
Chapter 15
Testing Fundamental Physics by Using
Levitated Mechanical Systems

Hendrik Ulbricht

Abstract We will describe recent progress of experiments towards realising large-
mass single particle experiments to test fundamental physics theories such as quan-
tum mechanics and gravity, but also specific candidates of Dark Matter and Dark
Energy. We will highlight the connection to the work started by Otto Stern as lev-
itated mechanics experiments are about controlling the centre of mass motion of
massive particles and using the same to investigate physical effects. This chapter
originated from the foundations of physics session of the Otto Stern Fest at Frank-
furt am Main in 2019, so we will also share a view on the Stern Gerlach experiment
and how it related to tests of the principle of quantum superposition.

1 Introductory Remarks

Experimentally, this research programme is about gas-phase experiments with large-
mass particles, large compared to the mass of a single hydrogen atom, in order to
test fundamental theories without the influence of the environment, which typically
results in coherence-spoiling noise and decoherence effect. Tests of fundamental
theories, such as quantum mechanics and gravity, are in the low-energy regime of
non-relativistic velocities and therefore far away from a parameter regime of high-
energy particle physics considerations. Fundamental theories will be tested in a new
regime.

While Otto Stern’s pioneering experiments [1], aligned with a fantastically bold
and clear research programme, were about the study and control of freely propagat-
ing atoms and molecules in particle beams, we here make use of optical, magnetic
and electric fields to trap and manipulate single particles, consisting of many atoms,
in order to study the new physics and chemistry. The challenge here is to have a
strong enough handle on the motion of the particle. For instance, the optical dipole
force F = α∇E2 is strong and able to trap individual atoms and atomic ensembles
making use of resonance effects. This is impossible for large molecules, again such
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which consist of many atoms, as resonances are manifold and the oscillator strength
is distributed across many different state transitions far away from the ideal two-level
system situation which we luckily find in some atoms, which gave rise to a revolution
in experimental physics. Cold atom experiments now allow for ultra-precise control
of various degrees of freedoms—including the centre of mass motion of the atoms
and to prepare non-classical sates, including collective ones such as atomic Bose
Einstein Condensates (BEC). In a way our programme aims to achieve a similar
level of control, but for particles of large mass and different cooling and manipula-
tion techniques have to be developed and used for that. The off-resonant dipole force
where α is a measure of the off-resonant detuning of all affected molecular states is
however too weak to lead to a large enough effect to trap and manipulate individual
molecules by coherent laser light [2, 3] . This situation changes dramatically if one
increases the size (volume V ) of the particle to trap and therefore its polarizability
α ∝ V . Then dipole force becomes so strong to form a deep optical trap and optical
fields can be used for controlling single particle motions again, which gave rise to
the development of the new research field levitated optomechnaics [4], based on
early pioneering work by Arthur Ashkin (Nobel Prize in Physics in 2018) [5] and
already then in close relation to the then soon to be called cold atomic and opti-
cal physics. By now the field of levitated large-mass particle systems has seen the
implementation of other than optical forces for trapping and manipulation, namely
time-varying electrical fields in Paul traps [6] and magnetic traps [7], sometimes
including superconductors [8]. All such technical developments give rise to the hope
to soon perform experiments with truly macroscopic quantum systems, outperform-
ing existing paradigms of large-mass matterwave interferometry [9]. Macroscopic
here entails the involvement of a large-mass particle in a quantum superposition of
large spatial separation [10].

There are two pillars of our research programme on testing fundamental physics
are with a certain methodological approach. The f irst is the clearly distinctive
predictions for the outcome of the same experiment originated from alternative the-
oretical descriptions. This is our approach for testing the universality of the quantum
superposition principle in the context of collapse models [11]. Quantum mechan-
ics and collapse models predict a different outcome of a matterwave interferome-
try experiment—if the experiment is performed in the right parameter regime. The
second pillar of our research programme is to first perform a detailed analysis of the
new physics to be tested and then to chose the best experiment to perform the test.

Outlook of this chapter. In the following, we will address new avenues to test
quantum mechanics in Sect. 2 with the specific emphasis on experiments using lev-
itated mechanical systems. Then we will address experimental tests of the interplay
between quantum mechanics and gravity in Sect. 3 including the discussion of the
semiclassical Schrödinger-Newton equation, gravitational deocherence of the wave-
function and the gravity of a quantum state. In the final Sect. 4 we will refer to using
the Wigner function to simulate the original Stern Gerlach experiment.
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2 Testing Quantum Mechanics with Collapse Models

There is an increasing interest in developing experiments aimed at testing collapse
models, in particular theContinuous LocalizationModel (CSL), the natural evolution
of the GRWmodel initially proposed by Ghirardi et al. [11–14]. Current experiments
and related bounds on collapse parameters are partially discussed in other contribu-
tions in this review. Our aim here is to discuss some of the most promising directions
towards future improvements. We will mostly focus on non-interferometric exper-
iments. In Sect. 2.1 we will briefly outline proposals of matter-wave interference
with massive nano/microparticles. Finally, in Sect. 2.2 we will discuss mechanical
experiments, in particular ongoing experiments with ultracold cantilevers, ongoing
and proposed experiments based on levitated nanoparticles and microparticles. We
will not consider here two important classes of experiments which are separately dis-
cussed by other contributors in this review: matter-wave interference with molecules
and space-based experiments. We will end in Sect. 2.3 with some ideas on how pre-
cision experiments can be used for testing collapse models. A summary of recent
interferometric and non-interferomtric experiments which could set direct bounds
on the CSL collapse model are summarized in Fig. 1.

Fig. 1 Exclusion plots for the CSL parameters with respect to the GRW and Adler theoretically
proposed values [12, 15]. Left panel—Excluded regions from interferometric experiments: molec-
ular interferometry [16] (blue area), atom interferometry [17] (green area) and experiment with
entangled diamonds [18] (orange area). Right panel—Excluded regions from non-interferometric
experiments: LISA Pathfinder [19, 20] (green area), cold atoms [21] (orange area), phonon exci-
tations in crystals [22] (red area), X-ray measurements [23] (blue area) and nanomechanical can-
tilever [24]. We report with the grey area the region excluded based on theoretical arguments [25].
Figure and caption taken from [26]
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2.1 Tests of Quantum Mechanics by Matter-Wave
Interferometry

Matterwave interferometry is directly testing the quantum superposition principle.
Relevant for mass-scaling collapse models, such as CSL, are matterwave interfer-
ometers testing the maximal macroscopic extend in terms of mass, size and time
of spatial superpositions of single large-mass particles. Such beautiful, but highly
challenging experiments have been pushed by Markus Arndt’s group in Vienna to
impressive particle masses of 104 atomic mass units (amu), which still not sig-
nificantly challenging CSL. Therefore the motivation remains to push matterwave
interferometers to more macroscopic systems. Predicted bounds on collapse models
set by large-mass matterwave interferometers are worked out in detail in [27].

As usual in open quantum system dynamics treatments, non-linear stochastic
extensions of the Schrödinger equation on the level of the wavefunction [28] cor-
respond to a non-uniquely defined master equation on the level of the density
matrix ρ to describe the time evolution of the quantum system, say the spatial
superposition across distance |x − y|, where the conserving von Neumann term
∂ρt (x, y)/∂t = −(i/�)[H, ρ], is now extended by a Lindblad operator L term:

∂ρt (x, y)

∂t
= − i

�
[H, ρt (x, y)] + Lρt (x, y), (1)

where H is the Hamilton operator of the quantum system and different realisations of
a Lindblad operator are used to describe both standard decoherence (triggered by the
immediate environment of the quantum system) [29] as well as spontaneous collapse
of the wavefunction triggered by the universal classical noise field as predicted by
collapse models.

Now the dynamics of the system is very different with and without the Lindbla-
dian, where with the Lindbladian the unitary evolution breaks down and the system
dynamics undergoes a quantum-to-classical transition witnessed by a vanishing of
the fringe visibility of the matterwave interferometer. In the state represented by the
density matrix the off-diagonal terms vanish as the system evolves according to the
open system dynamics, the coherence/superposition of that state is lost. The principal
goal of interference experimentswithmassive particles is then to explore and quantify
the relevance of the (Lρt (x, y))-term—as collapse models predict a break down of
the quantum superposition principle for a sufficient macroscopic system. An intrinsic
problem is the competition with known and unknown environmental decoherence
mechanisms, if a visibility loss is observed. However solutions seem possible.

In order to further increase the macroscopic limits in interference some ambitious
proposals have been made utilizing nano- and micro-particles, c.f. Fig. 2. The main
challenge is to allow for a long enough free evolution time of the prepared quan-
tum superposition state in order to be sensitive to the collapsing effects. The free
evolution—the spatial spreading of the wavefunction �(r, t) with time—according
to the time-dependent Schrödinger equation with the potential V (r) = 0,
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Fig. 2 Illustration of some of the proposed schemes for matterwave interferometry with nano-
and micro-particles to test the quantum superposition principle directly, and therefore also col-
lapse models. a The cryogenic skatepark for a single superconducting micro-particle (adapted from
Ref. [31]);bThe nanoparticle Talbot interferometer (adapted fromRef. [30]); cTheRamsey scheme
addressing the electron Spin of a NV-centre diamond coupled to an external magnetic field gradient
(∂B/∂x) (adapted from Ref. [32]); d The adaptation of an interferometer at a free falling satellite
platform in space to allow form longer free evolution times (adapted from Ref. [33])

∂

∂t
�(r, t) = −i

�

2m
∇2�(r, t), (2)

describes a diffusive process for probability amplitudes similar to a typical diffusion
equation with the imaginary diffusion coefficient (−i�/2m). Therefore the spreading
of �(r, t) scales inverse with particle mass m. For instance for a 107 amu particle
it already takes so long to show the interference pattern in a matterwave experiment
that the particle would significantly drop in Earth’s gravitational field, in fact it would
drop on the order of 100 m. This requires a dramatic change in the way large-mass
matterwave interferometry experiments have to be performed beyond the mass of
106 amu [30].

Different solutions are thinkable. One could of course envisage building 100m
fountain, but that seems very unfeasible also given that no sufficient particle beam
preparation techniques exist (and don’t seem to be likely to be developed in the
foreseeable future) to enable the launch and detection of particles in the mass range
in question over a distance of 100 m. One can consider to levitate the particle by a
force field to compensate for the drop in gravity, but here we face a high demand
on the fluctuations of that levitating field, which have to be small compared to the
amplitudes of the quantum evolution, which is not feasible with current technology.
Amaybe possible option os to coherently boost/accelerate the evolution of the wave-
function spread by a beam-splitter operation. The proposals in Refs. [31, 32] are such
solutions, which are still awaiting their technical realisation for large masses. Alter-
natively and more realistic given technical capability is to allow for long enough free
evolution by freely fall the whole interferometer apparatus in a co-moving reference
frame with the particle. This is the idea of theMAQRO proposal, a dedicated satellite
mission in space to perform large-mass matterwave interference experiments with
micro- and nano-particles [33].



308 H. Ulbricht

Another interesting approach is to consider the use of cold or ultra-cold ensembles
of atoms such as cloud in a magneto optical trap (MOT) or an atomic Bose-Einstein
Condensate (BEC) as also there we find up to 108 atoms of alkali species such as
rubidium or caesium. On closer look it turns out that such weakly interacting atomic
ensembles are not of immediate use for the purpose to test macroscopic quantum
superpositions in the context of collapse model test. For instance testing the CSL
model is build on a mass (number of particles N , more precisely the number of
nucleons: protons and neutrons in the nuclei of the atoms) amplification which in
principle can even go with N 2, if the condition for coherent scattering of the classical
collapse noise treated as a wave with correlation length rc scattered at the particle
in the quantum superposition state. The central assumption of this amplification
mechanism is that if the CSL noise is collapsing the wavefunction of only one of
the constituent nucleons, then the total wavefunction of the whole composite object
collapses.While in the case of a nanoparticle consisting ofmany atoms (and therefore
nucleons), it is not the case for an weakly interacting atomic ensemble. If one atom
is collapsing then the total atomic wavefunction remains intact and the one atom is
lost from the ensemble.

This may change if the atoms in the cold or ultra-cold ensemble can be made
stronger interacting, without running into the complications of chemistry which may
forbid condensation of the atomic—then molecular—cloud at all. However there is
hope that quantum optical state preparation techniques applied after a BEC has been
formed such as collective NOON or squeezed states enable N and even N 2 scaling
in the fashion fit for testing wavefunction collapse.

Interestingly, this might be different if the physical mechanism responsible for
the collapse of the wavefunction, which remains highly speculative at present, is in
any way related to gravity [34], then there might be hope that atomic ensembles even
in the weakly interacting case can be used to test CSL-type models. The condition to
fulfil is that the atomic ensemble is interacting gravitationally strong enough so that
it acts collectively under collapse, even if just a single constituent atom (nucleon) is
affected by the collapsing effect.

2.2 Non-interferometric Mechanical Tests of Quantum
Mechanics

This class of experiments has emerged in recent years as one of the most powerful
and effective ways to test collapse models. The underlying idea [35, 36] is that a
mechanism which continuously localizes the wavefunction of a mechanical system,
which can be either a free mass or a mechanical resonator, must be accompanied by
a random force noise acting on its center-of-mass. This leads in turn to a random
diffusion which can be possibly detected by ultrasensitive mechanical experiments.

In a real mechanical system such diffusion will be masked by standard thermal
diffusion arising from the coupling to the environment, i.e. from the same effects
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which lead to decoherence in quantum interference experiments [37]. In practice there
will be additional non-thermal effects, due to external non-equilibrium vibrational
noise (seismic/acoustic/gravity gradient). Moreover, one has to ensure that the back-
action from the measuring device is negligible.

Under the assumption that thermal noise is the only significant effect, the (one-
sided) power spectral density of the force noise acting on the mechanical system is
given by:

S f f = 4kBTmω

Q
+ 2�

2η. (3)

where kB is the Boltzmann constant, T is the temperature, m is the mass, ω the
angular frequency, Q is the mechanical quality factor.

η is a diffusion constant associated to spontaneous localization, and can be cal-
culated explicitly for the most known models. For CSL, it is given by the following
expression

η = 2λ

m2
0

∫ ∫
d3r d3r′ exp

(
−|r − r′|2

4r2C

)
∂	(r)
∂ z

∂	(r′)
∂ z′ (4)

= (4π)
3
2 λ r3C
m2

0

∫
d3k

(2π)3
k2z e

−k2r2C |	̃(k)|2 (5)

with k = (kx , ky, kz), 	̃(k) = ∫
d3x eik·r 	(r) and 	(r) the mass density distribution

of the system. In the expressions above m0 is the nucleon mass and rC and λ are the
free parameters of CSL. The typical values proposed in CSL literature are rC = 10−7

m and 10−6 m, while for λ a wide range of possible values has been proposed, which
spans from the GRW value λ ≈ 10−16 Hz [12, 13] to the Adler value λ ≈ 10−8±2

Hz at rC = 10−7 m [15]. The possibility for such non-interferometric tests, which
aim to directly test the non-thermal noise predicted by collapse models [24, 38–41].

An experiment looking for CSL-induced noise has to be designed in order to
maximize the ‘noise to noise’ ratio between the CSL term and the thermal noise. In
practice this means lowest possible temperature T , lowest possible damping time,
or linewidth, 1/τ = ω/Q, and highest possible η/m ratio. The first two conditions
express the requirement of lowest possible power exchange with the thermal bath,
the third condition is inherently related to the details of the specific model.

For CSL we can distinguish two relevant limits. When the characteristic size L of
the system is small, L � rC , then the CSL field cannot resolve the internal structure
of the system, and one finds η/m ∝ m. When the characteristic length of the system
in the direction of motion L is large, L � rC , then η/m ∝ ρ/L , where ρ is the mass
density [24, 38, 40]. The expressions in the two limits imply that, for a well defined
characteristic length rC , the optimal system is a plate or disk with thickness L ∼ rC
and the largest possible density ρ.

Among other models proposed in literature, we mention the gravitational Diosi-
Penrose (DP) model, which leads to localization and diffusion similarly to CSL. The
diffusion constant ηDP is given by [40]:
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ηDP = Gρm

6
√

π�

(
a

rDP

)3

, (6)

where a is the lattice constant and G is the gravitational constant, so that he ratio
ηDP/m depends only on the mass density. Unlike CSL, there is no explicit depen-
dence on the shape or size of the mechanical system.

2.2.1 Levitated Mechanical Systems

One of the most promising approaches towards a significant leap forward in the
achievable sensitivity to spontaneous collapse effects is by levitation of nanoparti-
cles or microparticles. The main benefits of levitation are the absence of clamping
mechanical losses and wider tunability of mechanical parameters. In addition, sev-
eral degrees of freedom can be exploited, either translational or rotational [41, 42].
This comes at the price of higher complexity, poor dynamic range and large non-
linearities, which usually require active feedback stabilization over multiple degrees
of freedom. However, levitated systems hold the promise of much better isolation
from the environment, therefore higher quality factor. One relevant example, in the
macroscopic domain, is the space mission LISA Pathfinder, which is based on an
electrostatically levitated test mass, currently setting the strongest bound on collapse
models over a wide parameter range [43].

Several levitation methods for micro/nanoparticles are currently being investi-
gated. The most developed is optical levitation using force gradients induced by
laser fields, the so called optical tweezer approach [5]. While this is a very effective
and flexible approach to trap nanoparticles, in this context it is inherently limited
by two factors: the relatively high trap frequency, in the order of 100 kHz, and the
high internal temperature of the particles, induced by laser power absorption, which
leads ultimately to strong thermal decoherence. Alternative approaches have to be
found, featuring lower trap frequency and low or possible null power dissipated in
the levitated particle. The two possible classes of techniques are electrical levitation
and magnetic levitation.

Electrical levitation has been deeply developed in the context of ion traps. The
standard tool is the Paul trap, which allows to trap an ion, or equivalently a charged
nanoparticle, using a combination of ac and dc bias electric fields applied through
a set of electrodes [44]. The power dissipation is much lower than in the optical
case, and the technology is relatively well-established. However, the detection of a
nanoparticle in a Paul trap still poses some technological challenge (Fig. 3).

This issue has been extensively investigated in a recent paper [45], specifically
considering a nanoparticle in a cryogenic Paul trap in the context of collapse model
testing. Three detection schemes have been considered: an optical cavity, an optical
tweezer, and a all-electric readout based on SQUID. It was found that to detect the
nanoparticle motion with good sensitivity, optical detection has to be employed.
Unfortunately, optical detection is not easily integrated in a cryogenic environment,
and leads to a nonnegligible internal heating and excess force noise. On the other
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Fig. 3 Simplified sketch of some of the noninterferometric methods to test collapse models dis-
cussed in this contribution. a Measuring the mechanical noise induced by CSL using an ultracold
cantilever detected by a SQUID (adapted fromRef. [24]);bMeasuring themechanical noise induced
by CSL using a levitated nanoparticle detected optically (adapted from Ref. [45]); cMeasuring the
heating induced by CSL in a solid matter object cooled to very low temperature (adapted from
Ref. [46]); d Measuring the increase of kinetic energy induced by CSL in a ultracold atoms cloud
(adapted from Ref. [47])

hand, an all-electrical readout would potentially allow for a better ultimate test of
collapsemodels, but at the price of a very poor detection sensitivity,which couldmake
the experiment hardly feasible. The authors argue that a Paul-trapped nanoparticle,
with an oscillating frequency of 1 kHz, cooled in a cryostat at 300 mKwith an optical
readout may be able to probe the CSL collapse rate down to 10−12 Hz at rC = 10−7

m. A SQUID-based readout , if viable, could theoretically allow to reach 10−14 Hz.
A recent experiment employing a nanoparticle in a Paul trap with very low secular

frequencies at ∼100 Hz and low pressure has demonstrated ultranarrow linewidth
γ /2π = 82 µHz [48]. This result has been used to set new bounds on the dissipative
extension of CSL. This experiment may be able to probe the current limits on the
CSLmodel in the near future, once it will be performed at cryogenic temperature and
the main sources of excess noise, in particular bias voltage noise, will be removed.

Magnetic levitation, while less developed, has the crucial advantage of being
completely passive. Furthermore the trap frequencies can be quite low, in the Hz
range. Three possible schemes can be devised: levitation of a diamagnetic insulating
nanoparticle with strong external field gradients [49, 50], levitation of a supercon-
ducting particle using external currents [8, 51–53], and levitation of a ferromagnetic
particle above a superconductor [54].

The first approach has been recently considered in the context of collapse models
[50]. The experiment was based on a polyethylene glycol microparticle levitated in
the static field generated by neodymium magnets and optical detection. The experi-
ment has been able to set an upper bound on the CSL collapse rate λ < 10−6.2 Hz at
rC = 10−7 m, despite being performed at room temperature. A cryogenic version of
this experiment should be able to approach the current experimental limits on CSL.

The second and third approach based on levitating superconducting particles are
currently investigated by a handful of groups [8, 51–54], but no experiment has so far
reached the experimental requirements needed to probe collapse models. However,
a significant progress has been recently achieved: a ferromagnetic microparticle
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levitated above a type I superconductor (lead) and detected using a SQUID, has
demonstrated mechanical quality factors for the rotational and translational rigid
body mechanical modes exceeding 107, corresponding to a ringdown time larger
than 104 seconds [53]. The noise is this experiment is still dominated by external
vibrations. However, as the levitation is completely passive and therefore compatible
with cryogenic temperatures, this appears as an excellent candidate towards near
future improved tests of collapse models.

2.3 Concluding Remarks on Testing Quantum Mechanics
in the Context of Collapse Models

We have discussed avenues for non-interferometric and interferometric tests of the
linear superposition principle of quantum mechanics in direct comparison to pre-
dictions from collapse models which break the linear/unitary evolution of the wave-
function. As matters stand both non-interferometric and interferometric set already
bounds on the CSL collapse model, while those from non-interferometric tests are
stronger by orders of magnitude. The simple reason lyes in the immense difficulty
to experimentally generate macroscopic superposition states, however a number of
proposals have been made and experimentalists are set to approach the challenge.

We want to close by mentioning that there are possible other experimental plat-
forms which could set experimental bunds on collapse models and it would be of
interest to study those in detail. Collapse models predict a universal classical noise
field to fill the Universe and in principle couple to any physical system. In the sim-
plest approach the experimental test particle can be regarded as a two-level system, as
typically described in quantum optics. Then the collapse noise perturbs the two-level
systemand emissive broadening and spectral shifts can be expected, unfortunately out
of experimental reach at the moment [55]. The minuscule collapse effect on a single
particle (nucleon) needs some sort of amplification mechanism which usually comes
with an increase of the number of constituent particles. However, ultra-high precision
experiments have improved a lot in recent years. For instance much improved ultra-
stable Penning ion traps are used to measure the mass of single nuclear particles,
such as the electron, proton, and neutron, with an ultra-high precision to test quantum
electrodynamics predictions [56]. In principle also here the effect of collapse mod-
els should become apparent. Any theoretical predictions are difficult as relativistic
versions of collapse models still represent a serious formal challenge. Other high
potentials for testing collapse are ever more precise spectroscopies of simple atomic
species with analytic solutions such as transitions in hydrogen [57] and needless to
say atomic clocks [58].

As tests move on to set stronger and stronger bounds, we have to remain open
to actually find something new. It is so easy to disregard tiny observed effects as
unknown technical noise. In the case of direct testing collapse noise it is a formidable
theoretical challenge to think about possible physics responsible for collapse, satisfy-
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ing the constrains given by the structure of the collapse equation: the noise has to be
classical and stochastic. Such concrete physics models will predict a clear frequency
fingerprint, should we ever observe the collapse noise field.

3 Testing the Interplay Between Quantum Mechanics
and Gravity

Here we will be concerned with table-top experiments in the non-relativistic regime
as these experiments may provide a new access to shine light on the quantum—
gravity interplay. Therefore the main emphasis is to explore possible routes to enter
the new parameter regime, where both quantum mechanics and gravity are signifi-
cant, see Fig. 4). This means the mass of the object has to be large enough to show
gravity effects while also not being too large to still allow for the preparation of
non-classical features of the behaviour of that massive object. That regime where
both physical effects, the quantum and the gravity, could be expected to be relevant
is at around the Planck mass, which is derived from the right mixture of funda-
mental constants (� Planck’s constant, c speed of light, G gravitational constant)
mpl = √

�c/G = 2.176470(51) × 10−8 kg (the official CODATA, NIST) or below.
No quantum experiment has been performed in that mass range.

Fig. 4 Exploration map of mass: Mass range of the test mass as explored by experiments. Exper-
iments to detect gravity have been done in the classical domain, right hand side of picture, with
comparable large masses. Quantum experiments are routinely performed by using objects of much
smaller masses so that gravity effects do not become visible or relevant. Neutron and atom matter-
wave interferometers are different as the test mass there is very small [the mass of a single neutron
or atom], but in a spatial superposition state. The desired mass range for—at least some of—the
experiments summarized in this review article is at the overlap between sufficiently large mass
to see significant effects of gravity of the particle itself, while the particle can be maintained in
a non-classical state. The domain where massive particles can be prepared in such non-classical
states is on the left hand side of the picture
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When we refer to quantum mechanical behaviour of massive systems, we mean
the centre of mass motion of such a system, which may consist of many atoms.
Surely, there are many other [we call those internal] degrees of freedom of the same
system such as electronic states or vibrations and rotations which are described as
relative motions of the atoms forming the large object, but here we are not concerned
with those. When we talk about superpositions, we mean spatial superpositions,
in the sense of a the centre of mass of a single particle, which can be elementary
or composite, being here and there at a given time, the Schrödinger cat state. The
most massive complex quantum system, which has been experimentally put in such
a superposition state, are complex organic molecules of a mass on the order of
mmax = 10−22 kg [9].

Typically for gravity experiments there are two masses involved, the source mass
which generates a gravitational field, potential or curvature of space-time (the source
mass has usually a big mass) and the test mass which is probing the gravity effect
generated by the source mass. Torsion balances are the classic device for typical
gravity experiments. We think there are two regimes interesting for experimental
investigation: (1) the regime where a quantum system is the test mass and interacts
with a large external source mass. This is the regime where neutron and atom inter-
ferometry are already very successful and provide tools for precise measurements of
gravity effects. (2) the regimewhere the quantum system itself carries sufficient mass
to be the source mass and to allow for related quantum gravity effects to become
experimentally accessible. So far there has been no convincing experiment in the
second regime. Any experiment performed in that second regime will ultimately
give insight into the interplay between gravity and quantum mechanics. Test of the
Schrödinger-Newton equation and of quantum effects in gravity fall in the latter
regime. It may very well be that there are surprises waiting for us if we become able
to probe that regime by experiments.

In the following we shall discuss the prospects to experimentally test the semi-
classical Schrödinger-Newton equation, which plays also a role for some ideas of
gravity induced collapse of the wavefunction such as put forward by Roger Pen-
rose [59], gravitational decoherence such as some ideas to investigate the gravity
effects within a spatial quantum superposition state.

3.1 Proposals for Experimental Tests of the
Schrödinger-Newton equation

What is the gravitational field of a quantum system in a spatial superposition state?
The seemingly most obvious approach, the perturbative quantization of the gravita-
tional field in analogy to electromagnetism, makes it alluring to reply that the space-
time of such a state must also be in a superposition. The non-renormalizability of said
theory, however, has also inspired the hypothesis that a quantization of the gravita-
tional field might not be necessary after all [60, 61]. Rosenfeld already expressed the
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thought that the question whether or not the gravitational field must be quantized can
only be answered by experiment: There is no denying that, considering the univer-
sality of the quantum of action, it is very tempting to regard any classical theory as a
limiting case to some quantal theory. In the absence of empirical evidence, however,
this temptation should be resisted. The case for quantizing gravitation, in particular,
far from being straightforward, appears very dubious on closer examination. [60]

Adopting this point of view, an alternative approach to couple quantum matter to
a classical space-time is provided by a fundamentally semi-classical theory that is
by replacing the source term in Einstein’s field equations for the curvature of clas-
sical space-time, energy-momentum, by the expectation value of the corresponding
quantum operator [60, 62]:

Rμν + 1

2
gμνR = 8πG

c4
〈�|T̂μν |�〉. (7)

Of course, such presumption is not without complications. For instance, in conjunc-
tion with a no-collapse interpretation of quantum mechanics it would be in blatant
contradiction to everyday experience [63]. Moreover, the nonlinearity that the back-
reaction of quantum matter with classical space-time unavoidably induces cannot
straightforwardly be reconciled with quantum nonlocality in a causality preserving
manner [64, 65]. Be that as it may, there is no consensus about the conclusiveness
of these arguments [66–68]. The enduring quest for a theory uniting the principles
of quantum mechanics and general relativity gives desirability to having access to
hypotheses which could be put to an experimental test in the near future.

In the non-relativistic limit, the assumption of fundamentally semi-classical grav-
ity yields a non-linear, nonlocalmodification of the Schrödinger equation, commonly
referred to as the Schrödinger–Newton equation [34, 69, 70]. After a suitable approx-
imation [70], for the center of mass of a complex quantum system of mass M in an
external potential Vext it reads:

i�
∂

∂t
ψ(t, r) =

(
�
2

2M
∇2 + Vext + Vg[ψ]

)
ψ(t, r) (8a)

Vg[ψ](t, r) = −G
∫

d3r ′ |ψ(t, r′)|2 Iρc(r − r′). (8b)

The self-gravitational potential Vg depends on the wavefunction, and hence renders
the equation nonlinear. The function Iρc , which models the mass distribution of the
considered system, will be defined below.

The Schrödinger–Newton equation has primarily been discussed in the context of
gravitationally induced quantum state reduction [71, 72]. Its relevance for a possible
experimental test of the necessity to quantize the gravitational field was pointed
out by Carlip [61]. First ideas how to test such kind of nonlinear, self-gravitational
effects focused on the spreading of a freewavefunction inmatter-wave interferometry
experiments [9, 37, 61, 69, 70]. Recently, other experimental test have been proposed
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including one based on the internal dynamics of a squeezed coherent ground state of
a micron-sized silicon particle in a harmonic potential. We will now discuss further
ideas for testing the Schrödinger-Newton equation.

3.1.1 Proposed Direct Tests of Schrödinger-Newton Equation:
Wavefunction Expansion

The direct test of the Schrödinger-Newton (SN) equation is by studying the free
expansion of the wavefunction of sufficiently massive objects. Then a contraction of
the wave function according to the SN self-gravity effect should have a consequence
on that expansion, competingwith its natural Schrödinger’s dynamics spread.Clearly,
because to the weakness of gravitation interaction, the mass has to be sufficiently
large while the object has to remain in a state which can be described by a centre of
mass quantum wavefunction, meaning the spatial extent of the wavefunction should
be detectable for the full duration of the evolution. See Fig. 5 for the mass-time
parameter space required to observe the predicted SN effect directly, which has been
studied extensively. While analytic solutions of the SN equation are difficult and
even numerical simulations are non-trivial.

Fig. 5 Direct Test of Schrödinger-Newton (SN) wavefunction evolution: The mass-time plot
to illustrate the parameter range which needs to be reached for direct SN wavefunction evolution
experiments. This clearly needs to be done without external gravity and other forces/interactions
and therefore an experiment in space appears a likely option. The red area shows the parameter
range for a proposed space mission to test the SN effect
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One possible experimental scenario would be a molecule interferometry experi-
ment [9]. While such matterwave experiments probe spatial superposition states of
large molecules—the SN contraction effect could also be observed for a free expan-
sion of a singular wave function originated from a point in space. The key is that the
mass of the evolving quantum object has to be comparable large, much larger than the
mass achieved in present molecule interferometry experiments. Cold atoms and even
BEC of atoms, which benefit from the multitude of coherent manipulation, control
and cooling schemes do not seem to have large enough mass in order to show the
SN expansion/contraction effect. Clearly one needs a high mass at the same time as
access to the coherent quantum evolution of the objects wavefunction. The highmass
and the long expansion times to be studied challenge the experimental realisation.

Therefore, should direct tests of the SN equation be done in space? Yes, at this
point there seems to be no other way to allow the wavefunction expansion for long
enough, typically some hundred seconds, see Fig. 5. Proposals to levitate massive
particles (optically or magnetically) and therefore to compensate for the drop in
Earth’s gravity have not been realised and are more problematic for SN test. The
levitated tests rely on proposed techniques to accelerate the wavefunction expansion
artificially by optical or magnetic field gradients. That acceleration would have the
potential to wash out completely the fragile SN effect.

3.1.2 Proposed Indirect Tests of SN Equation

Indirect SN effects have been predicted for optomechanics systems which are com-
parably massive and on the verge to be quantum, see Fig. 4. Such effects are very
small, can be overwhelmed by noise effects in the experiments, but can be done on
the table-top. Therefore these tests represent a serious experimental challenge, while
proposed to be possible with available technology. Two optomechanics experimental
cases and the study of the SN dynamics in non-linear optics analogs are mentioned:

A. SN rotation of squeezed states The mechanical motion of an optomechanical
system, clamped or levitated, is squeezed. Quantum squeezing of clamped optome-
chanics has been realised experimentally already, while a classical analog has been
demonstrated for a levitated system. An optical homodyne detection of both field
quadratures of the mechanical state is plotted and shows the cigar-shaped state, see
in Fig. 6 left. The SN equation predicts an extra rotation of the squeezed phase-space
distribution [73].

B. SN energy shifts of mechanical harmonic oscillator A further theoretical study
[74] predicts SN related shifts of the Eigenenergy levels of the quantum harmonic
oscillator describing the optomechanical system, see for an illustration of themultiple
energy shift effects the Fig. 6 right. There different effects for the so-called wide and
narrow wavefunction regimes are predicted for the situations that the spatial extent
of the centre of mass motion wavefunction is larger (wide wavefunction regime) or
smaller (narrow wavefunction regime) than the physical size of the massive object.
A detailed experimental scenario has been worked out and awaits its realisation in
an actual laboratory.
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Fig. 6 Indirect Tests of the Schrödinger-Newton equation: Left Panel: Phase space plot of
mechanical squeezed state with extra rotation of state distribution according to the SN effect. Left
side: according to standard quantum mechanics, both the vector (〈x〉, 〈p〉) and the uncertainty
ellipse of a Gaussian state for the centre of mass (CM) of a macroscopic object rotate clockwise in
phase space, at the same frequencyω = ωCM . Right side: according to the CMSchrödinger-Newton
equation, (〈x〉, 〈p〉) still rotates at ωCM , but the uncertainty ellipse rotates at ωq = (ω2

CM + ω2
SN )2.

Picture taken from [73]. Right Panel: Schematic overview of the effect of the Schrödinger-Newton
equation on the spectrum. The top part shows the first three energy eigenvalues and their shift due to
the first order perturbative expansion of the Schrödinger-Newton potential. The bottom part shows
the resulting spectrum of transition frequencies. In the narrow wavefunction regime (middle part),
all energy levels are shifted down by an n-independent value minus an n-proportional contribution
that scales with the inverse trap frequency. In the intermediate regime, where the wavefunction
width becomes comparable to the localization length scale of the nuclei, this n-proportionality does
no longer hold, leading to a removal of the degeneracy in the spectrum. Picture and caption taken
from [74]

C. Non-linear optics simulation of the SN equation Specific delocalised non-
linearities in optical systems, typically just a piece of glass with a large refractive
index, show a very similar type of dynamics for the propagation of light though that
system if compared to SN dynamics. The analog holds at least in (1+1) space-time
dimensions. The analog provides an interesting option to study the dynamics of the
SN equation in a parameter regime complementary to numeric simulations. Some
experiments have been already performed [75, 76] to study cosmological settings of
the SN equation such as exotic Boson stars. The main question remains, what can we
ultimately learn from optics analog experiments. Do we really learn about gravity?
No, but we learn about the formal analog dynamics which is hard to calculate or
simulate otherwise.

3.2 Gravitational Decoherence Effects

Tests of gravitational decoherence are based on the the straight-forward approach
to generate a spatial superposition state (or any other non-classical state) of a mas-
sive particle and test if such a state decoheres according to (classical or quantum)
gravity. Clearly, the experimental challenge is the preparation of such a state of suf-
ficient mass. Typical experiments involve matterwave interferometers and quantum
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optomechanics. While the larges mass is given again by molecule interferometry—
some of the effects (such as time dilation) are more promising to be tested in smaller
mass systems such as cold atom interferometry, as those can be prepared in larger
size superposition states to pick up a larger dephasing or decoherence effect. While
on first sight it appears that only massive systems can be used for the test, we know
that GR effects also exist for photons [77].

A.Gravitational decoherence affecting superpositionsOne of the proposed effects
is by GR time dilation [78, 79], which is picked up as a dephasing effect for a
matterwave interferometer for the propagation of the wavefunction along the two
different arms—ultimately resulting in a reduction of the visibility of the interference
pattern. The effect has been predicted to scale with the number of all internal degrees
of freedom,which are involved in the energy-momentum tensor on the right hand side
of Einstein’s equations and therefore to affect the spacetime curvature and therefore
gravity.

Atom interferometry tests, profiting from the high control on the centre of mass
motion of cold atoms, e.g. in 10m fountain and with sensitively on the verge of
10−19, of the time delation effect appear most promising at the moment, while the
theoretical details of the effect are still debated. As a universal decoherence effect
to explain the evident macroscopic quantum to classical transition, it is clear that
that time dilation decoherence should it exist is weaker by many order of magnitude
than know environmental effects such as decoherence due to collisions by an even
very diluted background gas [80], which leaves the usefulness of the GR effect in
question.

To be more precise, each (internal) degree of freedom of the particle is regarded
as a clock running at a typical frequency, but depending via GR time dilation on
the local gravitational environment. Then each single clock if separated between
the two different paths of an interferometer will be sensitive to the relative duration
of time and therefore dephase. This experiment has been realised as a proof of
principle experimentwith atomic chips [81], where themuch larger spatial separation
in other atomic interferometers [17] will help to improve the sensitivity to observe
the predicted effect to test whether GR time dilation can be regarded as a universal
source of decoherence to explain the macroscopic quantum to classical transition of
physical systems, ultimately to explain the existence of the classical world.

B. Gravitational effect in dynamical reduction models Dynamical reduction or
collapse models have been formulated to explain the quantum to classical transition
on a fundamental level and in complement to decoherence models [14]. While the
physics reason for the collapse to occur is explained by the existence of a universal
classical and random noise field, the physics origin of that field is still debated. Grav-
ity to be a candidate for the collapse field has to fulfil that two conditions of being
classical and random. While the classicality is more straight forward, the imple-
mentation of a generic stochastic version of gravity represents a challenge. Some
attempts have been undertaken and can also been seen as a stochastic modification
of the Schrödinger-Newton equation, which was discussed in Sect. 3.1 [34, 82–84].
Tests of such gravity collapse models follow the same logic as tests of collapse mod-
els and in general a set of parameters has to be fulfilled. For more details related to
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Fig. 7 Parameter map for gravity induced collapse models: (ξ , rC ) or equivalently (ξ , τ0)
parameter diagram of the gravity-induced collapse model. The white area is the allowed region.
The blue shaded region (X-rays) is excluded by data analysis of X-rays measurements. The orange
shaded region (LISA) is excluded from data analysis of LISA Pathfinder. The green shaded region
(Macro) is an estimate of the region excluded by the requirement that the collapse is strong enough
to localize macroscopic objects. Note that X-ray measurements sample the high frequency region
of the spectrum (1018 Hz) and would disappear if the noise correlator has a cutoff below such
frequencies, which is plausible. In such a case, the stronger upper bound on the left part of the plane
is given by data analysis with cold atom experiments (Cold atoms) [35]. Picture and caption has
been taken from [84]

experimental test we refer to [84], where the Fig. 7) has been taken from. While the
bounds on gravity collapsemodels in Fig. 7 relate to experiments already done, future
experiments proposed to close the raining gap in the parameter plot involve those to
generate large and massive quantum superpositions [30–32, 85]. Such experiments
are currently under development in the laboratories.

C.Gravity induced collapse of the wavefunctionOther ideas which are less related
to the formalism of collapse models, but do explain the collapse of the wavefunction
according to gravity are those independently by Diosí [86] and Penrose [87]. The
best way to test those models is by large mass matterwave interferometry, where the
mass has to be beyond the presently reached limit of molecule interferometry by
many orders of magnitude. This means to test such models requires to preparation
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of large masses in non-classical states and optomechanical or magnetomechanical
systems look most promising for the test [88–90]. Proposed experiments along those
lines involve [31, 91].

D. Competing effects for matterwave interferometry In order to be able to see
such gravity effects and how they collapse or decohere the wavefunction in matter-
wave based experiments all competing environmental decoherence processes have
to be suppressed, which is the major experimental challenge in order to perform the
experiments. Dominating decoherence effects are due to collisions with background
gas, collisional decoherence [92] and the effects because of exchange of thermal
radiation between the quantum system and the environment [30, 85]. Magnetic lev-
itation of superconducting microparticles by definition avoids all effects related to
internal temperature radiation as the experiment is cryogenic and on top of that all
noises related to lasers are removed as well [31] which represents a huge advan-
tage compared to optomechanics test. Further vibrations set serious constraints to all
mechanics based test of wavefunction collapse and gravity.

E. The case for spaceUltimately a test of gravity decoherence and gravity induced
collapse of the wavefunction would benefit from large masses of the particles in
superposition states as well as long lifetimes of those superposition states in order
to observe the extremely weak effects. The space proposal on macroscopic quantum
resonators (MAQRO) [33]would be able to fulfil such all those conditions.A commu-
nity has started to work towards such a test in space and to propose a related mission.

3.3 The Gravity of a Quantum State—Revisited

What gravitational field is generated by a massive quantum system in a spatial super-
position? Despite decades of intensive theoretical and experimental research, we still
do not know the answer. On the experimental side, the difficulty lies in the fact that
gravity is weak and requires large masses to be detectable. However, it becomes
increasingly difficult to generate spatial quantum superpositions for increasingly
large masses, in light of the stronger environmental effects on such systems. Clearly,
a delicate balance between the need for strong gravitational effects and weak deco-
herence should be found. We show that such a trade off could be achieved in an
optomechanics scenario that allows to witness whether the gravitational field gener-
ated by a quantum system in a spatial superposition is in a coherent superposition or
not. We estimate the magnitude of the effect and show that it offers perspectives for
observability.

Quantum field theory is one of the most successful theories ever formulated. All
matter fields, together with the electromagnetic and nuclear forces, have been suc-
cessfully embedded in the quantum framework. They form the standard model of
elementary particles, which not only has been confirmed in all advanced accelera-
tor facilities, but has also become an essential ingredient for the description of the
universe and its evolution.
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In light of this, it is natural to seek a quantum formulation of gravity as well.
Yet, the straightforward procedure for promoting the classical field as described by
general relativity, into a quantumfield, does notwork. Several strategies have beenput
forward, which turned into very sophisticated theories of gravity, the most advanced
being string theory and loop quantum gravity. Yet, none of them has reached the goal
of providing a fully consistent quantum theory of gravity.

At this point, one might wonder whether the very idea of quantizing gravity is
correct [59–64, 66, 66–68, 93, 94]. At the end of the day, according to general
relativity, gravity is rather different from all other forces. Actually, it is not a force at
all, but a manifestation of the curvature of spacetime, and there is no obvious reason
why the standard approach to the quantization of fields should work for spacetime as
well. A future unified theory of quantum and gravitational phenomena might require
a radical revision not only of our notions of space and time, but also of (quantum)
matter. This scenario is growing in likeliness [95–97].

From the experimental point of view, it has now been ascertained that quantum
matter (i.e. matter in a genuine quantum state, such as a coherent superposition state)
couples to the Earth’s gravity in the most obvious way. This has been confirmed in
neutron, atom interferometers and used for velocity selection in molecular interfer-
ometry. However, in all cases, the gravitational field is classical, i.e. it is generated by
a distribution of matter (the Earth) in a fully classical state. Therefore, the plethora
of successful experiments mentioned above does not provide hints, unfortunately, on
whether gravity is quantum or not.

In a recent paper [98], we discuss an approach where a quantum system is forced
in the superposition of two different positions in space, and its gravitational field is
explored by a probe (Fig. 8). Using the exquisite potential for transduction offered
by optomechanics, we can in principle witness whether the gravitational field is the

Fig. 8 Schematic representation of the two-body setup. S1 is prepared in a spatial superposition
along the x direction (red balls). S2 is initially prepared in a localized wavepacket (blue ball), and
it probes the gravitational field generated by S1. a The gravitational field acting on S2 is a linear
combination of gravitational fields produced by S1 being in a superposed state. b The semi-classical
treatment of gravity, where the gravitational field acting on S2 is that produced by a total mass m1
with density 1

2

(|α(r)|2 + |β(r)|2)
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superposition of the two gravitational fields associated to the two different states
of the system, or not. The first case amounts to a quantum behavior of gravity, the
second to a classical-like one.We have illustrated the dynamics of an optomechanical
system probing the gravitational field of a massive quantum system in a spatial
superposition. Two different dynamics are found whether gravity is treated quantum
mechanically or classically. Here, we propose two distinct methods to infer which of
the two dynamics rules themotion of the quantum probe, thus discerning the intrinsic
nature of the gravitational field. Such methods will be then eventually able to falsify
one of the two treatments of gravity. A similar proposal has been made for angular
superpositions [99].

The considered setup is formedof two systems interacting gravitationally.All non-
gravitational interactions are considered, for all practical purposes, negligible. The
first system (S1) has a mass m1, and it is initially prepared in a spatial superposition
along the x direction. Its wave-function is ψ(r1) = 1√

2
(α(r1) + β(r1)), where α(r1)

and β(r1) are sufficiently well localized states in position, far from each other in
order to prevent any overlap. Thus, we can consider them as distinguishable (in a
macroscopic sense), and we approximate 〈α|β〉 � 0. The second system (S2) will
serve as a point-like probe of the gravitational field generated by S1, it has mass
m2 and state φ(r2). The state φ(r2) is initially assumed to be localized in position
and centered along the y direction [cf. Fig. 8]. The question we address is: which
is the gravitational field, generated by the quantum superposition of S1, that S2
experiences? We probe the following two different scenarios.

Quantum Gravity Scenario. Although we do not have a quantum theory of gravity
so far, one can safely claim that, regardless of how it is realized, it would manifest in
S1 generating a superposition of gravitational fields. As discussed in the introduction,
the assessment of this property precedes the quest to ascertain the existence of the
graviton and the characterization of its properties, at least as far as the static, low-
energy, non-relativistic regime we are considering is concerned. Linearity is the very
characteristic trait of quantum theory, and one expects it to be preserved by any
quantum theory of gravity.

The reaction of S2 is then to go in a superposition of being attracted towards the
region where |α〉 sits and where |β〉 does. The final two-body state will have the
following entangled form

�final
QG (r1, r2) = α(r1)φα(r2) + β(r1)φβ(r2)√

2
, (9)

where φα(r2) (φβ(r2)) represents the state of S2 attracted towards the region where
|α〉 (|β〉) rests. The motion in each branch of the superposition is produced by the
potential

V̂γ (r̂2) = −Gm2

∫
dr1

ργ (r1)
|r1 − r̂2| , (γ = α, β). (10)
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where ργ (r1) is the mass density of S1, centred in 〈r̂1〉γ = 〈γ |r̂1|γ 〉. We assume
that S1 does not move appreciably during the time of the experiment (also quantum
fluctuations can be neglected); clearly, such a situation can be assumed only as long
as the S1 superposition lives. We further assume that its mass density is essentially
spheric, so that the gravitational interaction can be approximated by

V̂γ (r̂2) ≈ − Gm1m2

|〈r̂1〉γ − r̂2| , (γ = α, β). (11)

Semiclassical Gravity Scenario. The second scenario sees gravity as fundamentally
classical. In this case, it is not clear which characteristics one should expect from the
gravitational field generated by a superposition. However, in analogy with classical
mechanics, one can assume that is the mass density ρ(r1) = (ρα(r1) + ρβ(r1))/2 of
the system in superposition that produces the gravitational field. This is also what
is predicted by the Schrödinger-Newton equation (see Sect. 3). The final two-body
state will be of the form

�final
CG (r1, r2) = α(r1) + β(r1)√

2
φ(r2), (12)

where the difference with Eq. (9) is clear. The gravitational potential becomes

V̂cl(r̂2) ≈ 1
2

∑
γ=α,β

V̂γ (r̂2), (13)

where V̂γ (r̂2) can be eventually approximated as in Eq. (11).
Experimental progress with levitated mechanical systems makes is possible to

reach a parameter regime to experimentally resolve the difference between the quan-
tum and semiclassical scenarios as shown in our paper [98]. Other interferometric
[100, 101] and non-interferometric [102] tests of the nature of gravity have been
proposed. They are based on the detection of entanglement between two probes,
respectively coupled to two different massive systems, which interact through grav-
ity (NV center spins for [100] and cavity fields for [102]). Clearly, to have such
entanglement, each of the three couples of interconnected systems (probe 1, sys-
tem 1, system 2 and probe 2) there considered needs to be entangled on their own.
Moreover, the entanglement between the two massive systems is inevitably small
due to its gravitational nature. Conversely, our proposal benefits from having only
a single massive system involved in the interconnection, which reduces correlation
losses. In addition, we provide a second method for discerning the nature of gravity:
the individuation of a second peak in the DNS. The latter does not rely on deli-
cate measurements of quantum correlations but can be assessed through standard
optomechanical detection schemes.
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3.4 Concluding Remarks on Testing the Interplay
of Quantum Mechanics and Gravity in the Low Energy
Regime

While matterwave interferometer experiments have been performed in the low mass
regime, see Fig. 4, the higher mass range, all the way up to milligrammasses is unex-
plored by any experiment and especially not by any quantum experiment. Optome-
chanical devices and especially levitated particles are able to bridge this enormous
mass gap; being in a quantum mechanical state and very massive at the same time.
Levitated mechanical systems hold promise to test new physics in that new mass
range. A variety of theoretical proposals and ideas for the interplay between quan-
tum mechanics and gravity will become testable in this very mass range. The study
of gravitational decoherence, the Schrödinger-Newton equation and the gravity of a
quantum state provide concrete routes for experimental exploration.

4 Simulation of the Stern Gerlach Experiment Using
Wigner Functions

The Stern-Gerlach (SG) experiment [103] is a seminal example of a quantum exper-
iment involving coupling between internal and external degrees of freedom. In this
experiment, an electron or nuclear spin interacts with a spatially inhomogeneous
magnetic field through the magnetic Zeeman interaction. The outcome of the Stern-
Gerlach experiment is, of course, “well-known”: an incident molecular beam of
particles with spin-1/2 is separated by the inhomogeneous magnetic field into two
beams, each corresponding to particles with well-defined spin angular momenta
along the field direction. But how does this separation happen in detail, on the level
of the spatial quantum state?

In a recent article [104] we used an extended Wigner function (EWF) which
includes the presence of internal degrees of freedom in the propagating particle, and
the coupling of those internal degrees of freedom to inhomogeneous external fields
(Fig. 9).

TheWigner functionW (x, p) is a joint quasi-probability density function defined
over the combined domains of the spatial coordinate(s) x and its associated momen-
tum (momenta) p. It is defined as a Weyl integral transform of the density operator
ρ̂ = |ψ〉〈ψ |, of the following form:

W (x, p) = 1

h

∫
e− i ps

� 〈x + s
2 |ρ̂|x − s

2 〉 ds. (14)

Consider a particle with a finite number of internal quantum states. In the dis-
cussion below, we refer to these internal states as “spin states”, although the same
formalism applies to non-spin degrees of freedom, such as quantized rotational and
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Fig. 9 a Evolution of Wαα and Wββ under the influence of a magnetic field gradient in a Stern-
Gerlach experiment on Ag atoms in a field gradient of 10 Gµm−1, moving at a velocity of 550 m/s
(rms velocity at an oven temperature of 1300 K). b Evolution of the real part of the off-diagonal
element Wαβ , assuming a coherent state initially polarised along the x-axis. The strength of the
magnetic field gradient has been reduced by a factor of 5 × 104 compared to A in order to make
the spatial modulation visible. The shearing of the fine structure of the Wigner function represents
decoherence. Figure and capture taken from Ref. [104]

vibrational states. We extend the Wigner function by combining it with the den-
sity operator formalism commonly used in the quantum description of magnetic
resonance. The definition of the Wigner function is extended by projecting the den-
sity operator onto the spin-state specific position state |x, η〉, where η = α, β, . . .

denotes the spin state. This results in aWigner probability density matrixWηξ (x, p),
whose elements depend parametrically on the positional variables and their associ-
ated momenta:

Wηξ (x, p) = 1

h

∫
e− i ps

� 〈x + s
2 , η|ρ̂|x − s

2 , ξ 〉 ds. (15)

This means the extended Wigner function can be used to directly simulate the
SG experiment. In the Stern-Gerlach experiment, a beam of spin-1/2 particles is
exposed to a lateral magnetic field gradient. We define the axis of the molecular
beam apparatus as z, and assume that the magnetic field varies in the transverse x-
direction. The potential energy part of the Hamiltonian in the presence of an external
magnetic field B is then given by

U (Ŝ, x) = −�γB(x) · Ŝ. (16)

The original magnet design used by Stern and Gerlach [103] produces divergent
magnetic field lines at the location of the beam.This corresponds to a biaxialmagnetic
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field gradient tensor, requiring two spatial dimensions to be included in the Wigner
function. To avoid this complication, we use a different arrangement, in which the
magnetic field gradient is uniaxial. In this case, themagnetic field lines are all parallel,
but vary in density in the direction perpendicular to themagnetic field itself.Magnetic
fields of this type occur in quadrupole polarisers.

We assume themagnetic field points along the y-axis, and varies linearly inmagni-
tude along the x-axis,B(x, y, z) = (

By0 + xGxy
)
ey,where By0 is themagnetic field

at x = 0, andGxy = ∂By/∂x . This field is fully consistent withMaxwell’s equations,
since it satisfies ∇ · B = 0. The field gradient has only a single non-zero cartesian
component ∇B = Gxy exey. We choose the spin states |α〉 and |β〉 as the eigenstates
of Ŝy , such that the matrix elements of the potential part of the Hamiltonian are

Uαα(x) = − γ �

2 By(x) Uαβ(x) = 0
Uβα(x) = 0 Uββ(x) = + γ �

2 By(x).
(17)

The resulting equations of motion for the EWF matrix elements are given in the SI.
In its original form, the Stern-Gerlach experiment was conducted on a beam of

Ag atoms emanating from an oven at a temperature of about 1300 K. The magnetic
field gradient was of the order of 10 G/cm over a length of 3.5 cm [105]. For
simplicity, we ignore the nuclear spin of Ag, and treat the atoms as (electron) spin
1/2 particles. In the case of magnetic fields larger than the hyperfine splitting (about
610 G in the case of Ag), this is a good approximation, since the nuclear and the
electron spin states are essentially decoupled. The root mean square velocity of Ag
atoms 1300K is approximately 550 m/s. After leaving the oven, the Ag atoms are
collimated by a pair of collimation slits 30 µm wide and separated by 3 cm. The
longitudinal momentum of the silver atoms is approximately 6 × 104 gmol−1 ms−1.
The collimation aspect ratio of 1:1000 therefore results in a transverse momentum
uncertainty of �p = 60 gmol−1 ms−1, which corresponds to a 30 µm wide beam
with a transverse coherence length of about lc = h/�p ≈ 7 nm.

An unpolarised beam entering the magnetic field gradient is represented by a
unity spin density matrix, such that Wαα(t = 0) = Wββ(t = 0) = W0(x, p), where
the initial stateW0(x, p) is a two-dimensional normalised Gaussian function centred
at (x, p) = (0, 0), with widths given by coherence length lc and the beam width
�x (cf. SI). The off-diagonal Wigner functions vanish: Wαβ = Wβα ≡ 0, and the
diagonal ones can be obtained in closed form by integrating the equations of motion
(cf. SI).

In conclusion, the SG magnet can be used as coherent beam splitter, but the
original experiment did not do the recombination or any other protocol to demonstrate
the quantum correlation. When a coherent superposition spin state is provided at the
SG input then a coherent spatial superposition of the centre of mass motion of the
particle can be achieved. This has been finally demonstrated by the group of Ron
Folman [106] for the case of atom interferometry and is used as central ingredient
for a recent proposal of the generation of macroscopic quantum superposition [100,
101].
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