The University of Southampton
University of Southampton Institutional Repository

The design and commissioning of a fully elastic model of a uniform container ship

The design and commissioning of a fully elastic model of a uniform container ship
The design and commissioning of a fully elastic model of a uniform container ship

Experimental hydroelasticity has not followed the rapid evolution of its computational counterpart. Hydroelastic codes have changed significantly in the past few decades, moving to more detailed modelling of both the structure and the fluid domain. Physical models of ships are, even today, manufactured with a very simplified structural arrangement, usually consisting of a hollow rectangular cross section. Appropriate depiction of the internal structural details ensures that properties relevant to antisymmetric vibration are scaled accurately from the real ship to the model. Attempts to create continuous, ship-like structures had limited success, as manufacturing constraints did not allow for much internal structural detail to be included. In this investigation, the first continuous model of a ship with a detailed internal arrangement resembling a container ship is designed, produced using 3D printing and tested in waves. It is demonstrated that the global responses of the hull in regular head waves agree well with theory and past literature, confirming that such a model can represent the behaviour of a ship. Furthermore, it is found that the model is capable of capturing local responses of the structure, something that would be impossible with “traditional” hydroelastic ship models. Finally, the capability of the model to be used to investigate antisymmetric vibrations is confirmed. The methodology developed here opens a whole new world of possibilities for experiments with models that are tailored to the focus of the investigation at hand. Moreover, it offers a powerful tool for the validation of modern state-of-the-art hydroelastic codes. Ultimately, it creates the next step in the investigation of dynamic responses of ship structures, which contribute significantly to accumulating damage of the hull. Better understanding of these responses will allow designers to avoid over-engineering and use of big safety factors to account for uncertainties in their predictions.

additive manufacturing, cellular, container ship, hydroelastic testing, thin-walled girders
0951-8339
Grammatikopoulos, Apostolos
7975d020-159a-498e-adba-8f301b701a90
Banks, Joseph
3e915107-6d17-4097-8e77-99c40c8c053d
Temarel, Pandeli
b641fc50-5c8e-4540-8820-ae6779b4b0cf
Grammatikopoulos, Apostolos
7975d020-159a-498e-adba-8f301b701a90
Banks, Joseph
3e915107-6d17-4097-8e77-99c40c8c053d
Temarel, Pandeli
b641fc50-5c8e-4540-8820-ae6779b4b0cf

Grammatikopoulos, Apostolos, Banks, Joseph and Temarel, Pandeli (2021) The design and commissioning of a fully elastic model of a uniform container ship. Marine Structures, 78, [103014]. (doi:10.1016/j.marstruc.2021.103014).

Record type: Article

Abstract

Experimental hydroelasticity has not followed the rapid evolution of its computational counterpart. Hydroelastic codes have changed significantly in the past few decades, moving to more detailed modelling of both the structure and the fluid domain. Physical models of ships are, even today, manufactured with a very simplified structural arrangement, usually consisting of a hollow rectangular cross section. Appropriate depiction of the internal structural details ensures that properties relevant to antisymmetric vibration are scaled accurately from the real ship to the model. Attempts to create continuous, ship-like structures had limited success, as manufacturing constraints did not allow for much internal structural detail to be included. In this investigation, the first continuous model of a ship with a detailed internal arrangement resembling a container ship is designed, produced using 3D printing and tested in waves. It is demonstrated that the global responses of the hull in regular head waves agree well with theory and past literature, confirming that such a model can represent the behaviour of a ship. Furthermore, it is found that the model is capable of capturing local responses of the structure, something that would be impossible with “traditional” hydroelastic ship models. Finally, the capability of the model to be used to investigate antisymmetric vibrations is confirmed. The methodology developed here opens a whole new world of possibilities for experiments with models that are tailored to the focus of the investigation at hand. Moreover, it offers a powerful tool for the validation of modern state-of-the-art hydroelastic codes. Ultimately, it creates the next step in the investigation of dynamic responses of ship structures, which contribute significantly to accumulating damage of the hull. Better understanding of these responses will allow designers to avoid over-engineering and use of big safety factors to account for uncertainties in their predictions.

Text
Manuscript - Accepted Manuscript
Download (361kB)

More information

Accepted/In Press date: 10 April 2021
e-pub ahead of print date: 17 April 2021
Published date: July 2021
Additional Information: Funding Information: The present investigation was funded by the Lloyd's Register Foundation University Technology Center on Ship Design for Enhanced Environmental Performance, United Kingdom. Financial support was also received from the EPSRC Doctoral Training Partnership, United Kingdom (DTP 15, Grant reference: EP/M508147/1). Funding Information: The present investigation was funded by the Lloyd’s Register Foundation University Technology Center on Ship Design for Enhanced Environmental Performance, United Kingdom . Financial support was also received from the EPSRC Doctoral Training Partnership, United Kingdom (DTP 15, Grant reference: EP/M508147/1 ). Publisher Copyright: © 2021 Elsevier Ltd
Keywords: additive manufacturing, cellular, container ship, hydroelastic testing, thin-walled girders

Identifiers

Local EPrints ID: 450125
URI: http://eprints.soton.ac.uk/id/eprint/450125
ISSN: 0951-8339
PURE UUID: 303d8101-1946-42a4-8f2b-f3691dbbe1f3
ORCID for Apostolos Grammatikopoulos: ORCID iD orcid.org/0000-0003-1800-7406
ORCID for Joseph Banks: ORCID iD orcid.org/0000-0002-3777-8962
ORCID for Pandeli Temarel: ORCID iD orcid.org/0000-0003-2921-1242

Catalogue record

Date deposited: 12 Jul 2021 16:31
Last modified: 17 Mar 2024 06:41

Export record

Altmetrics

Contributors

Author: Apostolos Grammatikopoulos ORCID iD
Author: Joseph Banks ORCID iD
Author: Pandeli Temarel ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×