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Abstract—This papers considers a reconfigurable intelligent
surface (RIS)-aided network, which relies on a multiple antenna
array aided base station (BS) and a RIS for serving multiple
single antenna downlink users. To provide reliable links to all
users over the same bandwidth and same time-slot, the paper
proposes the joint design of linear transmit beamformers and
the programmable reflecting coefficients of an IRS to maximize
the geometric mean (GM) of the users’ rates. A new compu-
tationally efficient alternating descent algorithm is developed,
which is based on closed-forms only for generating improved
feasible points of this nonconvex problem. We also consider
the joint design of widely linear transmit beamformers and the
programmable reflecting coefficients to further improve the GM
of the users’ rates. Hence another alternating descent algorithm is
developed for its solution, which is also based on closed forms only
for generating improved feasible points. Numerical examples are
provided to demonstrate the efficiency of the proposed approach.

Index Terms—Reconfigurable intelligent surface, proper and
improper Gaussian signaling, transmit beamforming, trigono-
metric function optimization, geometric mean maximization,
nonconvex optimization algorithms

I. INTRODUCTION

The spectral efficiency optimization of wireless networks is
often carried out by sum rate (SR) maximization, thanks to the
computational tractability of the latter when relying on beam-
forming [1], [2]. However, by its nature, SR maximization has
the deficiency of allocating a large fraction of the sum-rate to
a few users having good channel conditions, while leaving
the rest of the users with almost zero rates. Furthermore,
the SR performance is typically improved with more users
involved because there are more flexible choices for the
users’ channels [3]. The spectral efficiency is thus addressed
more appropriately via either SR maximization under specific
quality-of-service (QoS) constraints in terms of the users’
minimum rate, or by max-min user-rate optimization, but their
computation is quite demanding [1], [2], [4]-[6].

Reconfigurable intelligent surfaces (RISs) [7] are con-
structed by a planar array of programmable reflecting elements
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(PREs), which have recently been introduced for improving
the energy and spectral efficiencies of future wireless networks
(6G) [8]-[11], the coverage, reliability and the average achiev-
able rate of UAV communication systems [12]-[14] and the
outage probability and bit error rate (BER) of indoor mixed
dual-hop VLC/RF systems [15]. Moreover, channel estima-
tion and physical layer security for RIS-aided networks have
been studied recently [16]-[19]. A typical RIS-aided system
consists of a base station (BS) and a RIS for beneficially
reflecting the incident electromagnetic waves from the BS to
multi-target directions, where the spectral efficiency may be
improved by the joint design of the transmit beamformer at
the BS and RIS PREs [20]. The joint design is often based on
alternating optimization between the beamformer and PREs.
Thus, compared to the design of stand-alone transmit beam-
formers, the new challenge is the optimization of the PREs
with the beamformer weights fixed, which is computationally
challenging due to the nonconvex unit-modulus constraint
(UMC) imposed on the PRESs. In [8] and [21], general-purpose
gradient/projected gradient algorithms were used, which do not
necessarily converge. By contrast to either convex relaxation
relying on dropping the matrix-rank of one constraint or on
relaxing the UMC to the convex bounded-by-unit-modulus
constraint were used in [22]-[26] for mitigating the com-
putational challenge. Except for the works [22] and [26],
which particularly considered the problem of transmit power
minimization subject to signal-to-interference-plus-noise ratio
(SINR) constraints, all the following treatises [8], [21], [23]-
[25] considered the problem of SR maximization. The authors
of [23]-[25] applied convex relaxation not only to the UMC
but also to the SR objective function. It should be noted that
alternating optimization between two sets of decision variables
is only efficient, when the optimization within each set with
the other set held fixed is computationally tractable. However
that is not the case for the problems considered in all these
papers because both the optimization of the beamformers with
the PREs held fixed and that of the PREs with the beamformer
weights held fixed present difficult nonconvex problems. In
the end, the convergence of alternating optimization-based
algorithms to a locally optimal solution is not guaranteed.
Our recent work [27] has been the first one that addressed
the spectral efficiency of RIS-aided communication via max-
min user-rate optimization. Instead of alternating optimization,
we proposed an alternating descent at the first stage and then a
joint descent at the second stage to confirm the optimality of
the solutions computed. While the descent iterations in the



beamformers generate a sequence of better feasible points,
the descent iterations in the PREs generate a sequence of
better infeasible points, which converges to a feasible point.
Moreover, it has been also shown in [27] that using widely
linear beamformers for facilitating improper Gaussian signal-
ing (IGS) improves the users’ max-min rate. To sum up, we
provide a brief comparison of the related literature in Table I.

Against the above background, this paper offers the follow-
ing contributions:

o We consider the problem of maximizing the geometric
mean (GM) of users’ rates for allocating the rates to
all users in an equitable manner. We use the users’ rate
deviation (RD) from their mean and the ratio of the users’
maximal and minimal rates (RR) as the main criterion
to judge the users’ rate balance, which are 0 and 1,
respectively, when all users are granted the same rate.
The smaller these values are, the fairer the users’ rate
allocation becomes (more balanced).

e As this problem of GM maximization is computationally
intractable, we address it via the min-max joint design
of beamforming weights and RIS PREs. To eliminate
the UMC of the RIS PREs, we use the polar form of
unit-modulus complex numbers that allows each descent
iteration of the RIS coefficient calculation to be based on
the closed-form solution of an unconstrained nonconvex
problem in the PREs’ arguments. Each descent iteration
of the beamformer weights and the PREs’ arguments
are also based on the closed-form solutions of convex
problems. Thus, the proposed alternating descent method
is purely based on closed forms and hence it is compu-
tationally efficient.

o Like in [27], here we also use improper Gaussian signal-
ing (IGS) in the BS signal transmission, which has been
shown to substantially improve the users’ max-min rates
(see e.g. [28]-[32]) thanks to its ability to mitigate the
severe interferences in interference-limited systems. The
performance gap between IGS and conventional proper
Gaussian signaling (PGS) becomes substantially wider
under more severe interference regimes. To elaborate
a little further, IGS is not useful in interference-free
regimes such as that of zero-forcing beamforming, which
forces all interferences to zero. The interference scenario
of SR maximization under PGS is unique in the sense
that those users who were allocated zero-rate impose
no interference on the other users. As a result, SR
maximization under PGS exhibit a high RD and near-
infinite RR. Our finding is that compared to PGS, IGS
does not improve the system’s SR but it results in much
lower RD and RR as a benefit of having no users with
zero rate. Hence SR maximization becomes a practically
feasible option while providing the users with beneficial
rate-fairness.

The paper is organized as follows. The joint design of beam-
former weights and PREs to maximize the GM of users’ rates
by tractable computation both under PGS and IGS is addressed
in Section II and III, respectively. Their performances are
evaluated by the simulations in Section IV, while Section V

concludes the paper.

Notation. Only the vector/matrix variables are printed
in boldface; Iy is the identity matrix of size N x N,
while Op;«n is a zero matrix of size M x N. For x =
(w1,...,2,)T, diag(z) is a diagonal matrix of the size
n x n with z1,29,...,7, on its diagonal; [X]? is XX,
and (X,Y) = trace(X?Y) for the matrices X and Y.
Accordingly, the Frobenius norm of X is defined by || X|| =
Vtrace(XHX). We also write (X) = trace(X) for no-
tational simplicity. The notation X > 0 (X > 0, resp.)
used for the Hermitian symmetric matrix X indicates that
it is positive definite (positive semi-definite, resp.). Let us
denote the maximal eigenvalue of the Hermitian symmetric
matrix X by Amax(X); vec(X) stacks the columns of the
matrix X into a single column (vector) and as such we
have vec(AXB) = (BT ® A)vec(X) for the matrices A,
X, and B of appropriate sizes, where ® is the Kronecker
product. For a real valued vector z = (z1,...,7,)7 € R",
e, cosx, and sinx are entry-wise understood, i.e. e/¥ =
(21, ..., e2*)T € C", cosx = (coszy,...,cos,)T € R,
and sinx = (sinzy,...,sinz,)T € R™ As such ¢ =
cosz + jsinz. For a complex number x, Zx denotes its
argument, i.e. z = e/“® for |z| = 1 and it is fully characterized
by Zx € [0,27]. Lastly, let us denote the set of circular
Gaussian random variables with the zero means and variance
a by C(0,a). Each s € C(0,a) is termed as being proper
because E(s?) = E(R?*{s}) — E(S?{s}) = 0 as E(R?{s}) =
E(3%{s}) = a/2. By contrast, a Gaussian random vector
variable x is referred to as improper if E(x2zT) # 0, which
particularly implies that E(R{z}RT {z}) # E(S{z}3T {x}).

II. PROPER GAUSSIAN SIGNALING
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Fig. 1: System model

We consider the RIS-aided communication system illus-
trated by Fig. 1, where a RIS of N reflecting units supports
the downlink spanning from an M-antenna array BS to K
single-antenna users (UEs) k € K = {1,..., K}. Since the
RIS is typically deployed on the facade of high-rise buildings
and the AP is also usually at a certain elevated height [10],
it is justified to assume a LoS link between the AP and
RIS, LoS communication between the RIS and UEs, and
NLoS propagation between the AP and UEs. Accordingly, the
channels spanning from the BS and the RIS to UE & and from
the BS to the RIS are modelled by gy = /Barhpx € CH¥M,



TABLE I: A brief comparison of the related literature.

Literature .
This work
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max-min rate optimization

Vv

GM maximization

power minimization

PGS (linear beamforming)

<J<
<<

IGS (widely linear beamforming)

v
v

trigonometric function optimization

RGN

computational tractability in PREs

hrx = VBrihrx € CYN, and Hgr = /BprHpr €
CN*M “where v/Bsx, v/ Prx. and v/Bpr model the path-loss
and large-scale fading of the BS-to-UE k link, the RIS-to-UE
k link, and the BS-to-RIS link, respectively [21], [33], while
hrx and Hg g are modelled by Rician fading for modeling the
line-of-sight (LoS) channels between the RIS and the UEs as
well as between the BS and the RIS [34]. Furthermore, hp is
modelled by Rayleigh fading in the face of non-LoS (NLoS)
channels between the BS and the UEs. Like many other papers
on RIS-aided communication networks, we assume having
perfect channel state information, which can be obtained from
channel estimation [8], [16], [22].

Let s, € C(0,1) be the information symbol intended for
UE k, which is beamformed by w; € CM. The signal z
transmited from the BS is

xr = E WESE.

ke

6]

The signal received at UE k can be expressed as

Y = (BR—lelz_/]?diag(ejo)ﬁB—R + BB—k) z+n, (2
= 0) > wrsk + i, 3)
kex
for
’H,k(ﬂ) S BBR_kdiag(eje)HB_R + iLB_k € ClXM, 4)
with )
hork 2 v/ Boar v/ BrahraRyy € CN, 5)

where Ry € CV*¥ represents the spatial correlation matrix

of the RIS elements with respect to user k£ [21], [35], ny €
C(0,0) is the background noise at UE k, and diag(e??) in (2)

for @ = (61,...,05)T € [0,27]Y represents the matrix of
PRE:.
Let w 2 {wy, k € K}. The rate in nats/sec at UE k is

|[Hi () wi|?
jex\iiy [He(@)wW;[? + o

rp(w,0) =In (1 + 5 ) . (6)

We consider the following problem of jointly designing the
beamformers’ weight set w and the PREs 6 to maximize the
GM of users’ rates:

x 1/K
<H rk(w,0)> s.t.
k=1
K
Do lwelf< P,
k=1

(7a)

ma.

W,

(7b)

where (7b) sets the transmit power constraint within a given
power budget P. It is plausible that this problem is equivalent
to the following one:

1

(I, (. 0))
s.t. (7).

7AK(VVa 0)) =

rgglf(rl(wvo)v"'v 1/K

®)

The function f(r1(w,0),...,7x(w,0)) is the composmon of
the convex function f(rl,.. TK) = 1/(Hk, re) /K and
the non-convex functions 7 (W 0) k=1,...,K.

Let (w(“),H(”)) be a feasible point for (8) that
is found from the (x — 1)-st round. We note that
the linearized function of f(ri(w,0),...,rx(w,0)) at
(ri(w®, 00, e (w®),00))) s

2f( (w® 9(”)),...,rK(w("),H(”)))ff(rl(w(”),ﬂ(“))
1

(k) p(K) = Tk(W,0)
TK (w ) 0 ))7 Z -

— v o 9
K 2 i (w(®), 609

)
Since we have f (rl(w(”),ﬂ(“)), .. ,rK(w(H)’g(n))) > 0,

we can use steepest descent optimization for the convex

function f(r1,...,7x) to generate the next feasible point
(w(n+1)79(n+1));

K

1 ’I“k(W,e) (k) p(k)

W e 07
(™ 0))st (), (10)

which is equivalent to the following problem:
max f< Z A gy (w st. (7b), (A1)

for

(k) N f(rl(w(n)ae(’{))a"'7TK(w(K)79(H))) k=1 K
Vi rk(w(“)ﬁ(“)) Jk=1,... K.
(12)

A. Beamforming descent iteration

To generate w"t1) we seek w(**1), so that the following
holds:
f) (w (r+1) g(r) ) > f(ﬁ)(w(

K gy, (13)

Using the inequality [1]

In |, + [VI*(Y)"!| > In| L, + [V]*(V) "]



—<7[_]2(17)_71> + ?9?{<‘7H(37)_1V>}

(M) =+ V)LV +Y),
VV,Y~0 & V,Y =0, (14)
for V.= H(0"))wy, Y = Z]E,C\{k} |Hy (0% )wj|2 + o,
and V= Hy(0®)w) k) = yl(:) IS

Do jer\ (k) |Hk(9(“))w;K)|2 + o, y1elds
’I’k(W,Q(H)) > (f”v)( )

- Z (65w, 2, (15)

with a](:») 2 pp(w®), g(n)) |Hk(9(")) (%) 2 /y ac,i )’
B A U™ )Hk(e Nw™ fyi, and 0 < PURE
|Huw@m%\/[ (k-uﬂuw@>k|ﬂ]

The function 7"( )( ) is seen to be concave quadratic, which

matches with r( )(w 6(=)) at w®). We solve the following
convex problem at the -th iteration to generate w(+1):

max fb'i)(w) s.t. (7b), (16)
where
w) 2 Ejﬁ“m
- Z%(j)ak +22§R{ b\ wi)}
K
= (wi) T w, (17)
k=1

. K K K K K 3
with 0 < U(®) & > e 11/]( )¢l Hf(ﬁ( )YH;(0¢)). By using
the Lagrangian multiplier method, we obtain the following
closed-form solution of (16)!

K
@Oy B i (W) b P < P

(k+1)
e = k=1
@ 4 pLp) 400 otherwise,
(18)
where g > 0 is ) chosen by bisection such that
K K - K
S (P + ) 0|2 = P
B. Programmable reflecting elements’ descent iteration
We seek the next iterative point (*t1) such that
SO (D) glet)y 5 p(e) (s 4D) glr)y, (19)

Using the inequality (14) for V = Hk(a)w,(fﬂ) Y _
r+1) n (k1

Z]EK}{I@} [Hi(0)w; G2 4 ooand Vo= Hp (00w,

Y=yt e E;eic\{k;} M1, (0¢)) §»H+1 |2 + o, yields

re(w®tD 0y > 77(0)

H(w(*))=1 is understood as the pseudo-inversion when ¥(%) = 0

o 2R{(w T EHE (00 H (0)wY
- y <D

%”Z]H

|Huw@w¢ﬁ”ﬁw“+”—
0B [y (e

+al w2 20)

with EL,(:) = rk(w(”“"l) 6(=)
o™ and 0 < &9 2

+HHE (00wl 2
Let us define T,, as the matrix of size N x N having only
zero entries, except for its (n, n)—entry, which is 1, to express

E:é”

diag(e?) =

We then use (4) to arrive at:
(w](:-ﬁ-l))HrHi{(Q(N))Hk(e)wl(:-‘rl) _
w T (9% {BBR—kdiag(eje)HB_R—|—iLB_k:| W+
(’wliﬁ+1))HerH(0(5))EB_kwl(€n+1)
+(wlDYEH (009 e diag (e0) Hp g™ =

(WY EHE (00 g (Y

N
+3 " (wi Y IHE (00)) hpgac Y Hppw ™ e??

n=1
N ~
045:) + E b](:) (n)

n=1

with o™ 2 (") HH (00 i " and? B (n) =
(U}](:Jrl))H,H]?(e(n))hBR_anHB_Rw(nJrl), n = 1, ...N.
To expound further, we have:

|Hk(9)w§n+1)|2 _ ‘(hBdelag(eja)HBR—f—th) n+1)‘

~ 2
= ’hBR_kdiag(ejo)HB_Rw(”+1) ’

e, (21)

j
~ H _

+2§R{(wj('ﬁ+1))H (hB-k) hBRrk

diag(eﬁ)HB-Rw;KH)} + |/~”L13-1<w]('l‘i+1)|2

_ 2
= ’hBR»kdiag(eje)HB—RwJ('ﬁ+l)’

N
+2§R{Z (wyﬂ_l) M (BB-k) " hera Y n
n=1

HB_RU)j(-HJrl)eje"} + |]~'LB_kw§H+1)|2. 22)
Furthermore,

EBR_kdiag(ejo)HB_Rw

N
= iLBR—k (Z eje"’fn> H,

n=1
N
z : 1)
— (’QJ” ejen ,

2In what follows b(3) is the i-th entry of b and [A](4,4) is the i-th diagonal
entry of A, and [A]*(¢,4) is the complex conjugate of [A](¢, 1)

(r+1)
J

w§l€+1)

(23)



for a(ﬁfl)( ) = iLBR kT HB ij(n+1) n = 1 N
Based on (20), (21), (22), and (23) we obtam

al"tv 4+ 2%{2 B\ (n)

n=1

Z (n+1 )eﬂn

n=1

() ety

2

n)z

Jj=1

N
= a"th 4 2R B (n
n=1

) elon }
K

—E7 Y (@) e e,

=1

o B
w2 8w -

(24)

where &,(:H) £
(kK N 7 K+1
( ) Zj L |, u)(

2,
(K rk+1 7
()Z]]. (+) (h

hBR anHB-RUé‘N—H), and
r+1 r+1
o (n, m) = (o ) ol (m),n=1,...,Nym =
1,7, N.
Note that CIDEC'?_U > 0. Therefore,
ERIONE ZW)
= gtb 4 2%{2 b (n)efn )
n=1
_(639)H¢(&+1)6397 (25)
K ~
for &(nJrl) A ny}(:)a;:-i-l)’ b(kaJrl)(n) A
Z Wt () n = 1,...,N, and 0 = &) 2
m /<c K+1
Zk 12] 1V )(I)( g

We use the followmg problem at the k-th iteration to
generate A<+ 1):

max 7i5)(8).

(&

(26)
Following [36], we have (27). We thus solve the following
problem at the x-th iteration to generate #(*+1):

max 0, (28)

where the function féﬁ)(ﬂ) is an affine function of . By
noting that R{ce?»} |c| cos(Zc + 6,,) and thus it is

maximized at 0,, = —Zc, we obtain the closed-form solution
of (28) as?
flr+1) 2" (n Z 0 (D) (1, )

+Amax(<1><”+1>)e—ﬂ% Non=1,...,N. (29)

It follows from (27) that f(¥)(w+tD gls+l))y >
fc(fi)(g(rc+l)) > fc(ﬁ)(a(n+1)) > féﬁ)(e(n)) _ fc(ﬂ)(e(n)) _
FO) (w90 confirming (19), so 1) is a better
feasible point than #(%).

(@D f,uIN)eJe(M}(n) is the n-th entry of (®(+1) 7/,LIN)€]6(K)

C. Proper Gaussian Signaling Geometric Mean Rate Opti-
mization

Algorithm 1 provides the pseudo-code for the proposed
computational procedure of steepest descent for computing
(9) as the iterations (18) and (29) seek a descent direction
by seeking a better feasible point for the nonconvex problem
(10) instead of seeking its optimal solution for reducing the
computational load with guaranteed convergence, as it is often
done in the context of the Frank-and-Wolfe method [37]. Of
course, one can still seek the optimal solution of (10) for the
steepest descent by iterating (18) and (29) many times, because
according to [27], this kind of alternating descent iterations
often converge to at least a locally optimal solution of (10).
The global optimality can not be proved theoretically, but we
found that it is globally optimal in many cases.

To the best of our knowledge, there is no the conventional
descent algorithm, because the conception of descent descent
algorithms is a research branch in computational optimization
and what make descent algorithms different is the specific way
they choose their a descent directions. Hence, our descent
directions are completely new and rather different from the
popular steepest descent techniques. Furthermore, all other
exiting algorithms, which solve convex problems and itera-
tively at a high complexity are very sensitive to the problem
sizes. However, our algorithms iterate using closed- form
expressions, hence their complexity is low.

Algorithm 1 PGS GM descent algorithm

1: Initialization: Set x = 0. Randomly generate (w(®),§(0))
satisfying the constraint (7b) and define 7(°) by (12).

2: Repeat until convergence of the objective in (8): Gener-
ate w"tY by (18) and "1 by (29). Reset k < & + 1.

3: Output (w) 0*9)) and rates r,(w®, 00), &k =

/K
., K with their GM (Hle re(w™®, 90”»)))

III. IMPROPER GAUSSIAN SIGNALING

In (1), the proper Gaussian sources si are linearly
beamformed by the beamformers wy, hence the trans-
mit signal z is also proper Gaussian, ie. E(zzl) =
> rex Wi(wi)TE[(sk)?] = 0. In this section, the proper
Gaussian sources sy are widely linearly beamformed by the
pairs of beamformers w ;, € CM and Wa i € CM as in [38]

s
[Wik Woil { f} ; (30)
Sk
resulting in the transmit signal
K
= (Wiksk + Waksh), 31)
k=1

and for improper Gaussian, as

K

= Z(wlykwg’k + WQ’kW{k)E“SkF) #0.
k=1



N
F90) = @D 4 RS B ()} — ()T (DD A (BT[N — A (BFD) () [y

c
n=1

N
= D LRI B (e} — () (B o (BUFD) T )er® — Ny (BN

n=1
> fi(6)
N ~ <
£ a3 R (e} — PR{(E ) BUTD — dy (BUHD) Ty}
n=1

_(639(N))H((I)(m+1) _ )\max(q)(n-i-l))IN)e]G(N)] . )\max((I)(n-',-l))N
N N
= a4 R E I ()~ Y e D (1 1) 4 Apax (BEFD )20 ) 260}
n=1 m=1

_(639("’) )Hq)(mrl)ea@(”) — 2\max (PN, (27)

K
The equation (2) of the received signal at UE k becomes:
quation (2) g S0 (Wil + [[wakl[2) < P.35b)
K k=1
Yr = Hi(6) Z(Wl,ksk + Wa ks)) + N (32
=1 Let (w(®),0(*)) be a feasible point for (35) that is found

from the (k — 1)-st round. Like (11), we use the follow-

We augment (32) as . . .
ing steepest descent olg(tlmlzatlon for the convex function

[yk} _ [Hk(B) 0 ] i |:W1,k W2,1{| {sk] n {nk] ji](;;l’”:,:,K)(’irl%/él(;[iT)l ?"k)l/K to generate the next fea-
ui 0 H0)] 2= [wyy wiy] [sp] T [ng sible point (w07
K K
= Ak(0)> Wisk + g, (33)  max FO (w,0) 23 7 (w,0) st (35)  (36)
k=1 W k=1
for the linear mappings Ap(8) = {Hko(o) 7—[*0(0)] e Where
k
(=) gy . (1) g(x)
C2%(M) and W, 2 [wi’k Wikl ¢ oane gng 5, 2 4 & L0 et D=1 K
Wor Wik re(w), 0(=)) 37)
Sk _ ng
[SZ} € C? oy = [nz} €. Another way of defining the UEs’ rates is through the equiv-
alent composite real system for (32):
For w £ {w}, = zl’k € C*M ;. k € K}, the rate at UE P Y
2,k
k is calculated by (1/2)r(w,8) [39] with S A [ﬁykﬂ _
SYk
ri(w,0) = R{H:(0)} —S{Hx(6)}
- S{He(0)}  R{H:(0)}
In | I + [Ax(O)Wi]* Z Ak OW,]* + ol - 34 = R{w;} + R{wa;} —S{wi;}+3{wo;}
JEREY 2 [%{wl,j} +{wa; b Ri{wi;}— R{wa;} ]

j=1
For the particular class of wyj; = 0, i.e. when x in (31) is R{s;} R{ny}
proper Gaussian, it may be shown that x [C\‘y{g j }} [C\\y{nk}:|

riw.6) = 1,05V 38
- _|_ %) s
20 (14 [HiO)w1 42/ (S 1y M @)W 2 +0)) K ); 38+ T, (38)
hence (1/2)ry(w,#) is the known rate (6). where we have:
Like (8), the problem of maximizing the GM for users’ rates
corresponding IGS is thus formulated as T (0) 2 R{He(0)} —S{Hu(0)} . o [R{s;} (39)
o (w.0) (.6 2 1 S{HL0))  W{He(@)} |7 [S{s}]”
min f (ry(w,8),...,rx(w,0))= (35a) 11 12 R
w.o 1/K A |V v _ o R{nk}
(Hé(zl ’l"k(w,a)) V] = |:Vj21 V%2:| N = |:%{nk}:| ) (40)



under the following transformation:

R{wi gt +R{wa b —3{wiyb +3{wa b
S{wii}+S{wa; b R{wi ;) — R{wa;} g
(4D
This transform is indeed legitimate, since its inverse is given
by

R{wi;} S{wi ] 1 V] Jer ijl 12
[‘SR{WQJ} S{wa i} 2 vl —vE v vl . (42)

Furthermore, we have:
[lw;l? = ZZH Vi, 43)

zlél

hence the power constraint (35b) for w is transferred to the
following constraint

K
> llvsl? < 2P (44)
j=1
for
Vit
v2l
v Zvec(V;) = | 1| . (45)
A
V22

For v £ {v;,j € K}, the problem (36) is equivalent to the
problem

(s )
manF (v,0) = Z*yk Tr(v s.t. (44) (46)
with
fk(V70) =
-1
In|L + [He@) Vi | D [He@)V;]* + 0l . (47)
JER\{k}

We propose the following alternating descent iterations at the
k-th round to generate a better feasible point (w(+1) g+1)),

A. Widely linear beamforming descent iteration
We seek w1 such that

F(r) (w(n,—&-l),e(n)) > ) (w(“),e(”)). (48)

Upon using (41) to define

s o | Rl )+ R{wy)) —%{w%?} +S{wl)
B e wl) Rl Rl ]

we have vy) = vec(Vj(K)).

By using the inequality (14) for V = ﬂk(ﬁ("))vk, Y =
Y ey Hu (@2 + ol and V= H (00",
Y = Y(”) = E,C\{k}[%k(ﬁ(“ )V(K)] +ol, = 0, we obtain
the f0110w1ng concave quadratic lower bounding function
approximation of 7, (8(%), v):

(v, 00) > 7 (v)

2 i + 2BV — (O, [He (0" V]2, (50)
JEK
wnh(a);”%)m 3)0 ) = ([Hx(6¢ ()) Py -
K K) A K K K
o). By & (VI (0 (1)
x Hp(0")), and 0 < Ck = (Yk(ﬁ))_1 -

(% + (0 P)
Note that (B V) = (vec((BY)T), v), and
(CF, [H (00 V512)
= llvec ((C{)/2H, (00 V5 ) |1
(2 @ (CF)2HL(00)) ) vec( V)| 2
= vecT (V) [12 ® (ﬁgw(@)qﬁ”)m(a(n)))} vec(V;)
= v;‘.FQl(f)v

for Q7 2 I @ (T (0))CL #Hi(01) ).
Thus,we have

Z ’Y(K) (R)
K K

= Z Wal +2 3" (v Pvec((BY)T), vi)
1K . k=1
PR

= Zv“)aff’wZw,i“)vec((B,i“))T),vm

k=1
K
DI PR A
k=1 j=1

We solve the following convex problem at the x-th iteration
to generate v("T1):

K
max Z vl(f)?,(:)(w) s.t.

(K)Q

(51

(44), (52)

which similarly to (16) gives

F(H)('U(N+1)7 g(f“v)) F) ( g(fi)) (53)

as far as v("+1) =£ ()
Like (16), the problem (52) admits the following closed-
form solution

—1
(zj‘ 1 Q(”)) W vec((B{)")

-1

if ZH va”@i-“) ¥{Fvec((BI)T)|12
k=1 j=1

U](:+1) _
<2P
(SI A QN 4 ) o vec((BE)T)
otherwise,
(54)



where 4 > 0 is found by bisection such that

zﬁﬂn(ziﬂﬁ”9$”+uu0 I vee( (BT 1

By reconstructing UM (KH) 1 =

(H+1) ( )
Yy Wy 5

2 and ¢ = 1,2, from

(k+1),

we use (42) to determlne and w, y

K 1 k+1

R{w{"} “{E*’ﬂ
K 1 K+1

%{1*} S{w{™ )

1 11 L(k+1) T 22,(s+1) 21 (k1) 12 J(k+1)

a 9 (55)

2 11 J(RHL) 22 (k+1) 021 J(k+1) +o 12 ,(k+1)

J ] J

which results in (48).

B. Programmable reflecting elements’ descent iteration

We seek 051 guch that

F*) (w(ﬁ+1)’ 9(H+1)) > px) (w(kﬂrl)7 g(ﬁ)). (56)

By using the inequality (14) for V = Ak(O)W,§K+1), Y =
Z]EK\{k}[Ak(a)W(K-H)] +oly, and V = A (00w,
v o= v 2 s AR O@OYWITIR o = 0,
we obtain the followrng concave quadratlc lower bounding
function approximation of 74 (w**1) 8):

re(w®,0) > 77(0)
2 aly) +2R{(BY @)W}
. C]gn)7 Z Wj(f-c+1)]2>
jeEK
= alf) +2R{(BIALOW))
—(C7, A @)W (A(8)7),(57)
with ('%) = re(wtD gy
(@O PO = oG B
(WY H (A (00))H
( /1-&-1)) c ©2x2. 0 < CYI(CH) vy (Yk(ﬁ-‘rl))_l o
1
(Y(K‘H) Jr 0(,{))W(5+1)] ) c C2%2, and
0 =< W Ii+1) A EJEK:[W(HJrl)]
For _
hex  Oixamr
H -] é |: 7 :| 9
T o By
we can write
Ax(0) =
Hos + l:iLBR—kdiag(ejo)HB—R 3 O1xm ] _
- O1x a1 h diag(e ) HE o
N
herk¥rHpr Oixnm| 6,
Hpx +
Bk 2::1 |:|: 01><M 01><M:|
O1x O1xnm _0 ]
+ ~ J0n —
[leM h;_k\Ilan_Je
N
Hpx+ Y [Toe?” +Z,e7], (58)

n=1

with
r, 2 [iLBR-k\I’nHB-R Oer] m=1,....N,
O1xm O1xm
- A 01><M 01><M ]
B, = - .« |,m=1,...,N. 59
{leM hR—k‘I/’ﬂHB-R o9
By using the identity
R{ab*} =R{a"b} VaecC,beC, (60)
we arrive at:
R{BL ALO) W)
N
= aby) + ROCGE ()er + 65 (n)e )}
n=1
= a + m{z BS) (n)ern}, (61)
n=1
for )dg’Z) ( +1é) ({)< : H Wé”f(l)g}, b(zi(l?) y
I{ K K A K ) r— K
F Wy ) b2 ) = (Bk E Wy ), and
(n§ i n>( ?n) m—1..N.
Furthermore have (62), where

(1>

~(N) Iy <O('€) 7'[ W('H‘l i k> B(H)( )
<c<”> MoV T (O g WD 2
K) — K+1l)—
Q}l?k(n,m) = <C( ) = W( +1) = HZ’ QZZ)k(n m)
<o”1‘mﬂ“hﬂ>QQAnm> (e,
rWETIERY =1 N;m=1,...,N.
Let us define

i+ A, = 95 + 5071

22 k 11,k 2,k 2,k 7

QR J(K)

I
RNXN Q2,l(: RNxN7

where the matrix 92 B (x)

.QQ’ . 18 skew-symmetric because the matrix Q22 e T er &
is Hermitian symmetric, and

Qg;)k_Qlk + Qlk ’Qlk

Upon recalling that e’ = cos@ + jsinf, we have (63) and
(64), whose proof is given in the Appendlx
Therefore, we have (65) for QE:I)% = Q, k(ﬁ) + QR (k)

(QR (n) Q(n) A _QI i(”) - (Qi(n)) ) Qk,l

QR (n) QR (n) (QR (m))
Combrnrng (57) (61) (62), and (65) yrelds

al™ + 2%{2 B\ (n)
n=1

_ [cesO}T Ql(:) |:C?S€:| (66)

sin@ sin@

is symmetric, while the matrix

ERNXN Qlk GRNXN

||l> +

T (D, 6) e

with af” = o (al) +2af) —aly)), B0m) =
P (0 B). = v e -
Py(;-;) Q(n) Qn
k (Q("f)) Q("i)

Therefore we have

FO (w1, 0,9) > F(9)(6)



C(H)

n=1

N
Z (Fn@ﬁn + Ene_jejen) + Hpx

(C A @WITIAE (8)) =

N
Wty [Z (Tre o + Ze) + 1 ) =

n=1

N
(O Ao W)+ 2RUCL a7 Y (e 1 =t

~ N
+C,

n=1

N
(O H W) + 2R (60

n=1

uMZ

m=1

i

ﬁMz

0 = —30n
E (Fnej n+E,e !

, HB-kWIEKH)FfV +

N N N
SO T Wt T et g0 NSO

] N+1

N
2 (Tl +=ye )]> -
(O MW TVE ) ey

W(HJFl >€]9 e —70m

n=1m=1

N N
G EaW e e + 30 3 (G Za WIS e e =

n=1m=1
g, +2%{Zb“’ )} + () Qe 4 ()T Qe + () (Q15))Te ™ + () Qe (62)
T R,(k) I,(k)
J0NH [ (%) (k) \ .6 _ |cos@ —Qy) | [cosB
(') (Q22,k+Q11,k)e - Lmo] [QQk Q2 ][sinO ’ 63)
T R,(k R,(k I,(k I,(k
()T Q) e + ()T (QlF), e = {CQS 0} Ql’ff(() u <Q1}k(( " QR( ; } (Q}%é ) {0950] (64)
: , sin @ ,lek’ﬁ),( 1:1:))T 1k('ﬂ (QL}C(R))T sin @
T (k) (k)
0 6 | ()T Q) o8 | (I0VH (n) « 48 _ |cos@ Qr Q| |cosb
(€)1 (05 + Q) + ()T Q5 + () (045 = | ) L S Q(K)] I
k,C kI
N cosd]” cos@ al
20 420> "0 (n)er } — [Sm 0} Qi Lino} (67) —2> R{B(n)e’"}
n=1 n=1
~ N -
for @ = YK & iwm) = K, ?())(n),rz = = " 23 R{(B) () - B(n)) e 169)
. K K ot
et @9 < S0 = | %)
o (Qc ) (%) Accordingly, we solve the following convex problem at the
with Q = Y Qk noe = Y, Qk Q7 = k-th iteration to generate #("T1):
Zk L Q("'ﬁ)

Furthermore, we have (68). Now, using the formula

a9 (n) cosB,, + o) (n) sin @, = R{B(n)e?" }

for  B(n) = V(@B ()2 4 (al-()(n))2e=1 ()
, where ~(n) is such that [cosfy( ), siny(n)] =
0™ (). ol ()] /2P )P + ol ), we
can rewrite (68) by
N
EX@) = &% 420> 09 (n)e’)}

n=1

max E5)(9). (70)

Like (29), its optimal solution is given in closed-form by

oD = _y <B<~>(n) - 5(n)),n =1,...,N. (1)
from (68) that F("”")(w(““) 9<r~+1>) >
F(~)(9(n+1)) F(H)(e(ﬁ—w-l)) > F (e(n)) F(H (G(K))
F(“)(w(“+1),0 )), confirming (56), so 6"t is a better
feasible point than #(%).

It follows



N
F"(9) a4+ 2R{> b (n)e?)} — [

_)\max(Q(H))N

cos@

(@ pmtoom)

sin @

cos@
sin @

|

17" 0
5% (5) () e cos f () _ (%) cos
2 + 2%{2 b (n)e”r)} -2 [sinQ("‘)} (Q Amax(Q )I2N) [sinG}
cos 91" %) _ O cos 0% \ (VN
+ Sine(ﬁ) (Q - In&x(Q ) 2N) sin e(ﬂ) - Inax(Q )
~ N ~
= a4 2?)?{2 b (n)e?)} — 2 Z ( B(%) (n) cos @, + aP (n )sin0n>
= n=1
£ FM), (68)
with -
~ () (x)
500 = glo _ |09 () |€O8 ()
a “ sin 6(*) Q sin 6(*) 2Amax ()N
Qo (%) = (GR(=))T (Qg”) _ Amax(Q("))IN> + (9[,(@))T(Q$))T e RN,
al(®) — (QR,(;{))T(Q(C?)) + (91,(/1))T (Q(If-i) . )\max(Q(K))IN) € RIXN

C. Improper Gaussian Signaling Geometric Mean Rate Opti-
mization

All other exiting algorithms, which solve convex problems
and iteratively at a high complexity are very sensitive to the
problem sizes. However, our algorithms iterate using closed-
form expressions, hence their complexity is low. Algorithm
2 provides the pseudo-code for the proposed computational
procedure for the solution of (36).

Algorithm 2 IGS GM descent algorithm

1: Initialization: Set x = 0. Randomly generate (6(9), (%))
satisfying the constraint (35b) and then define (%) by (12).
Repeat until convergence of the objective in (36):
Generate w" 1) by (54)- (55) and (1) by (71). Reset
K<+ K+ 1.
Output (w),9(*)
., K with their GM (Hf:1 7 (w

2:

) and the rates 7 (w(), 0()),
(k) g(r))) L/ K

IV. NUMERICAL EXAMPLES

This section evaluates the efficiency of the proposed algo-
rithms by numerical examples. Table II provides the numerical
values of the main parameters taken from [21], [34] for
numerical characterization. Furthermore, the elements of the
BS-to-RIS LoS channel matrix are generated by [HpRr]n,m =
ejﬂ'((n—l) sin @, sin ¢, +(m—1) sin e?%7 sin (b,,,) , where €J0" and ¢n
are uniformly distributed as e~ ~ U(0,7) and ¢, ~
U(0, 27), respectively, and ,, = 7—6,, and ¢,, = 7+¢,, [21].
The normalized small-scale fading channel hp_ spanning from
the BS to UE k follows the classic Rayleigh distribution, while
the small-scale fading channel gain hg of the RIS to UE &k
obeys Rician distribution with a K-factor of 3. The spatial cor-
relation matrix is given by [Rg.]p.n = €I7(—7") sin dx sin O,
where ¢, and 6 are the azimuth and elevation angle for UE

k, respectively. Unless otherwise stated, P = 20dBm and
N = 100 are used. The results are multiplied by log, e to
convert the unit nats/sec into the unit bps/Hz. The convergence
tolerance of the proposed algorithms is set to 10~3. For
computational stability, 7,(;) in (12) is scaled as

(k)
— Tk

Hllnjzl

(%)

N K.

E=1,... (72)

LK %(K)

For the setup of Fig. 1 the BS and the RIS are deployed
at the coordinates of (40,0,25) and (0, 60,40) in the three-
dimensional (3D) space, while K = 10 UEs are randomly
placed in a (120m x 120m) area right of the BS and RIS.
In what follows, we refer to SR-PGS and SR-IGS as the
SR under PGS and IGS, which are achieved by iterating (18)
and (29), and (54) and (55) with 71(;) = 1. Their stand-alone
counter-parts dispensing with the RIS are referred by SR-
PGS w/t RIS and SR-IGS w/t RIS, which are achieved by
iterating (18) and and (54) with fyl(f") = 1 in the corresponding
stand-alone models. Another pair of counter-parts labelled by
SR-PGS-RIS w. random 6 and SR-IGS-RIS w. random
0 represent the SR with the PREs randomly selected, which
correspond to iterating (18) and (54) under a fixed ) =g
with ") = 1. Finally, GM-PGS-RIS and GM-IGS-RIS
represent to the achievable GMs under PGS and IGS, which
are computed by Algorithm 1 and 2.

Fig. 2 plots the SR performance versus the number M
of antennas at the BS. The SR-PGS and SR-IGS are only
slightly better than their counter-parts SR-IGS w/t RIS and
SR-PGS, because the direct channel hg spanning from the
BS to UE £ is much stronger than the reflected channel
iLR_kRé( k2 (ejo)ﬁB_R. The performance margin becomes wider
with M increased. Furthermore, SR-PGS approaches SR-
IGS for M > K in Fig. 2.



TABLE II: Major parameters setup

Parameter

Numerical value

BS-to-RIS path-loss Bp.r at the distance dgr in (4)
RIS-to-UE path-loss Br.x at the distance dgy in (4)
BS-to-UE Path-loss Bk at the distance dg in (4)

Bandwidth
Noise power density

Antenna gain Ggg of the BS and GRjs of the RIS elements

Ggs + Gris — 35.9 — 221log; o (dr) (in dB)
Gris — 33.05 — 30 log; o (dr.x) (in dB)

Gis — 33.05 — 36.7log((dp.) (in dB)

5 dBi

1MHz

—174 dBm/Hz
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Fig. 2: SR versus the number of antennas M.

Next, Fig. 3 portrays a rate distribution pattern for
(M,N,P) = (9,100, P = 20dBm). Observe in the figure
that only GM-IGS and GM-PGS are capable of avoiding the
assignment of zero rate, hence demonstrating its superiority.

12

—»—SR-IGS
- ©- -SR-PGS
10 —7— GM-IGS |
GM-PGS

rate (bps/Hz)

user index

Fig. 3: Rate distribution for M = 9.

To substantiate this fact, Table III provides the average
number of zero-rate users (ZR-UEs) for the optimization
schemes considered under different number of antennas M.
For SR-IGS and SR-PGS, the number of ZR-UEs increases
when M is reduced. SR-PGS results in more ZR-UEs than
SR-IGS, while there are no ZR-UEs in GM-IGS and GM-
PGS, confirming that both of them are beneficial in providing
the adequate rates to all users.

Furthermore, we also examine the resultant ratio of the
minimum rate and maximum rate (min-rate/max-rate) and the

resultant rate-variance of these schemes versus the number
of antennas, M. Fig. 4 shows that both GM-PGS and GM-
IGS produce min-rate/max-rates that are substantially higher
than that of SR-PGS and SR-IGS. SR-IGS produces higher
min-rate/max-rates than SR-PGS does. Fig. 4 also shows the
min-rate/max-rate of SR-PGS remains zero for M < K since
there are always some ZR-UEs. Furthermore, upon increasing
the number of AP antennas, both the min-rate and the max-
rate both are improved due to the increased benefit of spatial
diversity, but the value of min-rate /max-rate is not necessary
a monotonic function of the number of AP antennas. In Fig.
5, the rate variance of SR-PGS is seen to be twice of that
by its IGS counter SR-IGS at M = 7. The discrepancy
becomes narrower upon increasing M and it is closer to zero
for M = 11. The rate-variances are beneficially reduced by
the GM-maximization based schemes GM-IGS and GM-PGS.
Both Fig. 4 and Fig. 5 indicate the advantages of IGS over PGS
both in terms of SR and GM maximization. Fig. 6 shows the

0.5

04

v —Y

03¢ —-—x—\)
—%—SR-IGS
- ©--SR-PGS |
—— GM-IGS

GM-PGS

01r O

min-rate/max-rate

number of AP’s antennas

Fig. 4: Min-rate/max-rate versus the number of antennas M.

GM rates. As expected, GM-IGS and GM-PGS produce much
better GM rate than that of SR-IGS and SR-PGS. Note that
GM-PGS has better GM rates than GM-IGS for M > K due
to the well-known capability of PGS to mitigate the multi-user
interference, when the number of transmit antennas is higher
than the number of users.

We also consider another scenario as illustrated by Fig.
7, where the direct signal path between the BS and users is
blocked, i.e. we have hg = 0 in (2) and (4). The distances
between the BS and users becomes slightly smaller upon
deploying the BS at the coordinates (20, 0,25) and the RIS at
the coordinates (0, 30,40). In this scenario, K = 10 UEs are
randomly placed in a (60m x 60m) area right of the BS and
RIS.



TABLE III: The average number of ZR-UEs versus M

SR-PGS | GM-IGS | GM-PGS
3.13 0 0
2.37 0 0
1.64 0 0
1.10 0 0
0.72 0 0

Number of antennas | SR-IGS
M=7 0.33
M=28 0.23
M=9 0.17
M=10 0
M=11 0
16 ‘
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Fig. 5: Rate-variance versus the number of antennas M.
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Fig. 6: GM versus the number of antennas M.

RIS controller RIS
OO oOooOod
E s s [ o
s s [ s [ o
Hp_r hr-x %

UE,

() 75

Fig. 7: System model

Fig. 8 portrays the SR versus M, where SR-IGS out-

performs SR-PGS. Furthermore, both the former and the
latter substantially outperform their counter-parts SR-IGS w.
random 6 and SR-PGS w. random 6 operating without an
RIS.

32

—»— SR-IGS
- €~ 'SR-PGS
—7— SR-IGS-RIS w. random ¢
SR-PGS-RIS w. random 6

28

244

sum rate (bps/Hz)
‘\
\
Q@

number of AP’s antennas

Fig. 8: SR versus the number of antennas M.

Similarly to Fig. 3, Fig. 9 shows a typical user rate dis-
tribution, where both the GM maximization based GM-IGS
and GM-PGS schemes assign more transmit power to the
users having worse channel conditions for achieving fair rate
distributions.

—%—SRIGS
Q - © -SR-PCS

—7F—GM-IGS | |
GM-PGS

|
6 7 8 9 10
user number

Fig. 9: User rate distribution for M = 9.

Table IV shows the average number of ZR-UEs versus M,
demonstrating that the number of ZR-UEs for both SR-IGS
and SR-PGS is higher than 3, with that of SR-PGS having
higher than that of SR-IGS. As expected, there are no ZR-UEs
for GM-IGS and GM-PGS.



TABLE IV: The average number of ZR-UEs versus the number of antennas M

Number of antennas | SR-IGS
M=7 3.97
M=28 3.63
M=9 3.20
M=10 3.30
M=11 3.11

Fig. 10 and Fig. 11 plot the min-rate/max-rate and rate-
variance versus M, respectively. The min-rate/max-rate of SR-
IGS and SR-PGS remains zero for the practical range of
M € {7,...,11}. Furthermore, GM-IGS has a better perfor-
mance than GM-PGS . Fig. 11 shows that the rate variance is
substantially improved by the GM-based maximization, where
GM-IGS results in much better rate variance than GM-PGS.
The advantage of GM rate maximization based IGS becomes
quite convincing.

0.12 -

min-rate/max-rate

0.1r

—— GM-IGS | |
GM-PGS

11

0.08 ‘
7

8 9 10
number of AP’s antennas

Fig. 10: Min-rate/max-rate versus the number of antennas M.
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Fig. 11: Rate-variance versus the number of antennas M.

Finally, Fig. 12 plots the GM rate versus M, which remains
zero for both SR-IGS and SR-PGS for M € {7,...,11},
because there are ZR-UEs. The performance of GM-PGS gets
closer to that of GM-IGS for M > K. The advantage of rates
GM maximization based IGS is well justified in above results.

SR-PGS | GM-IGS [ GM-PGS
5.40 0 0
4.79 0 0
5.61 0 0
4.13 0 0
3.82 0 0
25
-
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1 | | |
7 8 9 10

number of AP’s antennas

11

Fig. 12: GM rate versus the number of antennas M.

V. CONCLUSIONS

We proposed to maximize the geometric mean (GM) of the
users’ rates for the sake of maintaining a uniform quality-of-
service for the downlink users of an RIS-aid communication
network. The computationally intractable unit modulus con-
straint imposed on the programmable reflecting coefficients
has been eliminated by directly optimizing their argument. The
problem of maximizing the users’ GM rate has been solved by
the proposed alternating descent iterations leading to a closed-
form solution for the associated convex problems and thus it
is computationally efficient. The numerical examples provided
have shown a substantially improved rate-fairness amongst the
users. Extension of the GM maximization-based approach to
multi-carrier communication is under our current study. Its
extension to the quantized RIS-aided communication is also
interesting and deserves a separate study in our future research.

APPENDIX: PROOF OF (63) AND (64)
Note that

(%) () _ AR(K) I,(k)
Qoo T Qe =% TI<%

and Qg’k(“) is symmetric, while Qé:,(:) is anti-symmetric
(QI’I(:) =—( é:,(:’))T, hence we have xTQéjl(:)x =0Vzxe

2,
RM).



Then the

LHS of (63)

(cos@ — ysin@)T (QQ}C(K) + jQéj,(:)) (cos@ + ysin@)
((cos0)T Q}f" — y(sin8)T QY™ + s(cos8)T Q]
f(sine)Tngl(f)) (cos@ + ysinB)

(cos 0)TQ§’,€(H) cosf — ](siDO)TQi’k(H) cos@

+7(cos 0)TQé:,(f) cos@ — (sin 0)TQ£:,(:) cos @
+)(cos 0)TQ§”,€(F") sin@ + (sina)TQS’k(N) sin@
—(cos G)TQé:,(:) sin@ — ](sina)TQézl(j) sin@
(cos 0)TQ§’,€(K) cos@ — (sin 0)TQ§:,(€K) cos@
+(sin0)TQ§’k('€) sin@ — (cos 0)TQ£:,(€K) sin @
RHS of (63),

proving (63).

Furthermore,
LHS of (64)
= 2R{(e®)7 Q) e}
= 2R {(COSH + 7sin )7 (Qi’k(ﬁ) + ]Q{:,(:))
(cos@ + ysinf)}

2 ((cos 0)TQ§’,€(F") cos@ — (cos 0)TQ{”,(€'{) sin @
—(sin0)TQﬁ’k(N) sinf — (sin 0)TQ{:,(€H) cos 0)
RHS of (64),

proving (64).
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