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Abstract

A complex unit hypergraph is a hypergraph where each vertex-edge in-
cidence is given a complex unit label. We define the adjacency, incidence,
Kirchoff Laplacian and normalized Laplacian of a complex unit hypergraph
and study each of them. Eigenvalue bounds for the adjacency, Kirchoff Lapla-
cian and normalized Laplacian are also found. Complex unit hypergraphs
naturally generalize several hypergraphic structures such as oriented hyper-
graphs, where vertex-edge incidences are labelled as either +1 or −1, as well
as ordinary hypergraphs. Complex unit hypergraphs also generalize their
graphic analogues, which are complex unit gain graphs, signed graphs, and
ordinary graphs.
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1 Introduction

Spectral theory of graphs studies the eigenvalues of the adjacency matrix, the Kirch-
hoff Laplacian and the normalized Laplacian associated to a graph [1, 2]. Such ei-
genvalues are known to identify many, if not most, important qualitative properties
of a given graph, and they can be easily computed with tools from linear algebra.
For these reasons, spectral graph theory finds application in many disciplines and it
has been widely investigated.

As an extension of this theory, graph operators have been introduced and studied
for hypergraphs ; a generalization of graphs in which edges do not necessarily join
only pairs of vertices but rather sets of vertices of any cardinality. This allows
us to model communities of elements of any size, for instance, chemical reactions
involving sets of chemical elements or research articles whose authors are groups of
people and not necessarily pairs. Hypergraphs are therefore very interesting objects
both from the mathematical point of view and due to their applicability in network
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science. The study of their spectra is an active field of research. Moreover, further
generalizations of the theory include the existence of a given coefficient for each
vertex–edge incidence in a hypergraph: oriented hypergraphs [3] have coefficients
in Z \ {0}; chemical hypergraphs [4] have coefficients in {−1, 0,+1}; hypergraphs
with real coefficients [5] have coefficients in R \ {0}. The spectra of the Laplace
operators and the adjacency matrix have been studied for oriented hypergraphs,
while the spectrum of the normalized Laplacian has been investigated for chemical
hypergraphs and hypergraphs with real coefficients. We refer the reader to [6–13]
for a significant, if incomplete, selection of literature on this topic.

Here we introduce a generalization of oriented hypergraphs in which the coeffi-
cient of a vertex–edge incidence is an element of the complex unit circle. We call
them complex unit hypergraphs. We also define their associated adjacency, Kirchhoff
Laplacian and normalized Laplacian matrices, as operators that have entries in the
complex field.

The paper is structured as follows. In Section 2, we give the basic definitions
on complex unit hypergraphs and their associated operators. In Section 3, we in-
vestigate the first properties of the spectra and in Section 4 we discuss hypergraph
transformations and their effect on the eigenvalues. Finally, in Section 5, we provide
several bounds for the smallest and largest eigenvalues of each operator.

2 Basic definitions

Definition 2.1. A hypergraph is a triple (V,E, I) such that:

• V = {v1, . . . , vn} is a finite set of nodes or vertices ;

• E = {e1, . . . , em} is a finite set of edges ;

• I ⊆ V × E is a set of incidences.

If (v, e) ∈ I, v and e are incident and we denote it by v ∈ e. If vi 6= vj are both
incident to a given edge e, then vi and vj are adjacent, denoted vi ∼ vj, and e joins
vi and vj. The set of oriented adjacencies is

#»A := {(e, vi, vj) ∈ E × V × V : e joins vi and vj}.

Definition 2.2. The degree of a vertex vj, denoted by dj = deg(vj), is equal to the
number of incidences containing vj. The size of an edge e is the number of incidences
containing e. A k-edge is an edge of size k. A k-uniform hypergraph is a hypergraph
such that all of its edges have size k. A d-regular hypergraph is a hypergraph where
ever vertex has degree d.

We let T denote the multiplicative group of complex units.

Definition 2.3. A complex unit hypergraph is a quadruple G = (V,E, I, ω) consist-
ing of a hypergraph (V,E, I) and an incidence phase function ω : V ×E → T∪ {0}
that satisfies

ω(v, e) 6= 0 ⇐⇒ v ∈ e.
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From here on we fix a complex unit hypergraph G = (V,E, I, ω). Moreover, we
let

ϕ :
#»A → T,

called the adjacency gain function, be defined by

ϕe(vi, vj) := ϕ(e, vi, vj) = −ω(vi, e) · ω(vj, e)
−1.

Remark 2.4. For all e ∈ E and for all vi 6= vj ∈ e,

ϕe(vi, vj) = −ω(vi, e) · ω(vj, e)
−1

= [−ω(vj, e) · ω(vi, e)
−1]−1

= ϕe(vj, vi)
−1.

Example: See Figure 1 for an example of a complex unit hypergraphG = (V,E, I, ω).
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G

Figure 1: A complex unit hypergraph G. Edge e1 is a 4-edge, e2 is an 2-edge,
and edge e3 has 3-edge. The incidence labels (incidence phase function values) are
colored in blue. Here adjacency gain values for the two oriented adjacencies with
e2 are shown and colored in red. To make this picture much simpler, the other
adjacency gain values are left out.

Remark 2.5. A 2-uniform complex unit hypergraph is a T-oriented gain graph [14].
If one ignores the incidence phase function, but preserves the adjacency gain function
values this is a complex unit gain graph (or T-gain graph). Complex unit hyper-
graphs are the natural hypergraph analogue of these types of gain graphs, of which
this paper generalizes much of their spectral properties [15].

Remark 2.6. An oriented hypergraph [3] is a complex unit hypergraph such that
ω : V × E → {−1, 0,+1}. A 2-uniform oriented hypergraph is an oriented signed
graph [16], which also generalizes bidirected graphs [17]. If one ignores the incidence
labels, but preserves the adjacency signs, this is a signed graph. A signed simple
graph is an oriented hypergraph such that:

- E is a set (that is, j 6= k implies ej 6= ek);

- Each edge contains exactly two vertices.

A simple graph is a signed graph such that, for each edge e, there exists a unique
v ∈ e such that ω(v, e) = 1 and there exists a unique w ∈ e such that ω(w, e) = −1.
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We now define the operators to G. Given a complex matrix M , we denote by
M+ its conjugate transpose.

Definition 2.7. The degree matrix of G is

D := D(G) = diag(deg v1, . . . , deg vn).

The incidence matrix of G is B := B(G) = (Bij)ij ∈ (T ∪ {0})n×m, where

Bij :=

{
ω(vi, ej) if vi ∈ ej,
0 otherwise.

The adjacency matrix of G is A := A(G) = (aij)ij ∈ Cn×n, where

aij :=

{∑
e∈E ϕe(vi, vj) if vi ∼ vj,

0 otherwise.

The Kirchhoff Laplacian of G is the n× n matrix

K := K(G) = D − A;

The dual Kirchhoff Laplacian of G is the m×m matrix

K∗ := K∗(G) = B+B;

The normalized Laplacian of G is the n× n matrix

L := L(G) = D−1K = Id−D−1A;

The dual normalized Laplacian of G is the m×m matrix

L∗ := L∗(G) = B+D−1B.

Definition 2.8. Two hypergraphs G1 and G2 are cospectral with respect to a given
operator M if M(G1) and M(G2) have the same spectrum.

3 First properties

Remark 3.1. If vi and vj are adjacent, then, by Remark 2.4,

aij =
∑
e∈E

ϕe(vi, vj) =
∑
e∈E

ϕe(vj, vi)
−1 =

∑
e∈E

ϕe(vj, vi) = aji.

Therefore, A and K are Hermitian matrices and, in particular, they have real eigen-
values. Moreover, the normalized Laplacian L is similar to the Hermitian matrix

L := L(G) = D1/2LD−1/2 = Id−D−1/2AD−1/2,

hence L and L share the same (real) eigenvalues. Also, x is an eigenvector for L
with eigenvalue λ if and only if D1/2x is an eigenvector for L with eigenvalue λ.
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Remark 3.2. If G is d-regular,

λ is an eigenvalue for K ⇐⇒ λ

d
is an eigenvalue for L

⇐⇒ d− λ is an eigenvalue for A.

Therefore, for regular complex unit hypergraphs, the spectra of K, L and A are all
equivalent, up to an additive or multiplicative constant.

Theorem 3.3. The Kirchhoff Laplacian and the normalized Laplacian can be re-
written as

K = BB+ and L = D−1BB+,

respectively.

Proof. Observe that

(BB+)ij =
m∑
k=1

ω(vi, ek)ω(vj, ek).

If i = j, then the sum simplifies to

m∑
k=1

|ω(vi, ek)|2 = deg vi,

since |ω(vi, ek)| = 1 if vi ∈ ek. If i 6= j, then the sum simplifies to

m∑
k=1

ω(vi, ek)ω(vj, ek) =
m∑
k=1

−ϕek(vi, vj) = −aij.

Therefore, K = D − A = BB+ and L = D−1K = D−1BB+.

Corollary 3.4. K and K∗ have the same non-zero eigenvalues.
Similarly, L and L∗ have the same non-zero eigenvalues.

Proof. It follows from the fact that, if f and g are linear operators, then the non-zero
eigenvalues of fg and gf are the same.

Corollary 3.5. Given a matrix M , let µ0(M) denote the multiplicity of the eigen-
value 0 for M . We have that

µ0(K)− µ0(K
∗) = µ0(L)− µ0(L

∗) = n−m, (1)

µ0(K) = µ0(L) and µ0(K
∗) = µ0(L

∗). (2)

Proof. (1) is an immediate consequence of Corollary 3.4. (2) follows from the fact
that K = BB+ while L = D−1BB+, and from Corollary 3.4.

Proposition 3.6. The eigenvalues of K and L are non-negative.
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Proof. It follows from Theorem 3.3 and Corollary 3.4, since K = BB+ and L has
the same non-zero eigenvalues as

L∗ = B+D−1B = B+D−1/2D−1/2B = (D−1/2B)+D−1/2B.

Proposition 3.7.

ker(K) = ker(L) = ker(B+) and ker(K+) = ker(L+) = ker(B).

Proof. The equality ker(K) = ker(L) follows from the fact that K = BB+ while
L = D−1BB+. Now, given x ∈ Cn,

x ∈ ker(K) ⇐⇒ x+Kx = x+BB+x = (B+x)+B+x = 0 ⇐⇒ x ∈ ker(B+).

This proves the first claim. The second one is analogous.

Given an n× n matrix M with real eigenvalues, we will denote its spectrum by

λ1(M) ≤ . . . ≤ λn(M).

Remark 3.8. Since the trace of a matrix equals the sum of its eigenvalues,

•
∑n

i=1 λi(A) = 0;

•
∑n

i=1 λi(K) =
∑m

j=1 λj(K
∗) =

∑
v∈V deg v =

∑
e∈E |e|;

•
∑n

i=1 λi(L) =
∑m

j=1 λj(L
>) = n.

4 Hypergraph transformations

In this section we discuss some hypergraph transformations and their effect on the
spectra.

4.1 Duality

Definition 4.1. Given G = (V,E, I, ω), its dual hypergraph is G∗ := (E, V, I∗, ω∗),
where

I∗ := {(e, v) : (v, e) ∈ I},

and ω∗ : E × V → T ∪ {0} is defined by

ω∗(e, v) := ω(v, e)−1.

Remark 4.2. Clearly,

• The degree of a vertex in G equals the size of the corresponding edge in G∗

and the size of an edge in G equals the degree of the corresponding vertex in
G∗;

• (G∗)∗ = G;
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• B(G∗) = B(G)+;

• K(G∗) = B+B = K∗(G).

In particular, in view of Corollary 3.5, G and its dual hypergraph have the same
non-zero eigenvalues with respect to the Kirchhoff Laplacian K. The same doesn’t
hold, in general, for the normalized Laplacian.

Proposition 4.3. If G is d-regular and m-uniform, then

L(G∗) =
d

m
· L∗(G) and L∗(G∗) =

d

m
· L(G).

Proof. Since G is d-regular and m-uniform, G∗ is m-regular and d-uniform. Hence,

L(G) =
1

d
· Id ·BB+ and L∗(G) = B+ · 1

d
· Id ·B.

while

L(G∗) =
1

m
· Id ·B+B =

d

m
· L∗(G)

and similarly L∗(G∗) = d
m
· L(G).

4.2 Vertex deletion and edge deletion

Definition 4.4. Given v ∈ V , we let G \ v := (V \ {v}, Ev, Iv, ωv), where:

• Ev := {h \ {v} : e ∈ E},

• Iv := I ∩
(
(V \ {v})× Ev

)
, and

• ωv := ω|(V \{v})×Ev .

We say that G \ v is obtained from G by a weak vertex deletion of v.

We will apply the Cauchy Interlacing Theorem [18, Theorem 4.3.17] in order to
prove the results in this subsection.

Theorem 4.5 (Cauchy Interlacing Theorem). Let M ∈ Cn×n be Hermitian, let
r ∈ {1, . . . , n− 1} and let Mr be an r × r principal submatrix of M . Then

λk(M) ≤ λk(Mr) ≤ λk+r(M) for all k ∈ {1, . . . , n− r}.

Theorem 4.6. Let M be any of the operators A, K or L. If Ĝ is obtained from G
by weak-deleting r vertices,

λk(M(G)) ≤ λk(M(Ĝ)) ≤ λk+r(M(G)) for all k ∈ {1, . . . , n− r}.

Proof. Notice that A(Ĝ) and K(Ĝ) are obtained from A(G) and K(G), respectively,
by removing the r rows and columns corresponding to the deleted vertices. By The-
orem 4.5, this proves the claim for A and K.
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In order to prove the claim for L, recall from Remark 3.1 that L is cospectral to
the Hermitian matrix

L = Id−D−1/2AD−1/2,

therefore it suffices to prove the claim for L. Since L(Ĝ) is obtained from L(G) by
removing the r rows and columns corresponding to the deleted vertices, by Theorem
4.5 this proves the claim.

Definition 4.7. Given e ∈ E, we let G \ e := (V,E \ {e}, Ie, ωe), where:

• Iv := I ∩
(
V × (E \ {e})

)
, and

• ωe := ω|V×(E\{e}).

We say that G \ e is obtained from G by a weak vertex deletion of e. We say that
G is obtained from G \ e by a weak vertex addition of e.

Theorem 4.8. If Ĝ is obtained from G by weak-deleting r edges,

λj−r(K(G)) ≤ λj(K(Ĝ)) ≤ λj(K(G)) for all j ∈ {r − 1, . . . , n}.

Proof. Observe that B(Ĝ) is obtained from B(G) by deleting the columns of B(G)
corresponding to the r deleted edges. Therefore, K∗(Ĝ) = B(Ĝ)+B(Ĝ) is an r ×
r principal submatrix of K∗(G) = B(G)+B(G). By Corollary 3.4 together with
Theorem 4.5, this proves the claim.

Remark 4.9. While the Cauchy Interlacing Theorem can be applied to A, K and L
in the case of weak vertex deletion, it can only be applied to K in the case of weak
edge deletion. Interestingly, in the case of simple graphs there are some known
interlacing results for L in the case of edge deletion [19–21]. Such results don’t
make use of the Cauchy Interlacing Theorem and generalizing them to the case of
hypergraphs remains an open problem.

4.3 Vertex and edge switching

Definition 4.10. A vertex switching function is any function ζ : V → T. Vertex-
switching the complex unit hypergraph G = (V,E, I, ω) means replacing ω with ωζ ,
defined by

ωζ(v, e) = ζ(v)−1ω(v, e);

producing the complex unit hypergraph Gζ = (V,E, I, ωζ).

Similarly, an edge switching function is any function ξ : E → T. Edge-switching
the complex unit hypergraph G = (V,E, I, ω) means replacing ω with ωξ, defined
by

ωξ(v, e) = ξ(e)−1ω(v, e);

producing the complex unit hypergraph Gξ = (V,E, I, ωξ).

Remark 4.11. Vertex-switching and edge-switching are equivalence relations.
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Definition 4.12. For a vertex-switching function ζ, we let

Dn(ζ) := diag(ζ(v1), . . . , ζ(vn)).

For an edge-switching function ξ, we let

Dm(ξ) := diag(ξ(e1), . . . , ξ(em)).

Lemma 4.13. If ζ is a vertex-switching function on G,

• B(Gζ) = Dn(ζ)+B(G);

• A(Gζ) = Dn(ζ)+A(G)Dn(ζ);

• K(Gζ) = Dn(ζ)+K(G)Dn(ζ);

• L(Gζ) = Dn(ζ)+L(G)Dn(ζ).

Moreover, if ξ is and edge-switching function on G,

• B(Gξ) = B(G)Dm(ξ);

• A(Gξ) = A(G);

• K(Gξ) = K(G);

• L(Gξ) = L(G).

Corollary 4.14. For any vertex-switching function ζ, G and Gζ are cospectral with
respect to A, K, K∗, L and L∗.

5 Smallest and largest eigenvalue

In this section we apply the Courant–Fischer–Weyl min-max principle [18, Theorem
4.2.2] and other preliminary lemmas in order to estimate the smallest and the largest
eigenvalue of A, K and L, respectively.

5.1 Preliminary results

Lemma 5.1 (Courant–Fischer–Weyl min-max principle). Let M ∈ Cn×n be Her-
mitian. Then

λ1(M) = min
x∈Cn\{0}

x+Mx

x+x
= min

x+x=1
x+Mx,

and

λn(M) = max
x∈Cn\{0}

x+Mx

x+x
= max

x+x=1
x+Mx.

The vectors realizing such min or max are then are corresponding eigenvectors.
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Proposition 5.2. Let x = (x1, . . . , xn) ∈ Cn. Then

x+Kx =
∑
e∈E

∣∣∑
vj∈e

ω(vj, e)
−1xj

∣∣2,
and

x+Lx =
∑
e∈E

∣∣∣∣∑
vj∈e

ω(vj, e)
−1√

deg(vi)
xj

∣∣∣∣2.
Proof. Observe that, given x = (x1, . . . , xn) ∈ Cn.

(x+B)+ = B+x =

( n∑
j=1

ω(vj, e1)xj, . . . ,
n∑
j=1

ω(vj, em)xj

)
.

Therefore,

x+Kx = x+BB+x

= (x+B)(x+B)+

=
m∑
k=1

∣∣ n∑
j=1

ω(vj, ek)xj
∣∣2

=
m∑
k=1

∣∣ n∑
j=1

ω(vj, ek)
−1xj

∣∣2.
Similarly, since L = D1/2LD−1/2 = D−1/2BB+D−1/2,

x+Lx = x+D−1/2BB+D−1/2x

= (x+D−1/2B)(x+D−1/2B)+

=
m∑
k=1

∣∣∣∣ n∑
j=1

ω(vj, ek)
−1√

deg vj
xj

∣∣∣∣2.

Corollary 5.3. The smallest (largest) eigenvalue of A, K and L, respectively, is
the minimizer (maximizer) of the Rayleigh quotient

RQA(x) :=

∑
vi∼vj

∑
e∈E xi · ϕe(vi, vj) · xj∑n
i=1 xi · xi

,

RQK(x) :=

∑
e∈E

∣∣∑
vj∈e ω(vj, e)

−1xj
∣∣2∑n

i=1 xi · xi
.

and

RQL(x) :=

∑
e∈E

∣∣∑
vj∈e ω(vj, e)

−1xj
∣∣2∑n

i=1 deg vi · xi · xi
,

respectively, among x ∈ Cn×n \ {0}. Moreover, the vectors realizing the minimum
(maximum) are the corresponding eigenvectors.
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Proof. The claim follows directly from Lemma 5.1 for A, and it follows from Lemma
5.1 and Proposition 5.2 for K. Now, Lemma 5.1 and Proposition 5.2 also imply that
the smallest (largest) eigenvalue of L is the minimizer (maximizer) of

RQL(x) :=

∑m
k=1

∣∣∣∣∑n
j=1

ω(vj ,ek)
−1√

deg vj
xj

∣∣∣∣2∑n
i=1 xi · xi

,

with the vectors realizing the minimum (maximum) being the corresponding eigen-
vectors. This proves the claim for L, since x is an eigenvector for L with eigenvalue
λ if and only if D1/2x is an eigenvector for L with eigenvalue λ.

The next lemma [18, Theorem 6.1.1] is often called the Geršgorin disc Theorem.

Lemma 5.4 (Geršgorin). Let M = (mij)ij ∈ Cn×n. The eigenvalues of M lie in the
union of Geršgorin discs

n⋃
i=1

{
z ∈ C : |z −mii| ≤

∑
j 6=i

|mij|
}
.

Definition 5.5. The spectral radius of M ∈ Cn×n is

ρ(M) := max{|λi| : λi is an eigenvalue of M}.

Corollary 5.6. Let M = (mij)ij ∈ Cn×n. Then,

ρ(M) ≤ max
i∈{1,...,n}

(
|mii|+

∑
j 6=i

|mij|
)
.

Proof. By Lemma 5.4, there exists i ∈ {1, . . . , n} such that

ρ(M)− |mii| ≤
∑
j 6=i

|mij|.

That is,

ρ(M) ≤ |mii|+
∑
j 6=i

|mij|.

The claim follows.

5.2 Upper and lower bounds

Let ∆ and ∇ denote the maximum vertex degree and the maximum edge size of G,
respectively.

Theorem 5.7.
ρ(A) ≤ ∆(∇− 1),

and this inequality is sharp.
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Proof. By Corollary 5.6,

ρ(A) ≤ max
i∈{1,...,n}

∑
j 6=i

|aij| = max
i∈{1,...,n}

∑
j 6=i

∑
e∈E:vi,vj∈e

|ϕe(vi, vj)| ≤ ∆(∇− 1).

To see that the above inequality is sharp, let G = (V,E, I, ω) be such that:

• V = {v1, . . . , vn} and E = {e};

• I = V × E;

• ω(v, e) = 1 for all v ∈ V .

Then, G is a 1-regular hypergraph and in particular ∆ = 1, while ∇ = n. The
adjacency matrix A = (aij)ij is such that

aij =

{
0 if i = j,

−1 if i 6= j.

Hence, A = Id−J, where J is the matrix of ones, and K = Id−A = J . This implies
that the eigenvalues of A are 1 − n, with multiplicity 1, and 1, with multiplicity
n− 1. In particular, ρ(A) = n− 1 = ∆(∇− 1).

Definition 5.8. The underlying hypergraph of G = (V,E, I, ω) is G′ := (V,E, I, ω′),
where

ω′(v, e) :=

{
1 if v ∈ e,
0 otherwise.

For a graph Γ, the signless Laplacian Q(Γ) = D(Γ)+A(Γ) has received a growing
amount of attention. When finding upper bounds for the Kirkohff Laplacian spectral
radius of a graph, it turns out that signless Laplacian can be used since λn(K(Γ)) ≤
λn(Q(Γ)). This universal upper bound extends to more general settings of signed
graphs [22] and T-gain graphs [15]. More recently, this has also been generalized
to the setting of oriented hypergraphs [7]. This further generalizes to complex unit
hypergraphs, where all of the above structures can be viewed as specializations of
the first inequality in the following theorem.

Theorem 5.9. Let G′ be the underlying hypergraph of G. Then,

λn(K(G)) ≤ λn(K(G′)) ≤ ∇ ·∆, (3)

and the second inequality in (3) is an equality if and only if G is ∆-regular and
∇-uniform. Similarly,

λn(L(G)) ≤ λn(L(G′)) ≤ ∇, (4)

and the second inequality in (4) is an equality if and only if G is ∇-uniform.
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Proof. Let x = (x1, . . . , xn) ∈ Cn be a unit eigenvector of K(G) with corresponding
eigenvalue λn(K(G)). Then, by Corollary 5.3,

λn(K(G)) =
∑
e∈E

(∑
vi∈e

ω(vi, e)
−1xi

)2

≤
∑
e∈E

(∑
vi∈e

|xi|

)2

≤ λn(K(G′)).

Similarly, let y = (y1, . . . , yn) ∈ Cn be a unit eigenvector of K(G′) with correspond-
ing eigenvalue λn(K(G′)). Then

λn(K(G′)) =
∑
e∈E

(∑
vi∈e

yi

)2

≤
∑
e∈E

(∑
vi∈e

|yi|

)2

≤ λn(K(G′)), (5)

therefore all inequalities in (5) are equalities. Now, for each e ∈ E,(∑
vi∈e

|yi|

)2

=
∑
vi∈e

y2i +
∑

{i,j}:vi 6=vj∈e

2 · |yi| · |yj|

≤
∑
vi∈e

y2i +
∑

{i,i}:vi 6=vi∈e

y2i · y2j

=
∑
vi∈e

y2i +
∑
vi∈e

(|e| − 1) · y2i

= |e| ·
∑
vi∈e

y2i ,

with equality if and only if yi is constant for all vi ∈ e. Hence,

λn(K(G′)) ≤
∑
e∈E

|e| ·

(∑
vi∈e

y2i

)

≤ ∇ ·

( ∑
e∈e,vi∈e

y2i

)

= ∇ ·

(∑
vi∈V

deg vi · y2i

)

≤ ∇ ·∆ ·

(∑
vi∈V

y2i

)
= ∇ ·∆,

with equality if and only if deg vi = ∆ is constant for all vi ∈ V , |e| = ∇ is constant
for all e ∈ E and, for all e, yi is constant for all vi ∈ e. This proves the claim for K.
Now, proving that

λn(L(G)) ≤ λn(L(G′)),

can be done in the same way as for K, by normalizing x = (x1, . . . , xn) ∈ Cn so that∑n
i=1 deg vi · xi = 1. The fact that λn(L(G′)) ≤ ∇, with equality if and only if G is

∇-uniform, is proved in [11].
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Given S ⊆ V , let volS :=
∑

v∈S deg v.

Theorem 5.10. If S ⊆ V is such that, for each v ∈ S, ω(v) := ω(v, e) is constant
for all e ∈ E with v ∈ e, then

λ1(K) ≤
∑

e∈E |e ∩ S|2

|S|
≤ λn(K),

and

λ1(L) ≤
∑

e∈E |e ∩ S|2

volS
≤ λn(L).

Proof. Let S ⊆ V be such that, for each v ∈ S, ω(v) := ω(v, e) is constant for all
e ∈ E with v ∈ e. Let x = (x1, . . . , xn) ∈ Cn be defined by

xi :=

{
ω(vi) if vi ∈ S,
0 otherwise.

Then, by Corollary 5.3,

λ1(K) ≤ RQK(x) =

∑
e∈E

∣∣∑
vj∈e ω(vj, e)

−1xj
∣∣2∑n

i=1 xi · xi
=

∑
e∈E |e ∩ S|2

|S|
≤ λn(K),

and

λ1(L) ≤ RQL(x) =

∑
e∈E

∣∣∑
vj∈e ω(vj, e)

−1xj
∣∣2∑n

i=1 deg vi · xi · xi
=

∑
e∈E |e ∩ S|2

volS
≤ λn(L).

Definition 5.11. A subset S ⊆ V is independent if #(S∩ e) ≤ 1 for all e ∈ E. The
independence number of Γ is

α := max{|S| : S ⊆ V independent}.

Corollary 5.12. If S ⊆ V is independent,

volS

|S|
≤ λn(K).

Proof. Since S is an independent set, by Lemma 4.13 we can assume, up to edge-
switching, that given v ∈ S,

ω(v) := ω(v, e),

is constant for all e ∈ E with v ∈ e. Therefore, by Theorem 5.10,

λ1(K) ≤
∑

e∈E |e ∩ S|2

|S|
=

volS

|S|
≤ λn(K).
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Remark 5.13. The proof used in Corollary 5.12 in the case of L would simply imply
that

λ1(L) ≤ 1 ≤ λn(L),

but this statement is trivial since we know that
∑n

i=1 λi(L) = n, therefore the
average of the eigenvalues is 1. However, the eigenvalues of L and A also relate to
the independence sets. In fact, with the same proof as the one in [12, Theorem 3.4],
one can see that

α ≤ min{|{i : λi(L) ≤ 1}|, |{i : λi(L) ≥ 1}|},

and similarly
α ≤ min{|{i : λi(A) ≤ 0}|, |{i : λi(A) ≥ 0}|}.

Corollary 5.14.
max{∆,∇} ≤ λn(K).

Proof. Let v ∈ V with deg v = ∆. Then, S = {v} is an independent set with
volS = ∆ and |S| = 1. By Corollary 5.12,

∆ ≤ λn(K).

By taking the dual hypergraph, this also implies that

∇ ≤ λm(K(G∗)) = λm(K∗(G)) = λn(K(G)).

Hence,
max{∆,∇} ≤ λn(K).
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