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Abstract

Economic efficiency must be considered in ship concept design. There are many uncertain
internal and external factors in the ship design process. This paper concentrates on the
optimization of a ship’s economic performance while considering the influence of
uncontrollable factors on the output response. Firstly, the economic-objective function and the
mathematical optimization model of a bulk carrier are established, and design space and
constraints are proposed. Secondly, two algorithms are adopted to perform deterministic multi-
objectives optimization. Thirdly, sensitivity analysis of the design parameters is conducted as
well as the output response uncertainty analysis based on Monte Carlo simulations. The results
reveal that, when random variables obey a specific distribution, the corresponding distribution
of uncertainty effects will also exist in the output response. Therefore, the necessity of
uncertainty analysis in parametric ship concept design is verified.

Keywords: Ship design, economic, Optimization design, Uncertainty analysis, Monte Carlo
simulation

1 Introduction

The economy of a ship, which is one of its most important properties, is usually set as a design
objective in the concept optimization design. Nowadays, research of ship concept design and
hull form optimization has accumulated many achievements involving various design
objectives, design variables, and optimization systems I, which embody the development
ideas of ‘from simple to complex’ and ‘from coarse to fine’.

There are various internal and external parameters that cannot be precisely described or
obtained in the process of ship optimization design. These parameters usually participate in
calculations as constants. Inevitably, these parameters fluctuate all the time according to
probability distributions. This fluctuation makes the output response uncertain. Since this
uncertainty would be magnified by continuous iterative optimization, the influence of these
parameters has a practical significance on ship optimization design. In recent years, Diez
introduced uncertainty optimization design to ship hull design systems, and a series of studies
were conducted [“®!. Diez [l considered the uncertainty of the economic parameters of bulk
carriers, and a robust optimization study was carried out. However, the uncertain parameters
were only expressed in interval form; probability distributions and responses to the output have
not yet been studied.

In this paper, the bulk carrier conceptual design tool by Sen and Yang ! is referenced and
redefined. An economic objective function and its mathematical model of the ship are
established, and design space and constraint conditions are defined. Two optimization
algorithms are adopted to conduct the economic multi-objectives optimization calculation.



Pointing to those internal parameters with random characteristics, sensitivity analysis and
uncertainty analysis based on Monte Carlo simulations are carried out. As a result, the response
relationship between system output and random variables is obtained, which can be used to
guide future ship optimization design.

2 Establishment of optimization model

2.1 Optimization objective and derivation

The optimization function in this study can be divided into two parts: (a) a mathematical model
of hull cost based on the ship’s principal dimensions and form coefficient and (b) the economic
model of overall cargo shipping considering the other factors in operation.

Hull cost can be calculated based on steel weight, outfitting weight, and main power:

C, =1.3(2000W,* +3500W, +2400P°%) (1)

In this equation, Cs is the hull cost (pounds); Wx and Ws are the steel weight and outfitting weight
(t), respectively; and P is the main power of the ship (kW), which is calculated as follows:

P=(A®>V23)/(a+b-Fn)
a =4977.06C2 —8105.61C, +4456.51 )
b=-10847.2C? +12817C, —6960.32

Here, A is displacement (t), Vi is speed (kn), Fn is the Froude number, and Cy is the block
coefficient.
The weight of each part is calculated as follows:

W, =0.034- L'B%’ D0'4CbO'5
Wf — LO.B BO.6 DO.SCbO.l (3)
W, =0.17P°%

In these equations, L, B, and D are the length between perpendiculars, breadth, and depth (m),
respectively, and W, is the mechanical and electrical equipment weight (t).

The main evaluation indexes are annual shipping cost, annual freight volume, and unit shipping
cost:

C,,=C, /D, (4)

In this equation, Capt is the unit transportation cost (pounds/t), Da is the annual freight volume
(t), and Ca is the annual shipping cost (pounds), which consists of three parts: shipping cost
(Cc), operation cost (Cy), and voyage cost (Cy). These are calculated as follows:

C.=0.2C,, C, =40000DW °*

C,=(C, +C,,)RTPA, C,,=63DW°®, D, =DW-RTPA (5)

C,=105C,-d,-P,, C, =0.19xPx24/1000+0.2

d, =RTM /(24V,), RTPA=350/(d¢+d,), d,=2(D,/R,+0.5)
Here, Crand Cp, are fuel cost and port cost (pounds), respectively; RTPA is the number of round-
trips a ship travels in one year; Cq is the daily consumption of oil (t); ds is the number of shipping
days; Ps is the fuel price (pounds/t), where the default is 100; RTM is the ship’s single-trip
mileage (n miles), where the default is 5,000; d;, is the ship’s days in anchorage; Rn is the cargo
handling efficiency (t/day), where the default is 8,000; D¢ is the cargo dead weight (t); and DW
is the dead weight of the ship (t). The latter is obtained as follows:

DW =A—LW (6)

Accordingly, the design variables of the optimization model in this study can be identified as:
length (L), breadth (B), depth (D), draft (T), speed (V«), and the block coefficient (Cy).
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2.2 Constraints
While evaluating and optimizing the economy of a ship, the technical performance of the design
should also be taken into account. Thus, it is necessary to propose constraints in the
optimization model, including dimension ratio, manoeuvrability, stability, and so on. These
constraints are defined as follows:
T,=55-L/B>0, T,=18-L/D=>0
T,=20-L/T >0, T,=0.45-DW°"-0.6-T >0 (7)
T,=0.85D-T >0, T, =DW —25000>0, T,, =500000—-DW >0
T,=0.32-Fn>0, T,=0.15B-GM >0
In these equations, T1, T2, T3, and Ts are the dimension ratio constraints to ensure feasibility,
manoeuvrability, and stability; Ta, Te1, and Te2 are the constraints for ship displacement; T+ is
the constraint for ship speed; and Ts is the constraint for ship stability and seakeeping.

3 Deterministic parametric optimization design

In order to obtain satisfactory designs with low unit-transportation cost and high freight capacity,
optimization objectives are set for the minimum unit-transportation cost (Capt) and the
maximum annual freight volume (Da). Two heuristic algorithms are adopted here to achieve
multiobjective optimization: adaptive simulated annealing (ASA) ! and the multi-island
genetic algorithm (MIGA) [ These algorithms have superior performance for nonlinear
optimization problems. The parameters for the optimization model are shown in Table 1.

Table 1. Description of deterministic optimization model

Objective:
» Minimum Cgpt and maximum Da

Design variables:
» L:[100, 4001, initial value 217 (m) » B: [10, 45], initial value 32.3 (m)
» T:[10, 15], initial value 12.5 (m) » D: [10, 25], initial value 19.7 (m)
» Vi: [14, 18], initial value 14.5 (m) » Cy: [0.63, 0.83], initial value 0.82 (m)

Constraints:
» T-Tg=0

Constants:
» Pt 100 (pound/t) » RTM: 5000 (n mile) » Rn: 8000 (t/day)

Optimization techniques:
» ASA » MIGA

The main internal parameters of ASA and MIGA are set as follows: the maximum number of
generated designs is 500, the relative rate of parameter annealing is 1.0, the convergence epsilon
is 1e-8, the subpopulation size is 20, the number of islands is 10, and the number of generations
is 10. The optimization results are shown in Figure 1.
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Figure 1. Multiobjective optimization results graphs

Generally, the feasible solution is centralized, and the frontiers are very concentrated with a
clear Pareto frontier. The point distribution of the MIGA in the optimization process is relatively
more concentrated and uniform in its concentrated area. By comparison, ASA is more uneven
in the optimization process: in addition to the concentration of several lines, the focus is almost
exclusively on the range of 10~12 on the Cpat axis and 1,200,000~1,250,000 on the D, axis.
With this kind of optimal result, designer can select some excellent plans based on the frontier
curve and carry out detailed design for the next step.

4 Uncertainty analysis

4.1 Sensitivity analysis

In order to analyse the influence of variable changes on the outputs, it’s necessary to perform a
sensitivity analysis of the design variables (L, B, D, T, Vi, and Cy) and the important constants
(Ps, RTM, and Ry) toward the optimization objective.

One experiment’s design technique is adopted here: the Latin hypercube design, in which the
engineer has total freedom in selecting the number of designs to run. A total of 1,200 points are
generated for the Latin hypercube. The main effect and Pareto contributions of Cqpt and Da are
shown in Figures 2~5, which reflect the degree each input has an effect on each output.
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According to Figures 2 and 4, the parameters that influence Capt the most are RTM, Vi, Rn, and
Ps, and all of their contributions exceed 10%. According to Figures 3 and 5, the parameters that
influence Da the most are L, RTM, Ry, and B, and their contributions also exceed 10%.
Therefore, uncertainty in the important constants, such as P, RTM, and Rn, would lead to
uncertainty in the output and affect the whole optimization design.

4.2 Uncertainty analysis
To analyse the uncertainty influence, a Monte Carlo simulation (MCS) was adopted ™). In an
MCS, the probability distribution of random variables is known. Through random sampling,
the probability distribution of a system’s response can be estimated, and the contribution of
each random variable to the response results can be obtained.
There are two sampling techniques in an MCS: simple random sampling and descriptive
sampling. Compared to the former, descriptive sampling reduces the variance of the statistical
estimates derived from the population data. Descriptive sampling also ensures the quality of
statistical analysis with less sampling and simulation time, so it becomes a more representative
method and so is used in this study. The uncertainty analysis model is shown in Table 2.

Table 2. Uncertainty analysis model

Objective:
» Uncertainty influence on the optimization object
Design variables:
» L:217 (m); » B:32.26 (m); » D:19.7 (m);
» T:12.5(m); » Cp: 0.82; » Vi: 14.5 (kn);
Uncertainty factors:
» Pr, Normal, =100 (Pound/t), 6=1%*u
» RTM, Normal, 4=5000 (n mile), 6=1%*u
» Rn, Normal, 4=8000 (t/day), 6=1%*u
Constraints:
» T1-Tg=0
Analysis Method
» Monte Carlo simulation: descriptive sampling
The maximum number of simulations is set at 10,000, and then a normal distribution simulation
of three uncertain parameters (Ps, RTM, and Ry) is conducted. Their effects on the result
optimization object (Capt, @ @ more important factor to be considered,) are calculated
independently. A histogram is then drawn of the frequency distribution and the frequency fitting
curve according to system response parameters, a normal distribution hypothesis test is
conducted, and the normal distribution curve is drawn. The influence of different parameters
on the response uncertainty can then be analysed comparatively. The results of the uncertainty
analysis by MCS are shown in Figure 6.
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A normal hypothesis test is then done. The related results and parameters are shown in Table 3.
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The statistical results of the system response, Capt, are shown in Table 4.

Table 3. Results of the normal hypothesis test

Rn obeys normal RTM obeys normal Pt obeys normal
Input parameters distribution distribution distribution
separately separately separately
Test statistics 920.9634 1.1631 1.9229
Critical value 5.7458 6.1611 5.7143
H 1 0 0
Capt Obeys normal
aIzjtistrig)/ution? No Yes Yes
P 0 0.5570 0.3790

Table 4. Statistical results of system response, Capt

Rn obeys normal RTM obeys normal Ps obeys normal
Statistical indicators distribution distribution distribution
separately separately separately
Expectation (E) 8.589 8.556 8.559
Standard deviation (S.D) 0.343 0.428 0.109
S.D/E 0.0399 0.0500 0.0127
Skewness 2.87E-02 2.51E-03 4.48E-05
Kurtosis 5.79E-02 9.87E-02 4.32E-04

The distribution of the system response parameters can be compared directly through the ratio
of standard deviation to expectation. The ratio for Rn, RTM, and Ps is 0.040, 0.050, and 0.013,
respectively, showing that the fluctuation of the system response parameter, Capt, iS more
obvious with the random variable RTM.

As is shown, when random variables Pr and RTM obey normal distribution, the distribution of
Capt also strictly obeys normal distribution. When Ry alone obeys normal distribution, Capt can
also be approximated as a normal distribution. However, by comparing the standard-deviation-
to-expectation ratio of the three groups of data, it can be seen that the fluctuation of the system
response caused by RTM is more obvious.

Therefore, when the uncertainty of parameters is considered in ship design, different uncertainty
parameters have different effects. The more-obviously-effect factors should be set in a more
clearly pattern (probability distribution or interval, with accurate description), while the
remainder can be set in an approximate range.

5 Conclusion

This research focuses on economic ship optimization design and its uncertainty analysis due to
the fluctuation of internal parameters. Through the above simulation, calculation, and analysis,
the response relationship between system output and random variable input is obtained, which
can be used to guide the optimal design of actual ship optimization. The following conclusions
are drawn:

(1) The uncertainty analysis based on MCS with descriptive sampling can clearly depict the
impact of uncertain parameters on output response, thus the research conducted could hopefully
promote the development of uncertainty optimization ship design.

(2) Different uncertainty parameters have different effects on the output response, thus they
should be considered separately in ship design.

(3) Further studies can be conducted to investigate the properties of uncertain parameters and
the applicability of uncertainty optimization algorithms with uncertainty.
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