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Abstract
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Complex systems of intracellular biochemical reactions have a central role in regulating cell identities and functions. Bio-
chemical reaction systems are typically studied using the language and tools of graph theory. However, graph representa-
tions only describe pairwise interactions between molecular species and so are not well suited to modelling complex sets
of reactions that may involve numerous reactants and/or products. Here, we make use of a recently developed hypergraph
theory of chemical reactions that naturally allows for higher-order interactions to explore the geometry and quantify func-
tional redundancy in biochemical reactions systems. Our results constitute a general theory of automorphisms for oriented
hypergraphs and describe the effect of automorphism group structure on hypergraph Laplacian spectra.
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Introduction

Many real-world complex systems can be modelled as
graphs in which vertices represent system elements and
edges pairwise interactions between those elements New-
man (2018), Barabasi (2016). This approach allows power-
ful tools from graph theory to be used in the analysis of
complex systems in numerous domains—from technological
networks such as power grids, the internet and world-wide-
web to biological networks such as food webs and molecular
interaction networks, and social networks such as those that
arise in online social media—and has been tremendously
successful in discerning important structural and dynamical
properties of the complex systems they represent Newman
(2003).

Notably, a number of features are common to many
disparate real-world networks, and they have also been

This work was supported by The Alan Turing Institute under the
EPSRC grant EP/N510129/1.

< Raffaella Mulas
R.Mulas@soton.ac.uk

Mathematical Sciences, University of Southampton,
Southampton, UK

Institute of Life Sciences, University of Southampton,
Southampton, UK

3 The Alan Turing Institute, London, UK

Published online: 15 July 2021

observed in classical random graph models, such as the
Barabasi—Albert model and the Watts—Strogatz model.
Examples include the presence of highly connected ‘hub’
vertices Barabasi and Albert (1999), over-representation of
important sub-graphs or ‘motifs’ Milo et al. (2002) and the
presence of local clustering Watts and Strogatz (1998). In
recent years, it has also become clear that many real-world
networks also contain a large amount of structural redun-
dancy (i.e. duplication of structural features), which, in turn,
relates to the robustness and resilience of the underlying
system.

Mathematically, the presence of structural redundancy
is quantified by the graph automorphism group MacArthur
et al. (2008), which identifies structurally equivalent vertices
and edges. This allows tools from group theory to be used in
network analysis and has seen a number of fruitful applica-
tions most notably in studies of robustness and resilience,
efficient communication, group consensus, anonymisation,
compression and patterns of network collective dynamics
such as synchronisation MacArthur et al. (2008), Sanchez-
Garcia (2020), Pecora et al. (2014), Klickstein et al. (2019),
Wu et al. (2010).

Moreover, a powerful tool for studying the structural
properties of graphs is spectral theory. Given a graph I" and
a square matrix associated with I', such as its adjacency
matrix A, its Kirchhoff Laplacian 4 or its normalised Lapla-
cian L, the spectrum of each of these operators, i.e. the mul-
tiset of its eigenvalues, is known to encode many important
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qualitative properties of I Chung (1997), Brouwer and Hae-
mers (2012). Spectral theory studies the properties that are
encoded by the spectra of these operators, and it is common
both in pure mathematics and in applied sciences. Notably,
for regular graphs, i.e. graphs in which all vertices have
the same degree, the spectral properties of A, 4 and L are
equivalent, as their eigenvalues only differ by an additive or
a multiplicative constant in this case. For general graphs,
the spectral properties of the three matrices may be slightly
different, although they are typically strongly related. Also,
since A has both positive and negative eigenvalues while 4
and L have non-negative eigenvalues, studying the spectral
properties of the Laplacian matrices is often easier. Moreo-
ver, the eigenvalues of L are normalised with respect to the
eigenvalues of 4 and they are related to random walks on
graphs, therefore studying spectral theory from the point of
view of the normalised Laplacian is often preferred—and is
the approach we will take here. We refer to Chung (1997),
Brouwer and Haemers (2012) for two classical monographs
on this subject.

However, graph theory-based analyses necessarily only
consider system elements and their pairwise interactions.
In many cases, higher-order interactions are also important
and can play a significant part in system function Carls-
son (2009). There is increasing interest in accounting for
such higher-order structures, for example by encoding sys-
tem structures either as simplicial complexes, which can
be analysed using tools from algebraic topology, or, more
generally, as hypergraphs. Both approaches have proven suc-
cessful and are active areas of current research Zomorodian
(2005), Jost and Mulas (2019), Klamt et al. (2009), Horak
and Jost (2013).

The role of higher-order interactions is particularly
important when considering systems of chemical reactions.
For example, proteins typically perform their functions in
cells by interacting physically to form chemical complexes.
While protein—protein interaction networks enumerate possi-
ble pairwise interactions, they are not able to unambiguously
capture the formation of higher order complexes involving
three or more proteins. More generally, biochemical reac-
tions typically involve more than two reactants and/or prod-
ucts. Thus, complex systems of biochemical reactions are
not well described using the language of graph theory. Yet,
they can be well modelled using hypergraphs which allow
hyperedges involving more than two vertices.

Here we develop a general theory of automorphisms for
oriented hypergraphs: a generalisation of classical hyper-
graphs with the additional structure that each vertex in a
hyperedge is either an input or an output. Oriented hyper-
graphs were introduced in Shi (1992) and, as shown in Jost
and Mulas (2019), they are a useful tool for the modelling
of chemical reaction networks. The adjacency matrix and
the Kirchhoff Laplacian for oriented hypergraphs were
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introduced in Reff and Rusnak (2012), as a generalisation
of the classical ones for graphs. Moreover, the normalised
Laplacian for oriented hypergraphs was introduced in Jost
and Mulas (2019). The spectral properties of these operators,
as well as possible applications, have been widely studied,
see for instance Jost and Mulas (2019), Mulas et al. (2020),
Mulas (2021), Mulas and Zhang (2021), [24], Mulas (2021),
Reff (2014), Chen et al. (2015), Duttweiler and Reff (2019),
Chen et al. (2018), Reff and Rusnak (2012), yet a general
framework to study oriented hypergraph automorphisms is
still lacking. As in the graph case, the spectral properties of
these three operators are similar; the adjacency matrix has
both positive and negative eigenvalues while the Laplacian
matrices have non-negative eigenvalues, and the spectrum
of L is normalised with respect to the spectrum of A. For this
reason, we will focus on spectral properties of the normal-
ised Laplacian matrix here.

The paper is structured as follows. In Sect. 2, we provide
an overview of some required definitions related to oriented
hypergraphs. In Sect. 3, we show how the classical theory of
graph automorphisms can be extended to hypergraphs, and
outline some key differences between graph and hypergraph
automorphisms. In Sect. 4, we propose a further extension
of this theory that takes hyperedge signs into account. We
conclude with a discussion of the relevance of this general
theory to systems of biochemical reactions.

Preliminary definitions

We start by introducing some preliminary definitions. We
keep the set of definitions limited to those strictly needed
for the new results in later sections.

Definition 1 (Shi 1992) An oriented hypergraph is a pair
I' =(V,H), where V is a finite set of vertices and H is a
set such that every element & € H is a pair of disjoint sub-
sets of vertices h = (h,,, h,,,) (input and output), that is,
hj,, h,,; € P(V), where we write P(V) for the power set of
V. The elements of H are called the oriented hyperedges (or,
simply, hyperedges). Changing the orientation of a hyper-
edge h means exchanging its input and output, leading to the
pair (h,,,, h;,). The vertices of a hyperedge h = (h,,, h,,,) are
the elements of h;, U h,,, C V. Two vertices in i,j € h are
called co-oriented ifi,j € h;,ori,j € h,,,, and anti-oriented

otherwise.

out?

A classical hypergraph can be seen as an oriented hyper-
graph if one forgets about the input—output structure. In this
sense, oriented hypergraphs generalise the standard notion
of hypergraphs Bretto (2013). To illustrate these ideas, Fig. 1
shows an oriented hypergraph with five vertices and two
hyperedges.
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Fig. 1 Example hypergraph. An oriented hypergraph with five vertices 1 to 5 and two hyperedges /4, and h,. The hyperedge &, has 1 and 2 as
inputs and 3 as output; the hyperedge 5, has 3 and 4 as inputs and 5 as output

Oriented hypergraphs offer a valid model for biochemi-
cal networks Jost and Mulas (2019). Each vertex may be
thought of as a chemical substance and each hyperedge
as a chemical reaction involving the substances that it
contains as vertices (i.e. reactants and/or products of the
reaction). The input—output structure then represents the
reactant—product structure of chemical reactions.

Definition 2 (Reff and Rusnak 2012) The degree of a vertex
i, denoted deg(i), is the number of hyperedges containing
i. The cardinality of a hyperedge h, denoted card (%), is the
number of vertices in A.

For the rest of this article, let us fix such an oriented
hypergraph I' = (V, H) on n vertices labelled 1,2, ... ,n
(that is, we assume V = {1,2,...,n}) and m hyperedges
hy, ..., h,. We also assume that I" has no vertices of degree
zero, that is, every vertex belongs to at least one hyper-
edge. We define the following matrices associated with I".

Definition 3 (Jost and Mulas 2019) The n X m incidence
matrix of I' is T =I(I') = (Zy,)icy pen> Where

1 ifiehn,
Ly, =41 ifiehn,,
0 otherwise.

We call 7, the sign of vertex i in hyperedge &, and use the
‘+’ or ‘=’ symbols to represent non-zero signs in a graphical
representation of a hypergraph (e.g. Fig. 1).

Definition 4 (Reff and Rusnak 2012) The n X n diagonal
degree matrix of I'' is D = D(I') = (D;;), where

D. = deg(?) ifi=j
im0 otherwise.

Given vertices i,j € V, let us write deg’(i,j) for the
number of hyperedges in which i and j are co-oriented,
and deg™ (i,j) for the number of hyperedges in which
i and j are anti-oriented. Note that deg(i) = deg™(i, i),
deg(i,i) = 0, and they are both symmetric functions:
deg*(i,j) = deg*(j,i) for alli,j € V.

Definition 5 (Reff and Rusnak 2012) The n X n adjacency
matrix of I' is the symmetric matrix A = A(I') = (A;), where
A;; = 0for all i and

Ay 1= deg”(i,j) — deg (i, )) 1)
for alli # j.

Definition 6 (Reff and Rusnak 2012) The n X n Kirch-
hoff Laplacian matrix of I' is A= A(I") = (Aij), where
A=D —A. That is,

4; :=deg*(i,)) — deg™(i.) 2

for all 4, j.

Definition 7 The n X n normalised Laplacian matrix of T,
L=LUI)=(Ly,is L= D™ 'A=171—-D"'A, where I is the
n X n identity matrix. (Note that D is invertible as we have
removed all vertices of degree 0.) The entries of L are

| deg"(i.j) — deg (i)
v deg(i)

3)
forall i, j.

The Kirchhoff Laplacian matrix A is symmetric but the
normalised Laplacian L is not. However, L is isospectral
(meaning that it has the same eigenvalues, counted with
multiplicity) to the symmetric matrix

L :=DY?*LD71/? “4)

(see e.g. (Mulas and Zhang 2021, Remark 2.14)) and thus
has real eigenvalues. Note that the incidence matrix 7
uniquely determines the hypergraph, but, unlike graphs,
this is not true for the adjacency or Laplacian matrices:
two distinct hypergraphs may have the same adjacency, or
Laplacian, matrix. To see this, consider the following simple
example:

Example 1 Let I' = (V,H) and I'" = (V, H') be two hyper-
graphs with vertex set V = {1,2,3} and hyperedge sets

H = {hy,hy}and H' = (I, },}, where
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— hyhas 1 as input and 2 as output, and %, has 1 and 2 as
inputs and 3 as output;

— K has 1 as input and 3 as output, and 4/, has 2 as input
and 3 as output.

These two hypergraphs are distinct (I’ is a graph but I' is
not), but have the same adjacency matrix,

001
A=1001]{.
110

(The cancellation deg(1,2) —deg*(1,2) =1 —1=0for I
is undetected by this matrix.)

The terminology and matrices introduced so far gener-
alise the similar concepts in graph theory. A simple graph
G = (V, E) with a choice of edge orientations is the same
as an oriented hypergraph I' = (V, H) with|h;,| = |h,,,| = 1
for all h = (h;,, h,,,) € H. In this case, the degree of a ver-
tex in I" is the same as in G, d*(i,j) = 0 for all { # j, and
d~(i,j) = 1if i and j are connected by an edge, and 0 oth-
erwise. In particular, the degree, adjacency and Laplacian
matrices for I' coincide with the usual definitions from
graph theory for G.

Collectively, these results therefore indicate that proper-
ties of hypergraphs may be encoded in matrix representa-
tions that have some similarities to those of graphs, as well
as some important differences. In the following sections we
will outline how structural hypergraph properties—in par-
ticular, those related to redundancy—manifest the in hyper-
graph spectra. In order to motivate these general results
we first introduce some established results concerning the
effect of various simple structural features of an oriented
hypergraph on the spectrum of its hypergraph normalised
Laplacian Mulas and Zhang (2021), [24]. Some additional
definitions, below, are needed to understand these features.

Definition 8 The auxiliary graph of I', written G(I"), as the
graph with adjacency matrix A(I"). This is an undirected,
weighted graph with the same vertex set as I" and an edge
between i and j weighted by A; # 0, and no such edge if
A; =0.

Definition 9 (Mulas and Zhang 2021) Two distinct vertices
i and j are duplicate if the corresponding rows (equivalently,
columns) of the adjacency matrix are the same, that is, if
Ay = Ay (or, equivalently, A;; = A;) for all k € V. In par-
ticular, A; =A; =A; =A; =0.

Definition 10 ([24]) Two distinct vertices i and j are twin if

they belong to exactly the same set of hyperedges, with the
same orientations, that is,
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i€eh, < j€h, and i€ h,, < jeEh,,,

for all h = (h;

mn’

h,,.) € H.

Note that if i and j are twin then deg*(i, k) = deg*(j, k),
and hence Ay =A,, for all k€ V\ {i,j}. Moreover,
Aii = Aﬁ = —deg(i) = — deg(j) # 0 (we assume that there are
no vertices of degree zero). Therefore, twin vertices cannot
be duplicate vertices and vice versa.

Recall that, in oriented hypergraphs, every vertex has a
sign for each hyperedge in which it is contained (Defini-
tion 3). By reversing signs, we can define anti-duplicate and
anti-twin vertices, as follows.

Definition 11 Two vertices i and j are anti-duplicate if
the corresponding rows (equivalently, columns) of the
adjacency matrix have opposite sign, that is, if A; = —A;
(or, equivalently, A;; = —Akj) for all k € V. In particular,
Aj=A;=4;=4;=0.

Definition 12 Two vertices i and j are anti-twin if they
belong exactly to the same set of hyperedges, with reversed
orientations, that is,

i€eh, < je€h,, and i€eh,, < jeEh,
for all h = (hy,, h,,,) € H.
Note that if i and j are anti-twin then

deg*(i, k) = deg™(j,k), and hence A, = —A;, for all
k € V\ {i,j}. Moreover, A; = A;; = deg(i) = deg(j). There-
fore, anti-twin vertices cannot be anti-duplicate vertices and
vice versa.

In Mulas and Zhang (2021) it is shown that a hypergraph
that possesses k duplicate vertices will have normalised
Laplacian eigenvalue 1 with multiplicity at least k — 1. Simi-
larly, in [24] it is shown that the presence of k twin vertices
produce the normalised Laplacian eigenvalue 0 with multi-
plicity at least k — 1. It is clear from these elementary results
that structural repetition in a hypergraph naturally gives rise
to repeated eigenvalues, yet the generality of these results is
unclear. In the next section, we interpret these results as part
of a more general theory that relates structural redundancy
(measured by the presence of hypergraph automorphisms)
to hypergraph spectra.

Redundancy and symmetry in hypergraphs

Informally, redundancy results in duplication of hyper-
graph structural features (such as vertices, hyperedges or
collections of vertices and hyperedges). Moreover, from
the results above it is expected that such repetition may
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leave a signature in its eigenvalue spectra. In this sec-
tion, we show that these results are specific instances that
arise from a general theory of hypergraph automorphisms,
adapting the work in MacArthur et al. (2008), MacArthur
and Sanchez-Garcia (2009), Sanchez-Garcia (2020) for
hypergraphs and considering the normalised Laplacian.

Hypergraph automorphisms
Informally, a hypergraph symmetry is a permutation of
the vertices that preserves the hypergraph structure. More

precisely,

Definition 13 A hypergraph automorphism is a permutation
p of the vertices of I that preserves hyperedges, that is,

p(h) = (p(h;,), pCh,,,)) € H forallh=(h,,h,,) €H.
(We write p(S) = {p(s;),...,p(s)} whenever
S={s;,....,5)CV)

Note that, since p is invertible, it also induces a per-
mutation on the hyperedges of I', h — p(h). Moreover,
hypergraph automorphisms induce automorphisms of the
adjacency and Laplacian matrices, as follows.

Definition 14 An adjacency automorphism is a permutation
p of the vertices of a hypergraph that preserves adjacency,
that is, Ap(i)p(/-) = Aij foralll <i,j <n,where A =A(I"). We
can write this in matrix form as

AP = PA, 5)

, where P = (P;) is the permutation matrix representing p,
thatis, P; = 1if p(i) = j, and O otherwise.

Definition 15 A Laplacian automorphism is an adja-
cency automorphism p that also preserves degrees, that is,
deg(i) = deg(p(?)), foralli=1,...,n.

Note that if p is a Laplacian automorphism and P is
the permutation matrix representing p, then AP = PA and
LP = PL, that is, p preserves both the Kirchhoff Laplacian
and the normalised Laplacian. In general we the following
inclusions hold.

Proposition 1 Every hypergraph automorphism is a Lapla-
cian automorphism, and every Laplacian automorphism is
an adjacency automorphism. The reciprocals of these state-
ments hold if I is a simple graph, but not in general.

Schematically, for graphs:

{adjacency automorphisms} = {Laplacian automorphisms},

= {graph automorphisms},

while for hypergraphs:

{adjacency automorphisms} 2 {Laplacian automorphisms},

2 {hypergraph automorphisms}.

Proof If p is a hypergraph automorphism, then clearly
deg*(i,j) = deg* (p(i), p(j)) for all i, j € V and, in particular,
deg(i) = deg™ (i, i) = deg(p(i)). From Eq. (1), it is clear that
p is a Laplacian automorphism. Moreover, by definition, it is
clear that any Laplacian automorphism is also an adjacency
automorphism. The case when I is a simple graph is well-
known and straightforward.

To see that the reciprocals do not necessarily hold in gen-
eral, consider the following example. Let I = (V, H) with
vertex set V = {1,2,3} and hyperedge set H = {h,, h,, h;},
where

— hjhas 1 as input and 2 as output;
— hyhas 2 as input and 1 as output;
— h;only contains the vertex 3, as input.

Then, the adjacency matrix of I is the 3 X 3 zero matrix,
implying that any permutation of the vertices is an adja-
cency automorphism. However, the permutation p such that
p(1) =3 and p(3) = 1is not a Laplacian automorphism,
since deg(1) = 2 # deg(3) = 1. O

We begin by describing duplicate and twin vertices in
terms of automorphisms.

Proposition 2 Let I be an oriented hypergraph.

(1) Iftwo verticesi,j € V are duplicate then the trans-
position p = (i j) is an adjacency automorphism.
(i) If two vertices i,j€V are duplicate and
deg(i) = deg(j), then the transposition p = (ij) is a
Laplacian automorphism.
(iii) Iftwo verticesi,j € V are twin then the transposition
p = (ij) is a hypergraph automorphism.

The converses of these statements are not necessarily true.
(For anti-duplicate and anti-twin vertices, see
Proposition 4.)

Proof (i) Let A = A(I') and let P be the permutation matrix
of the transposition p = (i j) (see Definition 14). Clearly, AP
is the matrix A with the ith and jth rows swapped, and PA is
the matrix A with the ith and jth columns swapped. By Defi-
nition 9, the ith row, respectively, column, of A equals the
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Jjth row, respectively, column, of A. In particular, AP = PA
and p is an adjacency automorphism. The converse is not
true: AP = PA if and only if the ith row (and column) of
A equals the jth row (and column) of A, except possibly
A; =A; #A; =A;. In that situation, p = (i) is an adja-
cency automorphism but i and j are not duplicate.

(ii) This point follows easily from (i) and from the defi-
nition of Laplacian automorphism. The converse is not
true: assume that deg(i) = deg(j) and the ith row (and col-
umn) of A equals the jth row (and column) of A, except
A;=A; #A; =A;. In that case, p = (i)) is a Laplacian
automorphism but i and j are not duplicate.

(iii) If i and j are twin and h € H, then i,j € h;,, or
i,j € h,,, or neither i nor j are vertices in h. In all cases,
p(h) = h, that is, p acts trivially on hyperedges. In particular,
p(h) € H forall h € H and p is a hypergraph automorphism.
The converse is not true: it is easy to find a hypergraph auto-
morphism of the form p = (i j) not acting as trivially on
hyperedges. O

Now, we have formalised the concept of symmetry, or
redundancy, in hypergraphs (as hypergraph automorphisms),
we can deduce some structural and spectral results: namely,
the effects of the presence of symmetry on hypergraph
spectra.

Structural results

In this section, we discuss the effects of the presence of
automorphisms, as defined above, on the hypergraph struc-
ture. To begin we note that the set of Laplacian automor-
phisms together with the composition of permutations forms
a group, denoted Aut (I"). Next, we explain a decomposition
of Aut (I") into permutations with disjoint supports.

Definition 16 Given a permutation of the vertices p, its sup-
port is

supp (p) :={i € V| p(i) #i}.

Two permutations are disjoint if their supports are
non-intersecting.

Following MacArthur et al. (2008), MacArthur and
Séanchez-Garcia (2009), we decompose Aut (I") into a direct
product of subgroups that naturally reflect structural redun-
dancy in I'. Let S be a set of generators of Aut (") not con-
taining the identity, and let S = S, Ul ... U S, be the (unique)
irreducible partition of § into support-disjoint subsets. Let
P; be the subgroup generated by S;. Then,
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is the unique, irreducible direct product decomposition of
Aut(I') (a proof follows that of (MacArthur et al. 2008,
Equation 1), we omit details here). Since it relates to hyper-
graph symmetry, we will call (6) the symmetric decomposi-
tion of Aut (I'). Similarly, for each j =1, ..., /, we denote

M; := U supp (7).

TESj
Using this notation, we call
Vi=VouMU...UM,

the symmetric decomposition of I' where V/; is the set of fixed
points, that is,

Vo=1{ieV|p@)=iforallp e Aut(I)}.

As with any action of a group on a set, we have the concept
of a group orbit.

Definition 17 The orbit of i € V is
O@G) :={p@) : pe Aut(I)}.

From this definition, a natural measure of redundancy
is:

#O — 1

3

n

, where #0O is the number of orbits, and n the number of
vertices, of I'. Note that 1 < #O < n, so

n

0<r< 1<1.

n—
In particular, » = 0 if and only if #O = 1, that is, all vertices
(reactants in a chemical reaction system) are structurally
equivalent. On the other hand, r = n”Tl if and only if #0 = n,
that is, if and only if Aut (I') is trivial and therefore there is
no structural redundancy in I'.

Thus, r quantifies the extent to which the oriented
hypergraph I is constructed from repetition of structurally
equivalent units. Due to the evolutionary processes that form
them, biochemical reaction systems often contain dupli-
cated elements Vazquez et al. (2003), which gives rise to
local symmetries (i.e. permutations of nodes that are close
in the hypergraph that preserve adjacency). In the absence
of global symmetries (i.e. permutations of nodes that are
distant in the hypergraph that preserve adjacency), r is then
a natural measure of structural redundancy: biochemical
systems with a high redundancy are robust in the sense that
damage or deletion of redundant vertices or units (i.e. indi-
vidual chemical reactants, or small sub-systems of chemi-
cal reactions) do not cause catastrophic system failures, but
rather can be absorbed by their replacements and so allow
the system to continue to function normally.
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Spectral results

Recall that the spectrum of a matrix is the multiset of its
eigenvalues. Given I", we define the adjacency spectrum of
I as the spectrum of A(I"), the Kirchhoff Laplacian spec-
trum as the spectrum of A(I") and the normalised Laplacian
spectrum as the spectrum of L(I"). Each of these matrices
has n real eigenvalues and the corresponding eigenvectors
are elements of R”, where n is the number of vertices. We
will see each eigenvector as a function f : V — R” and we
will therefore call them eigenfunctions. We will focus on the
spectrum of the normalised Laplacian L (or, equivalently, on
the spectrum of the matrix £ defined in (4)).

We may factor out any redundancy to obtain the essential
structural characteristics of a reaction system I". In particu-
lar, given a partition of the vertex set V=V, LU...UV,, we
define:

Definition 18 The quotient matrix of Lis Q(L) = (Qyp)yps
where

1
Qaﬂ::IVI' Z L',ij.

al eV, jev,

Note that the quotient matrix can be also written in alter-
native form as follows. Let K := diag(|V,|,....|V,]) and
let S be the n X [ characteristic matrix of the partition, that
is, each column K; is the characteristic vector of the set V.
Then,

(L) =K 'STLS.

Because Q(L) is not necessarily symmetric, it is not imme-
diately clear if it has real spectrum. In fact, it does have real
spectrum, as can be seen from the following definition.

Definition 19 Given a partition of the vertex set
V =V, U...uV, the symmetric quotient matrix of L is the
[ X [ symmetric matrix QY™ (L) with entries

stm . 1 .

= L;.
LIV ,EVGZJEW !

Note that the symmetric quotient matrix of £ can be writ-
ten as

stm — K_]/2ST£SK_1/2 — Kl/zQK_l/z.

Hence, O™ and Q are similar, which implies that they are
isospectral and thus Q(£L) has real spectrum. Moreover, f is
an eigenfunction with eigenvalue A for O™ if and only if
K~!/2f is eigenfunction of A for Q.

From here on, we shall always refer to the quotient
matrix and to the symmetric quotient matrix of £ with
respect to the partition of V into orbits. This partition is

clearly equitable Brouwer and Haemers (2012), i.e. the
row sum of each block of £ with respect to the partition
is constant.

With this notation, we are now in a position to consider
the spectrum of L in terms of its underlying automorphism
group, and therefore to dissect the effect of redundancy on
its spectral properties. The following result is fundamental.

Proposition 3 The spectrum of L consists of the spectrum of
O™ (L) (with eigenfunctions that are constant on each orbit)
together with the eigenvalues belonging to eigenfunctions
that sum to zero on each orbit.

Proof Use the following facts:

— By (Brouwer and Haemers 2012, Lemma 2.3.1), the
spectrum of £ consists of the spectrum of Q(L£) (with
eigenfunctions that are constant on each part of the parti-
tion) together with the eigenvalues belonging to eigen-
functions that sum to zero on each part of the partition.

— By the considerations above, Q(L) is isospectral to
oYM(L).

— By (Mulas and Zhang 2021, Remark 2.14), L is isospec-
tral to £ and fis an eigenfunction with eigenvalue A for
L if and only if D'/2f is eigenfunction of A for L.

— [If fis either constant in the parts of the partition, or it
sums to zero on each part of the partition, then the same
holds for D'/?f, since the vertices belonging to the same
set of the partition have the same degree.

O

This result indicates that the spectrum of I'" can be split

into pieces relating to redundant and unique structural fea-

tures. To deconstruct this decomposition further, the follow-
ing definition is useful:

Definition 20 The quotient network of I', denoted Q(I'), is
the (unique) weighted, undirected graph with self-loops that
has adjacency matrix Q%™ (L).

Using this definition, we can rewrite Proposition 3 as
follows.

Corollary 1 The spectrum of I consists of the adjacency
spectrum of its quotient network (with eigenfunctions that
are constant on each orbit) together with the eigenvalues
belonging to eigenfunctions that sum to zero on each orbit.

Proof 1t follows from Proposition 3, together with the fact
that the adjacency matrix of Q(I") is O*Y™(L). O

To illustrate these ideas, it is useful to consider an
example.

@ Springer
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Example 2 (Hyperflowers) Consider the I-hyperflower with
t-twins introduced in [24] and shown in Fig. 2a. This is a
hypergraph I' = (V, H) with only inputs whose vertex set
can be written as V.= WuV, U... UV, where each V, has
cardinality /, and the hyperedge set is given by

H={h=WuVforj=1,..,1}.

As shown in [24, Lemma 6.12], the spectrum of I' is given
by:

— 0, with multiplicity n — L.

— t, with multiplicity / — 1. As corresponding eigenfunc-
tions, one can choose the ];s for j € {2,...,1}, that are
LonV;,—1lonV;and 0 otherwise.

— n—tl+1t, and the constant functions are the correspond-
ing eigenfunctions.

It’s easy to see that I" has two orbits and, in this case,
the adjacency automorphisms coincide with the Laplacian
automorphisms. Thus, the redundancy of the hyperflower
is r = 1/n. Moreover, the quotient network only has two
vertices & and f representing the core vertices and the
peripheral vertices of I', respectively. Its adjacency matrix
is O™ where

wwm 1 Ay
I
P VIV TV ,-ev;evﬂ \/deg(i) deg())

1 |
= (- 1)) - —
VI

V(= t)(t])
=\ (n—tht

while
A L]
° ® °
° [ ]
B
V30
° .7 3
o & ° o B

Fig.2 The hyperflower. a The 5-hyperflower with 3 twins on 25 ver-
tices. b Its quotient network. In the quotient network, a represents the
core vertices of the hyperflower, while f§ represents the peripheral
vertices
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Therefore, the quotient network has edges (a, §), (a, a)
and (f, f) with weights given by \/(n — t)t, n — tl and t,
respectively.

For the hyperflower in Fig. 2, for instance, the edge (a, )
has weight %, the loop (a, @) has weight n — #/ = 10 and
the loop (f, p) has weight r = 3 (Fig. 2). Therefore

,it is easy to check that the eigenvalues of this matrix are
13 and 0. Therefore, in this case, Proposition 3 tells us that:

— 0Oand 13 are eigenvalues for the hyperflower, with eigen-
functions that are constant on the peripheral vertices and
constant on the core vertices;

— The other eigenvalues of the hyperflower belong to eigen-
functions that sum to zero on the peripheral vertices.

These results are clearly in accordance with the alternative
calculations given above (see also [24, Lemma 6.12]).

Signed automorphisms

The results presented so far straightforwardly extend the
theory of automorphisms of graphs to hypergraphs. How-
ever, oriented hypergraphs have additional automorphisms
induced by sign changes that are distinct from those encoun-
tered for graphs. In this section, we define signed automor-
phisms and study their effect on the hypergraph spectrum.
Although signed automorphisms do not have an immediate
biochemical interpretation, we include discussion of them
here for mathematical completeness.

As shown in (Jost and Mulas 2019, Lemma 49), if we
reverse the role of a vertex v in all the hyperedges in which
it is contained, i.e. if we let it become an input where it is
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an output and vice versa, the spectrum does not change,
while the eigenfunctions differ by a change of sign on
v. More generally, given an oriented hypergraph I', we
can reverse the role of a subset of k vertices 1, ...,k and
obtain a hypergraph I'" which is isospectral to I'. Thus,
we can apply the theory of Laplacian automorphisms to
I'’ and translate the results to I'. We formalise this idea
as follows.

Definition 21 Leto : V = {1,...,n} > {+1,—1}be a sign
function. Given a permutation p of the vertices of I', we
define p° : V — {£1,...,+n} by letting

p°@) 1= 0o() - p)

and we say that p° is a signed permutation of the vertices.

Definition 22 Given a sign function
c:.V=I{l1,...,n} - {+1,—-1}, we let c(I") be the oriented
hypergraph constructed from I" by reversing the role of the
vertices i such that o(i) = —1, in all hyperedges in which
they are contained. We say that the quotient network Q(o (1))
of o(I') is a signed quotient network of I'.

Using these definitions, we can now extend the theory
of hypergraph automorphisms to signed automorphisms.
In particular,

Definition 23 A signed hypergraph automorphism is a
signed permutation p° of the vertices of I" such that

p(h) = (p(hy,). p(h,)) € H(o(I'))  forall h = (hy,.h,,) € H(T).

ou

Similarly, a signed adjacency automorphism is a signed per-
mutation p of the vertices of I' such that
(A(F))p(i)p(j) = (A(U(F)))l.j for all 1 <i,j <nand a signed
Laplacian automorphism is a signed adjacency automor-
phism p° that preserves degrees, that is, deg(i) = deg(p(i)),

foralli=1,...,n.

We denote by Aut g,,.q(I") the group of signed Lapla-
cian automorphisms of I". Moreover,

Definition 24 The signed orbit ofi € V is
Og(i) = {Pa(i) : po- € Autsigned(r)}'

In order to make functions on orbits well defined, given
f Vo> Rwelet

f(=) = —f(),

Using this notation, the following proposition is the ana-
logue of Proposition 2 for anti-twin and anti-duplicate
vertices.

forie V.

Proposition 4 Let I' be an oriented hypergraph. Given
i,j €V, let p be the transposition p = (i,j) and let ¢ be the
sign function such that (i) = —1 and o(k) = +1, for all
ke V\ {i}.

(1) Ifiandj are anti-duplicate then p° is a signed adja-
cency automorphism.
(i) Ifiandj are anti-duplicate and deg(i) = deg(j), then
p° is a signed Laplacian automorphism.
(iii) Ifiandj are anti-twin then p° is a signed hypergraph
automorphism.

The converses of these statements are not necessarily true.
Proof Analogous to the proof of Proposition 2. O

We may now decompose the spectrum of I” taking into
account signed automorphisms.

Proposition 5 Let o : V — {+1,—1}. The spectrum of T’
consists of the adjacency spectrum of Q(o(I')) (with eigen-
functions that are constant on each signed orbit) together
with the eigenvalues belonging to eigenfunctions that sum
to zero on each signed orbit.

Proof By (Jost and Mulas 2019, Lemma 49), it easily fol-
lows that 4 is an eigenvalue for o(I") with eigenfunction fif
and only if A is an eigenvalue for I" with eigenfunction o - f,
where of(i) := o(i) - f(i). Together with Corollary 1, this
proves the claim. O

To illustrate these ideas, we again consider an example.

Example 3 (Signed Hyperflower) For the hyperflower, in
Example 2, all vertices are inputs. If we let one vertex v
become an output in all hyperedges in which it is contained,
then the theory of (unsigned) Laplacian automorphisms
cannot detect this reversal. However, by choosing the sign
functiono : V — {+1, —1}that has value —1 on v and value
+1 otherwise, and applying Proposition 5 its effect can be
detected.

These results finally give us an alternative notion of
redundancy.
Definition 25 The signed redundancy is

. #O° — 1
min _—
o:V-o{+1,-1} n

rsigned =

By choosing o : V — {+1,—1} with +1 on all vertices,
we have O°(i) = O(i) for each i € V, and therefore
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. #O° -1 #0O -1
min < =r.
o:Vo{+1,—-1} n n

. signed =

Hence, the signed redundancy is more precise than the
unsigned redundancy. In the case of Example 3, for instance,
= 1/nwhiler =2/n.

. signed

Example: basic enzyme reactions

In order to illustrate this theory, consider the basic enzyme
reactions:

k_[' Kc‘\l
E+S<ES—E+P, @)

, where k., k, and k,, are reaction rates. To explore the geom-
etry of this system, we will consider two hypergraph models
in which the above chemical substances are represented by
vertices, and the reactions are represented by hyperedges.
The first hypergraph model accounts for forward reactions
only and so represents the system:

k k[‘t‘f
E+S— ES— E+P. ®

We let I' := (V, H), be a hypergraph, where the vertex set
is V :={E,S,ES, P}, the hyperedge set is H := {h;,h,},
and the oriented hyperedges are h; := ({E, S}, {ES}) and
h, := ({ES}, {E, P}). This hypergraph is illustrated in Fig. 3.

The spectrum of I', which is a 2-hyperflower with 1 twin
on 4 vertices, is 0, 0, 1, 3. In this case, there are exactly
two non-zero eigenvalues because there are two hyperedges
and these hyperedges are independent of each other (cf.
Jost and Mulas 2019). The largest eigenvalue is 3 because
the hypergraph is bipartite and each reaction contains
exactly three substances (cf. Mulas 2021). Finally, 1 is an
eigenvalue because the vertices S and P are anti-duplicate.
A corresponding eigenfunction is f : V — R such that
f(8) =f(P)=1and f(ES) =f(S) =0. Since there are no
hypergraph automorphisms, the redundancy is

Fig.3 Hypergraph representing the system given in Eq. (8)
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However, because S and P are anti-duplicate, and E and ES
are anti-twin the system possess signed automorphisms.
These symmetries are not present in graph representations
of this system, and so represent features of the chemical
reaction system that are specifically identified by the hyper-
graph theory. Thus, the signed redundancy differs from the
redundancy. In this case, the signed redundancy is

#O° -1 1

min E—— -

7. =
signed =y Sitl-1) n 4’

and the minimum is achieved for the function
o .V - {+1,—1} that has value 1 on S, ES and value —1
on E, P. Its signed orbits are {S, P} and {E, ES}. It should
be noted that these orbits are coincident with the conserva-
tion laws of the dynamics, but this is not always the case.
Conservation laws do not relate directly to automorphisms
or signed automorphisms, but rather are related to properties
of another Laplacian, as discussed in Jost and Mulas (2019).

These results demonstrate, via a practical empirical
(rather than theoretical) example, that there are geometric
properties that are detected by the signed automorphisms
and are not detected by the automorphisms. However, this
example only accounts for forward reactions. In order to take
the backward reaction in the system described by Eq. (7) into
account, we consider the hypergraph I' U i, := (V,H U hy),
where h; 1= ({ES}, {E, S}). The eigenvalues of I" U 5 coin-
cide with the eigenvalues of I', counted with multiplicity,
but the eigenfunctions and the redundancy change.

The hypergraph I" U h; has two non-zero eigenvalues
(as does I'). In this case, although there are three hyper-
edges (i.e. reactions), only two of them are independent,
since h; and h, are inverse of one another (cf. Jost and Mulas
2019). Moreover, as in the case of I', the largest eigenvalue
is 3 because the hypergraph is bipartite and each reaction
involves three substances (cf. Mulas 2021). Finally, although
P and S are not anti-duplicate in this case, I" U hyis isospec-
tral with I" and so I' U h; inherits the eigenvalue 1 due to
the fact that S and P are anti-duplicate in I". This endows
the I" U h, with a shadow symmetry. As with I, there are no
automorphisms, and so
_#0O-1 3

4 4’

r

However, in this case, the signed redundancy is

. #O° -1 1
min ——— =

o ~
signed =y -1y n 2’

and this minimum is achieved for o : V — {+1, —1} that
has value 1 on S, ES, P and value —1 on E. Its signed orbits
are {S}, {P}and { E, ES}. The difference arises because S and
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P are now not anti-duplicate; hence, they do not belong to a
same signed orbit.

This second example has shown that, while adding
reversed hyperedges (reactions) does not change the hyper-
graph spectrum, the eigenfunctions, signed automorphisms
and signed redundancy can change. Moreover, certain
spectral properties of the hypergraph that includes reversed
hyperedges are derived from the structure of the simpler
hypergraph without them. Thus, there is a motivation for
studying simplified systems without losing structural
information.

Discussion

Biochemical reaction systems often contain duplication
which manifests as symmetry in their underlying hyper-
graphs. Here, we have introduced and studied automor-
phisms for oriented hypergraphs. We focused on the normal-
ised Laplacian, which is known to encode many qualitative
properties of a hypergraph, and have generalised the known
theory for graphs Chung (1997), Brouwer and Haemers
(2012). We have shown that, while the generalisation to
the case of classical hypergraphs is intuitive and relatively
straightforward, for a complete theory in the case of ori-
ented hypergraphs, one needs additional constructions, such
as the signed automorphisms and signed redundancy. Thus,
the general theory we have introduced extends that of graphs
and hypergraphs to the more general—and appropriate for
modelling complicated biochemical reaction systems inside
a cell—case of oriented hypergraphs. To illustrate this the-
ory we have shown, with a simple practical example, that it
can be used to practically study redundancy in biochemical
systems.

There has been some prior work on spectral graph
theory applied to biochemical networks, see for instance
MacArthur et al. (2008), MacArthur and Sanchez-Garcia
(2009), Sanchez-Garcia (2020), Lesne (2006), Mason and
Verwoerd (2007), Perkins and Langston (2009), Banerjee
and Jost (2009), Huang et al. (2019), and there is a grow-
ing literature on how to use hypergraphs for modelling bio-
chemical networks. In Estrada and Rodriguez-Veldzquez
(2006), for example, the concepts of subgraph centrality
and clustering are generalised to the case of hypergraphs,
and various practical examples, including examples from
biology, are given. Similarly, in [39], a notion of curvature
for hypergraphs is proposed and applied to the analysis
of the E. coli metabolism. In Klamt et al. (2009), it is
argued—using a range of practical examples—that bio-
logical networks that are typically modelled as graphs can
also be fruitfully modelled using hypergraphs. Some prac-
tical algorithms that do not involve spectral theory, as well
as network statistics for hypergraphs, are also discussed.

In Flamm et al. (2015), some mathematical foundations
(which again do not include spectral theory) for the study
of hypergraphs in the context of chemical reaction systems
and biological evolution are given. Similarly, in Ritz et al.
(2014), Schwob et al. (2019), hypergraphs are used as a
model for signalling pathways in cellular biology. In Ritz
et al. (2014), in particular, it is noted that, since hyper-
graph theory is less well-known than graph theory, there is
a need to develop theoretical and algorithmic foundations
for hypergraphs.

However, although there is a growing literature on both
spectral graph theory applied to biology and hypergraph
modelling of biochemical networks, we are still lacking
theoretical tools needed to apply spectral hypergraph the-
ory to biochemical networks. In this paper, we have taken
a step further in this direction.

In the future it will be interesting to analyse large,
complex biochemical networks using spectral hyper-
graph methods. There are a number of publicly available,
curated, repositories of biochemical reaction systems
Bader et al. (2001), Bader et al. (2003), Szklarczyk et al.
(2016), S.B.R. Group (2021), Kanehisa et al. (2002). Once
in a hypergraph format, spectral properties of such empiri-
cal networks can then be determined by considering their
associated matrices such as the normalised Laplacian,
which we have focused on here. As noted, the eigenval-
ues of these matrices encode many important qualitative
properties of the underlying hypergraph Jost and Mulas
(2019), Mulas et al. (2020), Mulas (2021), Mulas and
Zhang (2021), [24], Mulas (2021), Reff (2014), Chen et al.
(2015), Duttweiler and Reff (2019), Chen et al. (2018),
Reff and Rusnak (2012), including its symmetries and
associated redundancy, and these properties, in turn, shed
light on the essential structural properties of the system
under study. By converting a geometric problem into an
algebraic one the benefits of this approach are numerous,
since they make the structure of the system amenable to
detailed analysis. These benefits include computational
aspects, since the spectrum of a square matrix can be com-
puted with relatively little computational effort.

Moreover, the tools presented here may also be useful
in the analysis of chemical reaction networks more gener-
ally—particularly in applications that involve complex sets
of reactions, for example as encountered in some industrial
processes, where redundancy may also be ubiquitous.
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