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Abstract

Since the beginning of oil exploration, whole ecosystems have been affected by acci-
dents and bad practices involving petroleum compounds. In this sense, bioremediation
stands out as the cheapest and most eco-friendly alternatives to reverse the damage
done in oil-impacted areas. However, more efforts must be made to engineer enzymes
that could be used in the bioremediation process. Interestingly, a recent work described
that α-amylase, one of the most evolutionary conserved enzymes, was able to promis-
cuously degrade n-alkanes, a class of molecules abundant in the petroleum admixture.
Considering that α-amylase is expressed in almost all known organisms, and employed
in numerous biotechnological processes, using it can be a great leap towards more ef-
ficient applications of enzyme or microorganism-consortia bioremediation approaches.
In this work, we employed a strict computational approach to design new α-amylase
mutants with potentially enhanced catalytic efficiency towards n-alkanes. Using in
silico techniques, such as molecular docking, molecular dynamics, metadynamics, and
residue-residue interaction networks, we generated mutants potentially more efficient
for degrading n-alkanes, L183Y and N314A. Our results indicate that the new mutants
have an increased binding rate for tetradecane, the longest n-alkane previously tested,
which can reside in the catalytic center for more extended periods. Additionally, molec-
ular dynamics and network analysis showed that the new mutations have no negative
impact on protein structure than the WT. Our results aid in solidifying this enzyme
as one more tool in the petroleum bioremediation toolbox.

Keywords: Alpha-Amylase, Molecular Dynamics, Bioremediation, n-alkanes,
Metadynamics, Residue-Residue Interaction Networks
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We describe two new α-amylase mutants that are more efficient for degrading tetradecane
and propose an in silico protocol for protein engineering. Using molecular docking, molecular
dynamics (1.5 µs per system), metadynamics, and residue-residue interaction networks, the
two mutants, N314A and L183Y, have an increased binding rate for tetradecane, can reside
in the catalytic center for extended periods, and have no adverse effect on protein structure,
solidify this enzyme for bioremediation of petroleum-derived compounds.
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INTRODUCTION

Despite the ongoing efforts to prevent environmental disasters concerning Oil spills, the con-

sequences of its mismanagement is still a worldwide concern, and continuous efforts must be

carried out to design new alternatives to treat affected areas. In this sense, the bioremedia-

tion process is currently deemed the most sustainable approach to deal with this issue due

to its low-costs and non-invasive, eco-friendly nature1. Among the different bioremediation

approaches, microorganism consortia are regarded as the most low-cost approach since their

employment does not generate wastes and does not necessarily include protein engineering

or other high-cost techniques. However, this efficiency is directly associated with exploring

new enzymes that can degrade Petroleum Derived Compounds (PDC) or uncover new roles

of known enzymes that could be adapted to this reality.

Between the multitude of known PDC, alkanes are the most abundant petroleum admix-

ture compounds, comprising n-alkanes, isoalkanes, and naphthenes2,3. Alkanes were already

detected in virtually all niches4–12, and found to be more persistent in specific environments,

such as water surface, than Polycyclic Aromatic Hydrocarbons (PAH)13, which are regarded

to be the most toxic PDC2. Therefore, the search for enzymes that can efficiently degrade

n-alkanes is of utmost importance to quickly recuperate all affected areas.

A new research revealed that endo-1,4-α-D-glucan glucohydrolase (α-amylase), is able to

degrade n-alkanes14 and low-density polyethylene15 (Fig.1A). The study tested two different

α-amylases about their capability to degrade n-alkanes: one from Bacillus subtilis TB1,

a bacteria found to survive in oil-spilled areas; and the other is a commercial one. The

experiment briefly consisted of analyzing enzymatic biodegradation of n-alkanes, ranging

from 10 to 14 carbons, by a crude enzyme solution. Analysis from gas chromatography

showed that after 36h of incubation, C10 and C11 n-alkanes were not detected, C12-C14

n-alkanes diminished in this same period and absent after 72h. This result indicated that

α-amylase has the promiscuous ability to degrade n-alkanes and that the catalytic efficiency

decreases as the carbon chain length increases.

Additionally, in silico docking analysis corroborated that the longer the n-alkane carbon

chain was, the larger the total binding energy. This is an exciting discovery, with a direct
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influence on the bioremediation process by microbial consortium because α-amylase is a

strongly evolutionary conserved enzyme, present in almost all known organisms16. As a

matter of fact, in previous work, we demonstrated that α-amylase is one of the most well-

known enzymes, with decades of structural and physical-chemical knowledge, adapted to a

multitude of temperatures, pH, and even salinity17. Our study showed that there is enough

available α-amylase data to allow it to be virtually adapted to any environment, which is

fundamental to the bioremediation process. Therefore, this enzyme’s ability to promiscuously

degrade n-alkanes is a remarkable trait that should be further explored.

One plausible, low-cost, and potential strategy is to test new α-amylase mutants that

could possess a higher binding rate constant to n-alkanes, which, in turn, might increase

catalytic efficiency. In this sense, computational methods play a vital role in the continuous

endeavors to diminish production and experimental costs. For protein, in particular, simu-

lations by molecular dynamics (MD) and metadynamics (MTD) are grounded as valid and

reliable strategies to access a protein’s molecular behavior and its relationship to a given

molecule.

In this work, we report the identification of two new α-amylase mutants using com-

putational approaches and analyze them with MD and MTD simulations to access their

potentially enhanced catalytic efficiency to tetradecane. We observed that both newly gen-

erated mutants not only retain the structural stability and folding, presenting no significant

changes in the secondary structure profile but can better accommodate the tetradecane in

the binding pocket, increasing residence time. Additionally, we investigated the binding

energy between each α-amylase variant and the tetradecane, revealing that both mutations

conferred an improvement of the affinity for the new non-polar ligand. Moreover, we scruti-

nized the possibility of structural changes derived from the effect of each mutation and the

interaction of each α-amylase variant with tetradecane. Furthermore, the residue-residue

interaction network showed no significant variation in the overall topology of the mutants,

confirming their stability compared to the WT counterpart, implying that the mutants have

no negative impact on protein structure. Lastly, the in silico protocol described in this work

can be virtually employed in any protein engineering work to reduce the costs of wet-lab

procedures and more efficient mutant variants.
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METHODOLOGY

Protein structure, modeling and validation

The α-amylase WT structure from B. subtilis, containing 425 from 659 total amino acids,

was retrieved from the Protein Data Bank (PDB)18 under the code 1BAG19. A total of

234 amino acids, related to α-amylase domain C, were missing from the final structure. To

model this missing segment, we performed comparative modeling using the Robetta server20.

The final model was submitted to four different validation tests to guarantee its suitability,

using the following tools: (i) Verify3D21; (ii) Protein Structure Analysis (ProSA-web)22; (iii)

PROCHECK23 and; Qualitative Model Energy Analysis (QMEAN)24. The final approved

model was named AMYWT .

Mutants generation

Mutants were generated by a semi-rational design approach25 based on the Rosetta point

mutant (pmut) scan application26,27. The pmut scan is an algorithm designed to predict

protein stability by calculating the relative change in the structure energy. The application

calculates the structure energy as a function of ∆∆G, which is determined as ∆G for mutant

structure minus ∆G for WT structure. If the ∆∆G in the structure energy is favorable, the

tested mutation is selected and stored; otherwise, it is excluded. A command flag is used

to generate a PDB file for every hit that is a favorable mutation. Moreover, a combination

of PDB files of the same protein in different configurations can be used as input to improve

the pmut accuracy.Amidst the six WT systems (three of free enzyme and three of α-amylase

+ tetradecane), we selected PDBs from 0, 250, and 500 ns of each system trajectory and

submitted each structure independently to pmut. Next, we submitted PDBs of 0, 250, and

500 ns together for each system. In the end, we had a list of thousands of mutations from

each pmut run. We searched for mutations in regions that would directly affect the enzyme

contact with the ligand without compromising the catalytic triad. Additionally, we se-

lected mutations that would increase the binding pocket’s affinity for the small, hydrophobic

tetradecane. The command line input flags for pmut scan were: -ex1 -ex2 -extrachi cutoff 1
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-use input sc -ignore unrecognized res -no his his pairE -multi cool annealer 10 -mute basic

core –output mutant structures. We analyzed the most consistent mutant candidates, and

two mutations were selected, named AMYN314A and AMYL183Y .

Tetradecane and Docking

The tetradecane molecule structure was retrieved from the PDB, and hydrogen atoms were

added using the Avogadro software28. The new PDB file was submitted to the LigParGen

server29–31, which provides bond, angle, dihedral, and Lennard-Jones parameters for chosen

force field (next section), along with the 1.14*CM1A-LBCC option, a tool for generating

partial charges parameters for neutrally charged molecules, along with topology files for

GROMACS.

Tetradecane was docked into the into the AMYWT structure using Autodock tools 4.232

and Autodock Vina 1.1.233 software. The grid box was set centered at the α-carbon of the

catalytic residue E249 and the box set’s dimension with the number of points in x-dimension

= y-dimension = z-dimension = 26, and the spacing set as 0.682 A, which covered all

the active enzyme center. The ligand was then uploaded to the Autodock software. The

exhaustiveness was set as 8. The same parameters were reproduced when docking the ligand

to the AMYN314A and AMYL183Y mutants. This generated three new PDB files named

AMYWT
lig , AMYL183Y

lig , and AMYN314A
lig .

Molecular Dynamics Simulations

All Molecular Dynamics (MD) simulations were executed using the GROMACS package

version 2018.1.34,35. The system was set inside a dodecahedron box. The OPLS-AA force field

(FF)36 was selected along to the water model TIP3P37, under periodic boundary conditions.

Na+ and Cl− ions were proportionally added to neutralize the system and simulate the

physiological condition of 0.15 M. An energy minimization step was conducted employing

the Steepest Descent algorithm. After the energy minimization, an equilibration step was

applied. Covalent bonds were constrained using the LINCS algorithm38, and an integration

step of 2 fs was applied. The Particle Mesh Ewald method39 was employed for calculation

6



of electrostatic interactions, along with the Parrinello-Rahman barostat40 set with a two ps

coupling constant. the V-rescale41 was employed with a coupling constant of τ= 0.1. In

the end there were six simulated systems, each done in triplicates: (i) 3x free AMYWT ; (ii)

3x AMYWT
lig ; (iii) 3x free AMYN314A; (iv) 3x AMYN314A

lig ; (v) 3x free AMYL183Y and; (vi) 3x

AMYL183Y
lig . Each MD simulation consisted of 500 ns each, a total of 1.5 µs per system.

Residue-Residue Interaction Networks

Residue-Residue Interaction Networks (RRIN) were created using the Residue Interaction

Network Generator (RING 2.0) software42. To generate the RRIN, we investigated the

time range with the lowest variances in the mean RMSD for each system and extracted

20 PDB frames from those time ranges for each replicate (i.e., MD1, MD2, and MD3), a

total of 60 PDBs per system. We selected the most representative structure from the gen-

erated PDB pool using the Average Linkage Hierarchical clustering procedure43 (available

at http://www.sbg.bio.ic.ac.uk/ maxcluster) by calculating the protein with the lowest av-

erage distance to all other cluster members. This structure was then labeled as the cluster

centroid, and the average distance was defined by the cluster’s spread (or error).

The final model was submitted to RING 2.0 server taking into consideration the following

parameters: (i) Distance thresholds: relaxed; (ii) Network Policy: closest; (iii) Interaction

type: multiple; (iv) all other options disabled, except for skip water molecules. Networks

were manipulated and analyzed in the Cytoscape v3.6.1. software44. The Cytoscape plugin

CentiScaPe v2.2.45 was employed to calculate the most topologically relevant residues. The

used centralities were: (i) node degree; (ii) betweenness; and (iii) eigenvector.

Metadynamics

To obtain estimates of the free energy surfaces describing tetradecane binding to the α-

amylases, a previously published protocol was followed using volume-based Metadynamics

(MTD)46. This consists of employing a combination of the well-tempered metadynamics

scheme47 with a restraining potential in the shape of a sphere of finite radius (ρs). As

collective variables (CV) for applying the history-dependent bias, the spherical coordinates
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were used (ρ, θ, φ). The repulsive potential at the sphere’s border allows for multiple

recrossing events and proper binding of both bound and unbound states.

The well-tempered MTD variant was used, applying a bias factor of 20 for all simulations

to rescale the Gaussian functions. An initial height of 1.2 kJ · mol-1 applied every one ps

for the Gaussian hills was used, and a value of 40 Å was applied for ρs. Sigmas for CVs

ρ, θ, φ were set as 1 Å, π/8 rad, π/16 rad, respectively. To keep the system within the

reference frame and with CVs fixed, a structure alignment was conducted in every step. The

free energies were calculated by reweighting as a function of two meaningful CVs, that is, ρ

(the distance between the center of masses of the ligand and the catalytic site residues) and

the number of contacts (Cn) between ligand and protein46. This was useful to discriminate

between the bound (ρ between 0.6 and 0.9; Cn between X and Y) and unbound states (ρ

higher than 3.0; Cn lower than 10). Statistical errors were obtained by employing the block

analysis technique. Entropic correction of the free energy of binding (∆ G0
b) was applied,

following equations from Capelli et al.46, which account for the loss in translational entropy.

Fig.2 illustrates the workflow applied to this work.

RESULTS AND DISCUSSION

α-amylase structure, validation, and docking

The structure of the α-amylase is divided into three distinct domains (Fig.1A). Domain A,

which is composed of two segments, from residues L42 to I141, and from T193 to G388,

is the catalytic domain. It comprises the (α/β)8-Barrels, a conserved protein folding of an

intern barrel of 8 β-strands surrounded by another barrel of 8 α-helices48. Domain B is the

smallest one, composed of residues N142 to N192. It is adapted for binding to a structural

Ca2+ 48. Domain C, consisting of residues M1 to E41 and Q389 to H659, comprises a typical

antiparallel β-sheet structure48. Three conserved amino acids constitute the active site:

D217, located at the β4 strand of (α/β)8-Barrel, which acts as a catalytic nucleophile; E249

positioned at β5 strand, operates as a proton donor and; D310, situated at the β7 strand,

which aids to stabilizing the transition-state during catalysis49 (Fig.1B).
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We retrieved from the PDB database the same α-amylase employed in the original study

that showed its promiscuous activity towards n-alkanes. However, the crystal was missing a

large segment, requiring a modeling step. There were two reasons for choosing the selected

PDB structure, the obvious one for it being the same one utilized in the original work. The

second one is presenting the closest conformation to the enzyme-substrate complex transition

state (which is explained in the next section).

Our final α-amylase model (AMYWT ) consists of adding the missing segment belonging

to domain C, which is absent from the PDB structure 1BAG. The 234 missing residues

were modeled into a structure composed of β-sheets and loops, which is consistent with

the literature description of this domain48 (Fig.1A). Afterward, we employed four different

metrics to evaluate the quality of AMYWT (Table.1, Figs.S1-S5, see S-Material). All

validation methods approved the model.

Molecular docking was employed to investigate the interaction between tetradecane and

α-amylase variants. In the original work by Karimi and Biria, although molecular docking

studies using n-alkanes ranging from ten to sixteen carbons were conducted, only n-alkanes

ranging from ten to fourteen carbons were tested with actual enzymes14. Moreover, there is

an inverse correlation between the n-alkanes carbon chain length and α-amylase efficiency.

Thus, the tetradecane molecule was chosen as a model for this work due to the wet lab’s

experimental data to support it as an unmistakable reference.

Mutants generation, selection, and docking

We concentrated on the residues interacting directly with the tetradecane among the multi-

tude of obtained mutants as possible structure stabilizers. Q104, L182, L183, L185, H221,

and N314 are 4Å distant or less from the docked molecule, composing α-amylase binding

pocket. The most consistent as well as biochemically relevant results from pmut which were

L183Y and N314A.

Table 2 shows the score function from Autodock Vina for each α-amylase variant and

the tetradecane molecule. WT α-amylase presented the lowest docking scores amidst the

variants, with the lowest score of 3.5 and the highest score of 4.5, in absolute value (Fig.1C.

The second-lowest scored was α-amylase variant was AMYN314A, which presented the lowest

9



and highest scores, in absolute value, of 4.5 and 4.6, respectively Fig.1E. This mutant

has the most consistent scoring outcome, deviating in just 0.1 between the least and best

docking results. AMYL183Y showed the best docking results, with absolute values of 4.9 and

5.2 (Fig.1D).

Although docking results do not directly indicate the affinity between protein and ligand,

they provide initial information about the enzyme-ligand system’s interaction. Results show

that both mutants can smoother accommodate the tetradecane molecule in their active cen-

ter, especially AMYL183Y . The considerably higher docking score of AMYL183Y suggests that

changing the Leu residue for a Tyr optimizes the intermolecular interactions, facilitating the

tetradecane binding process. This mutation characterizes the changing of a small, apolar

residue for a larger, polar one. This plurality of differences between the two residues allows

different hypothesis of why this substitution improves the docking process. As depicted in

(Fig.1D), the Tyr residue appears to hinder the binding pocket, keeping the tetradecane

molecule thoroughly inside it. In this sense, the α-amylase binding pocket is adapted to in-

teract with starch, a large, polar molecule, which are opposite characteristics of tetradecane.

Thus, reducing the active center cavity volume lowers the number of tetradecane possible

configurations as it binds to the enzyme. In the case of the AMYN314A, substituting the

Asp residue for an Ala increases the hydrophobicity in the active center, becoming a more

suitable environment for the hydrophobic tetradecane. The consistent docking results for

this α-amylase variant possibly because tetradecane remains stably positioned between the

nonpolar residues L183 and A314 (Fig.1D-E).

Investigating flexibility and structural changes of α-amylase variants

The structure of α-amylase has different degrees of flexibility for each domain. Domain A

is the catalytic one, thus maintaining controlled flexibility is pivotal for catalysis. Domain

B is the smallest one, characterized to hold tightly to a Ca2+ ion, thus exhibiting the least

flexibility of all domains. Domain C, the largest among them, has a core of antiparallel

β-sheet along with a large coil structure, assigning a more flexible characteristic to this

domain.

Fig.3A shows RMSD values for domains A, B, and C of each α-amylase variant; Fig.3B
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depicts the difference of RMSF between each mutant and the WT, and; Fig.S6 (see Supple-

mentary Material illustrates the radius of gyration (Rg) for each domain of each α-amylase

variant. Overall, there is little change in RMSD values for domain A, and only a small de-

crease is perceived for the mutants in comparison to AMYWT
lig . In this sense, AMYL183Y

lig

presents the lower RMSD value and the most prominent variation between free and ligand-

binding systems, suggesting that this mutant might accommodate the tetradecane in its

pocket with more efficacy. RMSF analysis of domain A shows no profound difference in the

fluctuation between the WT and the mutants systems. However, some subtle changes in the

flexibility can be recognized comparing AMYWT - AMYN314A) and (AMYWT
lig - AMYN314A

lig

systems, where the ligand-free system shows prominent positive peaks above the X-axis, espe-

cially in the second segment of domain A. This slight increase in the flexibility of AMYN314A
lig

might be a result of substituting a larger residue (Asn) for a smaller one (Ala), increasing the

possibility of movement for the surrounding residues. Rg analysis shows no major difference

for domain A among the α-amylase variants, noting that a slight decrease of Rg is observed

from AMYL183Y to AMYL183Y
lig .

Next, we investigated domain B. RMSD, RMSF, and Rg results show no significant

changes amidst the variants or the free and ligand-binding systems. Variations of 0.5 Å or

less are observed, which is less than the distance of covalent and hydrogen bonds50. These

are expected results since domain B is the smallest and structurally adapted for binding and

holding a Ca2+ ion.

At last, domain C results are evaluated. Amidst the free α-amylase variants, AMYN314A

showed the highest value of RMSD. However, the ligand-binding systems present a different

behavior. First, AMYWT
lig did not only exhibit the highest RMSD amidst the variants, but

it was also higher than AMYWT . Furthermore, while AMYL183Y
lig kept similar RMSD values

throughout the simulation as AMYL183Y , AMYN314A
lig system lowered its overall RMSD, pre-

senting values close to AMYL183Y
lig . The higher values of RMSD for domain C is expected since

it has several coils. The missing segment from the original PDB file belongs to domain C;

thus, the peculiar results correspond to the modeled portion of α-amylase. Likewise, RMSF

values for domain C displayed more pronounced peaks than the other domains. Neverthe-

less, it is clear that after bidding to tetradecane, domain C displays less variation, which,
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together with Rg results, indicates increased compactness from this region.

To further evaluate the impact of the generated mutations, we performed a DSSP analysis.

The results are expressed as the percentage of each secondary structure for each system

Fig.S7 (see Supplementary Material. One major concern regarding protein engineering

studies is how the mutation will affect the overall structure since inserting a mutation might

result in a loss of secondary structure. In this sense, no loss of secondary structure was noted

in the mutant variants.

Moreover, we wanted to examine the possibility of molecular changes occurring in the

mutants on a scale that was not detectable in the previous analysis. Thus, to characterize

the generated mutants and AMYWT , we employed an RRIN analysis, which resulted in three

different RRIN (Fig.4A-C). Each RRIN was then analyzed to identify the most topologi-

cally relevant residues. Topological investigations of interaction networks provide valuable

information since they often identify significant players in network structure and control of

information flow. In this sense, node degree measures the number of connections of a given

node. Nodes with above-average node degree values are called ”hubs.” In protein-protein

interaction networks (PPIN), hubs are often regarded as evolutionarily conserved proteins,

playing a crucial role in cell survival45,51. However, in a RRIN, the residues characterized as

hubs will be considered necessary for protein structure, possibly maintaining stability and

proper conformation.

Moreover, betweenness measures the number of shortest paths that go through each node.

In a PPIN, they are frequently designated as ”bridges” between biological processes or bio-

chemical pathways45,52. Nodes with above-average betweenness scores are named ”bottle-

necks.” On the other hand, in RRIN, bottlenecks would be residues that possibly coordinate

or respond to conformational changes, modulating protein behavior. Finally, the eigenvector

centrality measures how regulatory a node could be, based on the node’s number of connec-

tions and how well connected are their neighbors45. We employed the term ”switches” to

refer to nodes with eigenvector values above the network average53. In a PPIN, switches will

commonly be regarded as regulatory proteins in clusters, once its neighbors will also have

high eigenvector values. In a RRIN, we can translate these nodes as structurally critical

residues that could control residue clusters. Thus, nodes possessing all of the above char-
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acteristics, the hubs-bottlenecks-switches (HBS), would be the most topologically relevant

nodes in the network.

We evaluated all interactions between the residues in all generated RRIN and compared

them between the systems. Network analysis showed that there were no significant changes

in the interactions types between AMYWT and the mutant variants (Fig.4E). This is in

agreement with the other analyzes, which showed that the isolated mutant variants had no

significant change in structure variance (Fig.3A).

Next, we sought to identify the HBS residues in each system (Fig.4A-C). Interestingly,

although we have found that each α-amylase had a set of exclusive HBS, they all maintained

a ”core” set of topologically relevant residues in all systems (Table.3) - all belong to either

domain A or B. This is in agreement with previous observations that α-amylase activity

was sustained even after partial removal of domain C54. Hence, alterations in the residues

listed in Tab.3 would not be advised in terms of protein engineering since their change could

significantly impact proper protein behavior - and if they do get mutated, protein stability

must be evaluated afterward. In this sense, it is interesting to note that our mutations do not

appear as HBS, which would agree with network proprieties expectations. In a PPI network,

changes in highly regulatory nodes are typically related to disease phenotypes51,52 - thus, in

RRIN, changes in HBS could lead to protein instability or loss of function. Similarly, the

residues belonging to the catalytic triad also do not appear as HBS. Since the HBS reflect

topological (structure) significance, it makes sense that the catalytic triad might not appear

as a top centrality since its value is associated with enzymatic activity, which HBS does not

necessarily detect in RRIN.

Furthermore, RRIN analysis revealed HBS in common only between both α-amylase

mutants, implying that the generated mutations also altered the HBS pattern of the WT

variant. This suggests that, in the same way that alteration on different nodes in a PPI

network can change major regulatory pathways, the same can happen to RRIN. In this

case, the network analysis proposes that, although the conventional MD analysis observed

no notable structural variance, the mutants do have a distinct topological difference from

the WT, further explaining the tetradecane’s better accommodation at the catalytic center.
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Investigating the (un)binding energy between α-amylase variants and

tetradecane

The observed promiscuous activity of α-amylase towards degrading n-alkanes is an evident

indication of evolutionary innovation. This work explores the relationship between enzyme-

substrate affinity and catalytic efficiency to enhance the promiscuous activity efficiency and

take advantage of it for bioremediation purposes. There is no computational method that

directly investigates the effect of an enzyme mutation on catalytic efficiency. Therefore, eval-

uating the affinity between enzyme and ligand is an indirect approach to assess the catalytic

efficiency, regarding prior considerations are carefully made. While catalytic efficiency is

often expressed as Kcat/KM , the affinity presents an inverse correlation with KM . Therefore,

increasing the affinity improves catalytic efficiency regarding the enzyme-substrate complex

rather than the free enzyme. The strategy of enhancing catalytic efficiency by strengthening

the substrate affinity has shown success in several studies55–60. However, it is essential to

consider how affinity is assessed, the nuances around this parameter, and how to improve the

methodology accuracy. In the past, the main property investigated when selecting amidst

mutants generated via in silico tools was the binding affinity between enzyme and substrate,

relying almost exclusively upon this property61. However, assessing the enzyme-substrate

affinity alone has shown not to be a reliable parameter. The main problem is that affinity

is expressed regarding the dissociation constant (Kd), which in turn is only equal to KM for

genuine Michaelian enzymes. This occurs because KM is a macroscopic constant that re-

volves into a combination of diverse microscopic parameters, including Kd. This phenomenon

is seen by scrutinizing the mathematical terms of an enzyme-substrate reaction. A typical

reaction is described as:

E + S
k1−−⇀↽−−
k-1

ES
k2−−→ P + E

Where E stands for the free enzyme, S is the substrate; ES is the enzyme-substrate complex;

P is the product; k1, k−1, and k2 are the velocity of the reaction in the respective direction.

Kd is obtained when a reaction achieves its equilibrium state. Since the formation of
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the ES complex is a reversible step of the global reaction, the equilibrium distribution of

reactants (E + S) and product (ES) will be achieved when the rates of the forward (k1)

and reverse (k−1) reactions become equal. As the reaction approaches equilibrium, the

rates of the opposing reactions become equal, and the concentrations of [E], [S], and [ES]

remain constant through time. Therefore, no more variation of any reactant and product

concentration is mathematically equal to the general equilibrium constant, in this case Kd.

On the other hand, for first order reaction of enzymes that follow Michaelis-Menten kinetics,

KM under rapid equilibrium becomes equal to Kd
62,63. This way, the rate can be expressed

as:

Because of this non-universal aspect about the concept of affinity and its non-precise

relationship to catalytic efficiency, recent experiments are relying on parameters such as

the binding rate constant (kon) and the unbinding rate constant (koff ) to investigate the

relationship between an enzyme binding pocket to a specific ligand64. Interestingly, Kd can

be assessed through these constants as well65. The mathematical relationship between these

parameters is Kd=koff/kon.

Binding and unbinding rate constants are more appropriate to work with since they are

determined directly from the energy of interaction between protein and ligand. There are a

variety of computational tools that can manage to assess energy of interaction accurately66.

In this work, we employed MTD to calculate kon, koff , and derived parameters to study

the essence of how each α-amylase variant interacts with tetradecane. Furthermore, re-

garding α-amylase kinetics, this enzyme has shown to follow the Michaelis-Menten kinetic

profile63,67. Thus, since assessing Kd through the binding energy (kon and koff ) is an ex-

act process, mutants showing decreased Kd implies in decreased KM , which increases the

catalytic efficiency.

Following the previously established rationale, the retrieved structure of α-amylase from

PDB is binding to a maltopentaose molecule, a ligand in which this enzyme is evolutionarily

adapted to cleavage. Thus, the structural conformation adopted by α-amylase in this crystal

is the closest possible to the enzyme-substrate complex transition state when working strictly

with molecular mechanics. Moreover, enzymes that display promiscuous activity show an

optimized active site for recognition of the native substrate68, suggesting that specificity
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for the ligand and how well it is accommodated in the binding pocket is a decisive factor

contributing to the catalytic efficiency of the primary substrate. Additionally, hydrophobic

interactions play a significant role in enzyme-substrate recognition, and diverse promiscuous

enzymes are known to have a dependence between hydrophobic interactions and catalytic

efficiency68–71. In this sense, another study showed that the promiscuous binding between

α-amylase and B-type procyanidin dimer were predominantly of hydrophobic interactions72,

once again suggesting that hydrophobicity plays a role in α-amylase promiscuous activity.

Thus, both mutations increase the possibility of hydrophobic interactions to tetradecane,

which would increase the catalytic efficiency.

Moreover, MD analyses were conducted to investigate how each binding pocket accom-

modates the ligand molecule and how it impacts the residence time. The distance between

the tetradecane and the three catalytic residues has been inspected throughout the simula-

tion (Fig.1F). Initial analyses showed that both AMYL183Y
lig and AMYN314A

lig maintain the

tetradecane inside their pocket during all simulation. In contrast, in the AMYWT
lig system,

the tetradecane molecule disengage from the pocket around 400 ns. Amidst the α-amylase

mutants, AMYL183Y
lig shows that the ligand is kept closer to the catalytic residues through the

whole simulation. The observation that AMYL183Y
lig decreases its (Rg) compared to AMYL183Y

and that it holds the ligand molecule closer to its catalytic residues suggests that this mutant

encloses its catalytic pocket around the tetradecane tighter than the other variants. All these

observations together allow us to recognize that the mutation L183Y stands out among the

variants.

To further assess and investigate the unbiased MD simulations results, we performed

MTD simulations for each system for 200 ns. From these calculations, an estimate of the

∆G0
b can be obtained (Tab4, Figure S8, see S-Material), providing a more reliable

indication of how much the mutations enhanced the binding of the tetradecane molecule

to the α-amylase variants. As explained in the Methods section, CVs corresponding to the

spherical coordinates were biased, while the free energy surfaces (FES) were obtained by

reweighting and projecting on the ρ and Cn CVs (Figure 5). The FES plots (Fig.5A-C)

show many lower energy regions, providing different paths for the molecule to enter the

catalytic site. Despite that, the plot area with the lowest energy basins was the same for all
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of the simulated systems - the ligand in the bound state, with a ρ value between 0.6 and 0.9

nm.

The AMYL183Y mutation near the catalytic site promoted an increase in the overall Cn

(Fig.5) (values between 150-200) while restricting the minimum energy to a more well-

defined energy basin. As shown in Fig.5E in some conformations sampled during the

AMYL183Y metadynamics run, Y183 is capable of trapping the ligand both inside and at

the entrance of the binding site. The AMYN314A mutation does not seem to act directly

at the binding to the catalytic residues, but it still increases the Cn slightly in the energy

minimum (values closer to 150). During the MTD run, its role appeared to be related to

a mechanism of trapping and orientation of the ligand by the new interactions provided by

the -CH3 group in the Ala residue. Hence, this could facilitate ligand binding and slightly

increase its affinity to the enzyme. Both mutations seem to provide not only less conforma-

tional variability for the ligand, as mentioned in the previous sections, but also additional

interactions due to the presence of bulkier residues (especially in the case of AMYL183Y ).

Contrastingly, the WT system displays a lower Cn, with a greater number of less defined

energy minima areas (Cn between 100-150). Comparing ligand binding in all systems, the

residue in position 183 (either L or Y) seems to interact more frequently to the ligand than

residue 314 (either N or A), which might be why L183Y contributed to a higher ∆G0
b . A

possible explanation to the lower free energy of binding for the WT system is due to its lack

of the additional interactions provided by the L183Y mutation and, at the same time, by the

lack of a small but noticeable contribution, from the Alanine side-chain in N314A (Fig.5D).

As exemplified in (Fig.5F), N314 barely interacts with the ligand, while L183 provides some

contacts, but not as many as Y183 (Fig.5E), confirmed by the higher Cn of AMYL183Y .

When calculating the ∆G0
b for each system, the higher Cn correlates well with a higher

affinity. The values obtained follow the same order as seen in the docking results: AMYL183Y

shows a slightly higher free energy of binding than AMYN314A and AMYWT , while AMYN314A

is higher than AMYWT (∆G0
b = -6.1 kcal/mol, -5.1 kcal/mol, and -3.9 kcal/mol, respectively).

Lastly, MTD results showed that AMYL183Y and AMYN314A both present an increased num-

ber of contacts with the ligand molecule while the free energy minimum decreases, implying

an improvement of affinity for tetradecane.
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In summary, we generated two new α-amylase mutants, L183Y and N314A, and inves-

tigated pertinent structural parameters through in silico strategies. MD analyses showed

that both mutants do not compromise their structure by the mutations’ effect, which is

corroborated with RRIN analysis. Moreover, we observed increased residence time for the

tetradecane molecule in both mutants, which agrees with molecular docking and MTD re-

sults. MTD analysis showed an increased number of contacts between the tetradecane and

the binding pocket of both mutants. Additionally, MTD showed that the binding energy

is also increased (in absolute value) for both mutants. The values obtained through this

method are considerably close to the results from the molecular docking.

These results’ pertinence is meaningful for the overall knowledge about α-amylase struc-

ture and the influence it might have for bioremediation purposes. First, α-amylase is highly

conserved and found in the three domains of life. Moreover, it has decades of kinetics,

thermodynamics studies, structural characterization and identified structural features for

adapting in virtually all extreme environments. Thus, α-amylase arises as a potential can-

didate for bioremediation since it could be easily expressed in most organisms and adapted

to perform in different hostile environments.

CONCLUSIONS

We discussed and investigated each appropriate step to achieve an enhanced promiscuous

activity of α-amylase over the original evolutionary adapted activity from the theoretical

knowledge behind protein architecture to structural mechanics and dynamics. In this sense,

we focused on increasing the binding affinity of tetradecane, the largest n-alkane experimen-

tally observed to be degraded by α-amylase. Regarding the affinity, the mutants generated

in this work, L183Y and N314A, showed higher binding free energy (in absolute value) in

both molecular docking and MTD investigations, along with an increased residence time.

Moreover, generating α-amylase mutants with an increased affinity towards the tetrade-

cane is only practicable if the overall protein structure and native dynamics are not compro-

mised. We carefully inspected each mutation’s effect on the α-amylase structure, applying

several different approaches. The results showed that the mutants had no negative varia-
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tion from the WT and presented increased stability when accommodating the tetradecane

molecule inside the binding pocket.

The protocol employed in this work, based on comparative modeling, mutant generation,

molecular docking, MD, MTD, and RRI networks, is an integrated set of tools and analyses

for protein and biocatalyst engineering. Since the field of computational protein design still

has space for improvement and development of more accurate tools, this protocol can be used

for future studies and be applied in diverse biotechnological fields, such as environmental,

industrial, or pharmaceutical.

Lastly, bioremediation is the cheapest and most environmentally friendly remediation

alternative. Each year new organisms, enzymes, and metabolic pathways are described to

act on a different pollutant. However, as we discover new enzymes already adapted to

degrade a specific molecule, we should also make an effort to explore the maximum potential

of those enzymes. In this sense, two strategies may suffice: (i) apply engineering techniques

to enhance the evolutionarily adapted activity or; (ii) investigate promiscuous enzymes’

activities, which could be propitious to widen bioremediation tool options since enzymes

are often highly dependent on specific conditions to achieve their full catalytic efficiency.

Moreover, utilizing well-known conserved enzymes makes it easier to adapt them to the

host’s metabolism, as an α-amylase mutant should be, making this an attractive strategy

yet to be adequately explored.
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Figure 1: α-amylase structure, docking, and atomic distances. A) Full α-amylase

structure, showing each domain, the calcium ion, and the location of both generated mu-

tants (see Results); B) Catalytic triad, responsible for coordinating α-amylase interaction to

tetradecane (see Results); C) Docking results illustrating the accommodation of tetradecane

at the AMYWT catalytic center (see Results); D) Docking results illustrating the accommo-

dation of tetradecane at the AMYL183Y catalytic center (see Results); E) Docking results

illustrating the accommodation of tetradecane at the AMYN314A catalytic center (see Re-

sults); F) Atomic distance investigation between each catalytic residue and tetradecane (see

Results). AMYWT
lig is represented by a black line; AMYL183Y

lig mutant is represented by a blue

line, and; a red line represents AMYN314A
lig .

Figure 2: Workflow employed in this work.. After generating and validating the model,

a total of six systems were simulated, each consisting of triplicates of 500ns. A MTD analysis

was performed on the three systems containing the tetradecane molecule.

Figure 3: RMSD and RMSF investigation of α-amylase. A) RMSD is shown for each

domain separately; B) RMSF is expressed as a function of each mutant system subtracted

from the WT system. Positive values indicate higher fluctuation in the WT structure, while

negative values illustrate higher mutant structure fluctuation.

Figure 4: RRIN for AMYWT , AMYL183Y , and AMYN314A. A) RRIN for AMYWT ;

B)RRIN for AMYL183Y ; C) RRIN for AMYN314A. The subnetworks containing the HBS

identified in the centrality analysis are found within the squares. Green edges represent van

der Waals interactions, blue edges depict H-Bonds, purple edges illustrate ionic interactions,

and red edges represent π-π stacking and cation-π interactions; D) Venn diagram showing

the HBS residues in common and unique to each α-amylase; D) Pie charts depicting the

percentage of interaction types belonging to each α-amylase. The difference in network

layouts is just an artifact from the visualization.
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Figure 5: Free energy surfaces (FES) and tetradecane binding modes for AMYWT ,

AMYL183Y , and AMYN314A. A) FES of AMYWT ; B) FES of AMYL183Y ; C) FES of

AMYN314A; All FES are plotted on two CVs, namely distance between the ligand and the

centre of mass of the catalytic site (ρ) and the number of contacts (Cn). D) Binding pose

for the tetradecane to AMYWT showing fewer interactions at the catalytic site; E) Binding

pose for the tetradecane to AMYL183Y showing the role of Y183 (cyan) trapping the ligand

in the catalytic site; F) Binding pose for the tetradecane to AMYN314A showing the role of

A314 (yellow) which provides a few more interactions in the binding site. The same color

scheme from Figure 1C-E was followed here.
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Figure 1: α-amylase structure, docking, and atomic distances. A) Full α-amylase

structure, showing each domain, the calcium ion, and the location of both generated mu-

tants (see Results); B) Catalytic triad, responsible for coordinating α-amylase interaction to

tetradecane (see Results); C) Docking results illustrating the accommodation of tetradecane

at the AMYWT catalytic center (see Results); D) Docking results illustrating the accommo-

dation of tetradecane at the AMYL183Y catalytic center (see Results); E) Docking results

illustrating the accommodation of tetradecane at the AMYN314A catalytic center (see Re-

sults); F) Atomic distance investigation between each catalytic residue and tetradecane (see

Results). AMYWT
lig is represented by a black line; AMYL183Y

lig mutant is represented by a blue

line, and; a red line represents AMYN314A
lig .
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Figure 2: Workflow employed in this work.. After generating and validating the model,

a total of six systems were simulated, each consisting of triplicates of 500ns. A MTD analysis

was performed on the three systems containing the tetradecane molecule.
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Figure 3: RMSD and RMSF investigation of α-amylase. A) RMSD is shown for each

domain separately; B) RMSF is expressed as a function of each mutant system subtracted

from the WT system. Positive values indicate higher fluctuation in the WT structure, while

negative values illustrate higher mutant structure fluctuation.
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Figure 4: RRIN for AMYWT , AMYL183Y , and AMYN314A. A) RRIN for AMYWT ;

B)RRIN for AMYL183Y ; C) RRIN for AMYN314A. The subnetworks containing the HBS

identified in the centrality analysis are found within the squares. Green edges represent van

der Waals interactions, blue edges depict H-Bonds, purple edges illustrate ionic interactions,

and red edges represent π-π stacking and cation-π interactions; D) Venn diagram showing

the HBS residues in common and unique to each α-amylase; D) Pie charts depicting the

percentage of interaction types belonging to each α-amylase. The difference in network

layouts is just an artifact from the visualization.
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Figure 5: Free energy surfaces (FES) and tetradecane binding modes for AMYWT ,

AMYL183Y , and AMYN314A. A) FES of AMYWT ; B) FES of AMYL183Y ; C) FES of

AMYN314A; All FES are plotted on two CVs, namely distance between the ligand and the

centre of mass of the catalytic site (ρ) and the number of contacts (Cn). D) Binding pose

for the tetradecane to AMYWT showing fewer interactions at the catalytic site; E) Binding

pose for the tetradecane to AMYL183Y showing the role of Y183 (cyan) trapping the ligand

in the catalytic site; F) Binding pose for the tetradecane to AMYN314A showing the role of

A314 (yellow) which provides a few more interactions in the binding site. The same color

scheme from Figure 1C-E was followed here.
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Table 1: Summary of validation test results

Validation Metric Results

4*Ramachandran Res in most favoured regions 88.3%

Res in additional allowed regions 11.1%

Res in generously allowed regions 0.2%

Res in disallowed regions 0.3%

ProSA-Web Z-Score -10.18

QMEAN Z-Score >1

Verify 3D 3D-1D score PASS

Table 2: Molecular docking scoring results

Enzyme Least score Best score

AMYWT
lig -3.5 -4.5

AMYN314A
lig -4.5 -4.6

AMYL183Y
lig -4.9 -5.2
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Table 3: HBS’s in common between each system.

System HBS Residues

AMYWT vs AMYL183Y vs

AMYN314A

Thr51, Ile52, His54, Trp58, Phe60, Met67, Asp72, Gln79, Ile83, Leu115,

Phe121, Met124, Ile136, Phe202, Leu203, Phe214, Phe216, Trp235,

Tyr247, Tyr261, His309, Tyr312, Ile327, Leu329, Trp331, Ala332,

Leu343, Phe344, Phe371, Thr377, Ala378, Asn380, Arg381,Phe382,

His383, Arg407, Val462

AMYL183Y vs AMYN314A
Trp56, Tyr75, Ser81, Val137, Leu207, Met265, Tyr272, Ile276, Leu280,

Leu285, Met322, Ile334, Ile376, Val379, Arg458

AMYWT
lig vs AMYN314A

lig

vs AMYL183Y
lig

Ile52, His54, Trp188, Trp58, Phe60, Ile327, Arg328, Leu63, Tyr198,

Trp331, Met67, Ile334, Phe202, Ile70, Tyr75, Leu343, Ile78, Phe344,

Gln79, Phe214, Arg215, Ile83, Phe216, Trp235, Phe371, Ile376, Thr377,

Tyr247, His383, Phe121, Met124, Tyr261, Ile136

AMYN314A
lig vs AMYL183Y

lig Thr51, Thr76, Ala128, Val267, Asn142, Leu302, Val303, His309

HBS in Common (All)

Ile52, His54, Trp58, Phe60, Met67, Gln79, Ile83, Phe121, Met124, Ile136,

Phe202, Phe214, Phe216, Trp235, Tyr247, Tyr261, Ile327, Trp331,

Leu343, Phe344, Phe371, Thr377, His38

Table 4: Free energy differences (∆G0
b) obtained by using the Volume metadynamics tech-

nique for AMYWT and its mutants. ∆Metad corresponds to the value found in the meta-

dynamics simulations and ∆G0
b corresponds to the final value after applying the entropic

correction.

System ∆Metad ∆G0
b

AMYWT -3.1 ± 0.5 -3.9 ± 0.5

AMYL183Y -5.3 ± 0.3 -6.1 ± 0.3

AMYN314A -4.3 ± 0.4 -5.1 ± 0.4
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