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Leveraging Metadata in Representation Learning
with Georeferenced Seafloor Imagery
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Abstract—Camera equipped Autonomous Underwater Vehicles
(AUVs) are now routinely used in seafloor surveys. Obtaining
effective representations from the images they collect can enable
perception-aware robotic exploration such as information-gain-
guided path planning and target-driven visual navigation. This
paper develops a novel self-supervised representation learning
method for seafloor images collected by AUVs. The method allows
deep-learning convolutional autoencoders to leverage multiple
sources of metadata to regularise their learning, prioritising
features observed in images that can be correlated with patterns
in their metadata. The impact of the proposed regularisation is
examined on a dataset consisting of more than 30k colour seafloor
images gathered by an AUV off the coast of Tasmania. The
metadata used to regularise learning in this dataset consists of the
horizontal location and depth of the observed seafloor. The results
show that including metadata in self-supervised representation
learning can increase image classification accuracy by up to 15%
and never degrades learning performance. We show how effective
representation learning can be applied to achieve class balanced
representative image identification for summarised understanding
of imbalanced class distributions in an unsupervised way.

Index Terms—Marine Robotics, Representation Learning, Vi-
sual Learning, Computer Vision, Metadata

I. INTRODUCTION

IMAGES gathered by camera equipped Autonomous Un-
derwater Vehicles (AUVs) are now used in a wide range of

seafloor survey applications. The captured images are used to
characterise seafloor scenes where both manual and automatic
methods are used for interpretation. Typical AUV missions
will gather tens to hundreds of thousands of images during a
single dive, where the high resolution and large redundancy
of imagery posses a significant challenge for automated inter-
pretation. In order to take full advantage of images for robotic
applications, it is necessary to obtain compact representations
that efficiently preserve the most valuable information in the
original images. Once these are generated, algorithmic analysis
can be performed with low latency using relatively limited
computational resources. Examples of robotic applications
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that could be facilitated using image representation include
information-gain-aware path planning for representative sur-
veys [1], [2], target-aware seek and sample missions [3],
curiosity-driven exploratory surveys [4], and real-time habitat
inference [5], [6].

The aim of this paper is to develop a self-supervised learning
method that can use metadata gathered with seafloor imagery
to efficiently generate low-dimensional latent representation
spaces that are useful for image interpretation. Effective low-
dimensional representations form the basis of semantic inter-
pretation, where classification, clustering, and content based
retrieval are examples of tasks that can be readily applied to
achieve efficient understanding of underwater scenes. Fig. 1
illustrates a typical AUV survey scenario. Data is often
gathered over multiple dives, where ships transport AUVs
between sites between their dives. These locations can be
separated by distances far larger than that traversable by an
individual AUV. Observations typically cover spatial extents
several orders of magnitude larger than the footprint of a
single image frame, which typically have edge lengths of a
few metres, and span a wide range of seafloor depths. Habitats
and substrates vary over spatial scales larger than each image
and exhibit patterns with depth, especially in shallow water
due to the influence of sunlight. Therefore, images taken close
to each other, or separated but with similar depths, are more
likely to share visual characteristics than would otherwise
be the case. To leverage this information, we implement our
metadata regularised learning method using horizontal location
and depth information. A key advantage of this approach is
that regularisation can be applied to data gathered in remote
locations during different dives based on depth information.
The novel contributions of this work are:
• Development of a regularisation method that leverages

metadata when training deep-learning Convolutional Neu-
ral Network (CNN) based autoencoders for efficient latent
representation of seafloor imagery.

• Implementation of the proposed method where an
AlexNet [7] based autoencoder is trained on seafloor
images, regularised by a loss function that introduces
domain relevant assumptions on georeference (horizontal
location and depth) information.

• Performance validation on a dataset gathered off the coast
of Tasmania that consists of more than 30k seafloor
images and 2.2k human annotations, taken over six AUV
dives between depths of 28 and 96 m, and demonstration
of an application to unsupervised representative image
selection to generate semantic summaries of the obser-
vations.
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Fig. 1: Overview of the proposed representation learning method for a typical multi-deployment AUV seafloor imaging survey.
The method regularises the representation space of an autoencoder by embedding images taken at similar horizontal locations,
or separated but with similar depths, in nearby regions of the latent representation space. This is achieved by minimising the
Kullback–Leibler divergence between the affinity matrix of the image latent representation with horizontal location metadata
using the loss function Lloc, and with depth metadata using the loss function Ldep. These are optimised together with the
autoencoder reconstruction loss Lrec to regularise the latent representation space according to these metadata.

II. BACKGROUND

Seafloor habitats and substrates can be identified by unique
patterns in their appearance, and various machine learning
techniques have been applied to automate image interpretation.
These can be broadly split into studies that use feature engi-
neering, where descriptors are manually chosen or tuned by
human experts, and representation learning, where descriptors
are directly learnt from the data. In both cases, the reduced
dimensions of the representations allow for more effective
identification of patterns in the data.

Manually engineered feature descriptors have been investi-
gated by several groups for efficient image representation [5],
[6], [8], [9], [10], [11]. In [9], [11], colour-based descriptors
were designed based on prior knowledge of targets that are of
specific scientific interest. Generic descriptors such as Local
Binary Patterns (LBP) [12] and Sparse Coding Spatial Pyramid
Matching (ScSPM) [13] have also been applied to identify
spatially invariant patterns that appear at different scales within
images of the seafloor [5], [6]. In [10], accumulated histograms
of oriented gradients from image keypoints were used to
describe seafloor images for the purpose of clustering and
anomaly detection. However, these types of descriptor often

require manual tuning of parameters, or feature engineering,
to effectively describe the datasets they are applied to.

CNNs avoid the need for feature engineering by learning
the latent representations needed to best describe the datasets
they are applied to. This is typically achieved by using labels
generated by humans experts to supervise CNN training, which
simultaneously optimises the latent representations and class
boundaries to best describe the patterns of interest in a training
dataset. In [14], the ResNet [15] deep-learning CNN was
trained to distinguish between nine different classes of coral
in a seafloor image dataset, demonstrating higher classification
resolution than traditional feature engineering based methods.
However, the need for large volumes of annotated images
to supervise CNN learning limits wide scale use in marine
applications since generic training datasets do not exist.

An alternative approach to train CNNs is to use self-
supervised learning techniques. In domains where continuity
exists between the samples in a dataset, this continuity can be
used to help regularise representation learning without the need
for direct human supervision. In natural language processing,
Word2vec [16] and GloVe [17] leverage the assumption that
words found in similar contexts are likely to have similar
meanings. This continuity was used to generate continuous rep-
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resentations of different word nuances. For image processing
applications, Tile2Vec [18] extends the assumption to spatially
distributed data, demonstrating its effectiveness for satellite
image interpretation. In [19], we developed a Location Guided
Autoencoder (LGA) that regularises autoencoder learning us-
ing horizontal geo-location information for efficient clustering
and content-based retrieval of seafloor imagery. In [20], a
similar assumption is introduced for CNN-based coral detec-
tion from seafloor imagery, where object tracking results in
sequential frames are used for semi-supervised training.

The method developed in this paper advances the state of the
art for seafloor image interpretation. First, the use of metadata
is advanced by incorporating depth information in parallel
to horizontal location information for learning regularisation.
This is significant as even though our previous LGA method
used horizontal geo-location to regularise learning [19], this
method cannot regularise learning across large horizontal spa-
tial discontinuities in observation, as is often seen between dif-
ferent AUV dives. Additionally, although the effectiveness of
the method when applied to dense survey trajectories that fully
cover a 2D region of the seafloor has been demonstrated, it is
not clear how effective the method is for sparse trajectories.
Dense survey trajectories guarantee that each image has many
other images in its neighbourhood that it can be paired with
to regularise learning. However, sparse trajectories are often
used when surveying larger regions of the seafloor, and under
these conditions only a small number of neighbourhood image
pairs are available, which potentially limits the effectiveness
of the horizontal location based regularisation. In contrast,
depth information can provide a large number pairings for
sparse surveys and regularise learning across different dives
if depth related distribution patterns exist. Next, we apply
contrastive learning methods to improve the regularisation
effect of the metadata, where this is the first time contrastive
learning has been applied to seafloor imagery. We demonstrate
these concepts on a dataset that consists of seafloor imagery
gathered over 6 AUV dives, with observations that are sparsely
distributed over a 1.6 × 1.7 km region spanning a depth range
of 28 to 96 m.

III. METADATA REGULARISED AUTOENCODER

A. General Concept

An autoencoder consists of an encoder f(·) and a decoder
g(·). The encoder f(·) maps a set of seafloor images x to
a lower-dimensional tensors h (h=f(x)), and the decoder
g(·) reconstructs the images xrec from h (xrec=g(h)) so
that the reconstructed images become as similar as possible
to the original images. The optimisation minimises the mean
squared error loss function Lrec=

1
n

∑n ‖xrec − x‖2, where
n is the total number of images.Here h can be regarded as
reasonable latent representations of x since they preserve key
information in x so that xrec can be reconstructed properly.
The key advantage of an autoencoder is that the encoder f(·)
can be trained in a self-supervised manner, where only the
input images are used and no additional human annotations
are needed. To incorporate metadata into autoencoder training,
we minimise a loss function of the following form:

Lall = Lrec +
∑

λmLm. (1)

m is an index for each type of metadata used for learning regu-
larisation, where these can be any number of continuous scalar
or vector quantities that can be associated with the images. Lm

is the loss function that regularise autoencoder training based
on the values of metadata m. λm is a hyperparameter used to
balance the loss contributions.

B. Implementation for Georeferenced Imagery

AUVs typically measure their horizontal location, depth and
altitude for basic navigational functionality. This metadata can
be leveraged to regularise autoencoder training by formulating
eq. (1) as follows:

Lall = Lrec + λlocLloc + λdepLdep, (2)

where Lloc is the loss function for the horizontal location
based regularisation, Ldep is for the depth based regularisation,
λloc and λdep are hyperparameters to balance their relative
contributions. In our implementation, AlexNet [7] and its
inverted architecture are used as the encoder and decoder,
respectively, where any type of neural network can be used
to construct autoencoder in a similar way. Our previous LGA
method [19] can be regarded as a specific case of eq. (1),
where only Lloc and λloc are used.

1) Vector Based Regularisation: The horizontal location
loss Lloc is introduced to regularise autoencoder training
following the assumption that two images captured within a
close distance tend to look more similar than two that are far
away. In representation learning, if two images look similar and
potentially belong to the same class, their latent representations
should be located within a close distance in the latent space. In
order to make the distribution of latent representations h reflect
the 2D horizontal location vector y where the images x are
taken, we introduce a loss function that has a similar structure
to the loss function of t-SNE [21]. In t-SNE, original high-
dimensional data xorg is embedded into a 2D or 3D space
xemb so that data with close relative distances in the original
space are represented with high probability in the embedded
space. In our problem, y, which controls the distribution in the
latent space corresponds to xorg, and the latent representations
h corresponds to xemb. Following the t-SNE loss function, the
probability pij , which is proportional to the distance between
yi and yj , is defined for i 6=j as:

pj|i =
exp

(
−
∥∥yi − yj

∥∥2 /2σ2
loc

)
∑

k 6=i exp
(
−‖yi − yk‖

2
/2σ2

loc

), (3)

pij =
pj|i + pi|j

2n
, (4)

where pij=0 when i=j, σloc is a normalising factor for y.The
probability qij is derived from h, and is optimised based
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on pij . For qij when i6=j, it is defined by the Student’s t-
distribution as:

qij =

(
1 + ‖hi − hj‖2

)−1
∑

k 6=l

(
1 + ‖hk − hl‖2

)−1, (5)

where qij=0 for i=j.
By defining the affinity matrices P and Q with pij and qij

as their elements, the horizontal location loss Lloc is defined
as the Kullback–Leibler (KL) divergence of P from Q:

Lloc = KL(P‖Q) =
∑
i 6=j

pij log
pij
qij
. (6)

Minimising Lloc forces Q to approach P , which embeds
the correlation between the image representations and the
horizontal location metadata into the latent representation.
Eq. (3) - (6) are implemented in a similar way to the loss
function of t-SNE, where y is used to derive the target
probabilistic distribution instead of xorg, and h is optimised
instead of xemb.

2) Scalar Based Regularisation: The depth loss Ldep can
be formulated in a similar way to the horizontal location loss
Lloc defined earlier. Given that the seafloor depth where an
image xi is captured is a scalar value di, the probability rij
is defined to be proportional to the difference between di and
dj where the observations are made:

rj|i =
exp

(
−(di − dj)2/2σ2

dep

)
∑

k 6=i exp
(
−(di − dk)2/2σ2

dep

), (7)

rij =
rj|i + ri|j

2n
, (8)

where rij=0 when i=j. σdep is a normalising factor. The depth
loss is formulated as the KL divergence Ldep=KL(R‖Q),
where R is the affinity matrix with elements rij .

3) Generalised Regularisation Behaviour: An important
characteristic of the proposed method is that multiple regu-
larisation methods can be applied without risk of significantly
degrading performance. As elements in the affinity matrices
(e.g. P and R), become further apart in the metadata space
(i.e. the distance between yi and yj or di and dj increases),
the values of pij or rij become less sensitive to the separating
distance. Furthermore, since the t-distribution used in this
work is heavy-tailed compared to Gaussian distributions, it
avoids the “crowding problem” that can occur when high-
dimensional data is embedded into a lower-dimensional space
when generating a t-SNE. This is preferable to avoid over-
regularisation by the metadata, since pairs of images that are
far apart are less strongly constrained by the regularisation and
can be flexibly embedded in the latent space. Since the loss
function only loosely constrains autoencoder training based on
probabilistic distributions, it is inherently robust to over-fitting
metadata. Furthermore, if the training process finds a particular
type of metadata to have little correlation with the appearance
of images, it gets automatically ignored, and where a particular

type of metadata is found to have a strong correlation with
image appearance it gets increasingly prioritised. This self-
regulating characteristic is important in situations where many
different types of metadata can be applied as the method
can automatically prioritise the most significant metadata and
mitigate any negative impact without additional human input
or tuning.

Here P and R are formulated for y and d, which are
2D (latitude-longitude) vectors and scalar values, respectively.
However, the proposed loss function can be implemented for
any combination of vector or scalar metadata where the simi-
larity between its values can be defined. This is important as it
allows the proposed concept of metadata based regularisation
to be readily applied to different types of samples (e.g. seafloor
imagery, water column microscopy) and available metadata
(e.g. acoustic back-scatter intensity, terrain rugosity, seawater
temperature, pH) depending on the configuration of the data
gathering platforms.

C. Mini-batch Sampling and Contrastive Learning

Ideally, Lloc and Ldep would be derived from all the samples
in a dataset (i.e. n samples) so that they are globally optimised.
However, due to computational limitations, mini-batch gradient
descent is used for the simultaneous optimisation of Lrec,
Lloc and Ldep. The number of images considered at each
iteration is limited to a mini-batch size n∗, where a strategy is
needed to avoid over-fitting to local minima in Lloc or Ldep

when sampling n∗ images. Since the regularisation effect is
diminished as the number of horizontal location and depth
neighbourhood pairs reduces, we introduce a sampling method
that balances the number of images that are nearby and far
away in each metadata space. First, two images are randomly
selected at each iteration. Next n∗/3 images are selected
from the first image’s horizontal location neighbourhood, and
another n∗/3 images are selected from the second image’s
depth neighbourhood, and the final n∗/3 images are randomly
selected from the whole dataset in accordance with the prin-
ciples of triplet loss contrastive learning demonstrated in [22].
This ensures a large variety is maintained in the values of the
affinity matrices P and R, which prevents over-regularisation
and allows similar images and dissimilar images to be evenly
considered at each batch iteration.

IV. EXPERIMENT

A. Dataset

The proposed method is applied to seafloor imagery ob-
tained off the east coast of Tasmania [23]. Analysis is per-
formed on 32,097 seafloor images taken by the Australian
Centre for Field Robotic’s Sirius AUV from an altitude of
∼2 m. The data analysed here was gathered over six dives
sparsely covering a 1.6×1.7 km region of the seafloor between
28 and 96 m depth. Details of the survey are given in TABLE I.

The images show various habitat and substrate distributions,
including kelp (A), a registered essential ocean variable, and
rocky reefs (B) - (E), which can form habitats for various con-
servation targets such as coral and sponges [24]. The original
resolution of the images is 1,360 × 1,024. Each image in the
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Label A B C D E F G H
Count 152 (6.8%) 449 (20.2%) 285 (12.8 %) 157 (7.1 %) 101 (4.6 %) 315 (14.2%) 605 (27.2%) 157 (7.1%)

(a) Class example images together with the number expert human annotations in each class.

(b) Horizontal distribution. (c) Class vs depth.

Fig. 2: Overview of the Tasmania dataset. The number of expert human annotations in each image class are shown together
with example images in a), with class labels: A - Kelp, B - High Relief Reef, C - Low Relief Reef, D - Patch Reef, E - Reef &
Sand, F - Screw Shell Rubble, G - Screw Shell Rubble & Sand, and H - Coarse Sand. The horizontal spatial distribution of the
human annotated classes are shown in b) and the depth distribution of each class is shown in c), where the same colour scheme
has been used throughout the figure. The horizontal location loss Lloc regularises learning based on the horizontal distribution
of the images, and the proposed depth loss Ldep regularises learning based on their depth distribution.

dataset is re-scaled to a resolution of 2 mm/pixel based on the
camera field of view (FoV) and imaging altitude. The centre
227 × 227 of each image is used in the analysis. The average
distance between adjacent images is approximately 0.5 m and
so the overlap between cropped images is negligible. 2,221
randomly selected images are annotated by human experts
into 8 classes, as shown in Fig. 2a, where these are used
to validate the performance of the proposed method. Fig. 2b
shows the horizontal distribution of each ground truth class in
the dataset. The figure shows that the classes form continuous
spatial patterns along the sparse survey trajectories. Fig. 2c
shows the depth distribution of annotated images in each class
together the class labels. The figure shows that Kelp (A) is
found at shallow depth ranges where energy from the sun can
reach. High Relief Coral (B) and Low Relief Reef (C) start
to appear at the depth of 40 m and 45 m, respectively. Other
classes (D) - (H) also exhibit unique depth distributions, though
there is considerable overlap beyond 50 m depth.

Horizontal location and depth estimates for each image are
generated based on the Simultaneous Localisation and Map-

ping (SLAM) pipeline described in [25]. Georeference errors
smaller than σloc in eq. (3) or σdep in eq. (7) do not affect
the optimisation. Where SLAM or other global localisation
methods such as ultra-short baseline or long-baseline acoustic
positioning are not used, horizontal position errors accumulate
at a rate of approximately 1 % distance travelled using typical
AUV navigational sensor suites [26]. In practical terms, this
means that the position uncertainty between sequentially taken
images will be negligible. For images taken nearby but with a
longer period of separation, the position uncertainty should
be estimated using established methods (e.g. an extended
Kalman filter) and where the uncertainty exceeds σloc, the
pair should be rejected. Error accumulation does not occur
when using commercial grade pressure and altitude sensors to
determine seafloor image depth and so depth regularisation can
be performed as long as these sensors are properly calibrated.

B. Autoencoder Training
To investigate the effectiveness of the proposed regulari-

sation, the autoencoder is trained (i) without regularisation,
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TABLE I: Tasmania Dataset Description
Vehicle Sirius AUV

Camera Resolution 1,360 × 1,024
Camera FoV 42 × 34 deg

Year 2008
Location East Coast of Tasmania, Australia

Coordinate 43.08◦S, 147.97◦E
Extend 1.6× 1.7 km
Depth 28 - 96 m

Altitude 1.0 - 3.0 m
No. of Images 32,097

No. of Annotations 2,221
No. of Classes 8 (See Fig.2a)
No. of Dives 6

(ii) with Lloc, (iii) with Ldep, (iv) with both Lloc and Ldep

on all 32,097 images in the dataset. AlexNet [7] with batch
normalisation is used as the encoder architecture, and its
inverse is used as the decoder where the number of dimensions
of the encoder output (equal to the number of dimensions of
the decoder input) is set to 16 in accordance with our previous
work [19]. The autoencoder weights are initialised with the
values of AlexNet pre-trained on ImageNet. A mini-batch size
of n∗ = 256 is applied and random rotation, shifting, flipping
and colour distortions are applied for data augmentation. In
the experiments where either Lloc or Ldep are applied, n∗/2
images are selected from the metadata space neighbourhoods
of each randomly selected sample, and remaining n∗/2 images
are selected randomly from the entire dataset. σloc in eq.
(3) is set to 10.0 m, and σdep in eq. (7) is set to 1.0 m
since image appearance is expected to show some degree of
correlation with horizontal location and depth within these
ranges. Preliminary experiments indicated that the method is
not highly sensitive to these parameters, where σloc values
ranging from 3.0 to 20 m only had a marginal impact on
performance. This is favourable for practical application since
extensive parameter tuning via trial and error is not necessary.
Both λloc and λdep in eq. (2) are set to 1×105, and a learning
rate of lr=1 × 10−5 is used for the Adam optimiser. These
hyperparameters are experimentally determined so that all loss
terms that are applied decrease during training. This is also
favourable in practical terms since decrease of the loss function
is a necessary condition for successful training, where most
workflows already confirm this happens before proceeding
with further analysis. The number of epochs is set to 100 and
each experiment configuration is executed three times.

C. Evaluation Metrics

The representation learning performance is evaluated based
on the classification accuracy achieved using the acquired
representations. The classifiers used to assess performance
consist of a k-Nearest Neighbour with k=1 (1-NN), a Gaussian
Process classifier (GP), Random Forest (RF), Support Vector
Machine with Linear kernel (L-SVM) and with Radial basis
function kernel (R-SVM). A 10-fold cross validation is per-
formed to examine each autoencoder, where three autoencoders
are used in each training configuration. To reduce the effect
of class imbalance, the cost functions of RF, L-SVM and R-
SVM are balanced considering the class counts. The F1 score
(macro average) is used for performance evaluation, where we
consider all class to be of equal importance. Though this exper-

TABLE II: F1 Macro Average Scores for Each Regularisation
Configuration and Classifier.

Regula-
risation

Classifier
1-NN RF GP L-SVM R-SVM

(i) 46.0±3.2 50.1±2.5 48.3±2.8 51.4±3.4 50.3±3.4
(ii) 49.4±3.8 53.6±3.3 53.3±3.7 56.3±3.6 56.6±4.0
(iii) 48.2±3.7 51.1±3.2 52.4±3.5 56.6±4.1 54.7±3.6
(iv) 49.7±2.8 53.4±3.7 54.3±2.7 57.5±3.8 57.9±4.1

The convolutional autoencoder is trained (i) without regularisation, (ii) with
Lloc, (iii) with Ldep, (iv) with Lloc and Ldep. Five different classifiers are
trained on the autoencoder embedded representations (1-Nearest Neighbour,
Random Forest, Gaussian Process classifier, Linear kernel Support Vector
Machine (SVM) and Radial basis function SVM. The F1 Macro Average is
computed based on human labels.

Fig. 3: Per-class F1-scores and their macro average for (i)
no regularisation, (ii) horizontal location regularisation, (iii)
depth regularisation and (iv) horizontal location and depth
regularisation. R-SVM is used as the classifier in this plot.

iment considers classification to evaluate accuracy, the higher
score indicates that the obtained representations are effective
at describing the images, and so form a favourable basis for
other applications such as clustering, contents retrieval, and
use in observation-aware path planning methods.

D. Result

TABLE II shows the mean and standard deviation of the
F1 scores for each autoencoder training configuration and
classifier. For four of five classifiers; 1-NN, GP, L-SVM and
R-SVM, the autoencoders trained with both Lloc and Ldep

(configuration (iv)) show the best performance among the four
configurations. For RF, configuration (ii), where only Lloc is
applied, has the best score. However, the difference between
(ii) and (iv) is marginal. Configurations (ii) - (iv) perform better
than configuration (i), where no regularisation is applied, for
all classifiers, achieving an average performance gain of (ii) 9.4
%, (iii) 6.9 % and (iv) 10.9 %, respectively. The results show
that horizontal location metadata is more effective for learning
latent representations than depth for this dataset. However,
using both of horizontal location and depth information gener-
ally improves performances, and never causes any significant
degradation. The biggest gains in performance are seen for
the R-SVM classifier, where an improvement of (ii) 12.5%,
(iii) 8.7% and (iv) 15.1%, are seen respectively compared to
no regularisation (i). Another noticeable point is that for L-
SVM, configuration (iii) shows a better score better than (ii).
Among the five classifiers used in the experiment, L-SVM
is the only linear classifier, which makes it relatively robust
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(a) k-means clustering (k=8). (b) Hierarchical k-means clustering (k=8 and k′=3).
Fig. 4: The t-SNE latent representation learnt by the proposed method for both horizontal location and depth regularisation, i.e.
configuration (iv). Representative images are selected based on k-means clustering for a) and hierarchical k-means clustering
for b). The colours represent the classes determined by R-SVM and are used for illustrative purposes only.

against over-fitting. A different trend is observed compared to
the other classifiers with depth only regularisation performing
favourably. A possible explanation for this is that some over-
fitting may be taking place with the non-linear classifiers when
only depth regularisation is used.

Fig. 3 shows the per-class F1 scores of the best performing
classifier (R-SVM) for regularisation configurations (i)-(iv).
Configurations (ii)-(iv) are superior to configuration (i) for
all classes. Horizontal location regularisation (ii) performs
better than depth regularisation (iii) for all classes except
for C. The relative performance improvement with metadata
regularisation is most significant for classes D, E, and H
(24.9%, 33.5%, and 52.6% between (i) and (iv), respectively),
which have relatively small populations in the dataset. This can
be explained as optimising only the autoencoder reconstruction
loss Lrec potentially leads to focusing on the appearances
of majority classes, where the proposed regularisation avoids
this form of over-fitting by effectively prioritising patterns in
classes with smaller populations.

An important characteristic of the proposed method is that
both regularisation methods can be applied without risk of
significant performance degradation. This is due to the use of
t-distributions and the loose regularisation constraints imposed
during the loss function optimisation based on probabilistic
distributions. We see this characteristic where configuration
(iv) leads to and overall improvement in performance, and
better class scores than configurations (ii) and (iii) for most
classes. Where the scores for classes C, F and G are slightly
degraded, the difference is negligible. Although horizontal
location regularisation is generally more effective than depth
regularisation for this dataset, the ability to improve perfor-
mance using only depth information is valuable as accurate

horizontal localisation in GPS denied subsea environments re-
quires expensive navigational sensors that may not be available
on some low cost AUVs and Remotely Operated Vehicles
(ROVs). On the other hand, depth sensors are relatively cheap
and so are available on almost all underwater platforms.

E. Application to Seafloor Survey

Latent representations can be applied to efficiently under-
stand the characteristics of a dataset. One way to do this is by
automatically identifying images that are most representative
of the variety of scenes that exist in the data. Fig. 4 shows
the automatically selected representative images, overlaid on
the representations of Tasmania dataset using a t-SNE visu-
alisation [21]. In Fig. 4a, k-means clustering is applied to
the acquired latent representations, and the images closest to
each of the k centroids are selected as representative images.
Here, we use k=8 which is automatically determined based
on the elbow-method [27]. In Fig. 4b, Hierarchical k-means
clustering [28] is applied to identify a further k′=3 within
each original cluster. This allows for representation of the
range and sequential transitions of seafloor scenes. The results
show that a relatively small number of representative images
automatically identified by the system can efficiently describe
the variety of scenes found in a dataset consisting of more than
30k images, including representative examples of classes with
a small population. This is valuable for remote transmission
of exemplary data over the limited bandwidths available using
long-range underwater acoustics communications, or global
communication satellites when platforms are at the water sur-
face. Representative images may also benefit low-shot training
of supervised and semi-supervised classifiers.
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V. CONCLUSION

We have proposed a novel autoencoder regularisation
method that can leverage any number and combination of
vector or scalar metadata for seafloor image representation
learning. The regularisation is effective when two images that
are close in their metadata space tend to be more similar
in appearance. By optimising loss functions using the KL
divergence and t-distributions, it is possible to mitigate over-
regularisation by metadata and avoid significant performance
degradation when multiple sources of metadata are applied to
regularise learning. The self regulating latent representation
learning method was applied to a dataset consisting of more
than 30k images taken during 6 AUV dives. Validation against
2.2k expert human annotations shows that:
• Combining multiple sources of metadata regularisation

can outperform single metadata regularisation using the
proposed method. Regularising learning using depth and
horizontal location metadata improves the performance
of five classifiers operating on the latent representations
by an average of 10.9% compared to a standard convo-
lutional autoencoder, with the R-SVM classifier showing
the largest gain in performance at 15.1%.

• Horizontal location regularisation is more effective than
depth regularisation for the sparse transect dataset anal-
ysed in this work, achieving an average improvement of
9.4% (as opposed to 6.9%) across five classifiers, and
12.5% (as opposed to 8.7%) for the best performing
classifier. However, combining both in metadata regular-
isation reliably outperforms individual regularisation and
never significantly degrades performance.

• The acquired latent representations allow representative
images of large datasets with imbalanced class distribu-
tions to be automatically identified in a fully unsupervised
way, which can help achieve an efficient understanding
of underwater scenes and be applied to adaptive path
planning using visual information.
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