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Abstract 

Economic efficiency must be considered in ship concept design. There are many uncertain 

internal and external factors in the ship design process. This paper concentrates on the 

optimization of a ship’s economic performance while considering the influence of 

uncontrollable factors on the output response. Firstly, the economic-objective function and the 

mathematical optimization model of a bulk carrier are established, and design space and 

constraints are proposed. Secondly, two algorithms are adopted to perform deterministic multi-

objectives optimization. Thirdly, sensitivity analysis of the design parameters is conducted as 

well as the output response uncertainty analysis based on Monte Carlo simulations. The results 

reveal that, when random variables obey a specific distribution, the corresponding distribution 

of uncertainty effects will also exist in the output response. Therefore, the necessity of 

uncertainty analysis in parametric ship concept design is verified. 

Keywords: Ship design, economic, Optimization design, Uncertainty analysis, Monte Carlo 

simulation 
 

1 Introduction 
The economy of a ship, which is one of its most important properties, is usually set as a design 

objective in the concept optimization design. Nowadays, research of ship concept design and 

hull form optimization has accumulated many achievements involving various design 

objectives, design variables, and optimization systems [1-3], which embody the development 

ideas of ‘from simple to complex’ and ‘from coarse to fine’. 

There are various internal and external parameters that cannot be precisely described or 

obtained in the process of ship optimization design. These parameters usually participate in 

calculations as constants. Inevitably, these parameters fluctuate all the time according to 

probability distributions. This fluctuation makes the output response uncertain. Since this 

uncertainty would be magnified by continuous iterative optimization, the influence of these 

parameters has a practical significance on ship optimization design. In recent years, Diez 

introduced uncertainty optimization design to ship hull design systems, and a series of studies 

were conducted [4-6]. Diez [7] considered the uncertainty of the economic parameters of bulk 

carriers, and a robust optimization study was carried out. However, the uncertain parameters 

were only expressed in interval form; probability distributions and responses to the output have 

not yet been studied. 

In this paper, the bulk carrier conceptual design tool by Sen and Yang [8] is referenced and 

redefined. An economic objective function and its mathematical model of the ship are 

established, and design space and constraint conditions are defined. Two optimization 

algorithms are adopted to conduct the economic multi-objectives optimization calculation. 



Pointing to those internal parameters with random characteristics, sensitivity analysis and 

uncertainty analysis based on Monte Carlo simulations are carried out. As a result, the response 

relationship between system output and random variables is obtained, which can be used to 

guide future ship optimization design. 

2 Establishment of optimization model 

2.1 Optimization objective and derivation  

The optimization function in this study can be divided into two parts: (a) a mathematical model 

of hull cost based on the ship’s principal dimensions and form coefficient and (b) the economic 

model of overall cargo shipping considering the other factors in operation. 

Hull cost can be calculated based on steel weight, outfitting weight, and main power: 
0.85 0.81.3(2000 3500 2400 )s h fC W W P                        (1) 

In this equation, Cs is the hull cost (pounds); Wh and Wf are the steel weight and outfitting weight 

(t), respectively; and P is the main power of the ship (kW), which is calculated as follows: 
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Here, Δ is displacement (t), Vk is speed (kn), Fn is the Froude number, and Cb is the block 

coefficient. 

The weight of each part is calculated as follows: 
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In these equations, L, B, and D are the length between perpendiculars, breadth, and depth (m), 

respectively, and Wm is the mechanical and electrical equipment weight (t).  

The main evaluation indexes are annual shipping cost, annual freight volume, and unit shipping 

cost: 

= /apt a aC C D                                  (4) 

In this equation, Capt is the unit transportation cost (pounds/t), Da is the annual freight volume 

(t), and Ca is the annual shipping cost (pounds), which consists of three parts: shipping cost 

(Cc), operation cost (Cr), and voyage cost (Cv). These are calculated as follows: 
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Here, Cf and Cpo are fuel cost and port cost (pounds), respectively; RTPA is the number of round-

trips a ship travels in one year; Cd is the daily consumption of oil (t); ds is the number of shipping 

days; Pf is the fuel price (pounds/t), where the default is 100; RTM is the ship’s single-trip 

mileage (n miles), where the default is 5,000; dp is the ship’s days in anchorage; Rh is the cargo 

handling efficiency (t/day), where the default is 8,000; Dc is the cargo dead weight (t); and DW 

is the dead weight of the ship (t). The latter is obtained as follows: 

DW LW                                  (6) 

Accordingly, the design variables of the optimization model in this study can be identified as: 

length (L), breadth (B), depth (D), draft (T), speed (Vk), and the block coefficient (Cb). 

 



2.2 Constraints 
While evaluating and optimizing the economy of a ship, the technical performance of the design 

should also be taken into account. Thus, it is necessary to propose constraints in the 

optimization model, including dimension ratio, manoeuvrability, stability, and so on. These 

constraints are defined as follows: 
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In these equations, T1, T2, T3, and T5 are the dimension ratio constraints to ensure feasibility, 

manoeuvrability, and stability; T4, T61, and T62 are the constraints for ship displacement; T7 is 

the constraint for ship speed; and T8 is the constraint for ship stability and seakeeping. 

3 Deterministic parametric optimization design 
In order to obtain satisfactory designs with low unit-transportation cost and high freight capacity, 

optimization objectives are set for the minimum unit-transportation cost (Capt) and the 

maximum annual freight volume (Da). Two heuristic algorithms are adopted here to achieve 

multiobjective optimization: adaptive simulated annealing (ASA) [9] and the multi-island 

genetic algorithm (MIGA) [10]. These algorithms have superior performance for nonlinear 

optimization problems. The parameters for the optimization model are shown in Table 1. 

Table 1. Description of deterministic optimization model 

Objective： 

▶ Minimum Capt and maximum Da 

Design variables： 

▶ L: [100, 400], initial value 217 (m) ▶ B: [10, 45], initial value 32.3 (m)  

▶ T: [10, 15], initial value 12.5 (m)  ▶ D: [10, 25], initial value 19.7 (m)  

▶ Vk: [14, 18], initial value 14.5 (m) ▶ Cb: [0.63, 0.83], initial value 0.82 (m) 

Constraints： 

▶ T1–T8≥0  

Constants： 

▶ Pf: 100 (pound/t) ▶ RTM: 5000 (n mile) ▶ Rh: 8000 (t/day) 

Optimization techniques： 

▶ ASA ▶ MIGA 

The main internal parameters of ASA and MIGA are set as follows: the maximum number of 

generated designs is 500, the relative rate of parameter annealing is 1.0, the convergence epsilon 

is 1e-8, the subpopulation size is 20, the number of islands is 10, and the number of generations 

is 10. The optimization results are shown in Figure 1. 



  
(a) ASA                                 (b) MIGA 

Figure 1. Multiobjective optimization results graphs 
 

Generally, the feasible solution is centralized, and the frontiers are very concentrated with a 

clear Pareto frontier. The point distribution of the MIGA in the optimization process is relatively 

more concentrated and uniform in its concentrated area. By comparison, ASA is more uneven 

in the optimization process: in addition to the concentration of several lines, the focus is almost 

exclusively on the range of 10~12 on the Cpat axis and 1,200,000~1,250,000 on the Da axis. 

With this kind of optimal result, designer can select some excellent plans based on the frontier 

curve and carry out detailed design for the next step. 

4 Uncertainty analysis 

4.1 Sensitivity analysis 
In order to analyse the influence of variable changes on the outputs, it’s necessary to perform a 

sensitivity analysis of the design variables (L, B, D, T, Vk, and Cb) and the important constants 

(Pf, RTM, and Rh) toward the optimization objective.  

One experiment’s design technique is adopted here: the Latin hypercube design, in which the 

engineer has total freedom in selecting the number of designs to run. A total of 1,200 points are 

generated for the Latin hypercube. The main effect and Pareto contributions of Capt and Da are 

shown in Figures 2~5, which reflect the degree each input has an effect on each output. 

     
Figure 2. Capt main effect graph              Figure 3. Da main effect graph 

 

    
Figure 4. Capt Pareto graph     Figure 5. Da Pareto graph 



According to Figures 2 and 4, the parameters that influence Capt the most are RTM, Vk, Rh, and 

Pf, and all of their contributions exceed 10%. According to Figures 3 and 5, the parameters that 

influence Da the most are L, RTM, Rh , and B, and their contributions also exceed 10%. 

Therefore, uncertainty in the important constants, such as Pf, RTM, and Rh, would lead to 

uncertainty in the output and affect the whole optimization design. 

4.2 Uncertainty analysis 
To analyse the uncertainty influence, a Monte Carlo simulation (MCS) was adopted [11]. In an 

MCS, the probability distribution of random variables is known. Through random sampling, 

the probability distribution of a system’s response can be estimated, and the contribution of 

each random variable to the response results can be obtained.  

There are two sampling techniques in an MCS: simple random sampling and descriptive 

sampling. Compared to the former, descriptive sampling reduces the variance of the statistical 

estimates derived from the population data. Descriptive sampling also ensures the quality of 

statistical analysis with less sampling and simulation time, so it becomes a more representative 

method and so is used in this study. The uncertainty analysis model is shown in Table 2. 

Table 2. Uncertainty analysis model 

Objective： 

▶ Uncertainty influence on the optimization object 

Design variables： 

▶ L: 217 (m); ▶ B: 32.26 (m); ▶ D: 19.7 (m);  

▶ T: 12.5 (m); ▶ Cb: 0.82; ▶ Vk: 14.5 (kn);  

Uncertainty factors: 

▶ Pf, Normal, μ=100 (Pound/t), σ=1%*μ 

▶ RTM, Normal, μ=5000 (n mile), σ=1%*μ 

▶ Rh, Normal, μ=8000 (t/day), σ=1%*μ 

Constraints： 

▶ T1–T8≥0 

Analysis Method 
▶ Monte Carlo simulation: descriptive sampling 

The maximum number of simulations is set at 10,000, and then a normal distribution simulation 

of three uncertain parameters (Pf, RTM, and Rh) is conducted. Their effects on the result 

optimization object (Capt, as a more important factor to be considered,) are calculated 

independently. A histogram is then drawn of the frequency distribution and the frequency fitting 

curve according to system response parameters, a normal distribution hypothesis test is 

conducted, and the normal distribution curve is drawn. The influence of different parameters 

on the response uncertainty can then be analysed comparatively. The results of the uncertainty 

analysis by MCS are shown in Figure 6. 

   
(a) Pf                                   (b) Rh                        (c) RTM 

Figure 6. Distribution of Capt when a single parameter obeys normal distribution 

A normal hypothesis test is then done. The related results and parameters are shown in Table 3. 



The statistical results of the system response, Capt, are shown in Table 4. 

Table 3. Results of the normal hypothesis test 

Input parameters 

Rh obeys normal 

distribution 

separately 

RTM obeys normal 

distribution 

separately 

Pf obeys normal 

distribution 

separately 

Test statistics 920.9634 1.1631 1.9229 

Critical value 5.7458 6.1611 5.7143 

H 1 0 0 

Capt obeys normal 

distribution? 
No Yes Yes 

P 0 0.5570 0.3790 

Table 4. Statistical results of system response, Capt 

Statistical indicators 

Rh obeys normal 

distribution 

separately 

RTM obeys normal 

distribution 

separately 

Pf obeys normal 

distribution 

separately 

Expectation (E) 8.589 8.556 8.559 

Standard deviation (S.D) 0.343 0.428 0.109 

S.D/E 0.0399 0.0500 0.0127 

Skewness 2.87E-02 2.51E-03 4.48E-05 

Kurtosis 5.79E-02 9.87E-02 4.32E-04 

The distribution of the system response parameters can be compared directly through the ratio 

of standard deviation to expectation. The ratio for Rh, RTM, and Pf is 0.040, 0.050, and 0.013, 

respectively, showing that the fluctuation of the system response parameter, Capt, is more 

obvious with the random variable RTM. 

As is shown, when random variables Pf and RTM obey normal distribution, the distribution of 

Capt also strictly obeys normal distribution. When Rh alone obeys normal distribution, Capt can 

also be approximated as a normal distribution. However, by comparing the standard-deviation-

to-expectation ratio of the three groups of data, it can be seen that the fluctuation of the system 

response caused by RTM is more obvious. 

Therefore, when the uncertainty of parameters is considered in ship design, different uncertainty 

parameters have different effects. The more-obviously-effect factors should be set in a more 

clearly pattern (probability distribution or interval, with accurate description), while the 

remainder can be set in an approximate range. 

5 Conclusion 
This research focuses on economic ship optimization design and its uncertainty analysis due to 

the fluctuation of internal parameters. Through the above simulation, calculation, and analysis, 

the response relationship between system output and random variable input is obtained, which 

can be used to guide the optimal design of actual ship optimization. The following conclusions 

are drawn: 

(1) The uncertainty analysis based on MCS with descriptive sampling can clearly depict the 

impact of uncertain parameters on output response, thus the research conducted could hopefully 

promote the development of uncertainty optimization ship design. 

(2) Different uncertainty parameters have different effects on the output response, thus they 

should be considered separately in ship design. 

(3) Further studies can be conducted to investigate the properties of uncertain parameters and 

the applicability of uncertainty optimization algorithms with uncertainty. 
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