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This paper revisits the relationship between eigenvector asset centrality and optimal asset allocation
in a minimum variance portfolio. We show that the standard definition of eigenvector centrality is
misleading when the adjacency matrix in a network can take negative values. This is, for exam-
ple, the case when the network topology is induced by the correlation matrix between assets in a
portfolio. To correct for this, we introduce the concept of positive and negative eigenvector cen-
trality. Our results show that the loss function associated to the minimum variance portfolio is
positively/negatively related to the positive and negative eigenvector centrality under short-selling
constraints but cannot be generalized beyond that. Furthermore, in contrast to what is claimed in the
related literature, this relationship does not imply any monotonic relationship between the centrality
of an asset and its optimal portfolio allocation. These theoretical insights are illustrated empirically
in a portfolio allocation exercise with assets from U.S. and U.K. financial markets.

Keywords: Eigenvector centrality; Markowitz portfolio allocation; Spectral decomposition; Con-
stant conditional correlation; Dynamic conditional correlation

1. Introduction

Portfolio selection is a fundamental topic in financial eco-
nomics and one of the leading applications of decision the-
ory under uncertainty. Modern portfolio theory pioneered by
Markowitz (1952, 1959) stresses the idea that portfolio diver-
sification leads to a risk reduction. Agents minimize a loss
function that is the sum of idiosyncratic risks given by the
individual assets’ variances and the correlation between the
assets in the portfolio. In this problem the optimal asset alloca-
tion is determined by the inverse of the covariance matrix such
that assets with large variances receive a lower allocation in
the investment portfolio. The relationship between the assets
in the portfolio characterized by the returns’ correlations is an
additional contributor to portfolio risk.

In this study, we embed the optimal portfolio allocation
problem in a financial network. The nodes of the network are
the financial assets comprising the portfolio and the links are
the connections between the assets. We consider a weighted
undirected network in which the relationship between the
assets is driven by the cross-correlations between the log

*Corresponding author. Email: j.b.olmo@soton.ac.uk

returns. Considering the relationship between assets in a port-
folio as a financial network is not new. Measures of financial
connectedness have been proposed in different areas of finan-
cial economics by Vandewalle et al. (2001), Tse et al. (2010),
Billio et al. (2012), Diebold and Yilmaz (2009, 2012, 2014),
Hautsch et al. (2015), Peralta and Zareei (2016) and Barigozzi
and Brownlees (2018), among many others.

The notion of centrality aims to quantify the importance of
certain nodes in a given network. In the same spirit of Peralta
and Zareei (2016), we focus on the concept of eigenvector
centrality and explore the relationship between asset central-
ity and portfolio risk. These authors attempt to formalize the
results derived in Pozzi et al. (2013) and establish that optimal
portfolio strategies should overweigh low-central securities
and underweigh high central ones. These authors find that
investors benefit from diversification by avoiding the alloca-
tion of wealth in assets that are central—using the correlation
as the measure of association in the network. Our aim in this
study is to shed further light on the relationship between the
centrality of an asset in a portfolio and the overall risk of the
portfolio. As a byproduct, we also explore the relationship
between asset centrality and the optimal asset allocation in
a global minimum variance portfolio. We focus on this opti-
mization problem because it is a clean optimization problem
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that can be mathematically interpreted as a quadratic program-
ming exercise. In financial terms, minimizing the portfolio
variance is similar to optimizing the mean-variance portfolio
strategy but avoids the estimation of the vector of expected
returns.

To understand in more detail the relationship between
eigenvector centrality and the optimal allocation of an asset
to an investment portfolio we construct an optimal portfo-
lio with all the assets comprising the FTSE 100 Index using
daily data over the period January 2011 to December 2018.
The optimal allocation to each asset of the FTSE 100 Index
is obtained from a minimum variance optimization function.
Panel (a) of figure 1 reports the eigenvector centrality measure
introduced by Bonacich (1972) as a function of the optimal
portfolio weights for each of the 100 assets comprising the
FTSE 100 Index. These results show a very weak decreasing

Figure 1. FTSE 100 Index. Centrality measures and portfolio
weights. Panel (a) reports the relationship between asset centrality
and the portfolio weights. To do this, the weights allocated to the
assets comprising the FTSE 100 Index under the global minimum
variance portfolio, see (2), are ranked from smallest to largest and
the associated centrality measure (9) is plotted. Panel (b) reports the
relationship between asset centrality and the portfolio weights under
short-selling constraints w ≥ 0.

relationship between eigenvector centrality and optimal port-
folio weights. The range of the asset centrality statistic for
the cross-section of assets in the Index is around 0.1 and the
relationship fails to be monotonic. In Panel (b) we repeat the
exercise but imposing short-selling constraints to the optimal
portfolio allocation. In this case the relationship clearly fails to
reflect the negative relationship between asset centrality and
the corresponding allocation of the asset in the portfolio. To
gain further insight into this relationship we repeat the exer-
cise for random subsamples of stocks in the FTSE 100 Index.
We divide the 100 assets comprising the financial index into
five random subsamples of stock returns with 20 assets each
and without replacement such that all assets in the FTSE 100
Index are represented in one and only one of the portfolios.
The minimum variance optimal portfolio weights on the assets
are ranked from minimum to maximum for each of these port-
folios and the associated centrality measures are plotted in
figure 2. The left panel of this figure reports the centrality of
assets as a function of the weights under no short-selling con-
straints and the right panel reports the centrality measure as a
function of the weights under short-selling constraints. Both
sets of results fail to report a negative relationship between
asset centrality and the portfolio allocation. These empiri-
cal insights suggest that such relationship obtained in related
studies may not exist and be an artifact of the sample period
or the presence of outlying observations in the datasets under
study.

In addition, standard eigenvector centrality measures, see
Bonacich (1972), may not be suitable for measuring the cen-
trality of an asset in a portfolio. In Markowitz’s portfolio
optimization context, the adjacency matrix is characterized
by the correlation matrix. In contrast to standard formulations
of the adjacency matrix in social and financial networks, this
matrix contains positive and negative values that yield eigen-
vector centrality measures that can be negative. Moreover,
the eigenvector centrality measures can produce misleading
results if the positive and negative correlations across assets
cancel out. In this case, the corresponding centrality measure
can give values close to zero even for assets that are highly
connected to the other assets in the portfolio. To correct for
this, we extend the concept of eigenvector centrality to con-
sider positive and negative eigenvector centrality measures
separately. We achieve this by decomposing the correlation
matrix in a diagonal matrix of ones and two complemen-
tary adjacency matrices. Each of these matrices contains the
positive and negative correlations between the assets sepa-
rately. Both matrices are symmetric accommodating a spectral
decomposition. The positive and negative centrality measures
are defined using the eigenvectors and eigenvalues of these
spectral decompositions.

We use these definitions to explore theoretically and empir-
ically the relationship between positive and negative eigen-
vector centrality and portfolio risk. Under short-selling con-
straints, we find a positive/negative monotonic relationship
between the loss function characterizing the optimal mini-
mum variance portfolio allocation and positive/negative cen-
trality. This relationship vanishes as the short-selling condi-
tion is relaxed. Furthermore, in contrast to previous studies
such as Pozzi et al. (2013) and Peralta and Zareei (2016),
we find that, in general, there does not exist a monotonic
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Figure 2. Random subsample of FTSE 100 Index. Centrality measures and portfolio weights. Each row contains a random subsample of
20 stock returns from the FTSE 100 Index such that the five rows span all the assets in the FTSE 100 Index. The left panel reports the
relationship between asset centrality and the portfolio weights under the absence of short-selling constraints and the right panel reports such
relationship imposing short-selling constraints (w ≥ 0).

decreasing relationship between asset centrality and the corre-
sponding allocation of the assets to the portfolio. This result is
shown theoretically and empirically independently of whether
short-selling restrictions are imposed or not. Our theoretical
results provide a correction of Proposition 1 and Corollary 1
of Peralta and Zareei (2016) and avoid imposing unrealistic
assumptions on the maximum eigenvalue of the correlation
matrix.

These theoretical insights are illustrated empirically with
data from U.S. stock markets. We consider daily log returns
on eight assets obtained from the Federal Reserve Bank of
St Louis Database over the period 1 January 2011 to 29 May
2020. These assets are the CBOE Gold ETF Volatility Index,
the U.S./Euro Foreign Exchange Rate, the Dow Jones Indus-
trial Average, the Nasdaq 100 Index, the CBOE Russell 2000
Volatility Index, the S&P 500 Index, the CBOE Volatility
Index (VIX), and the Willshire 5000 Price Index. Financial
indexes are positively cross-correlated and negatively corre-
lated to the volatility indexes. In this setting, we show that
positive and negative centrality capture different dimensions
of asset centrality. The standard eigenvector centrality mea-
sure proposed in Bonacich (1972) is different from these two
centrality measures although it is positively correlated to the
positive eigenvector centrality. Financial indexes are highly
central with regards to the positive centrality measure whereas
volatility indexes are in the periphery of the network. This
result is due to the presence of positive correlations between
the four financial indexes: Dow Jones Industrial Average,
Nasdaq 100 Index, S&P 500 Index and the Willshire 5000
Price Index, and their negative correlation to the volatility
indexes. The volatility indexes are central using the negative
centrality measure. This is due to the negative correlations
between these assets and the conventional financial indexes.
The latter assets also exhibit a high value of the negative cen-
trality statistic meaning that conventional financial indexes
exhibit high correlation (positive and negative) with all the
remaining assets in the portfolio.

The analysis of the relationship between asset centrality
and portfolio allocation provides empirical support to our
theoretical result showing that no monotonic relationship

exists between both variables. We also confirm empirically
that both centrality measures move together under small vari-
ations in the optimal portfolio weights. We extend the static
case to the dynamic case by considering constant conditional
correlation (CCC) models introduced in Bollerslev (1990),
and dynamic conditional correlation (DCC) models devel-
oped by Engle (2002). Our empirical findings confirm the
theoretical features of the models, namely, both positive and
negative centrality measures are constant over the evaluation
period for the CCC model. Interestingly, there is no much
variation in asset centrality for the DCC model despite the
flexibility offered by the latter specification. The centrality
of the U.S./Euro Foreign Exchange Rate exhibits more vari-
ation than the centrality of the remaining assets. Overall, we
find that modelling the dynamics of the multivariate volatil-
ity process using a DCC model does not alter significantly
the centrality measures between the assets providing empiri-
cal support to the CCC specification with respect to the DCC
model.

The rest of the paper is organized as follows. Section 2
reviews the theoretical background and introduces the main
results of the paper. Section 3 presents an empirical appli-
cation to a set of U.S. assets and assesses empirically the
relationship between asset centrality and the optimal portfo-
lio weights. Section 4 concludes. Proofs of the main results of
the study are found in a mathematical appendix.

2. Optimal asset allocation

In this section, we review the minimum variance optimal port-
folio allocation problem developed by Markowitz (1952) and
introduce the main results of the study.

2.1. Minimum variance portfolio optimization

The traditional portfolio optimization theory in the sim-
plest case considers the minimization of portfolio variance
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without any further restriction on portfolio’s expected return.
More formally, let r = [r1, . . . , rn]′ be the vector of asset
returns with expected values denoted as [E(r1), . . . , E(rn)]′,
and covariance matrix denoted as � ≡ Cov(r) = E(rr′) −
E(r)E(r)′. The diagonal elements of this matrix contain the
idiosyncratic variance terms σ 2

i and the off-diagonal terms
contain the covariance terms σij between the assets.

Let rp = w′r denote the return on a portfolio of n assets,
with w = [w1, . . . , wn]′ the vector of portfolio weights rep-
resenting the allocation of assets to the portfolio. The
global minimum variance optimization problem developed by
Markowitz (1952) is

argmin
w∈Rn

Q(�, w) subject to w′1 = 1, (1)

with Q(�, w) = w′�w the portfolio variance. The first-order
conditions to the minimization problem yield the optimal
portfolio allocation given by the following vector of weights

w∗ = �−11
1′�−11

. (2)

Markowitz (1952) also considers the extension of this portfo-
lio allocation problem to the mean-variance case. The results
for this case follow similarly after suitable modifications of
the algebra and are omitted for space constraints.

The aim of this paper is to study the role of asset central-
ity in the portfolio allocation problem. To do so we revisit
the standard minimum variance portfolio optimization prob-
lem from a financial network perspective. The matrix � can
be decomposed as � = ���, with � the correlation matrix
of returns and � a diagonal matrix whose ith-main diagonal
element is σi. Furthermore, by construction, the correlation
matrix � is symmetric and positive definite. The diago-
nal of the matrix is a vector of ones and the off-diagonal
terms are the correlation parameters ρij. The symmetry of
� entails the spectral decomposition � = UDωU′, with U
an n × n orthonormal matrix such that U′ = U−1 that con-
tains the linearly independent eigenvectors of � and Dω an
n × n diagonal matrix with the corresponding eigenvalues ωk ,
with k = 1, . . . , n. The eigenvalues of the risk matrix � can
be expressed as a function of the elements of the correlation
matrix as

ωk =
n∑

i=1

u2
ik +

n∑
i=1

n∑
j �=i
j=1

uikujkρij, (3)

with uij the ith component of the jth eigenvector of the
matrix � ∈ R

n×n. By definition of the matrix U, it holds that∑n
i=1 u2

ik = 1 such that ωk = 1 +∑n
i=1

∑n
j �=i
j=1

uikujkρij. From

this expression, it follows that the eigenvalues of the risk
matrix �, denoted as γk , can be expressed in terms of the
variances and covariances as

γk =
n∑

i=1

u2
ikσ

2
i +

n∑
i=1

n∑
j �=i
j=1

uikujkσij. (4)

The eigenvectors of both matrices � and � are obtained from
the matrix U. By construction, both matrices are positive def-
inite implying that ωk and γk are strictly greater than zero for
k = 1, . . . , n.

2.2. Optimal portfolio weights and network centrality

The notion of centrality aims to quantify the importance of
certain nodes in a given network. The literature on social
interactions and networks has proposed several measures to
capture the interdependence between individuals in a net-
work. Intuitive measures of network centrality are given by
Kratz’s centrality measure, see Katz (1953), and PageRank
used by Google in their famous search engine. One of the
main measures for capturing the centrality of an individual
in a network is the eigenvector centrality, firstly introduced in
Bonacich (1972).

In this paper, the connections between the assets in a net-
work are determined by the correlation matrix. This matrix is
interpreted as an adjacency matrix in which the magnitude of
the correlation parameters between the assets determines the
strength of the relationship. We focus on the minimum vari-
ance portfolio optimization problem outlined in the previous
subsection.

Let � = In + 	, with In the identity matrix and 	 an adja-
cency matrix that is symmetric and defined by a vector of
zeros in the diagonal terms and the off-diagonal terms are the
same of the risk matrix �, i.e. 	ij = ρij for i �= j. The network
is weighted because the connections between the assets are
determined by the correlation matrix and undirected because
the matrix is symmetric. The symmetry of the adjacency
matrix entails the spectral decomposition 	 = UDλU′, where
U is the same matrix as in the spectral decomposition of �.
Both matrices 	 and � have the same eigenvectors. Similarly,
the eigenvalues of these matrices satisfy that ωk = 1 + λk for
k = 1, . . . , n. This property can be shown from expression (3)
and the decomposition of the eigenvalues of the adjacency
matrix 	 as a function of the correlation parameters. More
formally,

λk =
n∑

i=1

n∑
j �=i
j=1

uikujkρij. (5)

The correlation matrix is positive definite implying that λk >

−1 for k = 1, . . . , n. Under these conditions, the quadratic
form given by the portfolio variance can be expressed as

Q(�, w) = w′�w = w̃′�w̃ = w̃′	w̃ + w̃′w̃, (6)

with w̃ = �w. This decomposition shows that the portfolio
loss function can be divided into a component that is driven
by the adjacency matrix 	 and the idiosyncratic risks σ 2

i
weighted by the portfolio weights wi.

In what follows, we investigate the contribution of the cen-
trality of an asset to the loss function Q(�, w). To do so, we
decompose the adjacency matrix as 	 = 	1 − 	2, with 	1 =
	 ⊗ 1(	 > 0) containing the positive correlation parameters
and 	2 = −	 ⊗ 1(	 < 0) the matrix containing the nega-
tive correlation parameters; 1(	 < 0) is an indicator function
that is applied elementwise to all the members of the matrix.
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This function takes a value of one if the argument is true and
zero otherwise; ⊗ denotes the Hadamard product that denotes
element by element multiplication. The spectral decomposi-
tion of 	 implies that Dλ = U′	U = 	∗

1 − 	∗
2, with 	∗

1 =
U′	1U and 	∗

2 = U′	2U. Furthermore, the symmetry of 	1

and 	2 implies that 	∗
1 = Ũ1Dλ1 Ũ′

1 and 	∗
2 = Ũ2Dλ2 Ũ′

2, with
Ũ1 = U′U1 and Ũ2 = U′U2; Dλ1 and Dλ2 are two diagonal
matrices with main diagonal given by the eigenvalues of 	1

and 	2, respectively. The relationship between the eigenval-
ues of the adjacency matrix 	 and the eigenvalues of 	1 and
	2 is given by the following expression:

Dλ = Ũ1Dλ1 Ũ′
1 − Ũ2Dλ2 Ũ′

2. (7)

Then,

λk =
n∑

i=1

λ1i

⎛⎝ n∑
j=1

ujku1,ji

⎞⎠2

−
n∑

i=1

λ2i

⎛⎝ n∑
j=1

ujiu2,ji

⎞⎠2

, (8)

with u1,ij and u2,ij the elements of the matrices U1 and U2,
respectively.

The notion of centrality quantifies the influence of cer-
tain nodes in a given network. There are several mea-
surements in the literature each corresponding to a spe-
cific definition of centrality. We focus on eigenvector cen-
trality; see Bonacich (1972) and Katz (1953). Peralta and
Zareei (2016), in a related study, adapt the definition of eigen-
vector centrality introduced by these authors to a portfolio
allocation context. More specifically, eigenvector centrality is
defined as

vi = ω̄−1
n∑

j=1

�ij vj, (9)

with �ij the elements of the correlation matrix � and ω̄ =
max{ω1, . . . , ωn}. This definition of asset centrality in a port-
folio provides an association measure between assets in the
portfolio. The connectivity in the network is induced by the
correlation matrix but, in contrast to considering pairwise cor-
relations to assess the linear dependence between the assets,
see Billio et al. (2012), the centrality measure (9) is driven
by the largest eigenvalue of the spectral decomposition of the
adjacency matrix. This eigenvalue, ω̄, and associated eigen-
vector, v, contain most of the relevant information on the
correlation matrix as known from principal components anal-
ysis. Asset centrality vi is proportional to the weighted sum
of the centralities of neighbors of the asset with the corre-
sponding elements of the correlation matrix as the weighting
factors.

In contrast to the literature on social networks, the ele-
ments of the adjacency matrices � and 	 can take positive
and negative values implying that the corresponding central-
ity measure (9) may take negative values. In these cases the
centrality measure is not well defined. More importantly, there
can be cases where the positive and negative correlations
between the assets cancel out implying a null centrality statis-
tic (9) even if the asset is related to all the other assets in
the portfolio. To overcome this issue, we define two centrality
measures (positive and negative centrality) for a symmetric
adjacency matrix 	. The rationale for splitting 	 in two as

discussed above is the possibility of defining two centrality
measures that are defined over the positive real line. More
formally,

Definition 1 Let 	 = 	1 − 	2 be an adjacency matrix as
defined above. Then, positive centrality is defined by a vector
vp = [vp

1, . . . , vp
n] such that

vp
i = λ̄−1

1

n∑
j=1

	1,ij vp
j , (10)

where λ̄1 = max(λ11, . . . , λ1n) is the largest eigenvalue of 	1

and 	1,ij are the elements of such matrix. Similarly, negative
centrality is defined by a vector vn = [vn

1, . . . , vn
n] such that

vn
i = λ̄−1

2

n∑
j=1

	2,ij v
n
j , (11)

where λ̄2 = max(λ21, . . . , λ2n) is the largest eigenvalue of 	2

and 	2,ij are the elements of such matrix.

Both centrality measures are defined over the positive real
line for all assets in the portfolio if the maximum eigenvalue
of each matrix is positive. Thus, for each asset, we obtain a
pair of centrality measures (vp

i , vn
i ) that allow us to rank assets

in the portfolio as a function of their position in the finan-
cial network. Furthermore, the centrality measures proposed
above are the eigenvectors of the matrices 	1 and 	2 cor-
responding to the respective largest eigenvalues. This is so
because λ̄1vp = 	1 vp and λ̄2vn = 	2 vn. Throughout the text,
we will assume that the first eigenvector of matrix U1 is asso-
ciated to λ̄1 and, therefore, it defines the positive centrality
statistic. Similarly, the first eigenvector of matrix U2 is asso-
ciated to λ̄2 and, therefore, it defines the negative centrality
statistic.

The following result shows that the eigenvector centrality
measures are common across location-scale transformations
of the adjacency matrix 	. More formally,

Proposition 1 Let � = c1In + c2	 be a location-scale
transformation of the adjacency matrix 	 characterized by
the constants c1 ∈ R and c2 > 0. Then, the centrality mea-
sures (vp

i , vn
i ) of 	 are also the centrality measures of �.

In particular, for c1 = c2 = 1, this result implies that the
centrality measures (vp

i , vn
i ) of the correlation matrix � are

the same centrality measures of the adjacency matrix 	. The
above proposition also implies the following result.

Lemma 1 The centrality of an asset as defined in (9) and pos-
itive centrality as defined in (10) are equal measures (vi ≡ vp

i )

for each asset i = 1, . . . , n in the portfolio if 	2 is an empty
matrix, that is, if the off-diagonal elements of the correlation
matrix � are all positive.

The latter result presents the conditions under which the
standard centrality measure used in the literature is equal
to the positive centrality measure defined herein. Otherwise,
for correlation matrices with negative entries, these measures
diverge.

The following result derives the relationship between asset
centrality (vp

i , vn
i ) and portfolio risk. Expression (6) shows that
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portfolio risk Q(�, w) can be decomposed into two compo-
nents: w̃′	w̃ and w̃′w̃. We proceed to study the relationship
between the centrality measures (vp

i , vn
i ) and w̃′	w̃. The sec-

ond component given by w̃′w̃ only depends on the diagonal
elements of the risk matrix � that contain the idiosyncratic
risks. Let 0 be a n × 1 vector of zeros.

Proposition 2 Under short-selling constraints, there is a
positive monotonic relationship between the loss function
w̃′	w̃ and the positive centrality vp

i of each asset i = 1, . . . , n
in the portfolio.

Similar results can be obtained for the analysis of negative
centrality of an asset. In particular,

Proposition 3 Under short-selling constraints, there is a
negative monotonic relationship between the loss function
w̃′	w̃ and the negative centrality vn

i of each asset i = 1, . . . , n
in the portfolio.

More generally, under the absence of short-selling con-
straints, the relationship between the loss function w̃′	w̃ and
asset centrality is not monotonic. We are now ready to intro-
duce the main result of this section, namely, the absence
of a monotonic decreasing relationship between the central-
ity measures and the optimal allocation of the assets to the
portfolio. This insight contrasts with recent results in the
related literature such as Pozzi et al. (2013) and Peralta and
Zareei (2016). These authors show that optimal strategies
should underweigh the allocation to high central assets and
overweigh the allocation to low central assets. In what fol-
lows, we challenge these conclusions. In particular, using
similar methods to Peralta and Zareei (2016), we show that
the relationship between the optimal portfolio allocation of a
minimum variance portfolio and asset centrality is not mono-
tonic. To formally show this, we need the following results.
The eigenvalues ωk of the correlation matrix � satisfy that

ωk = 1 + λ̄1

⎛⎝ n∑
j=1

ujkvp
j

⎞⎠2

− λ̄2

⎛⎝ n∑
j=1

ujkvn
j

⎞⎠2

+
n∑

i=2

⎡⎣λ1i

⎛⎝ n∑
j=1

ujku1,ji

⎞⎠2

− λ2i

⎛⎝ n∑
j=1

ujku2,ji

⎞⎠2⎤⎦ .

(12)

This result is immediate from expression (8) and noting that
the first eigenvector of the matrices U1 and U2 are the central-
ity measures,i.e. u1,j1 = vp

j and u2,j1 = vn
j for j = 1, . . . , n. The

following results allow us to explore the relationship between
an asset’s centrality position in a portfolio and its optimal port-
folio allocation. To do this, note from expression (12) that ωk

is a function of (vp, vn). More formally,

Proposition 4 The optimal portfolio allocation w∗
i in (2) can

be expressed as a function of ωk, for k = 1, . . . , n, as

w∗
i =

∑n
k=1 ω̃k

uik
σi

(∑n
j=1

1
σj

ujk

)
∑n

k=1 ω̃k

(∑n
j=1

1
σj

ujk

)2 , (13)

with ω̃k = 1
ωk

.

Then, we can derive the following two results.

Theorem 1 There does not exist a monotonic relationship
between the optimal allocation w∗

i of asset i in the portfolio
and the corresponding eigenvector centrality measures vp

i and
vn

i , for i = 1, . . . , n.

This result suggests that despite the monotonicity between
the loss function associated to the adjacency matrix and asset
centrality obtained in propositions 2 and 3 the optimal asset
allocation does not decrease with positive asset centrality or
increase with negative asset centrality. This result contradicts
Corollary 1 in Peralta and Zareei (2016) in a similar portfo-
lio allocation setting. As a byproduct, we also show that both
measures of asset centrality move together in equilibrium. To
do this, we explore the marginal rate of substitution between
vp

i and vn
i . Let w∗

i = w∗
i (v

p
i , vn

i ). Then,

Lemma 2 For any asset i in the portfolio, the marginal rate
of substitution between the two centrality measures vp

i and vn
i

is given by the following expression:

∂vp
i

∂vn
i

= −

∑n
k=1

∂ω̃k

∂vp
i

uik
σi

ak
(∑n

s=1 ω̃sa2
s

)
−∑n

k=1 ω̃k
uik
σi

ak

(∑n
s=1

∂ω̃s

∂vp
i
a2

s

)
∑n

k=1
∂ω̃k
∂vn

i

uik
σi

ak
(∑n

s=1 ω̃sa2
s

)
−∑n

k=1 ω̃k
uik
σi

ak

(∑n
s=1

∂ω̃s
∂vn

i
a2

s

) ,

with as = ∑n
j=1

1
σj

ujs. Furthermore, if the partial derivatives
of the eigenvalues of � with respect to the centrality mea-
sures vp

i and vn
i satisfy the condition ∂ωk

∂vp
i

= C ∂ωk
∂vn

i
, with C some

positive constant, then it follows that the marginal rate of
substitution between the centrality measures is constant and

given by ∂vp
i

∂vn
i

= −C.

The results in this lemma suggest that under some condi-
tions the positive and negative centrality measures associated
to the optimal portfolio allocation (13) move together in
equilibrium.

3. Empirical application

In this section, we illustrate the above theoretical results with
data from U.S. stock markets. In particular, we consider daily
log returns on eight assets obtained from the Federal Reserve
of St Louis Database over the period 1 January 2011 to 29
May 2020. These assets are the CBOE Gold ETF Volatility
Index, the U.S./Euro Foreign Exchange Rate, the Dow Jones
Industrial Average, the Nasdaq 100 Index, the CBOE Russell
2000 Volatility Index, the S&P 500 Index, the CBOE Volatil-
ity Index (VIX), and the Willshire 5000 Price Index. These
assets include a combination of volatility indexes measur-
ing investor sentiment towards different markets: commodity
markets (Gold ETF), small cap stocks (Russell 2000) and
the overall financial market (VIX). The portfolio also con-
tains four major U.S. financial indexes (Dow Jones, S&P
500, Nasdaq 100 and Willshire 5000), and the U.S./Euro For-
eign Exchange Rate to obtain some exposure to the foreign
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exchange market. These assets are freely available from the
Federal Reserve of St Louis website.

Our empirical application is divided into several exercises.
First, we consider a static portfolio allocation and assess the
relationship between the portfolio weights and the centrality
measures. Second, we extend this analysis to the dynamic case
by considering multivariate GARCH-type processes for mod-
elling the relationship between the returns in the portfolio. In
this setting, we consider the CCC model introduced by Boller-
slev (1990) and the DCC model introduced by Engle (2002),
see also Tse and Tsui (2002). The choice of these specifica-
tions within the family of multivariate GARCH-type models
is for tractability issues in the estimation procedure and also
for the reduced number of parameters compared to other
multivariate GARCH-type specifications such as the VECH
model of Bollerslev (1988) and the BEKK model of Engle and
Kroner (1995) previously considered as benchmark models in
this literature.

3.1. Static optimal portfolio allocation

Table 1 reports the summary statistics for the percentage
log returns on the eight assets comprising the portfolio. The
Nasdaq Index has the highest mean. It also has the largest
variance within the group of financial indexes. There is a
clear distinction between the mean and variance of the finan-
cial indexes and the corresponding statistical moments of the
volatility indexes. The latter indexes, that capture uncertainty
and fear in financial markets, exhibit a standard deviation that
is between five and seven times the standard deviation of the
financial indexes. These differences will be clearly reflected
in the optimal portfolio allocation.

Panel (a) of figure 3 reports the centrality measures devel-
oped in this paper (vp in black dashed line and vn in red solid
line) and compare these measures with the standard eigenvec-
tor centrality measure v in (9)—green dotted line—that does
not differentiate between positive and negative centrality. The
results show that vp and vn take positive values but v takes also
negative values. In this example, the centrality measure (9) is
similar to the positive centrality measure defined in (10) but is
decoupled from the negative centrality measure (11). Intuition
for this result is obtained from lemma 1.

At the asset level, we find that the financial indexes (Dow
Jones Industrial Average, Nasdaq 100 Index, S&P 500 Index
and Willshire 5000 Price Index) exhibit large positive central-
ity measures, however, the CBOE volatility indexes and the
exchange rate have values close to zero. This finding is mainly

Table 1. Summary statistics. January 2011 to May 2020.

Variable Obs Mean Std. Dev. Min Max

Gold ETF Vol 2,362 − 0.002 5.544 − 30.692 48.07
U.S./Euro 2,362 − 0.007 0.761 − 18.609 18.77
DJIA 2,362 0.033 1.098 − 13.841 10.76
Nasdaq 2,362 0.061 1.234 − 13.001 9.596
Russell 2000 Vol 2,362 0.019 6.254 − 36.428 54.04
S&P 500 2,362 0.037 1.098 − 12.765 8.968
VIX 2,362 0.018 7.977 − 31.414 76.82
Willshire 5000 2,362 0.035 1.115 − 13.110 8.984

due to the large positive correlations (around 0.9) between
the financial indexes. However, the volatility indexes and the
exchange rate do not exhibit such correlations. More specifi-
cally, Table 2 shows that the sample correlation between the
volatility indexes and the rest of assets in the portfolio is nega-
tive and around −0.7. These values explain the large negative
centrality measures for the volatility indexes reported in fig-
ures 4 and 5.† The presence of a negative correlation between
the volatility indexes, in particular the VIX index, and the con-
ventional financial indexes is because the volatility assets are
proxies for financial distress and uncertainty in financial mar-
kets. Thus, large values of these indexes are corresponded by
negative returns of conventional financial indexes. In contrast,
the different volatility indexes are positively cross-correlated
with a correlation of 0.424 between the Russell 2000 Volatil-
ity index and the Gold ETF Volatility index, a correlation of
0.415 between the VIX and the Gold ETF Volatility index, and
a correlation of 0.903 between the VIX and the Russell 2000
Volatility index. However, these correlations are not sufficient
to make these assets positively central. Finally, the U.S./Euro
exchange rate is uncorrelated to the rest of assets in the port-
folio and the associated centrality measures are both close to
zero, see figures 4 and 5.

The blue dashed line in figure 3(b) reports the weights
obtained from expression (2) and the red solid line reports
the weights under short-selling restrictions (w ≥ 0). The only
significant differences across portfolio allocations is between
assets 6 (S&P 500 Index) and asset 8 (Willshire 5000 Price
Index). The possibility of taking short positions in the first
portfolio implies that it is optimal to obtain a larger posi-
tive position on the S&P 500 Index that is compensated by
a negative position on the Willshire 5000 Price Index. Pan-
els (c) and (d) report the centrality measures along with the
unrestricted and restricted portfolio weights, respectively. No
clear pattern emerges between the centrality measures and the
optimal portfolio allocations. We observe large values of pos-
itive centrality accompanied by large allocations on the asset
(asset 6) and similar values of positive centrality accompanied
by small allocations on the asset (asset 8). Similar results are
found for the relationship between negative centrality and the
portfolio weights. These results are consistent with theorem 1
that shows that, in general, there does not exist a monotonic
relationship between asset centrality and the optimal portfolio
allocation. This result is at odds with the findings in Peralta
and Zareei (2016) and Pozzi et al. (2013) that obtain a nega-
tive relationship between the optimal portfolio allocation and
asset centrality.

To obtain more clarity on this relationship we rank the
assets in terms of the portfolio weight from smallest to

† Table 2 uses nonparametric estimators based on the naive empirical
distribution function for the static covariance matrix. These estima-
tors provide consistent estimates of the idiosyncratic variances and
covariances under stationarity of the vector of log returns and when
the time dimension T increases to infinity. An additional restriction
is that the number of assets in the portfolio is fixed or increases to
infinity but a lower rate than T, that is, n/T → 0, with n, T → ∞.
In our exercise, n = 8 is small compared to T = 2400 implying
that the estimates of the covariance matrix are consistent. When the
number of assets increases with T, Ledoit and Wolf 2003 and Engle
et al. 2019 propose shrinkage methods to estimate the covariance
matrix in static and dynamic settings.
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Figure 3. Static analysis of centrality measures and portfolio weights. Panels (a)–(f): the black solid line denotes the positive centrality
measure (10) and the red dashed line the negative measure (11). Panel (a): the green line denotes the centrality measure (9). Panel (b): the
red line for the constrained portfolio and blue dashed line for the unconstrained portfolio. Panels (c)–(d): the blue dashed line denotes the
optimal portfolio allocation for each asset. Panels (e)–(f): the blue dashed line denotes the centrality measure (9).

largest and report in Panels (e) and (f) of figure 3 the cor-
responding centrality measures associated to the weights. The
existence of a monotonic relationship would emerge clearly
in this graph in case it would exist, however, both graphs
are rather inconclusive and do not show any clear pattern.
Interestingly, we do observe clear comovements between the

positive and negative centrality measures in both panels.
The centrality measures move together up and down as the
portfolio weights increase along the x axis. These findings
provide further insights into the theoretical result in lemma 2
that derives the expression for the marginal rate of substitu-
tion between both centrality measures. In this example, the
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Figure 4. CCC model with constrained weights. The black solid line denotes the positive centrality measure (10) and the red dashed line the
negative centrality measure (11). The blue line denotes the dynamic optimal portfolio allocation over the evaluation period January 2011 to
May 2020.
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Figure 5. DCC model with constrained weights. The black solid line denotes the positive centrality measure (10) and the red dashed line the
negative centrality measure (11). The blue line denotes the dynamic optimal portfolio allocation over the evaluation period January 2011 to
May 2020.
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Table 2. Covariance and correlation matrix. January 2011 to May 2020.

Sample covariance matrix

Variable Gold ETF Vol U.S./Euro DJIA Nasdaq Russell 2000 Vol S&P 500 VIX Willshire 5000

Gold ETF Vol 30.737
U.S./Euro − 0.207 0.579
DJIA − 1.924 0.064 1.207
Nasdaq − 2.081 0.056 1.202 1.524
Russell 2000 Vol 14.694 − 0.255 − 4.953 − 5.754 39.122
S&P 500 − 2.016 0.069 1.179 1.271 − 5.214 1.206
VIX 18.357 − 0.284 − 6.242 − 7.265 45.052 − 6.573 63.637
Willshire 5000 − 2.055 0.071 1.191 1.286 − 5.334 1.222 − 6.658 1.243

Sample correlation matrix

Variable Gold ETF Vol U.S./Euro DJIA Nasdaq Russell 2000 Vol S&P 500 VIX Willshire 5000

Gold ETF Vol 1
U.S./Euro − 0.049 1
DJIA − 0.316 0.077 1
Nasdaq − 0.304 0.059 0.886 1
Russell 2000 Vol 0.424 − 0.053 − 0.721 − 0.745 1
S&P 500 − 0.331 0.083 0.977 0.937 − 0.759 1
VIX 0.415 − 0.046 − 0.712 − 0.737 0.903 − 0.750 1
Willshire 5000 − 0.332 0.084 0.972 0.934 − 0.765 0.998 − 0.748 1

marginal rate of substitution is positive, that is, both measures
move together up or down as the allocation to the portfolio
varies. In Panel (e), both centrality measures decrease up to
values of w∗ slightly greater than zero, then both measures
increase and decrease again up to w∗ = 0.4. Finally, both cen-
trality measures increase for values of the portfolio weight up
to w∗ = 0.8. Similar results are found for Panel (f). In this
case the optimal allocation of assets to the portfolio starts at
w∗ = 0.

The above results show that the idiosyncratic variance of
the volatility indexes plays an important role on the opti-
mal portfolio allocation problem. The standard deviation of
these fear indexes is several times higher than for the finan-
cial indexes and the U.S./Euro exchange rate. This means
that the optimal allocation to these assets is close to zero
regardless the covariance terms and centrality measures asso-
ciated to these indexes. To abstract from these effects we
study the portfolio allocation problem when the covariance
matrix � is replaced by the correlation matrix �. In this sce-
nario we assume that all assets have unit variance and the
covariance is equal to the correlation. The centrality mea-
sures are the same of the previous case (Panel (a) of figure
3), however, the optimal asset allocation is more balanced
across assets in the portfolio as Panel (a) of figure 6 illus-
trates. The short-selling constraint only affects the allocations
to the S&P 500 and Willshire Indexes. Panels (b) and (c)
of figure 6 compare the optimal weight allocation with the
centrality measures. The results are similar to the previous
exercise. We do not obtain a monotonic relationship between
the portfolio weights and the centrality measures. This can
be seen from comparing the allocations to assets 6 and 8
despite the fact that both assets have the same positive eigen-
vector centrality measure. Finally, Panel (c) of figure 6 ranks
the assets on the portfolio weight and reports the centrality
measures associated to each value of w∗

i . This graph confirms
the absence of a monotonic relationship between the optimal
weights and the centrality measures. The standard centrality

measure (9) comoves with the positive centrality measure (10)
defined herein but not with the negative centrality measure
in (11).

3.2. Dynamic optimal portfolio allocation

In this section, we explore the centrality of assets in a dynamic
framework. To do this, we consider two stylized models, the
CCC model introduced by Bollerslev (1990) and the DCC
model introduced by Engle (2002).

The conditional volatility process is denoted by the n ×
n matrix �t, with n the number of assets in the portfo-
lio. The volatility process evolves according to the expres-
sion �t = �t�t�t, with �t a diagonal matrix with main
diagonal elements given by the conditional variance σ 2

i,t of
asset i. The matrix �t denotes the conditional correlation
matrix with elements given by ρij,t. In the CCC model
specification, the correlation matrix is constant over time
such that �t = �t��t, and the diagonal elements of �t

are usually modelled as univariate GARCH-type processes.
In the DCC model, both variance and correlation matrices
are time varying with elements that follow a GARCH(1,1)-
type process. For example, the dynamic correlation matrix is
defined as

�t = (1 − α1 − α2)�0 + α1εt−1ε
′
t−1 + α2�t−1, (14)

with α1 and α2 the parameters of the model, �0 = E[εt−1ε
′
t−1]

the unconditional correlation matrix and εt−1 a n × 1 zero-
mean vector denoting the error term of the multivariate
return process rt = [r1t, . . . , rnt]′. For example, in the simplest
case, rt = �

1/2
t εt, with �t the conditional covariance matrix.

More refined versions of the DCC model can be found in
Aielli (2013) and Engle et al. (2019) for large-dimensional
matrices.

In what follows, we describe the results of the dynamic
minimum variance portfolio allocation exercise.
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Figure 6. Static analysis of centrality measures and portfolio
weights. Panel (a): the red line denotes the constrained portfolio and
the blue dashed line the unconstrained portfolio. Panel (b): the black
solid line denotes the positive centrality measure (10) and the red
dashed line the negative centrality measure (11). The blue dashed
line denotes the optimal portfolio allocation for each asset. Panel (c):
the black solid line denotes the positive centrality measure (10) and
the red dashed line the negative centrality measure (11). The blue
dashed line denotes the centrality measure (9).

3.2.1. CCC model. In this exercise, we fit an AR(1)-
GARCH(1,1) process for the univariate conditional volatil-
ity process for each of the eight assets in the portfolio
and assume, by construction, that the conditional correlation
matrix �t is constant over the evaluation period (January
2011 to May 2020). The top panel of table 3 reports the
parameter estimates of �. The estimates of the univariate
AR(1)-GARCH(1,1) process for each asset in the portfolio are
not reported but are available from the author upon request.

The optimal portfolio weights allocated to each asset in
the portfolio presented above are obtained from applying
expression (2) to the one-period ahead dynamic covariance
matrix �t estimated each period. Our optimization exercise
is done in-sample, that is, we use the full sample to esti-
mate the model parameters and reconstruct the conditional
variance process over the whole evaluation period by using
one-period-ahead forecasts produced by the multivariate CCC
model. In each period, we collect the predicted covariance
process �̂t and apply the procedure developed above. That
is, we obtain the estimated correlation matrix �̂t as �̂t =
�̂−1

t �̂−1
t �̂−1

t and obtain the dynamic adjacency matrix 	̂t

as 	̂t = �̂t − In. From this matrix, we obtain 	̂1t and 	̂2t

as 	̂1t = 	̂t ⊗ 1(	̂t > 0). Similarly, we obtain 	̂2t = −	̂t ⊗
1(	̂t < 0). Both matrices are symmetric and accommodate, in
turn, an spectral decomposition such that we obtain the eigen-
values and corresponding eigenvectors that are collected in
matrices Û1 and Û2. The eigenvector centrality measures vp

and vn are obtained from these matrices of eigenvectors using
expressions (10) and (11).

Figure 4 reports the optimal weight allocation and associ-
ated centrality measures for the eight assets in the portfolio
over the evaluation period. Each panel considers a different
asset and reports the centrality measures vp

i and vn
i , and the

optimal portfolio allocation w∗
it over the evaluation period.

For space constraints, we only report the portfolio allocation
under short-selling constraints, however, as shown in fig-
ures 3 and 6, the results when the short-selling constraints are
relaxed are very similar but with the optimal weights includ-
ing negative values. The results for this case are available
from the author upon request.

The estimates of the centrality measures are plotted by a
black line (∗−) for positive centrality vp and a red line (·−)
for negative centrality vn. These quantities are estimated each
period and, in principle, could vary over time, however, they
remain constant over the evaluation period due to the choice
of the CCC model specification that assumes a constant corre-
lation matrix. The dynamic allocation to the volatility indexes
(Gold ETF, Russell 2000 and VIX) is very small over the eval-
uation period. The corresponding positive centrality statistic
is also very small but the negative eigenvector centrality mea-
sure is large. These results show that these assets are not
positively correlated to any other asset in the portfolio, how-
ever, they are negatively correlated to some of the other assets
in the portfolio. This was the primary reason to include them
in the investment portfolio. These results also contradict the
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Table 3. CCC and DCC correlation matrices. January 2011 to May 2020.

CCC correlation matrix

Variable Gold ETF Vol U.S./Euro DJIA Nasdaq Russell 2000 Vol S&P 500 VIX Willshire 5000

Gold ETF Vol 1
U.S./Euro − 0.056 1
DJIA − 0.346 0.080 1
Nasdaq − 0.321 0.056 0.847 1
Russell 2000 Vol 0.432 − 0.046 − 0.766 − 0.757 1
S&P 500 − 0.362 0.080 0.963 0.922 − 0.809 1
VIX 0.425 − 0.047 − 0.801 − 0.778 0.899 − 0.838 1
Willshire 5000 − 0.363 0.079 0.956 0.920 − 0.820 0.997 − 0.837 1

DCC correlation matrix

Variable Gold ETF Vol U.S./Euro DJIA Nasdaq Russell 2000 Vol S&P 500 VIX Willshire 5000

Gold ETF Vol 1
U.S./Euro − 0.062 1
DJIA − 0.317 0.107 1
Nasdaq − 0.286 0.079 0.847 1
Russell 2000 Vol 0.412 − 0.074 − 0.766 − 0.750 1
S&P 500 − 0.331 0.109 0.964 0.920 − 0.808 1
VIX 0.402 − 0.073 − 0.796 − 0.764 0.902 − 0.830 1
Willshire 5000 − 0.332 0.107 0.957 0.918 − 0.818 0.997 − 0.830 1
λ1 0.020∗∗∗
λ2 0.945∗∗∗

current view that asset centrality has a negative effect on the
asset allocation. In this example, we see that positive asset
centrality is very low and the associated asset allocation is
almost zero. We should also note that in this example our posi-
tive centrality measure is positively correlated to the centrality
measure proposed in the literature in (9).

The contribution of the U.S./Euro exchange rate to the port-
folio is sizeable and stable over time despite the fact that the
centrality measures corresponding to this asset are very small.
In contrast, the allocation to the Nasdaq Index is small but the
centrality statistics are large and of similar magnitude to the
other financial indexes in the portfolio. The difference in port-
folio allocation between these assets is driven by differences
in the idiosyncratic risk given by the asset variance. The allo-
cations to the Dow Jones and Willshire 5000 Price Index are
more volatile than the allocation to the S&P 500 Index.

Overall, the message that emerges from this empirical anal-
ysis is that the financial indexes are positively correlated
among each other but negatively correlated to the volatility
indexes. This pattern of correlations produces the positive
and negative centrality measures that we observe, that are not
monotonically related to the optimal asset allocation.

3.2.2. DCC model. The previous analysis is extended to
consider a dynamic correlation matrix �t. The bottom panel
of table 3 reports the parameter estimates of the unconditional
correlation matrix �0 and the estimates of α1 and α2 that drive
the dynamic conditional correlation structure. Both parame-
ters are statistically significant and satisfy the conditions to
imply that the conditional correlation processes are weakly
stationary.

In this case the adjacency matrix 	t is allowed to vary over
time as well as the conditional variance processes. Therefore,

the centrality measures are dynamic. Despite the added flexi-
bility, the results in figure 5 are similar to the CCC case. The
positive centrality measures are very stable over time for all
the assets in the portfolio. The negative centrality measures
exhibit more variation, in particular, for the Gold ETF volatil-
ity index and the U.S./Euro exchange rate. The latter asset
provides the most interesting insights in terms of asset cen-
trality. Both centrality measures move together up and down
over the evaluation period. The exchange rate seems to take
a more central role in the portfolio during the first years of
the evaluation period that coincides with a spike on the allo-
cation to the asset in the portfolio. The asset centrality decays
after 2014 and stays low for the remaining of the evaluation
period.

4. Conclusion

This paper studies the relationship between the optimal
allocation of assets in a portfolio and the corresponding
asset centrality statistic. First, we show that the standard
definition of eigenvector centrality found in the literature, see
Bonacich (1972), is misleading when the adjacency matrix in
a network can take negative values. In this case, the central-
ity measure can take negative values, which does not have
a natural interpretation. More importantly, the centrality of
assets can cancel out for assets highly correlated (positively
correlated) to the rest of assets in the portfolio. To correct for
this, we have introduced the concept of positive and negative
eigenvector centrality. This extension of Bonacich’s (1972)
eigenvector centrality fits naturally in a global minimum vari-
ance portfolio allocation problem in which the adjacency
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matrix is characterized by the correlation matrix between asset
returns.

For portfolios with short-selling constraints we prove that
portfolio risk is strictly increasing on positive asset central-
ity. This result does not imply, however, the presence of a
negative relationship between the magnitude of the optimal
asset allocation to the portfolio and the centrality measure.
In fact, we prove the absence of a monotonic relationship
between positive asset centrality and the optimal portfolio
allocation. Similarly, we find a strictly decreasing relationship
between negative asset centrality and portfolio risk that is not
reflected on a positive relationship between asset centrality
and the optimal portfolio allocation. These results contradict
recent results on the literature on financial networks claim-
ing that asset centrality and the optimal portfolio allocation
are negatively related. As a byproduct, we also find that the
marginal rate of substitution between positive and negative
asset centrality is positive. Both centrality measures tend to
move together in the same direction to preserve the optimal
allocation of an asset in a portfolio.

More generally, under the absence of short-selling con-
straints we do not find a monotonic relationship between
portfolio risk and asset centrality or between the optimal asset
allocation and asset centrality. These results are confirmed in
an empirical application to a mix of assets with positive and
negative cross-correlations.
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Appendix. Mathematical appendix

Proof of Proposition 1 Let � = c1In + c2	 be a location-scale
transformation of the adjacency matrix 	 characterized by the con-
stants c1 ∈ R and c2 > 0; and let (vp

i , vn
i ) be the positive and negative

eigenvector centrality measures associated to 	. First, we show
that the centrality measures of �0 = c2	 are the same of the adja-
cency matrix 	. To show this, we decompose the matrix as �0 =
�01 + �02, with �01 = �01(�0 > 0) and �02 = −�01(�0 < 0).
The positive centrality measure of �0, denoted as zp

0i, is defined
using condition (10) as

zp
0i = θ̄−1

01

n∑
j=1

�01,ij zp
0j, (A1)

with θ̄01 the maximum eigenvalue of �01 and �01,ij the elements
of the matrix �01. Now, we note that θ̄01 = c2λ̄1, with λ̄1 the max-
imum eigenvalue of 	1, and �01 = c2	1. Then, condition (A1) is
equivalent to

zp
0i = λ̄−1

1

n∑
j=1

	1,ij zp
0j.

Therefore, from expression (10), we have zp
0 = vp. Using the same

arguments for matrices �02 and 	2, it can be easily shown that
zn

0 = vn.
In a second step, we prove that the centrality measures of � =

c1In + �0 are the same of the matrix �0. Let zp
i denote the positive
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eigenvector centrality measure of �. Then,

zp
i = θ̄−1

n∑
j=1

�ij zp
j , (A2)

with θ̄ the maximum eigenvalue of � and �ij the elements of the
matrix. To show the result, we note that the eigenvalues of � sat-
isfy that θk = c1 + θ01,k , with θk and θ01,k the eigenvalues of � and
�0. In particular, we have θ̄ = c1 + θ̄01. Then, replacing in (A2), we
obtain

(c1 + θ̄01)z
p
i = c1 zp

i +
n∑

j �=i
j=1

�ij zp
j .

Therefore, θ̄01zp
i = ∑n

j �=i
j=1

�ij zp
j . Finally, we note that this condition

is equivalent to

θ̄01zp
i =

n∑
j �=i
j=1

�0,ij zp
j ,

with �0,ij the elements of the matrix �0, and implying that zp = zp
0.

Using similar arguments, it is straightforward to obtain that zn = zn
0.
�

Proof of Proposition 2 To show this result note from expression (6)
that

w̃′	w̃ = w̃′[	1 − 	2]w̃ = w̃′U1Dλ1 U′
1w̃ − w̃′U2Dλ2 U′

2w̃.

The matrix U1 contains the eigenvectors of 	1 and �1 such that
the positive eigenvector centrality measure vp

i is the eigenvector
associated to the largest eigenvalue of these matrices. Similarly, the
negative eigenvector centrality measure vn

i is the eigenvector from
the matrix U2 associated to the largest eigenvalue of the matrix
	2 = �2.

The quadratic form capturing the network dependencies can be
expressed as

w̃′	w̃ =
n∑

i=1

λ1i

⎛⎝ n∑
j=1

w̃ju1,ji

⎞⎠2

−
n∑

i=1

λ2i

⎛⎝ n∑
j=1

w̃ju2,ji

⎞⎠2

, (A3)

with u1,ij and u2,ij the elements of the matrices U1 and U2, respec-
tively. This expression can be written as a function of vp

i as

w̃′	w̃ = λ̄1

⎛⎝ n∑
j=1

w̃jv
p
j

⎞⎠2

+
n∑

i=2

λ1i

⎛⎝ n∑
j=1

w̃ju1,ji

⎞⎠2

−
n∑

i=1

λ2i

⎛⎝ n∑
j=1

w̃ju2,ji

⎞⎠2

. (A4)

The first derivative of the loss function associated to the adjacency
matrix 	 with respect to the positive centrality measure vp

i is

∂w̃′	w̃

∂vp
i

= ∂λ̄1

∂vp
i

⎛⎝ n∑
j=1

w̃jv
p
j

⎞⎠2

+ 2λ̄1w̃i

⎛⎝ n∑
j=1

w̃jv
p
j

⎞⎠ .

By construction, λ1k = ∑n
i=1

∑n
j �=i
j=1

u1,iku1,jk	1,ij. Then, for the

largest eigenvalue we obtain λ̄1 = ∑n
i=1

∑n
j �=i
j=1

vp
i vp

j 	1,ij, where

vp
i = u1,i1 such that ∂λ̄1

∂vp
i

= ∑n
j �=i
j=1

	1,ijv
p
j . The definition of eigen-

vector centrality (10) implies that
∑n

j �=i
j=1

	1,ijv
p
j = λ̄1vp

i such that

∂λ̄1

∂vp
i

= λ̄1vp
i . Following similar arguments we obtain ∂λ1k

∂vp
i

= 0, for

k = 2, . . . , n. Then, the above expression reads as

∂w̃′	w̃

∂vp
i

= λ̄1vp
i

⎛⎝ n∑
j=1

w̃jv
p
j

⎞⎠2

+ 2λ̄1w̃i

⎛⎝ n∑
j=1

w̃jv
p
j

⎞⎠ .

In general, this expression can be positive or negative. Note that
the maximum eigenvalue λ̄1 and the centrality measures vp

i , for
i = 1, . . . , n are both positive. Then, for investment portfolios con-
structed under short-selling constraints, it follows that w̃ > 0, such
that there is a positive monotonic relationship between the loss
function w̃′	w̃ and positive asset centrality. �

Proof of Proposition 3 To show this result we follow closely the
proof of Proposition 2. The quadratic form (A3) capturing the
network dependencies can be written as a function of vn

i as

w̃′	w̃ =
n∑

i=1

λ1i

⎛⎝ n∑
j=1

w̃ju1,ji

⎞⎠2

− λ̄2

⎛⎝ n∑
j=1

w̃jv
n
j

⎞⎠2

−
n∑

i=1

λ2i

⎛⎝ n∑
j=1

w̃ju2,ji

⎞⎠2

. (A5)

The first derivative with respect to the negative centrality measure vn
i

is

∂w̃′	w̃
∂vn

i
= −∂λ̄2

∂vn
i

⎛⎝ n∑
j=1

w̃jv
n
j

⎞⎠2

− 2λ̄2w̃i

⎛⎝ n∑
j=1

w̃jv
n
j

⎞⎠ .

By construction, λ2k = ∑n
i=1

∑n
j �=i
j=1

u2,iku2,jk	2,ij. Then, for the

largest eigenvalue we obtain λ̄2 = ∑n
i=1

∑n
j �=i
j=1

vn
i vn

j 	2,ij, where

vn
i = u2,i1 such that ∂λ̄2

∂vn
i

= ∑n
j �=i
j=1

	2,ijvn
j . The definition of eigen-

vector centrality (11) implies that
∑n

j �=i
j=1

	2,ijvn
j = λ̄2vn

i such that

∂λ̄2
∂vn

i
= λ̄2vn

i . Following similar arguments, we obtain ∂λ2k
∂vn

i
= 0 for

k = 2, . . . , n. Then, the above expression reads as

∂w̃′	w̃
∂vn

i
= −λ̄2vn

i

⎛⎝ n∑
j=1

w̃jv
n
j

⎞⎠2

− 2λ̄2w̃i

⎛⎝ n∑
j=1

w̃jv
n
j

⎞⎠ .

In general, this expression can be positive or negative. Note that
the maximum eigenvalue λ̄2 and the centrality measures vn

i , for
i = 1, . . . , n are both positive. Then, for investment portfolios con-
structed under short-selling constraints, it follows that w̃ > 0, such
that there is a negative monotonic relationship between the loss
function w̃′	w̃ and negative asset centrality. �

Proof of Proposition 4 Expression (2) shows that w∗ = �−11
1′�−11 ,

with � = ���. The inverse of the covariance matrix is �−1 =
�−1�−1�−1, with �−1 = UD−1

ω U′. Then,

w∗
i = [�−1U]iD−1

ω [�−1U]′1
1′[�−1U]D−1

ω [�−1U]′1
,

with [�−1U]i denoting the row i of dimension 1 × n of the matrix
�−1U. Applying matrix algebra, we obtain

w∗
i =

∑n
k=1

uik
ωkσi

(∑n
j=1

1
σj

ujk

)
∑n

k=1
1
ωk

(∑n
j=1

1
σj

ujk

)2 ,

with the eigenvalues ωk that can be expressed as a function of the
centrality measures vp

i and vn
i as shown in expression (12). �
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Proof of Theorem 1 We write expression (13) as

w∗
i =

∑n
k=1 ω̃k

uik
σi

(
∑n

j=1
1
σj

ujk)∑n
k=1 ω̃k(

∑n
j=1

1
σj

ujk)
2

, with ω̃k = 1

ωk
.

To assess the relationship between asset centrality and the optimal
portfolio allocation we study the first derivative of w∗

i with respect
to vp

i . This expression can be written as

∂w∗
i

∂vp
i

=

∑n
k=1

∂ω̃k

∂vp
i

uik
σi

ak
(∑n

s=1 ω̃sa2
s

)
−∑n

k=1 ω̃k
uik
σi

ak

(∑n
s=1

∂ω̃s

∂vp
i

a2
s

)
(∑n

k=1 ω̃ka2
k

)2 ,

with as = ∑n
j=1

1
σj

ujs. In what follows, we focus on the numerator of
∂w∗

i

∂vp
i

, that we denote as ∂w∗
i

∂vp
i
|Num and study the conditions that guar-

antee that this expression is positive or negative over the values of
the centrality measure. Using simple algebra, the numerator of the
above expression is

∂w∗
i

∂vp
i

∣∣∣∣
Num

=
n∑

k=1

(
∂ω̃k

∂vp
i

− ω̃k

)
uik

σi
ak

(
n∑

s=1

ω̃sa
2
s

)

−
n∑

k=1

ω̃k
uik

σi
ak

[
n∑

s=1

∂ω̃s

∂vp
i

a2
s −

(
n∑

s=1

ω̃sa
2
s

)]

=
n∑

k=1

(
∂ω̃k

∂vp
i

− ω̃k

)
uik

σi
ak

(
n∑

s=1

ω̃sa
2
s

)

−
n∑

k=1

ω̃k
uik

σi
ak

[
n∑

s=1

(
∂ω̃s

∂vp
i

− ω̃s

)
a2

s

]
.

Furthermore, note that ω̃k = 1
ωk

for k = 1, . . . , n. Then, from expres-

sion (12), and noting that ∂λ̄1

∂vp
i

= λ̄1vp
i , it follows that

∂ω̃k

∂vp
i

= −∂ωk/∂vp
i

ω2
k

= − 1

ω2
k

⎡⎢⎣λ̄1vp
i

⎛⎝ n∑
j=1

ujkvp
j

⎞⎠2

+ 2λ̄1uik

⎛⎝ n∑
j=1

ujkvp
j

⎞⎠
⎤⎥⎦ , (A6)

such that

∂ω̃k

∂vp
i

− ω̃k

= − 1

ω2
k

⎡⎢⎣λ̄1vp
i

⎛⎝ n∑
j=1

ujkvp
j

⎞⎠2

+ 2λ̄1uik

⎛⎝ n∑
j=1

ujkvp
j

⎞⎠+ ωk

⎤⎥⎦ .

Therefore, the above expression can take positive or negative values
showing that the derivative of the weight function w∗

i is not mono-
tonic with respect to the eigenvector centrality measure vp

i unless for
special configurations of the matrix U and the idiosyncratic variances
σi for i = 1, . . . , n.

Similarly, we can repeat the exercise for the negative centrality
measures. In this case, it follows that

∂ω̃k

∂vn
i

= −∂ω̄k/∂vn
i

ω2
k

= 1

ω2
k

⎡⎢⎣λ̄2vn
i

⎛⎝ n∑
j=1

ujkvn
j

⎞⎠2

+ 2λ̄2uik

⎛⎝ n∑
j=1

ujkvn
j

⎞⎠
⎤⎥⎦ , (A7)

and the corresponding numerator can take positive or negative values
showing that the derivative of the weight function w∗

i is not mono-
tonic with respect to the eigenvector centrality measure vn

i unless for
special configurations of the matrix U and the idiosyncratic variances
σi for i = 1, . . . , n. �

Proof of Lemma 2 The proof of this result is immediate by not-
ing that for w∗

i ≡ w∗
i (v

p
i , vn

i ) = c, with c some constant, it fol-

lows that ∂w∗
i

∂vp
i

∂vp
i

∂vn
i

+ ∂w∗
i

∂vn
i

= 0. Then, ∂vp
i

∂vn
i

≡ − ∂w∗
i /∂vn

i

∂w∗
i /∂vp

i
. Applying the

expressions in the proof of Theorem 1, we obtain

∂vp
i

∂vn
i

= −

∑n
k=1

∂ω̃k

∂vp
i

uik
σi

ak
(∑n

s=1 ω̃sa2
s

)
−∑n

k=1 ω̃k
uik
σi

ak

(∑n
s=1

∂ω̃s

∂vp
i

a2
s

)
∑n

k=1
∂ω̃k
∂vn

i

uik
σi

ak
(∑n

s=1 ω̃sa2
s

)
−∑n

k=1 ω̃k
uik
σi

ak

(∑n
s=1

∂ω̃s
∂vn

i
a2

s

) .

Furthermore, if ∂ωk

∂vp
i

= C ∂ωk
∂vn

i
, with C some positive constant, then

∂ω̃k

∂vp
i

= C ∂ω̃k
∂vn

i
, and it follows that ∂vp

i
∂vn

i
= −C. �


	1. Introduction
	2. Optimal asset allocation
	2.1. Minimum variance  portfolio optimization
	2.2. Optimal portfolio weights and network centrality

	3. Empirical application
	3.1. Static optimal portfolio allocation
	3.2. Dynamic optimal portfolio allocation
	3.2.1. CCC model
	3.2.2. DCC model


	4. Conclusion
	Disclosure statement
	Funding
	ORCID
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


