

1 **Characterization of the developing lacuno-canalicular network during**
2 **fracture repair**

3 Michele Casanova¹, Aaron Schindeler^{2,3§}, Lauren Peacock², Lucinda Lee^{2,3}, Philipp Schneider^{1,4,5},
4 David G Little^{2,3}, Ralph Müller¹

5 ¹ Institute for Biomechanics, ETH Zurich, Zurich, Switzerland

6 ² Orthopaedic Research & Biotechnology, The Children's Hospital at Westmead, Westmead,
7 Australia

8 ³ Discipline of Child and Adolescent Health, University of Sydney, Camperdown, Australia

9 ⁴ Bioengineering Science Research Group, Faculty of Engineering and Physical Sciences,
10 University of Southampton, Southampton, UK

11 ⁵High-Performance Vision Systems, Center for Vision, Automation & Control, AIT Austrian
12 Institute of Technology, Vienna, Austria

13

14 § Contact Author

15 A/Prof Aaron Schindeler (aaron.schindeler@sydney.edu.au)

16 Bioengineering & Molecular Medicine Laboratory

17 The Children's Hospital at Westmead

18 Locked Bag 4001

19 Westmead, NSW 2145

20 Australia

21

22 **Abstract:** Fracture repair is a normal physiological response to bone injury. During the process of
23 bony callus formation, a lacuno-canalicular network (LCN) is formed *de novo* that evolves with
24 callus remodeling. Our aim was the longitudinal assessment of the development and evolution of
25 the LCN during fracture repair. To this end, 45 adult wild type C57BL/6 mice underwent closed
26 tibial fracture surgery. Fractured and intact contralateral tibiae were harvested after 2, 3, and 6
27 weeks of bone healing (n=15/group). High-resolution micro-computed tomography (µCT) and
28 deconvolution microscopy (DV) approaches were applied to quantify lacunar number density from
29 the calluses and intact bone. On histological sections, Goldner's trichrome staining was used to
30 assess lacunar occupancy, fluorescein isothiocyanate staining to visualize the canalicular network,
31 and TUNEL staining to examine osteocyte apoptosis. Analysis of µCT scans showed progressive
32 decreases in mean lacuna volume over time (-27% 2-3 weeks, -13% 3-6 weeks). Lacunar number
33 density increased considerably between 2 and 3 weeks (+156%). Correlation analysis was
34 performed, showing a positive linear relationship between canalicular number density and

1 trabecular thickness ($R^2=0.56$, $p<0.001$) and an inverse relationship between mean lacuna volume
2 and trabecular thickness ($R^2=0.57$, $p<0.001$). Histology showed increases in canalicular number
3 density over time (+22% 2-3 weeks, +51% 3-6 weeks). Lacunar occupancy in new bone of the
4 callus was high (>90%), but the old cortical bone within the fracture site appeared necrotic as it
5 underwent resorption. In conclusion, our data shows a progressive increase in the complexity of the
6 LCN over time during fracture healing and demonstrates that this network is initiated during the
7 early stages of repair. Further studies are needed to address the functional importance of osteocytes
8 in bone healing, particularly in detecting and translating the effects of micromotion in the fracture.

9

10 **Keywords:** Fracture repair; bone quality; canaliculi, osteocyte lacunae, lacuno-canalicular network;
11 micro-computed tomography

12

13 Introduction

14 Osteocytes are bone cells buried within the bone matrix that act as mechanotransducers ⁽¹⁾ and
15 orchestrate bone remodeling ⁽²⁾. They communicate with each other via the lacuno-canalicular
16 network (LCN), which is critical for regulating bone homeostasis ⁽²⁾. The LCN has been recently
17 shown to play a major role in the spatial distribution of mass density (i.e. mineralization level) in
18 bone ^(3,4) and acts to modulate bone mineral based on paracrine and hormonal factors ^(5,6).

19 As the LCN has a key role in modulating deposition, absorption, and mineralization of bone, it
20 fundamentally influences the biomechanics of the bone matrix. Multiple studies have shown that
21 osteocyte number density can be positively correlated with bone biomechanical properties and its
22 resistance to fracture ⁽⁷⁻¹⁰⁾. In fact, both lacunar number density and mean lacuna volume are
23 correlated with the propagation of microcracks ⁽¹¹⁻¹³⁾. It is established that lacunae can act as force
24 concentrators ⁽¹⁴⁾, and can lead to bone fragility in poorly ordered bone structures ⁽¹⁵⁾. Furthermore,
25 changes in the organization of canaliculi have been suggested to affect the mechanical properties of
26 bone ⁽¹⁶⁻¹⁸⁾.

27 During fracture repair, new woven bone is produced to bridge the fracture gap, and within this
28 regenerating hard callus tissue a new LCN is required to form *de novo*. The importance of the
29 forming LCN within bone healing has been a subject for recent discussion ⁽¹⁹⁾, and may have a
30 central role in determining callus size ^(20,21). Micromotion has been shown to be important for
31 fracture healing, while overly rigid fixation can lead to stress shielding and insufficient new bone
32 formation, which may be monitored by the nascent LCN.

1 In this preclinical study, we aimed to investigate how lacunar measures and canalicular number
2 density evolve during fracture repair. We hypothesized that lacunar number and canalicular number
3 density would change longitudinally during bone healing. Prior work demonstrated the formation of
4 the LCN during bone healing and examined pharmacological modulation of the LCN, but these
5 studies were limited to a single time point⁽²²⁾. Analysis was performed to investigate whether callus
6 macro- and microarchitecture could be correlated to lacunar measures or canalicular number
7 density, since these factors are related to bone deposition and structure in intact bone^(20,23-25). While
8 lacunar number density can be derived from μ CT imaging, lacunar occupancy required further
9 histological analysis. In particular, the presence of apoptotic osteocytes could possibly initiate
10 perilacunar osteolysis and localized bone destruction^(23,26).

11 On these grounds, we investigated the LCN development at three time points during murine bone
12 fracture repair. Following closed tibial fracture surgery, the LCN was characterized using
13 morphometric measures at 2, 3 and 6-week time points after fracture. These represent distinct
14 phases of the bone healing process. Two weeks represents an early stage of fracture repair, where
15 the callus is mostly cartilaginous and the LCN is starting to be formed. Three weeks presents a
16 consolidated callus, which is mostly mineralized and also around its peak in bone volume. Six
17 weeks denotes a callus that is finalizing remodeling towards the original bone shape.

18 This study also features innovations in examining the LCN network. In prior studies, quantification
19 of the LCN has been restricted to small regions encompassing a limited number of osteocyte
20 lacunae and/or osteocytes⁽²⁷⁾. In this study, we have used an advanced approach combining
21 deconvolution microscopy (DV) and high-resolution micro-computed tomography (μ CT)⁽²⁸⁾. This
22 enabled us to quantify large regions from the central portion of the calluses, providing a broader
23 overview on the LCN development in bone fracture repair. μ CT was also performed on the whole
24 calluses at lower spatial resolutions to compute tissue mineral density, bone volume fraction and
25 micro-architectural measures. Goldner's trichrome stain was performed on a subset of histological
26 sample sections to assess lacunar occupancy and a TUNEL stain was used to examine apoptosis.
27 Together, these imaging modalities reveal a complex picture of the longitudinal changes in the LCN
28 that occur over time during fracture healing.

29

30 Materials and Methods

31 Animals and surgery

32 Forty-five female, 11-week-old wild type mice (C57BL/6) were used in this study. All animals
33 underwent a closed fracture on their right tibia using an established fracture protocol⁽²⁹⁾. In brief,
34 animals were anaesthetized with ketamine and xylazine and a complete fracture made without

1 breaking the skin using a handheld device made from surgical staple removers. Fractures were fixed
2 via the intramedullary canal with solid stainless-steel insect pins inserted via the knee. Fractures
3 were confirmed using X-ray radiography and animals were monitored by weekly X-ray
4 radiographies during the fracture healing process (Faxitron MX-20, Wheeling IL, USA). Animals
5 were given buprenorphine (0.05 mg/kg) for analgesia up to every 12 hours as required. Fractured
6 mice were subsequently harvested at three different time points (n=15 per time point). Group 1 was
7 harvested 2 weeks after fracture, Group 2 after 3 weeks, and Group 3 after 6 weeks. All animal
8 experiments were approved by the Westmead Hospital Animal Ethics Committee.

9

10 **Specimen collection**

11 Fractured and contralateral tibiae were extracted and fixed in 4% phosphate-buffered formalin
12 overnight at 4°C. After fixation, the samples were immersed in 30% sucrose solution for a day, then
13 snap frozen in OCT medium (TissueTek OCT Compound, Thermo Fisher Scientific, Hampton NH,
14 USA) and cryosectioned (Leica CM1950, Wetzlar, Germany). The bones were cut in the sagittal
15 plane, starting from the medial side. Sections of 5, 7, and 20 µm thickness were cut close to the
16 central portion, paying attention to conserve the lateral part of the callus intact for subsequent µCT.
17 Sections were taken using cryofilm to preserve the intact bone (SECTION-LAB Co. Ltd.
18 Hiroshima, Japan). The cryofilm sections were adhered to glass microscope slides using a chitosan
19 adhesive [1% Chitosan (MilliporeSigma, St. Louis, MO, USA) in 0.25% acetic acid] and left to dry
20 at 4°C overnight.

21

22 **Micro-computed tomography (µCT)**

23 µCT scans and morphometric analyses were performed according to published methods for the
24 assessment of bone microstructure using µCT⁽³⁰⁾. To investigate lacunar number density and mean
25 lacuna volume, all lateral portions of the 90 samples were scanned using a µCT system (µCT 50;
26 Scanco Medical, Brüttisellen, Switzerland). Only lateral portions could be scanned since samples
27 were cryosectioned after extraction (see previous section). A stack with a height of 1.1 mm was
28 acquired from the central portion of the calluses and from the non-fractured tibiae at 45% of the
29 tibial length starting distally. An isotropic voxel size of 1.2 µm, a tube voltage of 70 kVp, an X-ray
30 intensity of 57 µA and an integration time of 1.5 s were selected. A Gaussian filter (sigma=0.8,
31 support=1.0) was applied for noise reduction. Old bone and newly formed bone were segmented
32 using customized IPL file scripts (Image Processing Language; Scanco Medical, Brüttisellen,
33 Switzerland). Lacunar number density (defined as number of lacunae to bone volume + lacunar

1 porosities) and mean lacuna volume (defined as total lacunar volume divided by number of lacunae)
2 were inferred from both old and newly formed bone.

3 To assess callus bone volume fraction, tissue mineral density (TMD), and micro-architectural
4 measures, all bone calluses were scanned again including all new formed bone using μ CT. An
5 isotropic voxel size of 7 μ m, a tube voltage of 55 kVp, an X-ray intensity of 72 μ A, and an
6 integration time of 1.5 s were set. A Gaussian filter (sigma=0.8, support=1.0) was applied for noise
7 reduction. We then used IPL to manually segment the newly formed bone, excluding the bone in the
8 intramedullary canal. Regions in which the porosity was inferior to 50% of the local total volume
9 were considered dense woven bone and excluded for further analysis. Bone volume fraction was
10 then assessed in these sub-volumes (macro-architectural measure). For computing the micro-
11 architectural measures, the microstructure of the mineralized struts of the calluses was then isolated
12 from the dense woven bone. A bone callus of the 6 weeks post-operative (post-op) group was
13 removed from the subsequent computations for the absence of a significant quantity of struts
14 (sample towards the end of the remodeling phase). Trabecular number (Tb.N), trabecular thickness
15 (Tb.Th), trabecular separation (Tb.Sp), standard deviation of Tb.Th (Tb.Th.SD), standard deviation
16 of Tb.Sp (Tb.Sp.SD), degree of anisotropy (DA), connectivity density (Conn.D) and the structure
17 model index (SMI) were then computed as described by Bouxsein et al. (30).

18

19 **Canalicular number density**

20 Four 20- μ m-thick sections of each sample were used to investigate canalicular number density. The
21 samples were dehydrated, then covered with a 1% fluorescein isothiocyanate (FITC) solution in
22 absolute alcohol and left overnight at 4°C. The samples were mounted and coverslipped, then
23 analyzed using a deconvolution microscope (Deltavision, Isaquah, WA, USA). Datasets of 60
24 stacks with a thickness of 0.2 μ m and a magnification of 60 \times were acquired. In each of the 90
25 samples, the cell processes of 10 to 12 osteocytes were examined. The osteocytes analyzed were in
26 the central portion of the calluses and in intact tibiae at the 45% of the tibial length starting distally,
27 which corresponds to the height where the fracture was created in the opposite tibia (fractured
28 tibia). To estimate canalicular number density, a region of interest (ROI) was defined by contouring
29 the lacuna on the optical section with its largest visible area. Since osteocyte processes fan out
30 radially, the upper limit of the imaged ROI was then translated \sim 1 μ m above the cell body. The
31 canaliculi in the ROI were then manually counted using ImageJ (U.S. National Institutes of Health
32 Bethesda, MD, USA) and reported relative to the ROI size to calculate the 2D canalicular density.
33 To facilitate their identification, edge enhancement and absolute thresholding of the images was
34 performed.

1 **Lacunar occupancy and histological assessment**

2 Two 5- μm -thick sections from five fractured tibiae per group and their respective contralateral
3 bones were stained with Goldner's trichrome. Osteocyte occupancy was assessed in both newly
4 formed and intact bone. To determine osteocyte occupancy, 10 sub-regions covering a total bone
5 area of 1 mm^2 were selected for each sample. The sub-regions were sampled from the central
6 portion of the calluses and on the cortical bone of the intact tibiae at the 45% of the tibial length
7 starting distally. Empty lacunae were defined as lacunae without any visible remnant of cellular
8 material. To prevent false negatives, only lacunae with a visible cross-section of at least 16 μm^2
9 were considered in the assessment.

10 A 7- μm -thick tibial fracture section from each mouse in each group (n=15) was stained using the
11 DeadEnd™ Colorimetric TUNEL System (Promega Corporation, Madison, WI, USA) to label
12 apoptotic cells in the fracture callus with DAB. The standard protocol for this kit was followed.
13 Tissue sections were counterstained with Harris' hematoxylin (POCD Scientific, North Rocks,
14 Australia), mounted with Aquatex (Merck Group, Darmstadt, Germany) and coverslipped for
15 imaging on an Aperio Scanscope brightfield slide scanner (Leica Biosystems, Mt Waverley,
16 Australia) using the 40 \times objective. Representative images from each group were selected.

17

18 **Statistical analysis**

19 All statistical analyses were performed using SPSS Statistics (version 20; IBM, Armonk, NY,
20 USA). Mean and standard deviation (SD) were given for all the results. One-way ANOVA with
21 Bonferroni *post-hoc* test was used for the analysis comparing the three groups representing different
22 stage of bone fracture repair. For comparisons between bone calluses and intact tibiae, paired
23 Student's *t*-tests were performed. For investigating possible correlations between morphometric
24 measures, Pearson product-moment and quadratic correlation coefficients were computed. Paired
25 Student's *t*-tests were used for the comparisons between mean lacuna volume of necrotic bone and
26 of intact tibiae in the three different time points. For all analyses, $p \leq 0.05$ was considered to
27 indicate statistical significance.

28

29 **Results**

30 **Animals and surgery**

31 No unexpected or adverse events occurred during the surgery procedure nor during post-operative
32 monitoring. No specimens were excluded from analysis.

33

1 **Micro-computed tomography (µCT)**

2 Bone volume fraction, tissue mineral density, micro-architectural measures, and lacunar measures
3 were estimated for the callus region at 2 weeks, 3 weeks and 6 weeks post-operatively and
4 compared with intact contralateral bone (Table 1). This well-described fracture model⁽²⁹⁾ shows
5 endochondral ossification of the soft callus at ~2 weeks, robust woven bone callus at ~3 weeks, and
6 substantive new cortical bone remodeling by ~6 weeks. As healing progresses, the fracture restores
7 itself to resemble the contralateral non-fractured bone.

8 Representative details of binarized high-resolution µCT scans for each group and representative
9 three-dimensional renderings of the calluses for each group are presented in Figure 1. Mean lacuna
10 volume significantly decreased by 27% from 2 weeks to 3 weeks post-op ($p<0.001$). Between 3 and
11 6 weeks post-op, the decrease was only 13% ($p<0.05$). Lacunar number density was found to be
12 relatively low at 2 weeks, but significantly increased by 156% at 3 weeks ($p<0.001$) before
13 decreasing by 18% ($p<0.05$) at 6 weeks. A paired Student's *t*-test detected a significant lower
14 lacunar number density in the 6 weeks' calluses compared to their respective contralateral tibiae.

15 To investigate if LCN morphology is linked to the architecture of the callus, correlations (linear,
16 quadratic, cubic) between macro- and micro-architectural measures and LCN measures (canalicular
17 number density, lacunar number density, mean lacuna volume) were calculated within the group
18 and versus all groups pooled. Relationships between calluses and intact tibiae were also analyzed.
19 Table 2 presents the results of the linear correlation analysis, and statistically significant
20 correlations were observed when data from all time points were pooled (Figure 2). In the early
21 stages of the callus development, mean lacuna volume has a high relative standard deviation, but a
22 constant trabecular thickness; in a later stage of fracture repair, lacuna volume is relatively stable
23 around 320 μm^3 , but trabecular thickness varies considerably.

24

25 **Canalicular number density, lacunar occupancy and osteocyte apoptosis**

26 Representative images for canalicular number density are shown in Figure 3. At all stages of callus
27 formation and remodeling, canalicular number density was less than that seen in intact bone yet
28 increasing over time. The results for canalicular number density are presented in Table 1. Paired
29 Student's *t*-tests revealed statistically significant differences ($p<0.001$) between calluses and
30 contralateral tibiae for all three time points. Analysis of the calluses between the different time
31 points by one-way ANOVA showed a significant difference. Post-hoc analysis revealed a +22%
32 increase in canalicular number density ($p<0.05$) between weeks 2 and 3. There was a +51% increase
33 in canalicular number density ($p<0.001$) between weeks 3 and 6.

1 TUNEL staining showed a very low level of apoptotic cells at all time points (Figure 4). No
2 apoptotic cells were observed in the parosteal cortex adjacent to the callus. Within the callus itself,
3 few apoptotic cells were noted and were consistent with non-bone cells in the marrow space rather
4 than osteoblasts/osteocytes. The tissue section quality was poorer in thin sections featuring regions
5 of necrotic bone compared to the thicker sections used for quantification of the canaliculi.

6 Lacunar occupancy was high in the new callus and the old intact cortical bone of the tibia (Figures
7 5a, 5b, respectively), exceeding 90%. No significant difference in lacunar occupancy was detected,
8 neither between the time points nor between calluses and intact bones. Within the callus some
9 regions of old fractured cortical bone were present and showed evidence of necrosis and loss of
10 lacunar occupancy (Figure 5c). No remnant cellular material was visible. These regions were
11 further analyzed.

12

13 **Characterization of resorbing old cortical bone**

14 From the sections stained with Goldner's trichrome, regions corresponding to the old cortex were
15 identified as having empty osteocyte lacunae (i.e. 0% lacunar occupancy). These areas were regions
16 selected from 10-11 of the higher resolution μ CT scans (1.2 μ m voxel size) of the calluses per
17 group and contained at least 100 lacunae. To confirm that the regions considered were not from new
18 bone deposition, TMD (excluding canals and lacunar porosities) of the sub-volumes was compared
19 to TMD of the scans of the intact tibiae. A plot of TMD of necrotic bone of the three groups and all
20 contralateral tibiae showed no statistically significant difference between TMD of the calluses and
21 TMD of the intact tibiae (Figure 6). Comparisons between mean lacuna volume of necrotic bone
22 and of intact tibiae in the three different groups showed significant differences in mean lacuna
23 volume between regions with necrotic cortical bone in the calluses and the intact tibiae 2 weeks
24 post-op (+20%, $p<0.05$) and 3 weeks post-op (+27%, $p<0.001$) (Figure 6).

25

26 **Discussion**

27 μ CT is a versatile imaging technique that has become the gold standard for preclinical bone
28 analysis. Historically, the quality of μ CT images precluded the analysis of osteocyte lacuna,
29 however improvements seen with μ CT enable osteocyte lacuna to be visualized. Other groups have
30 highlighted technical advances in μ CT imaging in bone in recent years. Longitudinal μ CT has been
31 performed to capture the healing process of bone healing ⁽³¹⁾, however *in vivo* imaging systems
32 typically have far poorer spatial resolutions than those used with harvested specimens, mainly due
33 to the limited X-ray dose employed for the animals scanned *in vivo*.

1 While hardware capabilities have a considerable impact on the data that can be collected by μ CT,
2 the importance of software and computational analysis is often under-rated. In this study, we used a
3 Gaussian filter to remove noise and used custom scripts to identify mineralized bone. For some
4 quantitative analysis, manual segmentation was performed as automated segmentation of fractures
5 can be particularly challenging. While there have been efforts to develop programs that enable
6 accurate automated μ CT segmentation ⁽³²⁾, to date they remain less accurate than manual
7 approaches.

8 μ CT can increase in power when combined with other scanning and analysis modalities. For
9 example, prior studies have attempted to combine μ CT with laser Doppler to characterize
10 neovascularization in healing fractures ⁽³³⁾. Our results present comprehensive snap-shots of LCN
11 development in a quantitative fashion and were enabled by histological analysis combined with
12 deconvolution microscopy/ μ CT. Our imaging process with DV microscopy offered an excellent
13 lateral resolution, nevertheless axial resolution did not allow us to precisely quantify canalicular
14 expression in radial direction. Thus, canalicular number density was computed on the longitudinal
15 plane of the bone. In cortical bone of the mouse femur, canalicular number density has been shown
16 to be higher in radial direction than in tangential direction ⁽³⁴⁾.

17 This paper's findings are consistent with genetically modified mouse models that examine
18 osteocytes and osteocyte gene expression in the callus. For example, conditional deletion of *Igfl*
19 using a *Dmp1-cre* transgene accelerated bony union in mice ⁽³⁵⁾. This and other publications
20 employing osteocyte-targeted knockout models have implied a key role for osteocyte signaling
21 within callus. However, these studies must be interpreted within the context of off-target gene
22 deletion by *Dmp1-cre* in other cell lineages as detected using more sensitive reporters ⁽³⁶⁾. Hence,
23 our study showing the temporal development of the LCN will be useful for clarifying prior genetic
24 mouse models.

25 This study identified two types of bone within the callus region. Firstly, there was the new
26 mineralization of the woven bone callus that rapidly establishes an LCN. Correlation analysis
27 indicates that this network grows in complexity as the callus remodels and while the osteocyte
28 lacuna decreases in size, the occupancy remains high. In contrast, the bone of the former cortex
29 become necrotic, typified by a loss of osteocytes, and will resorb over time as the new cortex forms.
30 New bone versus old bone was also represented by an increased tissue mineral density in the old
31 cortex. By 6 weeks, the fracture callus was highly remodeled.

32 This study has several limitations. While it assessed several time points, there is a fundamental
33 variability in the fracture healing process such that some fractures may progress faster than others.
34 Still, this is superior to prior studies by our group that examined on a single time point ⁽²²⁾. Group

1 sizes were suitable for assessing most of the primary outcome measures by μ CT, but it is likely
2 underpowered for inter-group (time point) linear correlation analysis. Nevertheless, when groups
3 were pooled, statistically significant correlations were observed. Finally, threshold selection was
4 determined based on arbitrary density cut-offs and thus lacuna volume and lacunar number density
5 data should be considered in terms of differences between groups and changes over time, rather
6 than as empirical values. Variations in mineral density in the different portion of the calcified callus
7 encouraged us to try a gradient-threshold edge detection method, however this was unable to
8 produce consistent results.

9 From a biological standpoint, the formation of the LCN is likely mediated by enzymatic
10 degradation of the bone matrix by matrix metalloproteases (MMPs). MMP2 is necessary for LCN
11 formation based on the reported knockout mouse phenotype⁽³⁷⁾ and critical for fracture remodeling
12⁽³⁸⁾. MMP-9 knockout mice show impaired fracture repair, but the LCN was not specifically
13 examined in this model⁽³⁹⁾. MMP-13 is needed for peri-lacunar remodeling as well as maintaining a
14 normal canalicular network⁽⁴⁰⁾, yet its role in fracture repair remains unclear.

15 Further research will be needed to assess the functional importance of MMPs as well as other
16 factors expressed by osteocytes. Osteocytes express a range of important regulatory secreted
17 proteins, such as *Sclerostin* and *RankL*, which modulate local bone formation and resorption. Thus,
18 osteocytes and their secretome may be important for the regulation of the fracture healing process.
19 Use of preclinical models that modulate the LCN using drugs⁽²²⁾ or genetic manipulation will
20 enable the role of the LCN to be more clearly elucidated. The interaction between the nascent LCN
21 and revascularization or bone biomechanics are also areas where there is scope for future studies.
22 Deficiencies in blood supply are associated with impaired bone healing. Loss of stability during
23 fracture healing can result in abundant bony callus formation with impaired union (i.e. hypertrophic
24 non-union), and it is possible that the LCN may be critical for detecting stability and transducing
25 signals.

26 In conclusion, this study is the first to present a detailed analysis of the development of the LCN
27 during fracture repair. We identified significant increases in canalicular number density as bone
28 repair progressed, whereas mean lacuna volume significantly decreases over this time period. This
29 study illustrates the advantage of using multiple X-ray and classical histological imaging modalities
30 to describe the formation and evolution of a new LCN in bone seen within the fracture callus.

31

32 **Disclosures**

33 The authors declare no conflict of interest.

1

2 **Acknowledgements**

3 The authors would like to thank Matthew Summers, Alyson Morse, and Kathy Mikulec for
4 technical assistance. We acknowledge ETH Zurich and The Children's Hospital at Westmead for
5 funding this study.

1 References

- 2 1. Jacobs CR, Temiyasathit S, Castillo AB. Osteocyte mechanobiology and pericellular
3 mechanics. *Annual review of biomedical engineering*. Aug 15 2010;12:369-400.
- 4 2. Burra S, Nicolella DP, Francis WL, Freitas CJ, Mueschke NJ, Poole K, et al. Dendritic
5 processes of osteocytes are mechanotransducers that induce the opening of hemichannels. *P
6 Natl Acad Sci USA*. Aug 3 2010;107(31):13648-53.
- 7 3. Hesse B, Varga P, Langer M, Pacureanu A, Schrof S, Männicke N, et al. Canalicular
8 Network Morphology Is the Major Determinant of the Spatial Distribution of Mass Density
9 in Human Bone Tissue: Evidence by Means of Synchrotron Radiation Phase-Contrast
10 nano-CT. *Journal of Bone and Mineral Research*. 2015;30(2):346-56.
- 11 4. Nango N, Kubota S, Hasegawa T, Yashiro W, Momose A, Matsuo K. Osteocyte-directed
12 bone demineralization along canaliculi. *Bone*. 2015.
- 13 5. Wysolmerski JJ. Osteocytic osteolysis: time for a second look? *Bonekey Rep*. 2012;1:229.
- 14 6. Wysolmerski JJ. Osteocytes remove and replace perilacunar mineral during reproductive
15 cycles. *Bone*. 2013;54(2):230-6.
- 16 7. Zarrinkalam MR, Mulaibrahimovic A, Atkins GJ, Moore RJ. Changes in osteocyte density
17 correspond with changes in osteoblast and osteoclast activity in an osteoporotic sheep
18 model. *Osteoporosis international : a journal established as result of cooperation between
19 the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the
20 USA*. Apr 2012;23(4):1329-36.
- 21 8. Iwamoto J, Matsumoto H, Takeda T, Sato Y, Yeh JK. Effects of vitamin K2 on cortical and
22 cancellous bone mass, cortical osteocyte and lacunar system, and porosity in sciatic
23 neurectomized rats. *Calcified tissue international*. Sep 2010;87(3):254-62.
- 24 9. Qiu S, Rao DS, Palnitkar S, Parfitt AM. Reduced iliac cancellous osteocyte density in
25 patients with osteoporotic vertebral fracture. *Journal of bone and mineral research : the
26 official journal of the American Society for Bone and Mineral Research*. Sep
27 2003;18(9):1657-63.
- 28 10. Ma YL, Dai RC, Sheng ZF, Jin Y, Zhang YH, Fang LN, et al. Quantitative associations
29 between osteocyte density and biomechanics, microcrack and microstructure in OVX rats
30 vertebral trabeculae. *J Biomech*. 2008;41(6):1324-32.
- 31 11. Reilly GC. Observations of microdamage around osteocyte lacunae in bone. *J Biomech*. Sep
32 2000;33(9):1131-4.
- 33 12. Ma Y-L, Dai R-C, Sheng Z-F, Jin Y, Zhang Y-H, Fang L-N, et al. Quantitative associations
34 between osteocyte density and biomechanics, microcrack and microstructure in OVX rats
35 vertebral trabeculae. *J Biomech*. 2008;41(6):1324-32.
- 36 13. Qiu S, Rao DS, Fyhrie DP, Palnitkar S, Parfitt AM. The morphological association between
37 microcracks and osteocyte lacunae in human cortical bone. *Bone*. 2005;37(1):10-5.
- 38 14. Currey JD, Shahar R. Cavities in the compact bone in tetrapods and fish and their effect on
39 mechanical properties. *Journal of structural biology*. 2013;183(2):107-22.
- 40 15. Wagermaier W, Klaushofer K, Fratzl P. Fragility of bone material controlled by internal
41 interfaces. *Calcified tissue international*. 2015;97(3):201-12.
- 42 16. Bonewald LF. Generation and function of osteocyte dendritic processes. *Journal of
43 musculoskeletal & neuronal interactions*. Oct-Dec 2005;5(4):321-4.
- 44 17. Kerschnitzki M, Kollmannsberger P, Burghammer M, Duda GN, Weinkamer R,
45 Wagermaier W, et al. Architecture of the osteocyte network correlates with bone material
46 quality. *Journal of bone and mineral research : the official journal of the American Society
47 for Bone and Mineral Research*. Aug 2013;28(8):1837-45.

1 18. Kerschnitzki M, Wagermaier W, Roschger P, Seto J, Shahar R, Duda GN, et al. The
2 organization of the osteocyte network mirrors the extracellular matrix orientation in bone. *J Struct Biol.* Feb 2011;173(2):303-11.

3

4 19. Choy MHV, Wong RMY, Chow SKH, Li MC, Chim YN, Li TK, et al. How much do we
5 know about the role of osteocytes in different phases of fracture healing? A systematic
6 review. *Journal of orthopaedic translation.* Mar 2020;21:111-21. Epub 2020/04/21.

7 20. Hernandez CJ, Majeska RJ, Schaffler MB. Osteocyte density in woven bone. *Bone.* Nov
8 2004;35(5):1095-9.

9 21. Cardoso L, Fritton SP, Gailani G, Benalla M, Cowin SC. Advances in assessment of bone
10 porosity, permeability and interstitial fluid flow. *J Biomech.* 2013;46(2):253-65.

11 22. Casanova M, Herelle J, Thomas M, Softley R, Schindeler A, Little D, et al. Effect of
12 combined treatment with zoledronic acid and parathyroid hormone on mouse bone callus
13 structure and composition. *Bone.* Nov 2016;92:70-8. Epub 2016/08/21.

14 23. Qiu S, Rao DS, Palnitkar S, Parfitt AM. Relationships between osteocyte density and bone
15 formation rate in human cancellous bone. *Bone.* Dec 2002;31(6):709-11.

16 24. Vashishth D, Gibson G, Kimura J, Schaffler M, Fyhrie D. Determination of bone volume by
17 osteocyte population. *The Anatomical Record.* 2002;267(4):292-5.

18 25. Metz LN, Martin RB, Turner AS. Histomorphometric analysis of the effects of osteocyte
19 density on osteonal morphology and remodeling. *Bone.* 2003;33(5):753-9.

20 26. Cardoso L, Herman BC, Verborgt O, Laudier D, Majeska RJ, Schaffler MB. Osteocyte
21 apoptosis controls activation of intracortical resorption in response to bone fatigue. *Journal*
22 *of bone and mineral research.* 2009;24(4):597-605.

23 27. Webster DJ, Schneider P, Dallas SL, Muller R. Studying osteocytes within their
24 environment. *Bone.* Jun 2013;54(2):285-95.

25 28. M Casanova AS, D Little. P Schneider, R Müller A novel method to quantify number of
26 osteocyte processes in bone. European Society of Biomechanics Congress; Patras2013.

27 29. Schindeler A, Morse A, Harry L, Godfrey C, Mikulec K, McDonald M, et al. Models of
28 tibial fracture healing in normal and Nfl-deficient mice. *J Orthop Res.* Aug
29 2008;26(8):1053-60. Epub 2008/04/03.

30 30. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R. Guidelines
31 for assessment of bone microstructure in rodents using micro-computed tomography.
32 *Journal of bone and mineral research : the official journal of the American Society for Bone*
33 *and Mineral Research. Review* Jul 2010;25(7):1468-86.

34 31. Wehrle E, Tourolle Né Betts DC, Kuhn GA, Scheuren AC, Hofmann S, Müller R.
35 Evaluation of longitudinal time-lapsed in vivo for monitoring fracture healing in mouse
36 femur defect models. *Scientific reports.* Nov 25 2019;9(1):17445. Epub 2019/11/27.

37 32. Bissinger O, Götz C, Wolff KD, Hapfelmeier A, Prodinger PM, Tischer T. Fully automated
38 segmentation of callus by compared to biomechanics. *Journal of orthopaedic surgery and*
39 *research.* Jul 11 2017;12(1):108. Epub 2017/07/13.

40 33. Macdonald W, Shefelbine SJ. Characterising neovascularisation in fracture healing with
41 laser Doppler and scanning. *Medical & biological engineering & computing.* Oct
42 2013;51(10):1157-65. Epub 2013/07/25.

43 34. Pazzaglia UE, Congiu T. The cast imaging of the osteon lacunar-canalicular system and the
44 implications with functional models of intracanalicular flow. *Journal of anatomy.*
45 2013;222(2):193-202.

46 35. Lau KW, Rundle CH, Zhou XD, Baylink DJ, Sheng MH. Conditional deletion of IGF-I in
47 osteocytes unexpectedly accelerates bony union of the fracture gap in mice. *Bone.* Nov
48 2016;92:18-28. Epub 2016/08/16.

1 36. Dallas SL, Xie Y, Shiflett LA, Ueki Y. Mouse Cre Models for the Study of Bone Diseases.
2 Current osteoporosis reports. Aug 2018;16(4):466-77. Epub 2018/06/24.

3 37. Inoue K, Mikuni-Takagaki Y, Oikawa K, Itoh T, Inada M, Noguchi T, et al. A crucial role
4 for matrix metalloproteinase 2 in osteocytic canalicular formation and bone metabolism. The
5 Journal of biological chemistry. Nov 3 2006;281(44):33814-24. Epub 2006/09/09.

6 38. Lieu S, Hansen E, Dedini R, Behonick D, Werb Z, Miclau T, et al. Impaired remodeling
7 phase of fracture repair in the absence of matrix metalloproteinase-2. Disease models &
8 mechanisms. Mar 2011;4(2):203-11. Epub 2010/12/08.

9 39. Colnot C, Thompson Z, Miclau T, Werb Z, Helms JA. Altered fracture repair in the absence
10 of MMP9. Development. 2003 Sep;130(17):4123-33.

11 40. Tang SY, Herber R-P, Ho SP, Alliston T. Matrix metalloproteinase-13 is required for
12 osteocytic perilacunar remodeling and maintains bone fracture resistance. J Bone Miner Res.
13 2012 Sep; 27(9):1936-1950.

14

15

16 **Author Contribution Statement:** MC was the lead investigator and performed microCT and high
17 resolution microscopy, LP undertook the animal studies, LL performed histology, PS contributed to
18 microCT analysis, MC and AS drafted the manuscript, AS, DGL and RM conceived and planned
19 the study, all authors edited and reviewed the final manuscript.

20

1 **Table 1** Quantitative micro-computed tomography macro-/microarchitecture, lacunar occupancy
 2 and tissue mineral density of the bone calluses (new bone) and intact tibiae. Ca.D: canalicular
 3 number density; $\langle Lc.V \rangle$: mean lacuna volume; N.Lc/BV: lacunar number density; BV/TV: bone
 4 volume fraction; TMD: tissue mineral density; Tb.N: trabecular number; Tb.Th: trabecular
 5 thickness; Tb.Sp: trabecular separation; Tb.Th.SD: standard deviation of Tb.Th; Tb.Sp.SD:
 6 standard deviation of Tb.Sp; DA: degree of anisotropy; Conn.D: connectivity density; SMI:
 7 structure model index. Parenthetic numbers indicate standard deviation.

8

	2 weeks post-op	3 weeks post-op	6 weeks post-op
Lacunar and canalicular measures			
<i>Bone calluses</i>			
Ca.D (1/ μm^2)	N=15 0.082 (0.021)	N=15 0.10 (0.033)*	N=15 0.151 (0.033)***,###
$\langle Lc.V \rangle$ (μm^3)	501 (99)	366 (29)***	319 (27)***,#
N.Lc/BV (10 ³ /mm ³)	20.4 (4.3)	52.4 (11.5)***	42.9 (7.5)***, #
	N=5	N=5	N=5
Lacunar occupancy (%)	94 (3.5)	94 (2.8)	94 (1.5)
<i>Intact tibiae</i>			
Ca.D (1/ μm^2)	N=15 0.179 (0.035)	N=15 0.175 (0.034)	N=15 0.182 (0.039)
$\langle Lc.V \rangle$ (μm^3)	302 (34)	297 (29)	312 (26)
N.Lc/BV (10 ³ /mm ³)	52.7 (13.4)	44.9 (11.7)	47 (11.5)
	N=5	N=5	N=5
Lacunar occupancy (%)	93 (3.2)	92 (0.9)	90 (3.9)
Macroscopic measures			
<i>Bone calluses</i>	N=15	N=15	N=15
BV/TV (%)	36.5 (6.0)	43.9 (8.4)*	37.3 (9.6)
TMD (HA mg/cm ³)	627 (44)	796 (26)***	920 (24)***,###
Micro-architectural measures			
<i>Bone calluses</i>	N=15	N=15	N=14
Tb.N (1/mm)	12.8 (1.6)	7.8 (1.5)***	3.3 (0.7)***,###
Tb.Th (mm)	0.034 (0.0025)	0.049 (0.0053)***	0.085 (0.0159)***,###
Tb.Sp (mm)	0.072 (0.0129)	0.124 (0.0251)***	0.300 (0.0526)***,###
Tb.Th.SD (mm)	0.0121 (0.0016)	0.0196 (0.0058)*	0.0386 (0.0117)***,###
Tb.Sp.SD (mm)	0.479 (0.020)	0.072 (0.024)*	0.130 (0.031)***,###
DA (-)	1.059 (0.014)	1.213 (0.081)***	1.543 (0.140)***,###
Conn.D (1/mm ³)	3753 (524)	1537 (378)***	93 (58)***,###
SMI (-)	0.895 (0.350)	0.484 (0.659)	1.870 (0.756)***,###

9

10 *: p < 0.05 when compared to 2 weeks post-op

11 **: p < 0.01 when compared to 2 weeks post-op

12 ***: p < 0.001 when compared to 2 weeks post-op

13 #: p < 0.05 when compared to 3 weeks post-op

14 ###: p < 0.001 when compared to 3 weeks post-op

15

1 **Table 2** Statistically significant Pearson correlations between micro-architectural measures and
 2 lacuno-canalicular measures. SMI: structure model index; Ca.D: canalicular number density; DA:
 3 degree of anisotropy; Lc.D: lacunar number density; Tb.N: trabecular number; Tb.Sp: trabecular
 4 spacing; Tb.Th.SD: standard deviation of Tb.Th; Conn.D: connectivity density; Post-op week: post-
 5 operative week.

6

	Tb.Th.SD~ Lc.D	DA~ Lc.D	Tb.N~ Ca.D	Tb.Sp~ Ca.D	Conn.D~ Ca.D	SMI~ Ca.D
	<i>N</i> =15	<i>N</i> =15	<i>N</i> =15	<i>N</i> =15	<i>N</i> =15	<i>N</i> =14
Post-op week	2	3	3	3	3	6
Pearson's <i>R</i>	0.738	0.708	0.709	-0.808	0.753	0.706
<i>p</i> -value	0.006	0.003	0.003	0.000	0.001	0.003

7

8

9 Figure Legends

10 **Figure 1:** Three-dimensional rendering of representative calluses (scans at 7 μm voxel size) for each time
 11 point (top). Representative details of the callus struts from the transverse plane (scans at 1.2 μm voxel size)
 12 at the three post-operative (post-op) time points; acquired in the white rectangular area on the top images
 13 (bottom).

14 **Figure 2:** Trabecular thickness versus canalicular number density or lacunar volume for all calluses of the
 15 three time points: two, three and six weeks post-operatively. A significant linear correlation of $R^2=0.56$ ($p <$
 16 0.001) was found for canalicular number density, and a significant quadratic correlation of $R^2=0.57$ ($p <$
 17 0.001) was found for mean lacuna volume.

18 **Figure 3:** Illustrative images of canaliculi in the calluses at the three different time points. The yellow area
 19 delimits the lacunar contour (ROI). (A) Microscopy sections cutting through the centre of the lacunae. (B)
 20 Confocal planes placed a few micrometres above the lacunae.

21 **Figure 4:** TUNEL staining of fracture calluses (top row) with 40 \times magnified regions below (boxed)
 22 corresponding to the callus tissue (middle row) and parosteal cortical bone adjacent to the callus (bottom
 23 row). TUNEL staining (brown), haematoxylin counterstain (purple).

24 **Figure 5:** Descriptive histology with Goldner's trichrome staining showing lacunar occupancy in the woven
 25 bone of (a) the bone callus, (b) the cortical bone of the intact tibia, and (c) on the reabsorbing cortical bone in
 26 the bone callus.

27 **Figure 6:** Tissue mineral density (TMD) of the necrotic bone in the bone calluses (fractured tibiae)
 28 compared to the TMD of the intact tibiae showed no significant difference. However, the mean lacuna
 29 volume of necrotic (dead) old cortical bone was significantly higher than other bone at the 2 and 3 week time
 30 points. Bars represent standard deviation. *: $p < 0.05$; **: $p < 0.01$.

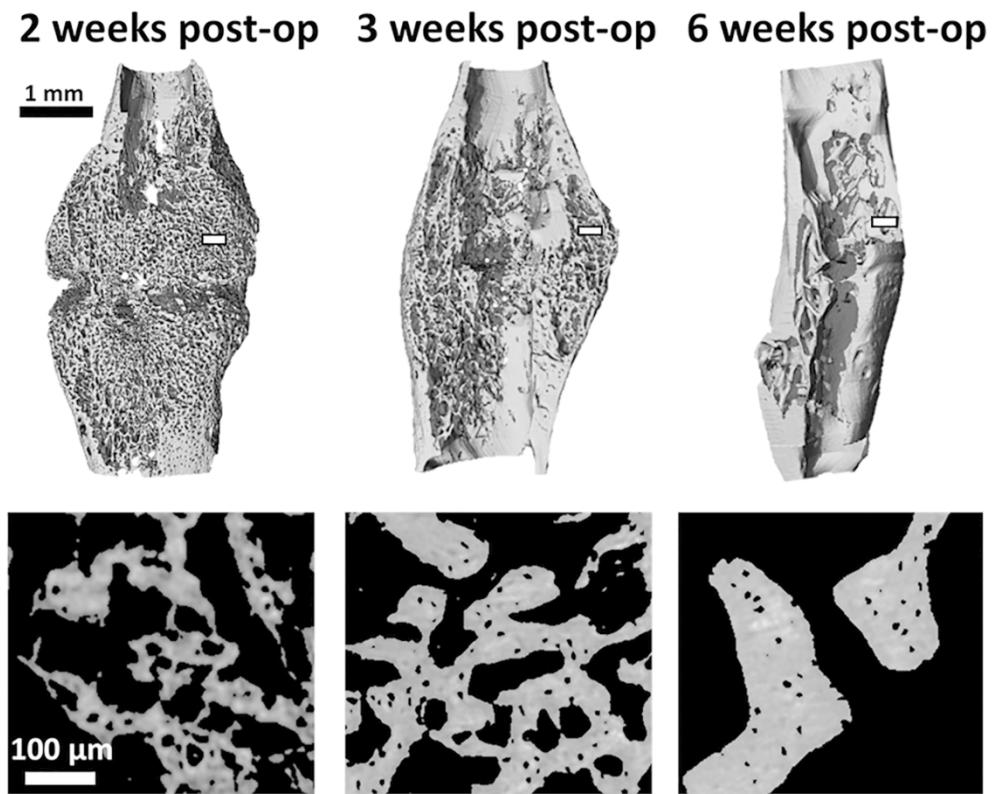


Figure 1: Three-dimensional rendering of representative calluses (scans with 7 μm voxel size) for each time point (top). Representative details of the callus struts from the transverse plane (scans with 1.2 μm voxel size) at the three post-operative (post-op) time points; acquired in the white rectangular area on the top images (bottom).

182x146mm (300 x 300 DPI)

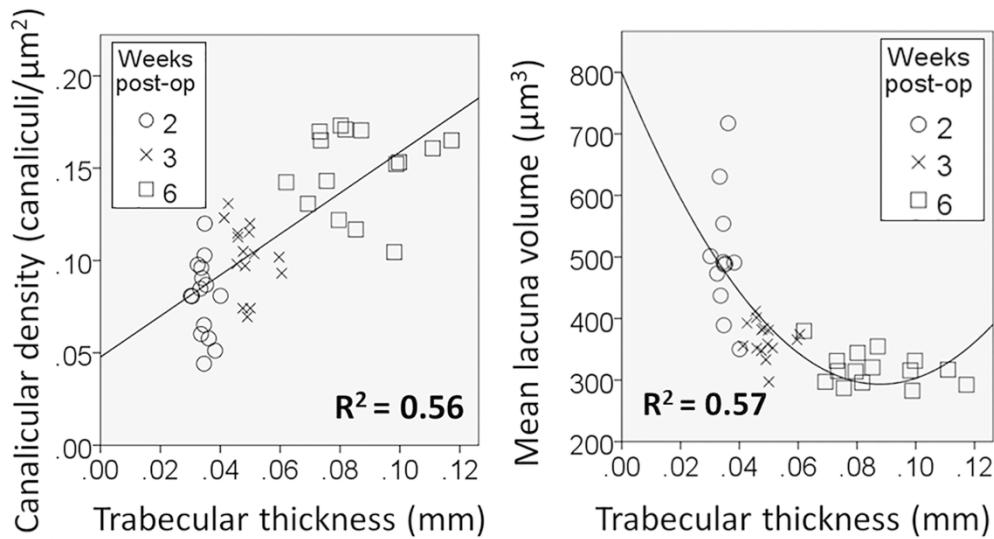


Figure 2: Trabecular thickness versus canalicular density or lacunar volume for all calluses of the three time points: two, three and six weeks post-operatively. A significant linear correlation of $R^2=0.56$ ($p < 0.001$) was found for canalicular density, and a significant quadratic correlation of $R^2=0.57$ ($p < 0.001$) was found for mean lacunar volume.

182x99mm (300 x 300 DPI)

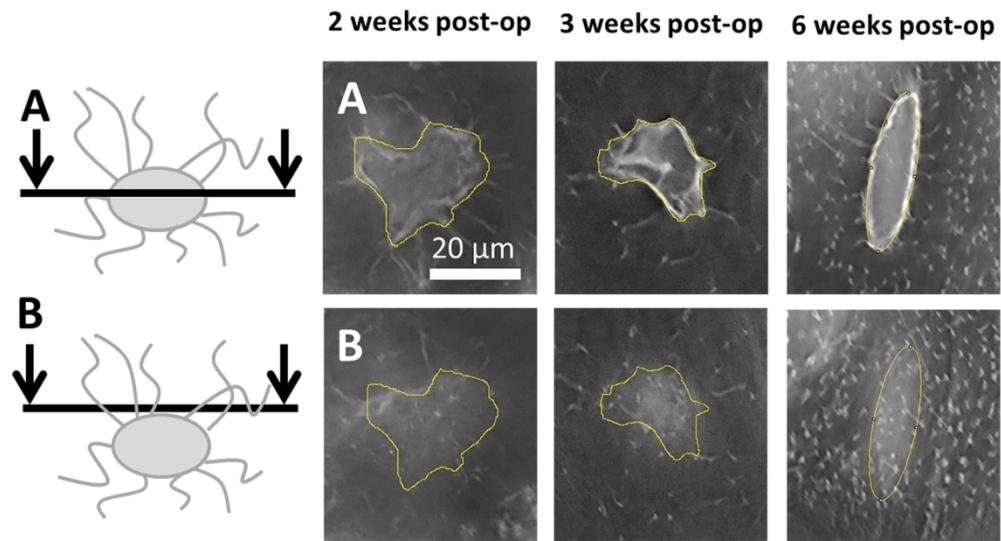


Figure 3: Illustrative images of canaliculi in the calluses in the three different time points. The yellow area delimits the lacunar contour (ROI). (A) Microscopy sections cutting through the centre of the lacunae. (B) Confocal planes placed a few micrometres above the lacunae.

182x96mm (300 x 300 DPI)

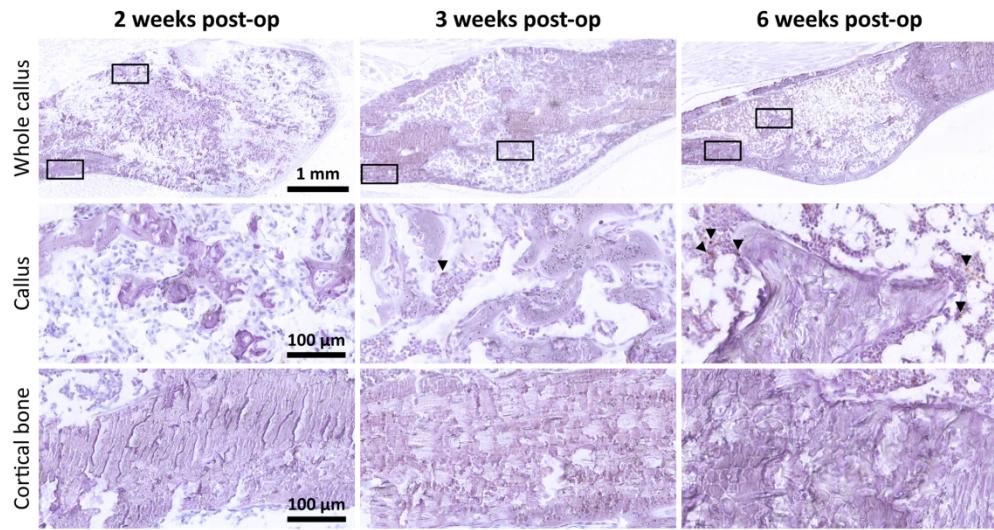


Figure 4: TUNEL staining of fracture calluses (top row) with 40 \times magnified regions below (boxed) corresponding to the callus tissue (middle row) and parosteal cortical bone adjacent to the callus (bottom row). TUNEL staining (brown), haematoxylin counterstain (purple).

182x96mm (300 \times 300 DPI)

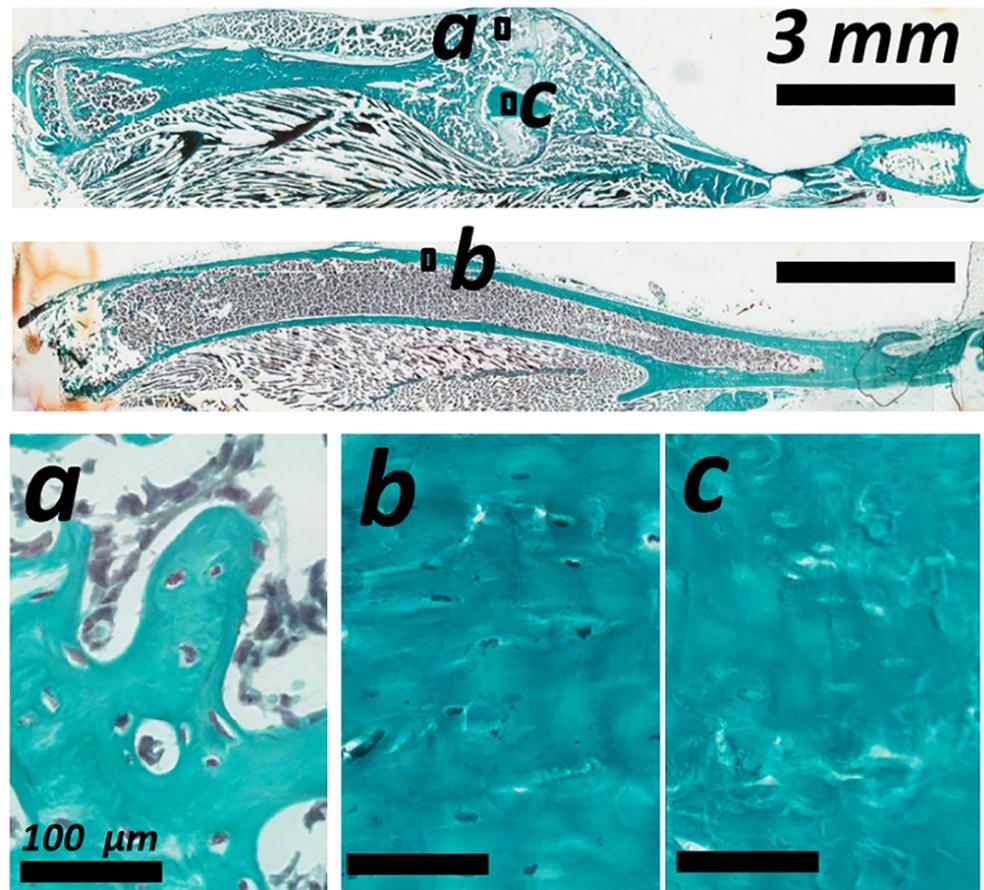


Figure 5: Descriptive histology with Goldner's trichrome staining showing lacunar occupancy in the woven bone of (a) the bone callus, (b) the cortical bone of the intact tibia, and (c) on the reabsorbing cortical bone in the bone callus.

86x77mm (300 x 300 DPI)

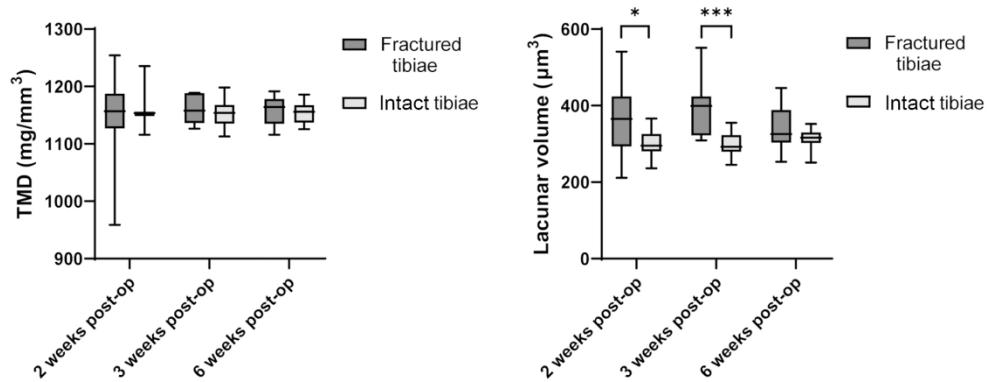


Figure 6: Tissue mineral density (TMD) of the necrotic bone in the bone calluses (fractured tibiae) compared to the TMD of the intact tibiae showed no significant difference. However, the mean lacunar volume of necrotic (dead) old cortical bone was significantly higher than other bone at the 2 and 3 week time points.

Bars represent SD. *: $p < 0.05$; **: $p < 0.01$