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Abstract

How to identify the most influential nodes in a network for the maximization

of influence spread is a great challenge. Known methods like k-shell decom-

position determine core nodes who individually might be the most influential

spreaders for the spreading originating in a single origin. However, these tech-

niques are not suitable for determining multiple origins that together lead to

the most effective spreading. The reason is that core nodes are often found

to be located closely to each other, which results in large overlapping regions

rather than spreading far across the network. In this paper, we propose a new

algorithm, called community-based k-shell decomposition, by which a network

can be viewed as multiple hierarchically ordered structures each branching off

from the innermost shell to the periphery shell. To alleviate the overlap prob-

lem, our algorithm pursues a greedy strategy that preferably selects core nodes

from different communities in the network, thus maximizing the joint influence

of multiple origins. We systematically evaluate our algorithm against compet-

ing algorithms on multiple networks with varying network characteristics, and

find that our algorithm outperforms other algorithms on networks that exhibit

community structures, and the stronger communities, the better performance.
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1. Introduction

The phenomenon of spreading in complex networks has attracted more at-

tention of researchers from a variety of fields [1, 2] because it can be used to

describe many important processes including the spreading of epidemics [3],

technique innovations [4], product promotion [5], and behavior adoption [6],5

which may help us to understand the mechanisms underlying complex phenom-

ena and guide human productions and livings [3].

Real-world networks exhibit a rich set of features that determine which nodes

are located in the most vital positions and hence more influential and more

capable of triggering information diffusion at a large scale [3]. How to identify10

the most influential nodes in a network is very important [7, 8], as it lets us

proactively choose an influencing strategy, e.g., in viral marketing, or it lets us

retroactively analyse the most likely origins, e.g., in analyses of an outbreak of

an epidemic [3] or a rumour [9].

Finding the most influential spreaders can be distinguished into (1) find-15

ing a single origin to achieve individual influence maximization, or (2) finding

multiple origins to achieve collective influence maximization [3]. For identifying

a single origin, a simple way is first to rank all the nodes by degree (k) [7],

Betweenness [10, 11], Eigencentrality [10, 11], k-shell decomposition (ks) [12-

14], PageRank [15] or SpringRank [16], and then choose the nodes in the top20

rank. For identifying multiple origins, we usually need to find a seed set with

a given size so that the influence aggregated by activating the nodes within the

set is maximized [16]. Kempe et al. [17] proposed two models for the influence

maximization problem, i.e., the independent cascade (IC) model and the linear

threshold (LT) model. The IC model assumes independence of spreading ac-25

tivation: each active node may probabilistically activate its inactive neighbors

independently of the influence of other active nodes [17]. The LT model con-

siders joint activation of neighbors: an inactive node is activated if the sum of

weights of its active neighbors exceeds a threshold [17].

In the past several years, some traditional greedy algorithms [18], machine30
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learning algorithms [19] and heuristic algorithms were developed such as CELF++

[20], the degree discount heuristic algorithm [21] and the maximum influence

arborescence (MIA) heuristic algorithm [22]. In particular, Chen et al. [23] pro-

posed the first scalable heuristic algorithm under the LT model, called LDAG

algorithm. The algorithm first constructs the local directed acyclic graph-35

s (DAGs), and then selects seeds with the maximum increment for influence

spread by a greedy approach [22]. For each node, the algorithm updates the in-

cremental influence spread with a fast strategy, which always makes the LDAG

algorithm perform well among the best algorithms [23]. Morone and Makse [24]

used the optimal percolation theory to identify the optimal set of influential40

nodes for influence maximization, and determined the minimal set of nodes in

a network that could keep the global connectivity of the network, i.e., if these

nodes are activated, information percolates through the whole network, and

if removed, the whole network is broken down into many disconnected pieces.

Morone and Makse [24] further developed a scalable algorithm, Collective In-45

fluence (CI), to solve the hard optimization problem. However, Hu et al. [25]

showed that the actual influence of each node can be quantified from its local

information, and demonstrated that the best nodes for breaking down the net-

works are not necessarily the best spreaders, which finally leads to the lower

performance of the CI algorithm. Erkol et al. [26] performed a systematic test50

of the performance of the algorithms for identifying influential spreaders.

Actually, searching for the optimal seed set with a given size is more com-

plicated. A simple way to determine the set is the same as that of individual

spreaders, i.e., rank all the nodes firstly, and then choose the nodes in the

top with a given size as the best seeds. However, Kitsak et al. [13] showed55

that multiple origins determined by the highest-k or the highest-ks are not ef-

ficient due to large overlapping regions. Communities as an important pattern

characterized by more links between nodes in same communities than those of

different communities are widely observed in real-world networks [27], as they

are formed by the co-constitution of structures and communication. Nodes in60

the same community communicate more probably, and communication leads to
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the establishment of links [28]. Thus, communities greatly influence the spread-

ing in networks, which motivates us to investigate the selection of nodes from

different communities as origins [29]. In addition, the hierarchical structure of

a network determined by k-shell decomposition is also of great importance for65

influence spread [13]. By considering the community structure as well as the

hierarchical structure, we propose a new algorithm, called community-based

k-shell decomposition (CKS), by which a network can be viewed as multiple

hierarchically ordered structures each branching off from the innermost shell to

the periphery shell. To alleviate the overlap problem, our algorithm pursues a70

greedy strategy that preferably selects core nodes from different communities

in the network, thus maximizing the joint influence of multiple origins. We sys-

tematically evaluate our algorithm against competing algorithms on artificial

networks with varying network characteristics as well as real-world networks.

The rest of the paper is organized as follows. In Section 2, we describe related75

works for identifying influential spreaders. In Section 3, we discuss k-shell de-

composition. In Section 4, we introduce our algorithm, called community-based

k-shell decomposition. In Section 5, we evaluate and compare our algorithm

with other algorithms on artificial networks as well as real-world networks. The

conclusion is provided in Section 6.80

2. Related works

Many works demonstrated that communities in a network are of great impor-

tance for influence spread [29]. Cao et al. [29] proposed the first community-

based algorithm for influence maximization, called OASNET (Optimal Allo-

cation in a Social NETwork). The algorithm first partitions a network into85

m communities, and then selects s nodes from each community by traditional

greedy algorithm. Lastly, the algorithm uses dynamic programming to deter-

mine s nodes from m×s candidates as the best spreaders. Zhang et al. [30] used

k-medoid algorithm to identify influential nodes on the networks with communi-

ties by constructing an information transfer matrix. Chen et al. [31] developed90
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a community-based algorithm for influence maximization, called CIM. The algo-

rithm first uses hierarchical clustering to partition a network into communities.

Then, it determines nodes from significant communities based on position score

and hub purity. Lastly, to determine the best seeds, it swaps a new candidate

with a seed node if it potentially increases the influence spread. Shang et al.95

[32] explored a community-based framework for influence maximization, called

CoFIM. The algorithm first expands seeds among different communities, and

then studies influence spread within communities. Finally, the hill-climbing

greedy algorithm is adopted to determine the best seeds.

3. k-shell decomposition100

The k-shell decomposition [12] is used to analyze the hierarchical structure

of a network by assigning each node with a k-shell index.

Definition 1 (k-shell index)

Given a graph, G(V,E), where V = {1, 2, ..., n} is the node set, and E =

{(i, j)|i, j ∈ V } is the edge set. G′ = G(V − V ′), where G′ is an induced105

subgraph from G by V − V ′, and k′i denotes the degree of node i in G′; KS =

(ks1, ks2, ..., ksn), where ksi = l indicates that node i are located in the l-shell

of G;

The k-shell index ksi for node i can be defined recursively by:

1: l = 0, V ′ = �;110

2: G′ = G(V − V ′);

3: For all i ∈ V − V ′; If k′i = l; Then ksi = l, V ′ = V ′ ∪ {i}; GOTO (2);

Else GOTO (4);

4: If V ′ == V , Then stop ;

5: l = l + 1;115

6: GOTO (2);

In Fig. 1, we illustrate the k-shell decomposition in a toy network. From

the figure, we can see that the nodes with the largest k-shell index tend to be

5



located in the innermost shell, called core nodes, and the nodes with the lowest

k-shell index are located in the periphery shell, called periphery nodes.120

Figure 1: Illustration of the k-shell decomposition in a toy network. (A) A toy network used in

this paper. (B)-(F) correspond to the 0-shell, 1-shell, 2-shell, 3-shell, 4-shell respectively. The

network can be viewed as a hierarchically ordered structure consisting of many sub-structures

from the innermost shell to the periphery shell.

In a recent work, Kitsak et al. [13] demonstrated that high-degree nodes

located in the periphery of a network tend to be less efficient than those locat-

ed in the core of the network. Considering the spreading dynamics, Liu et al.

[14] further tried to improve the accuracy of the k-shell method by removing

redundant links. Actually, in some cases, we need to find a small set of nodes125

that are the most influential, as multiple origins can accelerate the spreading to

the largest scale. However, Kitsak et al. [13] showed that high-degree nodes as

well as core nodes tend to be less efficient in the spreading process due to the

large overlap of infected areas. In Fig. 2, we illustrate the overlap problem in a

toy network, and Fig. 2 (A) corresponds to the spreading originating from two130

nodes with the highest-ks, and Fig. 2 (B) corresponds to the spreading origi-

6



Figure 2: Illustration of the overlap problem. (A) The spreading originates from two nodes

with the highest-ks (ksi = ksj = 4). (B) The spreading originates from two nodes with the

highest-k (ki = 17, kj = 16). The propagation range of a node can be determined by the

activated nodes with high frequency in the realizations of the spreading process.

nating from two nodes with the highest-k. The infected areas are highlighted

by color curves, and the propagation range of a node can be determined by the

activated nodes with high frequency in the realizations of the spreading process.

4. Community-based k-shell decomposition135

Here, we propose a new algorithm, called community-based k-shell decom-

position (CKS), by which a network can be viewed as multiple hierarchically

ordered structures each from the innermost shell to the periphery shell. To alle-

viate the overlap problem, we preferentially choose the core nodes from different

communities as origins for influence maximization.

Figure 3: Illustration of our framework for finding the most influential spreaders.
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Figure 4: Illustration of the CKS in a toy network. (A) A toy network used in this paper. (B)

we partition the network into four communities, i.e., the community network. (C) and (D)

The hierarchical structures of the network from the perspectives of the k-shell decomposition

and the CKS respectively. In the bottom, we show the ways to rank all the nodes for the

k-shell decomposition and the CKS respectively.

Our algorithm is illustrated in Fig. 3. For finding a seed set, B with s seeds140

in a network, the CKS first determines the communities in a network by the

modularity optimization method proposed by Newman and Girvan [27]. Blondel

et al. [34] developed a heuristic method based on the modularity optimization,

which is very fast for unfolding communities in large size networks. Then, the

CKS sorts nodes in each community by k-shell index, and alternately choose core145

nodes from different communities to construct a ranking, R, which is illustrated

in the bottom of Fig. 4. Lastly, the CKS determines the seed set, B that
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Algorithm 1 Pseudocode for the CKS.

Input: A network, G(V,E), A vector, X = (x1, x2, ..., xn), where xi = b

indicates that node i belongs to community b;

Output: A vector, Y = (y1, y2, ..., yn), where yi = l indicates that node i

belongs to the l-shell; A List, R indicates the ranking for all the nodes;

1: Initialization

2: For all i ∈ V ;

3: xi = i;

4: X = (1, 2, ..., n);

5: Determine X = (x1, x2, ..., xn) by maximizing modularity;

6: Determine a partition, P by X;

7: P = {G1(V 1, E1), G2(V 2, E2), ...}

8: For all Gt(V t, Et) ∈ P;

9: For all i ∈ V t;

10: Determine the location of node i, l by the k-shell decomposition;

11: yi = l;

12: End for

13: End for

14: Y = (y1, y2, ..., yn)

15: For all Gt(V t, Et) ∈ P;

16: Rank all i ∈ V t by Y;

17: Dt = V t;

18: For i, j, ... ∈ Dt;

19: If yi = yj = ...;

20: Then re-rank i, j, ... in Dt by degree;

21: D← Dt;

22: End for

23: End for

24: D = {D1, D2, ...};

25: Rank all Dt ∈ D by |Dt|;

26: For s = 0, 1, 2, ...;

27: For t = 0, 1, 2, ...;

28: Dt = D[t];

29: R← Dt[s];

30: End for

31: End for

32: Output Y, R
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consists of the top s nodes in R. The pseudocodes for the CKS can be seen in

Algorithm 1. Zhao et al. [33] tried to identify multiple influential nodes by

coloring a network. This algorithm colors each node in a network by one kind150

of color, and the nodes with the same color constitutes an independent set. It

chooses the nodes with highest centrality index such as degree in an independent

set as seeds. In contrast to our algorithm, communities consist of nodes that

are densely connected, while independent sets consist of nodes that are often

not directly linked.155

Figure 5: Illustration of the greedy strategy for CKS+.

For the CKS+, a greedy strategy is adopted to determine the best seeds

(see Fig. 5). In the CKS+, we consider R as an initial ranking, and a new

ranking, R+ can be determined by a fast greedy strategy, which selects the best

node from c candidates (c is the number of candidates) in R. For example,

in Fig. 5, (1) we first find the best spreader, r31 with the maximal individual160

spreading ability, and B = {r31}. R+ can be determined by updating r31 in
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R; (2) then fix r31, and find the second best spreader r21 with the maximal

collective spreading ability in B = {r31, r21}, and update R+; (3) repeat this

process until s influential spreaders are determined, which correspond to the

top s nodes in R+. The pseudocodes for the greedy strategy of the CKS+ can165

be seen in Algorithm 2.

Algorithm 2 Pseudocode for the greedy strategy of CKS+.

Input: A List, R = (R[1], R[2], ..., R[n]), s and c indicate the seed set size and

the number of candidates respectively;

Output: A List, R+ = (R+[1], R+[2], ..., R+[n]), B is the seed set;

1: Initialization

2: B = �;

3: For i = 1, 2, ..., s;

4: For all j = {i, i+ 1, ..., i− 1 + c};

5: B + {R[j]} = Max Influence Spread (B + {R[j]});

6: B← R[j];

7: Determine R+ by inserting R[j] in ith of R;

8: End for

9: End for

10: Output R+, B;

5. Results and discussions

5.1. Experimental Set-up

In the experiments, we choose the most influential nodes identified by our

algorithm as seeds to trigger a spreading process under the LT model. In the LT170

model, we use the uniform method mentioned by Chen et al. [23] to generate

the weights for all the links in the networks, and for the threshold parameter,

θ, we choose θ =1/320 [18, 24]. The number of nodes activated in the process

by seeds on average over 2000 simulations is used to evaluate the performance

for influence spread.175
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Here, we compare our algorithm with several other algorithms that deter-

mine the most influential spreaders by the highest-k, the highest-ks, the highest-

eigencentrality, PageRank [15], SpringRank [16] and the LDAG algorithm [23]

on artificial networks as well as real-world networks.

5.2. Experimental results180

5.2.1. Test on artificial networks with various network characteristics

Figure 6: Illustration of artificial networks with different network structures. (A) Original

networks with built-in clear communities. (B) The weakened versions of the original networks.

(C) The reconfigured networks by the ER randomization.

In this subsection, we test our algorithm on multiple artificial networks with

various network characteristics (see Fig. 6): (1) we generate artificial networks

with built-in clear communities by the Lancichinetti, Fortunato and Radicchi

(LFR) benchmark [35]. The networks contain 1.0 × 103 nodes with average185

degree, 〈k〉 = 16, maximum degree, maxk = 50, the maximum community

sizes, maxc = 50, and the minimum community sizes, minc = 10. The mixing

parameter, mu = 0.1, where mu ∈ [0, 1], i.e., the communities in the networks
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tend to be clear as mu decreases [33] (see Fig. 6 (A)). (2) we weaken the

communities in the networks, and here mu = 0.4 (see Fig. 6 (B)); (3) we190

reconfigure the networks by the Erdős - Rényi (ER) randomization [36], i.e., the

nodes in the reconfigured networks are completely connected at random (see

Fig. 6 (C)).

Figure 7: Influence spread on artificial networks with different network structures. (A) O-

riginal networks with built-in clear communities. (B) The weakened versions of the original

networks. (C) The reconfigured networks by the ER randomization. (D) Comparison between

the original networks and the weakened versions. (E) Comparison between the original net-

works and the ER randomized versions. (F) Comparison between the weakened versions and

the ER randomized versions. For the CKS+, we only consider c = 50 candidates.

For the spreading originating from multiple origins, we study the number of
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nodes activated in the spreading process as a function of the number of origins195

(i.e., the size of seed set). The results on artificial networks with various network

characteristics are shown in Fig. 7. Fig. 7 (A) corresponds to the results

on the artificial networks with built-in clear communities, and we can observe

that both the CKS and the CKS+ outperform other algorithms, i.e., the cores

nodes selected from different communities tend to be the best spreaders for the200

maximal collective influence spread. Fig. 7 (B)-(C) correspond to the results

on the weakened versions and the ER randomized versions respectively. In Fig.

7 (B), we can see that our algorithm tends to achieve better performance on the

networks with weak communities when the size of seed set is small. We can also

see that the curves of influence spread for all the algorithms start to converge205

when we weaken the communities (see Fig. 7 (B)), and this convergence is more

clearly observed on the ER randomization versions (see Fig. 7 (C)). In Fig. 7

(D), we compare the results between the original networks and the weakened

versions, and we can see that it is more efficient for influence spread if we weaken

the internal links and strength the external links of communities in the original210

networks. Similarly, the reconfigured networks by the ER randomization are

also more efficient for influence spread (Fig. 7 (E) and (F)).

5.2.2. Test on real-world networks with well-known communities

In this subsection, we try to test our algorithm on four real-world networks

with well-known communities including, (1) Zachary karate club network [37].215

This network (34 nodes and 78 links) was constructed by Wayne Zachary after

he studied the members of a university karate club. In the network, each node

represents a member, and each edge represents a tie between two members in

the club. During the study, he observed a split in the club, i.e., the club’s

instructor took away a half of the members in the club and built a new club due220

to a disagreement between the club’s instructor and administrator. Therefore,

this network contains two well-known communities, which are centred with the

club’s instructor and administrator respectively. (2) Co-appearance network

[38]. In this network (75 nodes and 254 links), a node represents a character
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Figure 8: Influence spread on real-world networks with well-known communities. (A) Karate

club network. (B) Co-appearance network. (C) US college football netowrk. (D) Facebook

network. For the CKS+, we only consider c = 50 candidates.

in Victor Hugo’s novel (Les Miserables), and a link connecting two nodes if225

the two characters appeared in the same chapter of the book. Communities

in this network often reveal the relationships of characters in the novel such as

kinships, street gangs and friendships. (3) US college football network [27]. This

network contains 115 nodes and 616 links. One node represents a team, and

one link represents a game between two teams. The 115 teams can be roughly230

divided into 12 conferences, and teams within the same conference meet more

frequently in a game than those of different conferences. (4) Facebook network

[39]. This network contains 4039 nodes and 88234 links, and is collected from

http://snap.stanford.edu/. The network consists of plenty of social circles or

friends lists, and communities always correspond to social circles with same235

features such as political affiliations, hometown and education.

The karate network, the co-appearance network, the US college football

network and the facebook network are often used as a benchmark to evaluate

the performance of community detection methods. Fig. 8 (A)-(D) correspond
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to the influence spread on the four networks respectively, and we can see that240

the CKS+ obtains the best performance on these networks. In addition, the

CKS outperforms other algorithms on the co-appearance network.

5.2.3. Test on large real-world networks

In this subsection, we especially choose two large real-world networks to

test the performance of our algorithm including, (1) Cond-mat collaboration245

network. This network is relevant to the collaborations between scientists who

post preprints on the Condensed Matter E-Print Archive from 1995 to 2005. In

the network, a node represents an author, and two authors are linked if they

have co-authored one paper at least. The network contains 39577 nodes and

175693 links [40]. (2) DBLP, a co-authorship network where two authors are250

connected if they publish at least one paper together in computer science. This

network contains 317080 nodes and 1049866 links [41].

Figure 9: Influence spread on real-world networks. (A) Cond-mat collaboration network. (B)

DBLP. For the CKS+, we only consider c = 50 candidates.

Here, we only compare our algorithm with the LDAG algorithm, PageRank

and the k-shell decomposition. The results in Fig. 9 show that our algorithm

tends to achieve better performance when the size of seed set is small size, which255

is similar to the finding on the artificial networks with weak communities in Fig.

7 (B).

16



6. Conclusions

For the influence maximization problem, identifying influential nodes is a hot

topic in complex networks. By taking the topological structure of a network in-260

to account, community-based algorithms play an important role in identifying

influential nodes. Actually, the hierarchical structure of a network determined

by k-shell decomposition is also of great importance for identifying influential

nodes. However, for the spreading originating from multiple origins, the spread-

ing efficiency of core nodes is very low due to the overlap problem.265

In this paper, we propose a new algorithm, called community-based k-shell

decomposition. Our algorithm first partitions a network into communities, and

the communities are ranked by their sizes in descending order. Then, we sort

nodes in each community by k-shell index, and alternately choose core nodes

from the communities to construct a ranking for all the nodes. For finding a270

seed set with s nodes, the top s nodes in the ranking can be considered as

initial candidates, and a greedy strategy is adopted to determine the best seeds.

The results indicate that the influential nodes identified by our algorithm as

origins are more efficient for influence spread on artificial networks and real-

world networks.275

For the weaknesses of our algorithm, a community is more likely to contain

nodes with the same ks index. How to rank these nodes in a community is

a challenging work. On the one hand, we can improve the accuracy of k-shell

decomposition. On the other hand, we can rank nodes by considering other

centralities if these nodes have the same ks index. Therefore, in the future280

work, we will try to improve the performance of our algorithm and test it on a

large number of real-world networks.
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