to discrete energy levels in such QDs. All measurements here were carried out within an Oxford instruments 4He cryostat at a temperature of 1.6 K.

Our method to electrically characterize QDs is via I – V characteristics using Yokogawa source meters. This is achieved through biasing the gate (V_g) and source (V_{SD}) terminals while measuring current from a grounded drain terminal (I_d), to generate a charge stability diagram (CSD). Coulomb diamonds (CDs) appear as a result of CB (Coulomb blockade) in the sub-threshold region, whereby transport is blocked due to the electrostatic energy and level splitting of holes occupying the QD, which can be lifted by the capacitively coupled gate and source terminals. This not only allows information on the size and couplings of QDs to be calculated, but also the presence of multiple CDs overlapping highlight double-QD transport features, a key requirement for PSB in p-type MOSFET in particular to take advantage of the enhanced SO interaction of valence bane holes, owing to their p-orbital nature.

Table 1.

<table>
<thead>
<tr>
<th>V_w (V)</th>
<th>CD (No.)</th>
<th>E_0 (meV)</th>
<th>C_0 (aF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A1</td>
<td>13.3</td>
<td>10.4</td>
</tr>
<tr>
<td>1</td>
<td>B1</td>
<td>6.3</td>
<td>24.6</td>
</tr>
<tr>
<td>1</td>
<td>C1</td>
<td>5.5</td>
<td>28.6</td>
</tr>
<tr>
<td>1</td>
<td>D1</td>
<td>12.5</td>
<td>11.8</td>
</tr>
<tr>
<td>2</td>
<td>A2</td>
<td>8.9</td>
<td>13.3</td>
</tr>
<tr>
<td>2</td>
<td>B2</td>
<td>16.1</td>
<td>9.8</td>
</tr>
<tr>
<td>2</td>
<td>C2</td>
<td>12.7</td>
<td>10.4</td>
</tr>
<tr>
<td>3</td>
<td>A3</td>
<td>10.3</td>
<td>11.7</td>
</tr>
<tr>
<td>3</td>
<td>B3</td>
<td>19.8</td>
<td>7.2</td>
</tr>
<tr>
<td>3</td>
<td>C3</td>
<td>12.1</td>
<td>11.1</td>
</tr>
</tbody>
</table>

The resulting CSDs are displayed in Figure 2, where differential conductance (dI_d/dV_{SD}) is plotted to aid in highlighting finer features outside CB, including excited states, and most importantly, to better visualize PSB. This method is more effective than plotting current, where the magnitude can vary as a result of offsets from both triplet leakage and parasitics in current paths through the channel. The experimental data is plotted in Figure 2(a)-(c), with simplified CSDs drawn in Figure 2(d)-(f) to better visualize the significant changes. CB appears as blue in Figure 1(b), with red denoting high dI_d/dV_{SD} due to the availability of levels for single hole transport. Amplifier current saturation occurred at 1.3 nA producing blue regions at high V_g and V_{SD}. Each CD, corresponding to blocked transport within the QD system, is marked by a letter and number in Figure 2(d)-(f). A total well voltage (V_w) of 1 V is applied in Figure 2(d) and a series of largely closed CDs are observed. This suggests that transport is occurring through a single QD, where we interpret CDs A1-C1 from QD2, and D1 from QD1. The energy band diagram (EBD) depicting this situation is shown in Figure 2(g) for the region marked by the star in Figure 2(d). Due to the small size of the CDs B1 and C1 in Figure 2(d), single QD transport can occur as a consequence of a reduction in tunneling barrier distance between the source and drain due to the larger QD size, shown schematically in the valence band diagram in 2(g). When $V_w = 2$ V in Figure 2(b) the CSD changes significantly from the shift and overlap of CDs, in particular we note the appearance of a low dI_d/dV_{SD} region enclosed by the red dotted line outside of the CD B2 for positive V_{SD} in Figure 2(e). This can be interpreted as an initial indicator of PSB, since the transport path will not be completed blocked due to a slightly elevated I_d from triplet leakage that leads to a non-zero, low dI_d/dV_{SD}. We find the optimum contrast is at a threshold of 0.05-0.1 nA to make the PSB region most visible. CB of the dominant transport path also expands considerably between Figure 2(a)-(b), from the enhanced confinement of the smaller CDs observed in Figure 2(d) as a result of the large scale changes. QD1 emerges from a partially joined potential profile in Figure 2(g)-(h) which separates due to the application well voltage forming a tunnelling barrier between the QDs as well as increasing the confinement of QD2. The valence band schematic given in Figure 2(h) during PSB highlights the important changes leading to this result, such as the formation of a weakly coupled double QD through a modified tunneling barrier between them. The number of confined holes in each QD also now satisfies the conditions of PSB, due to the spin selective nature of the second hole entering QD2. Therefore a combination of both the appropriate number of confined holes and the extended region of low dI_d/dV_{SD} strongly suggests PSB. Upon increasing V_w further to 3 V in Figure 2(c) the CSD pattern, and therefore the dominate transport path, largely resembles that of Figure 2(b) with the exception of the B2, which displays an extended CB and the absence of the unique low dI_d/dV_{SD} feature highlighted previously when comparing Figure 2(e) and (f). This can be
Probing hole spin transport of disorder quantum dots via Pauli spin-blockade in standard silicon transistors

Figure 2. Charge stability diagrams (CSDs) for $V_{SD} = -30$ to 30 mV over a 60 mV gate voltage (V_g) range at different well voltages (V_w). Within the Coulomb diamonds (CDs) the number of confined holes in each QD (QD_1, QD_2) are labelled. (a) $V_w = 1$ V, a row of single CDs appear with various charging energies. (b) $V_w = 2$ V, the alignment of the QD energy levels change, resulting in overlapping of the CDs which strongly suggests double-QD transport. (c) $V_w = 3$ V, the alignment of the CDs is further altered, leading to regions of extended Coulomb blockade. The confinement of an additional hole within the dominant transport path is marked by letters A, B, C and D in simplified CSDs (d)-(f), where the number refers to the V_w magnitude, however the same letter does not necessarily denote the same QD energy level in each CSD. The appearance of a PSB like low dI/dV_{SD} region at the edge of B2 for positive V_{SD} is annotated in (e), where the absence is noted at the edge of B3 in (f) from a change in coupling between the confined levels. (g)-(i) show energy band diagrams marked by the star, square and cross in (d)-(f) respectively. At $V_w = 1$V the transport is assumed to occur largely through a single QD, upon increasing V_w to 2V the confinement changes (from larger CDs), together with the QDs becoming weakly coupled and form a double QD exhibiting PSB. When $V_w = 3$V the energy level alignment shifts between the double QD, removing PSB and allowing transport to occur.

explained by the EBD and valance band schematic in Figure 2(i) for the cross in Figure 2(f). The energy level alignment shifts, allowing hole transport through the second level in both QDs. Along with changes to the tunneling barriers and QD energy level alignment at higher V_w values, a considerable threshold shift is also evident. This is explained by an increasing depletion layer width causing more positively charged ionized dopants to be exposed, and therefore requires a more negative gate voltage to compensate to achieve the same 2DHG formation.

Upon further analysis, the physical attributes of the dominant transport path are determined through estimating the dimensions of charge stable regions in Figure 2 for positive V_{SD}. This is achieved by calculating gate capacitance (C_g) and charging energy (E_c) according to $E_c = \frac{e^2}{2C_g}$ and $C_g = \frac{e^2}{2V_g}$.
where \(e \) and \(C_\Sigma \) are elementary charge and total capacitance respectively, as summarised in Table I\(^7\). \(E_c \) represents the energy required to add an additional hole to the QD and \(C'_g \) is associated with the strength\(^9\) of the coupling between a given confined level and the gate. Determining such values allows a greater\(^1\) understanding of the systems components and their relationship with respect to \(V_w \). Since Si dangling\(^3\) bonds have charging energies of 13 meV above the valence band we propose the origin of the confined\(^7\) levels where \(E_c \) is close to 13 meV to be due to dangling bonds or trap sites at the oxide interface\(^7\). \(C_\Sigma \) is close to 13 meV to be due to the lowering of a level for QD\(_1\) within the transport window, however CB then occurs as displayed in Figure 3\.(e) due to a level dropping above the drain for QD\(_1\) and \(V_w \geq 2 \text{ V} \). Figure 2\.(e) shows EBDs for the regions marked by the star, square and circle in (a), for the CB regions as well as PSB\(_{b2}\). In (f), an energy band diagram for CB conditions marked by the cross in (b) is displayed, where PSB then occurs at higher \(V_{SD} \). As shown schematically in Figure 2\.(b), the specific transport path in Figure 2\.(b) was no longer available in Figure 2\.(c). Such changes which lead to increases in \(E_f \) and \(C_f \) further demonstrate that the response of each confined level varied according to \(V_w \), where the energy level alignment between the QDs shifted, together with the barrier height between them. This is also likely attributable to QD origin, since each QD will have a different capacitive coupling to \(V_w \), as with \(V_g \), depending on the location and size of the QD as the depletion layer changes\(^5\). The formation of QD\(_2\) as the likely product of a poly-Si grain, appears to be more susceptible to \(V_w \) from the enlargement of CD B1 to B2 which we ascribe to the same origin, in comparison to the change of CD D1 to C2 of QD\(_1\), from what is likely an interface trap given the \(E_c \).

Focusing on the low \(dI/dV_{SD} \) region in Figure 2\.(e), a \(V_{SD} \) and \(V_{SD} \) sweep at fixed \(V_w = 2 \text{ V} \) is shown in Figure 3\.(a) and (b) respectively. The \(I_d \) valleys in Figure 3\.(a) denote CB, whereas the marginally elevated \(I_d \) plateaus correspond to PSB. A dip in current at \(V_{SD} = -710 \text{ mV} \) signifies the profile sweep nearing a CD edge, although the system does not enter CB. Figures 3\.(c)-(f) show EBDs for the regions labelled by the star, square and circle in cross in Figures 3\.(a) and (b). These visually demonstrate how the transport scheme is altered through the application of \(V_g \) and \(V_{SD} \). For the star marked in Figure 3\.(a), an EBD in Figure 3\.(c) shows the system entering CB due to the absence of a level for the first QD. In Figure 3\.(d), at larger \(V_g \) a level becomes available, but transport is blocked between the QDs due to Pauli selection rules. PSB is temporarily lifted at higher \(V_g \) due to the lowering of a level for QD\(_1\) within the transport window, however CB then occurs as displayed in Figure 3\.(e) due to a level dropping above the drain for QD\(_2\) (circle). An EBD is also given for the CB region preceding PSB at lower \(V_{SD} \) (cross) in Figure 3\.(f). While an \(I_d \) leakage current of 4 pA is observed in the CB region due to parasitic current paths in the channel, an \(I_d \) of 5.6 pA within the PSB region suggests the triplet leakage is 1.6 pA, which is comparable to similar devices exhibiting PSB\(^3\) 40 41.

Further to the \(I_d \) leakage measurements suggesting that the system is in a PSB configuration, much more tangible evidence can be obtained by investigating the magnetic field dependence, offering a window into the prevailing mechanism and any resulting spin related phenomena. Figure 4\.(a) shows a higher resolution CSD generated to identify the PSB region clearly. We
Figure 4. (a) Charge stability diagram for $V_{SD} = 0$ to 20 mV and $V_g = -705$ to -740 mV with $V_w = 2$ V at the edge of a Coulomb diamond (white), where a reduction in current was observed due to blockaded transport through the two QDs. (b) Current as a function of magnetic field in the PSB region at fixed $V_{SD} = 15$ mV between $V_g = -715$ to -725 mV (pink dashed line in (a)), two peaks are present due to an increase in the PSB leakage current at 0.5 T. (c) High resolution magnetic field spectroscopy scan with a clearly identifiable peak, where the extent of the maximum magnetic field enhanced spin relaxation current with respect to V_g is indicated by the red arrow. (d) Energy level diagrams for PSB occurring in a double QD, where the path to S(0,2) is blocked due to parallel spins in each QD, and (e) where the blockade is partially lifted due to enhanced relaxation from S-T mixing when a finite magnetic field is applied.

The enhanced leakage rate is mediated by the SO coupling and proportional to αB, where alpha is a ratio characterizing the relative strength of tunnel and spin orbit couplings t_c and t_{SO}, and B is the applied field. As such this leads to significant changes when the enhanced leakage becomes comparable to Γ_{rel}, the average relaxation rate at zero field from (1,1) to S(2,0), and therefore a noticeable change in leakage I_{sd} due to this mechanism as detailed in [30] is given by the equation (1).

$$I_{sd}(B) = \Gamma_{rel} \left[\frac{\omega - B^2 - \tau^2}{\omega^2 + 2B^2\alpha^2\tau^2} \right]$$

$$+ \frac{\omega + B^2 - \tau^2}{\omega^2 + 2B^2\alpha^2\tau^2} \left[\frac{\omega (1 + 4\gamma) + B^2 - \tau^2}{6\gamma\omega^2 + 2B^2\alpha^2\tau^2} \right]$$

Here, $\omega = \sqrt{(B^2 - \tau^2)^2 + 8B^2\alpha^2\tau^2}$, $\gamma = \Gamma_{rel}/\Gamma$
interaction given the
such a configuration yielded a relatively strong SO which lead to the emergence of PSB. The creation of
the transport properties within a multi-level system
inability to control the number of QDs in this type of
consequence of stochastic processes. Although the
create variable potential profile, are largely a natural
as poly-Si grains and traps, or other impurities which
the interface. Whether they are local to the gate, such
≈ typically
closer to those measured in III-IV materials which are
lengths as low as 110 nm have been estimated
of magnitude smaller with reference to our MOSFET
device with similar dimensions \(^{10}\). Generally speaking our results indicate
of the known splitting energy and equation (1), we
extract a
value when compared to a Si spin qubit device with an
QD of around 30 nm using Figure 2.(e) gives an
value of 250 nm.

Comparing the \(l_{SO}\) obtained with others reported
in Si reveals that our value is almost two orders of
magnitude smaller than bulk Si, where 20 \(\mu m\) has
been measured \(^{35}\). We also obtain a much lower
value when compared to a Si spin qubit device with an
\(l_{SO}\) of 1 \(\mu m\) which was achieved using electron based
QDs. Lengths as low as 110 nm have been estimated
in Si but using heavy holes in a planar multi-gate
defined QD device, operating at temperatures an order
of magnitude smaller with reference to our MOSFETs
device \(^{34} \quad 32\). Generally speaking our results indicate
that the \(l_{SO}\) of Si disorder QDs characterized here are
closer to those measured in III-IV materials which are
typically \(\approx 130-250\) nm \(^{29} \quad 50 \quad 41\). It should be noted
that single hole transport here is only possible owing to
QD formation in such devices as a result of defects at
the interface. Whether they are local to the gate, such
as poly-Si grains and traps, or other impurities which
create variable potential profile, are largely a natural
consequence of stochastic processes. Although the
inability to control the number of QDs in this type of
system remains, the use of the well allowed control over
the transport properties within a multi-level systems
which lead to the emergence of PSB. The creation of
such a configuration yielded a relatively strong SOs
interaction given the \(l_{SO}\) extracted. Such an effect
has been previously attributed to inversion asymmetry
at the interface possibly due to position dependent
electric fields at the oxide boundary \(^{34}\). Therefore
our results support engineering strong SO interactions
at the interface in Si, as such we envisage more focus
on exploring the useful properties of disorder QDs,
particularly at the Si-oxide interface. This may well
be of interest for industries where standard MOSFETs
can act as a testing platform for quantum information
processing schemes.

4. Conclusion

To conclude, pseudo control over the QD confinement
potentials originating at the Si-oxide interface can be
achieved as a consequence of well tuning to shift the
energy level alignment and coupling between two QDs,
allowing double QD transport phenomena to be probed
in this type of system. This enabled spin related trans-
port properties to be investigated through PSB, pro-
ducing a significantly short \(l_{SO}\) of 250 nm as well as a \(t_c\)
of 57 \(\mu V\). Our work therefore highlights a path for ex-
ploring alternative quantum information technologies
using disorder based QDs by accommodating their advan-
tageous SO properties at the interface on an access-
ible platform such as industry standard Si MOSFETs.

This work is supported by EPSRC Manufacturing
Fellowship (EP/M008975/1) and Lloyds Register
Foundation International Consortium of Nanotechnol-
ogy.

The data that support the findings of this study are
openly available in Southampton ePrint research
repository at: https://doi.org/10.5258/SOTON/D1485
References

[32] Li R, Hudson F E, Dzurak A S and Hamilton A R 2015 Nano. lett. 15 7314
Probing hole spin transport of disorder quantum dots via Pauli spin-blockade in standard silicon transistors

Mehl S and DiVincenzo D P 2014 *Phys. Rev. B* **90** 195424