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Abstract—An optimal precoder design is conceived for the
decentralized estimation of an unknown spatially as well as
temporally correlated parameter vector in a multiple-input
multiple-output (MIMO) orthogonal frequency division multi-
plexing (OFDM) based wireless sensor network (WSN). Fur-
thermore, exploiting the temporal correlation present in the
parameter vector, a rate-distortion theory based framework is
developed for the optimal quantization of the sensor observations
so that the resultant distortion is minimized for a given bit-
budget. Subsequently, optimal precoders are also developed that
minimize the sum-MSE (SMSE) for the scenario of transmitting
quantized observations. In order to reduce the computational
complexity of the decentralized framework, distributed precoder
design algorithms are also developed which design precoders
using the consensus based alternating direction method of mul-
tipliers (ADMM), wherein each SN determines its precoders
without any central coordination by the fusion center. Finally,
new robust MIMO precoder designs are proposed for practical
scenarios operating in the face of channel state information (CSI)
uncertainty. Our simulation results demonstrate the improved
performance of the proposed schemes and corroborate our
analytical formulations.
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I. INTRODUCTION

Wireless sensor networks (WSNs), in which small battery
powered sensor nodes (SNs) are deployed across a large
geographical area, have facilitated a variety of applications
such as environmental monitoring, smart healthcare, surveil-
lance and others. In such a WSN, the SNs typically collect
observations to monitor an event/ phenomenon of interest,
followed by their transmission over wireless links to a fusion
center for further processing. Since the SNs in a WSN are
both power-and bandwidth-constrained, it is essential to design
schemes that efficiently pre-process the SN observations prior
to transmission in order to enhance the accuracy of parameter
estimation. The sensors are typically miniature and have rel-
atively modest computational capabilities. Furthermore, they
can simultaneously sense multiple parameters that can be
transmitted over a MIMO channel [1]. For instance, in a
typical environmental monitoring application, the different
elements of the parameter vector can be pressure, temperature
and moisture etc. Further, another significant challenge is the
frequency selective fading channel between each sensor and
the fusion center, which results in inter symbol interference
(ISI). To overcome this, one can employ OFDM. Therefore,
MIMO-aided OFDM enables the sensing and simultaneous
transmission of multiple parameters over a wideband channel.
Such a system is well-suited for application in low-mobility
scenarios. A brief review of the state-of-the-art along with the
portrayal of the salient solutions is presented next.

A. Related Contributions on Spatial and Temporal Correlation

Starting with the treatises that have proposed schemes to ex-
ploit the temporal correlation for improved parameter estima-
tion, [2] considers the problem of estimation of a temporally
correlated parameter and derives the optimal sensor collabo-
ration strategy. Their scheme requires inter-sensor communi-
cation and optimization to be performed prior to transmission,
which leads to a higher computational overhead. Dong et. al.
[3] have derived both offline and online strategies for optimal
power allocation that minimize the weighted sum distortion
arising in the estimation of two temporally correlated Gaussian
sources in a WSN having a pair of energy harvesting SNs
and a fusion center. Li and Parker [4] have proposed a novel
method based on exploiting the spatio-temporal correlation
for the estimation of missing observations in WSNs. Das et
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TABLE I: A comparative summary of contributions of the salient existing works

Feature [2] [12] [14] [16] [18] [19] [20] [21] [22] [25] Proposed
Spatial correlation × X X X X X X X X X X
Temporal correlation X × × × × × × × × × X
Analog observations X × × × X X X X X X X
Quantized observations × X X X × × × × × × X
Stochastic CSI uncertainty × × × × × × × X × × X
Norm ball CSI uncertainty × × × × X X X × × × X
MIMO-OFDM sensor network × × × × × × × × × × X
Coherent MAC X × X × X X X X X X X
Vector estimation × × × X X × X X X X X
Decentralized estimation X X X X X X X X X X X
Distributed estimation X × × × × × X × × × X
Frequency selective channel × × × × × × × × × × X
Total power constraint × X × X × X × X × X X
Individual power constraints X × × × X × X × X X X

al. [5] have proposed a scheme for wireless sensor networks
wherein the minimum number of event monitoring SNs is
found in the face of spatial correlation. Later, exploiting
the temporal correlation present in the parameter of interest,
each SN adjusts its sleep cycle for effectively monitoring
the phenomenon of interest, while minimizing the energy
consumption. Recently, an environmental monitoring scheme
was developed by Ko et al. [6], that also exploits the spatio-
temporal correlation for optimal transmission in an internet of
things (IoT)-based wireless powered sensor network. The SNs
therein exploit the spatio-temporal correlation and energy level
to determine whether or not to transmit the observed data to
the IoT gateway. Özçelikkale et al. [7] proposed a scheme for
the remote estimation of a temporally correlated field using
an energy harvesting SN. The optimal energy and data buffer
sizes derived therein depend on the degrees of freedom of the
signal. As a further development, various schemes have also
been proposed for quantizing the observations of the SNs in a
WSN, while achieving different objectives. A brief review is
presented next.

B. Related Works on Quantization of SN Observations

Sun and Goyal [8] have proposed a scheme for distributed
optimal scalar quantizer design when inter-sensor commu-
nication is performed prior to transmitting the observations
to the fusion center. Their theoretical as well as practical
analysis shows that the distortion at the fusion center can be
minimized significantly with inter-sensor communication even
when the sensor communicates at a very low rate. Nevat et al.
[9] have proposed spatial field resonstruction schemes based
on quanitized SN observations with power and bandwidth
constraints. Msechu and Giannakis [10] have proposed a novel
data reduction technique based on interval censoring followed
by quantization of SN observations for deterministic as well
as random parameter estimation. Li and Al-Regib in [11]
have proposed an optimal scheme, which strikes a tradeoff
between the number of active SNs and the resultant bit-rate
of each active SN, to minimize the estimation MSE at the
fusion center. Each active SN’s observation is quantized using
a single bit, thus making it well suited for scenarios having
stringent bandwidth constraints. A block coordinate descent
based iterative algorithm has been proposed by Chaudhary and

Vandendorpe [12] for joint quantization of the observations
and SN power allocation, toward minimizing the reconstruc-
tion error at the fusion center. An adaptive quantization scheme
has been conceived in [13], wherein each SN transmits only 1-
bit quantized observations after comparing the observed value
to a quantization threshold. The quantization threshold in their
work is chosen adaptively based on the previous transmissions
of other SNs. A different 1-bit quantization scheme is proposed
by Ribeiro and Giannakis [14] for the maximum likelihood
estimation of a deterministic parameter. A non-uniform quan-
tization and power allocation scheme has been proposed by
Zhou et al. [15] for energy efficient transmission in a WSN.
Sani and Vosoughi [16] have proposed a joint power allocation
and quantization scheme such that the resulting distortion is
minimized at the fusion center. However, they do not exploit
any form of correlation in their scheme and also use an
orthogonal MAC that is bandwidth inefficient. Leinonen et
al. [17] conceived a low complexity quantized compressive
sensing algorithm for the estimation of a correlated sparse
source and derived the optimality bound for the scenario with
two sensors and a decoder. Naturally, due to limited feedback,
quantization error etc., perfect CSI is never available either
at the fusion center or the SNs in a practical WSN. Hence,
some works have also proposed schemes for robust parameter
estimation in the presence of imperfect CSI in WSNs, which
are reviewed next.

C. Related Treatises on Robust Designs for Imperfect CSI
Zhu et al. [18] have proposed robust precoder and linear

combiner designs for the estimation of a scalar parameter con-
sidering the bounded CSI uncertainty model. Venkategowda
et al. [19] have proposed robust precoder designs for the
estimation of a scalar parameter considering the ellipsoidal
and norm ball CSI uncertainty models, using the minimum
variance distortionless precoding (MVDP) framework. Liu
et al. [20] have proposed robust centralized and distributed
schemes for scalar parameter estimation with ellipsoidal CSI
uncertainty. Furthermore, a robust precoder design has been
proposed by Rostami and Falahati [21] for the estimation of
a vector parameter considering the stochastic CSI uncertainty
model. However, [20] and [21] neither consider the temporal
correlation or quantization of observations and optimal bit
allocation subject to a given bit budget.
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D. Research Gap and Motivation

Since temporal correlation results in multiple closely related
observations of a single parameter, this can naturally be
exploited for improved estimation performance. Furthermore,
quantization is of key importance in modern digital wireless
systems, since it limits the transmission to a few bits over
each subcarrier, thus leading to improved spectral efficiency.
However, quantization also leads to quantization error, which
has to be accounted for optimal transmission. This has been
accomplished in this paper by leveraging the results from
rate-distortion theory and optimal bit allocation. Finally, since
the CSI is typically estimated using a finite number of pilot
symbols in a practical wireless system, the channel estimation
error leads to CSI uncertainty, which impacts the precoder de-
sign and resulting performance. Therefore, the robust precoder/
combiner design framework that takes the CSI uncertainty into
account is key toward obtaining enhanced parameter estimates.
To the best of our knowledge, the existing works have not
considered the problem of estimation of a temporally corre-
lated parameter incorporating also the quantization and CSI
uncertainty effects. Therefore, various schemes are proposed in
this work to fill this void. A brief summary of the contributions
of this paper is presented next.

E. Our Contributions

Two different estimation frameworks, based on decentral-
ized and distributed approaches, have been proposed for the
estimation of a correlated vector parameter in a MIMO-OFDM
WSN. In the decentralized setting, the various computational
tasks are carried out by the fusion center and the individual
precoder matrices are subsequently fed back to each SN.
This requires that each SN provides the information about
its observation matrix, observation noise statistics etc. to the
fusion center. The centralized scenario refers to the setting,
where the observations corresponding to all the sensors are
directly available at the fusion center without any degradation.
By contrast, in the distributed setting, the sensors design
their respective precoders relying on their mutual exchange
of messages. This significantly reduces the computational
complexity and communication overhead required for precoder
design. The various contributions of the proposed work are as
follows.
• First, optimal precoders are developed for the scenario of

analog sensor observation transmission over a coherent
MAC, for minimizing the sum-MSE (SMSE) at the fusion
center assuming the availability of perfect CSI.

• Subsequently, exploiting the temporal correlation present
in the parameter vector, a rate-distortion theory based
framework is developed for optimal bit-allocation to
quantize the SN’s observations to minimize the sum dis-
tortion corresponding to all the subcarriers, given a total
bit-rate constraint for each SN. The optimal precoders are
also determined for this scenario with the aid of quantized
observations, once again, considering the availability of
perfect CSI.

• In order to further reduce the computational complexity
and communication overheads, dual consensus ADMM-

based distributed schemes are also proposed for precoder
design relying on both analog as well as quantized
observations.

• Robust precoder designs are next proposed for practical
scenarios under CSI uncertainty, once again for scenarios
with/without quantization.

• Simulation results demonstrate that the proposed designs
approach the corresponding MSE benchmark at high
SNR, and are also resilient to the degradation arising due
to CSI uncertainty.

The remainder of the paper is organized as follows. Section
II describes the scheme proposed for spatio-temporally corre-
lated parameter estimation. Section III extends the same to a
scenario of quantized observations, while Section IV presents
the distributed versions of both the schemes, based on ADMM.
Section V presents robust precoder designs in the face of
CSI uncertainty, first for scenarios with analog observations,
followed by scenarios with quantized observations. Simulation
results are provided in Section VI to illustrate the attainable
performance, followed by our conclusions in Section VIII.

Notation: Bold lower case letters x̃ and x are used to
represent the time and frequency domain vectors, respectively.
Bold capital letters X̃ and X are used to represent time and
frequency domain matrices, respectively. Furthermore, (.)T

and (.)H stand for transposition and Hermitian transposition,
respectively. Tr(X) denotes the trace of a matrix X. X =
diag(X1,X2, · · · ,XL) denotes a block diagonal matrix X
that has matrices Xi’s, 1 ≤ i ≤ L on its principal diagonal.
E{.} denotes the expectation operator and ||x|| denotes the
Euclidean norm of vector x. For a complex quantity x, R(x)
denotes its real part. The operator vec(X) creates a column
vector of size mn obtained by stacking the column vectors
of a matrix X. The operator vec−1

m (x) rearranges the vector
x ∈ Cmn×1 into a matrix with m rows and n columns. The
symbol ⊗ denotes the matrix Kronecker product. IN denotes
a N ×N identity matrix.

II. WSN SYSTEM MODEL FOR PARAMETER SENSING AND
ESTIMATION

A typical WSN deployment comprises of a large number
of sensors that sense/monitor an event or multiple events of
interest and subsequently transmit their observations to the
fusion center for final estimation of the underlying quantity
of interest. Since the wireless channel is fading in nature, for
accurate estimation, it is essential to design the precoders at the
sensors considering also the power and bandwidth constraints
at the sensors. This is the goal of the decentralized estimation
schemes proposed in this section. Consider a WSN having L
SNs, with the observation vector x̃l(n) ∈ Cq×1 of the lth SN
at time instant n modeled as

x̃l(n) = Alθ̃(n) + ṽl(n), (1)

where Al ∈ Cq×K represents the observation matrix for the
lth SN and ṽl(n) ∈ Cq×1 denotes the corresponding obser-
vation noise that is distributed as CN (0,Rl). The quantity
θ̃(n) ∈ CK×1 denotes the unknown temporally correlated
parameter vector at time instant n, which is to be estimated.
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Fig. 1: System model for vector parameter estimation in an OFDM based WSN

It can be readily observed that since each sensor l observes
the same parameter vector θ̃ modulated by the observation
matrix, the spatial correlation across sensors is captured by
the observation matrices Al, 1 ≤ l ≤ L, as also noted in
[1], [22], [23]. The kth element of θ̃(n), denoted by θ̃k(n),
1 ≤ k ≤ K, is a sample of a zero-mean temporally correlated
wide sense stationary (WSS) Gaussian random process that
has the power spectral density of Sk(f). Concatenating the
observations x̃l(n) over N time instants at the lth SN, one
obtains the model

[x̃l(0), x̃l(1) . . . , x̃l(N − 1)]︸ ︷︷ ︸
X̃l

= Al[θ̃(0), θ̃(1), . . . , θ̃(N − 1)]︸ ︷︷ ︸
Θ̃

+ [ṽl(0), ṽl(1), . . . , ṽl(N − 1)]︸ ︷︷ ︸
Ṽl

.

(2)

Performing the N -point row-wise fast Fourier transform (FFT)
of the observation matrix X̃l yields

Xl = X̃lΦ = AlΘ̃Φ + ṼlΦ = AlΘ + Vl, (3)

where Φ ∈ CN×N denotes the FFT matrix with its (r, t)th
element equal to 1√

N
e−j

2π
N rt. The above model after the FFT

operation at the lth SN be expanded as

[xl(0),xl(1), . . . ,xl(N − 1)] = Al[θ(0),θ(1), . . . ,θ(N − 1)]

+ [vl(0),vl(1), . . . ,vl(N − 1)],
(4)

where xl(m), 0 ≤ m ≤ N − 1, represents the frequency
domain observation vector corresponding to the mth subcarrier
at the lth SN. The corresponding model can be extracted from
the above equation as

xl(m) = Alθ(m) + vl(m). (5)

The quantities θ(m) and vl(m) denote the corresponding
frequency domain components of the unknown parameter

vector and observation noise, where both have zero mean and
their covariance matrices are defined as Rθ(m) ∈ CK×K and
Rv,l(m) ∈ Cq×q , respectively. As given in [24, Sec. 2.4], for
large N , the kth component of θ(m), denoted as θk(m), is a
zero-mean random variable with variance 1

E
[
|θk(m)|2

]
= Sk(fm), (6)

where fm = m
N , 0 ≤ m ≤ N − 1.

Let Fl(m) ∈ CNt×q , where Nt denotes the number of trans-
mit antennas at each SN, represent the precoder corresponding
to subcarrier m at the lth SN. Therefore, the precoded outputs
x̌l(m) at the lth SN are obtained as

x̌l(m) = Fl(m)xl(m) = Fl(m)Alθ(m) + Fl(m)vl(m),
(7)

which are subsequently loaded on subcarriers m =
0, 1, . . . , N − 1, followed by transmission to the fusion center
over a coherent MAC in the MIMO-OFDM WSN. Post the
FFT operation at the receiver, the output vector y(m) ∈
CNr×1, for subcarrier m, is given as

y(m) =

L∑
i=l

Hl(m)Fl(m)Alθ(m) +

L∑
l=1

Hl(m)Fl(m)vl(m)

+ u(m), (8)

where Hl(m) ∈ CNr×Nt denotes the MIMO channel between
the lth SN and the fusion center for the mth subcarrier,
u(m) ∈ CNr×1 represents the receiver noise that has zero
mean with its covariance matrix defined as Ru(m) ∈ CNr×Nr

1Let x(n) denote a sample of a zero-mean temporally correlated WSS
Gaussian random process at time instant n. Consider now a block comprising
N such samples from 0 to N − 1. Performing the N -point fast Fourier
transform (FFT) results in the N -point frequency domain samples X(m),
where 0 ≤ m ≤ N−1. Then it follows from Section 2.4 of [24], for large N ,
the mth frequency domain sample X(m) is distributed as CN (0, Sx(fm)),
where fm = m

N
and Sx(fm) denotes the power spectral density (PSD) of x

at frequency fm. Thus, the time domain correlation of the random observation
process is exploited using the PSD in the frequency domain.
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and Nr denotes the number of antennas at the fusion center.
Motivated by the MVDP framework [25], the output vector
y(m) in (8) will be a distortionless estimate of the parameter
vector θ(m) at the fusion center under the condition

L∑
l=1

Hl(m)Fl(m)Al = IK . (9)

The distortionless criterion above eliminates inter parameter
interference and is similar to the constant gain condition
employed in a standard Capon beamformer [26]. Furthermore,
it also renders the optimization tractable since the joint opti-
mization of the combiner and precoder is non-convex.

The optimal precoders designs for the estimation of the
parameter θ(m) at the fusion center for various scenarios are
determined in the subsequent sections.

III. PARAMETER ESTIMATION WITH ANALOG
OBSERVATIONS

Considering the transmission of analog observations, the
corresponding MSE of the estimate θ̂(m) for the mth sub-
carrier is easily deduced as shown in (10). Taking the sum
across all the N subcarriers, the SMSE becomes

SMSE =

N−1∑
m=0

Tr

[
L∑
l=1

Hl(m)Fl(m)Rv,l(m)FHl (m)HH
l (m)

]

+

N−1∑
m=0

Tr [Ru(m)] , (11)

using the properties Tr(AB) = Tr(BA) and
Tr
(
AHBCD

)
= vec(A)H

(
DT ⊗B

)
vec(C), this can

be further simplified to the compact form shown below

SMSE =

L∑
l=1

N−1∑
m=0

fHl (m)Ql(m)fl(m) +

N−1∑
m=0

Tr [Ru(m)]

=

L∑
l=1

fHl Qifl +

N−1∑
m=0

Tr [Ru(m)] , (12)

where fl(m) = vec [Fl(m)] ∈ CNtq×q and Ql(m) =[
Rv,l(m)⊗HH

l (m)Hl(m)
]
∈ CNtq×Ntq . Furthermore, fl ∈

CNNtq×1 is obtained by stacking the vectors fl(m) for all
the subcarriers m = 0, 1, .., N − 1, and Ql ∈ CNNtq×NNtq
is a block-diagonal matrix with Ql(m) as its block diagonal
elements. The above expression of the SMSE can be further
streamlined to the form

SMSE = fHQf +

N−1∑
m=0

Tr [Ru(m)] , (13)

where f ∈ CLNNtq×1 denotes a similar stacking of fl
over all the L SNs and Q = diag

[
Q1,Q2, · · · ,QL

]
∈

CLNNtq×LNNtq . The distortionless constraint in (9) can be
simplified by applying the vec operator to both sides and
exploiting the property vec(ABC) =

(
CT ⊗A

)
vec(B), for

any compatible matrices A, B, C, as
∑L
l=1 Wl(m)fl(m) =

vec [IK ], where Wl(m) =
[
AT
l ⊗Hl(m)

]
∈ CNrK×Ntq .

Hence, the aggregated distortionless constraint across all the
N subcarriers can be represented as

Wf = g, (14)

where Wl ∈ CNNrK×NNtq and in turn W ∈ CNNrK×LNNtq
are defined as Wl = diag

[
Wl(0),Wl(1), . . . ,Wl(N − 1)

]
,

W = [W1,W2, . . . ,WL] and g = vec(IK) ⊗ 1N ∈
CNK2×1, with 1N denoting the N - dimensional vector of all
ones. The optimization problem minimizing the SMSE across
all the SNs in (13) subject to the distortionless constraint in
(14), can be succinctly represented as

minimize
f

fHQf

subject to Wf = g, (15)

where the constant term corresponding to the noise covariance
has been ignored in the objective function of (13), since it
does not affect the minimization procedure. Using the Karush-
Kuhn-Tucker (KKT) framework [27, Sec. 5.5.3], the closed
form solution for the optimal vector f∗ is readily-obtained as

f∗ = Q−1WH
[
WQ−1WH

]−1
g. (16)

The optimal precoding vector f∗l (m) corresponding to the
mth subcarrier at the lth SN can be obtained from f∗

by extracting the subvector corresponding to the indices
[(l − 1)N + (m− 1)]Ntq+1 to [(l − 1)N +m]Ntq . Finally,
the corresponding optimal precoding matrix F∗l (m) can be
retrieved using the relation vec−1

Nt
[f∗l (m)].

A. Parameter Estimation with Transmit Power Constraint

One can also additionally incorporate a total transmit power
constraint in the optimization procedure to derive the optimal
precoders as follows. From (7), the average transmit power
Pl(m) = Tr

[
E
[
[Fl(m)xl(m)] [Fl(m)xl(m)]

H
]]

of the lth
SN for the mth subcarrier is given by

Pl(m) = Tr
[
FHl (m)Γl(m)Fl(m)

]
= fHl (m)Ψl(m)fl(m),

(17)

where Γl(m) =
[
AlRθ(m)AH

l + Rv,l(m)
]
∈ Cq×q and

Ψl(m) = [Γl(m)⊗ IK ] ∈ CqK×qK . Hence, the total transmit
power considering all the N subcarriers for all the SNs in the
system is readily obtained as

L∑
l=1

N−1∑
m=0

fHl (m)Ψl(m)fl(m) = fHΨf , (18)

where Ψl ∈ CNqK×NqK is a block diagonal matrix with
Ψl(m), 0 ≤ m ≤ N − 1 as its block diagonal elements, and
Ψ ∈ CLNqK×LNqK in turn contains matrices Ψl, 1 ≤ l ≤ L
on its principal diagonal. Hence, the optimization problem
for determining the optimal precoders subject to the total SN
transmit power being limited to PT can be formulated as

minimize
f

fHQf

subject to Wf = g

fHΨf ≤ PT . (19)
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MSE = E
[

Tr
[[
θ̂(m)− θ(m)

] [
θ̂(m)− θ(m)

]H]]
= Tr

[
L∑
l=1

Hl(m)Fl(m)Rv,l(m)FHl (m)HH
l (m) + Ru(m)

]
.

= Tr

[
L∑
l=1

Hl(m)Fl(m)Rv,l(m)FHl (m)HH
l (m)

]
+ Tr [Ru(m)] , (10)

Once again, invoking the KKT framework [27, Sec. 5.5.3],
the above optimization problem can be solved as shown in
the technical report [28, Sec.-III], and the optimal vector f∗

is determined as

f∗ = [Q + νΨ]
−1

WH
[
W [Q + νΨ]

−1
WH

]−1

g, (20)

where ν denotes the Lagrangian dual variable corresponding
to the inequality constraint. One can now extract the vectors
f∗l (m) and in turn the precoding matrices F∗l (m) using the
procedure described below (16). One can also modify the
above problem to restrain the power of each SN l to Pl by
including the constraint fHl Ψlfl ≤ Pl, 1 ≤ l ≤ L. The
resulting optimization will be similar to (19) with the total
power constraint replaced by L such power constraints and
can be solved efficiently using optimization tools such as CVX
[29].

B. Centralized MMSE Error Bound

The minimum MSE (MMSE) of a centralized estimator,
which serves as a lower bound for the above estimation
framework, is obtained next. The best performance is achieved
when all the observations across all the subcarriers of each
SN are directly available to the fusion center. The centralized
MMSE estimate of the parameter thus obtained serves as
a valuable benchmark for the performance of the proposed
decentralized estimation schemes. Therefore, stacking all the
observations collected by all the SNs over all the subcarriers,
one obtains

x1

x2

...
xL


︸ ︷︷ ︸

x

=


IN ⊗A1

IN ⊗A2

...
IN ⊗AL


︸ ︷︷ ︸

C


θ(0)
θ(1)

...
θ(N − 1)


︸ ︷︷ ︸

θ

+


v1

v2

...
vL


︸ ︷︷ ︸

v

. (21)

For the MMSE fusion rule, the SMSE bound at the fusion
center is obtained as

SMSEMMSE = Tr
[[

R−1
θ + CHR−1

v C
]−1
]
, (22)

where the quantities Rθ ∈ CNK×NK and Rv ∈ CLNq×LNq
denote the covariance matrices of the parameter vector θ
and stacked observation noise vector v, respectively, that
are defined as Rθ = diag [Rθ(0),Rθ(1), . . . ,Rθ(N − 1)]
and Rv = diag [Rv,1(0),Rv,1(1), . . . ,Rv,L(N − 1)]. While
analog observations enhance the accuracy of estimation, their
transmission is unrealistic for digital modulation based modern
WSNs. In view of this, the next section presents a similar
framework for the optimal quantization of SN observations
and their pre-processing for digital transmission.

IV. PARAMETER ESTIMATION WITH QUANTIZED
OBSERVATIONS

A rate-distortion theory based framework is now developed
for optimal quantization of the observations. This is followed
by the development of the optimization problem toward opti-
mal distribution of the bits across the subcarriers, subject to
a bit budget, with the aim of minimizing the net distortion
corresponding to parameter estimation. This process is aided
by the temporal correlation, leveraging which leads to a lower
bit load and SMSE minimization at the fusion center for the
given bit budget. To suppress the inter-parameter interference,
the ZF estimator is employed at the sensor followed by the
quantization of the individual components of the parameter
vector θ(m). Consider the frequency domain observation vec-
tor xl(m) corresponding to the lth SN on the mth subcarrier
as modeled in (5). Prior to quantization, the zero forcing (ZF)
estimate of the parameter vector is initially obtained at each
SN as follows

x̂l(m) = θ(m) +
[
AH
l Al

]−1
AH
l vl(m) = θ(m) + zl(m),

(23)

where zl(m) ∈ Cq×1 is the effective noise term. Setting
Rv,l(m) = Iq , without loss of generality, it follows that
zl(m) has a mean of zero and a covariance matrix equal to(
AH
l Al

)−1
. Let, x̂l,k(m) denote the kth element of the ZF-

estimate of x̂l(m), which can be written as

x̂l,k(m) = θk(m) + zl,k(m). (24)

Its variance can be evaluated as

σ2
l,k(m) = E

[
|x̂l,k(m)|2

]
= Sk(fm) + E

[
|zl,k(m)|2

]
= Sk(fm) + σ2

zl,k
(m),

(25)

where σ2
zl,k

(m) =
[[

AH
l Al

]−1
]
kk

. Based on rate-distortion
theory [30, Th. 10.3.2] for the quantization of Gaussian
samples2, the minimum achievable distortion Dl,k(m), using
bl,k(m) bits for the quantization of x̂l,k(m), is given by

Dl,k(m) = σ2
l,k(m)2−2bl,k(m) =

[
Sk(fm) + σ2

zl,k
(m)

]
2−2bl,k(m).

(26)

Therefore, the sum distortion resulting from the quantization
of the kth element of the vector x̂l,k(m) for all the subcarriers
at the lth SN can be expressed as

Dl,k =

N−1∑
m=0

Dl,k(m) =

N−1∑
m=0

σ2
l,k(m)2−2bl,k(m). (27)

2It follows from [24, Sec. 2.4], for large N , the elements of the frequency
domain parameter vector θ are uncorrelated. Furthermore, since they are
Gaussian, it follows that they are independent.
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Hence, the optimal bit allocation for the kth element of the
vector x̂l at each SN l, which minimizes the sum-distortion,
subject to a bit-budget B, can be determined as the solution
of the optimization problem

minimize
bl,k(m)

Dl,k =

N−1∑
m=0

σ2
l,k(m)(4)−bl,k(m)

subject to
N−1∑
m=0

bl,k(m) ≤ B.

(28)

Using the KKT framework [27, Sec. 5.5.3], as shown in
technical report [28, Sec.-IV], the closed form expression for
the optimal number of bits b*

l,k(m) at the lth SN is obtained
as

b∗l,k(m) =
B

N
− ln(4)

[[
1

N

N−1∑
m=0

ln
[
σ2
l,k(m)ln(4)

]]

− ln
[
σ2
l,k(m)ln(4)

] ]
. (29)

The procedure to round-off b∗l,k(m) to an integer value, while
constraining the total number of bits to B, is described in
Algorithm 1.

Algorithm 1 Procedure to round off the optimal bit values
b∗l (m) obtained in (29)

1: Input b∗l = [b∗l,k(0), b∗l,k(1), · · · , b∗l,k(N − 1)]T , B
2: Initialize b̃l = 0 ∈ ZN×1

+ and sum = 0.
3: while sum < B do
4: [value,index] = max(b∗l )
5: b̃l(index) = round(value)
6: sum = sum + b̃l(index)
7: b∗l (index) = 0
8: end while
9: Output b̃l

Let xql,k(m) denote the quantized observation corresponding
to x̂l,k(m) obtained using b̃l,k(m) bits as determined above.
The quantization process can be modeled as

xql,k(m) = x̂l,k(m) + zql,k(m) = θk(m) + zl,k(m) + zql,k(m)

= θk(m) + el,k(m), (30)

where zql,k(m) denotes the corresponding quantization noise

that has a mean zero and variance equal to σ2
zql,k

(m) =
∆2
l,k

12 ,
where ∆l,k denotes the quantizer’s step size for the (l, k)th
element [31, Sec. 5.5]. Since the input signal to the quan-
tizer and the resulting quantization noise are uncorrelated
[31, Sec. 6.3], the observation noise after the ZF operation
zl,k(m) and the quantization noise zql,k(m) are also uncorre-
lated. Therefore, the variance of the effective noise el,k(m)
can be expressed as σ2

el,k
(m) = σ2

zl,k
(m) + σ2

zql,k
(m). Let

el(m) ∈ CK×1 denote the stacked vector of effective noise
terms el,k(m) with the covariance matrix of Re,l(m) =

diag
[
σ2
el,1

(m), σ2
el,2

(m), . . . , σ2
el,p

(m)
]
∈ CK×K . The per-

tinent optimization problem of SMSE minimization using

quantized measurements can be formulated similar to (15),
as shown below

minimize
f

fHQ′f

subject to W′f = g, (31)

where, the matrices Q′ ∈ CLNNtq×LNNtq and W′ ∈
CNNrq×NNtp can be obtained by stacking Q′l(m) ∈
CNtq×Ntq and W′

l(m) ∈ CNrK×NtK , similar to (15), with
Q′l(m) =

[(
RT
e,l(m)

)
⊗ HH

l (m)Hl(m)
]

and W′
l(m) =[

ITK ⊗Hl(m)
]
. The closed form expression for the optimal

vector f∗ is determined as

f∗ = Q′
−1

W′H
[
W′Q′

−1
W′H

]−1

g, (32)

from which the individual precoders can be extracted as
described in Section-III.

A. Computational Complexity and Communication Overhead

The computational complexity for calculating the precoding
vector in (16) or (32) is O

((
LNNtq

)3
+ (NNrq)

3
)

. As it
can be observed, the complexity increases as O

(
L3
)
, which

implies that the complexity becomes prohibitively high as the
number of sensors in the WSN increases. Detailed step-by-
step analysis of the computational complexity is given in our
technical report [28, Sec.-I-A].

In the decentralized estimation schemes, the fusion center
computes the precoding vector f followed by feeding back the
precoding matrix Fl to each sensor L. In order to compute
f , the fusion center requires the information pertaining to
other quantities such as the observation matrices Al, the
observation noise covariance matrices Rv,l and the channel
matrices Hl(m). In a typical WSN deployment, since the
fusion center can potentially be situated at a location far from
the SNs, the overhead associated with the transmission of this
information results in a significant power consumption at the
SNs, negatively impacting their lifetime.

Thus, to overcome the drawbacks of increasing compu-
tational complexity and a higher overhead burden, the next
section proposes distributed algorithms for computation of the
optimal precoders for the analog as well as digital schemes
developed in Sections-III and -IV, respectively.

V. DISTRIBUTED IMPLEMENTATION USING ADMM

In the decentralized estimation schemes described previ-
ously, the fusion center acquires the observation matrices
and observation noise statistics at each sensor to determine
the optimal precoders, and transmits this information to the
sensors over ideal feedback links. While such a procedure is
feasible in systems with a few sensor nodes, the computational
and communication overheads incurred by the fusion center
can be prohibitively high for a system with a large number
of sensors. This motivates the distributed solutions proposed
in this section, wherein the sensors design their individual
precoders via purely inter-sensor communication, without bur-
dening the fusion center. The popular alternating direction
method of multipliers (ADMM) offers an excellent framework
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for the development of such a distributed transceiver design
scheme. Starting with the optimization problem in (15), one
can rewrite the objective function and constraint for precoder
computation at each SN l as shown below

minimize
fl

L∑
l=1

fHl Qlfl

subject to
L∑
l=1

Wlfl = g.

(33)

The Lagrangian function for the above optimization problem
is given as

L ({fl} ,λ) =

L∑
l=1

fHl Qlfl +R

[
λH
[ L∑
l=1

Wlfl − g

]]
,

(34)

where λ is the dual variable corresponding to the equal-
ity constraint. Using the KKT conditions [27, Sec. 5.5.3]
∇flL ({f∗l } ,λ

∗) = 2Qlf
∗
l + WH

l λ
∗ = 0, the optimal value

of f∗l is obtained as

f∗l = −1

2
Q−1
l WH

l λ
∗. (35)

The dual function g(λ) for (33) is obtained by substituting f∗l
obtained above in the Lagrangian in (34), yielding

g(λ) = −1

4
λH

[
L∑
l=1

WlQ
−1
l WH

l

]
λ−R

[
λHg

]
. (36)

Hence, the equivalent dual optimization problem is given as

min
λ

λH

[
L∑
l=1

WlQ
−1
l WH

l

]
λ+ 4R

[
λHg

]
. (37)

The above optimization problem can be modified as shown
below in order to solve it in a distributed fashion using the
dual consensus ADMM framework [32], [33].

min
λl

L∑
l=1

[
λHl

[
WlQ

−1
l WH

l

]
λl +

4

L
R
[
λHl g

]]
s.t λl = λ ∀ l = 1, 2, · · · , L.

(38)

It can be seen that the problems in (37) and (38) have the
same solution. The constraint in (38) is termed the consensus
constraint that forces the local variables λl at all SNs to be
identical. Since the above optimization objective is separable,
each SN l can independently determine λl. The augmented
Lagrangian for the problem (38) with a quadratic penalty
function for constraint violation is

Lρ(λl,λ,ψl) =

L∑
l=1

λHl
[
WlQ

−1
l WH

l

]
λl +

4

L
R
[
λHg

]
+R

[
ψHl (λl − λ)

]
+
ρ

2
||λl − λ||22, (39)

where the quantities ρ and ψl denote the penalty parameter and
the dual variable corresponding to the lth sensor, respectively.

Using ADMM, one obtains the following iterative steps at the
lth SN

λ
(k+1)
l = arg min

{λl}
Lρ(λl,λk,ψkl ) (40)

λ(k+1) = arg min
λ

Lρ(λ(k+1)
l ,λ,ψkl ) (41)

ψ
(k+1)
l = ψkl + ρ(λ

(k+1)
l − λ(k+1)). (42)

It is important to note that each sensor l ∈ 1, 2, . . . , L performs
the above steps in (40)-(42) in parallel. The problems in (40)
and (41) correspond to unconstrained quadratic minimization,
which can be solved by computing the gradient and equating
it to zero. The optimal values of λk+1

l and λk+1 can thus be
derived as

λ
(k+1)
l =

[
WlQ

−1
l WH

l +
ρ

2
INNrK

]−1
[
ρ

2
λk − ψ

k
l

2
− 2g

L

]
,

(43)

λ(k+1) =
1

L

L∑
l=1

[
λ

(k+1)
l +

1

ρ
ψkl

]
. (44)

Using (42) and (44), it can be shown that 1
L

∑L
l=1ψ

k
l = 0.

The global optimal variable λ can be updated as

λ(k+1) =
1

L

L∑
l=1

λ
(k+1)
l . (45)

The SNs can broadcast the individual λi to enable the compu-
tation of the parameter λ at each SN. The optimal precoding
vector fi at each SN l can now be determined by substituting
the value of λ in (35). The procedure for distributed evalu-
ation of the precoders with quantized measurements can be
obtained on similar lines by starting with the corresponding
optimization problem in (31) and decoupling it similar to (33).

A. Quantized Sensor Observations
Similarly, one can also develop a framework for distributed

computation of the solution to the optimization problem in (31)
for the quantized sensor observations scenario. The analysis
will result in equations similar to the analog transmission
scenario above at each step, with the matrices Q and W
replaced by Q′ and W′, respectively. The optimal precoding
vector f *

l for each SN l is given as

f∗l = −1

2
(Q′l)

−1(W′
l)
Hλ∗q , (46)

where λ∗q is the optimal dual variable for the quantized SN
observations scenario, with its update equation given as

λ(k+1)
q =

1

L

L∑
l=1

λ
(k+1)
q,l . (47)

The individual SN variables λ(k+1)
q,l and y

(k+1)
q,l for each l, are

updated as

λ
(k+1)
q,l =

[
W′

l(Q
′
l)
−1(W′

l)
H +

ρ

2
INNrK

]−1
[
ρ

2
λkq −

ψkq,l
2
− 2g

L

]
(48)

ψ
(k+1)
q,l = ψkq,l + ρ

[
λ

(k+1)
q,l − λ(k+1)

q

]
, (49)
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respectively.

B. Computational Complexity and Communication Overhead

In the distributed precoder design scheme, the per iteration
computational complexity of evaluating the precoder vector fl,
individual dual variable λl and global dual variable λ using
(35), (43) and (44) is O

(
(NNtq)

3
+ (NNrq)

3
)

, for each SN
l. A detailed analysis is given in our technical report [28, Sec.-
I-B]. It can be observed that the computational requirement
of the distributed scheme is independent of the number of
sensors L and does not grow exponentially as the number of
sensors increases. Hence, this makes the distributed scheme
more suitable for the implementation in large WSNs.

One can also analyze the overhead arising due to message
exchanges in the distributed scheme. In each iteration every
SN l has to share only its dual variable λl with the other
sensors in the WSN. Naturally, the overhead arising due to
such an exchange is negligible in comparison to the amount
of feedback required for the decentralized scheme, wherein
each sensor has to transmit information about the observation,
noise covariance and channel matrices, which also increases
with the number of sensors in the WSN.

C. Convergence Analysis

The convergence of the proposed ADMM based distributed
scheme requires that the optimization objective of each SN l in
(38), given as g(λl) = λHl

[
WlQ

−1
l WH

l

]
λl+

4
LR

[
λHl g

]
, to

be strongly convex in addition to the gradient being Lipschitz
continuous [34, Scenario-2,Tab-1].

For the lth SN, the condition for strong convexity requires
that the Hessian matrix ∇2g(λl) = WlQ

−1
l WH

l � 0, which
is satisfied for the given problem. Hence, the objective function
of each SN l is strongly convex [27, Sec. 3.1.4].

The condition for the gradient of a function g(λl) to be
Lipschitz continuous requires that for a constant βl > 0 and
∀λ̃l,λl ∈ dom(g)∣∣∣∣∣∣∇g (λ̃l)−∇g(λl)

∣∣∣∣∣∣
2
≤ βl

∣∣∣∣∣∣λ̃l − λl∣∣∣∣∣∣
2
.

One can easily verify that the above condition is also satisfied
with βl =

∣∣∣∣WlQ
−1
l WH

l

∣∣∣∣
F

> 0. Hence, the proposed
distributed scheme always converges to the globally optimum
solution.

The analysis thus far considered the availability of perfect
CSI at the fusion center/ SNs. However, frequently in practice,
only imperfect CSI is available due to channel estimation
error and limited feedback. Hence, in order to mitigate the
effect of such imperfections on the system performance, the
next section proposes robust precoder designs considering CSI
uncertainty, modeled using both the probabilistic as well as
deterministic models.

VI. ROBUST PRECODER DESIGNS WITH CSI
UNCERTAINTY

It must be noted that CSI uncertainty is inevitable in practice
due to various limitations such as estimation error due to

a limited pilot overhead, quantization error and feedback
delay. Ignoring the CSI uncertainty, and relying purely on the
available CSI estimate, as is done by the uncertainty agnostic
design, leads to a degradation in the estimation performance
at the fusion center. Therefore, for practical viability, this
section proposes robust precoder/ combiner design procedures
which account for the CSI uncertainty to achieve improved
estimation performance. Furthermore, transceiver techniques
are proposed considering both the popular stochastic [35] and
norm-ball CSI uncertainty [36] models, to achieve average
MSE as well as worst-case MSE minimization, which makes
the study comprehensive in nature. The CSI uncertainty cor-
responding to Hl(m), can be modelled as

Hl(m) = Ĥl(m) + ∆Hl(m), (50)

where Ĥl(m) ∈ CNr×Nt is the available estimate of the chan-
nel at the fusion center and ∆Hl(m) ∈ CNr×Nt represents
the error in the estimate.

A. Robust Precoder Design with Stochastic CSI Uncertainty

In the stochastic CSI uncertainty model, we consider each
element of the estimation error matrix ∆Hl(m) to be dis-
tributed as a zero mean i.i.d. random variable of variance σ2

H .
1) Analog sensor observations: Substituting the expression

for Hl(m) from (50) into (8), and using the estimation
constraint

∑L
l=1 Ĥl(m)Fl(m)Al = IK , the resulting SMSE

can be determined as shown in (51). The results from the
following lemma are being used for the simplification of the
various terms of the SMSE expression in (51).

Lemma 1. Let hl = vec [Hl(m)] ∈ CNrNt×1 be a complex
Gaussian random vector with mean ĥl = vec

[
Ĥl(m)

]
and

covariance matrix σ2
HINrNt . It follows that [37]

E
[
∆Hl(m)XXH∆HH

l (m)
]

= σ2
HTr

[
XXH

]
INr ,

E
[
Ĥl(m)XXH∆HH

l (m)
]

= 0,E
[
∆Hl(m)XXHĤH

l (m)
]

= 0.

(52)

Using the first result of Lemma 1, the first term on the right
hand side of (51) can be averaged as

E

[
N−1∑
m=0

L∑
l=1

[
Tr
[
∆Hl(m)Fl(m)AlRθ(m)AH

l FHl (m)∆HH
l (m)

]]]

= σ2
HNr

L∑
l=1

N−1∑
m=0

fHl (m)Tl(m)fl(m) = α

L∑
l=1

fHl Tlfl

= αfHTf . (53)

The matrix T ∈ CLNNtq×LNNtq is a block diagonal matrix
defined as T = diag [T1,T2, . . . ,TL], where the matrices
Tl ∈ CNNtq×NNtq and Tl(m) ∈ CNtq×Ntq are defined
as Tl = diag

[
T1(m),T2(m), . . . ,TL(m)

]
and Tl(m) =[[

AlRθ(m)AH
l

]T ⊗ INt

]
, for 1 ≤ l ≤ L and 0 ≤ m ≤

N − 1, respectively, and the scalar quantity is α = σ2
HNr. A

detailed explanation is given in the technical report [28, Sec.



10

SMSE =

N−1∑
m=0

L∑
l=1

Tr
[
∆Hl(m)Fl(m)AlRθ(m)AH

l FHl (m)∆HH
l (m)

]
+ Tr

[
Hl(m)Fl(m)Rv,l(m)FHl (m)HH

l (m)
]

+

N−1∑
m=0

Tr [Ru(m)] . (51)

II-A]. Upon substituting Hl(m) from (50) in the second term
of (51), the resultant terms can be simplified as

E

[
L∑
l=1

N−1∑
m=0

Tr
[
∆Hl(m)Fl(m)Rv,l(m)FHl (m)∆HH

l (m)
]]

= α

L∑
l=1

N−1∑
m=0

fHl (m)Pl(m)fl(m) = α

L∑
l=1

fHl Plfl = αfHPf ,

(54)

L∑
l=1

N−1∑
m=0

Tr
[
Ĥl(m)Fl(m)Rv,l(m)FHl (m)ĤH

l (m)
]

=

L∑
l=1

N−1∑
m=0

fHl (m)Cl(m)fl(m) =

L∑
l=1

fHl Clfl = fHCf ,

(55)

where the matrices obey Pl(m) =
[
RH
v,l(m)⊗ INt

]
∈

CqNt×qNt , Pl = diag [Pl(0),Pl(1) . . . ,Pl(N − 1)]
∈ CNqNt×NqNt and P = diag[P1,P2, . . . ,PL] ∈
CLNqNt×LNqNt . Also, the matrix Cl(m) =[
RT
v,l(m)⊗ ĤH

l (m)Ĥl(m)
]
∈ CqNt×qNt and the matrices

C ∈ CLNqNt×LNqNt , Cl ∈ CNqNt×NqNt are block-diagonal
with blocks Sl and Sl(m), respectively. The simplification of
(54) is given in technical report [28, Sec.-II-A]. Using these
results, the average SMSE becomes

Average SMSE = fH [C + α (P + T)] f +

N−1∑
m=0

Tr [Ru(m)]

= fHΩf +

N−1∑
m=0

Tr [Ru(m)] , (56)

where Ω = [C + α (P + T)] ∈ CLNqNt×LNqNt . Hence, the
pertinent optimization problem that minimizes the average
SMSE for this scenario with stochastic uncertainty can be
framed as

minimize
f

fHΩf

subject to W̄f = g,
(57)

where the matrix W̄ has a structure similar to W with H
replaced by Ĥ. The above optimization problem can be solved
using an approach similar to the one employed in (15). The
optimal precoder thus obtained will be similar to (16), with
the matrices Q and W replaced by Ω and W̄, respectively.

2) Quantized sensor observations: For the scenario with
quantized observations and CSI uncertainty, the vector y(m)
received at the fusion center is given in (58), where el(m)
denotes the effective quantization and estimation noise as de-
fined in Section-IV. The SMSE of robust parameter estimation
for the mth subcarrier can be obtained as shown in (59). The
various terms in (59) can be further simplified as shown in the
technical report [28, Sec.-II-B], and the expression of SMSE,
ignoring a constant term that does not affect the optimization
procedure, can be stated in the final compact form of fHΩqf ,
where Ωq = Cq + α (Pq + Tq) ∈ CLNqNt×LNqNt . The
pertinent optimization problem that minimizes the average
SMSE for this scenario with quantized sensor observations
and stochastic CSI uncertainty can be formulated as

minimize
f

fHΩqf

subject to W̄qf = g,
(60)

where the matrix W̄q has a similar structure to W with
H replaced by Ĥ and Al replaced by the identity ma-
trix. Upon solving the above optimization problem, sim-
ilar to (15), the optimal precoder is obtained as f∗ =

Ω−1
q W̄H

q

[
W̄qΩ

−1
q W̄H

q

]−1
g. The next subsection deals with

the scenarios when the channel estimation error is determinis-
tic in nature and robust precoder designs are proposed which
minimize the worst case SMSE for the scenarios having both
analog and quantized sensor observations.

B. Robust Precoder Design with Norm Ball CSI Uncertainty

In this popular alternative model of CSI uncertainty, the
estimation error ∆Hl(m) is modeled using the bounded
uncertainty model of

||∆Hl(m)||F ≤ ε. (61)

This framework is interesting and also challenging since one
has to determine the expression for the worst-case SMSE
followed by designing the optimal precoder that minimizes
it.

1) Analog sensor observations: The first and second terms
of the SMSE expressions in (51) can be simplified as

Tr
[
∆Hl(m)Fl(m)AlRθ(m)AH

l FHl (m)∆HH
l (m)

]
= fHl (m)Jl(m)fl(m) (62)

Tr
[
Hl(m)Fl(m)Rv,l(m)FHl (m)HH

l (m)
]

= fHl (m)Ql(m)fl(m), (63)

where Jl(m) =
[[

Al(m)Rθ(m)AH
l (m)

]
⊗∆HH

l (m)∆Hl(m)
]

=
GH
l (m)Gl(m) ∈ CqNt×qNt and Ql(m) =

LHl (m)Ll(m) ∈ CqNt×qNt , with the matrices
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y(m) =

L∑
l=1

Ĥl(m)Fl(m)θ(m) +

L∑
l=1

∆Hl(m)Fl(m)θ(m) +

L∑
l=1

Hl(m)Fl(m)el(m) + u(m). (58)

SMSE =

L∑
l=1

N−1∑
m=0

Tr

[
∆Hl(m)Fl(m)Rθ(m)FHl (m)∆HH

l (m) + Hl(m)Fl(m)Re,l(m)FHl (m)HH
l (m)

]
+

N−1∑
m=0

Tr [Ru(m)]

(59)

Gl(m) ∈ CKNr×KNt and Ll(m) ∈ CqNr×qNt

defined as Gl(m) =
[
R

H
2

θ (m)AH
l ⊗∆Hl(m)

]
and

Ll(m) =
[
R

1
2

v,l(m)⊗Hl(m)
]
. Substituting the expression

for Hl(m) from the norm-ball CSI uncertainty model
in (50), we can simplify the resultant expression for
Ll(m) =

[
R

1
2

v,l(m)⊗
[
Ĥl(m) + ∆Hl(m)

]]
as

Ll(m) =
[
R

1
2

v,l(m)⊗ Ĥl(m)
]

+
[
R

1
2

v,l(m)⊗∆Hl(m)
]

= L̂l(m) + ∆Ll(m). (64)

As shown in technical report [28, Sec.-II-C], the SMSE
expression, for this norm-ball uncertainty scenario can be
simplified as

SMSE = ‖Lf‖2 + ‖Gf‖2 +

N−1∑
m=0

Tr [Ru(m)] . (65)

Since
∑N−1
m=0 Tr [Ru(m)] is a constant that does not depend on

the precoding matrices, this can be ignored in the subsequent
minimization. The quantity ‖Lf‖2 can be further bounded, as
shown in technical report [28, Sec.-II-C]

‖Lf‖2 ≤ ||L̂f ||2 + η2 ‖f‖2 + 2η||L̂f || ‖f‖ , (66)

where the constant quantity is expressed as η =
√
NLqε2.

The term ‖Gf‖2 can be upper-bounded as

‖Gf‖2 ≤ ‖G‖2F ‖f‖
2 ≤ µ ‖f‖2 , (67)

where the quantity µ is a constant defined as µ =√∑N−1
m=0

∑L
l=1 ε

2Tr (Rθ(m)) ||Al||2F . The last inequality in
(67) follows from the fact that ‖G‖F ≤ µ as shown in
technical report [28]. Substituting the bounds for ‖Lf‖ and
‖Gf‖ from (66) and (67) into (65), yields the net bound for
the SMSE as

SMSE ≤ ||L̂f ||2 +
(
η2 + µ2

)
‖f‖2 + 2η||L̂f || ‖f‖ . (68)

For mathematical tractability, the proposed design procedure
determines the precoders for this scenario via the minimization
of the SMSE bound in (68). The corresponding constrained
optimization problem can be formulated as

minimize
f

||L̂f ||2 +
(
η2 + µ2

)
‖f‖2 + 2η||L̂f || ‖f‖

subject to W̄f = g.
(69)

The above optimization problem is convex in nature, since the
objective is convex and the constraint is linear in terms of
the optimization variable f . It can hence be solved efficiently
using convex solvers such as CVX [29].

2) Quantized sensor observations: For the scenario of
quantized sensor observations, following a procedure sim-
ilar to the previous case and ignoring the constant∑N−1
m=0 Tr [Ru(m)], the SMSE can be equivalently written in

a compact form as

SMSE ≡ ‖Lqf‖2 + ‖Gqf‖2 , (70)

where the matrices Lq and Gq of sizes (NLqNr ×NLqNt)
and (LNKNr × LNqNt), respectively, are block diago-
nal in nature with Lq,l ∈ CNqNr×NqNt and Gq,l ∈
CNKNr×NqNt , which are in turn block diagonal in conjunc-
tion with Lq,l(m) ∈ CqNr×qNt , Gq,l(m) ∈ CKNr×qNt ,
0 ≤ m ≤ N − 1, where the matrices on the principal diag-
onal are defined as Lq,l(m) =

[(
R

1
2

e,l(m)
)
⊗Hl(m)

]
and

Gq,l(m) =
[
R

H
2

θ (m)⊗∆Hl(m)
]
. Following a procedure

similar to [28, Sec. II-C], one can again find the upper bound
of ‖Lqf‖2, as

‖Lqf‖2 ≤ ||L̂qf ||2 + ‖∆Lq‖2F ‖f‖
2

+ 2||L̂qf || ‖∆Lq‖F ‖f‖ ,
≤ ||L̂qf ||2 + (ηq)

2 ‖f‖2 + 2ηq||L̂qf || ‖f‖ , (71)

where L̂q and ∆Lq are block diagonal and constructed
from L̂q,i(m) =

[
R

1
2

e,l(m)⊗ Ĥl(m)
]
∈ CqNr×qNt and

∆Lq,l(m) =
[
R

1
2

e,l(m)⊗∆Hl(m)
]
∈ CqNr×qNt similar to

Lq . The last inequality in (71) follows from the fact that

‖∆Lq‖F ≤
√
ε2
∑N−1
m=0

∑L
l=1 Tr (Re,l(m)) = ηq , which

is obtained using a procedure similar to [28, Sec. II-C],
where Rv,l(m) is replaced by Re,l(m). One can also de-
termine an upper bound for the term ‖Gqf‖2 as ‖Gqf‖2 ≤
‖Gq‖2F ‖f‖

2 ≤ µ2
q ‖f‖

2, where the last inequality follows from

the fact that ‖Gqf‖ ≤
√∑N−1

m=0

∑L
l=1 ε

2Tr (Rθ(m)) = µq ,
which can be derived following a procedure similar to the one
employed in [28, Sec. II-C], with AlRθ(m)AH

l replaced by
Rθ(m). Hence, the optimization problem of minimizing the
worst-case cumulative estimation error with CSI uncertainty
and quantized measurements can be formulated as

minimize
f

||L̂qf ||2 +
(
η2
q + µ2

q

)
‖f‖2 + 2ηq||L̂qf || ‖f‖

subject to W̄qf = g,
(72)

which can once again be solved using convenient tools such
as CVX [29]. The next section presents the simulation results
to illustrate and compare the performance of the proposed
schemes.
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Fig. 2: (a) Normalized SMSE versus SNRFC (in dB) performance for decentralized parameter estimation. (b) Normalized
SMSE performance versus the number of sensors at SNRFC=20 dB.

VII. SIMULATION RESULTS

This section presents our simulation results to demonstrate
the performance of the proposed scheme and to verify the
accuracy of our analytical formulations. The components of
the temporally evolving parameter vector θ̃ of size K = 3 are
generated using the AR-2 model, in which the kth element at
time instant n is given by

θ̃k(n) = φ1,kθ̃k(n− 1) + φ2,kθ̃k(n− 2) + w̃(n), (73)

where w̃ is a circularly-symmetric zero-mean complex Gaus-
sian noise process with variance σ2

w̃, φ1,k are set as 0.6, 0.5,
0.4 for k = 1, 2 and 3, respectively, and φ2,k = 0.2 ∀ k.
The number of subcarriers at each SN and the total number
of sensors in the WSN are N = 64 and L = 10, respectively.
The elements of the observation matrix Al are generated
as i.i.d. complex Gaussian random variables with mean zero
and unit variance. The penalty parameter ρ is set as 10.
The frequency domain channel matrix Hl is obtained by
performing N-point FFT of the 5 tap frequency selective time
domain channel whose each element is generated as CN (0, 1).
The The number of antennas at each SN and the fusion center
is set as Nt = 3 and Nr = 3, respectively. The number
of observations at each subcarrier of each SN is q = 3.
Furthermore, the elements of the observation noise vectors
ṽl(n) and the channel noise vectors ũl(n) are generated
as i.i.d. complex Gaussian random variables, distributed as
CN (0, σ2

vIq) and CN (0, σ2
uINr ), respectively, where σ2

v =
1

SNROB
and σ2

u = 1
SNRFC

. The value of the observation noise
SNR, denoted by SNROB, is set to 10 dB and the SNR at the
fusion center, denoted by SNRFC, is either varied suitably or
mentioned explicitly in the caption of that particular figure.
The normalized SMSE of the parameter estimate is defined as

Normalized SMSE = 1
N

∑N−1
m=0 E

∣∣∣∣∣∣θ̂(m)− θ(m)
∣∣∣∣∣∣2.

Fig. 2(a) depicts the normalized SMSE performance for
the decentralized parameter estimation schemes with perfect
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Fig. 3: Normalized SMSE versus the average number of bits
per subcarrier with quantized sensor observations.

CSI and analog SN observation transmission described in
Section-III, versus SNRFC. It can be seen that upon increasing
SNRFC, the normalized SMSE performance of all the proposed
decentralized estimation schemes improves, and the scheme
of (15), approaches the centralized MMSE benchmark at high
SNRFC. Furthermore, the normalized SMSE performance of
the proposed schemes subject to both total and per sensor
power constraints follow closely. Fig. 2(b) plots the normal-
ized SMSE performance of all the decentralized estimation
schemes with perfect CSI and analog SN observation trans-
mission proposed in Section-III for a varying number of SNs
L in the WSN. It can be seen that as the number of SNs
increases, the proposed decentralized schemes in Section-III
once again yield a MSE performance that is very close to
the centralized MMSE benchmark, thus demonstrating their
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Fig. 4: (a) Normalized SMSE versus the number of iterations for the distributed design based on ADMM with SNRFC= 20
dB (b) Convergence time versus the number of sensors L in the network for different convergence thresholds.
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Fig. 5: (a) Normalized SMSE versus channel uncertainty variance σ2
H for the scenario with stochastic CSI uncertainty. (b)

Normalized SMSE versus channel error bound ε for the scenario with norm ball CSI uncertainty.

efficiency.

Fig. 3 shows the normalized SMSE performance of the
quantized MVDP scheme in vector parameter estimation. The
performance is also compared to that of a quantizer with
uniform bit allocation for all the subcarriers. It can be seen
that the optimal bit allocation scheme yields a significantly
lower MSE than the uniform bit allocation. For instance, for
an MSE of 0.0589 with SNRFC = 20 dB, the former requires
approximately 24 percent fewer bits in comparison to the latter,
thus leading to a saving in terms of the bandwidth. Further-
more, as the total number of bits increases, the optimal bit
allocation scheme approaches the benchmark corresponding

to the transmission of analog observations that have infinite
precision.

Fig. 4(a) shows the normalized SMSE performance versus
iterations, i.e., convergence behaviour, of the ADMM-based
distributed estimation scheme proposed in Section-IV for
analog and quantized SN transmission scenarios. It can be seen
that the distributed solution rapidly converges to the decentral-
ized SMSE performance in very few iterations. This shows the
convergence performance of the proposed distributed scheme.
This also confirms the fact that the overhead of exchanging
the dual variables among sensors is negligible in comparison
to that of transmitting other quantities such as observation
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matrices, observation noise covariances etc. for each sensor
to the fusion center in order to design precoders at the
fusion center and subsequently feeding back the precoders thus
designed to each sensor. Fig. 4(b) depicts the convergence time
of the proposed distributed scheme for different thresholds
versus the number of sensors L in the network. It can be
readily observed that the convergence time depends critically
on the convergence threshold, while not being significantly
affected by the number of sensors.

Figures 5(a) and 5(b) depict the normalized SMSE perfor-
mance of the robust precoder designs developed in Section-
VI for scenarios with CSI uncertainty, for the stochastic and
norm ball uncertainty models, respectively. The performance
of both analog as well as quantized observations is shown in
the figures. It can be readily deduced that the robust precoders
yield a significant performance improvement in comparison
to the corresponding agnostic estimators that directly use
the channel estimate. This demonstrates the suitability of the
proposed framework for decentralized parameter estimation in
practical scenarios in the face of CSI uncertainty. This can
indeed be exploited for significantly boosting the quality of
the parameter estimates computed at the fusion center.

In order to compare the MSE performance of the proposed
scheme, the iterative scheme proposed in [22] has been ex-
tended to a MIMO-OFDM based WSN. Note that the model
in [22] considers only a MIMO WSN system, which has
otherwise no direct bearing on the schemes developed in our
work. Thus, this extension is purely done for the purposes
of comparison due to a dearth of directly relevant schemes
in the existing literature. Their extended iterative design is
run for 7 iterations and the corresponding normalized SMSE
performance is plotted for comparison in Fig. 5. It can be
readily observed that the proposed robust designs, for both the
stochastic and norm ball CSI uncertainty models, outperform
the algorithm in [22] with imperfect CSI. In addition, the
proposed design with perfect CSI also outperforms its counter-
part in [22]. This shows the efficacy of the proposed designs.

Moreover, the proposed techniques are also non-iterative in
nature, which makes them computationally tractable and hence
well suited for application in WSNs.

VIII. CONCLUSION

This paper derived the optimal precoder designs for mini-
mizing the SMSE of decentralized estimation of a spatially
and temporally correlated parameter vector in a MIMO-
OFDM WSN. The designs were initially presented for the
transmission of analog sensor observations. Subsequently, a
rate-distortion theory based framework has been developed
for optimal quantization of the observations for minimizing
the sum distortion. New precoder designs have also been
developed to minimize the SMSE of parameter estimation
with the transmission of quantized observations. In order to
further reduce the computational complexity and overheads of
precoder computation, a dual consensus ADMM-based dis-
tributed precoder design has also been derived, in which each
SN designs its own precoders corresponding to the various
subcarriers with the aid of minimal centralized coordination.
Finally, to ensure resilience of the parameter estimate in the
face of CSI uncertainty, robust precoder designs have also
been derived for the transmission of both analog as well as
quantized observations. Simulation results have characterized
the performance of the proposed designs for various settings
and also verified the various analytical propositions.
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