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Abstract—The capability and synergistic use of multi-source 

satellite observations for flood monitoring and forecasts is crucial 

for improving disaster preparedness and mitigation. Here, surface 

fractional water cover (FW) retrievals derived from Soil Moisture 

Active Passive (SMAP) L-band (1.4 GHz) brightness 

temperatures were used for flood assessment over southeast 

Africa during the Cyclone Idai event. We then focused on five 

sub-catchments of the Pungwe basin and developed a machine 

learning-based approach with the support of Google Earth Engine 

(GEE) for daily (24-hour) forecasting of FW and 30-m inundation 

downscaling and mapping. The Classification and 

Regression Trees (CART) model was selected and trained using 

retrievals derived from SMAP and Landsat coupled with rainfall 

forecasts from the NOAA Global Forecast System (GFS). 

Independent validation showed that FW predictions over 

randomly selected dates are highly correlated (R=0.87) with the 

Landsat observations. The forecast results captured the flood 

temporal dynamics from the Idai event; and the associated 30-m 

downscaling results showed inundation spatial patterns consistent 

with independent satellite Synthetic Aperture Radar (SAR) 

observations. The data-driven approach provides new capacity 

for flood monitoring and forecasts leveraging synergistic satellite 

observations and big data analysis, which is particularly valuable 

for data sparse regions. 

 
Index Terms—SMAP, Landsat, GFS, flood, GEE  

 

I. INTRODUCTION 

XTREME rainfall-driven flooding is one of the most 

widespread and costly natural disasters [1] and is expected 

to become more frequent with global warming [2]. As one of 

the deadliest and most devastating storms on record in the 

southern hemisphere, tropical cyclone Idai brought extreme 

rainfall to southeast Africa in March 2019, affecting about 3 

million people, damaging more than 200,000 houses and 

resulting in more than 1,000 deaths and total damages 
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exceeding $2 Billion [3]. Timely assessment and early warning 

systems are essential to disaster preparedness and rapid 

responses. Advances in remote sensing and big data techniques 

provide new opportunities for building efficient and effective 

all-weather and multi-scale flood assessment and forecast 

capabilities.  

Satellite optical-infrared (IR) and microwave remote sensing 

observations are suitable for delineating flood inundation 

extent over large areas due to the unique surface reflectance and 

microwave signatures of standing water [4]. Satellite optical-IR 

sensors such as PlanetScope multispectral cameras, Landsat 

and MODIS enable accurate detection of open water at 

sub-meter to 1000-m spatial resolutions and global coverage at 

daily to 16-day cycles [5-7]. However, cloud cover and 

sub-optimal solar illumination can severely reduce the number 

of valid measurements from optical-IR remote sensing, 

resulting in major data loss during rainfall driven flood events 

[8]. Despite the drawbacks likely limiting near-real time flood 

monitoring, long-term water inundation records composited 

from clear-sky optical-IR observations are valuable in 

quantifying historical water inundation dynamics and flood 

feasibility [9-10].  

Microwave remote sensing is another powerful tool for flood 

monitoring due to the strong microwave sensitivity to surface 

water, and relative insensitivity to solar illumination, 

atmosphere and cloud cover constraints [11]. In addition, 

microwave signals are more capable of detecting water features 

under vegetation relative to optical-IR observations, although 

the degree of vegetation contamination and signal loss is 

proportional to channel frequency, with greater vegetation 

transparency and surface water sensitivity at lower microwave 

frequencies [11-12]. Active microwave remote sensing allows 

for flood mapping under all-weather conditions at resolutions 

on the order of meters to a few kilometers [13-16], but with 

infrequent monitoring provided from existing satellite 

SAR-based observations (e.g. ~6 day global coverage for 

Sentinel-1 constellations) or limited spatial coverage from 

Global Navigation Satellite (GNSS)-based techniques (e.g. 

areas between 38° N and 38° S latitude for Cyclone GNSS 

constellation) [17]. 

Passive microwave radiometry has also been used for flood 

mapping and provides capabilities for global monitoring with 

high temporal frequency (~1-3 day), but at coarse (5 to 25 km) 

spatial scales [18-21]. For example, the National Aeronautics 

and Space Administration (NASA) Soil Moisture Active 

Satellite Flood Inundation Assessment and Forecast using 

SMAP and Landsat 
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 (a)  (b) 

Passive (SMAP) and European Space Agency (ESA) Soil 

Moisture and Ocean Salinity (SMOS) missions provide low 

frequency (L-band) microwave emission observations with 

enhanced sensitivity to water signals underlying vegetation 

[22-23], though potential applications requiring finer landscape 

level assessments of surface water dynamics are limited by the 

coarse (~40 km) SMAP footprint [21].  

Due to the complementary nature of different remote sensing 

techniques, data fusion approaches combining multi-sensor 

observations show promise for enhanced flood mapping in 

terms of accuracy, temporal coverage and spatial resolution 

[24-25]. The emergence of cloud-based geospatial processing 

platforms such as Google Earth Engine (GEE) provides an 

efficient means for rapid access and combined analysis of 

multi-source data [26]. The capability of accurate flood 

mapping within minutes was achieved by analyzing hundreds 

of Sentinel-1 SAR and Landsat images archived on the GEE 

[27-29]. In addition to exploiting a growing number of 

observations from current satellite sensors through big data 

techniques, planned next generation satellite missions 

including the NASA-ISRO Synthetic Aperture Radar (NISAR) 

and NASA-CNES SWOT radar altimetry missions will enable 

further enhancement in global water cycle and flood 

assessment leveraging satellite river gauging and high 

spatial-temporal resolution observations [30-31].  

While timely satellite assessment is crucial to disaster 

emergency response at the time of flooding, effective flood 

inundation forecasts are indispensable for early warning 

systems, disaster preparedness and management. Traditional 

flood forecast systems exploit flood-related hydrologic 

processes simulated by physical models, which rely on 

quantified descriptions of catchment and river physical 

characteristics, and are driven by rainfall outputs from a 

numerical weather prediction (NWP) model [32-34]. For 

example, a flood forecasting system utilizing graphics 

processing unit (GPU) computation showed potential in 

predicting water level and flood extent with 34 hours of lead 

time for a selected catchment [35]. Considering the highly 

nonlinear correspondence between rainfall and flood 

inundation; and the lack of accurate descriptions of hydrologic 

parameters at sub-kilometer levels, data-driven approaches 

represent an alternative to physically-based forecast systems by 

leveraging the flexibility of machine-learning methods in 

linking rainfall inputs and inundation outputs [36-38]. Despite 

recent advances in empirical data-driven flood forecasts, direct 

flood observations (e.g. inundation extent) from satellites have 

not been comprehensively utilized in current forecast systems. 

The flood inundation pattern inherent in long-term satellite 

observations has also not been fully utilized to inform regional 

flood forecasts. The capabilities of efficient and fine-scale (e.g. 

30-meter) flood inundation forecasts targeting individual 

houses or small neighborhoods are still lacking, especially for 

data sparse regions where effective pre-flood disaster 

preparedness and risk mitigation are greatly needed.  

Here, we used global NASA SMAP surface fractional water 

cover (FW) observations [21] for monitoring flood inundation 

during the cyclone Idai event over southeast Africa. We 

developed a machine-learning scheme for obtaining finer 

(30-m) resolution flood forecasts by fusing synergistic 

information from satellite observations and NWP outputs. 

Detailed descriptions of the methods, results and discussion 

from this study are presented in sections II, III and IV, 

respectively. 

 

II. METHODS  

A. Study region 

Our study involves regional flood mapping over southeast 

Africa (latitude: -5° to -35°; longitude: 18° to 50°), along with 

finer (30-m) scale flood inundation forecast assessments over 

five unit catchments (~163 km
2
) within the lower Pungwe 

River basin (Fig.1a). The basin covers ~31,000 km
2
 extending 

from Zimbabwe's eastern highlands to the Sofala province 

lowlands in Mozambique; the region experiences seasonal wet 

and dry cycles with recurring drought and flood events [39]. 

Cyclone Idai made landfall near Beira, the Sofala provincial 

capital, on the night of March 14 to March 15, 2019, as a 

category 2 storm [40]. As the storm moved slowly inland, it 

brought extreme rainfall that led to devastating flooding in 

Mozambique and triggered major flooding over the larger 

southeast African region [40]. Regional flooding was 

exacerbated by persistent rainfall and wet conditions in the 

weeks prior to the Idai event. The flood inundation distributions 

over southeast Africa were mapped using SMAP FW data in 

our study. For evaluating the potential utility of satellite-based 

flood forecasts, we focused on the five unit catchments of the 

Pungwe basin (Fig.1b) within the Sofala province, where 

severe flooding occurred during the Idai event [40]. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Fig.1. (a) Five unit catchments (delineated in red) within the 

Pungwe basin and (b) water occurrence from 2000 to 2019 over 

the catchments derived from the USGS Landsat water mask. 

B. Data sets  

Five dynamic data sets were used in this study including the 

SMAP FW record [21], the NASA-United States Department 

of Agriculture (USDA) SMAP global soil moisture dataset 

[41-42], United States Geological Survey (USGS) Landsat 

water mask data [43], National Oceanic and Atmospheric 

Administration (NOAA) National Centers for Environmental 

https://en.wikipedia.org/wiki/Sofala_Province
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Prediction (NCEP) Global Forecast System (GFS) 384-Hour 

Predicted Atmosphere Data [44], and NASA Advanced Rapid 

Imaging and Analysis (ARIA) flood inundation products 

[45-46]. One static dataset, depicting unit catchment 

boundaries from the Multi‐Error‐Removed‐Improved‐Terrain 

(MERIT) Basins dataset [47], was also used for the study. The 

SMAP FW and MERIT boundary data were uploaded to GEE 

in this study for performing the multi-source analysis with the 

other data sets, which are accommodated and regularly updated 

on GEE. Except for the static MERIT boundary data, all other 

data sets used in this study were temporally dynamic. 

The FW data derived using SMAP brightness temperature 

(Tb) observations represent the areal proportion of standing 

water within the sensor footprint (~ 40 km resolution) [21]. The 

SMAP mission was successfully launched in January 2015 and 

provides desirable characteristics for FW monitoring, including 

L-band (1.4 GHz) microwave sensitivity to surface water and 

reduced sensitivity to atmosphere contamination and overlying 

vegetation cover relative to optical-IR and higher-frequency 

microwave satellite observations, consistent sensor view 

geometry, well calibrated Tb retrievals, and advanced detection 

and mitigation of radio frequency interference (RFI) [22]. The 

SMAP FW annual averages are highly correlated (R = 0.85) 

with alternative global water maps derived from MODIS 

(MOD44W) observations, while capturing both flash flooding 

and seasonal inundation variations from 1-3 day global 

coverage [21]. The SMAP ascending orbit FW data from 

March 11 to 19, 2019 were used directly for regional mapping 

of the Idai flood event; and the multi-year record (July 2015 to 

March 2019) was used along with Landsat and GFS records for 

the flood forecasts by accounting for the surface water 

conditions prior to the forecast dates. We used FW retrievals 

from SMAP ascending orbits due to their higher accuracy 

relative to the alternative estimates derived from descending 

orbit observations [21]. 

The NASA-USDA SMAP global soil moisture dataset is 

generated by assimilating SMAP surface soil moisture into the 

modified two-layer Palmer model for providing both surface 

and subsurface soil moisture over the globe at 0.25°x0.25° 

spatial resolution [41]. The water-holding capacity of saturated 

soil in the surface layer is assumed to be 25.4 mm [41]. The 

resulting soil moisture product showed improved correlation 

with in-situ measurements relative to model outputs derived 

without assimilating SMAP products [42]. Here, the surface 

soil moisture data were used to depict background soil wetness 

conditions prior to the target prediction date for the flood 

forecasts.  

The 30-m Landsat water mask data integrated in the USGS 

Landsat-7/8 surface reflectance products [48] were used to 

calculate the FW of the selected unit catchments; and served as 

the target variable in the flood forecast model. The Landsat 

water mask data were originally derived using the Fmask 

algorithm [48], which has been widely used with optical-IR 

imagery for distinguishing land, water, cloud, and cloud 

shadow, with a documented 2% omission error and 14% 

commission error [43]. For this study, only Landsat 

observations with cloud coverage less than 20% were selected 

to calculate the reference FW values for training and validating 

the forecast model. In addition, the Landsat data from 2000 to 

2019 were used to generate water occurrence data, which 

represents overall flood feasibility for the past two decades. For 

example, floods have frequently occurred in the selected unit 

catchments as evidenced by the widespread distribution of 

areas with high water occurrence (e.g. >30% highlighted in 

light blue to purple; Fig.1b).  

The GFS is a three-dimensional weather forecast model 

operationally running at NOAA-NCEP [49] and archived on 

GEE for the record since July 2015. The GFS couples a variety 

of models accounting for atmosphere, ocean, land, and sea ice 

processes, and provides up to 384-hour forecasts, with 3-hour 

forecast intervals for selected model outputs as gridded forecast 

variables [49-51]. The GFS precipitation forecasts have been 

coupled with hydrological models to improve runoff 

predictions [50] and understanding of hydrological processes 

[52]. The GFS forecasts of cumulative surface precipitation at 

0.25° spatial resolution served as predictors for deriving the 

flood inundation forecast. We also used GFS precipitation 

outputs to describe background rainfall conditions prior to the 

forecast date.  

The catchment boundary delineations were derived from 

MERIT hydrography data [47], which account for 

topographic  effects using a 3-arcsec (~90 m) resolution DEM 

[53]. The MERIT Basins dataset provides enhanced delineation 

of unit catchments over the globe, including approximately 

2.94 million vectorized river flowlines and unit catchments 

[47]; these data provided the required hydrography for the river 

routing and hydrological simulations from this study.  

Flood maps independently derived by the NASA Jet 

Propulsion Laboratory (JPL) ARIA project [47] using 

space-borne SAR observations were used for assessing the 

inundation forecast results from this study. ARIA flood proxy 

maps for March 19 and March 23, 2019 over Mozambique were 

produced using imagery acquired by Sentinel-1 SAR and the 

Phased Array type L-band SAR (PALSAR) onboard the 

Advanced Land Observing Satellite 2 (ALOS-2), respectively. 

The ARIA maps delineated areas likely flooded due to Cyclone 

Idai at a spatial resolution of 30 m for Sentinel-1 and 25 m for 

ALOS-2 results. The ALOS-2 flood maps were re-sampled to 

30-m resolution for comparing against the Sentinel-1 and 

model forecast flood results from this study. The processed 

images were compared to each other for cross-validation, while 

larger differences and uncertainties in the satellite derived flood 

maps are expected over urban and vegetated areas [46].  

C. Regional flood mapping using SMAP 

Regional flood mapping was performed by analyzing the 

SMAP derived FW dynamics. For deriving SMAP FW data, an 

ancillary look-up table (LUT) was first established to provide 

reference L-band microwave emissivities for land and water 

endmembers, excluding ocean areas, under a range of land 

surface conditions defined by an existing AMSR (Advanced 

Microwave Scanning Radiometer) global land parameter data 

record [21][54]. Land and water endmembers for the LUT were 

identified as grid cells fully (100%) land and fully water 

covered using an ancillary global land cover map and the 
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AMSR land parameter record. Based on the ancillary LUT and 

using SMAP daily ascending orbit Tb (L1CTB) retrievals as 

primary inputs, daily FW retrievals were derived over the 

global domain using a Difference Ratio (DR) of SMAP 

emissivities [21]:  

( ) ( )

( ) ( )
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where h denotes H-polarization, l is for pure land, w is for pure 

water, ref is the reference emissivity (or Tb) under the LUT 

defined land surface condition, and obs is the SMAP observed 

emissivity (or Tb). The resulting SMAP FW retrievals were 

derived on a daily basis for each 36-km grid cell, consistent 

with the SMAP L1CTB global EASE-grid format. The 

inundation area was calculated using the temporal increase of 

FW extent relative to a pre-flood period for the 36-km grid 

cells. For the Idai flood, the averaged surface water conditions 

during March 11-13, 2019 prior to the cyclone Idai landfall on 

March 15th were used to describe the pre-flood inundation 

level. The increase in FW extent for March 17-19, 2019 relative 

to the pre-flood period, quantified the newly flooded area due to 

the cyclone-driven rainfall. 

D. Machine-learning based satellite flood forecast  

Rainfall-driven flood inundation patterns are primarily 

governed by soil infiltration and saturation excess runoff 

mechanisms; whereas, inundation spatial variability is 

controlled by topography, soil, rainfall, and vegetation 

properties [55]. For establishing precipitation and inundation 

relationships using data-driven approaches, a major assumption 

of the flood forecast is that precipitation is the primary driver of 

flooding represented by the satellite observed inundation 

extent, and that these relationships are consistent between 

model training (past) and forecast (future) periods. 

Accordingly, historical satellite inundation observations 

together with model precipitation predictions enable flood 

inundation forecasts as demonstrated in the algorithm flowchart 

(Fig. 2) and detailed below. 

 

  
Fig. 2. Algorithm flowchart for machine-learning based 

satellite flood forecast and inundation mapping. 

 

Our analysis was performed using the GEE platform, which 

is a web-based service capable of efficient archiving, 

processing, visualizing and analyzing petabyte data. The 

high-performance cloud computation capabilities of GEE 

enable both conventional spatial analysis and machine learning 

from a large collection of datasets including remote sensing 

imagery, reanalysis data and vector data, and for clarifying their 

interconnections. Similar to flood predictions based on 

hydrological models [56], the potential response of surface 

inundation to projected rainfall depends on initial soil wetness 

conditions. The SMAP products and previous precipitation 

information were used to quantify prior surface and soil 

wetness levels for the study areas and larger domain potentially 

contributing to the flood inundation. Our data-driven model is 

region-specific, so only the time-variant features were used as 

predictors while implicitly accounting for the impacts from 

static variables such as soil properties and terrain (DEM). 

Here we selected the CART (Classification and 

Regression Trees) model implemented using GEE to derive 

1-day (24-hour) ahead forecasts of FW inundation patterns 

within the five Pungwe basin unit catchments (Fig.1b). The 

CART model is a decision-tree type machine-learning 

approach, which is analytically and mathematically rigorous; 

and capable of establishing relationships between target 

variables and predictors through a recursive partitioning 

procedure [57-58]. The CART mechanism allows for automatic 

missing value handling, cost-sensitive learning, dynamic 

feature construction, and probability tree estimation [57]. For 

training and validating the CART model, the GFS, SMAP and 

clear-sky Landsat water mask data were collected for the period 

from May 2015 to February 2019, where 80% of the ~100 data 

records covering different dates were used for model training 

and the other 20% for validation. Metrics including correlation 

coefficient (R), root mean square error (RMSE) and RMSE 

normalized by mean value (nRMSE) were calculated by 

comparing predicted and observed FW values, and used for 

evaluating model performance. The relative importance of each 

predictor was determined based on the decrease in node 

impurity derived during the model training process [57]. 

Landsat observations acquired at about 10:00 AM local time 

were used in our forecast model, while 8:00 AM (UTC time; or 

10:00 AM local time in Mozambique) was set as the time for 

predicting catchment FW values. Here we defined day 0 as the 

―current‖ date to make the forecast; and day +n/-n as the date n 

days after or before day 0. The CART model predictors for the 

1-day inundation forecast included: (a) cumulative surface 

precipitation forecasted by the GFS for the 32-hour period 

before 8:00 AM (UTC time) of the forecast date or day +1 over 

the selected catchments and adjacent 50-km buffer zones 

within the Pungwei River basin (GFS_A32h); (b) cumulative 

surface precipitation obtained by GFS outputs for the 24-hour 

period of day -1 over the selected catchments and adjacent 

buffer zones (GFS_B24h); (c) mean SMAP FW over the 3-day 

period before the forecast date over the selected catchments 

(FW_sc) and buffer zones (FW_bz); and (d) NASA-USDA 

SMAP global surface soil moisture for the study area and buffer 

zones (SSM_bz). We excluded the SSM and precipitation 
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forecasts as predictors due to their negligible importance (~ 

0%) in the flood forecasts over the selected catchments. The 

target variable for the flood forecast is the FW aggregated from 

the 30-m Landsat water mask for the selected catchments.  

We also performed a 3-day (72-hour) forecast test to evaluate 

the model potential for longer-term assessments. The 

associated long-range predictors were defined similar to the 

1-day forecast except that cumulative surface precipitation 

forecasted by GFS for the 80-hour period before 8:00 AM 

(UTC time) of day +3 was used (GFS_A80h) instead of 

GFS_A32h. 

The predicted FW values were downscaled for generating 

30-m inundation maps using an empirical interpolation 

approach guided by 30-m water occurrence information 

derived from the long-term USGS Landsat water mask (Section 

B; Du et al., 2018). The water occurrence information was used 

for prioritizing the predicted FW allocation sequentially to all 

30-m pixels within the selected catchments. The approach was 

initially developed for 30-m downscaling of coarse (36-km) 

grid SMAP FW retrievals; whereby, the 30-m results showed 

favorable spatial accuracy for water (70.71%) and land 

(98.99%) classifications relative to independent Landsat-8 

results over diverse climate, vegetation, and terrain conditions 

[21]. The resulting 30-m flood inundation forecasts were 

compared with contemporaneous ARIA SAR derived 

inundation patterns for independent assessment.  

III. RESULTS 

A. SMAP flood mapping  

The SMAP L-band microwave radiometer is optimal for 

flood mapping from cyclone events characterized by heavy 

cloud cover and intense precipitation. The surface water 

inundation was depicted by SMAP FW observations for March 

17-19, 2019 (Fig.3a), when extensive inundated areas were 

identified in the southeast African countries including 

Mozambique, Zimbabwe, Malawi and Madagascar [59]. 

Relative to the pre-flood period, the dramatic flooded area 

increase (blue and purple shades in Fig.3b) around the major 

city of Beira and the surrounding areas stemmed from the 

intense cyclone-driven rainfall event. Severe floods were also 

detected by SMAP in eastern Zimbabwe where riverine and 

flash flooding were reported [60]. It is noted that the region was 

affected extended rainfall leading up to the cyclone making 

landfall [61], which likely predisposed the region to flooding. 

The dark blue areas (Fig.3a) are large lakes (e.g. Lake 

Bangweulu, Lake Malawi) and seasonal flooded savanna (e.g. 

Cameia National Park [62]). The newly flooded areas cover 

about 27,560.6 and 31,400.2 km
2
 for Mozambique and 

Zimbabwe, respectively, due to rainfall following Idai’s 

landfall. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. (a) The FW extent during peak flood conditions for 

March 17-19, 2019 depicted by SMAP; and (b) the dramatic 

flooded area increase estimated from SMAP FW retrievals for 

the 36-km grid cells relative to the period of March 11-13 

around the major city of Beira and the surrounding region. 

 

B. Flood inundation forecast  

The 1-day ahead forecast model validation showed predicted 

FW values consistent with Landsat observations (Fig. 4; 

R=0.87, RMSE=0.68%; nRMSE=25.6%). The relative impact 

of the model flood forecast predictors, scored from most to least 

importance were: FW_sc (0.36), SSM_bz (0.34), GFS_B24h 

(0.18), GFS_A32H (0.06), and FW_bz (0.05). The prior surface 

water condition over the unit catchments, and soil moisture 

over the larger region had the greatest influence on the 1-day 

inundation forecast; while the inundation changes after day 0 

also depended on precipitation since day -1; along with a 

relatively small contribution from FW_bz. We then made 1-day 

flood forecasts using the trained model for the Idai flood peak 

(March 19, 2019) and recession (March 23, 2019) periods. 

Accordingly, 76.3% of the unit catchments were predicted as 

flooded on March 19, 2019, which suggests intensive flood 

inundation in the region and resembles the Sentinel-1 SAR 

estimates (82.2%). For March 23, the predicted FW area 

sharply dropped to 28.8%, which reflects the flood water 

receding and agrees with the PALSAR result (31.3%).   

Compared with the 1-day forecast model, the 3-day forecast 

validation showed lower correspondence (R=0.53) between 

predicted and observed FW values, along with larger RMSE 

1.39% and nRMSE 58.19% differences. The order of 

importance of the model predictors was: SSM_bz (0.43), 

FW_sc (0.19), FW_bz (0.16), GFS_A80h (0.15), and 

GFS_B24h (0.06). Relative to the 1-day forecast model, FW_sc 

and GFS_B42h showed less control on the inundation forecast, 

while accumulated precipitation for the study area after day 0, 

and surface water and soil wetness over the surrounding region 

played a more important role in the forecast. We also applied 

the 3-day prediction model to the Idai event, and the predicted 

FW values (62.45% for March 19 and 16.85% for March 23) 

were underestimated by about 24.0% and 46.2% relative to the 

SAR observations. 

 

 (a)  (b) 
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Fig. 4. Comparisons between FW data observed by Landsat 

and predicted by the 1-day forecast CART model for the 163 

km
2
 study area within the Pungwe basin using the validation 

data set covering randomly selected dates (R=0.87; 

RMSE=0.68%, nRMSE=25.6%).  

 

The predicted FW values were further downscaled based on 

the historical water occurrence map, which indicated higher 

flood probability in the northern catchments, especially for the 

area adjacent to the Pungwe river; and lower flood probability 

in the eastern catchments (Fig.1b). The 30-m inundation map 

downscaled from the 1-day forecast for March 19
th

 (Fig. 5a) 

showed the northern catchments as heavily flooded, which was 

also observed from the ARIA Sentinel assessment. The two line 

features in the northern part of the basin are major roads in the 

region, which were not predicted as flooded (Fig. 5a). The 

associated 30-m inundation map downscaled from the FW 

forecast for March 23th correctly predicted flooded areas 

remaining in the northern and southern parts of the study area, 

consistent with the ARIA PALSAR assessment (Fig. 6). 

Pixel-based comparisons with the SAR results showed 

respective commission and omission errors for the 30-m water 

predictions as 16.5% and 28.8% for March 19, and 43.6% and 

49.7% for March 23.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Inundation maps for March 19, 2019, produced using 

(a) our machine learning-based approach and (b) ARIA based 

on Sentinel-1 SAR observations. Areas without flooding are 

shown in grey, while red lines denote catchment boundaries. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Fig. 6. The predicted (a) and observed (b) flood inundation 

maps for March 23, 2019. The inundation map (b) produced by 

ARIA was based on ALOS PALSAR observations. Areas 

without flooding are shown in grey and red lines denote 

catchment boundaries. 

IV. DISCUSSION 

The GEE-based analysis showed the potential of data-driven 

models in making fine-scale flood inundation forecasts in a data 

sparse region using complementary global satellite 

observations and numerical weather predictions as key model 

predictors. The resulting 1-day (24-hour) and 3-day (72-hour) 

model forecasts predicted widespread inundation from the Idai 

cyclone landfall event on March 19, and the subsequent flood 

recession on March 23. The 3-day model forecast skill was 

meaningful but lower than the 1-day forecast in terms of 

correlation and RMSE performance relative to the Landsat 

reference. This is expected since the GFS predictions have 

generally lower performance with longer lead time [63]; and 

larger uncertainties likely stem from a lack of satellite surface 

wetness observations closer to the forecast dates. The SMAP 

FW and SSM records were the two most important features in 

the 1-day forecast, which suggests that the background surface 

wetness level is generally crucial in determining how the 

coming precipitation affects short-term (e.g. 1 day) inundation 

changes and potential flood risk. Compared with the 1-day 

forecast, current soil wetness conditions over the surrounding 

areas become more important in the 3-day forecast, which 

suggests the possible contribution from upstream runoff to the 

downstream flooding. The cumulative precipitation over a 

longer time period (e.g. the next 80 hours) also shows more 

importance in regulating inundation relative to shorter period 

precipitation (e.g. 32 hours). 

The CART model has the advantage of describing complex 

and non-linear correspondence between predictors and target 

variables [64]. However, the regression tree model is built on 

locally optimal splits, which may lead to relatively less stable 

predictions over variant training data sets compared with more 

complex deep learning methods [64-65]. One limitation of our 

study involves the relatively small data sample population 

(~100) used for training and validating the CART models, 

which were built from a relatively short period (Jul-2015 to 

Feb-2019) when overlapping satellite and GFS forecast records 
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were available. In addition, trade-offs were made between 

sample size and Landsat image quality. Possible solutions for 

increasing the sample size involve using satellite observations 

over an extended period and introducing other high-quality 

water mapping products from satellite SAR sensors. Besides 

possible mis-classifications in Landsat water mask data, such as 

those resulting from overlying vegetation or mixed-pixel 

issues, additional uncertainties related to Landsat FW 

aggregated for the catchments may come from partial data loss 

due to the remaining cloud cover. It is noted that the 

machine-learning model was built based on Landsat water/land 

classifications, and cloud-cover constraints only affected the 

model training but not the SMAP flood mapping or forecast 

using the model.  A more robust machine-learning model is 

likely to be built using relatively larger data sample size 

acquired from longer satellite observations to mitigate possible 

model over-fitting. Here, an additional test was made for 

demonstrating possible model improvement using training data 

acquired from a longer study period relative to the approach 

targeting the Idai event. The NASA SMAP L3 Radiometer 

Global Daily 36 km EASE-Grid Soil Moisture (Version 7) data 

were first downloaded for the study region. We then followed 

the same approach described in section 2D to build the 24-hour 

forecast model, but (a) using the NASA SMAP product in place 

of the USDA-NASA SMAP product, which ceased updating in 

GEE after 2020; and (b) using a relatively larger data sample 

population (~130) acquired from an extended period from July 

1, 2015 to April 30, 2021. Comparisons using the validation 

data set showed similar performance to the model described in 

section 3B (R=0.89; RMSE=0.83%, nRMSE=33.9%). For the 

model targeting the Idai event (section III B), the correlation 

coefficients (R) between the model predictions and Landsat 

FW data are 0.94 and 0.87 for the respective training and 

validation data sets; while the corresponding R values for the 

model updated over the extended period are 0.91 and 0.89. 

These results indicate more reliable model performance when 

trained using the larger data sample and longer satellite record. 

Further model improvements are expected using longer-term 

satellite observations and weather forecast training data, along 

with more complex machine learning approaches able to 

exploit spatial and temporal pattern recognition, such as 

Convolutional Neural Network (CNN) methods [66].  The 

potential of machine-learning methods can be further explored 

by estimating regional inundation directly using 

multi-frequency Tb observations from space-borne microwave 

radiometers; and developing flood inundation forecast models 

targeting 30-m pixels; although such tests have constraints 

under GEE, which is a non-commercial platform and has a 

per user quota on computational resources. 
The downscaled flood forecasts provided 30-m inundation 

mapping consistent with the SAR results. The downscaling 

analysis for the Idai event benefits from the fact that 

pixel-based water occurrence information is likely reliably 

derived from the long-term Landsat record for the region, 

where frequent floods and droughts have occurred. However, 

the downscaling approach was constrained by several factors, 

including SMAP and Landsat surface water detection 

limitations over dense vegetation, and recent flooding extremes 

exceeding the historical satellite record [21]. Additional 

ancillary information including preferential inundation areas 

and flow networks delineated from digital terrain and surface 

hydrography data may help improve the downscaling 

algorithm. In addition, re-constructed water occurrence data 

with greater weighting to more recent observations may 

improve downscaling performance. The difference identified in 

inundation mapping for major roads (Fig.5) may result from the 

difficulty of SAR observations in distinguishing water from 

other low backscattering features such as roads [8]. Part of the 

inconsistency between the flood forecasts and SAR 

observations may also result from the different timing of the 

retrievals in sampling the dynamic surface water conditions. 

The forecast is made for 10:00 AM (local time) when Landsat 

daytime observations were acquired for CART model training, 

while the Sentinel-1 and ALOS-2 Idai flood mapping results 

are derived from respective 18:00 and 12:00 PM local time 

observations.  

V. CONCLUSIONS 

 

The SMAP FW data effectively captured surface water 

dynamics during the severe tropical cyclone Idai event, 

indicating potential utility for regional flood monitoring to 

inform disaster assessments. The regional inundation and soil 

moisture information acquired from SMAP was further 

combined with Landsat observations and GFS precipitation 

forecasts to establish a GEE-based machine-learning approach 

for effective regional flood forecasts. The resulting 1-day 

(24-hour) FW forecast predictions were highly correlated 

(R=0.87) with contemporaneous Landsat observations and 

showed relatively low errors (RMSE=0.68%; nRMSE=25.6%). 

A model feature importance analysis showed that timely 

satellite measurements of surface wetness over the study area 

are crucial for determining the 1-day forecast inundation extent 

from a rainfall-driven flood event; while the cumulative 

precipitation over a longer period and surface wetness 

information for the surrounding region become more important 

for longer (3-day) forecasts. The 1-day forecasts for the Idai 

event captured the flood inundation temporal dynamics and 

30-m spatial pattern consistent with independent satellite SAR 

observations. The approach provides new capacity for global 

flood monitoring and forecasts from synergistic satellite 

observations, including data sparse regions of Africa. 
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