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Abstract
Complex systems of intracellular biochemical reactions have a central role in regulating cell identities and functions. Bio-
chemical reaction systems are typically studied using the language and tools of graph theory. However, graph representa-
tions only describe pairwise interactions between molecular species and so are not well suited to modelling complex sets 
of reactions that may involve numerous reactants and/or products. Here, we make use of a recently developed hypergraph 
theory of chemical reactions that naturally allows for higher-order interactions to explore the geometry and quantify func-
tional redundancy in biochemical reactions systems. Our results constitute a general theory of automorphisms for oriented 
hypergraphs and describe the effect of automorphism group structure on hypergraph Laplacian spectra.

Keywords Complex systems · Hypergraphs · Spectral properties · Symmetry

Introduction

Many real-world complex systems can be modelled as 
graphs in which vertices represent system elements and 
edges pairwise interactions between those elements New-
man (2018), Barabási (2016). This approach allows power-
ful tools from graph theory to be used in the analysis of 
complex systems in numerous domains—from technological 
networks such as power grids, the internet and world-wide-
web to biological networks such as food webs and molecular 
interaction networks, and social networks such as those that 
arise in online social media—and has been tremendously 
successful in discerning important structural and dynamical 
properties of the complex systems they represent Newman 
(2003).

Notably, a number of features are common to many 
disparate real-world networks, and they have also been 

observed in classical random graph models, such as the 
Barabási–Albert model and the Watts–Strogatz model. 
Examples include the presence of highly connected ‘hub’ 
vertices Barabási and Albert (1999), over-representation of 
important sub-graphs or ‘motifs’ Milo et al. (2002) and the 
presence of local clustering Watts and Strogatz (1998). In 
recent years, it has also become clear that many real-world 
networks also contain a large amount of structural redun-
dancy (i.e. duplication of structural features), which, in turn, 
relates to the robustness and resilience of the underlying 
system.

Mathematically, the presence of structural redundancy 
is quantified by the graph automorphism group MacArthur 
et al. (2008), which identifies structurally equivalent vertices 
and edges. This allows tools from group theory to be used in 
network analysis and has seen a number of fruitful applica-
tions most notably in studies of robustness and resilience, 
efficient communication, group consensus, anonymisation, 
compression and patterns of network collective dynamics 
such as synchronisation MacArthur et al. (2008), Sánchez-
García (2020), Pecora et al. (2014), Klickstein et al. (2019), 
Wu et al. (2010).

Moreover, a powerful tool for studying the structural 
properties of graphs is spectral theory. Given a graph �  and 
a square matrix associated with �  , such as its adjacency 
matrix A, its Kirchhoff Laplacian � or its normalised Lapla-
cian L, the spectrum of each of these operators, i.e. the mul-
tiset of its eigenvalues, is known to encode many important 

This work was supported by The Alan Turing Institute under the 
EPSRC grant EP/N510129/1.

 * Raffaella Mulas 
 R.Mulas@soton.ac.uk

1 Mathematical Sciences, University of Southampton, 
Southampton, UK

2 Institute of Life Sciences, University of Southampton, 
Southampton, UK

3 The Alan Turing Institute, London, UK

http://orcid.org/0000-0003-4995-6479
http://crossmark.crossref.org/dialog/?doi=10.1007/s12064-021-00353-7&domain=pdf


 Theory in Biosciences

1 3

qualitative properties of �  Chung (1997), Brouwer and Hae-
mers (2012). Spectral theory studies the properties that are 
encoded by the spectra of these operators, and it is common 
both in pure mathematics and in applied sciences. Notably, 
for regular graphs, i.e. graphs in which all vertices have 
the same degree, the spectral properties of A, � and L are 
equivalent, as their eigenvalues only differ by an additive or 
a multiplicative constant in this case. For general graphs, 
the spectral properties of the three matrices may be slightly 
different, although they are typically strongly related. Also, 
since A has both positive and negative eigenvalues while � 
and L have non-negative eigenvalues, studying the spectral 
properties of the Laplacian matrices is often easier. Moreo-
ver, the eigenvalues of L are normalised with respect to the 
eigenvalues of � and they are related to random walks on 
graphs, therefore studying spectral theory from the point of 
view of the normalised Laplacian is often preferred—and is 
the approach we will take here. We refer to Chung (1997), 
Brouwer and Haemers (2012) for two classical monographs 
on this subject.

However, graph theory-based analyses necessarily only 
consider system elements and their pairwise interactions. 
In many cases, higher-order interactions are also important 
and can play a significant part in system function Carls-
son (2009). There is increasing interest in accounting for 
such higher-order structures, for example by encoding sys-
tem structures either as simplicial complexes, which can 
be analysed using tools from algebraic topology, or, more 
generally, as hypergraphs. Both approaches have proven suc-
cessful and are active areas of current research Zomorodian 
(2005), Jost and Mulas (2019), Klamt et al. (2009), Horak 
and Jost (2013).

The role of higher-order interactions is particularly 
important when considering systems of chemical reactions. 
For example, proteins typically perform their functions in 
cells by interacting physically to form chemical complexes. 
While protein–protein interaction networks enumerate possi-
ble pairwise interactions, they are not able to unambiguously 
capture the formation of higher order complexes involving 
three or more proteins. More generally, biochemical reac-
tions typically involve more than two reactants and/or prod-
ucts. Thus, complex systems of biochemical reactions are 
not well described using the language of graph theory. Yet, 
they can be well modelled using hypergraphs which allow 
hyperedges involving more than two vertices.

Here we develop a general theory of automorphisms for 
oriented hypergraphs: a generalisation of classical hyper-
graphs with the additional structure that each vertex in a 
hyperedge is either an input or an output. Oriented hyper-
graphs were introduced in Shi (1992) and, as shown in Jost 
and Mulas (2019), they are a useful tool for the modelling 
of chemical reaction networks. The adjacency matrix and 
the Kirchhoff Laplacian for oriented hypergraphs were 

introduced in Reff and Rusnak (2012), as a generalisation 
of the classical ones for graphs. Moreover, the normalised 
Laplacian for oriented hypergraphs was introduced in Jost 
and Mulas (2019). The spectral properties of these operators, 
as well as possible applications, have been widely studied, 
see for instance Jost and Mulas (2019), Mulas et al. (2020), 
Mulas (2021), Mulas and Zhang (2021), [24], Mulas (2021), 
Reff (2014), Chen et al. (2015), Duttweiler and Reff (2019), 
Chen et al. (2018), Reff and Rusnak (2012), yet a general 
framework to study oriented hypergraph automorphisms is 
still lacking. As in the graph case, the spectral properties of 
these three operators are similar; the adjacency matrix has 
both positive and negative eigenvalues while the Laplacian 
matrices have non-negative eigenvalues, and the spectrum 
of L is normalised with respect to the spectrum of � . For this 
reason, we will focus on spectral properties of the normal-
ised Laplacian matrix here.

The paper is structured as follows. In Sect. 2, we provide 
an overview of some required definitions related to oriented 
hypergraphs. In Sect. 3, we show how the classical theory of 
graph automorphisms can be extended to hypergraphs, and 
outline some key differences between graph and hypergraph 
automorphisms. In Sect. 4, we propose a further extension 
of this theory that takes hyperedge signs into account. We 
conclude with a discussion of the relevance of this general 
theory to systems of biochemical reactions.

Preliminary definitions

We start by introducing some preliminary definitions. We 
keep the set of definitions limited to those strictly needed 
for the new results in later sections.

Definition 1 (Shi 1992) An oriented hypergraph is a pair 
� = (V ,H) , where V is a finite set of vertices and H is a 
set such that every element h ∈ H is a pair of disjoint sub-
sets of vertices h = (hin, hout) (input and output), that is, 
hin, hout ∈ P(V) , where we write P(V) for the power set of 
V. The elements of H are called the oriented hyperedges (or, 
simply, hyperedges). Changing the orientation of a hyper-
edge h means exchanging its input and output, leading to the 
pair (hout, hin) . The vertices of a hyperedge h = (hin, hout) are 
the elements of hin ∪ hout ⊆ V  . Two vertices in i, j ∈ h are 
called co-oriented if i, j ∈ hin or i, j ∈ hout , and anti-oriented 
otherwise.

A classical hypergraph can be seen as an oriented hyper-
graph if one forgets about the input–output structure. In this 
sense, oriented hypergraphs generalise the standard notion 
of hypergraphs Bretto (2013). To illustrate these ideas, Fig. 1 
shows an oriented hypergraph with five vertices and two 
hyperedges.
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Oriented hypergraphs offer a valid model for biochemi-
cal networks Jost and Mulas (2019). Each vertex may be 
thought of as a chemical substance and each hyperedge 
as a chemical reaction involving the substances that it 
contains as vertices (i.e. reactants and/or products of the 
reaction). The input–output structure then represents the 
reactant–product structure of chemical reactions.

Definition 2 (Reff and Rusnak 2012) The degree of a vertex 
i, denoted deg(i) , is the number of hyperedges containing 
i. The cardinality of a hyperedge h, denoted card (h) , is the 
number of vertices in h.

For the rest of this article, let us fix such an oriented 
hypergraph � = (V ,H) on n vertices labelled 1, 2,… , n 
(that is, we assume V = {1, 2,… , n} ) and m hyperedges 
h1,… , hm . We also assume that �  has no vertices of degree 
zero, that is, every vertex belongs to at least one hyper-
edge. We define the following matrices associated with � .

Definition 3 (Jost and Mulas 2019) The n × m incidence 
matrix of �  is I = I(� ) = (Iih)i∈V ,h∈H , where

We call Iih the sign of vertex i in hyperedge h, and use the 
‘ + ’ or ‘−’ symbols to represent non-zero signs in a graphical 
representation of a hypergraph (e.g. Fig. 1).

Definition 4 (Reff and Rusnak 2012) The n × n diagonal 
degree matrix of �  is D = D(� ) = (Dij) , where

Given vertices i, j ∈ V  , let us write deg+(i, j) for the 
number of hyperedges in which i and j are co-oriented, 
and deg−(i, j) for the number of hyperedges in which 
i and j are anti-oriented. Note that deg(i) = deg+(i, i) , 
deg−(i, i) = 0 , and they are both symmetric functions: 
deg±(i, j) = deg±(j, i) for all i, j ∈ V .

Iih ∶=

⎧⎪⎨⎪⎩

1 if i ∈ hin
−1 if i ∈ hout
0 otherwise.

Dij ∶=

{
deg(i) if i = j

0 otherwise.

Definition 5 (Reff and Rusnak 2012) The n × n adjacency 
matrix of �  is the symmetric matrix A = A(� ) = (Aij) , where 
Aii = 0 for all i and

for all i ≠ j.

Definition 6 (Reff and Rusnak 2012) The n × n Kirch-
hoff Laplacian matrix of �  is � = �(� ) = (�ij) , where 
� = D − A . That is,

for all i, j.

Definition 7 The n × n normalised Laplacian matrix of �  , 
L = L(� ) = (Lij) , is L = D−1� = I − D−1A , where I is the 
n × n identity matrix. (Note that D is invertible as we have 
removed all vertices of degree 0.) The entries of L are

for all i, j.

The Kirchhoff Laplacian matrix � is symmetric but the 
normalised Laplacian L is not. However, L is isospectral 
(meaning that it has the same eigenvalues, counted with 
multiplicity) to the symmetric matrix

(see e.g. (Mulas and Zhang 2021, Remark 2.14)) and thus 
has real eigenvalues. Note that the incidence matrix I  
uniquely determines the hypergraph, but, unlike graphs, 
this is not true for the adjacency or Laplacian matrices: 
two distinct hypergraphs may have the same adjacency, or 
Laplacian, matrix. To see this, consider the following simple 
example:

Example 1 Let � = (V ,H) and � � = (V ,H�) be two hyper-
graphs with vertex set V = {1, 2, 3} and hyperedge sets 
H = {h1, h2} and H� = {h�

1
, h�

2
} , where

(1)Aij ∶= deg−(i, j) − deg+(i, j)

(2)�ij ∶= deg+(i, j) − deg−(i, j)

(3)Lij ∶=
deg+(i, j) − deg−(i, j)

deg(i)

(4)L ∶= D1∕2LD−1∕2

1 + 2+
3
+− 4+ 5−h1 h2

Fig. 1  Example hypergraph. An oriented hypergraph with five vertices 1 to 5 and two hyperedges h
1
 and h

2
 . The hyperedge h

1
 has 1 and 2 as 

inputs and 3 as output; the hyperedge h
2
 has 3 and 4 as inputs and 5 as output
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– h1 has 1 as input and 2 as output, and h2 has 1 and 2 as 
inputs and 3 as output;

– h′
1
 has 1 as input and 3 as output, and h′

2
 has 2 as input 

and 3 as output.

These two hypergraphs are distinct ( � ′ is a graph but �  is 
not), but have the same adjacency matrix,

(The cancellation deg−(1, 2) − deg+(1, 2) = 1 − 1 = 0 for �  
is undetected by this matrix.)

The terminology and matrices introduced so far gener-
alise the similar concepts in graph theory. A simple graph 
G = (V ,E) with a choice of edge orientations is the same 
as an oriented hypergraph � = (V ,H) with |hin| = |hout| = 1 
for all h = (hin, hout) ∈ H . In this case, the degree of a ver-
tex in �  is the same as in G, d+(i, j) = 0 for all i ≠ j , and 
d−(i, j) = 1 if i and j are connected by an edge, and 0 oth-
erwise. In particular, the degree, adjacency and Laplacian 
matrices for �  coincide with the usual definitions from 
graph theory for G.

Collectively, these results therefore indicate that proper-
ties of hypergraphs may be encoded in matrix representa-
tions that have some similarities to those of graphs, as well 
as some important differences. In the following sections we 
will outline how structural hypergraph properties—in par-
ticular, those related to redundancy—manifest the in hyper-
graph spectra. In order to motivate these general results 
we first introduce some established results concerning the 
effect of various simple structural features of an oriented 
hypergraph on the spectrum of its hypergraph normalised 
Laplacian Mulas and Zhang (2021), [24]. Some additional 
definitions, below, are needed to understand these features.

Definition 8 The auxiliary graph of �  , written G(� ) , as the 
graph with adjacency matrix A(� ) . This is an undirected, 
weighted graph with the same vertex set as �  and an edge 
between i and j weighted by Aij ≠ 0 , and no such edge if 
Aij = 0.

Definition 9 (Mulas and Zhang 2021) Two distinct vertices 
i and j are duplicate if the corresponding rows (equivalently, 
columns) of the adjacency matrix are the same, that is, if 
Aik = Ajk (or, equivalently, Aki = Akj ) for all k ∈ V  . In par-
ticular, Aij = Aji = Aii = Ajj = 0.

Definition 10 ([24]) Two distinct vertices i and j are twin if 
they belong to exactly the same set of hyperedges, with the 
same orientations, that is,

A =

⎛
⎜⎜⎝

0 0 1

0 0 1

1 1 0

⎞
⎟⎟⎠
.

for all h = (hin, hout) ∈ H.

Note that if i and j are twin then deg±(i, k) = deg±(j, k) , 
and hence Aik = Ajk , for all k ∈ V ⧵ {i, j} . Moreover, 
Aij = Aji = − deg(i) = − deg(j) ≠ 0 (we assume that there are 
no vertices of degree zero). Therefore, twin vertices cannot 
be duplicate vertices and vice versa.

Recall that, in oriented hypergraphs, every vertex has a 
sign for each hyperedge in which it is contained (Defini-
tion 3). By reversing signs, we can define anti-duplicate and 
anti-twin vertices, as follows.

Definition 11 Two vertices i and j are anti-duplicate if 
the corresponding rows (equivalently, columns) of the 
adjacency matrix have opposite sign, that is, if Aik = −Ajk 
(or, equivalently, Aki = −Akj ) for all k ∈ V  . In particular, 
Aij = Aji = Aii = Ajj = 0.

Definition 12 Two vertices i and j are anti-twin if they 
belong exactly to the same set of hyperedges, with reversed 
orientations, that is,

for all h = (hin, hout) ∈ H.

Note  tha t  i f  i  and  j  a re  ant i - twin  then 
deg±(i, k) = deg∓(j, k) , and hence Aik = −Ajk  , for all 
k ∈ V ⧵ {i, j} . Moreover, Aij = Aji = deg(i) = deg(j) . There-
fore, anti-twin vertices cannot be anti-duplicate vertices and 
vice versa.

In Mulas and Zhang (2021) it is shown that a hypergraph 
that possesses k duplicate vertices will have normalised 
Laplacian eigenvalue 1 with multiplicity at least k − 1 . Simi-
larly, in [24] it is shown that the presence of k twin vertices 
produce the normalised Laplacian eigenvalue 0 with multi-
plicity at least k − 1 . It is clear from these elementary results 
that structural repetition in a hypergraph naturally gives rise 
to repeated eigenvalues, yet the generality of these results is 
unclear. In the next section, we interpret these results as part 
of a more general theory that relates structural redundancy 
(measured by the presence of hypergraph automorphisms) 
to hypergraph spectra.

Redundancy and symmetry in hypergraphs

Informally, redundancy results in duplication of hyper-
graph structural features (such as vertices, hyperedges or 
collections of vertices and hyperedges). Moreover, from 
the results above it is expected that such repetition may 

i ∈ hin ⟺ j ∈ hin and i ∈ hout ⟺ j ∈ hout,

i ∈ hin ⟺ j ∈ hout and i ∈ hout ⟺ j ∈ hin,
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leave a signature in its eigenvalue spectra. In this sec-
tion, we show that these results are specific instances that 
arise from a general theory of hypergraph automorphisms, 
adapting the work in MacArthur et al. (2008), MacArthur 
and Sánchez-García (2009), Sánchez-García (2020) for 
hypergraphs and considering the normalised Laplacian.

Hypergraph automorphisms

Informally, a hypergraph symmetry is a permutation of 
the vertices that preserves the hypergraph structure. More 
precisely,

Definition 13 A hypergraph automorphism is a permutation 
p of the vertices of �  that preserves hyperedges, that is,

( We  w r i t e  p(S) = {p(s1),… , p(sk)} w h e n e v e r 
S = {s1,… , sk} ⊆ V .)

Note that, since p is invertible, it also induces a per-
mutation on the hyperedges of �  , h ↦ p(h) . Moreover, 
hypergraph automorphisms induce automorphisms of the 
adjacency and Laplacian matrices, as follows.

Definition 14 An adjacency automorphism is a permutation 
p of the vertices of a hypergraph that preserves adjacency, 
that is, Ap(i)p(j) = Aij for all 1 ≤ i, j ≤ n , where A = A(� ) . We 
can write this in matrix form as

, where P = (Pij) is the permutation matrix representing p, 
that is, Pij = 1 if p(i) = j , and 0 otherwise.

Definition 15 A Laplacian automorphism is an adja-
cency automorphism p that also preserves degrees, that is, 
deg(i) = deg(p(i)) , for all i = 1,… , n.

Note that if p is a Laplacian automorphism and P is 
the permutation matrix representing p, then �P = P� and 
LP = PL , that is, p preserves both the Kirchhoff Laplacian 
and the normalised Laplacian. In general we the following 
inclusions hold.

Proposition 1 Every hypergraph automorphism is a Lapla-
cian automorphism, and every Laplacian automorphism is 
an adjacency automorphism. The reciprocals of these state-
ments hold if �  is a simple graph, but not in general.

Schematically, for graphs:

p(h) = (p(hin), p(hout)) ∈ H for all h = (hin, hout) ∈ H.

(5)AP = PA,

while for hypergraphs:

Proof If p is a hypergraph automorphism, then clearly 
deg±(i, j) = deg± (p(i), p(j)) for all i, j ∈ V  and, in particular, 
deg(i) = deg+(i, i) = deg(p(i)) . From Eq. (1), it is clear that 
p is a Laplacian automorphism. Moreover, by definition, it is 
clear that any Laplacian automorphism is also an adjacency 
automorphism. The case when �  is a simple graph is well-
known and straightforward.

To see that the reciprocals do not necessarily hold in gen-
eral, consider the following example. Let � = (V ,H) with 
vertex set V = {1, 2, 3} and hyperedge set H = {h1, h2, h3} , 
where

– h1 has 1 as input and 2 as output;
– h2 has 2 as input and 1 as output;
– h3 only contains the vertex 3, as input.

Then, the adjacency matrix of �  is the 3 × 3 zero matrix, 
implying that any permutation of the vertices is an adja-
cency automorphism. However, the permutation p such that 
p(1) = 3 and p(3) = 1 is not a Laplacian automorphism, 
since deg(1) = 2 ≠ deg(3) = 1 .   ◻

We begin by describing duplicate and twin vertices in 
terms of automorphisms.

Proposition 2 Let �  be an oriented hypergraph.

 (i) If two vertices i, j ∈ V  are duplicate then the trans-
position p = (i j) is an adjacency automorphism.

 (ii) If two vertices i, j ∈ V  are duplicate and 
deg(i) = deg(j) , then the transposition p = (i j) is a 
Laplacian automorphism.

 (iii) If two vertices i, j ∈ V are twin then the transposition 
p = (i j) is a hypergraph automorphism.

The converses of these statements are not necessarily true.
(For anti-duplicate and anti-twin vertices, see 

Proposition 4.)

Proof (i) Let A = A(� ) and let P be the permutation matrix 
of the transposition p = (i j) (see Definition 14). Clearly, AP 
is the matrix A with the ith and jth rows swapped, and PA is 
the matrix A with the ith and jth columns swapped. By Defi-
nition 9, the ith row, respectively, column, of A equals the 

{adjacency automorphisms} = {Laplacian automorphisms},

= {graph automorphisms},

{adjacency automorphisms} ⊇ {Laplacian automorphisms},

⊇ {hypergraph automorphisms}.
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jth row, respectively, column, of A. In particular, AP = PA 
and p is an adjacency automorphism. The converse is not 
true: AP = PA if and only if the ith row (and column) of 
A equals the jth row (and column) of A, except possibly 
Aii = Ajj ≠ Aij = Aji . In that situation, p = (i j) is an adja-
cency automorphism but i and j are not duplicate.

(ii) This point follows easily from (i) and from the defi-
nition of Laplacian automorphism. The converse is not 
true: assume that deg(i) = deg(j) and the ith row (and col-
umn) of A equals the jth row (and column) of A, except 
Aii = Ajj ≠ Aij = Aji . In that case, p = (i j) is a Laplacian 
automorphism but i and j are not duplicate.

(iii) If i and j are twin and h ∈ H  , then i, j ∈ hin , or 
i, j ∈ hout , or neither i nor j are vertices in h. In all cases, 
p(h) = h , that is, p acts trivially on hyperedges. In particular, 
p(h) ∈ H for all h ∈ H and p is a hypergraph automorphism. 
The converse is not true: it is easy to find a hypergraph auto-
morphism of the form p = (i j) not acting as trivially on 
hyperedges.   ◻

Now, we have formalised the concept of symmetry, or 
redundancy, in hypergraphs (as hypergraph automorphisms), 
we can deduce some structural and spectral results: namely, 
the effects of the presence of symmetry on hypergraph 
spectra.

Structural results

In this section, we discuss the effects of the presence of 
automorphisms, as defined above, on the hypergraph struc-
ture. To begin we note that the set of Laplacian automor-
phisms together with the composition of permutations forms 
a group, denoted Aut (� ) . Next, we explain a decomposition 
of Aut (� ) into permutations with disjoint supports.

Definition 16 Given a permutation of the vertices p, its sup-
port is

Two permutations are disjoint if their supports are 
non-intersecting.

Following MacArthur et  al. (2008), MacArthur and 
Sánchez-García (2009), we decompose Aut (� ) into a direct 
product of subgroups that naturally reflect structural redun-
dancy in �  . Let S be a set of generators of Aut (� ) not con-
taining the identity, and let S = S1 ⊔… ⊔ Sl be the (unique) 
irreducible partition of S into support-disjoint subsets. Let 
Pj be the subgroup generated by Sj . Then,

supp (p) ∶= {i ∈ V ∣ p(i) ≠ i}.

(6)Aut (� ) = P1 ×… × Pl

is the unique, irreducible direct product decomposition of 
Aut (� ) (a proof follows that of (MacArthur et al. 2008, 
Equation 1), we omit details here). Since it relates to hyper-
graph symmetry, we will call (6) the symmetric decomposi-
tion of Aut (� ) . Similarly, for each j = 1,… , l , we denote

Using this notation, we call

the symmetric decomposition of �  where V0 is the set of fixed 
points, that is,

As with any action of a group on a set, we have the concept 
of a group orbit.

Definition 17 The orbit of i ∈ V  is

From this definition, a natural measure of redundancy 
is:

, where #O is the number of orbits, and n the number of 
vertices, of �  . Note that 1 ≤ #O ≤ n , so

In particular, r = 0 if and only if #O = 1 , that is, all vertices 
(reactants in a chemical reaction system) are structurally 
equivalent. On the other hand, r = n

n−1
 if and only if #O = n , 

that is, if and only if Aut (� ) is trivial and therefore there is 
no structural redundancy in � .

Thus, r quantifies the extent to which the oriented 
hypergraph �  is constructed from repetition of structurally 
equivalent units. Due to the evolutionary processes that form 
them, biochemical reaction systems often contain dupli-
cated elements Vázquez et al. (2003), which gives rise to 
local symmetries (i.e. permutations of nodes that are close 
in the hypergraph that preserve adjacency). In the absence 
of global symmetries (i.e. permutations of nodes that are 
distant in the hypergraph that preserve adjacency), r is then 
a natural measure of structural redundancy: biochemical 
systems with a high redundancy are robust in the sense that 
damage or deletion of redundant vertices or units (i.e. indi-
vidual chemical reactants, or small sub-systems of chemi-
cal reactions) do not cause catastrophic system failures, but 
rather can be absorbed by their replacements and so allow 
the system to continue to function normally.

Mj ∶=
⋃
�∈Sj

supp (�).

V ∶= V0 ⊔M1 ⊔… ⊔Ml

V0 = {i ∈ V ∣ p(i) = i for all p ∈ Aut (� )}.

O(i) ∶= {p(i) ∶ p ∈ Aut (� )}.

r =
#O − 1

n
,

0 ≤ r ≤
n

n − 1
< 1.
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Spectral results

Recall that the spectrum of a matrix is the multiset of its 
eigenvalues. Given �  , we define the adjacency spectrum of 
�  as the spectrum of A(� ) , the Kirchhoff Laplacian spec-
trum as the spectrum of �(� ) and the normalised Laplacian 
spectrum as the spectrum of L(� ) . Each of these matrices 
has n real eigenvalues and the corresponding eigenvectors 
are elements of ℝn , where n is the number of vertices. We 
will see each eigenvector as a function f ∶ V → ℝ

n and we 
will therefore call them eigenfunctions. We will focus on the 
spectrum of the normalised Laplacian L (or, equivalently, on 
the spectrum of the matrix L defined in (4)).

We may factor out any redundancy to obtain the essential 
structural characteristics of a reaction system �  . In particu-
lar, given a partition of the vertex set V = V1 ⊔… ⊔ Vl , we 
define:

Definition 18 The quotient matrix of L is Q(L) ∶= (Q��)�� , 
where

Note that the quotient matrix can be also written in alter-
native form as follows. Let K ∶= diag(|V1|,… , |Vl|) and 
let S be the n × l characteristic matrix of the partition, that 
is, each column Kj is the characteristic vector of the set Vj . 
Then,

Because Q(L) is not necessarily symmetric, it is not imme-
diately clear if it has real spectrum. In fact, it does have real 
spectrum, as can be seen from the following definition.

Definition 19 Given a partition of the vertex set 
V = V1 ⊔… ⊔ Vl , the symmetric quotient matrix of L is the 
l × l symmetric matrix Qsym(L) with entries

Note that the symmetric quotient matrix of L can be writ-
ten as

Hence, Qsym and Q are similar, which implies that they are 
isospectral and thus Q(L) has real spectrum. Moreover, f is 
an eigenfunction with eigenvalue � for Qsym if and only if 
K−1∕2f  is eigenfunction of � for Q.

From here on, we shall always refer to the quotient 
matrix and to the symmetric quotient matrix of L with 
respect to the partition of V into orbits. This partition is 

Q�� ∶=
1

|V�| ⋅
∑

i∈V� ,j∈V�

Lij.

Q(L) = K−1S⊤LS.

Q
sym

��
∶=

1√�V�� ⋅ �V��
⋅

�
i∈V� ,j∈V�

Lij.

Qsym = K−1∕2S⊤LSK−1∕2 = K1∕2QK−1∕2.

clearly equitable Brouwer and Haemers (2012), i.e. the 
row sum of each block of L with respect to the partition 
is constant.

With this notation, we are now in a position to consider 
the spectrum of L in terms of its underlying automorphism 
group, and therefore to dissect the effect of redundancy on 
its spectral properties. The following result is fundamental.

Proposition 3 The spectrum of L consists of the spectrum of 
Qsym(L) (with eigenfunctions that are constant on each orbit) 
together with the eigenvalues belonging to eigenfunctions 
that sum to zero on each orbit.

Proof Use the following facts:

– By (Brouwer and Haemers 2012, Lemma 2.3.1), the 
spectrum of L consists of the spectrum of Q(L) (with 
eigenfunctions that are constant on each part of the parti-
tion) together with the eigenvalues belonging to eigen-
functions that sum to zero on each part of the partition.

– By the considerations above, Q(L) is isospectral to 
Qsym(L).

– By (Mulas and Zhang 2021, Remark 2.14), L is isospec-
tral to L and f is an eigenfunction with eigenvalue � for 
L if and only if D1∕2f  is eigenfunction of � for L.

– If f is either constant in the parts of the partition, or it 
sums to zero on each part of the partition, then the same 
holds for D1∕2f  , since the vertices belonging to the same 
set of the partition have the same degree.

  ◻

This result indicates that the spectrum of �  can be split 
into pieces relating to redundant and unique structural fea-
tures. To deconstruct this decomposition further, the follow-
ing definition is useful:

Definition 20 The quotient network of �  , denoted Q(� ) , is 
the (unique) weighted, undirected graph with self-loops that 
has adjacency matrix Qsym(L).

Using this definition, we can rewrite Proposition 3 as 
follows.

Corollary 1 The spectrum of �  consists of the adjacency 
spectrum of its quotient network (with eigenfunctions that 
are constant on each orbit) together with the eigenvalues 
belonging to eigenfunctions that sum to zero on each orbit.

Proof It follows from Proposition 3, together with the fact 
that the adjacency matrix of Q(� ) is Qsym(L) .   ◻

To illustrate these ideas, it is useful to consider an 
example.
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Example 2 (Hyperflowers) Consider the l-hyperflower with 
t-twins introduced in [24] and shown in Fig. 2a. This is a 
hypergraph � = (V ,H) with only inputs whose vertex set 
can be written as V = W ⊔ V1 ⊔… ⊔ Vl , where each Vj has 
cardinality l, and the hyperedge set is given by

As shown in [24, Lemma 6.12], the spectrum of �  is given 
by:

– 0, with multiplicity n − l.
– t, with multiplicity l − 1 . As corresponding eigenfunc-

tions, one can choose the fj’s, for j ∈ {2,… , l} , that are 
1 on V1 , −1 on Vj and 0 otherwise.

– n − tl + t , and the constant functions are the correspond-
ing eigenfunctions.

It’s easy to see that �  has two orbits and, in this case, 
the adjacency automorphisms coincide with the Laplacian 
automorphisms. Thus, the redundancy of the hyperflower 
is r = 1∕n . Moreover, the quotient network only has two 
vertices � and � representing the core vertices and the 
peripheral vertices of �  , respectively. Its adjacency matrix 
is Qsym , where

while

H = {hj = W ∪ Vj for j = 1,… , l}.

Q
sym

��
=

1√�V�� ⋅ �V��
⋅

�
i∈V� ,j∈V�

�
−

Aij√
deg(i) deg(j)

�

=
1√

(n − tl)(tl)
⋅ (n − tl)(tl) ⋅

1√
l

=
√
(n − tl)t

and

Therefore, the quotient network has edges (�, �) , (�, �) 
and (�, �) with weights given by 

√
(n − tl)t , n − tl and t, 

respectively.
For the hyperflower in Fig. 2, for instance, the edge (�, �) 

has weight 
√
30 , the loop (�, �) has weight n − tl = 10 and 

the loop (�, �) has weight t = 3 (Fig. 2). Therefore

,it is easy to check that the eigenvalues of this matrix are 
13 and 0. Therefore, in this case, Proposition 3 tells us that:

– 0 and 13 are eigenvalues for the hyperflower, with eigen-
functions that are constant on the peripheral vertices and 
constant on the core vertices;

– The other eigenvalues of the hyperflower belong to eigen-
functions that sum to zero on the peripheral vertices.

These results are clearly in accordance with the alternative 
calculations given above (see also [24, Lemma 6.12]).

Signed automorphisms

The results presented so far straightforwardly extend the 
theory of automorphisms of graphs to hypergraphs. How-
ever, oriented hypergraphs have additional automorphisms 
induced by sign changes that are distinct from those encoun-
tered for graphs. In this section, we define signed automor-
phisms and study their effect on the hypergraph spectrum. 
Although signed automorphisms do not have an immediate 
biochemical interpretation, we include discussion of them 
here for mathematical completeness.

As shown in (Jost and Mulas 2019, Lemma 49), if we 
reverse the role of a vertex v in all the hyperedges in which 
it is contained, i.e. if we let it become an input where it is 

Qsym
��

=
1

|V�| ⋅
( ∑

(i,j)∶i≠j∈V�

(
−

Aij

deg(i)

)
+
∑
i∈V�

1

)

=
1

|V�| ⋅
(
|V�| ⋅ (|V�| − 1) + |V�|

)

= |V�| = n − tl

Q
sym

��
=

1

�V�� ⋅
⎛
⎜⎜⎝

�
(i,j)∶i≠j∈V�

�
−

Aij

deg(i)

�
+
�
i∈V�

1

⎞
⎟⎟⎠

=
1

tl
(tl(t − 1) + tl) = t.

Qsym =

�
10

√
30√

30 3

�
.

10 3

α β

A

B
√30

Fig. 2  The hyperflower. a The 5-hyperflower with 3 twins on 25 ver-
tices. b Its quotient network. In the quotient network, � represents the 
core vertices of the hyperflower, while � represents the peripheral 
vertices
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an output and vice versa, the spectrum does not change, 
while the eigenfunctions differ by a change of sign on 
v. More generally, given an oriented hypergraph �  , we 
can reverse the role of a subset of k vertices 1,… , k and 
obtain a hypergraph � ′ which is isospectral to �  . Thus, 
we can apply the theory of Laplacian automorphisms to 
� ′ and translate the results to �  . We formalise this idea 
as follows.

Definition 21 Let � ∶ V = {1,… , n} → {+1,−1} be a sign 
function. Given a permutation p of the vertices of �  , we 
define p� ∶ V → {±1,… ,±n} by letting

and we say that p� is a signed permutation of the vertices.

D e f i n i t i o n  2 2  G i v e n  a  s i g n  f u n c t i o n 
� ∶ V = {1,… , n} → {+1,−1} , we let �(� ) be the oriented 
hypergraph constructed from �  by reversing the role of the 
vertices i such that �(i) = −1 , in all hyperedges in which 
they are contained. We say that the quotient network Q(�(� )) 
of �(� ) is a signed quotient network of � .

Using these definitions, we can now extend the theory 
of hypergraph automorphisms to signed automorphisms. 
In particular,

Definition 23 A signed hypergraph automorphism is a 
signed permutation p� of the vertices of �  such that

Similarly, a signed adjacency automorphism is a signed per-
mutat ion p  of  the ver t ices  of  �  such that (
A(� )

)
p(i)p(j)

=
(
A(�(� ))

)
ij
 for all 1 ≤ i, j ≤ n and a signed 

Laplacian automorphism is a signed adjacency automor-
phism p� that preserves degrees, that is, deg(i) = deg(p(i)) , 
for all i = 1,… , n.

We denote by Aut signed(� ) the group of signed Lapla-
cian automorphisms of �  . Moreover,

Definition 24 The signed orbit of i ∈ V  is

In order to make functions on orbits well defined, given 
f ∶ V → ℝ we let

Using this notation, the following proposition is the ana-
logue of Proposition  2 for anti-twin and anti-duplicate 
vertices.

p�(i) ∶= �(i) ⋅ p(i)

p(h) = (p(hin), p(hout)) ∈ H(�(� )) for all h = (hin, hout) ∈ H(� ).

O
�(i) ∶= {p�(i) ∶ p� ∈ Aut signed(� )}.

f (−i) ∶= −f (i), for i ∈ V .

Proposition 4 Let �  be an oriented hypergraph. Given 
i, j ∈ V  , let p be the transposition p = (i, j) and let � be the 
sign function such that �(i) = −1 and �(k) = +1 , for all 
k ∈ V ⧵ {i} . 

 (i) If i and j are anti-duplicate then p� is a signed adja-
cency automorphism.

 (ii) If i and j are anti-duplicate and deg(i) = deg(j) , then 
p� is a signed Laplacian automorphism.

 (iii) If i and j are anti-twin then p� is a signed hypergraph 
automorphism.

The converses of these statements are not necessarily true.
Proof Analogous to the proof of Proposition 2.   ◻

We may now decompose the spectrum of �  taking into 
account signed automorphisms.

Proposition 5 Let � ∶ V → {+1,−1} . The spectrum of �  
consists of the adjacency spectrum of Q(�(� )) (with eigen-
functions that are constant on each signed orbit) together 
with the eigenvalues belonging to eigenfunctions that sum 
to zero on each signed orbit.

Proof By (Jost and Mulas 2019, Lemma 49), it easily fol-
lows that � is an eigenvalue for �(� ) with eigenfunction f if 
and only if � is an eigenvalue for �  with eigenfunction � ⋅ f  , 
where �f (i) ∶= �(i) ⋅ f (i) . Together with Corollary 1, this 
proves the claim.   ◻

To illustrate these ideas, we again consider an example.

Example 3 (Signed Hyperflower) For the hyperflower, in 
Example 2, all vertices are inputs. If we let one vertex v 
become an output in all hyperedges in which it is contained, 
then the theory of (unsigned) Laplacian automorphisms 
cannot detect this reversal. However, by choosing the sign 
function � ∶ V → {+1,−1} that has value −1 on v and value 
+1 otherwise, and applying Proposition 5 its effect can be 
detected.

These results finally give us an alternative notion of 
redundancy.

Definition 25 The signed redundancy is

By choosing � ∶ V → {+1,−1} with +1 on all vertices, 
we have O�(i) = O(i) for each i ∈ V  , and therefore

rsigned ∶= min
�∶V→{+1,−1}

#O� − 1

n
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Hence, the signed redundancy is more precise than the 
unsigned redundancy. In the case of Example 3, for instance, 
rsigned = 1∕n while r = 2∕n.

Example: basic enzyme reactions

In order to illustrate this theory, consider the basic enzyme 
reactions:

, where kf  , kr and kcat are reaction rates. To explore the geom-
etry of this system, we will consider two hypergraph models 
in which the above chemical substances are represented by 
vertices, and the reactions are represented by hyperedges. 
The first hypergraph model accounts for forward reactions 
only and so represents the system:

We let � ∶= (V ,H) , be a hypergraph, where the vertex set 
is V ∶= {E, S,ES,P} , the hyperedge set is H ∶= {h1, h2} , 
and the oriented hyperedges are h1 ∶= ({E, S}, {ES}) and 
h2 ∶= ({ES}, {E,P}) . This hypergraph is illustrated in Fig. 3.

The spectrum of �  , which is a 2-hyperflower with 1 twin 
on 4 vertices, is 0, 0, 1, 3. In this case, there are exactly 
two non-zero eigenvalues because there are two hyperedges 
and these hyperedges are independent of each other (cf. 
Jost and Mulas 2019). The largest eigenvalue is 3 because 
the hypergraph is bipartite and each reaction contains 
exactly three substances (cf. Mulas 2021). Finally, 1 is an 
eigenvalue because the vertices S and P are anti-duplicate. 
A corresponding eigenfunction is f ∶ V → ℝ such that 
f (S) = f (P) = 1 and f (ES) = f (S) = 0 . Since there are no 
hypergraph automorphisms, the redundancy is

rsigned = min
�∶V→{+1,−1}

#O� − 1

n
≤

#O − 1

n
= r.

(7)E + S
kr
←−−→
kf

ES
Kcat

→ E + P,

(8)E + S
kf
��������→ ES

kcat
������������→ E + P.

However, because S and P are anti-duplicate, and E and ES 
are anti-twin the system possess signed automorphisms. 
These symmetries are not present in graph representations 
of this system, and so represent features of the chemical 
reaction system that are specifically identified by the hyper-
graph theory. Thus, the signed redundancy differs from the 
redundancy. In this case, the signed redundancy is

and the minimum is achieved for the function 
� ∶ V → {+1,−1} that has value 1 on S, ES and value −1 
on E, P. Its signed orbits are {S,P} and {E,ES} . It should 
be noted that these orbits are coincident with the conserva-
tion laws of the dynamics, but this is not always the case. 
Conservation laws do not relate directly to automorphisms 
or signed automorphisms, but rather are related to properties 
of another Laplacian, as discussed in Jost and Mulas (2019).

These results demonstrate, via a practical empirical 
(rather than theoretical) example, that there are geometric 
properties that are detected by the signed automorphisms 
and are not detected by the automorphisms. However, this 
example only accounts for forward reactions. In order to take 
the backward reaction in the system described by Eq. (7) into 
account, we consider the hypergraph � ∪ h3 ∶= (V ,H ∪ h3) , 
where h3 ∶= ({ES}, {E, S}) . The eigenvalues of � ∪ h3 coin-
cide with the eigenvalues of �  , counted with multiplicity, 
but the eigenfunctions and the redundancy change.

The hypergraph � ∪ h3 has two non-zero eigenvalues 
(as does �  ). In this case, although there are three hyper-
edges (i.e. reactions), only two of them are independent, 
since h3 and h1 are inverse of one another (cf. Jost and Mulas 
2019). Moreover, as in the case of �  , the largest eigenvalue 
is 3 because the hypergraph is bipartite and each reaction 
involves three substances (cf. Mulas 2021). Finally, although 
P and S are not anti-duplicate in this case, � ∪ h3 is isospec-
tral with �  and so � ∪ h3 inherits the eigenvalue 1 due to 
the fact that S and P are anti-duplicate in �  . This endows 
the � ∪ h3 with a shadow symmetry. As with �  , there are no 
automorphisms, and so

However, in this case, the signed redundancy is

 and this minimum is achieved for � ∶ V → {+1,−1} that 
has value 1 on S, ES, P and value −1 on E. Its signed orbits 
are {S} , {P} and {E,ES} . The difference arises because S and 

r =
#O − 1

4
=

3

4
.

rsigned = min
�∶V→{+1,−1}

#O� − 1

n
=

1

4
,

r =
#O − 1

4
=

3

4
.

rsigned = min
�∶V→{+1,−1}

#O� − 1

n
=

1

2
,

Fig. 3  Hypergraph representing the system given in Eq. (8)
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P are now not anti-duplicate; hence, they do not belong to a 
same signed orbit.

This second example has shown that, while adding 
reversed hyperedges (reactions) does not change the hyper-
graph spectrum, the eigenfunctions, signed automorphisms 
and signed redundancy can change. Moreover, certain 
spectral properties of the hypergraph that includes reversed 
hyperedges are derived from the structure of the simpler 
hypergraph without them. Thus, there is a motivation for 
studying simplified systems without losing structural 
information.

Discussion

Biochemical reaction systems often contain duplication 
which manifests as symmetry in their underlying hyper-
graphs. Here, we have introduced and studied automor-
phisms for oriented hypergraphs. We focused on the normal-
ised Laplacian, which is known to encode many qualitative 
properties of a hypergraph, and have generalised the known 
theory for graphs Chung (1997), Brouwer and Haemers 
(2012). We have shown that, while the generalisation to 
the case of classical hypergraphs is intuitive and relatively 
straightforward, for a complete theory in the case of ori-
ented hypergraphs, one needs additional constructions, such 
as the signed automorphisms and signed redundancy. Thus, 
the general theory we have introduced extends that of graphs 
and hypergraphs to the more general—and appropriate for 
modelling complicated biochemical reaction systems inside 
a cell—case of oriented hypergraphs. To illustrate this the-
ory we have shown, with a simple practical example, that it 
can be used to practically study redundancy in biochemical 
systems.

There has been some prior work on spectral graph 
theory applied to biochemical networks, see for instance 
MacArthur et al. (2008), MacArthur and Sánchez-García 
(2009), Sánchez-García (2020), Lesne (2006), Mason and 
Verwoerd (2007), Perkins and Langston (2009), Banerjee 
and Jost (2009), Huang et al. (2019), and there is a grow-
ing literature on how to use hypergraphs for modelling bio-
chemical networks. In Estrada and Rodríguez-Velázquez 
(2006), for example, the concepts of subgraph centrality 
and clustering are generalised to the case of hypergraphs, 
and various practical examples, including examples from 
biology, are given. Similarly, in [39], a notion of curvature 
for hypergraphs is proposed and applied to the analysis 
of the E. coli metabolism. In Klamt et al. (2009), it is 
argued—using a range of practical examples—that bio-
logical networks that are typically modelled as graphs can 
also be fruitfully modelled using hypergraphs. Some prac-
tical algorithms that do not involve spectral theory, as well 
as network statistics for hypergraphs, are also discussed. 

In Flamm et al. (2015), some mathematical foundations 
(which again do not include spectral theory) for the study 
of hypergraphs in the context of chemical reaction systems 
and biological evolution are given. Similarly, in Ritz et al. 
(2014), Schwob et al. (2019), hypergraphs are used as a 
model for signalling pathways in cellular biology. In Ritz 
et al. (2014), in particular, it is noted that, since hyper-
graph theory is less well-known than graph theory, there is 
a need to develop theoretical and algorithmic foundations 
for hypergraphs.

However, although there is a growing literature on both 
spectral graph theory applied to biology and hypergraph 
modelling of biochemical networks, we are still lacking 
theoretical tools needed to apply spectral hypergraph the-
ory to biochemical networks. In this paper, we have taken 
a step further in this direction.

In the future it will be interesting to analyse large, 
complex biochemical networks using spectral hyper-
graph methods. There are a number of publicly available, 
curated, repositories of biochemical reaction systems 
Bader et al. (2001), Bader et al. (2003), Szklarczyk et al. 
(2016), S.B.R. Group (2021), Kanehisa et al. (2002). Once 
in a hypergraph format, spectral properties of such empiri-
cal networks can then be determined by considering their 
associated matrices such as the normalised Laplacian, 
which we have focused on here. As noted, the eigenval-
ues of these matrices encode many important qualitative 
properties of the underlying hypergraph Jost and Mulas 
(2019), Mulas et al. (2020), Mulas (2021), Mulas and 
Zhang (2021), [24], Mulas (2021), Reff (2014), Chen et al. 
(2015), Duttweiler and Reff (2019), Chen et al. (2018), 
Reff and Rusnak (2012), including its symmetries and 
associated redundancy, and these properties, in turn, shed 
light on the essential structural properties of the system 
under study. By converting a geometric problem into an 
algebraic one the benefits of this approach are numerous, 
since they make the structure of the system amenable to 
detailed analysis. These benefits include computational 
aspects, since the spectrum of a square matrix can be com-
puted with relatively little computational effort.

Moreover, the tools presented here may also be useful 
in the analysis of chemical reaction networks more gener-
ally—particularly in applications that involve complex sets 
of reactions, for example as encountered in some industrial 
processes, where redundancy may also be ubiquitous.
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