External gas accretion provides a fresh gas supply to the active S0 galaxy NGC 5077
External gas accretion provides a fresh gas supply to the active S0 galaxy NGC 5077
early type galaxies, externally accreted gas is thought to be the main source of gas replenishment at late times. We use MUSE integral field spectroscopy data to study the active S0 galaxy NGC 5077, known to have disturbed dynamics, indicative of a past external interaction. We confirm the presence of a stellar kinematically distinct core with a diameter of 2.8 kpc, counter-rotating with respect to the main stellar body of the galaxy. We find that the counter-rotating core consists of an old stellar population, not significantly different from the rest of the galaxy. The ionised gas is strongly warped and extends out to 6.5 kpc in the polar direction and in a filamentary structure. The gas dynamics is complex, with significant changes in the position angle as a function of radius. The ionised gas line ratios are consistent with LINER excitation by the AGN both in the nucleus and at kiloparsec scales.We discover a nuclear outflow with projected velocity V 400 km/s, consistent with a hollow outflow cone intersecting the plan of the sky. The properties of the misaligned gas match predictions from numerical simulations of misaligned gas infall after a gas-rich merger. The warp and change in the gas orientation as a function of radius are consistent with gas relaxation due to stellar torques, that are stronger at small radii where the gas aligns faster than in the outer regions, driving gas to the nucleus. The stellar and gas dynamics indicate that NGC 5077 has had at least two external interactions, one that resulted in the formation of the counter-rotating core followed by late time external gas accretion. NGC 5077 illustrates the importance of external interactions in the replenishment of the galaxy gas reservoir and the nuclear gas content available for black hole fuelling.
De Jesus Raimundo, Sandra
e409d9d3-17e8-4049-ad29-43ada60b24e2
De Jesus Raimundo, Sandra
e409d9d3-17e8-4049-ad29-43ada60b24e2
De Jesus Raimundo, Sandra
(2021)
External gas accretion provides a fresh gas supply to the active S0 galaxy NGC 5077.
Astronomy and Astrophysics.
(In Press)
Abstract
early type galaxies, externally accreted gas is thought to be the main source of gas replenishment at late times. We use MUSE integral field spectroscopy data to study the active S0 galaxy NGC 5077, known to have disturbed dynamics, indicative of a past external interaction. We confirm the presence of a stellar kinematically distinct core with a diameter of 2.8 kpc, counter-rotating with respect to the main stellar body of the galaxy. We find that the counter-rotating core consists of an old stellar population, not significantly different from the rest of the galaxy. The ionised gas is strongly warped and extends out to 6.5 kpc in the polar direction and in a filamentary structure. The gas dynamics is complex, with significant changes in the position angle as a function of radius. The ionised gas line ratios are consistent with LINER excitation by the AGN both in the nucleus and at kiloparsec scales.We discover a nuclear outflow with projected velocity V 400 km/s, consistent with a hollow outflow cone intersecting the plan of the sky. The properties of the misaligned gas match predictions from numerical simulations of misaligned gas infall after a gas-rich merger. The warp and change in the gas orientation as a function of radius are consistent with gas relaxation due to stellar torques, that are stronger at small radii where the gas aligns faster than in the outer regions, driving gas to the nucleus. The stellar and gas dynamics indicate that NGC 5077 has had at least two external interactions, one that resulted in the formation of the counter-rotating core followed by late time external gas accretion. NGC 5077 illustrates the importance of external interactions in the replenishment of the galaxy gas reservoir and the nuclear gas content available for black hole fuelling.
Text
External gas accretion provides a fresh gas supply to the active S0 galaxy NGC 5077
- Accepted Manuscript
More information
Accepted/In Press date: 2 March 2021
Additional Information:
arxiv is am
Identifiers
Local EPrints ID: 450299
URI: http://eprints.soton.ac.uk/id/eprint/450299
ISSN: 0004-6361
PURE UUID: b94827aa-f64b-4a8d-b40b-38e8386352cd
Catalogue record
Date deposited: 21 Jul 2021 16:30
Last modified: 17 Mar 2024 04:03
Export record
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics