
Optimal portfolio allocation and asset

centrality revisited

Jose Olmo∗

Abstract

This paper revisits the relationship between eigenvector asset centrality and optimal asset

allocation in a minimum variance portfolio. We show that the standard definition of

eigenvector centrality is misleading when the adjacency matrix in a network can take

negative values. This is, for example, the case when the network topology is induced by

the correlation matrix between assets in a portfolio. To correct for this, we introduce

the concept of positive and negative eigenvector centrality. Our results show that the

loss function associated to the minimum variance portfolio is positively/negatively related

to the positive and negative eigenvector centrality under short-selling constraints but

cannot be generalized beyond that. Furthermore, in contrast to what is claimed in the

related literature, this relationship does not imply any monotonic relationship between
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financial markets.

Keywords: Eigenvector centrality; Markowitz portfolio allocation; Spectral decomposi-

tion; Constant Conditional Correlation; Dynamic Conditional Correlation.

∗Universidad de Zaragoza and University of Southampton. Corresponding address: Departamento de Análisis
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1 Introduction

Portfolio selection is a fundamental topic in financial economics and one of the leading appli-

cations of decision theory under uncertainty. Modern portfolio theory pioneered by Markowitz

(1952, 1959) stresses the idea that portfolio diversification leads to a risk reduction. Agents

minimize a loss function that is the sum of idiosyncratic risks given by the individual assets’

variances and the correlation between the assets in the portfolio. In this problem the optimal

asset allocation is determined by the inverse of the covariance matrix such that assets with

large variances receive a lower allocation in the investment portfolio. The relationship between

the assets in the portfolio characterized by the returns’ correlations is an additional contributor

to portfolio risk.

In this study, we embed the optimal portfolio allocation problem in a financial network.

The nodes of the network are the financial assets comprising the portfolio and the links are

the connections between the assets. We consider a weighted undirected network in which the

relationship between the assets is driven by the cross-correlations between the log returns.

Considering the relationship between assets in a portfolio as a financial network is not new.

Measures of financial connectedness have been proposed in different areas of financial economics

by Vandewalle et al. (2001), Tse et al. (2010), Billio et al. (2012), Diebold and Yilmaz (2009,

2012, 2014), Hautsch et al. (2015), Peralta and Zareei (2016) and Barigozzi and Brownlees

(2018), among many others.

The notion of centrality aims to quantify the importance of certain nodes in a given network.

In the same spirit of Peralta and Zareei (2016), we focus on the concept of eigenvector centrality

and explore the relationship between asset centrality and portfolio risk. These authors attempt

to formalize the results derived in Pozzi et al. (2013) and establish that optimal portfolio

strategies should overweigh low-central securities and underweigh high-central ones. These

authors find that investors benefit from diversification by avoiding the allocation of wealth in

assets that are central - using the correlation as the measure of association in the network.

Our aim in this study is to shed further light on the relationship between the centrality of

an asset in a portfolio and the overall risk of the portfolio. As a byproduct, we also explore

the relationship between asset centrality and the optimal asset allocation in a global minimum

variance portfolio. We focus on this optimization problem because it is a clean optimization

problem that can be mathematically interpreted as a quadratic programming exercise. In

financial terms, minimizing the portfolio variance is similar to optimizing the mean-variance

portfolio strategy but avoids the estimation of the vector of expected returns.

To understand in more detail the relationship between eigenvector centrality and the optimal

2



allocation of an asset to an investment portfolio we construct an optimal portfolio with all

the assets comprising the FTSE 100 Index using daily data over the period January 2011 to

December 2018. The optimal allocation to each asset of the FTSE 100 Index is obtained

from a minimum variance optimization function. Panel (a) of Figure 1 reports the eigenvector

centrality measure introduced by Bonacich (1972) as a function of the optimal portfolio weights

for each of the one hundred assets comprising the FTSE 100 Index. These results show a very

weak decreasing relationship between eigenvector centrality and optimal portfolio weights. The

range of the asset centrality statistic for the cross-section of assets in the Index is around 0.1 and

the relationship fails to be monotonic. In Panel (b) we repeat the exercise but imposing short-

selling constraints to the optimal portfolio allocation. In this case the relationship clearly fails

to reflect the negative relationship between asset centrality and the corresponding allocation of

the asset in the portfolio. To gain further insight into this relationship we repeat the exercise for

random subsamples of stocks in the FTSE 100 Index. We divide the 100 assets comprising the

financial index into five random subsamples of stock returns with 20 assets each and without

replacement such that all assets in the FTSE 100 Index are represented in one and only one of

the portfolios. The minimum variance optimal portfolio weights on the assets are ranked from

minimum to maximum for each of these portfolios and the associated centrality measures are

plotted in Figure 2. The left panel of this figure reports the centrality of assets as a function of

the weights under no short-selling constraints and the right panel reports the centrality measure

as a function of the weights under short-selling constraints. Both sets of results fail to report

a negative relationship between asset centrality and the portfolio allocation. These empirical

insights suggest that such relationship obtained in related studies may not exist and be an

artifact of the sample period or the presence of outlying observations in the datasets under

study.

In addition, standard eigenvector centrality measures, see Bonacich (1972), may not be

suitable for measuring the centrality of an asset in a portfolio. In Markowitz’s portfolio opti-

mization context the adjacency matrix is characterized by the correlation matrix. In contrast

to standard formulations of the adjacency matrix in social and financial networks, this matrix

contains positive and negative values that yield eigenvector centrality measures that can be

negative. Moreover, the eigenvector centrality measures can produce misleading results if the

positive and negative correlations across assets cancel out. In this case the corresponding cen-

trality measure can give values close to zero even for assets that are highly connected to the

other assets in the portfolio. To correct for this, we extend the concept of eigenvector centrality

to consider positive and negative eigenvector centrality measures separately. We achieve this by
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decomposing the correlation matrix in a diagonal matrix of ones and two complementary adja-

cency matrices. Each of these matrices contains the positive and negative correlations between

the assets separately. Both matrices are symmetric accommodating a spectral decomposition.

The positive and negative centrality measures are defined using the eigenvectors and eigenvalues

of these spectral decompositions.

We use these definitions to explore theoretically and empirically the relationship between

positive and negative eigenvector centrality and portfolio risk. Under short-selling constraints,

we find a positive/negative monotonic relationship between the loss function characterizing the

optimal minimum variance portfolio allocation and positive/negative centrality. This relation-

ship vanishes as the short-selling condition is relaxed. Furthermore, in contrast to previous

studies such as Pozzi et al. (2013) and Peralta and Zareei (2016), we find that, in general, there

does not exist a monotonic decreasing relationship between asset centrality and the correspond-

ing allocation of the assets to the portfolio. This result is shown theoretically and empirically

independently of whether short-selling restrictions are imposed or not. Our theoretical results

provide a correction of Proposition 1 and Corollary 1 of Peralta and Zareei (2016) and avoid

imposing unrealistic assumptions on the maximum eigenvalue of the correlation matrix.

These theoretical insights are illustrated empirically with data from U.S. stock markets.

We consider daily log returns on eight assets obtained from the Federal Reserve Bank of St

Louis Database over the period 1 January 2011 to 29 May 2020. These assets are the CBOE

Gold ETF Volatility Index, the U.S./Euro Foreign Exchange Rate, the Dow Jones Industrial

Average, the Nasdaq 100 Index, the CBOE Russell 2000 Volatility Index, the S&P 500 Index,

the CBOE Volatility Index (VIX), and the Willshire 5000 Price Index. Financial indexes are

positively cross-correlated and negatively correlated to the volatility indexes. In this setting, we

show that positive and negative centrality capture different dimensions of asset centrality. The

standard eigenvector centrality measure proposed in Bonacich (1972) is different from these two

centrality measures although it is positively correlated to the positive eigenvector centrality.

Financial indexes are highly central with regards to the positive centrality measure whereas

volatility indexes are in the periphery of the network. This result is due to the presence of

positive correlations between the four financial indexes: Dow Jones Industrial Average, Nasdaq

100 Index, S&P 500 Index and the Willshire 5000 Price Index, and their negative correlation to

the volatility indexes. The volatility indexes are central using the negative centrality measure.

This is due to the negative correlations between these assets and the conventional financial

indexes. The latter assets also exhibit a high value of the negative centrality statistic meaning

that conventional financial indexes exhibit high correlation (positive and negative) with all the

4



remaining assets in the portfolio.

The analysis of the relationship between asset centrality and portfolio allocation provides

empirical support to our theoretical result showing that no monotonic relationship exists be-

tween both variables. We also confirm empirically that both centrality measures move together

under small variations in the optimal portfolio weights. We extend the static case to the dy-

namic case by considering constant conditional correlation (CCC) models introduced in Boller-

slev (1990), and dynamic conditional correlation (DCC) models developed by Engle (2002).

Our empirical findings confirm the theoretical features of the models, namely, both positive

and negative centrality measures are constant over the evaluation period for the CCC model.

Interestingly, there is no much variation in asset centrality for the DCC model despite the

flexibility offered by the latter specification. The centrality of the U.S./Euro Foreign Exchange

Rate exhibits more variation than the centrality of the remaining assets. Overall, we find that

modelling the dynamics of the multivariate volatility process using a DCC model does not alter

significantly the centrality measures between the assets providing empirical support to the CCC

specification with respect to the DCC model.

The rest of the paper is organized as follows. Section 2 reviews the theoretical background

and introduces the main results of the paper. Section 3 presents an empirical application to

a set of U.S. assets and assesses empirically the relationship between asset centrality and the

optimal portfolio weights. Section 4 concludes. Proofs of the main results of the study are

found in a mathematical appendix. Tables and figures are collected at the end of the paper.

2 Optimal Asset Allocation

In this section we review the minimum variance optimal portfolio allocation problem developed

by Markowitz (1952) and introduce the main results of the study.

2.1 Minimum-Variance Portfolio Optimization

The traditional portfolio optimization theory in the simplest case considers the minimization

of portfolio variance without any further restriction on portfolio’s expected return. More

formally, let r = [r1, ..., rn]′ be the vector of asset returns with expected values denoted as

[E(r1), ...,E(rn)]′, and covariance matrix denoted as Σ ≡ Cov(r) = E(rr′)− E(r)E(r)′. The di-

agonal elements of this matrix contain the idiosyncratic variance terms σ2
i and the off-diagonal

terms contain the covariance terms σij between the assets.
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Let rp = w′r denote the return on a portfolio of n assets, with w = [w1, ..., wn]′ the vector

of portfolio weights representing the allocation of assets to the portfolio. The global minimum

variance optimization problem developed by Markowitz (1952) is

arg min
w∈Rn

Q(Σ,w) subject to w′1 = 1, (1)

with Q(Σ,w) = w′Σw the portfolio variance. The first order conditions to the minimization

problem yield the optimal portfolio allocation given by the following vector of weights

w∗ =
Σ−11

1′Σ−11
. (2)

Markowitz (1952) also considers the extension of this portfolio allocation problem to the mean-

variance case. The results for this case follow similarly after suitable modifications of the algebra

and are omitted for space constaints.

The aim of this paper is to study the role of asset centrality in the portfolio allocation

problem. To do so we revisit the standard minimum variance portfolio optimization problem

from a financial network perspective. The matrix Σ can be decomposed as Σ = ∆Ω∆, with Ω

the correlation matrix of returns and ∆ a diagonal matrix whose ith-main diagonal element is

σi. Furthermore, by construction, the correlation matrix Ω is symmetric and positive definite.

The diagonal of the matrix is a vector of ones and the off-diagonal terms are the correlation

parameters ρij. The symmetry of Ω entails the spectral decomposition Ω = UDωU
′, with

U an n × n orthonormal matrix such that U′ = U−1 that contains the linearly independent

eigenvectors of Ω and Dω an n × n diagonal matrix with the corresponding eigenvalues ωk,

with k = 1, . . . , n. The eigenvalues of the risk matrix Ω can be expressed as a function of the

elements of the correlation matrix as

ωk =
n∑
i=1

u2
ik +

n∑
i=1

n∑
j=1
j 6=i

uikujkρij, (3)

with uij the ith component of the jth eigenvector of the matrix Ω ∈ Rn×n. By definition of the

matrix U, it holds that
n∑
i=1

u2
ik = 1 such that ωk = 1 +

n∑
i=1

n∑
j=1
j 6=i

uikujkρij. From this expression, it

follows that the eigenvalues of the risk matrix Σ, denoted as γk, can be expressed in terms of
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the variances and covariances as

γk =
n∑
i=1

u2
ikσ

2
i +

n∑
i=1

n∑
j=1
j 6=i

uikujkσij. (4)

The eigenvectors of both matrices Σ and Ω are obtained from the matrix U. By construction,

both matrices are positive definite implying that ωk and γk are strictly greater than zero for

k = 1, . . . , n.

2.2 Optimal portfolio weights and network centrality

The notion of centrality aims to quantify the importance of certain nodes in a given network.

The literature on social interactions and networks has proposed several measures to capture the

interdependence between individuals in a network. Intuitive measures of network centrality are

given by Kratz’s centrality measure, see Kratz (1953), and PageRank used by Google in their

famous search engine. One of the main measures for capturing the centrality of an individual

in a network is the eigenvector centrality, firstly introduced in Bonacich (1972).

In this paper, the connections betwen the assets in a network are determined by the corre-

lation matrix. This matrix is interpreted as an adjacency matrix in which the magnitude of the

correlation parameters between the assets determines the strength of the relationship. We focus

on the minimum variance portfolio optimization problem outlined in the previous subsection.

Let Ω = In + Λ, with In the identity matrix and Λ an adjacency matrix that is symmetric

and defined by a vector of zeros in the diagonal terms and the off-diagonal terms are the same

of the risk matrix Ω, i.e. Λij = ρij for i 6= j. The network is weighted because the connections

between the assets are determined by the correlation matrix and undirected because the matrix

is symmetric. The symmetry of the adjacency matrix entails the spectral decomposition Λ =

UDλU
′, where U is the same matrix as in the spectral decomposition of Ω. Both matrices

Λ and Ω have the same eigenvectors. Similarly, the eigenvalues of these matrices satisfy that

ωk = 1 + λk for k = 1, . . . , n. This property can be shown from expression (3) and the

decomposition of the eigenvalues of the adjacency matrix Λ as a function of the correlation

parameters. More formally,

λk =
n∑
i=1

n∑
j=1
j 6=i

uikujkρij. (5)
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The correlation matrix is positive definite implying that λk > −1 for k = 1, . . . , n. Under these

conditions, the quadratic form given by the portfolio variance can be expressed as

Q(Σ,w) = w′Σw = w̃′Ωw̃ = w̃′Λw̃ + w̃′w̃, (6)

with w̃ = ∆w. This decomposition shows that the portfolio loss function can be divided into

a component that is driven by the adjacency matrix Λ and the idiosyncratic risks σ2
i weighted

by the portfolio weights wi.

In what follows, we investigate the contribution of the centrality of an asset to the loss

function Q(Σ,w). To do so, we decompose the adjacency matrix as Λ = Λ1 − Λ2, with

Λ1 = Λ⊗1(Λ > 0) containing the positive correlation parameters and Λ2 = −Λ⊗1(Λ < 0) the

matrix containing the negative correlation parameters; 1(Λ < 0) is an indicator function that is

applied elementwise to all the members of the matrix. This function takes a value of one if the

argument is true and zero otherwise; ⊗ denotes the Hadamard product that denotes element by

element multiplication. The spectral decomposition of Λ implies that Dλ = U′ΛU = Λ∗1−Λ∗2,

with Λ∗1 = U′Λ1U and Λ∗2 = U′Λ2U. Furthermore, the symmetry of Λ1 and Λ2 implies that

Λ∗1 = Ũ1Dλ1Ũ
′
1 and Λ∗2 = Ũ2Dλ2Ũ

′
2, with Ũ1 = U′U1 and Ũ2 = U′U2; Dλ1 and Dλ2 are two

diagonal matrices with main diagonal given by the eigenvalues of Λ1 and Λ2, respectively. The

relationship between the eigenvalues of the adjacency matrix Λ and the eigenvalues of Λ1 and

Λ2 is given by the following expression:

Dλ = Ũ1Dλ1Ũ
′
1 − Ũ2Dλ2Ũ

′
2. (7)

Then,

λk =
n∑
i=1

λ1i

(
n∑
j=1

ujku1,ji

)2

−
n∑
i=1

λ2i

(
n∑
j=1

ujiu2,ji

)2

, (8)

with u1,ij and u2,ij the elements of the matrices U1 and U2, respectively.

The notion of centrality quantifies the influence of certain nodes in a given network. There

are several measurements in the literature each corresponding to a specific definition of cen-

trality. We focus on eigenvector centrality; see Bonacich (1972) and Katz (1953). Peralta

and Zareei (2016), in a related study, adapt the definition of eigenvector centrality introduced

by these authors to a portfolio allocation context. More specifically, eigenvector centrality is
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defined as

vi = ω̄−1

n∑
j=1

Ωij vj, (9)

with Ωij the elements of the correlation matrix Ω and ω̄ = max{ω1, . . . , ωn}. This definition of

asset centrality in a portfolio provides an association measure between assets in the portfolio.

The connectivity in the network is induced by the correlation matrix but, in contrast to con-

sidering pairwise correlations to assess the linear dependence between the assets, see Billio et

al (2012), the centrality measure (9) is driven by the largest eigenvalue of the spectral decom-

position of the adjacency matrix. This eigenvalue, ω̄, and associated eigenvector, v, contain

most of the relevant information on the correlation matrix as known from principal components

analysis. Asset centrality vi is proportional to the weighted sum of the centralities of neighbors

of the asset with the corresponding elements of the correlation matrix as the weighting factors.

In contrast to the literature on social networks, the elements of the adjacency matrices Ω

and Λ can take positive and negative values implying that the corresponding centrality measure

(9) may take negative values. In these cases the centrality measure is not well defined. More

importantly, there can be cases where the positive and negative correlations between the assets

cancel out implying a null centrality statistic (9) even if the asset is related to all the other

assets in the portfolio. To overcome this issue we define two centrality measures (positive and

negative centrality) for a symmetric adjacency matrix Λ. The rationale for splitting Λ in two

as discussed above is the possibility of defining two centrality measures that are defined over

the positive real line. More formally,

Definition 1 Let Λ = Λ1 − Λ2 be an adjacency matrix as defined above. Then, positive

centrality is defined by a vector vp = [vp1, . . . , v
p
n] such that

vpi = λ̄−1
1

n∑
j=1

Λ1,ij v
p
j , (10)

where λ̄1 = max(λ11, . . . , λ1n) is the largest eigenvalue of Λ1 and Λ1,ij are the elements of such

matrix. Similarly, negative centrality is defined by a vector vn = [vn1 , . . . , v
n
n] such that

vni = λ̄−1
2

n∑
j=1

Λ2,ij v
n
j , (11)
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where λ̄2 = max(λ21, . . . , λ2n) is the largest eigenvalue of Λ2 and Λ2,ij are the elements of such

matrix.

Both centrality measures are defined over the positive real line for all assets in the portfolio if

the maximum eigenvalue of each matrix is positive. Thus, for each asset, we obtain a pair of

centrality measures (vpi , v
n
i ) that allow us to rank assets in the portfolio as a function of their

position in the financial network. Furthermore, the centrality measures proposed above are the

eigenvectors of the matrices Λ1 and Λ2 corresponding to the respective largest eigenvalues. This

is so because λ̄1v
p = Λ1 vp and λ̄2v

n = Λ2 vn. Throughout the text, we will assume that the

first eigenvector of matrix U1 is associated to λ̄1 and, therefore, it defines the positive centrality

statistic. Similarly, the first eigenvector of matrix U2 is associated to λ̄2 and, therefore, it defines

the negative centrality statistic.

The following result shows that the eigenvector centrality measures are common across

location-scale transformations of the adjacency matrix Λ. More formally,

Proposition 1 Let Θ = c1In + c2Λ be a location-scale transformation of the adjacency matrix

Λ characterized by the constants c1 ∈ R and c2 > 0. Then, the centrality measures (vpi , v
n
i ) of

Λ are also the centrality measures of Θ.

In particular, for c1 = c2 = 1, this result implies that the centrality measures (vpi , v
n
i ) of the

correlation matrix Ω are the same centrality measures of the adjacency matrix Λ. The above

proposition also implies the following result.

Lemma 1 The centrality of an asset as defined in (9) and positive centrality as defined in (10)

are equal measures (vi ≡ vpi ) for each asset i = 1, . . . , n in the portfolio if Λ2 is an empty

matrix, that is, if the off-diagonal elements of the correlation matrix Ω are all positive.

The latter result presents the conditions under which the standard centrality measure used

in the literature is equal to the positive centrality measure defined herein. Otherwise, for

correlation matrices with negative entries, these measures diverge.

The following result derives the relationship between asset centrality (vpi , v
n
i ) and portfolio

risk. Expression (6) shows that portfolio risk Q(Σ,w) can be decomposed into two components:
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w̃′Λw̃ and w̃′w̃. We proceed to study the relationship between the centrality measures (vpi , v
n
i )

and w̃′Λw̃. The second component given by w̃′w̃ only depends on the diagonal elements of the

risk matrix Σ that contain the idiosyncratic risks. Let 0 be a n× 1 vector of zeros.

Proposition 2 Under short-selling constraints, there is a positive monotonic relationship be-

tween the loss function w̃′Λw̃ and the positive centrality vpi of each asset i = 1, . . . , n in the

portfolio.

Similar results can be obtained for the analysis of negative centrality of an asset. In particular,

Proposition 3 Under short-selling constraints, there is a negative monotonic relationship be-

tween the loss function w̃′Λw̃ and the negative centrality vni of each asset i = 1, . . . , n in the

portfolio.

More generally, under the absence of short-selling constraints, the relationship between the

loss function w̃′Λw̃ and asset centrality is not monotonic. We are now ready to introduce the

main result of this section, namely, the absence of a monotonic decreasing relationship between

the centrality measures and the optimal allocation of the assets to the portfolio. This insight

contrasts with recent results in the related literature such as Pozzi et al. (2013) and Peralta and

Zareei (2016). These authors show that optimal strategies should underweigh the allocation

to high central assets and overweigh the allocation to low central assets. In what follows, we

challenge these conclusions. In particular, using similar methods to Peralta and Zareei (2016),

we show that the relationship between the optimal portfolio allocation of a minimum variance

portfolio and asset centrality is not monotonic. To formally show this, we need the following

results. The eigenvalues ωk of the correlation matrix Ω satisfy that

ωk = 1 + λ̄1

(
n∑
j=1

ujkv
p
j

)2

− λ̄2

(
n∑
j=1

ujkv
n
j

)2

+
n∑
i=2

λ1i

(
n∑
j=1

ujku1,ji

)2

− λ2i

(
n∑
j=1

ujku2,ji

)2
 .

(12)

This result is immediate from expression (8) and noting that the first eigenvector of the matrices

U1 and U2 are the centrality measures,i.e. u1,j1 = vpj and u2,j1 = vnj for j = 1, . . . , n. The

following results allow us to explore the relationship between an asset’s centrality position in a
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portfolio and its optimal portfolio allocation. To do this, note from expression (12) that ωk is

a function of (vp,vn). More formally,

Proposition 4 The optimal portfolio allocation w∗i in (2) can be expressed as a function of ωk,

for k = 1, . . . , n, as

w∗i =

n∑
k=1

ω̃k
uik
σi

(
n∑
j=1

1
σj
ujk

)
n∑
k=1

ω̃k

(
n∑
j=1

1
σj
ujk

)2 , (13)

with ω̃k = 1
ωk

.

Then, we can derive the following two results.

Theorem 1 There does not exist a monotonic relationship between the optimal allocation w∗i
of asset i in the portfolio and the corresponding eigenvector centrality measures vpi and vni , for

i = 1, . . . , n.

This result suggests that despite the monotonicity between the loss function associated to the

adjacency matrix and asset centrality obtained in Propositions 2 and 3 the optimal asset allo-

cation does not decrease with positive asset centrality or increase with negative asset centrality.

This result contradicts Corollary 1 in Peralta and Zareei (2016) in a similar portfolio allocation

setting. As a byproduct, we also show that both measures of asset centrality move together in

equilibrium. To do this, we explore the marginal rate of substitution between vpi and vni . Let

w∗i = w∗i (v
p
i , v

n
i ). Then,

Lemma 2 For any asset i in the portfolio, the marginal rate of substitution between the two

centrality measures vpi and vni is given by the following expression:

∂vpi
∂vni

= −

n∑
k=1

∂ω̃k
∂vpi

uik
σi
ak

(
n∑
s=1

ω̃sa
2
s

)
−

n∑
k=1

ω̃k
uik
σi
ak

(
n∑
s=1

∂ω̃s
∂vpi
a2
s

)
n∑
k=1

∂ω̃k
∂vni

uik
σi
ak

(
n∑
s=1

ω̃sa2
s

)
−

n∑
k=1

ω̃k
uik
σi
ak

(
n∑
s=1

∂ω̃s
∂vni

a2
s

) ,
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with as =
n∑
j=1

1
σj
ujs. Furthermore, if the partial derivatives of the eigenvalues of Ω with respect

to the centrality measures vpi and vni satisfy the condition ∂ωk
∂vpi

= C ∂ωk
∂vni

, with C some positive

constant, then it follows that the marginal rate of substitution between the centrality measures

is constant and given by
∂vpi
∂vni

= −C.

The results in this lemma suggests that under some conditions the positive and negative central-

ity measures associated to the optimal portfolio allocation (13) move together in equilibrium.

3 Empirical application

In this section we illustrate the above theoretical results with data from U.S. stock markets. In

particular, we consider daily log returns on eight assets obtained from the Federal Reserve of

St Louis Database over the period 1 January 2011 to 29 May 2020. These assets are the CBOE

Gold ETF Volatility Index, the U.S./Euro Foreign Exchange Rate, the Dow Jones Industrial

Average, the Nasdaq 100 Index, the CBOE Russell 2000 Volatility Index, the S&P 500 Index,

the CBOE Volatility Index (VIX), and the Willshire 5000 Price Index. These assets include

a combination of volatility indexes measuring investor sentiment towards different markets:

coommodity markets (Gold ETF), small cap stocks (Russell 2000) and the overall financial

market (VIX). The portfolio also contains four major U.S. financial indexes (Dow Jones, S&P

500, Nasdaq 100 and Willshire 5000), and the U.S./Euro Foreign Exchange Rate to obtain some

exposure to the foreign exchange market. These assets are freely available from the Federal

Reserve of St Louis website.

Our empirical application is divided into several exercises. First, we consider a static port-

folio allocation and assess the relationship between the portfolio weights and the centrality

measures. Second, we extend this analysis to the dynamic case by considering multivariate

GARCH type processes for modelling the relationship between the returns in the portfolio. In

this setting, we consider the CCC model introduced by Bollerslev (1990) and the DCC model

introduced by Engle (2002), see also Tse and Tsui (2002). The choice of these specifications

within the family of multivariate GARCH type models is for tractability issues in the estima-

tion procedure and also for the reduced number of parameters compared to other multivariate

GARCH type specifications such as the VECH model of Bollerslev et al (1988) and the BEKK

model of Engle and Kroner (1995) previously considered as benchmark models in this literature.
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3.1 Static optimal portfolio allocation

Table 1 reports the summary statistics for the percentage log returns on the eight assets com-

prising the portfolio. The Nasdaq Index has the highest mean. It also has the largest variance

within the group of financial indexes. There is a clear distinction between the mean and vari-

ance of the financial indexes and the corresponding statistical moments of the volatility indexes.

The latter indexes, that capture uncertainty and fear in financial markets, exhibit a standard

deviation that is between five and seven times the standard deviation of the financial indexes.

These differences will be clearly reflected in the optimal portfolio allocation.

Panel (a) in Figure 3 reports the centrality measures developed in this paper (vp in black

dashed line and vn in red solid line) and compare these measures with the standard eigenvector

centrality measure v in (9) - green dotted line - that does not differentiate between positive

and negative centrality. The results show that vp and vn take positive values but v takes also

negative values. In this example, the centrality measure (9) is similar to the positive centrality

measure defined in (10) but is decoupled from the negative centrality measure (11). Intuition

for this result is obtained from Lemma 1.

At the asset level, we find that the financial indexes (Dow Jones Industrial Average, Nasdaq

100 Index, S&P 500 Index and Willshire 5000 Price Index) exhibit large positive centrality

measures, however, the CBOE volatility indexes and the exchange rate have values close to

zero. This finding is mainly due to the large positive correlations (around 0.9) between the

financial indexes. However, the volatility indexes and the exchange rate do not exhibit such

correlations. More specifically, Table 2 shows that the sample correlation between the volatility

indexes and the rest of assets in the portfolio is negative and around −0.7. These values explain

the large negative centrality measures for the volatility indexes reported in Figures 5 and 6

below.1 The presence of a negative correlation between the volatility indexes, in particular the

VIX index, and the conventional financial indexes is because the volatility assets are proxies for

financial distress and uncertainty in financial markets. Thus, large values of these indexes are

corresponded by negative returns of conventional financial indexes. In contrast, the different

volatility indexes are positively cross-correlated with a correlation of 0.424 between the Russell

1Table 2 uses nonparametric estimators based on the naive empirical distribution function for the static
covariance matrix. These estimators provide consistent estimates of the idiosyncratic variances and covariances
under stationarity of the vector of log returns and when the time dimension T increases to infinity. An additional
restriction is that the number of assets in the portfolio is fixed or increases to infinity but a lower rate than
T , that is, n/T → 0, with n, T → ∞. In our exercise, n = 8 is small compared to T = 2400 implying that
the estimates of the covariance matrix are consistent. When the number of assets increases with T , Ledoit and
Wolf (2003) and Engle, Ledoit and Wolf (2019) propose shrinkage methods to estimate the covariance matrix
in static and dynamic settings.
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2000 Volatility index and the Gold ETF Volatility index, a correlation of 0.415 between the

VIX and the Gold ETF Volatility index, and a correlation of 0.903 between the VIX and the

Russell 2000 Volatility index. However, these correlations are not sufficient to make these assets

positively central. Finally, the U.S./Euro exchange rate is uncorrelated to the rest of assets in

the portfolio and the associated centrality measures are both close to zero, see Figures 5 and 6.

The blue dashed line in Panel (b) of Figure 3 reports the weights obtained from expression

(2) and the red solid line reports the weights under short-selling restrictions (w ≥ 0). The

only significant differences across portfolio allocations is between assets 6 (S&P 500 Index)

and asset 8 (Willshire 5000 Price Index). The possibility of taking short positions in the first

portfolio implies that it is optimal to obtain a larger positive position on the S&P 500 Index

that is compensated by a negative position on the Willshire 5000 Price Index. Panels (c) and

(d) report the centrality measures along with the unrestricted and restricted portfolio weights,

respectively. No clear pattern emerges between the centrality measures and the optimal portfolio

allocations. We observe large values of positive centrality accompanied by large allocations on

the asset (asset 6) and similar values of positive centrality accompanied by small allocations on

the asset (asset 8). Similar results are found for the relationship between negative centrality

and the portfolio weights. These results are consistent with Theorem 1 that shows that, in

general, there does not exist a monotonic relationship between asset centrality and the optimal

portfolio allocation. This result is at odds with the findings in Peralta and Zareei (2016) and

Pozzi et al. (2013) that obtain a negative relationship between the optimal portfolio allocation

and asset centrality.

To obtain more clarity on this relationship we rank the assets in terms of the portfolio weight

from smallest to largest and report in Panels (e) and (f) of Figure 3 the corresponding centrality

measures associated to the weights. The existence of a monotonic relationship would emerge

clearly in this graph in case it would exist, however, both graphs are rather inconclusive and do

not show any clear pattern. Interestingly, we do observe clear comovements between the positive

and negative centrality measures in both panels. The centrality measures move together up

and down as the portfolio weights increase along the x axis. These findings provide further

insights into the theoretical result in Lemma 2 that derives the expression for the marginal

rate of substitution between both centrality measures. In this example, the marginal rate of

substitution is positive, that is, both measures move together up or down as the allocation to

the portfolio varies. In Panel (e), both centrality measures decrease up to values of w∗ slightly

greater than zero, then both measures increase and decrease again up to w∗ = 0.4. Finally,

both centrality measures increase for values of the portfolio weight up to w∗ = 0.8. Similar
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results are found for Panel (f). In this case the optimal allocation of assets to the portfolio

starts at w∗ = 0.

The above results show that the idiosyncratic variance of the volatility indexes plays an

important role on the optimal portfolio allocation problem. The standard deviation of these

fear indexes is several times higher than for the financial indexes and the U.S./Euro exchange

rate. This means that the optimal allocation to these assets is close to zero regardless the

covariance terms and centrality measures associated to these indexes. To abstract from these

effects we study the portfolio allocation problem when the covariance matrix Σ is replaced by

the correlation matrix Ω. In this scenario we assume that all assets have unit variance and the

covariance is equal to the correlation. The centrality measures are the same of the previous case

(Panel (a) of Figure 3), however, the optimal asset allocation is more balanced across assets in

the portfolio as Panel (a) of Figure 4 illustrates. The short-selling constraint only affects the

allocations to the S&P 500 and Willshire Indexes. Panels (b) and (c) of Figure 4 compare the

optimal weight allocation with the centrality measures. The results are similar to the previous

exercise. We do not obtain a monotonic relationship between the portfolio weights and the

centrality measures. This can be seen from comparing the allocations to assets 6 and 8 despite

the fact that both assets have the same positive eigenvector centrality measure. Finally, Panel

(c) of Figure 4 ranks the assets on the portfolio weight and reports the centrality measures

associated to each value of w∗i . This graph confirms the absence of a monotonic relationship

between the optimal weights and the centrality measures. The standard centrality measure

(9) comoves with the positive centrality measure (10) defined herein but not with the negative

centrality measure in (11).

3.2 Dynamic optimal portfolio allocation

In this section we explore the centrality of assets in a dynamic framework. To do this we

consider two stylized models, the CCC model introduced by Bollerslev (1990) and the DCC

model introduced by Engle (2002).

The conditional volatility process is denoted by the n× n matrix Σt, with n the number of

assets in the portfolio. The volatility process evolves according to the expression Σt = ∆tΩt∆t,

with ∆t a diagonal matrix with main diagonal elements given by the conditional variance σ2
i,t

of asset i. The matrix Ωt denotes the conditional correlation matrix with elements given by

ρij,t. In the CCC model specification the correlation matrix is constant over time such that

Σt = ∆tΩ∆t, and the diagonal elements of ∆t are usually modelled as univariate GARCH

type processes. In the DCC model, both variance and correlation matrices are time varying
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with elements that follow a GARCH(1,1) type process. For example, the dynamic correlation

matrix is defined as

Ωt = (1− α1 − α2)Ω0 + α1εt−1ε
′
t−1 + α2Ωt−1, (14)

with α1 and α2 the parameters of the model, Ω0 = E[εt−1ε
′
t−1] the unconditional correlation

matrix and εt−1 a n × 1 zero-mean vector denoting the error term of the multivariate return

process rt = [r1t, . . . , rnt]
′. For example, in the simplest case, rt = Σ

1/2
t εt, with Σt the condi-

tional covariance matrix. More refined versions of the DCC model can be found in Aielli (2013)

and Engle et al. (2019) for large-dimensional matrices.

In what follows, we describe the results of the dynamic minimum variance portfolio alloca-

tion exercise.

3.2.1 CCC model

In this exercise we fit an AR(1)-GARCH(1,1) process for the univariate conditional volatility

process for each of the eight assets in the portfolio and assume, by construction, that the

conditional correlation matrix Ωt is constant over the evaluation period (January 2011 to May

2020). The top panel of Table 3 reports the parameter estimates of Ω. The estimates of the

univariate AR(1)-GARCH(1,1) process for each asset in the portfolio are not reported but are

available from the author upon request.

The optimal portfolio weights allocated to each asset in the portfolio presented above are

obtained from applying expression (2) to the one-period ahead dynamic covariance matrix Σt

estimated each period. Our optimization exercise is done in-sample, that is, we use the full

sample to estimate the model parameters and reconstruct the conditional variance process over

the whole evaluation period by using one-period-ahead forecasts produced by the multivariate

CCC model. In each period we collect the predicted covariance process Σ̂t and apply the

procedure developed above. That is, we obtain the estimated correlation matrix Ω̂t as Ω̂t =

∆̂−1
t Σ̂−1

t ∆̂−1
t and obtain the dynamic adjacency matrix Λ̂t as Λ̂t = Ω̂t − In. From this matrix

we obtain Λ̂1t and Λ̂2t as Λ̂1t = Λ̂t ⊗ 1(Λ̂t > 0). Similarly, we obtain Λ̂2t = −Λ̂t ⊗ 1(Λ̂t < 0).

Both matrices are symmetric and accommodate, in turn, an spectral decomposition such that

we obtain the eigenvalues and corresponding eigenvectors that are collected in matrices Û1

and Û2. The eigenvector centrality measures vp and vn are obtained from these matrices of

eigenvectors using expressions (10) and (11).

Figure 5 reports the optimal weight allocation and associated centrality measures for the

eight assets in the portfolio over the evaluation period. Each panel considers a different asset
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and reports the centrality measures vpi and vni , and the optimal portfolio allocation w∗it over the

evaluation period. For space constraints, we only report the portfolio allocation under short-

selling constraints, however, as shown in Figures 3 and 4, the results when the short-selling

constraints are relaxed are very similar but with the optimal weights including negative values.

The results for this case are available from the author upon request.

The estimates of the centrality measures are plotted by a black line (∗−) for positive central-

ity vp and a red line (·−) for negative centrality vn. These quantities are estimated each period

and, in principle, could vary over time, however, they remain constant over the evaluation

period due to the choice of the CCC model specification that assumes a constant correlation

matrix. The dynamic allocation to the volatility indexes (Gold ETF, Russell 2000 and VIX)

is very small over the evaluation period. The corresponding positive centrality statistic is also

very small but the negative eigenvector centrality measure is large. These resuts show that

these assets are not positively correlated to any other asset in the portfolio, however, they

are negatively correlated to some of the other assets in the portfolio. This was the primary

reason to include them in the investment portfolio. These results also contradict the current

view that asset centrality has a negative effect on the asset allocation. In this example, we see

that positive asset centrality is very low and the associated asset allocation is almost zero. We

should also note that in this example our positive centrality measure is positively correlated to

the centrality measure proposed in the literature in (9).

The contribution of the U.S./Euro exchange rate to the portfolio is sizeable and stable over

time despite the fact that the centrality measures corresponding to this asset are very small. In

contrast, the allocation to the Nasdaq Index is small but the centrality statistics are large and

of similar magnitude to the other financial indexes in the portfolio. The difference in portfolio

allocation between these assets is driven by differences in the idiosyncratic risk given by the

asset variance. The allocations to the Dow Jones and Willshire 5000 Price Index are more

volatile than the allocation to the S&P 500 Index.

Overall, the message that emerges from this empirical analysis is that the financial indexes

are positively correlated among each other but negatively correlated to the volatility indexes.

This pattern of correlations produces the positive and negative centrality measures that we

observe, that are not monotonically related to the optimal asset allocation.

3.2.2 DCC model

The previous analysis is extended to consider a dynamic correlation matrix Ωt. The bottom

panel of Table 3 reports the parameter estimates of the unconditional correlation matrix Ω0
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and the estimates of α1 and α2 that drive the dynamic conditional correlation structure. Both

parameters are statistically significant and satisfy the conditions to imply that the conditional

correlation processes are weakly stationary.

In this case the adjacency matrix Λt is allowed to vary over time as well as the condititional

variance processes. Therefore, the centrality measures are dynamic. Despite the added flexibil-

ity, the results in Figure 6 are similar to the CCC case. The positive centrality measures are

very stable over time for all the assets in the portfolio. The negative centrality measures exhibit

more variation, in particular, for the Gold ETF volatility index and the U.S./Euro exchange

rate. The latter asset provides the most interesting insights in terms of asset centrality. Both

centrality measures move together up and down over the evaluation period. The exchange rate

seems to take a more central role in the portfolio during the first years of the evaluation period

that coincides with a spike on the allocation to the asset in the portfolio. The asset centrality

decays after 2014 and stays low for the remaining of the evaluation period.

4 Conclusion

This paper studies the relationship between the optimal allocation of assets in a portfolio

and the corresponding asset centrality statistic. First, we show that the standard definition

of eigenvector centrality found in the literature, see Bonacich (1972), is misleading when the

adjacency matrix in a network can take negative values. In this case the centrality measure

can take negative values, which does not have a natural interpretation. More importantly, the

centrality of assets can cancel out for assets highly correlated (positively and correlated) to the

rest of assets in the portfolio. To correct for this, we have introduced the concept of positive

and negative eigenvector centrality. This extension of Bonacich’s (1972) eigenvector centrality

fits naturally in a global minimum variance portfolio allocation problem in which the adjacency

matrix is characterized by the correlation matrix between asset returns.

For portfolios with short-selling constraints we prove that portfolio risk is strictly increasing

on positive asset centrality. This result does not imply, however, the presence of a negative

relationship between the magnitude of the optimal asset allocation to the portfolio and the

centrality measure. In fact, we prove the absence of a monotonic relationship between positive

asset centrality and the optimal portfolio allocation. Similarly, we find a strictly decreasing

relationship between negative asset centrality and portfolio risk that is not reflected on a pos-

itive relationship between asset centrality and the optimal portfolio allocation. These results

contradict recent results on the literature on financial networks claiming that asset centrality
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and the optimal portfolio allocation are negatively related. As a byproduct, we also find that

the marginal rate of substitution between positive and negative asset centrality is positive.

Both centrality measures tend to move together in the same direction to preserve the optimal

allocation of an asset in a portfolio.

More generally, under the absence of short-selling contraints we do not find a monotonic

relationship between portfolio risk and asset centrality or between the optimal asset allocation

and asset centrality. These results are confirmed in an empirical application to a mix of assets

with positive and negative cross-correlations.
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MATHEMATICAL APPENDIX

Proof of Proposition 1: Let Θ = c1In + c2Λ be a location-scale transformation of the

adjacency matrix Λ characterized by the constants c1 ∈ R and c2 > 0; and let (vpi , v
n
i ) be the

positive and negative eigenvector centrality measures associated to Λ. First, we show that the

centrality measures of Θ0 = c2Λ are the same of the adjacency matrix Λ. To show this, we

decompose the matrix as Θ0 = Θ01+Θ02, with Θ01 = Θ01(Θ0 > 0) and Θ02 = −Θ01(Θ0 < 0).

The positive centrality measure of Θ0, denoted as zp0i, is defined using condition (10) as

zp0i = θ̄−1
01

n∑
j=1

Θ01,ij z
p
0j, (15)

with θ̄01 the maximum eigenvalue of Θ01 and Θ01,ij the elements of the matrix Θ01. Now, we

note that θ̄01 = c2λ̄1, with λ̄1 the maximum eigenvalue of Λ1, and Θ01 = c2Λ1. Then, condition

(15) is equivalent to

zp0i = λ̄−1
1

n∑
j=1

Λ1,ij z
p
0j.

Therefore, from expression (10), we have zp0 = vp. Using the same arguments for matrices Θ02

and Λ2, it can be easily shown that zn0 = vn.

In a second step, we prove that the centrality measures of Θ = c1In + Θ0 are the same of

the matrix Θ0. Let zpi denote the positive eigenvector centrality measure of Θ. Then,

zpi = θ̄−1

n∑
j=1

Θij z
p
j , (16)

with θ̄ the maximum eigenvalue of Θ and Θij the elements of the matrix. To show the result,

we note that the eigenvalues of Θ satisfy that θk = c1 + θ01,k, with θk and θ01,k the eigenvalues

of Θ and Θ0. In particular, we have θ̄ = c1 + θ̄01. Then, replacing in (16), we obtain

(c1 + θ̄01)zpi = c1z
p
i +

n∑
j=1

j 6=i

Θij z
p
j .
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Therefore, θ̄01z
p
i =

n∑
j=1

j 6=i

Θij z
p
j . Finally, we note that this condition is equivalent to

θ̄01z
p
i =

n∑
j=1

j 6=i

Θ0,ij z
p
j ,

with Θ0,ij the elements of the matrix Θ0, and implying that zp = zp0. Using similar arguments,

it is straightforward to obtain that zn = zn0 .

Proof of Proposition 2: To show this result note from expression (6) that

w̃′Λw̃ = w̃′[Λ1 −Λ2]w̃ = w̃′U1Dλ1U
′
1w̃ − w̃′U2Dλ2U

′
2w̃.

The matrix U1 contains the eigenvectors of Λ1 and Ω1 such that the positive eigenvector

centrality measure vpi is the eigenvector associated to the largest eigenvalue of these matrices.

Similarly, the negative eigenvector centrality measure vni is the eigenvector from the matrix U2

associated to the largest eigenvalue of the matrix Λ2 = Ω2.

The quadratic form capturing the network dependencies can be expressed as

w̃′Λw̃ =
n∑
i=1

λ1i

(
n∑
j=1

w̃ju1,ji

)2

−
n∑
i=1

λ2i

(
n∑
j=1

w̃ju2,ji

)2

, (17)

with u1,ij and u2,ij the elements of the matrices U1 and U2, respectively. This expression can

be written as a function of vpi as

w̃′Λw̃ = λ̄1

(
n∑
j=1

w̃jv
p
j

)2

+
n∑
i=2

λ1i

(
n∑
j=1

w̃ju1,ji

)2

−
n∑
i=1

λ2i

(
n∑
j=1

w̃ju2,ji

)2

. (18)

The first derivative of the loss function associated to the adjacency matrix Λ with respect to

the positive centrality measure vpi is

∂w̃′Λw̃

∂vpi
=
∂λ̄1

∂vpi

(
n∑
j=1

w̃jv
p
j

)2

+ 2λ̄1w̃i

(
n∑
j=1

w̃jv
p
j

)
.
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By construction, λ1k =
n∑
i=1

n∑
j=1
j 6=i

u1,iku1,jkΛ1,ij. Then, for the largest eigenvalue we obtain λ̄1 =

n∑
i=1

n∑
j=1
j 6=i

vpi v
p
jΛ1,ij, where vpi = u1,i1 such that ∂λ̄1

∂vpi
=

n∑
j=1
j 6=i

Λ1,ijv
p
j . The definition of eigenvector

centrality (10) implies that
n∑
j=1
j 6=i

Λ1,ijv
p
j = λ̄1v

p
i such that ∂λ̄1

∂vpi
= λ̄1v

p
i . Following similar arguments

we obtain ∂λ1k
∂vpi

= 0, for k = 2, . . . , n. Then, the above expression reads as

∂w̃′Λw̃

∂vpi
= λ̄1v

p
i

(
n∑
j=1

w̃jv
p
j

)2

+ 2λ̄1w̃i

(
n∑
j=1

w̃jv
p
j

)
.

In general, this expression can be positive or negative. Note that the maximum eigenvalue

λ̄1 and the centrality measures vpi , for i = 1, . . . , n are both positive. Then, for investment

portfolios constructed under short-selling constraints, it follows that w̃ > 0, such that there is

a positive monotonic relationship between the loss function w̃′Λw̃ and positive asset centrality.

Proof of Proposition 3: To show this result we follow closely the proof of Proposition 2. The

quadratic form (17) capturing the network dependencies can be written as a function of vni as

w̃′Λw̃ =
n∑
i=1

λ1i

(
n∑
j=1

w̃ju1,ji

)2

− λ̄2

(
n∑
j=1

w̃jv
n
j

)2

−
n∑
i=1

λ2i

(
n∑
j=1

w̃ju2,ji

)2

. (19)

The first derivative with respect to the negative centrality measure vni is

∂w̃′Λw̃

∂vni
= −∂λ̄2

∂vni

(
n∑
j=1

w̃jv
n
j

)2

− 2λ̄2w̃i

(
n∑
j=1

w̃jv
n
j

)
.

By construction, λ2k =
n∑
i=1

n∑
j=1
j 6=i

u2,iku2,jkΛ2,ij. Then, for the largest eigenvalue we obtain λ̄2 =

n∑
i=1

n∑
j=1
j 6=i

vni v
n
j Λ2,ij, where vni = u2,i1 such that ∂λ̄2

∂vni
=

n∑
j=1
j 6=i

Λ2,ijv
n
j . The definition of eigenvector cen-

trality (11) implies that
n∑
j=1
j 6=i

Λ2,ijv
n
j = λ̄2v

n
i such that ∂λ̄2

∂vni
= λ̄2v

n
i . Following similar arguments,
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we obtain ∂λ2k
∂vni

= 0 for k = 2, . . . , n. Then, the above expression reads as

∂w̃′Λw̃

∂vni
= −λ̄2v

n
i

(
n∑
j=1

w̃jv
n
j

)2

− 2λ̄2w̃i

(
n∑
j=1

w̃jv
n
j

)
.

In general, this expression can be positive or negative. Note that the maximum eigenvalue

λ̄2 and the centrality measures vni , for i = 1, . . . , n are both positive. Then, for investment

portfolios constructed under short-selling constraints, it follows that w̃ > 0, such that there is

a negative monotonic relationship between the loss function w̃′Λw̃ and negative asset centrality.

Proof of Proposition 4: Expression (2) shows that w∗ = Σ−11
1′Σ−11

, with Σ = ∆Ω∆. The

inverse of the covariance matrix is Σ−1 = ∆−1Ω−1∆−1, with Ω−1 = UD−1
ω U′. Then,

w∗i =
[∆−1U]iD

−1
ω [∆−1U]′1

1′[∆−1U]D−1
ω [∆−1U]′1

,

with [∆−1U]i denoting the row i of dimension 1 × n of the matrix ∆−1U. Applying matrix

algebra, we obtain

w∗i =

n∑
k=1

uik
ωkσi

(
n∑
j=1

1
σj
ujk

)
n∑
k=1

1
ωk

(
n∑
j=1

1
σj
ujk

)2 ,

with the eigenvalues ωk that can be expressed as a function of the centrality measures vpi and

vni as shown in expression (12).

Proof of Theorem 1: We write expression (13) as w∗i =

n∑
k=1

ω̃k
uik
σi

(
n∑
j=1

1
σj
ujk

)
n∑
k=1

ω̃k

(
n∑
j=1

1
σj
ujk

)2 , with ω̃k = 1
ωk

.

To assess the relationship between asset centrality and the optimal portfolio allocation we study
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the first derivative of w∗i with respect to vpi . This expression can be written as

∂w∗i
∂vpi

=

n∑
k=1

∂ω̃k
∂vpi

uik
σi
ak

(
n∑
s=1

ω̃sa
2
s

)
−

n∑
k=1

ω̃k
uik
σi
ak

(
n∑
s=1

∂ω̃s
∂vpi
a2
s

)
(

n∑
k=1

ω̃ka2
k

)2 ,

with as =
n∑
j=1

1
σj
ujs. In what follows, we focus on the numerator of

∂w∗i
∂vpi

, that we denote as

∂w∗i
∂vpi

∣∣∣∣
Num

and study the conditions that guarantee that this expression is positive or negative

over the values of the centrality measure. Using simple algebra, the numerator of the above

expression is

∂w∗i
∂vpi

∣∣∣∣
Num

=
n∑
k=1

(
∂ω̃k
∂vpi
− ω̃k

)
uik
σi
ak

(
n∑
s=1

ω̃sa
2
s

)
−

n∑
k=1

ω̃k
uik
σi
ak

[
n∑
s=1

∂ω̃s
∂vpi

a2
s −

(
n∑
s=1

ω̃sa
2
s

)]

=
n∑
k=1

(
∂ω̃k
∂vpi
− ω̃k

)
uik
σi
ak

(
n∑
s=1

ω̃sa
2
s

)
−

n∑
k=1

ω̃k
uik
σi
ak

[
n∑
s=1

(
∂ω̃s
∂vpi
− ω̃s

)
a2
s

]
.

Furthermore, note that ω̃k = 1
ωk

for k = 1, . . . , n. Then, from expression (12), and noting that
∂λ̄1
∂vpi

= λ̄1v
p
i , it follows that

∂ω̃k
∂vpi

= −∂ωk/∂v
p
i

ω2
k

= − 1

ω2
k

λ̄1v
p
i

(
n∑
j=1

ujkv
p
j

)2

+ 2λ̄1uik

(
n∑
j=1

ujkv
p
j

) , (20)

such that

∂ω̃k
∂vpi
− ω̃k = − 1

ω2
k

λ̄1v
p
i

(
n∑
j=1

ujkv
p
j

)2

+ 2λ̄1uik

(
n∑
j=1

ujkv
p
j

)
+ ωk

 .
Therefore, the above expression can take positive or negative values showing that the derivative

of the weight function w∗i is not monotonic with respect to the eigenvector centrality measure

vpi unless for special configurations of the matrix U and the idiosyncratic variances σi for

i = 1, . . . , n.

Similarly, we can repeat the exercise for the negative centrality measures. In this case, it follows
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that

∂ω̃k
∂vni

= −∂ω̄k/∂v
n
i

ω2
k

=
1

ω2
k

λ̄2v
n
i

(
n∑
j=1

ujkv
n
j

)2

+ 2λ̄2uik

(
n∑
j=1

ujkv
n
j

) , (21)

and the corresponding numerator can take positive or negative values showing that the deriva-

tive of the weight function w∗i is not monotonic with respect to the eigenvector centrality

measure vni unless for special configurations of the matrix U and the idiosyncratic variances σi

for i = 1, . . . , n.

Proof of Lemma 2: The proof of this result is immediate by noting that for w∗i ≡ w∗i (v
p
i , v

n
i ) =

c, with c some constant, it follows that
∂w∗i
∂vpi

∂vpi
∂vni

+
∂w∗i
∂vni

= 0. Then,
∂vpi
∂vni
≡ −∂w∗i /∂v

n
i

∂w∗i /∂v
p
i
. Applying the

expressions in the proof of Theorem 1, we obtain

∂vpi
∂vni

= −

n∑
k=1

∂ω̃k
∂vpi

uik
σi
ak

(
n∑
s=1

ω̃sa
2
s

)
−

n∑
k=1

ω̃k
uik
σi
ak

(
n∑
s=1

∂ω̃s
∂vpi
a2
s

)
n∑
k=1

∂ω̃k
∂vni

uik
σi
ak

(
n∑
s=1

ω̃sa2
s

)
−

n∑
k=1

ω̃k
uik
σi
ak

(
n∑
s=1

∂ω̃s
∂vni

a2
s

) .
Furthermore, if ∂ωk

∂vpi
= C ∂ωk

∂vni
, with C some positive constant, then ∂ω̃k

∂vpi
= C ∂ω̃k

∂vni
, and it follows

that
∂vpi
∂vni

= −C.
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Table 1: Summary statistics. January 2011 to May 2020.

Variable Obs Mean Std. Dev. Min Max
Gold ETF Vol 2,362 -0.002 5.544 -30.692 48.07
U.S./Euro 2,362 -0.007 0.761 -18.609 18.77
DJIA 2,362 0.033 1.098 -13.841 10.76
Nasdaq 2,362 0.061 1.234 -13.001 9.596
Russell 2000 Vol 2,362 0.019 6.254 -36.428 54.04
S&P 500 2,362 0.037 1.098 -12.765 8.968
VIX 2,362 0.018 7.977 -31.414 76.82
Willshire 5000 2,362 0.035 1.115 -13.110 8.984
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Figure 1: FTSE 100 Index. Centrality measures and portfolio weights.

Panel (a) reports the relationship between asset centrality and the portfolio weights. To do this,
the weights allocated to the assets comprising the FTSE 100 Index under the global minimum
variance portfolio, see (2), are ranked from smallest to largest and the associated centrality
measure (9) is plotted. Panel (b) reports the relationship between asset centrality and the
portfolio weights under short-selling constraints w ≥ 0.
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Figure 2: Random subsample of FTSE 100 Index. Centrality measures and portfolio weights.

Each row contains a random subsample of 20 stock returns from the FTSE 100 Index such that
the five rows span all the assets in the FTSE 100 Index. The left panel reports the relationship
between asset centrality and the portfolio weights under the absence of short-selling constraints
and the right panel reports such relationship imposing short-selling constraints (w ≥ 0).
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Figure 3: Static analysis of centrality measures and portfolio weights.

Panel (a)-(f): the black solid line denotes the positive centrality measure (10) and the red dashed
line the negative measure (11). Panel (a): the green line denotes the centrality measure (9).
Panel (b): the red line for the constrained portfolio and blue dashed line for the unconstrained
portfolio. Panels (c)-(d): the blue dashed line denotes the optimal portfolio allocation for each
asset. Panels (e)-(f): the blue dashed line denotes the centrality measure (9).

33



Figure 4: Static analysis of centrality measures and portfolio weights.

Panel (a): the red line denotes the constrained portfolio and the blue dashed line the uncon-
strained portfolio. Panel (b): the black solid line denotes the positive centrality measure (10)
and the red dashed line the negative centrality measure (11). The blue dashed line denotes the
optimal portfolio allocation for each asset. Panel (c): the black solid line denotes the positive
centrality measure (10) and the red dashed line the negative centrality measure (11). The blue
dashed line denotes the centrality measure (9).
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Figure 5: CCC model with constrained weights.

The black solid line denotes the positive centrality measure (10) and the red dashed line the
negative centrality measure (11). The blue line denotes the dynamic optimal portfolio allocation
over the evaluation period January 2011 to May 2020.
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Figure 6: DCC model with constrained weights.

The black solid line denotes the positive centrality measure (10) and the red dashed line the
negative centrality measure (11). The blue line denotes the dynamic optimal portfolio allocation
over the evaluation period January 2011 to May 2020.
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