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Developing the thermodynamics of nanoscale friction is needed in a wide range of tribological appli-
cations, where the key objective is to optimally control the energy dissipation. Here we show that
the modern stochastic thermodynamics allows interpreting the measurements obtained by the fric-
tion force microscopy, which is the standard tool for investigating frictional properties of materials,
in terms of basic thermodynamics concepts such as the fluctuating work and entropy. We show that
this allows the identification of the heat produced during the friction process as an unambiguous
measure of thermodynamic irreversibility. We have applied this procedure to quantify the heat pro-
duced during the frictional sliding in a broad velocity range, and observe velocity-dependent scaling
behaviour, which is useful for interpreting the experimental outcomes.

I. INTRODUCTION

Recent decades are witnessing a rapid development of
out-of-equilibrium thermodynamics of small fluctuating
systems to minimise energy losses in applications. For ex-
ample, optimising the heat dissipation occurring during
nanoscale friction processes is of paramount importance
for the bottom-up tribological material design [1]. This is
a challenge because friction is a far-from-equilibrium phe-
nomenon and its fully consistent thermodynamic descrip-
tion falls beyond the validity range of non-linear thermo-
dynamics [2] or linear response theory [3]. In particular,
the general principles governing the separation of ther-
modynamic work into the system’s internal free energy
and entropy or heat produced during the friction pro-
cess are currently unknown, especially at the nanoscale
dominated by thermal and structural fluctuations.

In this article the aim is to address these questions by
adapting the modern stochastic thermodynamics (ST)
[4] to nanoscale friction. ST is a fully consistent general
thermodynamic theory of irreversible processes applica-
ble to thermally fluctuating mesoscopic systems, and de-
fines the essential thermodynamic concepts such as the
fluctuating work, free energy, and entropy [5, 6]. Its prac-
tical application to nanoscale friction requires formulat-
ing these concepts in terms of the state variables relevant
to thermally activated friction processes quantifiable by
the friction force microscopy (FFM), which is the key ex-
perimental tool used to study nanoscale friction [7–15].

The output of FFM is a randomised signal reflect-
ing the structure of atomic interactions between the
FFM tip and the material, and carries complete infor-
mation about the underlying thermodynamic irreversibil-
ity. It frequently requires interpretation based on de-
tailed atomistic models combining the molecular dynam-
ics with force-fields obtained from ab initio methods
[16, 17]. However, the atomistic modelling techniques
are often practically limited by their computational scal-
ability to mesoscopic length and time-scales of a typical
FFM experiment, and instead adopted are often non-

linear coarse-grained approaches based on the Prandtl-
Tomlinson [18, 19] or Frenkel-Kontrova [20] models.
This ‘mesoscopic’ level of modelling is therefore typi-
cally adopted for studying the thermodynamics aspects
of nanoscale friction [21–23].

In this work, we considered the classical Prandtl-
Tomlinson model combined with Kramers transition
state theory of thermal fluctuations [24] as a model of
single asperity friction. We quantified the energy barrier
distributions, and assembled the master-equation govern-
ing the thermally activated dynamics using the standard
approach [21–23, 25–27]. Solving the thermally activated
dynamics allowed evaluating the time-dependent proba-
bility distributions and formulating the expressions for
fluctuating entropy based on ST [4], and express the
first thermodynamic law in terms of the fluctuating work
and heat produced during the frictional sliding [28]. We
adopted the Crooks and Jarzynski fluctuation relations
of ST [29, 30] to establish the relationship between the
work and the internal system free energies, similarly to
earlier work [21, 22]. Then we showed that these rela-
tions can be used to predict the entropy or heat pro-
duction from practical FFM measurements. Finally, we
developed an approach for estimating the heat produc-
tion from velocity-dependent friction measurements by
identifying new empirical scaling relation, which extends
the existing family of such relations [12, 31–35].

II. MODEL OF FRICTION

To model a typical FFM experiment of a thermally ac-
tivated stick-slip friction process we consider the single-
asperity Prandtl-Tomlinson model with thermal fluctua-
tions included via transition state theory [33]. A sharp
tip connected by a spring to the FFM cantilever is slid-
ing with velocity V along a static substrate in the X-
direction (Fig. 1(a)). The potential energy is defined
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Figure 1. (a) A sketch of the one-dimensional Prandtl-
Tomlinson model of FFM experiments with C = 2 N/m,
V t = 1.2 nm, a = 0.25 nm, and E0 = 0.5 eV, in the range
of typical values for FFM experiments [36]. (b) shows the
total energy landscape (continuous line), the substrate-tip in-
teraction term (dashed line), and the elastic term (dotted
line). The instantaneous position of the tip in this scenario is
x ≈ 0.4 nm, and energy u ≈ 4 eV.

as:

U(X, t) = −E0

2
cos

(
2πX

a

)
+
C

2
(X − V t)2 (1)

The first term in Eq. (1) is the energy of the substrate-tip
interaction of strength E0, and a is the spacing between
the surface asperities. The second term corresponds to
the elastic energy of the cantilever, where C is the elastic
energy constant and the product V t is the position of the
cantilever at time t. An example of the energy profile is
shown in Fig. 1(b). The total force acting on the tip
is Ftot(X, t) = −∂U/∂X = Fs(X) + F (X, t), where the
interaction force is Fs(X) = −(πE0/a) sin(2πX/a), and
the elastic force exerted on the tip by the cantilever reads:

F (X, t) = −C(X − V t) (2)

This definition of the elastic force is typically used to
represent the friction force in FFM. The energy minima
at any time t in Eq. (1) define the system states, n, cor-
responding to stable tip positions Xn. Correspondingly,
the energy of a state n is Un(t) = U(Xn). Due to the
explicit time dependence in the second term in Eq. (1),
the energy landscape and both Xn and Un evolve during
the sliding motion with a frequency V/a. It can be shown
that the necessary condition for the model to represent
the stick-slip motion is (2π)2E0/Ca

2 ≥ 1 [7, 12, 37], as

otherwise only one energy minimum is available at all
times leading to continuous sliding [38, 39].

Thermal activation is viewed as a Markovian random
hopping process over energy barriers ∆Umn separating
the different states m and n. The rate of thermally ac-
tivated transitions from state n to m is given by the Ar-
rhenius law [33]:

ωmn = ω0 exp
(
− β∆Umn

)
(3)

where ω0 is the attempt frequency setting the character-
istic timescale of thermal fluctuations, and β = 1/(kBT )
with T being the temperature and kB the Boltzmann
constant. Note that due to the explicit time-dependence
in the elastic term in Eq. (1) both ∆Umn and ωmn are
time-dependent.

The time evolution of the system is fully determined
by solving the master equation:

dPm
dt

=
∑
n

(ωmnPn − ωnmPm) (4)

which allows obtaining the distribution of probabilities
Pn(t) that the system resides in the state n at the time
t. Eq. (4) represents a set of coupled ordinary differ-
ential equations with initial conditions Pn(t = 0) for all
n, which can be solved by standard numerical techniques
[40]. An alternative way of solving Eq. (4) is by gener-
ating the individual randomised trajectories of the state
variables by using kinetic Monte Carlo methods (kMC),
such as the so-called fixed time-step kMC [41]. Both
methods are used in this work. To implement these meth-
ods, we considered only the transitions occurring between
the immediately neighbouring states, i.e. the transitions
from n to m where m = n−1 or n+1, which allowed de-
termining the corresponding energy barriers required to
evaluate the transition rates in Eq. (3). This assumption
is justifiable for over-damped systems when the thermally
activated transitions between distant states are expected
to be statistically rare [23].

Finally, note that in the limit of high energy barriers
and large damping, the present master equation approach
becomes equivalent to the frequently used stochastic
Langevin dynamics, and is often adopted for studying
the thermally activated processes in a typical FFM ex-
periment for the sake of computational convenience [42].

III. THERMODYNAMICS OF STOCHASTIC
FRICTION PROCESSES

We have used the kMC to compute random sequences
of states n(t) in the time interval from t = 0 to t =
tf . Each sequence n(t) defines a particular path in the
state space. The corresponding trajectory of the tip, x(t),
can be obtained as a series of tip positions Xn along
n(t). The lowercase notation x(t) is used to emphasise
the path-dependent stochastic process rather than the
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Figure 2. Kinetic Monte-Carlo simulation based on Eqs.
(1)-(4) of thermodynamics of a FFM tip subject to forward
(solid line) and reversed driving (dotted line). Shown are
the stochastic processes for (a) tip position, (b) friction force,
and cumulative changes of (c) internal energy, (d) work, (e)
heat exchanged with the environment, and (f) heat produced
during the sliding process. The forward process starts at time
t = 0 with the cantilever at position x = 0 and the tip in
thermal equilibrium, and follows the driving protocol λ = V t
until the finite time t = tf . The reverse process starts in
thermal equilibrium at time tf , with the cantilever at position
x = V tf and follows the protocol λ = V tf − V t from t = 0
until t = tf . All cumulative changes ∆ are calculated by
summing up all the time contributions, subject to resetting
the counter at tf . Simulation parameters fixed as in Fig. 1,
with V = 10 nm/s, T = 300 K, and ω0 = 20 kHz.

state variables Xn. Then, we evaluated the fluctuating
friction force f(t) by inserting x(t) in Eq. (2).

Figs. 2(a) and (b) show examples of sequences x(t) and
f(t). The randomised character of these processes is due
to thermal fluctuations at finite temperature. The solid
line corresponds to the forward tip sliding process with
velocity V , which starts in thermal equilibrium at the ini-
tial time t = 0 and progresses until the final time tf . The
dotted line corresponds to the reverse process. The re-
verse process also starts in thermal equilibrium, obtained
by allowing the system to equilibrate after stopping the

forward process at t = tf and then resetting the clock.
Thus the small gap between the end-point of the forward
process and the starting point of the reverse process seen
at t = tf in Fig. 2(a) corresponds to thermal relaxation
towards the new equilibrium state.

Fig. 2(c) shows the fluctuating energy u(t) evaluated
by applying Eq. (1) over the forward and reverse trajec-
tories x(t). Expressing the total time derivative over the
path n(t) associated with x(t) gives:

du

dt
=
∂u

∂t
+
∂u

∂n

dn

dt
(5)

The first partial derivative can be evaluated by directly
differentiating Eq. (1), and since only its second term
contains explicit time-dependence we obtain:

∂u

∂t
= −CV (x− V t) = V f(t) ≡ d̄w

dt
(6)

where we used Eq. (2) to express the fluctuating friction
force f(t) associated with the tip trajectory x(t). The
product of the velocity and friction force is the work per
unit time performed by the FFM tip on the system. Thus
Eq. (6) is the definition of fluctuating work w associated
with the friction process. Fig. 2(d) shows an example
of the work ∆w accumulated during the forward and re-
versed sliding processes.

To express the second term in Eq. (5), consider a par-
ticular thermally activated jump from a state n = n−

to a new state m = n+ occurring at the time instant tj .
Then the derivative ∂u/∂n |t=tj = lim∆n→0(u(n+ ∆n)−
u(n))/∆n |t=tj = (Un+

(tj)−Un−(tj))/(n+(tj)−n−(tj)),
which is simply the ratio of the energy change over
the state change associated with the thermally acti-
vated transition at tj . Similarly, we can express the
time derivative of the state-space path as dn/dt |t=tj =
lim∆t→0(n(tj + ∆t) − n(tj))/∆t = δ(t − tj)(n+(tj) −
n−(tj)), where the factor ∆t was merged into the def-
inition of the Dirac delta function δ(t). Combining both
results we obtain for the second term appearing in Eq.
(5) the expression (∂u/∂n) (dn/dt) = δ(t− tj)(Un+

(tj)−
Un−(tj)). This expression can be arranged further by
realising that since Un− and Un+

are valid state en-
ergies corresponding to states n− and n+, their en-
ergy difference can be related to the transition rates
through the use of Eq. (3) as Un+

(tj) − Un−(tj) =
kBT ln(ωn−n+

(tj)/ωn+n−(tj)). Inserting this expression
into the time-derivative term obtained above and arrang-
ing gives:

∂u

∂n

dn

dt
= kBT

∑
j

δ(t− tj) ln
ωn−n+

(tj)

ωn+n−(tj)
. (7)

Note that the summation over the time instants tj follows
from repeatedly applying the above differentiation pro-
cedure to all thermally activated jumps occurring along
the path n(t).

To understand the meaning of the result in Eq. (7), it
is first necessary to introduce the notion of the fluctuating



4

(stochastic) entropy over the path n(t) by following the
earlier work [4, 29]:

s(t) = −kB lnPn(t)(t). (8)

According to this expression, evaluating the stochastic
entropy requires explicitly solving the master-equation
Eq. (4) to obtain the time-dependent state probabilities
Pn(t), and aligning the solutions in time with each par-
ticular realisation of the stochastic path n(t) generated
by the kinetic Monte-Carlo method. Differentiating Eq.
(8) with respect to time, by using a procedure similar to
that used above for Eq. (7), we obtain:

ds

dt
= −kB

∂tPn(t)

Pn(t)
− kB

∑
j

δ(t− tj) ln
Pn+

(tj)

Pn−(tj)
, (9)

where the symbol ∂t ≡ ∂/∂t. The first term describes
the contribution to the total entropy change from the
smooth variation of state probabilities. The second term
describes the contribution from the instantaneous jumps
between the states occurring during thermally activated
transitions at random time instants tj .

Following the standard non-equilibrium thermody-
namics [2], it is useful to split the total entropy change
into the entropy flow and entropy production:

ds

dt
=
d̄es

dt
+
d̄is

dt
. (10)

Earlier work [4, 43] introduced explicit expressions for
stochastic entropy production:

d̄is

dt
=− kB

∂tPn(t)

Pn(t)

− kB
∑
j

δ(t− tj) ln
Pn+(tj)ωn−n+(tj)

Pn−(tj)ωn+n−(tj)
,

(11)

and entropy flow:

d̄es

dt
= kB

∑
j

δ(t− tj) ln
ωn−n+

(tj)

ωn+n−(tj)
(12)

such that Eqs. (9) and (10) are satisfied. These defini-
tions are consistent with their ensemble-averaged equiv-
alents [4, 23].

Given the definitions above we observe that Eq. (12)
in fact recovers Eq. (7). Inserting Eqs. (6), (7), and (12)
into Eq. (5) and arranging, we obtain:

du

dt
=
d̄w

dt
+ T

d̄es

dt
(13)

This relation establishes the first thermodynamic law for
the friction process. It represents the energy balance
valid over the fluctuating trajectory of a FFM tip, re-
lating the changes of the internal energy change of the
system to the work and heat exchanged with the envi-
ronment along the fluctuating trajectory. The notion of

the fluctuating heat can be made explicit in analogy with
Carnot-Clausius theorem [2]:

d̄q

dt
= T

d̄es

dt
, (14)

which upon inserting into Eq. (13) gives the familiar
form of the first thermodynamic law:

du

dt
=
d̄w

dt
+
d̄q

dt
. (15)

Eq. (15) affirms the interpretation of Eq. (12) as the
entropy flow and, in fact, verifies that the definitions of
variables as given above are consistent with the first law
of thermodynamics.

Finally, the entropy production in Eq. (11) quantifies
the extent of irreversible processes occurring within the
system. It is a measure of irreversible heat:

d̄qi
dt

= T
d̄is

dt
, (16)

produced during the friction process. This is in general
different from work, which is related to the friction force
according to Eq. (6). Therefore, quantifying the dissi-
pative processes by using the friction force, as is often
done in practice, may often be insufficient and it may
be necessary to determine the entropy (heat) production
directly. Fig. 2(e)-(f) show examples of cumulative heat
exchanged with the heat bath and the heat produced in
the system. Their sum gives the total fluctuating entropy
change ∆s, which is on the order of ∆s/kB ≈ 3 and thus
rather small, making the plots in Fig. 2(e) and (f) ap-
pear indistinguishable on the scale chosen apart from the
reversed trend.

IV. ESTIMATION OF ENTROPY
PRODUCTION

Repeated FFM scans produce statistical variation in the
fluctuating trajectories as illustrated in Fig. 3. The fig-
ure shows the calculations over the ensemble of stochas-
tic processes statistically equivalent to Fig. 2. The mean
values of the various thermodynamic variables are shown
by solid lines and obey the ensemble thermodynamics of
friction developed earlier [23]. The spread around the
mean corresponds to the standard deviation of thermal
fluctuations observed along the individual paths. As it
turns out, these fluctuations can be used to estimate the
free energy and entropy production from practically re-
alisable FFM measurements of the fluctuating work. We
demonstrate this by considering the Crooks and Jarzyn-
ski fluctuation relations [29, 30].

The Crooks fluctuation relation [29] states the relation-
ship between the measurements of the cumulative fluctu-
ating work ∆w expended in a non-equilibrium process oc-
curring between two thermodynamic equilibrium states
attained at t = 0 and t = tf , and the associated free en-
ergy difference ∆F between these equilibrium states. Let
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Figure 3. A plot analogous to Fig. 2 containing 500 individ-
ual trajectories. The lines are the mean values obtained over
the 500 trajectories, and the shaded areas imply two standard
deviations around the mean.

P be the probability distribution to observe ∆w, and PR
the probability distribution of the equivalent work −∆w
observed when the system is driven in a reversed manner.
Then it can be shown that for microscopically reversible
fluctuating dynamics, which is obeyed by our model in-
troduced in Sec. II, the following relation holds:

P(+∆w)

PR(−∆w)
= e−β∆w+β∆F . (17)

This relation allows determining the equilibrium free en-
ergy difference ∆F from the measurements of the non-
equilibrium fluctuating work ∆w.

To demonstrate this, we generated a large set of the
forward and reverse friction processes for a broad range of
model parameters using the procedure introduced above
(Fig. 2). The equilibrium probability distribution of the
initial state at t = 0 was determined from the Boltzmann
distribution. We took advantage of periodicity inherent
in Eq. (1) and set the value of tf to correspond to a
length multiple of the lattice constant, such that the free
energy of the new equilibrium state is the same as that
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Figure 4. (a)-(b) Examples of probability distributions of cu-
mulative fluctuating work for the forward (P) and reverse pro-
cess (PR) obtained as histograms over 1000 different trajec-
tories for velocities V = 1 and 2 nm/s, C = 9 N/m, ω0 = 100
kHz, and the rest of parameters fixed as in Fig. 2. The esti-
mates using the Crooks (∆Fc) and Jarzynski relations (∆FJ)
are shown for comparison. (c)-(d) The free energy difference
estimated from the Crooks and Jarzynski relations as a func-
tion of the mean fluctuating work for a variable number N
of repeated fluctuating trajectories corresponding to C in the
range 5−9 N/m, E0 between 0.3−0.7 eV, V between 0.5−2
nm/s, T in the range 300−500 K, fixed a = 0.25 nm and
ω0 = 100 kHz. The dashed line in all plots corresponds to
exact reference free energy ∆F = 0.

of the initial state, i.e. ∆F = 0. The cumulative fluc-
tuating work ∆w expended during the time interval was
calculated using Eq. (6).

Figs. 4(a) and (b) show examples of the calculated
probability distributions P(∆w) and PR(−∆w) for two
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different sliding velocities. The distributions P and PR
show a significant spread around the mean value, con-
sistently with Fig. 3. Both distributions cross at the
work value ∆wc when P(∆wc)/PR(−∆wc) = 1. Accord-
ing to Eq. (17) this implies that ∆wc = ∆Fc, where the
subscript c means the estimate is based on the Crooks re-
lation. This value is highlighted in Figs. 4(a)-(b) by the
dot estimating ∆Fc = 0, as expected. Fig. 4(c) shows a
further validation of Eq. (17), where ∆Fc was estimated
based on histograms of a variable number N of fluctuat-
ing trajectories. This plot illustrates that the precision
increases with increasing N . Thus, repeated FFM mea-
surements of the fluctuating work allow mapping the free
energy profile across the sample surface.

Jarzynski fluctuation relation [30] is related to Eq. (17)
and can be expressed as:

〈e−β∆w〉 = e−β∆F . (18)

The symbol 〈. . . 〉 implies averaging over many trajecto-
ries again starting and ending in thermally equilibrated
states. Similar to Eq. (17), Eq. (18) allows determining
the equilibrium free energy difference from a set of mea-
surements of fluctuating work in a series of FFM scans,
with the advantage that it relies only on the forward tra-
jectories. The disadvantage is in the increased statistical
error. This can be seen in Figs. 4(a)-(b) showing reduced
accuracy of ∆FJ , where ∆FJ denotes the estimate of the
true free energy ∆F using the Jarzynski relation, which
becomes more pronounced with increasing sliding veloc-
ity. Fig. 4(d) shows the estimates of ∆FJ for a variable
number N of fluctuating trajectories, demonstrating that
although the deviating trend of the free energy estimates
seen for larger work ∆w improves with increasing N , sig-
nificantly more measurements are required to improve
the accuracy further. This observation is consistent with
the earlier findings [22], which suggested that the ap-
plication of Eq. (18) is practical for work-temperature
ratios up to 〈∆w〉/kBT ≈ 1. For 〈∆w〉/kBT >> 1 the
accuracy suffers from the occurrence of rare trajectories
of large statistical significance, observing which requires
an exponentially increasing number N of measurements.

We also use the developed framework to quantify en-
tropy production which is a direct measure of thermody-
namic irreversibility. The entropy production ∆is can be
computed directly by integrating Eq. (11) over a fluctu-
ating trajectory, which in practical applications requires
fitting the model to the measurement data. It turns out
the ∆is can be estimated from measurements directly
with aid of Crooks or Jarzynski relations. To see this,
we first recall the thermodynamic relation relating the
free energy to entropy production ∆F = ∆w + T∆is,
which holds for non-equilibrium isothermal processes at
constant temperature T of the heat bath [4]. If the
forward process starts and ends in thermal equilibrium,
their equilibrium free energy difference ∆F can be esti-
mated from practical measurements using the Crooks or
Jarzynski relations as discussed above. Then the entropy
production can be related to the fluctuating work mea-
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Figure 5. A plot of an estimate of the cumulative entropy
production T∆is, or equivalently the heat ∆qi according to
Eq. (16), as a function of the cumulative fluctuating work.
The exact value (black, solid line) is found using the stochas-
tic thermodynamics developed in Sec. III. The estimations
are based on Eq. (19) using the Crooks (red, dashed line)
and Jarzynski relations (blue, dotted line) to obtain the free
energy ∆F . Simulation data equivalent to Fig. 4(b).

sured over the trajectory simply by the linear relation:

T∆is = ∆F −∆w (19)

Note that in this context, the entropy production can
be see as the heat produced during the friction process
expressed through Eq. (16) as ∆qi = T∆is.

Fig. 5 compares the entropy production for the data
set in Fig. 4(b) evaluated based on the exact stochas-
tic thermodynamics formalism developed in Sec. III,
used here as benchmark, and entropy production esti-
mate based on Eq. (19) with the ∆F approximated by
∆Fc and ∆FJ as discussed above. Clearly, the accuracy
of prediction of the entropy production depends on the
accuracy of estimate of the free energy, and Crooks re-
lation is more accurate as expected. Thus, once the free
energy difference has been obtained with sufficient accu-
racy, any measurement of the fluctuating work ∆w can
be converted to the associated entropy production ∆is.

It is worthwhile mentioning that dissipation in the
practical nanoscale friction experiments is often evalu-
ated based on the cyclic FFM tip sliding processes [38].
If the system returns to the same state after the cycle,
the free energy difference reads ∆F = 0, and according
to Eq. (19) the heat production can be evaluated simply
as ∆qi = T∆is = ∆w. However, due to the presence
of thermal fluctuations, the cyclic free energy difference
becomes a fluctuating quantity as well, and consequently
∆F 6= 0 after the cycle, and ∆qi 6= ∆w. The valid ap-
proach then is to average the measurements over many
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repeated cycles, which leads to 〈∆F〉 → 0 and conse-
quently 〈∆qi〉 → 〈∆w〉. Thus it is fundamentally possible
to estimate only the mean value of the fluctuating heat
production in the cyclic nanoscale friction experiment.
The cyclic measurement can be compared with the mea-
surement protocol based on the equilibrium starting and
end points discussed throughout this article. The benefit
of the present approach is that it allows analysing not
only the heat production averages, but the fluctuations
of heat around the average can be evaluated by means of
Eq. (19) as well. It thus becomes possible to study rare
extreme heat events that might have detrimental effects
on the material sample.

V. VELOCITY DEPENDENCE OF FRICTION
AND HEAT

In the following we apply the developed heat estima-
tion procedure to practical calculations of velocity depen-
dence of friction. Several asymptotic expressions relating
the friction force to the FFM tip sliding velocity V have
been identified previously. In the thermal drift regime,
when thermal fluctuations dominate the dynamics in the
limit V/a < ωTD [24], a linear relation f̄ ∼ V was found
in [33] and later extended to f̄ ∼ V 2/3 in [34]. In the
above, V/a is the characteristic (inverse) timescale of the
sliding motion, and ωTD = ω0 exp (−βE0) is the estimate
of the smallest characteristic frequency of thermal fluctu-
ations according to Eq. (3). We denoted by f̄ the force
averaged over the fluctuating trajectory as f̄ = ∆w/∆X,
where ∆X is the sliding length, to distinguish it from the
fluctuating force f used throughout this article.

In the intermediate velocity range where V/a > ωTD,
corresponding to thermal stick-slip regime when both the
dynamics due to the dragging forces and thermal fluc-
tuations play a role, a logarithmic law f̄ ∼ ln(V/V0)
was observed in [12]. This relation was later extended
to f̄ ∼ | ln(V/V0)|2/3 applicable in a broader velocity
range [31]. These asymptotic relations fail when the ve-
locity increases towards the non-thermal stick-slip regime
in the limit V/a > ω0, when thermal fluctuations no
longer play a role and the system dynamics is driven
solely by the minimisation of energy in Eq. (1). Sev-
eral forms have been derived to accommodate also this
range within a unified framework. The implicit form
(f? − f̄)3/2/b = ln(V0/V ) − ln(1 − f̄/f?)/2 was found
in [32], where b, v0 are fit parameters and f? = E0π/a.
This relation is valid even at higher velocities up to sev-
eral hundreds of µm/s. An alternative empirical form
validated in a broad range of velocities and temperatures,
which reads f̄ =

∑
n(odd) an arcsinh(v/vc)

n with an and

vc being fit parameters, was obtained in [35].
We have tested these relations based on our modelling

approach over an extensive series of fluctuating trajecto-
ries used in Fig. 4, extended to a larger velocity range.
Fig. 6(a) shows the comparison of the various formulas
against the computed data set. The region of accuracy of
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Figure 6. The mean friction force f̄ versus the tip sliding
velocity V . Each symbol corresponds to different fluctuating
trajectory starting in equilibrium. (a) A comparison of ac-
curacy of the least-squares fits of the force-velocity relations
f̄a = α1 + α2| ln(V/V0)2/3| derived in [31], the implicit for-

mula (f?− f̄b)3/2/b = ln(V0/V )− ln(1− f̄b/f?)/2 obtained in
[32], the series expansion f̄c =

∑3
n(odd)=1 αn arcsinh(v/vc)

n

from [35], and f̄d calculated from Eq. (20). The different
marker types represent the thermal drift, and thermal and
non-thermal stick-slip friction regimes in the order of the in-
creasing velocity. (b) Validation of Eq. (20) for a broad range
of parameters corresponding to data in Fig. 4 but with ex-
tended velocity range. The fit parameter variations are dis-
cussed in the text.

the individual relations is clearly manifested showing that
none of these relations covers the entire velocity range
spanning the thermal drift and thermal and non-thermal
stick-slip regimes. Therefore, we have experimented with
various empirical functional forms ultimately identifying
the following relation which describes the data with sat-
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isfactory statistical confidence:

f̄ =
L

1 +
(
V0/V

)r . (20)

Fig. 6 shows that this function indeed fits the entire
data well. The constants V0, L, are r are fit parameters,
that depend on the system parameters E0, C, a, and on
the temperature T . The parameter L is the maximum
asymptotic friction observable in the non-thermal high
velocity range, only dependent on the non-thermal pa-
rameters of the model, i.e. C, E0, and a. The parameter
V0 is the position of the middle (inflection) point of the
curve. Fig. 6(b) shows further validation of the expres-
sion for different E0 and T . We found L is approximately
0.06 nN for E0 = 0.1 eV, and 0.23 nN for E0 = 0.2 eV.
The parameter r varies between 0.6−1.4 and V0 between
183−293 nm/s for the individual data sets.

Eq. (20) seems valid in the full range of velocities
studied. A series expansion of Eq. (20) around the
mid-range velocity V0 and its comparison with equiva-
lent series expansion of the natural logarithm shows that
f̄ = L(1 + (V0/V )r)−1 ≈ L/2 + (rL/4) ln(V/V0), which
recovers the logarithmic dependence observed in the in-
termediate velocity range. Eq. (20) also compares well
with the implicit form fb (Fig. 6(a) and series expan-
sion fc (Fig. 6(a)), and in addition extends further to
accommodate also the thermal drift regime. In the non-
thermal stick-slip regime, Eq. (20) reproduces well the
expected velocity independence of friction, also observed
at the macroscale as Amontons’ law.

Given the generic nature of Eq. (20), it is useful to
link it with Eq. (19), which will allow obtaining the
dissipative heat produced during the sliding process at a
given velocity. This relation can be expressed as:

∆qi = ∆F − f̄∆X (21)

where ∆qi = T∆is as before, the fluctuating work was
expressed through the mean fluctuating friction force act-
ing over the length interval ∆X, i.e. ∆w = f̄∆X with
f̄ given by Eq. (20). Thus, characterising a given ma-
terial system through the friction force vs. velocity rela-
tion and identifying the equilibrium free energy difference
∆F between the starting and final tip positions allows to
quantitatively predict the heat dissipated during an ar-
bitrary velocity friction process. In Sec. IV we identified
∆F based the fluctuation relations. The procedure relied
on the repeated observations of the fluctuating work tra-
jectories as input, which are observable also experimen-
tally. However, since the number of trajectories required
to achieve good statistics depended exponentially on the
factor 〈w〉/kBT , the approach may be practically limited
to smaller values of 〈w〉/kBT . Alternatively, ∆F could

be estimated by different means. For example, consid-
ering the measurements in Fig. 1 in [32], it would be
plausible to assume that ∆F is the same for every force
vs. velocity scan curve at a given normal force. Apply-
ing Eq. (21) to the velocity scan curves individually then
allows eliminating ∆F from the equations, and thereby
determining the relative heat changes at different veloc-
ities and normal force loads.

VI. CONCLUSION

We demonstrated that the developed stochastic thermo-
dynamics formalism is suitable for studying nanoscale
friction in the stick-slip regime and allows interpreting
the stochastic trajectories of tip observed in a typical
FFM measurement in terms of basic thermodynamics
concepts such as the fluctuating work and entropy. We
validated the framework using the well-known Crooks
and Jarzynski fluctuation relations. We then used these
relations to determine the equilibrium free energy ∆F
from repeated measurements of the fluctuating work ob-
servable in a FFM experiment, and demonstrated that
once ∆F is known the associated fluctuating entropy
(heat) production can be identified through a simple lin-
ear relation (Fig. 5). This allows interpreting a typical
FFM measurement not only via the friction force, di-
rectly related to the work performed during the frictional
sliding process, but also in terms of the heat produced
during the process, which is an unambiguous measure of
thermodynamic irreversibility. We have applied this pro-
cedure to quantify the velocity dependence of friction,
where we succeeded in identifying empirical scaling rela-
tion encompassing the thermal drift, thermal stick-slip,
and non-thermal stick-slip regimes relevant at different
tip velocities, which complements the existing family of
such relations discovered earlier.

The developed formalism can be naturally extended to
two-dimensional surfaces by identifying the distributions
of relevant energy barriers, which can provide new insight
into how the material surface symmetries and commen-
surability determine the frictional sliding directions with
minimal heat dissipation. The approach can be combined
with ab initio methods to identify and substitute our Eq.
(1) with potential energy surfaces of realistic materials,
which will allow bottom-up design of materials with opti-
mal control tailored for specific tribological applications.
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