ProGsS: Property Graph Shapes Language

1[0000—0002—7421—2060] , Ralf Léimmell [0000—0001—9946—4363] , and
Steffen Staab2’3[0000_0002_0780_4154]

Philipp Seifer

! The Software Languages Team, University of Koblenz-Landau, Germany
{pseifer,laemmel}@uni-koblenz.de
2 Institute for Parallel and Distributed Systems, University of Stuttgart, Germany
steffen.staab@ipvs.uni-stuttgart.de
3 Web and Internet Science Research Group, University of Southampton, England

Abstract. Knowledge graphs such as Wikidata are created by a diversity of con-
tributors and a range of sources leaving them prone to two types of errors. The
first type of error, falsity of facts, is addressed by property graphs through the
representation of provenance and validity, making triples occur as first-order ob-
jects in subject position of metadata triples. The second type of error, violation of
domain constraints, has not been addressed with regard to property graphs so far.
In RDF representations, this error can be addressed by shape languages such as
SHACL or ShEXx, which allow for checking whether graphs are valid with respect
to a set of domain constraints. Borrowing ideas from the syntax and semantics
definitions of SHACL, we design a shape language for property graphs, ProGS,
which allows for formulating shape constraints on property graphs including their
specific constructs, such as edges with identities and key-value annotations to
both nodes and edges. We define a formal semantics of ProGS, investigate the
resulting complexity of validating property graphs against sets of ProGS shapes,
compare with corresponding results for SHACL, and implement a prototypical
validator that utilizes answer set programming.

Keywords: Property Graphs - Graph Validation - SHACL

1 Introduction

Knowledge graphs such as Wikidata [20] require a data model that allows for the rep-
resentation of data annotations. While property graphs serve well as data models for
representing such knowledge graphs, they lack sufficient means for validation against
domain constraints, for instance required provenance annotations. The shapes constraint
language SHACL [22] was introduced to allow for validating knowledge graphs that
use the RDF data model [21]]. Wikidata and other knowledge graphs, however, make
use of triples in subject position to represent provenance metadata, such as references
or dates, going beyond the capabilities of the RDF framework. Similar to extensions of
RDF, such as RDF* [10] or aRDF [[19], property graphs are a promising data model for
meeting the modelling needs of annotated knowledge graphs. Recent property-graph
data model (and query language) proposals include G-CORE [2] and the upcoming
GQL standard [[12]], as well as the recently established openCypher standard [16]. They
have attracted a lot of research interest and popularity in practical use-cases [[18].

2 Philipp Seifer, Ralf Lammel, and Steffen Staab

name: {"Gareth Keenan"}

non

role: {"sales","team leader"}

102 Enpioges | since: {02/08/2020} |

203 worksFor
202 colleagueOf
201 colleagueOf

| since: {01/01/1970} |

T
100 Person Employee]—200 worksFor—

101 Company
|

name: {"Tim Canterbury"} | name: {"Wernham Hogg"} |
age: {30}

Fig. 1. Example property graph Gofice showing employment relationships in G-CORE style:
Nodes are depicted as rounded boxes. Each node has exactly one identifier, e.g., 100 or 101,
and it has zero or more labels, e.g., { Person, Employee} or { Company}. Each edge has an iden-
tifier, e.g., 200, as well as zero or more labels, e.g., {worksFor}. Both nodes and edges may have
a set of affiliated properties (key-value pairs shown in rectangular boxes), e.g., {age : {30}} or
{since : {01/01/1970}}.

Property-graph models differ from RDF in substantial ways, featuring edges with
identities (allowing multiple edges between nodes with the same labels) and property
annotations (that is key-value annotations) on edges. A schema or shape-based valida-
tion language must account for these differences. While there exist efforts to formally
define property graph schema languages [11/3], and some practical implementations
support simple schemata [14] (e.g., uniqueness constraints) or even enable SHACL
validation for RDF compatible subsets of the data graph [15], they do not allow for
expressing shape constraints involving all elements of property graphs. In particular,
existing approaches lack support for qualified number restrictions over edge identities,
path expressions or the targeted validation of edges.

Consider the example graph Gogsce depicting employment relationships in Figure|[T]
Some of the nodes and edges have property annotations. The edge with identity 200,
for example, has the annotation since with values {01/01/1970}. One may wish to de-
fine shapes to require that all edges labelled worksFor have such metadata annotations.
Shapes that constrain Employee or Company and their interrelationships will lead to
recursive descriptions and thus require a corresponding semantics. Like [6], we adopt
a model-based formal semantics based on the notion of (partial) assignments that map
nodes and edges to sets of shape names and constitute the basis for a three-valued eval-
uation function.

Contributions We present ProGS, a shape language for property graphs that allows
for formulating domain constraints and that significantly extends SHACL to property
graph data models. ProGS comprises property-graph specific features, including shapes
for edges with identities, qualified number restrictions over such edges and constraints
on properties and their values. We define the formal semantics for validating graphs
with ProGS shapes, including cyclic, recursive shape references, based on the notion

ProGS: Property Graph Shapes Language 3

of partial faithful assignments inspired by [[6]. We analyse the complexity of validating
property graphs against sets of ProGS constraints. We show that ProGS validation is
NP complete, thus remaining in the same complexity class as SHACL while increasing
expressiveness. We provide a prototypical reference implementation relying on answer
set programming, available on GitHub.

Outline The remainder of this paper is structured as follows. Section [2| gives a short
overview of property graph data models. In Section 3] we define the abstract syntax and
semantics of ProGS, including assignment-based validation of graphs against a set of
ProGS shapes. Section [4] analyses the complexity of the ProGS graph validation prob-
lem. Section[S]investigates implementation approaches for ProGS and introduces a pro-
totypical implementation relying on an encoding of the validation problem as an answer
set program. Section [6]discusses related work and Section [7]concludes the paper.

2 Foundations

Before providing a working definition of property graphs as the basis of ProGS, we
compare existing property graph models to determine essential features. To this end,
consider Table [} We compare the property graph models underlying the graph query
languages G-CORE [2], Cypher [9], Gremlin [4], and PGQL [17]; we also include the
RDF [21]] data model and RDF* [10] as a point of reference.

We use the example depicted in Figure 2] an excerpt from Wikidata, to illustrate
the differences between property graphs, RDF and RDF*. The defining feature of prop-
erty graphs are properties, that are key-value pairs, on edges and nodes. For example,
point in time in Figure[2]could be represented as such a property annotation for the edge
labelled nominated for. Property keys are strings, while value domains vary between ap-
proaches, ranging from simple scalar values and strings to lists or maps of values. The
key differences to RDF arise from the fact that edges in property graphs have identities.
The edge nominated for, for example, would have a unique identity acting as a target
for property annotations. While this is not possible in plain RDF, node properties can be
simulated through edges to literal nodes. RDF* extends RDF by introducing triples that
are first-order (first-order) objects, meaning they can occur in both subject and object
position of other triples. This importantly subsumes edge properties, again through an
encoding of literal nodes. While not using RDF*, Wikidata also allows for annotations
on edges referencing other resources. This highlights the key difference between sup-
port for triples in subject position of arbitrary triples and property annotations: While
point in time could be represented as a property annotation on the nominated for edge,
for work could not.

There are some further differences between the various property graph models. Sup-
port for labels differs between approaches ranging from sets of labels on both nodes and
edges (G-CORE, PGQL) to no support for node labels in Gremlin and single edge types
in both Gremlin and Cypher. Finally, only G-CORE features paths as first-order objects,
i.e., paths that can be annotated with property annotations and labels.

4 Philipp Seifer, Ralf Lammel, and Steffen Staab

Table 1. Comparison of feature support for common property graph models and RDF. (a) using
triples with literals as objects (b) triples in subject position of triples with literals as objects.

G-CORE Cypher Gremlin PGQL RDF* RDF
Nodes as first-order objects + + + + + +
Node properties + + + + +* +2
Node labels set set none set set (rdfitype) set (rdf:type)
Edges as first-order objects + + + + + -
Triples as first-order objects - - - - + _
Edge properties + + + + +b -
Edge labels set single single set single single
Paths as first-order objects + - - - - -
Path properties + - - - - -
Path labels set - - - - -

Q42

Douglas Adams

1979 l— psg5 P1411 P1686 Q3521267
point in time nominated for for work The Hitchhiker’s . ..

Q3414212
Hugo Award . ..

Fig. 2. Excerpt from Wikidata.

2.1 Definition of Property Graphs

The formalization of the property graph model we use as a basis for the definition
of ProGS is based on the data model presented for G-CORE [2]]. We do not consider
first-class paths, and instead restrict the model to the core subset shared with other
property graph models as discussed in the previous section. In terms of value domains in
properties, we provide exemplary support for the types string, int and date, without
loss of generality.

Let the set of labels . = Ly U Lg where L is an infinite set of node labels and
Lg an infinite set of edge labels. As a matter of convention, we use CamelCase for
all [y € Ly and camelCase for all [€ Lg. Let K be an infinite set of property
names (or keys) and V an infinite set of literal values from the union of sets in T' €
{int,string,date}. We refer to elements of T as the type of the respective value.
Let furthermore FSET(X) denote all finite subsets of a set X.

Definition 1 (Property Graph). A property graph is a tuple G = (N,E, p,\,0),
where N denotes a set of node identifiers and E a set of edge identifiers, with N N E =
0, p: E = (N x N) is a total function, A : (N U E) — FSET(L) is a total func-
tion, o : (NUE) x K — FSET(V) is a total function for which a finite set of tuples
(x,k) € (NUE) x K exists such that o(x, k) # (.

ProGS: Property Graph Shapes Language 5

A property graph consists of a set of nodes n € N and edges e € E, where p maps
elements of FE to pairs of nodes. The function A maps nodes and edges to all assigned
labels | € L and likewise the function o maps pairs of nodes or edges, and property
names to the property values assigned to them. The example in Figure [3] shows the
property graph visualized in Figure [I] using the formal definition. Note that we omit
infinitely many elements of the domain of ¢ that are mapped to .

N = {100, 101,102}
E = {200, 201,202, 203}
p = {200 — (100,101), 201 + (100,102),202 — (102, 100), 203 > (102,101)}
A = {100 — {Person, Employee}, 101 — {Company}, 102 — {Employee},
200 — {worksFor},201 — {colleagueOf}, 202 — {colleagueOf}
203 — {worksFor}}
o = {(100, name) — {"Tim Canterbury"}, (100, age) — {30},
(101, name) +— {"Wernham Hogg"}, (102, name) — {"Gareth Keenan"},
(102, role) — {"sales", "team leader"}, (200, since) — {01/01/1970},
(203, since) > {02/08/2020}}

Fig. 3. Formal model for the example property graph Gogsice rendered in Figure([l]

3 Shapes for Property Graphs

Our shape language for property graph validation, called ProGS, has been inspired by
SHACL [22], the W3C recommendation for writing and evaluating RDF graph valida-
tion constraints. More specifically, we base the ProGS shape language on the abstract
syntax proposed by [6], which formalizes a syntactic core of SHACL. Corman et al.
[6] also defined a formal semantics for this syntactic core that addresses recursion, in
particular. We facilitate the understanding of differences between SHACL and ProGS
by colour coding. Expressions that we borrow from SHACL will be displayed in black
font, while novel expressions will be coded in blue font.

3.1 Requirements on a Property Graph Shapes Language

Requirements for our target language stem from the differences between the RDF and
property graph data models, which we mentioned in Section [2| Table [2| explains how
RDF may be mapped to the G-CORE property graph model. Based on this mapping
we design ProGS to adopt language constructs from SHACL. The reader may note that
this mapping includes some design decisions that are not unique, e.g., we interpret class
instantiations as corresponding to G-CORE labellings of nodes. We follow a simplifi-
cation of the third mapping ZM3 discussed in [3], e.g., by excluding blank nodes.

6 Philipp Seifer, Ralf Lammel, and Steffen Staab

Table 2. Sketching correspondences between the RDF and G-CORE graph models.

Description RDF G-CORE/ProGS
Node id ¢ IRI % 1e€N

Node n has label [n rdf:type [. leXn)

Node n has key k with value v nkwv. v € o(n, k)

Edge id ¢ not available 1€l

Edge label [, in triple s p o. slo 1 e Xp)

Edge e has key k with value v not available v € o(ek)

Triple s p o. spo. p € A(4), p(3) = (s,0)

Edges in property graphs have identities necessitating two distinct kinds of shapes
for nodes (R1) and for edges (R2) as well as two kinds of qualified number restrictions
for nodes, counting edges (R3) and counting reachable nodes via some path (R4). Prop-
erty annotations require dedicated constraints dealing with the set of values reachable
via a specific key, for both nodes (R5) and edges (R6). The presence of properties must
also be considered for constraints that include comparison operations (R7). Lastly, the
existence of certain properties, or properties with certain values, also require new means
of targeting nodes and edges in target queries (R8).

3.2 Definition of Shapes

Intuitively, a shape defines constraints on how certain nodes or edges in a graph are
formed. As both nodes and edges in property graphs have identities, we define node
shapes that apply to nodes and edge shapes that apply to edges. Each shape is a triple
consisting of a shape name, a constraint, and a target query defining which nodes or
which edges of a graph must conform to the shape, i.e., fulfil all of its constraints, for
the graph to be considered in conformance with the shape.

Example 1. The node shape y(EmployeeShape, Person, Employee) is a triple with the
shape name EmployeeShape, the constraint Person, which requires that each graph node
assigned this shape has the label Person, and the target query Employee, meaning all
nodes with the label Employee are targets of this shape. For the graph Glgsice in Figure|[T]
node 100 conforms to this shape, whereas node 102 does not, lacking the Employee
label. Given that at least one target node does not conform to the constraint, the entire
graph does not conform to EmployeeShape.

As shown in the first example, we use n(sn, ¢n,¢n) to indicate triples that are node
shapes and use g(sg, ¢p, qE) to refer to triples that are edge shapes.

Before defining the components of shapes, we define the syntax of path expressions
p in eq. (I) in analogy to property path expressions defined in SHACL [22]], which are
in turn based on path expressions in the SPARQL query language. A path expression,
when evaluated on a starting node, describes the set of nodes reachable from this node
via paths that match the path expression.

pu=lg|p~ | pi/p2 | prllp2 | px | D+ | 7P (D

ProGS: Property Graph Shapes Language 7

[Lle=0

[nle = {n}

linlea ={n|n€ NAIx € An)}

[kl = {n|n € N Aa(n, k) # 0}
[k:v]c={n|n€NAvE(nk)}

Fig. 4. Evaluation of target node queries.

Path expressions may include edge labels [, inverse paths p—, path sequences p; /pa,
alternate paths p;||p2 and zero or more (p*), one or more (p+) and zero or one (7p)
expressions. Note the minor difference to paths in RDF graphs, in that edges in property
graphs may have multiple labels.

Example 2. The path worksFor/worksFor~ describes the set of all colleagues of a start-
ing node n (including n itself), by first finding all employers of n (i.e., nodes reachable
from n via an edge with label worksFor) and then all employees of those employ-
ers (i.e., nodes with incoming worksFor edges). For the graph Gogice in Figure [1] and
starting node 100, the result of evaluating this path would be the same as evaluating
colleagueOfx, namely the set {100, 102}.

Let the set of shapes S = Sy U Sg consist of node and edge shapes and the set of
shape names be called Names(S). A node shape is a tuple y (s, ¢n,qn) consisting
of a shape name sy € Names(Sy), a node constraint ¢ and a query for target nodes
qN- A query for target nodes is either L, meaning the query has no targets, an explicitly
targeted node n € N, all nodes with label [y € Ly, all nodes with property k € K or
possibly further constrained as k : v by a concrete value v € V. The syntax of target
node queries gy is summarized in eq. . We write [qn] for the evaluation of a target
node query, which is defined in Figure 4]

gy == L|n|ly|k|k:v (2)

Example 3. The target query qy = Employee targets all nodes that are labelled with
the label Employee. The set of targets when evaluating g on the example graph Gogpice
in Figure [1]is therefore [gn] .. = {100, 102}.

office

Node constraints ¢ essentially specify which outgoing or incoming edges, which
labels, or which properties a targeted node must have. Assuming sy € Sy, n € N,
In € Ly, k € K,© € N, comparison operations ® for sets or singleton sets (e.g., =, <,
C) and arbitrary value predicate functions f : V' — {0,1} such as > 0, # 19, or type
restrictions for a specific data type such as int, string or date, the syntax of node
constraints ¢ is defined as in eq. (3).

on =T |sy|n|ln|—dn]|oNAdY | =i pon | ©(p1,p2)

(3)
| Zik.f| 27 op| 27 ¢op| © (1, k1, p2,k2) | © (K1, k2)

8 Philipp Seifer, Ralf Lammel, and Steffen Staab

A node constraint may be always satisfied (T), reference another node shape with name
s that must be satisfied, require a specific node identity n in this place or require a
node label . It may also be the negation =¢x or conjunction ¢}, A ¢%; of other node
constraints. Furthermore, the constraint >; p.¢y requires ¢ nodes that can be reached
via path p to conform to ¢x. @ (p1,p2) is an arbitrary comparison operation between
sets of node identities that can be reached via the two path expressions p; and po.

Example 4. Consider the shape y(s1,>1 colleagueOf.Person, Employee) targeting all
nodes with the label Employee. s, requires at least one path colleagueOYf, i.e., an outgo-
ing edge that has the label colleagueOf, to a node which has the label Person. For the
graph in Figure [I] node 102 satisfies this constraint, because the only node reachable
via path colleagueOf is node 100, and Person € A(100). With analogous reasoning, the
constraint does not hold for node 100, because Person ¢ A(102)

The aforementioned constraints were essentially transferred from core constraint com-
ponents of the SHACL language. Novel kinds of constraints are printed in blue font. A
qualified number restriction >; k. f restricts the number of values matching the predi-
cate f for the property k. The qualified number constraints >~ ¢ and >;7 ¢ require
7 incoming or outgoing edges that conform to the given edge constraint ¢ 5 (defined
below). @ (p1, k1, p2, ko) compares the annotated sets of values for properties k; and
ko, reached via paths p; and ps and © (k1, ko) does the same for the current node.

Example 5. Consider the shape y (s2, >2 role.string A si,name : "Gareth Keenan"),
which targets all nodes n where "Gareth Keenan" € o(n, name). For the graph Gogice
in Figure[I] node 102 is the only target. The constraint >4 role.string A s; requires
that this node conforms to shape s; from Example |4} as well as that the role property
has at least two elements of type string. From Example[d]it follows that 102 conforms
to s1. The property (102, role) has two values {"sales", "team leader"}, both of which
are strings. Therefore, node 102 conforms to s3. Since node 102 is the only target of sa,
Gofiice conforms to s as well.

Edge shapes apply to edges and, just as a node shape, require specific labels or proper-
ties for all targeted edges. Similarly to how node shapes constrain outgoing and incom-
ing edges, edge shapes may constrain the source or destination node of an edge.

An edge shape is atuple g (sg, ¢, ¢r) consisting of shape name sy € Names(Sg),
an edge constraint ¢ and a target edge query qz. Edge target queries are defined anal-
ogously to node target queries in eq. (d) and Figure[5

g = Llel|lg|k|k:v 4

Most constraint components of edge constraints ¢ are defined similarly to node
constraints ¢, albeit in terms of the respective edge identities e, edge labels [and
edge shapes sg. Unique to edge constraints are the constraints <= ¢y and = ¢u,
which constrain source or destination nodes of an edge to conform to a node shape ¢y .
The syntax of edge constraints ¢ is defined as in eq. (3).

dp = Tlsplelln | ~ée | ok Adh| i kfl= ox | < on |0k k) ©)

ProGS: Property Graph Shapes Language 9

[Llc =10

lele = {e}

llele ={ele€ EAlp € Xe)}

[klc = {e| e € Ena(e k) # 0}
[k:v]c={elec EAnveEa(ek)}

Fig. 5. Evaluation of target edge queries.

Example 6. Consider g(s3, < Person A > since.(> 01/01/2020), worksFor) which
targets edges with the label worksFor. For the two matching edges of graph Ggice
in Figure [} 200 and 203, only 200 fulfils the constraint < Person, since Person &
A(100) and p(200) = (100,101). That is, the source node of edge 200 has the la-
bel Person. Only edge 203 fulfils the constraint >; since. > 01/01/2020, because at
least one element of ¢ (203, since) = {02/08/2020} fulfils the given value predicate
> 01/01/2020, because 02/08/2020 > 01/01/2020. Neither edge fulfils s3.

Example 7. There is a difference between a node constraint >3 colleagueOf.Person
and a node constraint >3 (colleagueOf N\ = Person). In the first case, we require 3
distinct nodes with the label Person, reachable via edges that match colleagueOf. In the
second case, we require 3 outgoing edges labelled colleagueOf with destination nodes
labelled Person. The nodes in the second case are not required to be distinct. Indeed, a
graph with a single node having three self-loops could potentially fulfil the second, but
never the first constraint.

In addition to these core constraints, we define useful syntactic sugar for both node
constraints ¢ and edge constraint ¢ as shown in Figure [6] For target queries, both
conjunction and disjunction can also be defined as syntactic sugar (we use ¢ and ¢ to
mean either a node or edge constraint and query, respectively). Any shape with target
¢1 N g2 and constraint ¢ is equivalent to a shape with target ¢; and the constraint (¢ A
bgs) V gy, Where ¢y, is the constraint equivalent to the target query (i.e., validating
exactly the targets). Any shape s with target ¢; V g2 and constraint ¢ can be expressed
via two utility shapes with target ¢; and constraint s and target g2 and constraint s, as
well as the shape s with target | and constraint ¢.

3.3 Shape Semantics

Our definition of ProGS allows shape names to occur in constraints, meaning recursive
cycles of references to other shapes can arise. Therefore, we follow an approach de-
fined for recursive SHACL [6] and define evaluation of shapes on the basis of partial
assignments for graph nodes and edges to sets of shapes. Our approach then relies on
validating a given assignment in polynomial time (e.g., by guessing an assignment).

We formally define assignments on the basis of atoms, such that for each atom that
pairs the name of a node shape with a node sy (n) or the name of an edge shape with
an edge sp(e) a truth value from {0, 0.5, 1} may be assigned.

10 Philipp Seifer, Ralf Lammel, and Steffen Staab

1L:=-T I ¢r =27 o5
< dp =200 ¢m Ip.dN =21 p-pN
<i P-ON =T i1 P-ON dk.f:=>1k.f
ik f=-2im k. f Vo oE =<y —¢r
= ¢p:=2] ¢ < 9B Vp.gpn = <o p.mdN
=; p.ON =2 p.ON N <; D.ON Vk.f i =<0 k.f
= kfi=2;kfA<ik.f D1V P2 = (—1 A —2)

Fig. 6. Syntactic sugar for constraints, where ¢ is placeholder for either ¢ or ¢ . Definitions
for syntactic sugar related to >;” ¢ are omitted, since they are analogous to >;~ ¢x.

Definition 2 (Atoms). For a property graph G = (N, E, p, A\, 0) and a set of shapes
S = Sy U Sp, the set atoms(G,S) = atomsy (G, Sy) U atomsg(G, Sg) where
atomsy (G, Sy) = {sny(n) | sy € Sx An € N} and atomsg(G, Sy) = {sg(e) |
sg € Sg A e € E} is called the set of atoms of G and S.

For the set of atoms of GG and S, meaning essentially all tuples of shapes in S and nodes
(or edges, respectively) in G, we define a partial assignment as a function X' that maps
forz € N U E all atoms s(z) € atoms(G, S) to 1, if the shape s is assigned to x, to 0
if —s is assigned to x, and to 0.5 otherwise.

Definition 3 (Partial Assignment). Let G be a property graph and S a set of shapes.
A partial assignment X is a total function X : atoms(G, S) — {0,0.5,1}.

Evaluating whether a node n € N of G satisfies a constraint ¢, written [¢px]* "¢ is
defined in Figure [7| and evaluating whether an edge e € F of G satisfies a constraint
¢ g, written [¢g] 26,6 g defined in Figure In the latter figure we omit cases that are
trivially analogous to node shapes. In both figures, [P] is similar to the Iverson bracket,
such that [P] evaluates to 1 (the constraint is satisfied) if P is true and O (the constraint
is not satisfied) if P is false. Conditions for evaluation to 0.5 are given explicitly.

The semantics of path expressions are defined in Figure@ We write {n,...,n;} =
[p]* G for the evaluation of path p on graph G, such that nodes n,,...,n; can be
reached via p from node n.

In order for a property graph G to be valid with respect to a set of shapes .S, an as-
signment must exists which complies with all targets and constraints in S. Transferring
terminology from [6] we call such an assignment strictly faithful.

Definition 4 (Strictly Faithful Assignment). An assignment X for a property graph
G = (N, E,p, \,0) and a set of shapes S is strictly faithful, if and only if the following
4 properties hold (given shapes of the form n{(sn,¢n,qn) and g(SE, P, qE)):

1. ¥ sn(n) € atoms(G, S) : Y(sy(n)) = [on]> ™
2. Vsp(e) € atoms(G, S) : X(sp(e)) = [¢r]* ¢
3. Vn€gn]a: X(sn(n)) =1

4. Ve € [gg]c : X(sp(e)) =1

ProGS: Property Graph Shapes Language

[T17m¢ =1
[sn]™™% = D(sn ()
[217"¢ = [0 =n]
[N = [Iv € Mn)]
[~on] ™™ =1 - [on] ™™
[o5 A @517 = min{[on] ™™, [63]7™ 7}
L {n2 | n2 € [79 A [on] =72 C = 1} > d

0 |Ip]™™C -
[{n2 | na € [p]* ™ A lon]> "% =0} <i
0.5 otherwise

[© (p1,p2)] ™ = [[p2] "™ © [p2] ¥ ™)
1 {e|e€ EAns e NApe)=(n2,n)
AoB]ZC =1} > i
0 HeleeEAnz e NApe)=(nz,n)} —
{e|e € EAngs € NAp(e) = (n2,n)
Nge]™ = =0} <i

0.5 otherwise

[>i pon]™™¢ =

[[22— ¢E]]Z,7L,G _

1 |{ele€e EAna e NAp(e)=(n,n2)
Nigel™C =1} >
0 Helee EAnze NAp(e)=(n,nz2)}| —
{e|e€ EAny € NApe)=(n,n2)
Ngr]™ = =0} <i
0.5 otherwise
[>i kf15"C = [{v | v € on, k) A f(0)}] = i]
sme H{vInem]™"% v ea(nk)}
- o{vlnep]®"% vea(n k)}]
[0 (1, k2)] ™™ = [o(n, ki) © o, 2)

[>7 ¢p]™™¢

[[® (p17 k17p27 kQ)]]

Fig. 7. Evaluation rules for node constraints over graph G with assignment X

12 Philipp Seifer, Ralf Limmel, and Steffen Staab

[s£17 = S(sx(e))
€17 = [/ =¢]
11217 = 1 € A(©)]
[= on]7"¢ = [on]*"* whete (n1,n2) = p(e)

[< én]7 ¢ = [¢n]7"C where (n1,n2) = p(e)

Fig. 8. Evaluation rules for edge constraints over graph G with assignment X' (omitting some
cases that are analogous to cases in Figure[7).

[16]7™C = {n1 | e € EA (n,n1) = p(e) Al € A(e)}
[p 17" = {na | n € [p] ">}

[or/p2] " = A Ip2] ¥ | €[]}

[prllp2] ™™ =[] ™" U fp] P

. 7 if [p]*™¢ =

[+ = {?[)p}]z’"’c U [p/p+]>™C, otl[Ej]WiSC @
["™ = {n} U [p+] "¢
12917 = {n} U [p] "™

Fig. 9. Evaluation of path expressions.

This means a strictly faithful assignment is an assignment, where all atoms are assigned
exactly the result of constraint evaluation, all targets n € [qn]¢ are assigned the re-
spective shape sy, and all targets e € [¢g] ¢ are assigned the respective shape sg. We
define conformance of a graph with respect to a set of shapes on the basis of faithful
assignments.

Definition 5 (Conformance). A property graph G = (N, E, p, A\, o) conforms to a set
of shapes S if and only if there exists at least one assignment Y. for G and S that is
strictly faithful.

3.4 Fulfilment of Requirements and Relationship to SHACL

As visualized by the colour coding of our definitions, the syntax of ProGS is an exten-
sion of the £ language formalization of SHACL [6]. There are some exceptions arising
from the existence of edges that have identities in property graphs. In fulfilment of re-
quirements R3 and R4, ProGS allows qualifying the number of outgoing and incoming
edges as well as reachable nodes, whereas SHACL only needs to be concerned with
reachable nodes via some path.

ProGS: Property Graph Shapes Language 13

Node shapes in SHACL may target all subjects or objects of an RDF property
via targetSubjectsOf and targetObjectsOf expressions. In ProGS, these tar-
get queries are not required. Instead, fulfilling requirements R1 and R2, as well as RS,
ProGS allows targeting of edges directly with specialized edge shapes. The respective
source and destination nodes can then be constrained in these shapes via < ¢y and
= ¢y, respectively.

Finally, the handling of RDF literals in SHACL differs from constraints dealing
with property annotations on nodes (R5 and R7) in ProGS. In addition, ProGS allows
validating property annotations on edges (R6), which do not exist in RDF.

4 Complexity

We analyse the complexity of validating a property graph against a set of ProGS shapes.
Before we define the validation problem VALID through the notion of faithfulness of
assignments, we simplify the definition of faithful assignments with respect to target
queries, by showing that it suffices to consider only cases where there is exactly one
target node.

Proposition 1. For a graph G = (N, E,p, \,0) and a set of shapes S = Sy U Sg
with target nodes n € N for each sy € Sy and target edges e € E for each sg € Sg,
a graph G’ and set of shapes S’ can be constructed in linear time, such that G is valid
against S if and only if G’ is valid against S" and S’ has a single target in G'.

Proof (Sketch). Essentially, we construct edges from a new, single target node ng to
previous target nodes and source nodes of target edges. Then we adapt constraints ap-
propriately. Let sk, ..., s% and sk,...,s?% be shapes in S with targets nl, ...n7",
coonb, ..., n™ and targets eq, ..., €, ..., ek, ..., e Extend G with a fresh node
no and fresh edges ne] with p(nel) = (ng,n]) for each target n as well as edges ee’
with p(eel) = (ng,n1) where (n1,m2) = p(el) for each target). Then set all target
queries for shapes in S to L and introduce node shape sy, with target ny and constraint
ONg, = 21 ne%.qﬁs}v A N Z1net.dan A > eef. > (6%/\(]58}5)/\.../\ > eelt. >
(eﬁ A ¢sg)

O

On the basis of this transformation, we can redefine strictly faithful assignments.

Definition 6 (Strictly Faithful Assignment for Graphs with a Single Target Node).

Let s, be the shape and ny the node constructed by Proposition|l|as the single target
node. An assignment X for a graph G = (N, E, p, \, o) and a set of shapes S is strictly
faithful, if and only if:

1. ¥V sy(n) € atoms(G, S) : Z(sy(n)) = [pn]*™¢

2. Vsp(e) € atoms(G, S) : X(sp(e)) = [¢r]* ¢
3. X(sny(no)) =1

The validation problem VALID for validation of property graphs with respect to a set
of ProGS shapes is defined as follows.

14 Philipp Seifer, Ralf Lammel, and Steffen Staab

Definition 7 (Validation). The problem of validating a property graph G with respect
to a set of shapes S (such that in S there is exactly one shape sy, with a target query
different from | that targets node no, which can be constructed via Proposition|l|for
any graph and set of shapes) is defined as VALID(G, S, sy, (no))-

We first show that VALID is in NP.
Theorem 1. VALID is in NP.

Proof (Sketch). In order to show that VALID(G, S, sy, (no)) is in NP, we first con-
struct, in polynomial time, an instance VALID(G', S’, sy, (no)) which is true if and
only if VALID(G, S, sn,(no)) is true, and S’ does not contain any path expressions
(except for I) and each constraint in S’ has at most one operator. We assume an oracle
for a strictly faithful assignment of such an instance VALID(G’, S’, sn, (no)). Then we
can, for each s € S’, compute [¢p5]*"™¢ foreachn € N and [¢;]*+ foreache € E
in polynomial time in | X| + |G’| 4 | 57| O

The complete proof can be found in an extended version of this workﬂ We next derive
NP-hardness from the NP-hardness of L.

Corollary 1. RDF graph validation with L, which is equivalent to SHACL, is clearly
reducible to ProGS validation over property graphs, since RDF graphs can be trivially
represented in property graphs and constraints in L are a subset of ProGS constraints.
According to [16], L is NP-hard. Therefore, ProGS is also NP-hard.

Then we can also conclude that VALID for ProGS is NP-complete.

Corollary 2. VALID is NP-complete, since it is both NP-hard (shown in Corollary][l)
and in NP (shown in Theorem[I)).

We only consider the combined complexity here, even though graphs are typically sig-
nificantly larger than sets of shapes. However, from this we infer that validation for a
fixed set of shapes (data complexity) or a fixed graph (constraint complexity) are also
NP-complete, since they are already NP-complete for £ as shown in [6]], and combined
complexity of validation for ProGS is in NP.

5 Implementation

Drawing inspiration from an experimental feature of the SHaclEX [24] implementa-
tion of ShEx [23] and SHACL [22], we implement a prototypical validator for ProGS
by encoding the validation problem as an answer set program. Answer set program-
ming (ASP) allows for declarative implementations of NP-hard search problems, such
as ProGS validation with faithful assignments. In particular, we rely on ASP for effi-
ciently finding candidate assignments (in the worst-case considering all possible assign-
ments), while deciding whether an assignment is faithful is a straightforward mapping
of our validation semantics into another ASP model.

“lhttps://arxiv.org/abs/2107.05566

https://arxiv.org/abs/2107.05566

ProGS: Property Graph Shapes Language 15

The implementation consists of three components: An encoding of property graphs
and ProGS shapes, both of which are straight-forward and can be generated from non-
ASP representations. A set of rules directly representing the validation semantics of
ProGS (Section [3.3). And finally the search problem of finding faithful assignments.
With these components, an ASP solver (our implementation relies on Clingﬂ produces
one (or more) faithful assignments for the graph and set of shapes (if any exist).

In addition to the ASP encoding, we also provide a surrounding set of tools, includ-
ing a concrete syntax for ProGS shapes and a corresponding parser, as well as a tool for
extracting and encoding Ne04ﬂ instances. The graph encoding is based on the Neo4j
JSON export format and therefore straight-forward to replicate for other property-graph
stores. The tool suite is available on GitHut} including further documentation and ex-
amples. More details about the ASP encoding and a short demonstration can be found
in the extended version of this work.

5.1 Towards Practical Implementations of ProGS

Our implementation is well-suited as a reference implementation, for experimenting
with ProGS examples, and for validating smaller-sized graphs. For large-scale graphs,
the explicit ASP encoding of the data graph may be too inefficient, both in terms of
runtime and memory requirements. Instead, efficient validation demands an implemen-
tation operating directly on a specific property-graph store. Such an implementation
could, for example, aim to replicate the resolution approach of an ASP solver for find-
ing candidate assignments and evaluate the validation procedure directly on the graph.
For simplified SHACL shapes that do not include recursive shape references, efficient
validation approaches are well-known and widely used in real-world SHACL imple-
mentations. These approaches, operating on graph stores directly, could be applied for
ProGS as well. Another alternative would be to adapt validation over SPARQL end-
points [3] for Cypher and ProGS instead. Indeed, neosemantics [[15] relies on Cypher
for the validation of SHACL over RDF graphs encoded as property graphs. Such an
approach, as is also shown by [3]], can be extended to validate recursive shapes by in-
clusion of a SAT solver.

6 Related Work

There are a number of schema languages for property graphs in proprietary implemen-
tations of graph databases. For instance, the data definition language for Cypher [9]
described in the Neo4j manual [14] allows for simple constraints regarding the exis-
tence or uniqueness of properties. For TigerGraph [[7]], a similar implementation exists.
However, these systems lack a formal description, making their expressiveness, features
and complexity hard to assess.

Shttps://potassco.org/clingo/
®https://neodj.com/
"Ihttps://github.com/softlang/progs

https://potassco.org/clingo/
https://neo4j.com/
https://github.com/softlang/progs

16 Philipp Seifer, Ralf Lammel, and Steffen Staab

Only a small number of property-graph schema languages have been formally de-
fined. In [[11], the GraphQL [8] schema language is used to define restrictive property-
graph schemas, where for each node label a GraphQL object type can be defined. This
allows for constraining the existence of certain properties, edges, and properties on
these edges via field definitions of the object types. The schemas are closely tied to
node labels, meaning the approach does not allow for the validation of edges as individ-
ual entities, which is crucial for validating metadata annotations across an entire graph.
The approach also omits other elements supported by ProGS, such as negation, qualified
number restrictions and path expressions in number restrictions or equality constraints.
Validation with constraints that are associated to labels can be emulated with ProGS
target queries. Graph validation based on GraphQL was shown to be in ACy.

[[L] defines property graph schemas, also focusing on node and edge types on the
basis of labels. In particular, schemas allow for restricting the data types of specific
properties on nodes and edges, as well as the edges allowed between node types. More
advanced constraints are mentioned, but not formally defined. In general, this approach
only provides a small subset of the features of ProGS.

While shape-based validation approaches such as SHACL [22]] and ShEx [23] exist
for validating RDF graphs, to the best of our knowledge no shape-based validation lan-
guage for property graphs has been formally defined until now. A syntactic construct for
SHACL validation of RDF* (and other reification-based RDF extensions) has been pro-
posed in an unofficial draft proposal [[13]], though no semantics has been specified. The
reifiableBy construct allows constraining an edge via a node shape for provenance
annotations. The approach is similar to our notion of edge shapes and our semantics can
be applied, as long as graphs are restricted to property graphs (i.e., edge properties are
restricted to a given set of value domains). Finally, there exists an extension for Neo4;j
which implements SHACL validation for RDF subsets of property graphs [15].

7 Concluding Remarks

We present ProGS, a shape language extending SHACL for validating property graphs.
We define the semantics of this language based on the notion of faithfulness of partial
assignments and are therefore able to support shape references and negation. Despite
the addition of property-graph specific constructs, such as edge shapes that target edges
with identities, the complexity of validating graphs against sets of ProGS shapes does
not increase when compared to SHACL. The validation problem remains NP-complete.

As future work, we plan to investigate the satisfiability problem of ProGS shapes
and then further utilize these results to define a validation approach for property-graph
queries. We are also interested in extending ProGS with the unique features introduced
by G-CORE, in particular first-class paths, and RDF*, in particular triples in object
position of other triples.

References

1. Angles, R.: The property graph database model. In: Proc. of Int. Workshop on Foun-
dations of Data Management. CEUR, vol. 2100 (2018), http://ceur-ws.org/Vol-
2100/paper26.pdf

http://ceur-ws.org/Vol-2100/paper26.pdf
http://ceur-ws.org/Vol-2100/paper26.pdf

13.

14.

16.
17.
18.
19.
20.
21.
22.

23.
24.

ProGS: Property Graph Shapes Language 17

. Angles, R., Arenas, M., Barceld, P, Boncz, P.A., Fletcher, G.H.L., Gutiérrez, C., et al.: G-

CORE: A core for future graph query languages. In: Proc. of SIGMOD. pp. 1421-1432.
ACM (2018). https://doi.org/10.1145/3183713.3190654

. Angles, R., Thakkar, H., Tomaszuk, D.: Mapping RDF databases

to property graph databases. IEEE Access 8, 86091-86110 (2020).
https://doi.org/10.1109/ACCESS.2020.2993117

. Apache: Gremlin Property Graph Model (2016), https://github.com/tinkerpop/

blueprints/wiki/Property-Graph-Model

. Corman, J., Florenzano, F., Reutter, J.L.., Savkovic, O.: Validating shacl constraints over a

sparql endpoint. In: Proc. of ISWC 2019. LNCS, vol. 11778, pp. 145-163. Springer (2019).
https://doi.org/10.1007/978-3-030-30793-6_9

. Corman, J., Reutter, J.L., Savkovic, O.: Semantics and validation of recursive SHACL. In:

ISWC. LNCS, vol. 11136, pp. 318-336. Springer (2018). https://doi.org/10.1007/978-3-030-
00671-6_19

. Deutsch, A., Xu, Y., Wu, M., Lee, V.E.: Tigergraph: A native MPP graph database. CoRR

abs/1901.08248 (2019)

. Facebook: GraphQL Spec. (2018), https://graphql.github.io/graphql-spec/
. Francis, N., Green, A., Guagliardo, P., Libkin, L., Lindaaker, T., Marsault, V., et al.: Cypher:

An evolving query language for property graphs. In: Proc. of SIGMOD. pp. 1433-1445.
ACM (2018). https://doi.org/10.1145/3183713.3190657

. Hartig, O.: Rdf* and sparql®: An alternative approach to annotate statements in RDF. In:

Proc. of ISWC, Posters & Demonstrations and Industry Tracks. CEUR Workshop Proc.,
vol. 1963. CEUR-WS.org (2017), http://ceur-ws.org/Vol-1963/paper593.pdf

. Hartig, O., Hidders, J.: Defining schemas for property graphs by using the graphql schema

definition language. In: GRADES/NDA @SIGMOD/PODS. pp. 6:1-6:11. ACM (2019).
https://doi.org/10.1145/3327964.3328495

. ISO/IEC JTC1 SC32 WG3: GQL Standardization Project (2020), https://www.

gglstandards.org/

Knublauch, H.: DASH Reification Support for SHACL (2021), http://datashapes.
org/reification.html

Neodj: Neodj Constraints (2020), https://neodj.com/docs/cypher-manual/4.2/
administration/constraints/

. Neosemantics: Neo4j Neosemantics Validation (2020), https://neo4]j.com/labs/

neosemantics/4.0/validation/

openCypher: openCypher Project (2020), http://www.opencypher.org/

Oracle: PGQL 1.3 Specification (2020), https://pgql-lang.org/spec/1.3/

Seifer, P., Hirtel, J., Leinberger, M., Ldmmel, R., Staab, S.: Empirical study on the usage of
graph query languages in open source java projects. In: Proc. of Software Language Engi-
neering. pp. 152-166. ACM (2019). https://doi.org/10.1145/3357766.3359541

Udrea, O., Recupero, D.R., Subrahmanian, V.S.: Annotated RDF. ACM Trans. Comput. Log.
11(2), 10:1-10:41 (2010). https://doi.org/10.1145/1656242.1656245

Vrandecic, D., Krétzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM
57(10), 78-85 (2014). https://doi.org/10.1145/2629489

W3C: RDF Concepts and Abstract Syntax (2014), https://www.w3.0rg/TR/rdf11-
concepts/

W3C: Shapes constraint language (SHACL) (2017), https://www.w3.0rg/TR/shacl/
W3C: Shapes expressions language (ShEx) (2019), http://shex.io/shex-semantics/
WESO: Shaclex (2021), https://github.com/weso/shaclex

https://doi.org/10.1145/3183713.3190654
https://doi.org/10.1109/ACCESS.2020.2993117
https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model
https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model
https://doi.org/10.1007/978-3-030-30793-6_9
https://doi.org/10.1007/978-3-030-00671-6_19
https://doi.org/10.1007/978-3-030-00671-6_19
https://graphql.github.io/graphql-spec/
https://doi.org/10.1145/3183713.3190657
http://ceur-ws.org/Vol-1963/paper593.pdf
https://doi.org/10.1145/3327964.3328495
https://www.gqlstandards.org/
https://www.gqlstandards.org/
http://datashapes.org/reification.html
http://datashapes.org/reification.html
https://neo4j.com/docs/cypher-manual/4.2/administration/constraints/
https://neo4j.com/docs/cypher-manual/4.2/administration/constraints/
https://neo4j.com/labs/neosemantics/4.0/validation/
https://neo4j.com/labs/neosemantics/4.0/validation/
http://www.opencypher.org/
https://pgql-lang.org/spec/1.3/
https://doi.org/10.1145/3357766.3359541
https://doi.org/10.1145/1656242.1656245
https://doi.org/10.1145/2629489
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/shacl/
http://shex.io/shex-semantics/
https://github.com/weso/shaclex

	ProGS: Property Graph Shapes Language

