IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2021 1

Leveraging Metadata in Representation Learning
with Georeferenced Seafloor Imagery
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Abstract—Camera equipped Autonomous Underwater Vehicles
(AUVs) are now routinely used in seafloor surveys. Obtaining
effective representations from the images they collect can enable
perception-aware robotic exploration such as information-gain-
guided path planning and target-driven visual navigation. This
paper develops a novel self-supervised representation learning
method for seafloor images collected by AUVs. The method allows
deep-learning convolutional autoencoders to leverage multiple
sources of metadata to regularise their learning, prioritising
features observed in images that can be correlated with patterns
in their metadata. The impact of the proposed regularisation is
examined on a dataset consisting of more than 30k colour seafloor
images gathered by an AUV off the coast of Tasmania. The
metadata used to regularise learning in this dataset consists of the
horizontal location and depth of the observed seafloor. The results
show that including metadata in self-supervised representation
learning can increase image classification accuracy by up to 15%
and never degrades learning performance. We show how effective
representation learning can be applied to achieve class balanced
representative image identification for summarised understanding
of imbalanced class distributions in an unsupervised way.

Index Terms—Marine Robotics, Representation Learning, Vi-
sual Learning, Computer Vision, Metadata

I. INTRODUCTION

MAGES gathered by camera equipped Autonomous Un-

derwater Vehicles (AUVs) are now used in a wide range of
seafloor survey applications. The captured images are used to
characterise seafloor scenes where both manual and automatic
methods are used for interpretation. Typical AUV missions
will gather tens to hundreds of thousands of images during a
single dive, where the high resolution and large redundancy of
imagery pose a significant challenge for automated interpre-
tation. In order to take full advantage of images for robotic
applications, it is necessary to obtain compact representations
that efficiently preserve the most valuable information in the
original images. Once these are generated, algorithmic analysis
can be performed with low latency using relatively limited
computational resources. Examples of robotic applications
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that could be facilitated using image representation include
information-gain-aware path planning for representative sur-
veys [1], [2], target-aware seek and sample missions [3],
curiosity-driven exploratory surveys [4], and real-time habitat
inference [5], [6].

The aim of this paper is to develop a self-supervised learning
method that can use metadata gathered with seafloor imagery
to efficiently generate low-dimensional latent representation
spaces that are useful for image interpretation. Effective low-
dimensional representations form the basis of semantic inter-
pretation, where classification, clustering, and content based
retrieval are examples of tasks that can be readily applied to
achieve efficient understanding of underwater scenes. Fig. 1
illustrates a typical AUV survey scenario. Data is often
gathered over multiple dives, where ships transport AUVs
between sites between their dives. These locations can be
separated by distances far larger than that traversable by an
individual AUV. Observations typically cover spatial extents
several orders of magnitude larger than the footprint of a
single image frame, which typically have edge lengths of a
few metres, and span a wide range of seafloor depths. Habitats
and substrates vary over spatial scales larger than each image
and exhibit patterns with depth, especially in shallow water
due to the influence of sunlight. Therefore, images taken close
to each other, or separated but with similar depths, are more
likely to share visual characteristics than would otherwise
be the case. To leverage this information, we implement our
metadata regularised learning method using horizontal location
and depth information. A key advantage of this approach is
that regularisation can be applied to data gathered in remote
locations during different dives based on depth information.
The novel contributions of this work are:

o Development of a regularisation method that leverages
metadata when training deep-learning Convolutional Neu-
ral Network (CNN) based autoencoders for efficient latent
representation of seafloor imagery.

o Implementation of the proposed method where an
AlexNet [7] based autoencoder is trained on seafloor
images, regularised by a loss function that introduces
domain relevant assumptions on georeference (horizontal
location and depth) information.

o Performance validation on a dataset gathered off the coast
of Tasmania that consists of more than 30k seafloor
images and 2.2k human annotations, taken over six AUV
dives between depths of 28 and 96 m, and demonstration
of an application to unsupervised representative image
selection to generate semantic summaries of the obser-
vations.
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Fig. 1: Overview of the proposed representation learning method for a typical multi-deployment AUV seafloor imaging survey.
The method regularises the representation space of an autoencoder by embedding images taken at similar horizontal locations,
or separated but with similar depths, in nearby regions of the latent representation space. This is achieved by minimising the
Kullback-Leibler divergence between the affinity matrix of the image latent representation with horizontal location metadata

using the loss function Lo, and with depth metadata using

the loss function Lgep. These are optimised together with the

autoencoder reconstruction loss Lygc to regularise the latent representation space according to these metadata.

II. BACKGROUND

Seafloor habitats and substrates can be identified by unique
patterns in their appearance, and various machine learning
techniques have been applied to automate image interpretation.
These can be broadly split into studies that use feature engi-
neering, where descriptors are manually chosen or tuned by
human experts, and representation learning, where descriptors
are directly learnt from the data. In both cases, the reduced
dimensions of the representations allow for more effective
identification of patterns in the data.

Manually engineered feature descriptors have been investi-
gated by several groups for efficient image representation [5],
[6], [8], [9], [10], [11]. In [9], [11], colour-based descriptors
were designed based on prior knowledge of targets that are of
specific scientific interest. Generic descriptors such as Local
Binary Patterns (LBP) [12] and Sparse Coding Spatial Pyramid
Matching (ScSPM) [13] have also been applied to identify
spatially invariant patterns that appear at different scales within
images of the seafloor [5], [6]. In [10], accumulated histograms
of oriented gradients from image keypoints were used to
describe seafloor images for the purpose of clustering and
anomaly detection. However, these types of descriptor often

require manual tuning of parameters, or feature engineering,
to effectively describe the datasets they are applied to.

CNNs avoid the need for feature engineering by learning
the latent representations needed to best describe the datasets
they are applied to. This is typically achieved by using labels
generated by humans experts to supervise CNN training, which
simultaneously optimises the latent representations and class
boundaries to best describe the patterns of interest in a training
dataset. In [14], the ResNet [15] deep-learning CNN was
trained to distinguish between nine different classes of coral
in a seafloor image dataset, demonstrating higher classification
resolution than traditional feature engineering based methods.
However, the need for large volumes of annotated images
to supervise CNN learning limits wide scale use in marine
applications since generic training datasets do not exist.

An alternative approach to train CNNs is to use self-
supervised learning techniques. In domains where continuity
exists between the samples in a dataset, this continuity can be
used to help regularise representation learning without the need
for direct human supervision. In natural language processing,
Word2vec [16] and GloVe [17] leverage the assumption that
words found in similar contexts are likely to have similar
meanings. This continuity was used to generate continuous rep-
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resentations of different word nuances. For image processing
applications, Tile2Vec [18] extends the assumption to spatially
distributed data, demonstrating its effectiveness for satellite
image interpretation. In [19], we developed a Location Guided
Autoencoder (LGA) that regularises autoencoder learning us-
ing horizontal geo-location information for efficient clustering
and content-based retrieval of seafloor imagery. In [20], a
similar assumption is introduced for CNN-based coral detec-
tion from seafloor imagery, where object tracking results in
sequential frames are used for semi-supervised training.

The method developed in this paper advances the state of the
art for seafloor image interpretation. First, the use of metadata
is advanced by incorporating depth information in parallel
to horizontal location information for learning regularisation.
This is significant as even though our previous LGA method
used horizontal geo-location to regularise learning [19], this
method cannot regularise learning across large horizontal spa-
tial discontinuities in observation, as is often seen between dif-
ferent AUV dives. Additionally, although the effectiveness of
the method when applied to dense survey trajectories that fully
cover a 2D region of the seafloor has been demonstrated, it is
not clear how effective the method is for sparse trajectories.
Dense survey trajectories guarantee that each image has many
other images in its neighbourhood that it can be paired with
to regularise learning. However, sparse trajectories are often
used when surveying larger regions of the seafloor, and under
these conditions only a small number of neighbourhood image
pairs are available, which potentially limits the effectiveness
of the horizontal location based regularisation. In contrast,
depth information can provide a large number pairings for
sparse surveys and regularise learning across different dives
if depth related distribution patterns exist. Next, we apply
contrastive learning methods to improve the regularisation
effect of the metadata, where this is the first time contrastive
learning has been applied to seafloor imagery. We demonstrate
these concepts on a dataset that consists of seafloor imagery
gathered over 6 AUV dives, with observations that are sparsely
distributed over a 1.6 1.7 km region spanning a depth range
of 28 to 96 m.

III. METADATA REGULARISED AUTOENCODER
A. General Concept

An autoencoder consists of an encoder () and a decoder
g(). The encoder () maps a set of seafloor images X to
a lower-dimensional tensors h (h=f (X)), and the decoder
g() reconstructs the images Xrec from h (Xrec=g(h)) so
that the reconstructed images become as similar as possible
to the original images. The optimisat'gn minimises the mean
squared error loss function LreCZ% "kxXrec Xk2, where
N is the total number of images.Here h can be regarded as
reasonable latent representations of X since they preserve key
information in X so that Xyec can be reconstructed properly.
The key advantage of an autoencoder is that the encoder ()
can be trained in a self-supervised manner, where only the
input images are used and no additional human annotations
are needed. To incorporate metadata into autoencoder training,
we minimise a loss function of the following form:

>
Lan = Lyec + mbLm! (D
m is an index for each type of metadata used for learning regu-
larisation, where these can be any number of continuous scalar
or vector quantities that can be associated with the images. Lm
is the loss function that regularise autoencoder training based
on the values of metadata m. , is a hyperparameter used to
balance the loss contributions.

B. Implementation for Georeferenced Imagery

AUVs typically measure their horizontal location, depth and
altitude for basic navigational functionality. This metadata can
be leveraged to regularise autoencoder training by formulating
eq. (1) as follows:

Lain = Lrec + tocbioc + depldep; )

where Ljoc is the loss function for the horizontal location
based regularisation, Lqep is for the depth based regularisation,

loc and gep are hyperparameters to balance their relative
contributions. In our implementation, AlexNet [7] and its
inverted architecture are used as the encoder and decoder,
respectively, where any type of neural network can be used
to construct autoencoder in a similar way. Our previous LGA
method [19] can be regarded as a specific case of eq. (1),
where only Ljoc and |oc are used.

1) Vector Based Regularisation: The horizontal location
loss Ljoc is introduced to regularise autoencoder training
following the assumption that two images captured within a
close distance tend to look more similar than two that are far
away. In representation learning, if two images look similar and
potentially belong to the same class, their latent representations
should be located within a close distance in the latent space. In
order to make the distribution of latent representations h reflect
the 2D horizontal location vector y where the images X are
taken, we introduce a loss function that has a similar structure
to the loss function of t-SNE [21]. In t-SNE, original high-
dimensional data Xorg is embedded into a 2D or 3D space
Xemb SO that data with close relative distances in the original
space are represented with high probability in the embedded
space. In our problem, Y, which controls the distribution in the
latent space corresponds to Xorg, and the latent representations
h corresponds to Xemp. Following the t-SNE loss function, the
probability pjj, which is proportional to the distance between
Yi and Yj, is defined for i&j as:

2
exp Y Y =2 fe
Piii = P s ., 3
k;éiEXp kyi ykk =2 loc
pyy = 2P @

where pijj=0 when i=J, |oc is a normalising factor for y.The
probability g;j is derived from h, and is optimised based
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on pjj. For gijj when i&j, it is defined by the Student’s t-
distribution as:
, -1
1+ kh; hj k
Gij = p 5 — 3)
Kl 1+khey hik

where ;=0 for i=j.

By defining the affinity matrices P and Q with p;j and gjj
as their elements, the horizontal location loss Ljqc is defined
as the Kullback-Leibler (KL) divergence of P from Q:

> Pij
Lioc = KL(PkQ) =  pijlog —: (6)
i#i dis
Minimising Lo forces Q to approach P, which embeds
the correlation between the image representations and the
horizontal location metadata into the latent representation.
Eq. (3) - (6) are implemented in a similar way to the loss
function of t-SNE, where y is used to derive the target
probabilistic distribution instead of Xorg, and h is optimised
instead of Xemp.

2) Scalar Based Regularisation: The depth loss Lgep can
be formulated in a similar way to the horizontal location loss
Lioc defined earlier. Given that the seafloor depth where an
image X; is captured is a scalar value dj, the probability rj;
is defined to be proportional to the difference between d; and
dj where the observations are made:

=P (i di)*=2 Gop (7)
ili— P ’
k=i exp (d. dk)2:2 gep
i + Fi;
rij = %; ¥

where rijj=0 when I=J. gep is a normalising factor. The depth
loss is formulated as the KL divergence Lgep=KL(RKQ),
where R is the affinity matrix with elements rjj.

3) Generalised Regularisation Behaviour: An important
characteristic of the proposed method is that multiple regu-
larisation methods can be applied without risk of significantly
degrading performance. As elements in the affinity matrices
(e.g. P and R), become further apart in the metadata space
(i.e. the distance between y; and y; or d; and d;j increases),
the values of pjj or rjj become less sensitive to the separating
distance. Furthermore, since the t-distribution used in this
work is heavy-tailed compared to Gaussian distributions, it
avoids the “crowding problem” that can occur when high-
dimensional data is embedded into a lower-dimensional space
when generating a t-SNE. This is preferable to avoid over-
regularisation by the metadata, since pairs of images that are
far apart are less strongly constrained by the regularisation and
can be flexibly embedded in the latent space. Since the loss
function only loosely constrains autoencoder training based on
probabilistic distributions, it is inherently robust to over-fitting
metadata. Furthermore, if the training process finds a particular
type of metadata to have little correlation with the appearance
of images, it gets automatically ignored, and where a particular

type of metadata is found to have a strong correlation with
image appearance it gets increasingly prioritised. This self-
regulating characteristic is important in situations where many
different types of metadata can be applied as the method
can automatically prioritise the most significant metadata and
mitigate any negative impact without additional human input
or tuning.

Here P and R are formulated for y and d, which are
2D (latitude-longitude) vectors and scalar values, respectively.
However, the proposed loss function can be implemented for
any combination of vector or scalar metadata where the simi-
larity between its values can be defined. This is important as it
allows the proposed concept of metadata based regularisation
to be readily applied to different types of samples (e.g. seafloor
imagery, water column microscopy) and available metadata
(e.g. acoustic back-scatter intensity, terrain rugosity, seawater
temperature, pH) depending on the configuration of the data
gathering platforms.

C. Mini-batch Sampling and Contrastive Learning

Ideally, Ljoc and Lgep would be derived from all the samples
in a dataset (i.e. N samples) so that they are globally optimised.
However, due to computational limitations, mini-batch gradient
descent is used for the simultaneous optimisation of Lyec,
Lioc and Lgep. The number of images considered at each
iteration is limited to a mini-batch size Nn*, where a strategy is
needed to avoid over-fitting to local minima in Ljoc or Lgep
when sampling N* images. Since the regularisation effect is
diminished as the number of horizontal location and depth
neighbourhood pairs reduces, we introduce a sampling method
that balances the number of images that are nearby and far
away in each metadata space. First, two images are randomly
selected at each iteration. Next Nn*=3 images are selected
from the first image’s horizontal location neighbourhood, and
another N*=3 images are selected from the second image’s
depth neighbourhood, and the final N*=3 images are randomly
selected from the whole dataset in accordance with the prin-
ciples of triplet loss contrastive learning demonstrated in [22].
This ensures a large variety is maintained in the values of the
affinity matrices P and R, which prevents over-regularisation
and allows similar images and dissimilar images to be evenly
considered at each batch iteration.

IV. EXPERIMENT
A. Dataset

The proposed method is applied to seafloor imagery ob-
tained off the east coast of Tasmania [23]. Analysis is per-
formed on 32,097 seafloor images taken by the Australian
Centre for Field Robotic’s Sirius AUV from an altitude of
~2m. The data analysed here was gathered over six dives
sparsely covering a 1:6  1:7 km region of the seafloor between
28 and 96 m depth. Details of the survey are given in TABLE I.

The images show various habitat and substrate distributions,
including kelp (A), a registered essential ocean variable, and
rocky reefs (B) - (E), which can form habitats for various con-
servation targets such as coral and sponges [24]. The original
resolution of the images is 1,360  1,024. Each image in the






