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Abstract—Integrated ground-air-space (IGAS) networks in-
trinsically amalgamate terrestrial and non-terrestrial commu-
nication techniques in support of universal connectivity across
the globe. Multi-hop routing over the IGAS networks has the
potential to provide long-distance highly directional connections
in the sky. For meeting the latency and reliability requirements
of in-flight connectivity, we formulate a multi-objective multi-hop
routing problem in aeronautical ad hoc networks (AANETs) for
concurrently optimizing multiple end-to-end performance metrics
in terms of the total delay and the throughput. In contrast to
single-objective optimization problems that may have a unique
optimal solution, the problem formulated is a multi-objective
combinatorial optimization problem (MOCOP), which generally
has a set of trade-off solutions, called the Pareto optimal set. Due
to the discrete structure of the MOCOP formulated, finding the
Pareto optimal set becomes excessively complex for large-scale
networks. Therefore, we employ a multi-objective evolutionary
algorithm (MOEA), namely the classic NSGA-II for generating
an approximation of the Pareto optimal set. Explicitly, with the
intrinsic parallelism of MOEAs, the MOEA employed starts with
a set of candidate solutions for creating and reproducing new
solutions via genetic operators. Finally, we evaluate the MOCOP
formulated for different networks generated both from simulated
data as well as from real historical flight data. Our simulation
results demonstrate that the utilized MOEA has the potential of
finding the Pareto optimal solutions for small-scale networks,
while also finding a set of high-performance nondominated
solutions for large-scale networks.

Index Terms—Aeronautical ad hoc networks (AANETs),
in-flight connectivity, multi-objective combinatorial optimiza-
tion problem (MOCOP), multi-objective evolutionary algorithm
(MOEA).

I. INTRODUCTION

In support of ubiquitous connectivity, non-terrestrial and
terrestrial convergence has already been initiated by the third
Generation Partnership Project (3GPP) [1] for improving the
availability and reliability of next-generation wireless networks
(NGWNs). Therefore, it is expected to provide seamless
connectivity between the home, the airport terminal and the
aircraft cabin in NGWNs. In contrast to enhancing a single one
of the key performance metrics, most use cases of NGWNs
are expected to find all optimal operating points in terms
of latency, throughput, energy consumption and so on. For
instance, in dense urban areas the networks are expected to
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support high speed, low latency as well as massive connectiv-
ity, while the latency and the reliability become more critical in
smart factories. Given the limited spectrum and energy supply,
these performance metrics are usually in conflict with each
other, hence striking a trade-off by simultaneously optimizing
multiple criteria relying multi-objective optimizations offers a
way forward. Therefore, the goal of the paper is to provide
connectivity during flights above the clouds by concurrently
optimizing multiple performance metrics.

In this context, aircraft rely on satellite to aircraft com-
munication (S2AC), direct aircraft to ground communication
(DA2GC) and air to air communication (A2AC). Explicitly,
geostationary earth orbit (GEO) satellites are capable of sup-
porting longer-lasting connections than DA2GC and A2AC as
a benefit of their near-global coverage, but they suffer from an
excessive propagation delay. In particular, the links between
the ground and the satellite are subject to approximately 120ms
one-way propagation delay, which constitutes a challenge
when aiming for interactive communications. Fortunately, the
medium and low earth orbit (MEO/LEO) satellites are sig-
nificantly closer to the earth, hence they have substantially
lower propagation latency than GEO satellites. More specif-
ically, the LEO satellites at 300km altitude are capable of
offering the lowest latency of any of the satellite orbits at
a propagation delay of 1ms. However, the LEO satellites
can only offer limited coverage, hence imposing different
technical challenges than those of GEO satellites. Compared
to S2AC, DA2GC has the potential of providing limited-delay
transmission as well as low-cost deployment, but suffers from
limited coverage [1]. As a result, aeronautical ad hoc networks
integrating S2AC, DA2GC and A2AC provide a promising
solution for supporting high-speed and moderate-delay in-
flight connectivity by relying on multi-hop communication
techniques [2], [3]. In particular, the integration of A2AC
and DA2GC has the promise of conveying long-distance data
packets from the ground base station (BS) to the destination
aircraft by avoiding S2AC links, whilst maintaining reliable
high-speed connections. Another potential benefit of AANETs
relying on A2AC with DA2GC is that AANETs are capable of
reducing the latency as well as the spiralling communication
cost of satellite communications.

Considering the characteristics of AANETs, communication
between the source and destination nodes that are usually
far apart relies on cooperative multi-hop transmission. The
goal of multi-hop routing is to select a subset of interme-
diate nodes to construct a multi-hop path spanning from the
source node (SN) to the destination node (DN). Regarding
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the multi-hop routing problem of AANETs, most of the
research contributions focused on finding the optimal route
in terms of a single performance metric. Specifically, in [4],
a geographic load sharing based forwarding and handover
strategy was proposed for airborne mesh networks relying on
multi-server queueing models. As a further development, a
genetic algorithm based joint routing and scheduling technique
was proposed for minimizing the weighted hop count. In
[5], the characteristics of heterogeneous airborne networks
relying on military radios were interpreted and their field
tests concerning their interaction with mobile ad hoc network
(MANET) protocols were reported on. Inspired by the accu-
rate geographic information available for aircraft, a trajectory
density based routing algorithm was developed for maximizing
the successful packet delivery probability in [6]. In practice,
routing schemes are often designed for improving the overall
system performance in terms of multiple quality of service
(QoS) parameters. A position-aware secure routing technque
was proposed in [7] with the objective of enhancing the
security of drone-assisted wireless mesh networks, whilst a
path discovery approach was invoked in [8] by incorporating
multiple path parameters. In [9], an powerful greedy rout-
ing strategy relying on probabilistic neighbour selection was
conceived for a context-aware MANET. Regarding dynamic
MANETs, some stochastic techniques such as Q-learning
based cognitive routing [10] and online routing [11] were
proposed for finding the best transmission path.

Again, most of the existing routing designs rely on a
single objective or on artificially reducing the number of
conflicting goals into a single objective. However, the rela-
tionship amongst objectives is usually rather complex and also
relies the solution space available. Let us consider the simple
example of choosing a routing path spanning from a SN to a
DN. If we have two solutions available, namely a path having
a delay of 200ms and a throughput of 2Mbps, plus a path
with 400ms and 20Mbps, the decision maker might prefer the
path with 400ms and 20Mbps for the sake of providing more
reliable services. On the other hand, if the choice is between
a path with 150ms and 50Mbps as well as a path with 100ms
and 45Mbps, the second path may be preferred for its lower-
delay and moderate-throughput services. In general, it is quite
a challenge to combine different objectives into a single objec-
tive function before the solution space is known. Similarly, it is
also hard to specify the constraints imposed on the objectives
before the solution space is known, since the resultant feasible
region may become empty, hence making the optimization
problem impossible to solve. In constrast to optimizing a single
objective, multi-objective optimization problems (MOOPs) are
capable of characterizing distinct performance metrics of a
system, which may be independent of and/or conflicting with
each other [12]. In contrast to single-objective optimization
problems that may have a unique optimal solution, MOOPs
often have a set of solutions representing the trade-offs among
these objectives, and thus MOOPs provide new opportunities
for defining problems. However, due to the uncertainty con-
cerning the solution space and the objective space, generating
the Pareto optimal set of MOOPs is computationally expensive
and often it is even impracticable. As a consequence, bio-

inspired stochastic search methods such as multi-objective
evolutionary algorithms (MOEAs) [13], multi-objective tabu
search [14] and multi-objective simulated annealing [15] etc,
have been developed for approaching the optimal trade-offs. In
particular, MOEAs possess several features that are desirable
for MOOPs and make them preferable to other optimization
methods.

Specifically, the main characteristics of MOEAs include: 1)
the intrinsic parallelism, which lends MOEAs the potential
of capturing multiple Pareto optimal solutions in a single
simulation run; and 2) exploiting synergies among the so-
lutions during evolution, which potentially allows MOEAs
to converge to the Pareto optimal solutions. Since MOEAs
operate on a set of candidate solutions, the so-called elitism
strategy was introduced for ensuring that the hitherto best
solution always survives for the next generation. In [16], a fast
and elitist nondominated sorting genetic algorithm (NSGA-
II) was proposed for handling MOOPs, which employed a
fast nondominated approach for ordering the solutions found
in each generation. In contrast to the continuous MOOPs of
[16], the multi-objective routing problem considered in this
paper is a multi-objective combinatorial optimization problem
(MOCOP) that involves a number of discrete variables. The
application of MOEAs in wireless networks has been investi-
gated in [17], [18] for striking a trade-off between the delay,
the energy consumption as well as the bit error rate (BER).
However, these algorithms are only suitable for employment
in networks having a small number of nodes. Against this
background, in this paper, we employ a MOEA, namely the
classic NSGA-II, that solves the multi-objective multi-hop
routing problem of AANETs, which is eminently simulate
for large-scale networks. The main contributions of the paper
are summarized as follows, which are boldly and explicitly
contrasted to the state-of-the art in Table I.

1) We concurrently minimize the total delay and maximize
the throughput of routing paths in in-flight connectivity
at the same time. As the two objectives are usually in
conflict in AANETs, there exists a number of Pareto
optimal solutions since no single solution is optimal
simultaneously for each objectives. Furthermore, for the
multi-objective routing problem formulated, counting
the number of solutions is #P-complete [21]. In addi-
tion to the potentially excessive solution space, another
challenge of the MOCOP formulated is the uncertainty
concerning the number of Pareto optimal solutions. To
address these challenges, we employ the MOEA for
approximating the set of the Pareto optimal solutions.

2) We present a novel technique for generating and re-
producing new solutions to our multi-objective rout-
ing problem via genetic operators during its evolution.
Specifically, a variable-length chromosome encoding ap-
proach is conceived, where a routing path is represented
uniquely and unambiguously by a sequence of node
indices (IDs). Then, a common-node based crossover
approach and a chromosome-wise mutation approach
are exploited for producing new solutions by exploiting
the interaction and cooperation among the solutions,
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Table I: Comparison of routing optimization approaches

[4] [6] [7] [8] [9] [11] [17] [18] [19] [20] This article

Single objective
√ √ √ √ √ √ √ √

Multiple objectives
√ √ √

Pareto optimization
√ √ √

Stochastic search
√ √ √ √ √ √

In-flight connectivity
√ √ √ √ √ √ √

Large-scale networks
√ √ √ √

where the knowledge of network topology is exploited
for avoiding the generation of infeasible paths.

3) We develop a multi-objective routing solution based on
NSGA-II. First, a set of solutions is generated randomly
and the solutions are encoded into variable-length chro-
mosomes for performing crossovers and mutation. With
the solutions at hand, the new solutions of the next
generation are selected by sorting them into a number of
sets based on their dominance in the objective space and
then the crowding distances are calculated within each
set. Then, the best solutions associated with higher ranks
and lower density are selected for generating a diverse
set of solutions and for guaranteeing closer convergence
to the true Pareto optimal solutions.

4) We evaluate the multi-objective routing problem formu-
lated in different networks that are generated both by
artificial simulated data and by real flight data collected
from the North-Atlantic region. Specifically, a pair of
metrics are introduced for assessing the quality of the
trade-off solutions found by the MOEA employed. Then
an extensive simulation study is provided for character-
izing the networks having different sizes. Explicitly, the
number of possible solutions spans from a small number
to an extremely large number in the real historical flight
data set. The results demonstrate that the MOEA is
capable of obtaining a set of beneficial solutions of the
multi-objective routing problem formulated in terms of
their spread and their convergence to the optimal trade-
off solutions.

A. Basic Concepts and Organization

In this paper, a directed graph (or digraph) is defined as
a graph that is made up of a set of vertices connected by
edges, where the edges have a direction associated with them.
A complete digraph is a digraph in which every pair of
distinct vertices is connected by a pair of unique edges (one
in each direction). A simple path is a path that contains no
repeated vertices. Inspired by biological evolution, in MOEAs,
any solution candidate is termed as an individual and all
possible solutions are referred to as individuals. The set
of possible solutions is called the population. To be more
precise, the population in MOEA is a multiset, which may
contain multiple copies of the same individual. Note that an

individual is generally not a decision vector, but rather encodes
it based on an appropriate representation. Thus an individual
is also called a chromosome in MOEAs. The mating pool
is formed by candidate solutions that are used for creating
our next-generation population. Solutions that are included in
the mating pool are referred to as parents. Every two parents
selected from the mating pool will generate two offspring
(children). In MOOPs, the set of optimal solutions in the
decision space is referred to as Pareto (optimal) set and its
image in the objective space is called Pareto (optimal) front.
Moreover, the key notations used in the paper are given in
Table II.

The rest of this article is organized as follows. Section II
presents the system model, followed by MOOP modelling
and the basic concepts of MOOPs in Section III. Section
IV is devoted to the MOEA employed in terms of genetic
operators and its implementation procedure for solving the
MOOP considered. The size of solution space and performance
metrics of assessing the MOEA are introduced in Section
V. Section VI offers our simulation results and discussions,
followed by our conclusions in Section VII.

II. SYSTEM MODEL

We consider an AANET comprised of the ground layer
and the aerial layer, where the aircraft want to connect to a
certain ground BSs either via direct communication or multi-
hop communication techniques. In particular, the aircraft can
build communication links with other aircraft and ground BSs
via A2AC and DA2GC techniques, respectively, in order to
improve the onboard Internet experience of aircraft passengers.
Denote the nodes in the system encompassing aircraft and
ground BSs as a set of nodes with N = {1, 2, · · · , N}, where
each node n ∈ N uniquely corresponds to a specific entity in
the system. Moreover, the network is operated in half-duplex
mode and in an interference-free scenario such as in [4]–[6].
To guarantee that the signal received at the destination node
has a sufficiently high reliability, the tele-traffic emanating
from the source on the ground is expected to pass through the
links with adequate quality, but it may encounter increased
delay by passing through several relaying nodes. Therefore,
there are trade-offs between the reliability and the delay.
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Table II: Table of parameters

List of Key Symbols
s Source node X Matrix representation of a path
d Destination node X Decision space
nk Node k Y Objective space
N Total number of nodes F Set of ordered fronts
P/C Population FPF Pareto front
P Population size F̃∗ Obtained nondominated front
G Generations fm(·) The i-th objective function
〈k〉 Average degree γ Pareto front acquisition fraction
ρ Network density δ Pareto front acquisition success rate

III. MOOP MODELLING

In Section III-A, we will formulate the objective functions
(OFs) in terms of the end-to-end delay as well as the end-
to-end throughput of in-flight connectivity. Then in Section
III-B, we present the definition of our multi-objective routing
problem, followed by the related concepts of Pareto optimality.

A. Formulation of OFs

Let ei,j and R denote the link spanning from node i to
node j and a route from the SN s to the DN d. Let xi,j
be a binary indicator of the link (i, j) in a route R, where
xi,j = 1 if the link ei,j exits in R, otherwise xi,j = 0. Hence
for any routing path, there is a unique indicator matrix X =
(xi,j) ∈ BN×N with B = {0, 1} and the feasible set of all
legitimate routes spanning from the source to the destination
is X = {X | x subjects to (1)}, where (1) is given by

∑
j 6=i
j∈N

xi,j −
∑
j 6=i
j∈N

xj,i =


1, if i = s,

−1, if i = d,

0, otherwise,

(1a)

∑
j 6=i,j∈N

xi,j

{
≤ 1, if i 6= d,

= 0, if i = d,
(1b)

xi,j ∈ {0, 1}, ∀i, j ∈ N , i 6= j, (1c)

where (1a) and (1b) ensure that the solution found for the
problem formulated does indeed represent a legitimate path
from the SN on the ground to the DN in the air. More
specifically, (1a) represents that the ground BS acting as the
SN and the target aircraft as the DN have a single outgoing link
and a single incoming link, respectively, while the number of
incoming and outgoing links for the other intermediate nodes
(i.e., aircraft, ships or satellites in the system considered) are
the same in a legitimate route. Furthermore, (1b) represents
that all aircraft except for the target aircraft have at most one
outgoing link in a legitimate route.

We assume that the channel between a pair of nodes is sym-
metric and the channel between the transmitter and receiver
nodes is perfectly known. Since aircraft typically fly 10km
above the ground level, they benefit from negligible scatterers
and shadowing effects. Hence, we assume that communication
links in the AANET networks considered have a line of sight

(LoS) propagation model [2], [22]. As a result, the data rate
in the link ei,j can be expressed as

Ci,j =B log2

(
1 +

Pi ·Gti ·Grj ·Hi,j

σ2

)
,

=B log2

(
1 +

Pi ·Gti ·Grjλα

(4π)ασ2dαi,j

)
,

(2)

where λ = c
fc

is the wavelength, c = 3 × 108m/s and fc
is the carrier frequency, while B is the bandwidth allocated
to the link. Furthermore, Gti and Grj are the transmit and the
receive antenna gain, respectively. Finally, di,j is the distance
between aircraft i and aircraft j, α is the path loss exponent
and σ2 denotes the noise power.

According to the stability condition of queuing theory, the
end-to-end throughput is bounded by the specific hop having
the lowest throughput [23]. Therefore, the throughput of a
route from the source to the destination is

C(X) = min
xi,j∈X

xi,jCi,j . (3)

The total delay Dtot is defined as the sum of the propagation
delay, relaying delay and file-transfer delay of Dpr, Dtr and
Ddf , respectively. Therefore, the delay from node i to node j
can be expressed as

Di,j =

{
Dtr
i,j +Dpr

i,j , if j is the destination node,

Dtr
i,j +Dpr

i,j +Ddf , otherwise,
(4)

where Dtr
i,j = L

Ci,j
denotes the file-transfer delay for a file

size of L from node i to node j, Dpr
i,j =

di,j
c denotes the

propagation delay of link ei,j , and Ddf denotes the decode-
and-forward (DF) relaying delay over link ei,j . It should be
pointed out that the DF relaying delay depends on decoding
and encoding techniques as well as the hardware performance,
etc, which would alter the DF relaying time. In this paper ,
the DF relaying delay is assumed to be 20ms for simplicity.
Correspondingly, the total delay for a route R is given by

D(X) =
∑

xi,j∈X

xi,jDi,j . (5)

Note that the throughput and the delay of a routing path
usually cannot reach their individual best value simultaneously.
To elaborate a little further, Fig. 1 provides a concrete example
for illustrating that the delay and the throughput constitutes a
pair of conflicting objectives. Specifically, there are four nodes
in the network considered in Fig. 1, where the source node n0
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wants to send a message to the destination node n3, where n1
and n2 are the intermediate nodes between n0 and n3. There
are two optional routes from n0 to n3: R1 : n0 → n3 and
R2 : n0 → n1 → n2 → n3. In our manuscript, the total
delay is defined as the sum of the propagation delay, relaying
delay and file-transfer delay. Since the relaying detection and
retransmission delay are taken into account, a route will have
a much longer delay when it contains intermediate nodes. This
is because each relay will add a certain extra delay, depending
on whether amplifying-forward or decode-forward relaying is
used. As for the throughput, it is determined by that of the
lowest-throughput link of a complete route. Let us consider
a concrete example, where d0,1 = d1,2 = d2,3 = 300km
and d0,3 = 700km for the simplicity of calculations. Cor-
respondingly, the throughput and the delay of the two routes
R1 and R2 can be obtained based on equations of (3) and
(5) in the manuscript, respectively. Based on the parameter
setups used in the manuscript, we can obtain the the delay
and the throughput on each edge given in Fig. 1, where
the units of the delay and the throughput are ms and km,
respectively. We can see that the delay and the throughput over
route R1 of our example are 60ms and 35Mbps, respectively,
while route R2 has the delay of 15ms and the throughput of
16Mbps. This indicates that the delay and the throughput are
a pair of conflicting objectives, hence generally they cannot
simultaneously reach their best value. Furthermore, note that
the relationship between the delay and the throughput relies
the topology of the AANET to be constructed. When the
the solution space is unknown, it is quite a challenge to
combine different objectives into a single objective function or
to specify the constraints imposed on the objectives, since the
resultant feasible region may become empty. Therefore, we
formulate the optimization of the delay and the throughput as
a MOOP.

𝑛!
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(27, 35)

(7, 35)

(15,16)
300𝑘𝑚
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300𝑘𝑚

Figure 1: An example of illustrating two conflicting objectives
in terms of the throughput and the delay of an AANET.

B. Problem Model
To provide low-delay and high-reliability in-flight connec-

tions, we construct the MOOP of minimizing the total delay
while maximizing the throughput of the selected route, which
can be formulated as follows:

min D(X) and max C(X)

s.t. X ∈ X .
(6)

Note that Problem (6) is a MOCOP, where X denotes the
matrix of decision variables, while X represents the decision
space. It is challenging to solve Problem (6) due to the
combinatorial nature of D(X) and C(X), especially for a non-
monotonic C(X).

For solving Problem (6), we transform it into the standard
MOCOP having a minimization-type objective as follows:

min f(X) = [f1(X), f2(X)]

s.t. X ∈ X , f(X) ∈ Y.
(7)

where f1(X) = D(X) and f2(X) = −C(X), while f(X)
denotes the vector of OFs. Furthermore, the values of OFs are
stated in an objective vector, which constitutes the objective
space Y , i.e., f(X) ∈ Y for any X ∈ X . In contrast to single-
objective optimization problems, there exist multiple optimal
objective vectors representing different trade-offs between the
objectives. In particular, there is no single globally optimal
solution, and it is often necessary to determine a set of
points that all fit a predetermined definition for an optimum.
Therefore, we introduce a few fundamental concepts in terms
of optimality used in MOOPs.

Definition 1. Pareto dominance: Let X1,X2 ∈ X be a pair
distinct feasible solutions of Problem (6), X1 dominates X2,
also denoted as X1 ≺ X2, if and only if

1) fi(X1) ≤ fi(X2) for any i ∈ {1, 2}, and
2) there is at least one OF value satisfying the strict inequal-

ity, i.e. at least for one component fi(X1) < fi(X2), i ∈
{1, 2} is true.

Accordingly, we can say that the objective f(X1) dominates
f(X2), denoted as f(X1) ≺ f(X2), if X1 dominates X2.

Therefore, we have X1 ≺ X2 ⇔ f(X1) ≺ f(X2). Note
that there may exist several optimal solutions in the decision
space having the same objective vector, corresponding to a
single optimum in the objective space.

Definition 2. Pareto optimal: A solution, X∗ is Pareto optimal,
if and only if there doesn’t exist another point, X ∈ X , such
that f(X) ≺ f(X∗)

That is a solution is said to be Pareto optimal if it is not
dominated by any other solution in the decision space. The
set of Pareto optimal solutions in the decision space X is
termed as the Pareto optimal set X ∗ with X ∗ ∈ X , while
the corresponding objective vectors in the objective space
constitute the Pareto front Y∗ = {f(X∗), ∀X∗ ∈ X ∗} ∈ Y .

Remark 1. Note that Problem (6) has the same Pareto optimal
set as Problem (7), while the Pareto front of Problem (6) is
Y∗ = [f1(X∗),−f2(X∗)].

Due to the discrete structure of Problem (7), it is not
sufficient to determine the set of all Pareto solutions (or
nondominated vectors in objective space) by aggregating the
objectives through weighted sums, because usually there exist
Pareto solutions, which are not optimal for any weighted sum
of the objectives [12]. In fact, generating the Pareto set is often
computationally expensive and may even be infeasible since
the complexity prevents exact methods from being applicable.
For this reason, we employed NSGA-II based on stochastic
search strategies for approximating the Pareto optimal set.

IV. PROPOSED SOLUTIONS

To mimic biological evolution, a MOEA generally includes
the evolutionary operators of crossover, mutation and selection
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[24]. In particular, the crossover and mutation operators aim
for generating new solutions within the search space by
altering the existing ones. Specifically, crossover operator re-
combines the genetic information of two parents for generating
new offspring and the mutation operator modifies individuals
by transforming a part according to a given mutation rate.

A. Path Encoding

How to encode a path in the graph is key for developing
a MOEA to Problem (6). From (1), we can see that each
path includes N2 binary variables, hence the length of a
chromosome is extremely high when using binary encoding.
On the other hand, in contrast to the permutation encoding
methods used for the 01 knapsack problem and the travelling
salesman problem (TSP) [25], the lengths of routing paths
in our problem vary. Hence we opt for directly encoding the
chromosomes based on node IDs [26], [27], which results in
variable-length chromosomes.

Explicitly, the node-ID based path representation uses a
sequence of integers for representing a chromosome, where
each gene represents the index of a node which a routing path
passes through. As a result, each locus of the chromosome
denotes the hop index of a node in a path. Note that in all
chromosomes, the first and the last genes are reserved for
the source node and the destination, respectively. Furthermore,
the length of the chromosome is variable, but the maximum
length of a chromosome is N . Explicitly, the number of the
nodes in the longest path spanning from the source node to
the destination is no more than N . Having said that, we can
see that any routing path of Problem (6) can be encoded by a
chromosome according to the topology of the network. More
specifically, considering a specific chromosome, the first gene
is the SN, and the second gene is randomly selected from
the nodes that are directly connected with the SN. Then the
node chosen is removed from the routing table to prevent the
node from being repeatedly selected, so that having loops in
the routing path can be avoided. Fig. 2 illustrates a simple
network as well as the chromosome of a routing path. Fig. 2(b)
illustrates the representation of a chromosome that encodes a
routing path from s to d via nodes n1 · · ·nk. Note that each
node in the chromosome denotes a gene and there are (l+ 1)
genes in total.

B. Population Initialization

Defining the population initialization of MOEAs requires
that of the initial population size and the specific procedure of
initializing the population. Since the population size relates to
the nature of the problem, a very large population will slow
down the algorithm, while a smaller population might result
in a local solution. As a result, deciding a adequate population
size is crucial for approaching the true Pareto front. However,
due to the problem-dependent and metaheuristic natures of
MOEA [28], determining the best population for general
MOOPs is challenging and unattainable. For this reason, in
this paper the population is initialized by several hundreds of
possible solutions [16], [25], [29].

Furthermore, there are two popular ways of generating
the initial population [24]: heuristic initialization and random
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Figure 2: An example of a routing path and its chromosome.

initialization. Although the heuristic initialization may help the
MOEA to find solutions faster, it may just explore a small part
of the solution space and never find globally optimal solutions
because of the lack of diversity in the population. Therefore,
we opt for the random initialization approach that are used
in most literature such as [16], [25]. It should be noted that
the randomly initial population only contains a set of possible
legitimate paths, but exclude the infeasible paths1.
C. Genetic Operators

The task of genetic operators is to create new populations
from the existing solutions, where crossover operation is used
for generating offspring. Then the new offspring are mutated
with a small probability, which helps avoid getting trapping
in local optima. Due to the variable-length nature of the
chromosomes, specific crossover and mutation techniques are
required.

1) Crossover: The crossover operations are used for gener-
ating new offspring from the current population in order to find
better ones. In the crossover procedure of the multi-objective
routing problem, two chosen chromosomes (parents) exchange
their partial routes to generate new offspring. In particular, the
resultant offspring must represent one of the routes from the
source node to the destination node, otherwise it is a lethal
gene (infeasible route). In contrast to the conventional on-
site crossover and to the binary crossover [16], in this paper
we adopt the common node based crossover method [27],
where the pair of chromosomes selected for the crossover
operation must have at least one common gene (node), except
for the source and destination nodes, but they can be located
at different locus. Furthermore, the crossing point will be
selected randomly if there are multiple common genes between
two chromosomes. Note that due to the sparsity of adequate-
quality links in AANETs, the uniform crossover using a mask
is likely to produce illegal routing paths. For instance, some
airplanes in the routing path generated are not connected in the
AANET or some airplanes will be considered more than once.
To avoid these issues, we adopted the common node based

1In this paper, there are two types of infeasible paths: the paths that include
at least one link that is nonexistent in the network and the paths with loops.
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crossover method in our work, which guarantees that any path
generated by the crossover corresponds to a legitimate route
in the AANET. More sophisticated design strategies can be
developed for further enhancing the attainable performance of
the networks considered, but this is beyond the scope of this
manuscript.

Fig. 3 highlights the crossover procedure, where a pair
of chromosomes, Parent 1 and Parent 2, are selected, which
contains the pair of common nodes n1 and n3. Therefore,
there are two pairs of possible crossing points (2, 1) and (3, 2),
which are also called potential crossing sites in MOEAs. Then,
one pair of the crossing sites is randomly selected such as
(2, 1) to generate a pair of new chromosomes, namely Child
1 and Child 2. It is possible that loops are generated during
crossover, which violates the constraints of (1a). Although
such chromosomes (routes with loops) will be gradually
removed from the population, a repair approach is applied
in this paper, which is capable of removing all loops in a
route. The detailed implementation of the crossover procedure
is given in Algorithm 1. The newly created offspring Q can
then be mutated, as discussed in the following section.

2) Mutation: The offspring created by crossover are mu-
tated by modifying small parts of the individual with a
mutation probability pm. In this paper, mutation alters one or
more gene values in a chromosome except for the source and
the destination nodes, thus a routing path may change entirely
from the previous path. Explicitly, the mutation procedure first
randomly selects a mutation point from the locus of [1, l− 1]
for a chromosome to be mutated. As a result, the chromosome
is divided into two portions at the mutation point, where the

Algorithm 1: The crossover procedure

Function crossover(P): /* crossover */
1 Set the offspring set Q = ∅;
2 Evenly divide P into two random subsets P1 and

P2;
3 while P1 6= ∅ do
4 Choose Parent1 and Parent2 from P1 and

P2, respectively;
5 Calculate C = (Parent1 ∩ Parent2)/{s, d};
6 if C 6= ∅ then
7 Randomly select a pair of crossing sites

(c1, c2);
/* "+" here means concatenate
the two list. */

8 Child1 = Parent1[0 : c1] + Parent2[c2, :];
9 Child2 = Parent2[0 : c2] + Parent1[c1, :];

10 if There exists loops in Child1 or Child2
then

11 Repair them by removing the loops;

else
12 Child1 = Parent1; Child2 = Parent2;

13 Add Child1 and Child2 into Q;

14 return Q;

! "" "$ ") #Parent 1:

!

"!

""

#"$ "*

"!

All possible crossing points:  (2,1), (3,2)

Locus: 0 1 2 3 4 5 6

! "! "$ #Parent 2: "*

Child 1:

Child 2:

") "+

"+

! "" "!

! "!

"$ #"*

Crossover with (2,1):

"$ ") #"+

Figure 3: An example of the crossover procedure for a pair of
routes.

former partial-path right before the mutation point (excluding
the mutation node) will be passed on to the next generation.
Then the latter portion (including the mutation node) will
be replaced by an alternative partial-path, which is randomly
generated between the mutation node to the destination node
according to the network topology information. Note that due
to the random effects in the genetic operators, some individuals
in the mating pool may not be affected by the variation and
simply represent a copy of a previously generated solution.

More specifically, Fig. 4 illustrates an example of the muta-
tion procedure, where the chromosome selected to be mutated
contains four possible mutation points {1, 2, 3, 4}. Then one
of the possible mutation point is picked randomly, such as
point 2, which corresponds to node n1. From the network
topology information of Fig. 2(a), we can find that there are
three possible candidates {n3, n5, n6} of n1 to be mutated,
where one of them will be selected randomly such as n5. The
above procedures are then repeated until the destination node
is picked. The implementation procedure of mutation is given
in Algorithm 2.

3) Naive Genetic Operations: In the naive genetic opera-
tors, the offspring are mutated randomly without exploiting
any specific network-related constraints. Explicitly, in the
naive genetic operators, the node selected to be mutated will be
randomly changed to an arbitrary node. As a result, infeasible
chromosomes may be generated, for which no routing path
exist in the network and these chromosomes can be gradually
removed with the aid of natural evolution. Note however
that these infeasible paths may in fact generate more feasible
routing paths than the specific genetic operators advocated. On
the other hand, these infeasible paths may continue to produce
infeasible paths via the genetic operators, at the expense of
evaluating a reduced number of feasible routing paths. The
performance of the MOEA using naive genetic operations will
be detailed in the results of Section VI.

D. Selection

The goal of selection is to pick out the good solutions
from the entire population in order to create the offspring
of the next generation. Additionally, maintaining a beneficial
solution-diversity in the population during selection is also
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Figure 4: An example of the mutation procedure for a route.
Algorithm 2: The mutation procedure

Function mutation(Q): /* mutation */
1 for each chromosome c ∈ Q do
2 Random generate a mutation probability ε;
3 if ε ≤ the mutation rate then
4 Remove c from Q;
5 c′ = c;
6 Randomly select a valid mutation point i

from c′;
7 while the node c′[i] 6= d do
8 Get the set Si of the potential nodes

that in c[i];
9 if Si 6= ∅ then

10 Randomly choose a node n′ from
Si;

11 c[i] = n′

else
12 c′ = c;

13 Add c′ to Q;

14 return Q;

critical to the success of MOEAs, so that they converge to the
Pareto optimal front. To this end, various selection methods
have been developed [25] by incorporating different concepts
such as elitism and niche, which are independent of the fitness
assignment method used in conventional GAs. In this paper,
we employ the fast elitist nondominated sorting approach
of [16] for locating a series of nondominated fronts based on
the domination count. The corresponding MOEA is termed
as NSGA-II. Explicitly, for a chromosome c, the domination
count nc is defined as the number of points that dominates
the point f(c) in the objective space with c ∈ C. Explicitly,
the domination count of the points in the first nondominated
front F1 is zero, i.e. nc = 0 for f(c) ∈ F1. Then we have
nc = i − 1 for any point f(c), c ∈ C that belongs to the i-th
nondominated front Fi. Upon assuming that the maximum of
the domination count in C is M , there are M+1 sorted fronts
in total. The procedure of the nondominated sorting approach
in NSGA-II is illustrated in Algorithm A.1 of Appendix B,
where the size of the vector is n is |C| = 2P .

The selection process is based on the sorted front set F
obtained from Algorithm A.1. To get a beneficial uniform
spread of the Pareto front, the crowding distance is used for

quantifying the density of points surrounding a particular point
of f(c), c ∈ C. For a point f(c) in the front Fi, the crowding
distance can be expressed as

Dcd =

2∑
m=1

|fm(c′′)− fm(c′)|
fmax
m − fmin

m

, (8)

where f(c′′) and f(c′) are the points that are closest to the point
f(c) at Fi from either side of f(c), respectively. Furthermore,
fmax
m and fmin

m are the maximum and minimum values of
the objective function fm(·). Therefore, the crowding distance
Dcd of point f(c) can be viewed as the average side length
of the rectangle with the two opposite corner points of f(c′′)
and f(c′). The procedure of selection is stated in Algorithm
A.2 of Appendix B, where Dcd is the crowding distance
set of all points at the front Fi. From Algorithm A.2, we
can see that the first front has the top priority to be chosen
for later evolution. The crowding distance based selection is
required for Fi only when the cumulative population from
F0 to Fi is larger than the population size P . Note that as
discussed in [16], the computational complexity of Algorithm
A.2 is dominated by that of the nondominated sorting, that is
O(GP 2).

E. The Procedure of The MOEA Employed

The procedure is summarized in Algorithm 3, which deter-
mines a nondominated front F∗ based on the network topology
information. It commences by generating an initial population
P0 having P chromosomes and then the crossover and muta-
tion operators are applied to P0 for producing P offspring Q0.
At t-th generation, all chromosomes both in Pt and Qt would
be evaluated in terms of both OFs, and thus each element in Ct
has two records: the solution and its OF values. Afterwards,
Ct is partitioned into a sequence of subsets/fronts based on
their ranks. For constructing the new front from Ct, the elitist
and density inspired selection procedure is performed, which
selects P best solutions for storing in P , so as to create
the next-generation population. When the stopping criterion
is satisfied, that is the maximum number of generations has
been considered, the best nondominated front obtained would
be output. Furthermore, the goal of the comparison in line
9 - line 11 is to obtain the best spread of the front from
the union chromosomes of the last two generations. Note that
for the sake of improving the search efficiency, Algorithm 3
confines its search within the valid solution space by avoiding
the introduction of infeasible solutions into the population
based on the generic operators discussed in Algorithm 1 and
Algorithm 2. Since the complexity of both the initialization
and the genetic operators have the order of O(P ), hence the
overall complexity of Algorithm 3 is dominated by the fast
nondominated sorting of [16], that is O(GP 2).

V. SOLUTION SPACE AND PERFORMANCE METRICS

In this section, we first present the network characteristics
from the perspective of complex networks. Along with these
characteristics, the approximations of the solution space size
are provided. Finally, the performance measures of assessing
the solution of MOOPs are discussed.
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Algorithm 3: The NSGA-II based MOEA harnessed
for locating the nondominated solutions

Input : Network topology information
Output: F∗
Init. : the population size P and the number of

generations G.
1 Randomly generate parent population P0 based on the

network topology information;
2 for t = 0 : G− 1 do
3 Qt = crossover (Pt);
4 Qt = mutation (Qt);
5 Evaluate the objective values of all chromosomes

in Ct = Pt ∪Qt;
6 F = Fast-nondominated-sort (Ct);
7 Pt+1 =selection (F , Ct);

/* Comparison */
8 if t > 0 then
9 Ct = Pt+1 ∪ F∗;

10 F = Fast-nondominated-sort (Ct);
11 F∗ =selection (F , Ct);

else
12 F∗ = Pt+1;

A. Network Characteristics

The AANET can be defined as a weighted digraph G =
(N , E) of order N , composed of N = |N | nodes and
E = |E| edges. As aircraft fly from one airport to another, the
distances amongst aircraft gradually change, which results in
a dynamically evolving network versus time. We characterize
the networks considered in terms of their average degree and
network density.

Explicitly, the node degree is given by the number of edges
connected to it. In an AANET, the node degree denotes the
number of aircraft connected to a specific aircraft and thus
reflects its accessibility. The average degree 〈k〉 of G is the
average number of edges per node in the graph, which is given
by

〈k〉 =
E

N
, (9)

The network density ρ of G is defined as the actual number
of edges E divided by the total number of possible edges in
G having N nodes. Hence it quantifies how many edges are in
a set E compared to the maximum possible number of edges
among all vertices in that set, which is given by

ρ =
E

N(N − 1)
, (10)

where N(N − 1) is the total number of possible edges of G.
If the number of edges obeys E << N(N − 1), it is referred
to as a sparse network. Naturally, having a higher density for
a network implies having a higher complexity of finding the
best routing path.

B. Size of the Solution Space

In this section, we study the size of the solution space, which
indicates whether it is possible to find the true Pareto front

by exhaustive search. In a graph G, a path without repeated
nodes is termed as a simple path. Hence the valid routing path
in our problem are thereby simple paths emanating from s to
d. However, determining the number of simple paths leading
from s to d is challenging, since the problem of counting the
number of simple paths between s and d in a graph is #P-
complete [21]. More explicitly, this means that counting the
number of simple paths between s and d in AANETs is at
least as hard as an NP-complete problem. It is known that for
a complete digraph, the formula of the total number of simple
paths between s and d can be expressed as

K =

N−2∑
k=0

(N − 2)!

k!
. (11)

Note that we have
∑N−2
k=0

1
k! = e when N →∞. Therefore,

(11) can be approximated as follows:
K ≈ (N − 2)!e. (12)

Note that using a modified depth-first search to generate the
paths, a single path can be found in O(N + E) time at most
but no efficient algorithm exists for counting the number of
such paths for general graphs [30]. As a result, we present the
approximations of the number K in general graphs. We first
introduce the method proposed in [31] to roughly estimate the
size of the solution space, which is given by

K =

N−2∑
k=0

(N − 2)!

k!
ρN−1+δ(N,ρ) ≈ (N − 2)!eρN−1, (13)

where δ(N, ρ) is a function of N and d. In particular, in
the second equation, we used the fact that δ(N, ρ) → 0
as N → ∞. Note that the approximation of (13) becomes
not accurate when ρ ≤ 0.1. Therefore, we present another
estimation as follows. Since G has E edges, it is equivalent a
complete digraph with N ′ vertices with N ′(N ′− 1) = E. By
computation, we have N ′ = d 1+

√
1+4E
2 e. As a consequence,

the number of simple paths between s and d is (N ′ − 2)!e.

C. Performance Metrics in MOOP

In contrast to single-objective optimizations, there are three
goals in multi-objective optimization [16], [25]: 1) A good
distribution of the points at the obtained front is desirable.
Generally, we expect that the points uniformly distributed at
the front obtained. 2) The distance of the resultant front to
the Pareto optimal front should be minimized, which relies on
a certain distance metric. 3) The extent of the resultant front
should be maximized. That is for each objective, a wide range
of values should be covered by the front obtained. Note that
this paper aims to illustrate the performance of the MOEA with
the designed genetic operators and the naive genetic operators
in the multi-objective routing problem formulated in small-
scale AANETs. Therefore, the C-measure2 of [25] is adopted,
which can reflects the convergence of the obtained solutions.
The definition of C-measure of [25] is given as follows.

2 More comprehensive performance metrics like HV and IGD+ [32]
associated with more sophisticated multi-objective optimization algorithms
will be designed for the challenging multi-objective routing problem of
AANETs in our future research.
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Definition 3. C-measure : Let Y1,Y2 ∈ Y be two sets
of objective vectors. The C function maps the ordered pair
(Y1,Y2) to the interval [0, 1]:

C(Y1,Y2) =
|{y2 ∈ Y2 | ∃ y1 ∈ Y1 : y1 � y2}|

|Y2|
. (14)

Here C(Y1,Y2) = 1 entails that all points in Y2 are weakly
dominated by Y1, while C(Y1,Y2) = 0 represents that none of
the points in Y2 are weakly dominated by Y1. In our problem,
the Pareto front is constructed by a finite number of discrete
points in the objective space. Therefore, the C-measure can
be transformed into a simpler form, when the Pareto front is
known.

Proposition 1. Pareto front acquisition fraction (γ): Let FPF
denote the complete Pareto front set. Given an approximated
Pareto front set F̃∗ obtained by Algorithm 3, C(F̃∗,FPF )
can be expressed as

γ = C(F̃∗,FPF ) =
|F̃∗ ∩ FPF |
|FPF |

, (15)

where F̃∗ denotes the set of points at the front obtained by
the MOEA employed and FPF represents the set of points at
the true Pareto front.

Proof. See Appendix B.

The values of γ indicate the coverage extent of the obtained
nondominated front to the Pareto optimal front. In parlance,
γ is the fraction of the Pareto optimal front that is covered by
nondominated front obtained. In addition, due to the stochastic
nature of the genetic operators, multiple runs are usually
performed for mitigating the randomness of the solution.
Therefore, the notion of the success probability is introduced
for characterizing the nondominated front obtained.

Definition 4. Pareto front acquisition success rate (δ) is
defined as the number of the event where the nondominated
front obtained F̃∗ is indeed the true Pareto front FPF divided
by the total number of events, which can be expressed as

δ =

∑R
r=1 1F̃∗=FPF (r)

R
, (16)

where R is the total number of events.

VI. RESULTS AND DISCUSSIONS

In this section, we evaluate the solutions obtained by
computer simulations relying both on simulated data and on
our real flight data. Specifically, we first study the performance
of a series of small-scale networks, where the true Pareto front
is available by the exhaustive search. Then, in Section VI-B we
test our algorithms using three large datasets collected from
real flights. It is worth pointing out that due to the stochastic
nature of MOEAs, confidence intervals may be involved for
characterizing the average performance of the MOEAs in the
specific context of AANETs.

A. Simulation Results

In this section, we evaluate the performance of the proposed
solutions based on computer simulations. The nondominated
front obtained by Algorithm 3 is compared to the true Pareto

optimal front obtained by exhaustive search, when the solution
space is not very large. Moreover, we also considered a naive
approach termed Naive approach, where the naive genetic
operations discussed in SectionIV-C3 are adopted. For visual-
ization, the boundary of the objective space is also plotted.
In all simulations, the mutation rate is 0.7, the population
size is 20 and the maximum number of generations is 100,
unless specified otherwise. Note that the mutation rate in the
paper refers to the chromosome-wise mutation rate. The values
of communication parameters are L = 200Kbit, while the
system operates at the mm-Wave frequency of fc = 31 GHz
and the noise power is σ2 = −132 dBm [22]. The other
parameters used in our simulations are the same as those in
[2]. Specifically, the transmit powers of the ground BS and of
the aircraft are 45dBm and 30dBm, respectively. Furthermore,
we have Gti = Gri = 25dB for the ground BS and the aircraft
along with B = 200MHz and φ0 = 0dB. The heights of the
ground BS, the aircraft as well as the satellite are 50m and
10.7 km, respectively.

We consider an aircraft flying from London Heathrow
(LHR) to John F. Kennedy (JFK) international airport
as shown in Fig. 5, in the region having the latitude
range of lat ∈ [51.47◦, 55.75◦] and the longitude range
of lon ∈ [−20.78◦,−0.46◦]. The ground BS is at
(lon, lat) = (−0.46◦, 55.75◦) and the target aircraft is located
at (lon, lat) = (−20.78◦, 51.47◦). Consequently, the flight
distance between the ground BS to the target aircraft is around
1416km, hence they cannot communicate directly over the
horizon. There are Ni = 10 intermediate aircraft that are
randomly generated in the region of loni ∈ (−20.78◦,−0.46◦)
and lati ∈ (51.47◦, 55.75◦). The height of the ground BS is
50m and the aircraft altitude is 10.7km, respectively. In the
example of Fig. 5 termed Network-1, we have 12 nodes and
76 edges. Furthermore, the total number of possible paths from
s to d is K = 56, 514, which can be computed by conventional
enumerating.

Fig. 5(b) shows the Pareto front found by different algo-
rithms as well as all the possible individuals. We can see from
Fig. 5(b) that the individuals are distributed in strips since
the throughput is not a monotonically increasing function of
the routing path length, which remains constant for different
route length and delays. For instance, we assume that the link
n8 → n2 has the minimum rate C0 of all links in the network.
Then we have the two routing paths s → n8 → n2 → d and
s → n1 → n6 → n8 → n2 → d, which have the same
throughput but different delays. Furthermore, we also plot
the minimum delay and maximum throughput of the network
attained by single-objective optimization, respectively. Here
the crossing point O at the top corner of Fig. 5(b) denotes
the conceptual optimum that is actually unachievable in most
networks in practice. For convenience, the points of the fronts
attained by different approaches are connected by dashed
lines. We observe that the Pareto front contains five points
numbered as {1, · · · , 5} in Fig. 5(b), which are found by
exhaustive search for comparison. Explicitly, given an AANET
constructed, all possible solutions can be generated by efficient
path-finding methods, such as the family of depth-first search
based algorithms [30]. Then, comparisons of Pareto domi-



11

(a) Network-1 with 12 nodes and 76 edges. (b) Nondominated front obtained by different approaches.

Figure 5: Comparisons of different solutions in a specific network.

nance between a specific solution and all the other solutions in
the solution space can be carried out exhaustively for the sake
of checking whether the specific solution is Pareto optimal.
For instance, given a solution c of the entire solution space
C, if c is nondominated by any c′ ∈ C−c with C−c being the
set that excludes c, then the nondominated solution c is Pareto
optimal and the point in the objective space associated with c
is on the true Pareto front. As a result, the true Pareto front can
be obtained by repeating the comparisons until all solutions
are checked. Each point at the Pareto front represents a certain
trade-off between the delay and the throughput. Explicitly, the
network has the minimum delay at point 1, but suffers from the
lowest throughput, while the network at point 5 has highest
throughput but also the maximum delay. The points at the
orange solid line are the OF values computed by using single-
objective optimization. Moreover, we observe from Fig. 5(b)
that the proposed approach finds the complete Pareto front,
while the naive approach finds four points at the nondominated
front obtained, but only two of them are at the Pareto front.
This is because infeasible paths might be searched in the
naive approach while the proposed approach is capable of
controlling its search within the valid solution space. Note that
the nondominated fronts found by the proposed approach and
the naive approach are based on the same initial population.

Fig. 6 illustrates two further small-scale networks generated
by randomly adding further nodes into Network-1 of Fig.
5(a), which are called Network-2 and Network-3, respectively.
By computation, we can obtain that Network-2 of Fig. 6(a)
contains 13 nodes, 94 edges and 561, 070 possible simple
paths from s to d, whilst Network-3 of Fig. 6(c) contains 14
nodes, 118 edges and 8, 724, 558 simple paths. We can see
that the solution spaces of Network-2 and Network-3 in Fig.
6 are much greater than that of Network-1 in Fig. 5(a). For
avoiding obfuscating details, the individuals are not shown in
Fig. 6(b) and Fig. 6(d). Furthermore, in these networks 500
generations are used for increasing the probability of finding
the Pareto front. Observe from Fig. 6(b) and Fig. 6(d) that the
proposed approach outperforms the naive approach in both
networks. Furthermore, from Fig. 6(b), we can find that there
are two close points at the Pareto front, which may limit the
success rate of the proposed approach, because the goal of the

nondorminaed sorting is to pursue a uniformly spread over the
Pareto optimal front [16].

Fig. 7 investigates the performance of the average fraction
γ̄ as well as the success rate δ of Network-1 characterized in
5(a) over 100 runs, where the initial population is generated
randomly for each run and the same initial populations are
used for both the proposed approach and the naive approach.
Three different pairs of population sizes and generations
(P,G) = (20, 500), (40, 200) and (100, 100) are considered,
all having 10,000 function evaluations in total. Note that γ̄ is
the average of γ calculated over 100 runs, representing the
average Pareto front acquisition fraction for the nondominated
front obtained. Naturally, the larger of γ̄ the higher fraction of
the Pareto front is obtained. The first two figures of Fig. 7, i.e.
Fig. 7(a) and Fig. 7(b), characterizing the proposed approach
using different population sizes convergence to the Pareto front
(i.e. γ̄ = 1 and δ = 1) upon increasing generations. Fig.
7(c) and Fig. 7(d) investigate the impact of the algorithmic
complexity on the performance of the resultant front, where
the search ratio τ is defined as the number of the function
evaluations divided by the total number of possible solutions.
Thus, we can see that the maximum of the search ratio
τmax approaches 18%. It should be noted that the number of
function evaluations over distinct individuals might be smaller
than the number of solutions it evaluated, since some repeated
solutions may be generated by the genetic operators. Observe
from Fig. 7(c) and Fig. 7(d), that γ̄ and δ converge to one
when τ approaches 8%, which indicates that the proposed
approach has the potential of locating all optimal solutions
of the Pareto front, if the search ratio is high enough. Finally,
we also can observe from Fig. 7(c) that given a value of γ̄,
the proposed approach is capable of finding more points on
the Pareto front than the naive approach using the same initial
population. This is because that the proposed approach exploits
the search by avoiding the introduction of infeasible solutions
into the population.

Fig. 8 illustrates the γ̄ and δ vs. the number of popu-
lations relationship in Network-2 and Network-3 of Fig. 6
using (P,G) = (100, 500). This scenario has an increased
complexity due to the larger solution space. Thus, 50,000
functions evaluations are performed in total. Note that both
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(a) Network-2 of order 13. (b) Nondominated fronts of Network-2.

(c) Network-3 of order 14. (d) Nondominated fronts of Network-3.

Figure 6: Results on different networks.

γ̄ and δ represent a ratio belonging to [0, 1], hence they can
share the same y-axis. From Fig. 8, we can see that the success
rate of the proposed approach reaches about 60% and 50% in
terms of finding the Pareto front in Network-2 and Network-
3, respectively. Furthermore, comparing the curves of γ̄ to
the curves of δ both in Fig. 7 and in Fig. 8, we can see
that the evolution of γ̄ is smoother than that of δ. This is
because γ̄ represents the number of points that are found
at the Pareto front, while δ concerns the final results. For
instance, in Fig. 8(a), the success rate of the proposed approach
does not increase beyond 40 generations, while the values of
γ̄ increase gradually until 100 generations. This means that
more points that are on the Pareto front are found by the
proposed approach during the iterations from 40 generations
to 100 generations. Moreover, we can see from Fig. 8 that
the performance of Network-3 is better than that of Network-
2. This trend is observed for several reasons, such as the
stochastic nature of the genetic operators as well as the number
and the distribution of the points at the Pareto front etc. Finally,
by jointly observing the results of Fig. 7 and Fig. 8, we can
infer that the proposed approach requires less generations than
the naive approach for attaining a specific target performance.
Explicitly, it implies a lower complexity.

B. Flight Data Based Results
In this subsection, we evaluate the performance of the pro-

posed approach relying on real historical flight data. Explicitly,

we use three datasets, termed as Data-1, Data-2 and Data-3,
respectively, which contain historical flight data of the five
busiest TransAtlantic airlines in the North-Atlantic region,
i.e., Delta Airline, United Airline, American Airline, British
Airways and Lufthansa. Specifically, these datasets contain the
historical flight information of the area recorded at sampling
intervals of 10s, where each entry of the flight contains the
following information: timestamp, longitude, latitude, altitude
and speed. The entries of Data-1 and Data-2 were collected
from 00:00 on 24 Dec. 2017 to 00:00 on 26 Dec.2017, thus
there are 17,281 entries for each flight. Data-1 having 57
flights only contains the TransAtlantic flights between LHR
Airport and JFK Airport, while Data-2 having 381 flights con-
tains all TransAtlantic flights of the five busiest TransAtlantic
airlines. Moreover, the entries of Data-3 were collected from
00:00 on 29 Jun. 2018 to 00:00 on 30 Jun. 2018, which is the
busiest day of the year having the most flights. Specifically,
Data-3 contains 649 flights and 8,641 entries for each flight.

Fig. 9 illustrates some of the associated network topological
characteristics versus the flight distance in Data-1, Data-2 and
Data-3, respectively. Observe from Fig. 9(a), that the number
of both the nodes and edges of the networks in Data-3 is
about twice as higher as those in Data-2, while the networks
in Data-1 have the least number of nodes and edges. We
can also find that in Data-1, the target flight is unable to
connect to the SN on the ground when the flight distance
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Figure 7: Performance of different approaches for Network-1 with the population size P = {20, 40, 100}.
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(b) Performance of Network-3.

Figure 8: Results of Network-2 and Network-3, respectively, where P = 100.

is higher than 1912km, since there is no path connecting
them. Furthermore, Fig. 9(b) shows the average degree of
the networks over different flight distances, which reflects the
average grade of connectivity for a network. A larger average
degree indicates a higher probability of having more paths
between two nodes. Fig. 9(c) shows the density of networks
in different datasets, which reflects the connection rate of the
networks at different time instants. Observe from Fig. 9(c),
that the networks generated during the flight of the target
plane are relatively sparse, especially for Data-2 and Data-
3, where the maximum network density is below 0.15. From

these characteristic information in Fig. 9, we can see that these
networks become complex and non-trivial since patterns of
connection between their nodes are neither purely regular nor
purely random. Consequently, the full solution space becomes
excessively large, hence it is computationally impractical to
find the true Pareto front for these networks. Therefore, we
use a population size 100 and 500 generations for generating
a series of nondominated solutions to approach the Pareto
front. Moreover, since the true Pareto front is unknown due to
the excessive number of solutions, for limiting the objective
space, the points associated with the minimum delay and the
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Figure 9: Network characteristics in the Data-1, Data-2 and Data-3.

maximum throughput are computed, which are obtained by
optimizing the single-objective function D(X) and C(X),
respectively. Specifically, the optimum of D(X) can be readily
obtained by means of the conventional shortest path algorithm
such as Dijkstra’s algorithm. By contrast, as C(X) is a max-
min function, hence the single-objective optimization problem
of C(X) becomes a maximum-capacity path problem [33],
which can be solved by the branch and bound algorithm.
Therefore, the boundary of the objective space is also plotted
in the figures.

Fig. 10 illustrates the topology of the network and the non-
dominated front obtained using different approaches, where
the network features can be found from Fig. 9 marked by
Sample-1. Fig. 10(a) and Fig. 10(c) show that the network of
Data-2 at Sample-1 contains 141 nodes and 1976 edges, while
the network of Data-3 contains 296 nodes and 8274 edges.
This indicates that the number of aircraft at the busiest days is
almost twice the number of that on the quietest days. Fig. 10(b)
and Fig. 10(d) illustrate the nondominated front obtained for
each dataset, where the points acquired by the single-objective
optimization are marked by green stars. We can observe that
the optimum single-component C(X) may be dominated by
the point obtained by the proposed two-component approach.
This is because the path having the maximum throughput may
suffer from a high delay, since some paths probably share the
same maximum throughput in the AANET due to the non-
monotonic nature of C(X). Furthermore, in Fig. 10(b) and Fig.
10(d) the nondominated front of each approach is constituted
by a union set of the results collected over 10 runs, where the
dominated points are removed from the union set. Finally, we
can see from Fig. 10(b) and Fig. 10(d) that the fronts found by
the proposed approach in the both networks exhibits a better
performance than that of the naive approach.

Fig. 11 illustrates the nondominated front obtained for the
different datasets at Sample-2 of Fig. 9, where Data-1 is
also involved, since the source BS on the ground is now
able to communicate to the target aircraft via the AANET.
Specifically, Fig. 11(b)-Fig. 11(f) illustrate the front obtained
for the three datasets at Sample-2, while Fig. 11(a)-Fig. 11(e)
illustrate the corresponding network topology. Furthermore,
the same simulation configurations are used as in Fig. 10. We
can see from Fig. 11(b) that the optima of D(X) and C(X)
are overlapped in the network of Data-1, while both the naive

approach and the proposed approach converged to the global
optimum. Observe from Fig. 11(d), that the points obtained
by the single-objective optimization are almost covered by
the nondominated front obtained by the proposed approach.
Furthermore, the proposed approach also outperforms the
naive approach in terms of the nondominated front obtained.
Finally, we can observe from Fig. 11(f) that the point O is also
achievable in the network of Data-3, which is found by the
proposed approach. This indicates that the proposed approach
has the potential of locating the global optimum provided that
it is feasible. Moreover, observe from Fig. 11(b) and Fig.
11(f), that there exist an optimal routing path that having the
minimum delay and the maximum throughput simultaneously,
which indicates that the relationship of D(X) and C(X)
depends on the network’s topology due to the substantial non-
trivial topological features of these complex networks.

VII. CONCLUSIONS

In this paper, we have designed a multi-objective routing
solution for enhancing multiple performance metrics of in-
flight connectivity in terms of the total delay and the through-
put. Therefore, the MOCOP formulated concurrently deals
with two discrete, non-continuous problems, which results
in a number of Pareto optimal solutions. As a consequence,
obtaining the Pareto set imposes an excessive computational
complexity and it is often infeasible, especially for networks
having numerous possible paths. We employed the NSGA-
II for generating an approximation of the Pareto optimal set
of the MOCOP formulated. Our simulation results revealed
that a set of beneficial trade-off solutions can be obtained
for providing a flexible selection of in-flight connections by
solving the multi-objective routing problem formulated in
terms of the delay and the throughput both for the simulated
data and for our historical flight data. A promising extension
of this work is to conceived a multi-task learning algorithm by
exploiting the parallel nature of the NSGA-II for generating
a better approximation of the Pareto set. Adopting more
sophisticated performance metrics such as HV and IGD+,
are capable of reflecting more comprehensive aspects of the
solutions obtained for MOOPs, which constitutes another
promising future research direction. Moreover, for expediting
the search process of generating the Pareto set, quantum
inspired algorithms having inherent parallelism also constitute
a promising future research direction.
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(a) Network topology of Data-2 at Sample-1.
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(c) Network topology of Data-3 at Sample-1.
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Figure 10: The network’s topology and its throughput vs. delay solutions at Sample-1 of Fig. 9 in Data-2 and Data-3.

APPENDIX A: PROCEDURES OF NONDOMINATED SORTING
AND SELECTION

Fast nondominated sorting and selection constitute a pair
of pivotal operators in NSGA-II [16], which are designed by
Algorithm A.1 and Algorithm A.2, respectively.

APPENDIX B: PROOF OF PROPOSITION 1
Let FPF = Y2 and F̃∗ = Y1, respectively. From Definition

3, we have

C(F̃∗,FPF ) =
|{y2 ∈ FPF | ∃ y1 ∈ F̃∗ : y1 � y2}|

|FPF |
. (B.1)

As FPF is the Pareto front, any point y1 ∈ F̃∗ weakly
dominates the point y2 ∈ FPF if and only if we have
y1 = y2. Therefore, the nominator of C(F̃∗,FPF ) becomes
the number of all points that belong to both the sets FPF
and F̃∗. This corresponds to the number of points in the
intersection of FPF and F̃∗, i.e. |F̃∗∩FPF |. Correspondingly,
(B.1) can be equivalently expressed as

C(F̃∗,FPF ) =
|F̃∗ ∩ FPF |
|FPF |

. (B.2)

REFERENCES

[1] M. Vondra, E. Dinc, M. Prytz, M. Frodigh, D. Schupke, M. Nilson,
S. Hofmann, and C. Cavdar, “Performance study on seamless DA2GC
for aircraft passengers toward 5G,” IEEE Commun. Mag., vol. 55, no. 11,
pp. 194–201, Nov. 2017.

[2] M. Vondra, M. Ozger, D. Schupke, and C. Cavdar, “Integration of
satellite and aerial communications for heterogeneous flying vehicles,”
IEEE Network, vol. 32, no. 5, pp. 62–69, Sep. 2018.

[3] J. Zhang, T. Chen, S. Zhong, J. Wang, W. Zhang, X. Zuo, R. G. Maunder,
and L. Hanzo, “Aeronautical ad hoc networking for the Internet-above-
the-clouds,” Proc. IEEE, vol. 107, no. 5, pp. 868–911, May 2019.

[4] D. Medina, F. Hoffmann, F. Rossetto, and C. Rokitansky, “A geographic
routing strategy for North Atlantic in-flight Internet access via airborne
mesh networking,” IEEE/ACM Trans. Netw., vol. 20, no. 4, pp. 1231–
1244, Aug. 2012.

[5] B. Cheng, A. Coyle, S. McGarry, I. Pedan, L. Veytser, and J. Wheeler,
“Characterizing routing with radio-to-router information in a heteroge-
neous airborne network,” IEEE Trans. Wireless Commun., vol. 12, no. 8,
pp. 4183–4195, Aug. 2013.

[6] Q. Vey, S. Puechmorel, A. Pirovano, and J. Radzik, “Routing in
aeronautical ad-hoc networks,” in IEEE/AIAA Digital Avionics Systems
Conference (DASC), Sep. 2016, pp. 1–10.



16

(a) Network of Data-1

80 100 120 140 160 180 200
Delay (ms): f1

14

15

16

Th
ro

ug
hp

ut
 (M

bi
t/s

): 
f 2

O

Single objective
Initial population
Optimum of single objective

Naive approach
Proposed approach

(b) Obtained front in Data-1

(c) Network of Data-2

100 200 300 400 500
Delay (ms): f1

16

18

20

22

24

26

28

Th
ro

ug
hp

ut
 (M

bi
t/s

): 
f 2

O

Single objective
Initial population
Optimum of single objective

Naive approach
Proposed approach

(d) Obtained front in Data-2

(e) Network of Data-3

100 200 300 400 500
Delay (ms): f1

20

30

40

50

Th
ro

ug
hp

ut
 (M

bi
t/s

): 
f 2

O

Single objective
Initial population
Optimum of single objective

Naive approach
Proposed approach

(f) Obtained front in Data-3

Figure 11: The network’s topology and its throughput vs. delay solutions at Sample-2 of Fig. 9 in Data-1, Data-2 and Data-3.

[7] M. Sbeiti, N. Goddemeier, D. Behnke, and C. Wietfeld, “PASER: Secure
and efficient routing approach for airborne mesh networks,” IEEE Trans.
Wireless Commun., vol. 15, no. 3, pp. 1950–1964, March 2016.

[8] Q. Luo and J. Wang, “Multiple QoS parameters-based routing for civil
aeronautical ad hoc networks,” IEEE Internet Things J., vol. 4, no. 3,
pp. 804–814, 2017.



17

Algorithm A.1: Fast nondominated sorting algorithm

Function Fast-nondominated-sort(C):
1 F1 = ∅,n = 0|C|;
2 for p ∈ C do

Sp = ∅;
3 for q ∈ P do
4 if p ≺ q then /* p dominates q */
5 Sp = Sp ∪ {q}; /* Add q to the

set of solutions dominated
by p */

6 else if q ≺ p then
n[p] = n[p] + 1; /* Increase the
nomination counter of p */

7 if n[p] = 0 then /* p belongs to the
first front */

8 F1 = F1 ∪ {p};

9 i = 1; F = ∅;
10 while Fi 6= ∅ do
11 Q = ∅; /* Q is used to store the

members of the next front */12 for
p ∈ Fi do

13 for q ∈ Sp do
14 n[q] = n[q]− 1;
15 if n[q] = 0 then
16 Q = Q∪ {q};

17 i = i+ 1;
18 Fi = Q;

19 return The union of the sorted fronts
F = {F1,F2, · · · }

Algorithm A.2: Selection

Function Selection(F):
1 Pt+1 = ∅;
2 repeat
3 for i = 1 to |Fi| do
4 if |Pt+1|+ |F| < P then
5 Pt+1 = Pt+1 ∪ Fi

else
6 Dcd = crowding distance(Fi);
7 Sort Fi based on Dcd in descending

order;
8 Pt+1 = Pt+1 ∪ Fi[0 : P − |Pt+1|];

until |Pt+1|+ |Ft| ≥ P ;
9 return Pt+1

[9] P. K. Biswas, S. J. Mackey, D. H. Cansever, M. P. Patel, and F. B. Panet-
tieri, “Context-aware smallworld routing for wireless ad-hoc networks,”
IEEE Trans. Commun., vol. 66, no. 9, pp. 3943–3958, Sep. 2018.

[10] A. Al-Saadi, R. Setchi, Y. Hicks, and S. M. Allen, “Routing protocol
for heterogeneous wireless mesh networks,” IEEE Trans. Veh. Technol.,
vol. 65, no. 12, pp. 9773–9786, Dec 2016.

[11] P. Zhou, J. Xu, W. Wang, Y. Hu, D. O. Wu, and S. Ji, “Toward optimal
adaptive online shortest path routing with acceleration under jamming

attack,” IEEE/ACM Trans. Netw., vol. 27, no. 5, pp. 1815–1829, Oct
2019.

[12] E. Zitzler, M. Laumanns, and S. Bleuler, “A tutorial on evolutionary
multiobjective optimization,” in Metaheuristics for Multiobjective Opti-
misation, X. Gandibleux, M. Sevaux, K. Sörensen, and V. T’kindt, Eds.
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