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In the context of the maximum stable set problem, rank inequalities impose that the cardinality of any set of vertices

contained in a stable set be, at most, as large as the stability number of the subgraph induced by such a set. Rank inequalities

are very general, as they subsume many classical inequalities such as clique, hole, antihole, web, and antiweb inequalities.

In spite of their generality, the exact separation of rank inequalities has never been addressed without the introduction of

topological restrictions on the induced subgraph and the tightness of their closure has never been investigated systematically.

In this work, we propose a methodology for optimizing over the closure of all rank inequalities with a right-hand side

no larger than a small constant without imposing any restrictions on the topology of the induced subgraph. Our method

relies on the exact separation of a relaxation of rank inequalities, which we call relaxed k-rank inequalities, whose closure

is as tight. We investigate the corresponding separation problem, a bilevel programming problem asking for a subgraph of

maximum weight with a bound on its stability number, whose study could be of independent interest. We first prove that

the problem is ΣP
2 -hard and provide some insights on its polyhedral structure. We then propose two exact methods for its

solution: a branch-and-cut algorithm (which relies on a family of faced-defining inequalities which we introduce in this

paper) and a purely combinatorial branch-and-bound algorithm. Our computational results show that the closure of rank

inequalities with a right-hand side no larger than a small constant can yield a bound that is stronger, in some cases, than

Lovász’s Theta function, and substantially stronger than bounds obtained with standard inequalities that are valid for the

stable set problem, including odd-cycle inequalities and wheel inequalities.
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1. Introduction

Let G = (V,E) be an undirected graph with vertex set V and edge set E and let n = |V |. A subset

S ⊆ V is called a stable set if its vertices are pairwise non-adjacent, whereas it is said to form a

clique if its vertices are pairwise adjacent. We call stability number of G the size of its maximum-

cardinality stable sets and denote it by α(G). The maximum stable set problem (MSSP) asks for

computing such a number. By complementing the edge set of the graph, the problem is equivalent

to the maximum clique problem (Padberg 1973).

The MSSP is one of the fundamental problems in combinatorial optimization, with applications

in, among others, biochemistry (Butenko and Wilhelm 2006), computer vision (San Segundo and

Artieda 2015), combinatorial auctions (Wu and Hao 2016), and social network analysis (Balasun-

daram et al. 2011). For a more extensive account, we refer the reader to the surveys (Pardalos

and Xue 1994, Wu and Hao 2015). The problem was shown to be NP-hard by Karp (1972) and

it cannot be approximated in polynomial time to within any factor O(n1−ε) for any ε > 0 unless

P= NP (Hastad 1999, Zuckerman 2006).

The MSSP is very hard to solve also in practice. While state-of-the-art methods can tackle many

structured instances with up to millions of nodes (San Segundo et al. 2016), computing α(G) on

very sparse (random) graphs with more than 300 nodes is still beyond the capabilities of even the

most efficient algorithms known in the literature, including those proposed by Tomita and Kameda

(2007), San Segundo et al. (2011), Held et al. (2012), Maslov et al. (2014), and San Segundo et al.

(2019). Remarkably, state-of-the-art branch-and-cut methods based on the polyhedral structure

of the problem and on mathematical programming techniques are often outperformed by purely

combinatorial branch-and-bound methods such as the ones we mentioned above. For mathematical

programming approaches for solving the MSSP and/or computing tight bounds, we refer the reader

to the works by Nemhauser and Sigismondi (1992), Bourjolly et al. (1997), Rossi and Smriglio

(2001), Amaldi et al. (2010), Rebennack et al. (2011), Giandomenico et al. (2013), Amaldi et al.

(2014), Coniglio and Tieves (2015), Giandomenico et al. (2015), Corrêa et al. (2018), and Letchford

et al. (2020). An overview of solution algorithms can be found in the surveys authored by Prosser

(2012) and Wu and Hao (2015). For exact (either combinatorial or mathematical-programming

based) methods for variants of the problem (including the cases with weights on the edges or

knapsack constraints), we refer the reader to Gouveia and Martins (2015), Hosseinian et al. (2017,

2018), Shimizu et al. (2018), San Segundo et al. (2019), and Coniglio et al. (2021).
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Figure 1 The Chvàtal Graph.

Note. (a) The smallest triangle-free 4-colorable 4-regular graph (Chvátal 1970). (b) The subgraph induced by U =

{5,6,7,8,9,10,11,12} (in black) and the vertices forming a maximum stable set (of size α(G[U ]) = 3) in G[U ] (in gray). The

corresponding RI is ∑
12
j=5 x j ≤ 3.

Let STAB(G) be the stable set polytope of G, i.e., the convex hull of the characteristic vectors

x ∈ {0,1}n of all the stable sets of G. The polyhedral structure of STAB(G) has been heavily

investigated in the literature starting from the seminal work of Padberg (1973), who introduced

the family of clique inequalities, defined as ∑ j∈C x j ≤ 1 for every C ⊆ V inducing a (maximal)

clique of G, as well as the family of odd holes, defined as ∑ j∈H x j ≤ |H|−1
2 for every H ⊆ G

inducing a chordless cycle (a hole). Many other inequalities based on the combinatorial structure of

STAB(G) have since been introduced, including web and antiweb (Trotter 1975), wheel (Cheng and

Cunningham 1997), and antiweb-wheel (Cheng and de Vries 2002).

In this work, we focus on Rank Inequalities (RIs), a family of valid inequalities introduced by

Chvátal (1975). For any U ⊆V , RIs have the form ∑ j∈U x j ≤ α(G[U ]), where G[U ] is the subgraph

induced by U . See Fig. 1 for an example.

RIs are extremely general, as every inequality with binary left-hand side (LHS) coefficients

which is valid for STAB(G) either is a RI or it is dominated by one.1 Crucially, many of the valid

inequalities which are known for STAB(G) are obtained by imposing topological restrictions on

G[U ]—clique, odd hole, web, and antiweb inequalities are indeed special cases of RIs obtained

when G[U ] is, respectively, a clique, an odd hole, a web, and an antiweb.

1 By definition, an inequality ux ≤ u0 is valid for a set P ⊆ Rn if and only if it is satisfied by every x ∈ P. This is the same as
requiring u0 ≥max{ux : x ∈ P}. Letting P = STAB(G) and assuming u ∈ {0,1}n, the condition translates into u0 ≥max{ux : x ∈
STAB(G)} = max{ex : x ∈ STAB(G[U ])} = α(G[U ]), where e is the all-one vector. Therefore, ux ≤ u0 is a RI if u0 = α(G[U ]),
whereas it is dominated by the RI ux≤ α(G[U ]) if u0 > α(G[U ]).
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Among the special cases of RIs obtained by imposing topological restrictions on G[U ], clique

inequalities are, arguably, the most important one, as they are separated in almost all of the state-

of-the-art branch-and-cut method for the MSSP (such as those that we referenced before). For

state-of-the-art approaches for their separation, we refer the reader to (Marzi et al. 2019).

For the general case where topological restrictions are not imposed, it has been shown that

RIs have a strong impact when separated (heuristically) within a branch-and-cut solver (Rossi

and Smriglio 2001, Rebennack et al. 2012) by relying on the edge-projection operator proposed

by Mannino and Sassano (1996). For its extension to the clique-projection operator and its adoption

for the generation of both rank and nonrank inequalities, see (Corrêa et al. 2018).

When aiming at closing a large fraction of the integrality gap, RIs look extremely promising.

This is because the introduction of the single RI ∑ j∈V x j ≤ α(G) (obtained for U = V ) into any

relaxation of STAB(G) suffices to calculate α(G), thereby closing 100% of the integrality gap. The

obvious consequence is that optimizing over the closure of all RIs (given a family of inequalities,

their closure is the set of points that satisfy all of them) is at least as hard as solving the MSSP—we

will discuss about this aspect later on in the paper.

Paper contributions In this work, we address the separation of RIs from a new angle—separating

them with a restriction not on the topology of G[U ] but, rather, on the magnitude of their RHS

α(G[U ])—and investigate the tightness of the closure of all RIs with a small (constant) RHS. For

the purpose, we introduce a closely related family of inequalities (which we call relaxed k-rank

inequalities) and study their separation problem, which turns out to be a bilevel programming

problem asking for a subgraph with bounded stability number of maximum weight and whose

investigation could be of independent interest. We prove that the problem is ΣP
2 -hard, investigate its

polyhedral structure, and propose two exact algorithms for its solution (a branch-and-cut algorithm

and a purely combinatorial branch-and-bound algorithm). By relying on them, our computational

experiments reveal that the closure of all RIs with a small RHS (no larger than 5) can yield bounds

that can be, not in general but in a few cases, better than those obtained with Lovász’s theta function

ϑ(G), see (Lovász 1979), and also better than those obtained with standard inequalities that are valid

for the stable set problem, including odd-cycle inequalities and wheel inequalities. See Figure 2 for

a visual illustration of the inequalities obtained with our method.

Paper outline The paper is organized as follows. Section 2 introduces relaxed k-rank inequalities

and investigates their separation problem and its computational complexity. Section 3 furthers

the analysis by proposing a formulation for the separation problem which relies on a family of
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Figure 2 Rank Inequalities (RIs) with a right-hand size no larger than 5.

Note. The 11 RIs with a right-hand size no larger than 5 generated with our method on the Chvàtal Graph. They yield a bound of 4.5,

tighter than the one obtained with Lovász’s theta function ϑ(G), equal to 4.895.

facet-defining inequalities which we introduce in the same section. Section 4 describes the two

algorithms we propose for solving the separation problem. Section 5 illustrates a set of computational

experiments carried out to assess the tightness of the closure of all RIs with a small RHS (no larger

than 5). Concluding remarks are drawn in Section 6.

2. (Relaxed) k-Rank Inequalities

For a given k ∈ N, we call k-rank inequality (k-RI) any RI with a RHS equal to k and we denote

by k-RSTAB(G) the corresponding closure. For the ease of notation, we assume that k-RSTAB(G)

also includes the nonnegativity constraints on x. Given an integer κ , the closure of all RIs with a

RHS no larger than κ is:
κ⋂

k=1

k-RSTAB(G). (1)
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In order to optimize ∑ j∈V x j (the objective function of the MSSP) over (1), we first introduce

the family of relaxed k-rank inequalities (R-k-RI), defined as ∑ j∈U x j ≤ k for any U ⊆ V and

k ≥ α(G[U ]). We denote their closure by R-k-RSTAB(G). As for k-RSTAB(G), we assume that

R-k-RSTAB(G) includes the nonnegativity constraints on x. The relationship between R-k-RIs

and k-RIs is quite straightforward: any R-k-RI ∑ j∈U x j ≤ k is a k-RI if k = α(G[U ]) while, if

k > α(G[U ]), the R-k-RI ∑ j∈U x j ≤ k is dominated by the k′-RI ∑ j∈U x j ≤ k′ having the same LHS

and a RHS k′ = α(G[U ]). Therefore:

κ⋂
k=1

R-k-RSTAB(G) =
κ⋂

k=1

k-RSTAB(G).

This implies that one can optimize over (1) by separating R-k-RIs rather than k-RIs. The reason

why this is advisable is that the separation problem of the former is a relaxation of that of the latter,

as better shown at the end of this section.

Before proceeding to investigate the separation problem of R-k-RIs, we point out that verifying

the membership of a given inequality to the family of either k-RIs or R-k-RIs is a computationally

difficult problem.

PROPOSITION 1. Given some u ∈ {0,1}n and k ∈ N, it is strongly NP-hard to verify whether

the inequality ux≤ k is a k-RI or an R-k-RI.

Proof. We show that verifying whether ux≤ k belongs to either family is as hard as solving the

MSSP. Let U = { j ∈V : u j = 1}.

Consider a routine returning the answer YES if and only if ux≤ k is a k-RI—by definition of k-RI,

when called with ui = 1 for all i ∈V the routine returns answer YES if and only if k = α(G[U ]).

Calling the routine O(n) times, for each k = 1, . . . ,n, solves the MSSP as, whenever it returns the

answer YES, it has proven α(G) = k.

Consider now a routine returning YES if and only if ux≤ k is a R-k-RI—by definition of R-k-RI,

when called on ux≤ k with ui = 1 for all i ∈V , the routine returns the answer YES if and only if

α(G)≤ k. Calling it O(n) times with k = n, . . . ,1, the routine returns the answer YES as long as k

is an upper bound on α(G), thereby proving, the first time it returns the answer NO for some value

of k, that α(G) = k+1. Q.E.D.

The proposition implies that the separation problem of deciding whether there exists either a k-RI

or an R-k-RI of positive violation does not (unless P= NP) belong to NP as, given an inequality

ux≤ k, verifying its validity is NP-hard. As a consequence, one may expect the separation problem
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for k-RIs and R-k-RIs to be harder to solve than an NP-hard problem. We show that this is indeed

the case, starting from R-k-RIs.

Given a vector x∗ ∈Qn and an integer k, finding a R-k-RI of maximum violation corresponds to

solving the following combinatorial optimization problem: 2

PROBLEM 1. Maximum Weight/Bounded Stability Subgraph Problem (MW/BSSP): Given

a graph G = (V,E), a weight vector x∗ ∈ Qn, and an integer k, find a subset of vertices U ⊆ V

whose induced subgraph G[U ] is of maximum weight ∑ j∈U x∗j among all those with stability number

α(G[U ]) no larger than k.

We establish the following:

THEOREM 1. The MW/BSSP is ΣP
2 -hard.

Proof Let us first introduce the decision version of the MW/BSSP:

PROBLEM 2. Maximum Weight/Bounded Stability Subgraph Problem (Decision)

(MW/BSSP-D): Given a graph G = (V,E), a weight vector x∗ ∈ Rn, an integer k, and a rational

w, is there a subset of vertices U ⊆ V of weight ∑ j∈U x∗j ≥ w whose induced subgraph G[U ] has

stability number α(G[U ]) no larger than k?

To show that the MW/BSSP-D belongs to ΣP
2 , it suffices to notice that, given a set U and an oracle

which computes α(G[U ]) in O(1), one can check in polynomial time whether U certifies that the

quadruple (G,x∗,k,w) is a YES instance of the MW/BSSP-D (as this only requires computing

∑ j∈U x∗j , comparing it to w, computing α(G[U ]) with the oracle, and comparing it to k).

We show that the MW/BSSP-D is complete for ΣP
2 by reduction from the following decision

problem (where ω(G) is the clique number of G, i.e., the size of its largest-cardinality clique):

PROBLEM 3. Generalized Node Deletion Problem (GNDP) (Rutenburg 1994): Given a graph

G = (V,E) and two positive integers b and c with b≥ 2, is there a subset D⊆V with |D| ≤ b such

that ω(G[V \D])≤ c?

Letting U := V \D, we have |D| ≤ b if and only if |U | ≥ |V |− b. It follows that the GNDP has

answer YES if and only if G contains a subset U ⊆V with |U | ≥ |V |−b such that ω(G[U ])≤ c.

Letting now G := (V,V ×V \E) be the complement graph of G (ignoring loops of type (i, i), i ∈V ),

ω(G[U ]) ≤ c holds if and only if α(G[U ]) ≤ c. Let now x∗i := 1 for all i ∈ V , w := |V |− b, and

2This problem is similar to the clique interdiction problem studied in Furini et al. (2019). They differ in that, besides considering
cliques rather than stable sets, the latter calls for a set of vertices of bounded cardinality to be removed from the graph so to minimize
its clique number, whereas the MW/BSSP calls for a set of vertices of maximum weight to be kept in the graph in order for its the
stability number to be bounded.
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k := c, and call an oracle for the solution of the MW/BSSP-D. If the oracle returns answer YES,

G contains a set U of size |U | ≥ w with α(G[U ]) ≤ c, which implies that the GNDP has answer

YES. If the oracle returns answer NO, than G does not contain any set U of size |U | ≥ w with

α(G[U ])≤ c and the GNDP has answer NO. The proof is concluded since, as shown by Rutenburg

(1994), the GNDP is ΣP
2 -complete. Q.E.D.

This result shows that finding a R-k-RI of maximum violation is, in general, harder than solving

an NP-hard problem (its decision problem is, indeed, one level above the class of NP-complete

problems in the polynomial hierarchy) and, in particular, that doing so is harder than solving the

MSSP. Theorem 1 also shows that the MW/BSSP cannot be cast as a single-level mathematical

program of polynomial size unless the polynomial hierarchy collapses to its first level. This is

because, if a polynomially-sized mathematical programming formulation existed, every ΣP
2 -complete

problem would be certifiable in polynomial time via such formulation and, hence, ΣP
2 would

coincide with NP. Fore more details on the relationship between cutting plane generation, bilevel

programming, and the polynomial hierarchy, we refer the reader to (Lodi et al. 2014). For a recent

survey on mixed integer multilevel programming (and its relationship with mixed integer multistage

programming), we refer the reader to (Bolusani et al. 2020).

Crucially, if k is a constant (as we assume in this paper), the following holds:

COROLLARY 1. Unless ΣP
2 = NP (i.e., unless the polynomial hierarchy collapses to its first

level), for a fixed k the MW/BSSP is NP-hard and not ΣP
2 -hard.

Proof. First, we notice that, if k is fixed, the MW/BSSP-D admits a polynomial-time checkable

certificate, which implies that the problem belongs to NP. Indeed, given a set of vertices Ũ ⊆V ,

∑ j∈Ũ x∗j ≥ w can be checked in linear time and α(G[Ũ ])≤ k can be checked in polynomial time by

building all the O(nk+1) stable sets S⊆V and verifying that |S∩Ũ | ≤ k. To see that the MW/BSSP-

D is NP-complete for a constant k, it suffices to notice that, for k = 1, the problem is identical to the

decision version of the maximum (weighted) clique problem. Q.E.D.

The corollary implies that, under the assumptions of this work, the problem of separating R-k-RIs

in computationally as hard as the MSSP (which, due to the equivalence between optimization and

separation (Grötschel et al. 1981), is the usual case for at least a family of inequalities for NP-hard

optimization problems), but not harder.

We conclude the section by observing that the MW/BSSP is a relaxation of the separation problem

for k-RIs. The latter is indeed obtained by adding an extra constraint to the MW/BSSP forcing the
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induced subgraph G[U ] to have a stability number not only no larger than k, but also no smaller than

k. Such a problem can be shown to be ΣP
2 -hard by a proof similar to that of Theorem 1, in which

the oracle for the solution of the problem is called not just a single time but once for each value of

k = 1, . . . ,c.

3. Formulating the MW/BSSP as an MILP
Let u ∈ {0,1}n be the characteristic vector of U ⊆V . We model the MW/BSSP as the following

bilevel programming problem:

max
u∈{0,1}n ∑

i∈V
x∗j u j (2a)

s.t. max
z∈{0,1}n

{
∑
j∈V

u j z j : z ∈ STAB(G)

}
︸ ︷︷ ︸

α(G[U ])

≤ k. (2b)

In the upper level, the first player (the leader) picks a subset U ⊆ V of vertices by choosing the

corresponding characteristic vector u ∈ {0,1}n. In the lower level, the second player (the follower)

chooses a maximum-cardinality stable set in G[U ] by choosing its characteristic vector z ∈ {0,1}|U |

(or, equivalently, by choosing a maximum-weight stable set in G with weight vector u). Assuming

the perspective of the leader, their choice of u is made in anticipation of the follower’s by choosing

a set U with α(G[U ])≤ k (as this guarantees the feasibility of their solution) and, among all such

sets U , choosing one which maximizes ∑ j∈U x∗j .

3.1. Single-level reformulation of the MW/BSSP

We introduce the following single-level reformulation of the problem:

PROPOSITION 2. Let S be the set of all the stable sets of G. The following integer program with

exponentially-many constraints is a single-level reformulation of (2):

max
u∈{0,1}n ∑

j∈V
x∗ju j (3a)

s. t. ∑
j∈S

u j ≤ k ∀S ∈S : |S|= k+1. (3b)

Proof. Since maxz∈{0,1}n
{

∑ j∈V u jz j : z ∈ STAB(G)
}

= maxS∈S
{

∑ j∈S u j
}

, we can

rewrite (2b) as maxS∈S
{

∑ j∈S u j
}
≤ k. As the inequality associated with every S with |S| ≤ k is triv-

ially satisfied, we can w.l.o.g. restrict ourselves to maxS∈S :|S|≥k+1
{

∑ j∈S u j
}
≤ k. For any S⊆S

with |S| ≥ k+1, ∑ j∈S u j ≤ k is violated if and only if S contains a stable set S′ ⊆ { j ∈V : u j = 1}
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with |S′| = k+ 1. Thus, we can further restrict ourselves to maxS∈S :|S|=k+1
{

∑ j∈S u j
}
≤ k. The

proof is concluded as maxS∈S :|S|=k+1
{

∑ j∈S u j
}
≤ k holds if and only if (3b) holds. Q.E.D.

Formulation (3) imposes α(G[U ])≤ k by interdicting every set of vertices U forming a stable set

S of size |S|= k+1. In line with what we discussed before on the complexity of the MW/BSSP, if k

is fixed, Formulation (3) contains only a polynomial number of constraints of type (3b).

3.2. A tighter family of inequalities

Let S ≥k+1
M be the collection of all inclusion-wise maximal stable sets of G of cardinality at least

k+1. Consider the inequalities:

∑
i∈S

ui ≤ k, ∀S ∈S ≥k+1
M . (4)

The following holds:

PROPOSITION 3. Constraints (4) dominate Constraints (3b).

Proof. Let ∑i∈S ui ≤ k be a constraint of type (3b). If S is an inclusion-wise maximal stable set,

the inequality is also of type (4) and the claim is proven. If S is not maximal, the claim is proven by

letting S′ be a maximal stable set containing S, as ∑i∈S′ ui ≤ k dominates ∑i∈S ui ≤ k. Q.E.D.

In the remainder of the subsection, we show that Constraints (4) are facet defining for the convex

hull of the MW/BSSP formulated in the x space as done in (3).

LEMMA 1. Let S̃ be a stable set of size |S̃|= k+1. When restricting the MW/BSSP to G[S̃], i.e.,

to the subspace where u j = 0 for all j ∈V \ S̃, the constraint of type (4) associated with S̃ (which,

in that subspace, is identical to the constraint of type (3b) associated with S̃), is facet defining.

Proof. Let e be the all-one vector and e j be the binary vector with a single one in position j.

The k+ 1 vectors ũ j := e− e j belong to the face F := {u ∈ R|S̃| : ∑ j∈S̃ u j = k} and are affinely

independent. Thus, F has dimension k (it is a facet). Q.E.D.

THEOREM 2. Constraints (4) are facet defining for the convex hull of the MW/BSSP.

Proof. For every S ⊆V , let U S be the collection of all integer vectors which are feasible for

the MW/BSSP when restricted to the subspace where u j = 0 for all j ∈V \S. Let S̃ be a stable set

of size k+ 1 and let Ŝ ⊇ S̃ be a maximal stable set containing S̃. We employ a sequential lifting

argument, lifting first the coefficients with indices in Ŝ\ S̃, and then all those with indices in V \ Ŝ.
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Due to Lemma 1, the inequality ∑ j∈S̃ u j ≤ k is facet defining for conv(U S̃). Let j1 be the first

index in Ŝ\ S̃ in some (arbitrary) order. Its lifted coefficient is:

λ j1 = k− max
u∈{0,1}|S̃|

∑
j∈S̃

u j : α(G[{ j ∈ S̃ : u j = 1}∪{ j1}])≤ k

 .

As S̃∪{ j1} is a stable set of size k+1, α(G[S̃∪{ j1}]) = k+1. Since α(G[{ j∈ S̃ : u j = 1}∪{ j1}])≤

k implies that we can have u j = 1 for no more than k−1 vertices in S̃, we deduce λ j1 = k−(k−1) =

1. This shows that ∑ j∈S̃ u j +u j1 ≤ k is facet defining for conv(U S̃∪{ j1}). Iterating this reasoning

for each j ∈ Ŝ\ S̃, we obtain that the inequality ∑ j∈Ŝ u j ≤ k is facet defining for conv(U Ŝ).

We now lift all the vertices in V \ Ŝ. Let j′1 be the first vertex in V \ Ŝ in some (arbitrary) order. Its

lifted coefficient is:

λ j′1
= k− max

u∈{0,1}|Ŝ|

∑
j∈Ŝ

u j : α(G[{ j ∈ Ŝ : u j = 1}∪{ j′1}])≤ k

 .

Since Ŝ is maximal and j′1 /∈ Ŝ, there is at least an edge in G containing j′1 and a vertex i ∈ Ŝ.

Therefore, α(G[{ j ∈ Ŝ : u j = 1}∪{ j′1}])≤ k implies that, setting ui = 1, we can have u j = 1 for a

total of k vertices in Ŝ, from which we deduce λ j′1
= k− k = 0. This shows that ∑ j∈S̃ u j ≤ k is facet

defining for conv(U Ŝ∪{ j′1}). Iterating this reasoning for each j ∈V \ Ŝ, we obtain that the inequality

∑ j∈Ŝ u j ≤ k is facet defining for conv(U V ), i.e., for the convex hull of all feasible solutions of the

MW/BSSP. Q.E.D.

With Constraints (4), we obtain a stronger single-level formulation for the MW/BSSP. We rely

on it in the next section to develop a branch-and-cut algorithm for solving the problem.

4. Algorithms for Separating R-k-RIs by Solving the MW/BSSP

We describe two algorithms for the solution of the MW/BSSP, to be embedded in a cutting plane

algorithm for the separation of R-k-RIs. The first algorithm is of branch-and-cut type, and it is based

on the results of the previous section. The second one is a purely-combinatorial branch-and-bound

algorithm which does not rely on mathematical programming techniques. As we will see in the

computational results section, the former performs better when k is large, whereas the latter is faster

for smaller values of k.
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4.1. Branch-and-cut algorithm

The branch-and-cut algorithm that we propose is based on solving Formulation (3) by separating,

rather than Constraints (3b), the tighter Constraints (4). W.l.o.g., we separate such constraints only

when an incumbent solution u∗ ∈ {0,1}n is found.

We approach the separation problem in two steps, by first separating a constraint where S has

size |S| ≥ k+1 but is not necessarily maximal and, then, lifting the constraint into one of type (4) a

posteriori via a greedy algorithm.

For the first step, we need to find a stable set S which has size at least k + 1 and satisfies

∑ j∈S u∗j > k. In principle, this first step requires the solution of a generalization of the MSSP to

the case with weights on the vertices and an extra cardinality constraint. Nevertheless, as, with

u∗ ∈ {0,1}n, ∑ j∈S u∗j > k translates into |{ j ∈ S : u∗j = 1}| ≥ k+1, which is a tighter constraint than

|S| ≥ k+1, the problem is solved by finding a stable set of cardinality at least k+1 in the subgraph

induced by { j ∈V : u∗j = 1}. As, in the worst case, finding such a stable set takes O(nk+1), if k is

very small, solving this problem is computationally easier than solving the MSSP.

For the second step, after a (not necessarily maximal) stable set S has been found, we can lift the

corresponding inequality into a constraint of type (4) by iteratively adding (in an arbitrary order) to

S any vertex j ∈V \S whose neighborhood has an empty intersection with S (this guarantees that S

remains a stable set after j is added to it). The procedure runs in O(n2).

4.2. Combinatorial branch-and-bound algorithm

We now present a combinatorial branch-and-bound algorithm for the solution of the MW/BSSP. The

algorithm relies on a binary branching operation by which a vertex v is selected and two children

nodes are created, one with v in the solution and one without it. Each node of the branch-and-bound

tree is characterized by three subsets: U , P, and T .

• U is the set of vertices corresponding to the partial solution that has been built from the root

node to the current node via branching operations. By construction, the subgraph G[U ] induced by

U always satisfies the constraint α(G[U ])≤ k.

• P is the set of vertices which are candidate for branching; it contains all the vertices w which

can be individually added to U so that the stability number of G[U ∪ {w}] does not exceed k.

Formally:

P := {w ∈V \U : α(G[U ∪{w}])≤ k}. (5)
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• T is the set of all stable sets of G of cardinality k−1 containing the whole of U and a subset

of vertices in P (that is, for each S ∈ T , S ⊆U ∪P and S ⊇U). T can be computed in O(nk−1).

We will rely on it for updating P.

Globally, we also keep track of the best solution found with the set B⊆V .

4.2.1. Updating P Assume branching has just taken place on vertex v ∈ P, which is about to be

added to the current solution U . We scan all vertices w ∈ P in order to remove all those which, after

adding v to U , would violate (5), i.e., all the vertices w ∈ P such that α(G[U ]∪{v,w}])> k. Recall

that, since v,w ∈ P, both α(G∪{v})≤ k and α(G∪{w})≤ k hold.

Let R be the common anti-neighborhood of v and w in U . We consider three conditions, increas-

ingly harder to check computationally. They are designed in such a way that, if any of them is

satisfied, we have a certificate that w should remain in P and we can move on to checking the next

vertex.

a) Assume {v,w} ∈ E. In this case, the increase in stability number due to adding both v and

w to U is no larger than that due to adding either v or w individually. As α(G[U ∪{v}]) ≤ k and

α(G[U ∪{w}])≤ k hold, we deduce α(G[U ∪{v,w}])≤ k. Hence, w does not violate (5) after v is

added to U . The condition is checked in O(1).

b) Assume {v,w} /∈ E. Since v and w do not share an edge, they could form a stable set of size

up to |R|+2 with the vertices in R. Therefore, |R|+2≤ k implies α(G[U ∪{v,w}])≤ k which, in

turn, implies that w does not violate (5) after v is added to U . The condition is checked in O(n).

c) Assume {v,w} /∈ E and |R|+2 > k. Let S∗ ∈T be a stable set maximizing |R∩S|. Adding v

and w to U results in a stable set of size |R∩S∗|+2. If |R∩S∗|+2≥ k+1, α(G[U∪{v,w}])≥ k+1.

As w violates (5), we let P := P\{w}. If |R∩S|+2≤ k holds for all S ∈T , w does not violate (5)

after v is added to U . Overall, the condition is checked in O(n ·nk−1).

See Figure 3 for an illustration of each of the three conditions.

4.2.2. Description of the algorithm The algorithm visits the enumeration tree recursively in a

depth-first fashion. It starts from the root node with U := /0 and P :=V , and with an empty incumbent

B := /0 with LB = 0. The incumbent is updated by setting B :=U whenever either x∗(U)> x∗(B)

or x∗(U) = x∗(B) and |U | > |B|, as this leads to a denser R-k-RI. Besides halting the recursion

whenever the candidate set P is empty, we rely on a simple fathoming condition and prune any node

where x∗(U)+x∗(P)< x∗(B). If the recursion is not halted, we create a left child node by adding to

U a vertex in P of maximum weight (and remove it from P), following a best bound criterion. Ties
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Figure 3 Illustration of the update of P with k = 3.

Note. The vertices v and w are drawn in white and with a solid line. The vertices in U are drawn in gray and with a solid

line. The edges of G[U ] are drawn with a solid line. The edges belonging to G[U ∪{v}∪{w}] but not to G[U ] are drawn with

a dashed line. (a) A case where {v,w} ∈ E and w is not removed from P. (b) A case where {v,w} /∈ E and R = {8}. Since

|R|+2 = 3 ≤ 3, w is not removed from P. (c) A case where {v,w} /∈ E, R = {1,2,3}, and |R|+2 = 5 ≥ 3. T = {{1,3}}. Since

|R∩{1,3}|= |{1,3}|= 2, we have |R∩S∗| ≥ k−1 = 2. Thus, w is removed from P. (d) A case where {v,w} /∈ E, R = {5,8}, and

|R|+2 = 4 ≥ 3. T = {{5,7},{6,7},{6,8}}. Since |R∩{5,6}| = |{5}| = 1, |R∩{6,7}| = |{}| = 0, and |R∩{6,8}| = |{8}| = 1,

we have |R∩S∗|< k−1 = 2. Thus, w is not removed from P.

are broken by choosing a vertex of maximum degree. After updating P according to the previously

described procedure and updating the set T to be consistent with U :=U ∪{v} and the new P, the

algorithm is called recursively on the left child node. Stepping out of the recursion, we revert the

updates on U , P, and T (due to v not being in U anymore) and call the algorithm again on the right

child node with partial solution set U and candidate set P := P\{v}.
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5. Experimental Setup and Computational Study
In this section, we investigate the tightness of

⋂
κ
k=1 k-RSTAB(G) for increasing values of κ =

1, . . . ,5 by relying on the two algorithms we proposed for solving the MW/BSSP. We compare

the bounds corresponding to
⋂

κ
k=1 k-RSTAB(G) to those obtained when optimizing the function

∑ j∈N x j exactly over four different polyhedral LP relaxations for the MSSP (employing an exact

separation procedure in all cases except for one—see further) and to the bound corresponding to

Lovász’s Theta function ϑ(G). In more detail, the relaxations we consider are:

• The clique polytope QSTAB(G), defined by the non-negativity constraints and the set of

all (maximal) clique inequalities; since every clique inequality coincides with a k-RI with k = 1,

the bound obtained with QSTAB(G) coincides with the one obtained with
⋂

κ
k=1 k-RSTAB(G) for

κ = 1.

• The odd-cycle polytope CSTAB(G), defined by the non-negativity constraints, the edge con-

straints, and the odd-cycle inequalities ∑ j∈C x j ≤ |C|−1
2 defined for each C ⊆ V such that the set

of edges with both endpoints in it forms a cycle (Grötschel et al. 1988). These inequalities are

facet defining only if G[C] is chordless—if this is the case, they are called odd-hole inequalities.

We solve the corresponding separation problem (exactly) by solving a shortest odd-cycle problem

following the procedure in Section 8.3.6 and Lemma 9.1.11 of (Grötschel et al. 1988); we adapt the

procedure so to maximize, rather than the cut violation, the difference between the cut violation and

the cardinality of C multiplied by some ε > 0; if ε is small enough, by optimizing this objective

function one obtains an inequality of maximum violation which contains the smallest number of

vertices—as one can show, this suffices to guarantee that C induces a chordless cycle.

• The wheel polytope WSTAB(G), obtained by further restricting CSTAB(G) with the wheel

inequalities ∑ j∈W\{w} x j +
|W |−2

2 xw ≤ |W |−2
2 , where W ⊆ V induces a wheel centered at w ∈W .

We carry out the (exact) separation for wheel inequalities via the algorithm reported in Theorem

9.5.6 in (Grötschel et al. 1988), only after checking that all the other inequalities in CSTAB(G) are

satisfied.

• The bound obtained by solving the MSSP with Gurobi 9.1 halting the execution at the root

node and deactivating every family of cutting planes besides {0, 1
2} Chvàtal-Gomory (CG-) cuts,

for which we adopt the aggressive setting; while it is well-known that the rank-1 closure of the

{0, 1
2} CG cuts coincides with CSTAB(G) (Campêlo and Cornuéjols 2009), with the aggressive

setting Gurobi goes beyond the first closure, often (but not always) obtaining a stronger bound. The

bound we obtain is an approximation of the bound that corresponds to the closure (of arbitrary rank)

of the {0, 1
2} Chvàtal-Gomory (CG-) cuts.
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• The function ϑ(G), originally proposed by Lovász (1979) and further studied in a series of

papers culminating in (Grötschel et al. 1988); its value coincides with the maximum of ∑ j∈V x j

over the Theta body TH(G), which is defined by the non-negativity constraints and the constraints

of type ∑ j∈V (cu j)
2 x j ≤ 1, where c ∈ Rn̄ with ||c||2 = 1 and (u j | j ∈ V ) with u j ∈ Rn̄ for some

n̄ ∈ N is an orthonormal representation of G (i.e., a set of vectors satisfying ||u j||2 = 1 and

u j u j′ = 0 for all j, j′ ∈ V with { j, j′} /∈ E). The tightness of this bound has been in assessed in

many papers, including, e.g., (Dukanovic and Rendl 2007). ϑ(G) can be computed by semidefinite

programming—see (Grötschel et al. 1988); we compute it with the semidefinite programming solver

DSDP 5.8 (Benson et al. 2000).

Given an upper bound UB, we measure its strength in terms of the multiplicative gap with respect

to α(G), defined as gap := UB
α(G) .

3

5.1. Algorithm setup

Preliminary experiments show that, for a given k, running either of the two separation algorithms we

proposed is very time consuming when no violated R-k-RI exists. We have also observed that, when

that is the case, decreasing k leads to spending a large amount of time in the generation of R-k-RIs

which do not lead to any bound improvements, whereas, if k is increased, the two algorithms manage

to find a bound-improving R-k-RI in a much shorter computing time.

The cutting plane method that we adopt circumvents both of the aforementioned issues by

employing an adaptive cut-off mechanism. The method starts with k = 1 and a violation cut-off

τ = 0.5. The separation algorithm it employs (either of the two we proposed) is run until a solution

corresponding to a R-k-RI of violation τ is found. If the global upper bound falls below τ , the

algorithm is halted and τ is reduced to the largest value in {0.5,0.25,0.1,0.05,0.01} which is

strictly smaller than the current value of τ and the separation algorithm is run again. If τ falls below

0.01, it is reset to 0.5 and the value of k is increased by one.

To solve an easier separation problem defined on smaller graphs, we rely on the following

property of RIs:

PROPOSITION 4. Assume that x∗ satisfies all edge inequalities. When looking for a violated RI,

we can w.l.o.g. restrict ourselves to the subgraph induced by the set of vertices { j ∈V : 0 < x∗j < 1}.

3 While the multiplicative definition of “gap” is not as commonplace as gap := UB−α(G)
α(G)

·100, we opt for the multiplicative one as it
leads to easier to read tables with fewer decimal figures.
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Proof. All vertices of index j with x∗j = 0 can be ignored as, having 0 weight in the separation

problem, do not contribute to the cut violation. Assume x∗j′ = 1 for some j′ ∈ V . When the LP

relaxation of the MSSP contains, at least, all edge inequalities (which is always the case in our setup),

x∗j′ = 1 implies x∗j = 0 for all j ∈V : { j′, j} ∈ E due to the edge inequality x∗j′+ x∗j ≤ 1. Therefore,

when considering only vertices with x∗j > 0 in the separation procedure, every vertex j′ with

x j′ = 1 is isolated. Given any G[U ] containing an isolated vertex j′, α(G[U ]) = α(G[U \{ j′}])+1.

Thus, the RI ∑ j∈U x j ≤ α(G[U ]) is dominated by the two inequalities x j′ ≤ 1 and ∑ j∈U\{ j′} x j ≤

α(G[U \ { j′}]). This implies that, in the separation problem, any vertex j′ with x∗j′ = 1 can be

discarded. Q.E.D.

We remark that the result in Proposition 4 dates back to the work of Hoffman and Padberg (1993),

and its applicability goes beyond rank inequalities. We opted for proposing a proof tailored to rank

inequalities for the sake of clarity.

Our branch-and-cut algorithm is based on Gurobi 9.1, which we also use for solving the different

LP relaxations of the MSSP. We rely on Gurobi’s parallel setting, using up to 10 threads, while we

leave all the other parameters to their default values. In our computations, we carry out the pre-lifting

separation of Constraints (4) by resorting to the exact solver Cliquer 1.21 proposed by Östergård

(2002). Since Cliquer, which implements a combinatorial branch-and-bound algorithm, is designed

to find cliques rather than stable sets, we apply it to the complement graph G of G. We halt

Cliquer’s execution as soon as a stable set of size k+1 is found, after which we greedily expand it

into a maximal stable set.

The implementation of our branch-and-bound algorithm relies on efficient bit-set data structures

and bit-wise operations for storing the graph, the (anti)neighborhoods of the vertices, and the sets

U , V , T , and B.

All the results are obtained within a time limit of 7200 seconds using a Dell workstation equipped

with an Intel Xeon W-2155 running at 3.3 GHz with 10 cores and 32 GB RAM. All our algorithms

are coded in standard ANSI C, compiled with Visual Studio Community 2019, and run in Windows

10. The code and the graph instances are available at the URL https://github.com/stegua/

mss-k-rank.

5.2. Instances

We consider three groups of instances:

https://github.com/stegua/mss-k-rank
https://github.com/stegua/mss-k-rank
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1) Small: Erdős-Rényi graphs with 50, 75, 100 vertices and edge density in {10%, . . . ,90%},
produced with the instance generator Rudy. 4 For each graph dimension, we generate 10 different

instances of connected graphs.

These instances are particularly useful to measure the gap closed as a function of the density of

the graph, as well as to assess how the upper bounds scale in terms of graph size and density.

2) Sparse: very sparse random graphs with up to 400 vertices, with an edge density in

{1%, . . . ,5%}. They are a subset of the largest instances among those used by Gruber and Rendl

(2003) to solve the MSSP via semidefinite programming techniques.

3) DIMACS: A subset of the DIMACS dataset (Johnson and Trick 1996), complemented to

obtain MSSP instances.

We discard all the instances which correspond to a perfect graph as well all those on which we

run out of time while optimizing over the closure of all R-k-RIs with k = 1 (i.e., of all clique

inequalities).

5.3. Experimental results: tightness of the bound

We now rely on the methodology that we introduced to investigate the tightness of⋂
κ
k=1 k-RSTAB(G) on the three datasets. On each instance, the results that we report are those

obtained by employing as separation algorithm the one that allowed for closing the largest portion

of the integrality gap within the time limit. For a more thorough discussion on the efficiency of the

two separation algorithms, we refer the reader to Subsection 5.4.

Table 1 summarizes the results obtained on a subset of small random instances with n = 50

vertices reporting precise values of the upper bounds for κ = 1, . . . ,5 as well as the value of α(G).

The missing entries are due to the fact that, whenever we achieve a multiplicative gap of 1 (indicating

that the bound we have computed coincides with α(G)) for a certain value of κ , the execution of

the cutting plane algorithm is halted. The table shows that, on these instances, the bound obtained

by optimizing over
⋂

κ
k=1 k-RSTAB(G) for κ = 5 is very tight. In particular, by optimizing over⋂

κ
k=1 k-RSTAB(G) for κ = 5 we manage to achieve a multiplicative gap of 1 (which results in

α(G) being computed exactly) for 13 instances out of 16. Moreover, in 12 of these instances the

solution x∗ obtained by optimizing over
⋂

κ
k=1 k-RSTAB(G) for κ = 5 is component-wise integer

(the last column of the table reports a check mark every time this is the case).

By closely inspecting Table 1, we observe that
⋂

κ
k=1 k-RSTAB(G) is tighter on instances which

are either very sparse or very dense (as, on such instances, we manage to reach a multiplicative

4 http://web.stanford.edu/~yyye/yyye/Gset

http://web.stanford.edu/~yyye/yyye/Gset
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Table 1 Comparison of Upper Bounds (UB) and multiplicative gaps on the small instances. For no instance the timelimit is
incurred. The best values of Upper Bound (UB) and gap are highlighted in boldface. A checkmark in the last column indicates

that the instance is solved to optimality.

QSTAB(G)
⋂

κ
k=1 k-RSTAB(G)

Instance κ = 1 κ = 2 κ = 3 κ = 4 κ = 5
Den α(G) UB gap UB gap UB gap UB gap UB gap Is Integer
10% 22 23.00 1.05 22.00 1.00 X
15% 19 19.33 1.02 19.00 1.00 X
20% 17 17.00 1.00 X
25% 13 14.52 1.12 13.47 1.04 13.14 1.01 13.00 1.00 X
30% 12 12.69 1.06 12.00 1.00 X
31% 11 12.46 1.13 11.68 1.06 11.28 1.03 11.00 1.00 X
32% 10 12.20 1.22 11.17 1.12 10.74 1.07 10.49 1.05 10.23 1.02
33% 10 11.92 1.19 10.89 1.09 10.47 1.05 10.15 1.02 10.00 1.00 X
34% 10 11.63 1.16 10.65 1.07 10.21 1.02 10.00 1.00 X
35% 9 11.35 1.26 10.37 1.15 9.94 1.10 9.63 1.07 9.39 1.04
40% 8 10.59 1.32 9.48 1.19 8.99 1.12 8.66 1.08 8.40 1.05
50% 7 8.73 1.25 7.86 1.12 7.38 1.05 7.07 1.01 7.00 1.00
60% 6 7.15 1.19 6.31 1.05 6.00 1.00 X
70% 5 5.65 1.13 5.02 1.00 5.00 1.00 X
80% 4 4.45 1.11 4.00 1.00 X
90% 3 3.14 1.05 3.00 1.00 X

Mean: 1.141 1.056 1.028 1.014 1.007

optimality gap of 1 with values of κ smaller than 5). In Sewell (1998), the authors already observed

that stable set problems on random graphs tend to be easy for very sparse and very dense problems,

and harder at an intermediate level of density. In the context of rank inequalities, this behaviour

can be expected for the dense graphs in the dataset as, due to their small α(G) (no larger than 3 for

a density of 90%),
⋂

κ
k=1 k-RSTAB(G) with κ = 5 contains the RI ∑ j∈V x j ≤ α(G) (which, on its

own, suffices to achieve a multiplicative gap of 1). This is not the case for the sparse graphs in the

dataset, though, for which, due to their stability number α(G) being often very large (up to 22 for a

density of 10%),
⋂

κ
k=1 k-RSTAB(G) with κ = 5 does not contain the RI ∑ j∈V x j ≤ α(G). In spite

of this, the experiments suggest that, on these sparse instances, κ = 5, which is fairly small w.r.t.

α(G), suffices for
⋂

κ
k=1 k-RSTAB(G) to achieve a multiplicative gap very close to 1.

Table 2 summarizes the results obtained on the whole small random dataset. We report the average

multiplicative gaps (remember that a multiplicative gap equal to 1.00 indicates that the MSSP has

been solved to optimality). The gray row reports the average over the graphs of size n = 50,75,100

with fixed density; the other rows (in white) report the average for each value of the graph size n (10

instances per value of n). The very last row reports the overall average over 270 instances for each

polyhedral upper bound. From the table, we observe that the ϑ(G) number achieves strong upper

bounds on all the instances, while the bounds corresponding to CSTAB(G) and WSTAB(G) are

interesting only for very sparse graphs—notice that, since WSTAB(G)⊆CSTAB(G), the bound
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Table 2 Multiplicative gaps with respect to α(G), defined as gap := UB
α(G) , achieved by different LP relaxations (lower values

are better). Each gray row gives the average over all the instances of the same density d. Each row for each value of n reports
the average over 10 instances of the same size and density. The very last row report the overall averages over 270 instances for

the same LP relaxation.

QSTAB(G)
⋂

κ
k=1 k-RSTAB(G)

d n ϑ(G) CSTAB(G) WSTAB(G) {0, 1
2}-cuts κ = 1 κ = 2 κ = 3 κ = 4 κ = 5

0.1 1.05 1.09 1.08 1.10 1.12 1.06 1.04 1.04 1.03
50 1.02 1.01 1.01 1.00 1.03 1.02 1.01 1.00 1.00
75 1.05 1.08 1.07 1.09 1.13 1.06 1.03 1.02 1.02

100 1.09 1.17 1.16 1.19 1.21 1.12 1.09 1.08 1.08
0.2 1.08 1.41 1.20 1.25 1.22 1.12 1.09 1.09 1.08

50 1.03 1.15 1.08 1.09 1.11 1.03 1.02 1.01 1.01
75 1.08 1.42 1.20 1.26 1.22 1.12 1.09 1.07 1.05

100 1.12 1.67 1.32 1.40 1.32 1.22 1.18 1.18 1.18
0.3 1.10 1.88 1.43 1.42 1.29 1.18 1.14 1.13 1.12

50 1.06 1.49 1.18 1.21 1.18 1.09 1.05 1.03 1.02
75 1.08 1.87 1.40 1.40 1.28 1.16 1.12 1.08 1.07

100 1.15 2.27 1.70 1.64 1.41 1.29 1.26 1.26 1.26
0.4 1.11 2.40 1.80 1.56 1.33 1.21 1.16 1.15 1.14

50 1.05 1.80 1.35 1.26 1.17 1.08 1.04 1.02 1.01
75 1.10 2.41 1.81 1.55 1.32 1.20 1.14 1.10 1.09

100 1.18 2.98 2.24 1.85 1.49 1.35 1.33 1.33 1.33
0.5 1.08 2.89 2.17 1.59 1.30 1.17 1.12 1.11 1.11

50 1.04 2.20 1.65 1.29 1.17 1.07 1.03 1.01 1.01
75 1.07 2.92 2.19 1.62 1.30 1.16 1.09 1.03 1.03

100 1.12 3.56 2.67 1.87 1.44 1.29 1.29 1.29 1.29
0.6 1.07 3.62 2.71 1.69 1.30 1.15 1.10 1.09 1.09

50 1.02 2.74 2.05 1.38 1.16 1.04 1.00 1.00 1.00
75 1.07 3.59 2.69 1.69 1.28 1.13 1.06 1.01 1.00

100 1.13 4.52 3.39 2.00 1.45 1.28 1.27 1.27 1.27
0.7 1.05 4.35 3.26 1.68 1.24 1.10 1.07 1.07 1.06

50 1.02 3.17 2.38 1.32 1.11 1.02 1.00 1.00 1.00
75 1.04 4.33 3.25 1.67 1.24 1.07 1.02 1.01 1.00

100 1.10 5.56 4.17 2.06 1.38 1.19 1.19 1.19 1.19
0.8 1.02 5.40 4.05 1.67 1.17 1.03 1.02 1.01 1.01

50 1.02 4.17 3.13 1.37 1.12 1.01 1.00 1.00 1.00
75 1.03 5.38 4.03 1.68 1.14 1.03 1.01 1.00 1.00

100 1.02 6.67 5.00 1.97 1.23 1.04 1.04 1.02 1.02
0.9 1.03 6.98 5.24 1.63 1.08 1.01 1.00 1.00 1.00

50 1.03 5.42 4.06 1.26 1.10 1.00 1.00 1.00 1.00
75 1.04 7.08 5.31 1.65 1.08 1.03 1.00 1.00 1.00

100 1.01 8.44 6.33 1.96 1.06 1.01 1.00 1.00 1.00
Mean: 1.07 3.34 2.55 1.51 1.23 1.12 1.08 1.07 1.07

obtained with the former is always at least as tight as the bound obtained with the latter. The last

five columns report the upper bound obtained with k-rank inequalities. Recall that k-RIs with k = 1

coincide with clique inequalities and, therefore, the bound obtained with κ = 1 coincides with that

of QSTAB(G).
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Table 3 Comparison of Upper Bounds (UB) and multiplicative gaps on the sparse dataset. The best Upper Bound and gaps
are highlighted in boldface. Results obtained at the time limit are highlighted in italics.

QSTAB(G)
⋂

κ
k=1 k-RSTAB(G)

Instance ϑ(G) CSTAB(G) {0, 1
2}-cuts κ = 1 κ = 2 κ = 3 κ = 4

Name Den α ϑ(G) gap UB gap UB gap UB gap UB gap UB gap UB gap
g150.4 4 59 61.80 1.05 61.34 1.04 62.32 1.06 67.00 1.14 62.08 1.05 60.80 1.03 60.21 1.02
g150.5 5 55 58.73 1.07 58.52 1.06 61.06 1.11 64.00 1.16 58.56 1.06 57.69 1.05 57.27 1.04
g170.3 3 71 73.34 1.03 72.05 1.01 73.32 1.03 78.50 1.11 73.53 1.04 72.16 1.02 71.60 1.01
g200.3 3 83 86.52 1.04 85.01 1.02 87.38 1.05 94.50 1.14 86.61 1.04 84.97 1.02 84.65 1.02
g200.2 2 96 97.17 1.01 96.00 1.00 96.00 1.00 100.00 1.04 97.00 1.01 96.00 1.00
g300.2 2 122 129.47 1.06 127.60 1.05 131.64 1.08 141.00 1.16 130.43 1.07 127.81 1.05
g350.2 2 133 143.43 1.08 143.91 1.08 149.47 1.12 161.00 1.21 146.11 1.10 144.02 1.08
g400.1 1 191 194.79 1.02 191.60 1.00 192.53 1.01 201.50 1.05 195.50 1.02 193.50 1.01 193.00 1.01

Mean: 1.045 1.034 1.057 1.125 1.049 1.033 1.029

The computational results in Table 2 clearly show that the contribution of RI with a small RHS

in terms of gap is very significant. Their bound is clearly superior to the bound obtained with any

of the polyhedral relaxations we consider, and substantially tighter than the bound obtained with

QSTAB(G) (or, equivalently, with RIs with k = 1). The most substantial differences are observed

when comparing
⋂

κ
k=1 k-RSTAB(G) with CSTAB(G) and WSTAB(G) as the graph size and density

increases. We notice that the bounds obtained with
⋂

κ
k=1 k-RSTAB(G) are very close to ϑ(G) in a

number of cases, and strictly better in roughly half of them. As already observed in Table 1, we

observe a sort of phase transition phenomenon for densities between 0.3 and 0.5, where the bounds

for, in particular, graphs with n = 100 nodes, are larger than for other densities and graph sizes.

We remark that the multiplicative gaps we report for
⋂

κ
k=1 k-RSTAB(G) are exact only for the

graphs of size n = 50 (see Table 5 for the number of timeouts). Indeed, for n = 75 and κ = 4,5 and

for n = 100 and κ = 2, the time limit is hit for many instances and, hence, the bounds we report

constitute an estimation on the bound of the corresponding closure
⋂

κ
k=1 k-RSTAB(G) (which is

likely to be tighter).

Table 3 shows the results obtained on the sparse dataset. The results obtained when the time

limit is reached are reported in italics. The table shows that, due to the size of these graphs and

their very small density, the running time required to separate R-k-RIs can be substantial (see

Subsection 5.4 for a more thorough discussion on computing times and efficiency), causing the

cutting plane algorithm to reach the time limit already for κ = 3 on g300.2 and g350.2 and for

κ = 4 for all the other graphs. In spite of this, by optimizing over
⋂

κ
k=1 k-RSTAB(G) with κ ≤ 4

we obtain bounds tighter than ϑ(G) on 7 instances out of 8, and we close the optimality gap on

g200.2. We observe that CSTAB(G) is very tight on these very sparse instances, and that it always

outperforms QSTAB(G) in terms of gap (since these graphs are very sparse, they only rarely contain

a wheel and, thus, the bounds obtained with WSTAB(G) and CSTAB(G) coincide). Moreover, for
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Table 4 Comparison of Upper Bound (UB) and multiplicative gaps on the DIMACS instances. The best UB and gap is
highlighted in boldface. Results obtained at the time limit are highlighted in italics.

QSTAB(G)
⋂

κ
k=1 k-RSTAB(G)

Instance ϑ(G) CSTAB(G) WSTAB(G) {0, 1
2 }-cuts κ = 1 κ = 2 κ = 3

Name n Den α ϑ(G) gap UB gap UB gap UB gap UB gap UB gap UB gap
brock200 1 200 25% 21 27.46 1.31 66.67 3.17 50.00 2.38 47.00 2.24 38.02 1.81 34.75 1.65 34.63 1.65
brock200 2 200 50% 12 14.23 1.19 66.67 5.56 50.00 4.17 31.44 2.62 21.13 1.76 21.13 1.76 21.13 1.76
brock200 3 200 39% 15 18.82 1.25 66.67 4.44 50.00 3.33 37.45 2.50 27.23 1.82 24.97 1.66 24.97 1.66
brock200 4 200 34% 17 21.29 1.25 66.67 3.92 50.00 2.94 41.15 2.42 30.63 1.80 27.99 1.65 27.99 1.65
brock400 1 400 25% 27 39.70 1.47 133.33 4.94 100.00 3.70 88.28 3.27 63.90 2.37 61.52 2.28 61.52 2.28
brock400 2 400 25% 29 39.56 1.36 133.33 4.60 100.00 3.45 91.20 3.14 64.27 2.22 61.59 2.12 61.59 2.12
brock400 3 400 25% 31 39.48 1.27 133.33 4.30 100.00 3.23 88.05 2.84 64.12 2.07 61.68 1.99 61.68 1.99
brock400 4 400 25% 33 39.70 1.20 133.33 4.04 100.00 3.03 90.38 2.74 64.17 1.94 61.40 1.86 61.40 1.86
C125.9 125 10% 34 37.81 1.11 43.00 1.26 41.53 1.22 43.55 1.28 43.06 1.27 39.75 1.17 38.71 1.14
C250.9 250 10% 44 56.24 1.28 83.33 1.89 70.22 1.60 76.00 1.73 71.38 1.62 65.77 1.49 65.10 1.48
C500.9 500 10% 57 84.19 1.48 166.67 2.92 125.00 2.19 140.10 2.46 122.95 2.16 114.22 2.00 114.17 2.00
hamming6-4 64 65% 4 5.33 1.33 21.33 5.33 16.00 4.00 6.48 1.62 5.33 1.33 4.00 1.00 4.00 1.00
keller4 171 35% 11 14.01 1.27 57.00 5.18 42.75 3.89 18.92 1.72 14.83 1.35 13.79 1.25 13.79 1.25
MANN 09 45 93% 16 17.47 1.09 18.00 1.13 18.00 1.13 17.25 1.08 18.00 1.13 18.00 1.13 18.00 1.13
p hat300-2 300 51% 25 26.96 1.08 100.00 4.00 75.00 3.00 50.01 2.00 33.58 1.34 31.46 1.26 31.46 1.26
p hat300-3 300 26% 36 41.17 1.14 100.00 2.78 75.00 2.08 68.42 1.90 54.31 1.51 50.53 1.40 50.53 1.40
sanr200 0.7 200 30% 18 23.84 1.32 66.67 3.70 50.00 2.78 45.26 2.51 33.34 1.85 30.81 1.71 30.77 1.71
sanr200 0.9 200 10% 45 49.27 1.09 66.67 1.48 58.98 1.31 63.79 1.42 59.82 1.33 55.10 1.22 54.27 1.21
sanr400 0.7 400 30% 22 34.27 1.56 133.33 6.06 100.00 4.55 79.29 3.60 56.90 2.59 56.90 2.59 56.90 2.59

Mean: 1.26 3.35 2.63 2.16 1.71 1.591 1.586

graphs with density smaller or equal to 2, it achieves the best upper bounds (except for gr350.2).

The bound obtained with
⋂

κ
k=1 k-RSTAB(G) improves on the bound obtained with CSTAB(G) for

graphs with higher density. This is expected, as only for graphs with a not too small density we

can expect to find rank inequalities which, while having a small right-hand side (by construction),

feature a dense left-hand side and can improve over classical inequalities where G[U ] has a special

structure.

Table 4 shows the results on the DIMACS instances. With only two exceptions (hamming6-4

and keller4), on which we obtain bounds better than ϑ(G) already for κ = 2, the bound obtained

by optimizing over
⋂

κ
k=1 k-RSTAB(G) in the time limit is no tighter than ϑ(G), but it is always

significantly better than the upper bounds obtained with any other LP relaxation. We remark

that, while the bounds corresponding to QSTAB(G),CSTAB(G), and WSTAB(G) are exact, those

corresponding to
⋂

κ
k=1 k-RSTAB(G) with κ ≥ 2 are not as, when computing them, the time limit is

reached already for κ = 2 for almost all the instances. This prevents us from drawing any meaningful

conclusions on the tightness of
⋂

κ
k=1 k-RSTAB(G) with a small κ on this dataset, besides showing

that the separation problem of R-k-RIs (the MW/BSSP) is challenging to solve to optimality on

larger graphs.

5.4. Efficiency of the separation algorithms

We now compare the efficiency of the branch-and-cut and branch-and-bound algorithms presented

in Section 3.
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Table 5 reports the average computing time (in seconds) over 10 instances of the same size and

density for the two separation algorithms on the small datasets. For each value of k, the table reports

the time spent separating R-k-RIs with that value of k only and the number of instances that reach

the timeout (columns To). The time limit is reached when the total time spent separating R-k-RIs

with k up to κ is exceeded. The average computing time is computed by only taking into account

the instances for which the time limit is not reached.

Table 5 shows that, on the small dataset, the branch-and-cut algorithm is faster for k = 4,5

than the branch-and-bound algorithm, which is one order of magnitude faster for k = 1,2. This

is well expected as, by relying on the complete enumeration of all stable sets of size k− 1, the

branch-and-bound algorithm is more efficient when k is small. The table also shows that for k = 1,2

the branch-and-bound algorithm is two-to-three orders of magnitude faster than the branch-and-cut

algorithm. The latter is still faster for k = 3, but the speedup it achieves is substantially smaller than

the one that is observed for smaller values of k. This suggests that, if we were to increase k above 3,

we would most likely witness a situation similar to the one we observed on the small dataset, where

the branch-and-bound algorithm becomes inefficient for larger values of k. This further shows that

the separation problem of R-k-RIs (the MW/BSSP) is very challenging to solve to optimality as the

size of the graph and its density increase.

Table 6 reports, for the small and sparse datasets and for increasing densities, the number of R-k-

RIs generated during the execution of the cutting plane algorithm and the average cardinality of U .

As the table shows, on the sparse dataset and for each value of k, |U | is almost constant and it grows

very slowly with the density of the graph, whereas, on the small dataset (which contains denser

graphs), it grows much faster with the graph density, at a speed which gets larger for increasing

values of k. The table also shows that, while the number of inequalities generated for each instance

is almost constant for the different values of k on the small dataset, it increases quite rapidly with k

on the sparse dataset. This suggests that, on the sparse dataset, not only a single instance of the

separation problem is, in general, harder to solve, but also that more separation problems have to be

solved, further explaining why, on this dataset, the time limit is reached more often.

Figure 4 reports, as a function of the number of R-k-RIs that we generated (first subplot) and of

the running time (second subplot), the evolution of the upper bound and the value of k during a single

execution of our cutting plane algorithm on an instance taken from the small dataset (featuring 50

vertices and an edge density of 33%). The branch-and-cut algorithm is employed as the separation

routine. The figure shows that, while the number of violated inequalities is almost independent of k
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Table 5 Comparison of branch-and-bound (BnB) and branch-and-cut (BnC) separation w.r.t. average runtime (in seconds)
and number of timeouts (To) when separating R-k-RIs with different values of k. Each row reports the average over 10

instances. Total timeouts: 106 for BnC and 138 for BnB.

QSTAB(G)
⋂

κ
k=1 k-RSTAB(G)

Instance κ = 1 κ = 2 κ = 3 κ = 4 κ = 5
n Den BnC To BnB To BnC To BnB To BnC To BnB To BnC To BnB To BnC To BnB To

50 10% 0.9 0 0 0 1.7 0 0 0 3.2 0 0.2 0 4.3 0 1.2 0 8.5 0 11.6 0
50 20% 3.7 0 0 0 13.5 0 0.1 0 23.9 0 1.6 0 43.9 0 14.2 0 97.8 0 210.8 0
50 30% 5.1 0 0 0 19.7 0 0.2 0 56.7 0 17.9 0 112.9 0 197.6 0 182.4 0 645.4 1
50 40% 6.4 0 0.1 0 28.6 0 0.4 0 66.8 0 13.9 0 126.4 0 184.4 0 160.5 0 258.1 0
50 50% 8.2 0 0.1 0 30.7 0 0.5 0 55.1 0 9.2 0 128.7 0 85.7 0 141.1 0 96.2 0
50 60% 11.3 0 0.1 0 39 0 1.2 0 56.1 0 7.8 0 75.8 0 24.1 0
50 70% 10.8 0 0.1 0 26.1 0 0.5 0 46 0 2.1 0 61.3 0 8.2 0
50 80% 12.4 0 0.1 0 21.1 0 0.3 0 27.6 0 0.6 0
50 90% 5.3 0 0.1 0 9.9 0 0.1 0 12 0 0.1 0
75 10% 3.2 0 0 0 20.4 0 0.2 0 89.9 0 21.3 0 310.8 0 829.8 0 646.3 0 1703.6 7
75 20% 10.7 0 0.1 0 70.3 0 0.6 0 468.2 0 278.9 0 1655.6 0 6437.5 9 4578.8 6 0 1
75 30% 14.3 0 0.1 0 178.5 0 1.9 0 876.5 0 1638.4 0 3994 0 0 10 3257.4 9
75 40% 19.5 0 0.2 0 317.4 0 6.2 0 1498.8 0 4993.4 5 3837.4 7 0 5 0 3
75 50% 27.1 0 0.3 0 436.3 0 25.1 0 1663 0 0 10 2102.5 5
75 60% 35.7 0 0.4 0 463.5 0 119.2 0 1185 0 80.4 9 1483.1 0 1479.1 1
75 70% 45.2 0 0.5 0 358.7 0 417.3 0 415.9 0 458.9 2 739.3 0 739.6 0
75 80% 50.9 0 0.9 0 82.7 0 25.6 0 217.3 0 445.1 0 204.8 0 260.4 0
75 90% 24.6 0 0.3 0 49.5 0 0.8 0 67.4 0 1.2 0
100 10% 31.5 0 0.1 0 321.4 0 0.7 0 2035.1 0 298.7 0 0 10 0 10
100 20% 72.4 0 0.2 0 1558.1 0 3.4 0 0 10 5077.1 0 0 10
100 30% 98.6 0 0.4 0 2532.9 0 16.9 0 0 10 0 10
100 40% 145.6 0 0.5 0 4956.5 0 97.8 0 0 10 0 10
100 50% 270.7 0 0.7 0 0 10 787.5 0 0 10
100 60% 387.7 0 1.3 0 3965.8 8 5856.3 6 0 2 0 4
100 70% 405.4 0 2.4 0 0 10 0 10
100 80% 628.8 0 6.7 0 3271 5 0 9 3538.5 0
100 90% 309.3 0 14.3 0 449.2 0 44.1 0 995.2 0 111.9 0
Total Timeouts: 0 0 33 25 32 60 22 44 19 9

for this instance, the time needed for their separation more than doubles whenever k is increased

by one. At the same time, though, it shows that the bound improvement that is obtained when k is

increased by one is quite substantial, especially immediately after the increase has taken place.

6. Concluding Remarks
We have proposed a methodology for optimizing over the closure of all rank inequalities with a

right-hand side no larger than a small constant that relies on the separation of a relaxation of rank

inequalities which we called relaxed k-rank inequalities. We have investigated the corresponding

separation problem (which turns out to be an interesting bilevel programming problem), its computa-

tional complexity, and its polyhedral structure. For its solution, we have proposed a branch-and-cut

method suitable for large values of k (it relies on the separation of a family of facet-defining inequal-

ities introduced in this paper) and a combinatorial branch-and-cut algorithm which turns out to be

more efficient when k is small. Overall, our computational experiments suggest that the closure of

all rank inequalities with a right-hand side no larger than 5 can be, not in general but in a number of

cases, tighter than Lovász’s Theta function ϑ(G), and that it is often tighter than the bound obtained
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Table 6 Statistics of the generated cuts reporting the number of generated inequalities and the average cardinality of U
for the small and sparse dataset for different values of k. For the random instances, each row reports results averaged over

10 instances.

QSTAB(G)
⋂

κ
k=1 k-RSTAB(G)

Instance k = 1 κ = 2 κ = 3 κ = 4 κ = 5
Name n Den cuts |U | cuts |U | cuts |U | cuts |U | cuts |U |
r-50-0.1 50 10% 11 3.0 5 5.1 6 7.4 3 9.5 6 12.6
r-50-0.2 50 20% 58 3.2 67 6.5 15 10.1 23 13.3 62 17.3
r-50-0.3 50 30% 75 3.7 80 8.1 89 12.6 57 17.3 38 21.7
r-50-0.4 50 40% 91 4.5 105 10.0 82 15.7 95 21.4 49 27.5
r-50-0.5 50 50% 112 5.3 101 12.2 46 19.1 157 27.2 21 35.3
r-50-0.6 50 60% 138 6.5 140 15.3 34 24.6 7 33.6
r-50-0.7 50 70% 152 7.9 37 13.9 29 27.3 2 38.0
r-50-0.8 50 80% 189 10.1 73 24.1 19 34.2
r-50-0.9 50 90% 115 11.7 100 28.5 7 36.1
r-75-0.1 75 10% 37 3.0 74 5.5 62 8.3 85 11.2 75 14.2
r-75-0.2 75 20% 111 3.4 130 7.4 147 11.6 171 15.8 201 19.8
r-75-0.3 75 30% 137 4.2 159 9.4 193 14.7 274 20.3 113 24.7
r-75-0.4 75 40% 167 5.2 186 11.7 255 18.5 352 25.2 1 34.0
r-75-0.5 75 50% 205 6.3 229 14.6 315 23.6 129 32.6
r-75-0.6 75 60% 245 7.7 272 18.4 218 30.3 99 42.8 4 54.5
r-75-0.7 75 70% 302 9.6 339 23.5 26 38.4 342 56.6 7 72.3
r-75-0.8 75 80% 365 12.7 39 31.4 285 52.7 24 66.6
r-75-0.9 75 90% 275 16.5 81 31.8 136 68.9
r-100-0.1 100 10% 86 3.0 114 5.8 147 8.9 150 11.9
r-100-0.2 100 20% 156 3.7 205 8.0 134 12.4
r-100-0.3 100 30% 198 4.6 268 10.1 157 16.4
r-100-0.4 100 40% 244 5.7 312 12.8 65 20.0
r-100-0.5 100 50% 294 6.9 339 16.0
r-100-0.6 100 60% 358 8.6 470 20.3 172 32.9
r-100-0.7 100 70% 445 11.0 483 27.6
r-100-0.8 100 80% 546 14.6 657 37.4 9 60.3
r-100-0.9 100 90% 611 20.8 6 51.2 163 94.0
g400.1 400 1% 6 3.3 32 5.1 64 7.0 6 9.2
g200.2 200 2% 6 3.3 23 5.1 23 7.1
g300.2 300 2% 25 3.1 143 5.0 130 7.1
g350.2 350 2% 37 3.1 316 5.0 201 7.2
g170.3 170 3% 22 3.1 86 5.1 107 7.1 56 9.5
g200.3 200 3% 17 3.1 133 5.0 155 7.1 22 9.5
g150.4 150 4% 27 3.1 102 5.1 135 7.4 37 9.7
g150.5 150 5% 43 3.0 152 5.1 181 7.6 32 10.2

with classical inequalities that are valid for the stable set problem, including odd-cycle and wheel

inequalities, as well as clique inequalities (which coincide with rank inequalities with a right-hand

side equal to 1).
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Figure 4 Bound over time.

Note. Upper bound as a function of the number of iterations (left) and computing time (right) when separating R-k-RIs with the

branch-and-cut algorithm for increasing values of k on an instance of the small dataset featuring 50 vertices and an edge density of

33%.
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Corrêa R, Donne DD, Koch I, Marenco J (2018) General cut-generating procedures for the stable set polytope. Discrete

Applied Mathematics 245:28–41.

Dukanovic I, Rendl F (2007) Semidefinite programming relaxations for graph coloring and maximal clique problems.

Mathematical Programming 109(2-3):345–365.

Furini F, Ljubic I, Martin S, San Segundo P (2019) The maximum clique interdiction game. European Journal of

Operational Research 277(1):112–127.

Giandomenico M, Letchford A, Rossi F, Smriglio S (2015) Ellipsoidal relaxations of the stable set problem: theory and

algorithms. SIAM Journal on Optimization 25(3):1944–1963.

Giandomenico M, Rossi F, Smriglio S (2013) Strong lift and project cutting planes for the stable set problem. Mathe-

matical Programming 141(1-2):165–192.

Gouveia L, Martins P (2015) Solving the maximum edge-weight clique problem in sparse graphs with compact

formulations. EURO J. Computational Optimization 3(1):1–30.

Grötschel M, Lovász L, Schrijver A (1981) The ellipsoid method and its consequences in combinatorial optimization.

Combinatorica 1(2):169–197.

Grötschel M, Lovász L, Schrijver A (1988) Geometric algorithms and combinatorial optimization, volume 2 of

Algorithms and Combinatorics (Springer-Verlag).

Gruber G, Rendl F (2003) Computational experience with stable set relaxations. SIAM Journal on Optimization

13(4):1014–1028.

Hastad J (1999) Clique is hard to approximate within n1−ε . Acta Mathematica 182:105–142.

Held S, Cook W, Sewell E (2012) Maximum-weight stable sets and safe lower bounds for graph coloring. Mathematical

Programming Computation 4(4):363–381.



Coniglio and Gualandi: Optimizing over the Closure of Rank Inequalities with a Small Right-Hand Side
28 Article submitted to INFORMS Journal on Computing; manuscript no. (Please, provide the manuscript number!)

Hoffman KL, Padberg M (1993) Solving airline crew scheduling problems by branch-and-cut. Management science

39(6):657–682.

Hosseinian S, Fontes D, Butenko S (2018) A nonconvex quadratic optimization approach to the maximum edge weight

clique problem. J. Global Optimization 72(2):219–240.

Hosseinian S, Fontes D, Butenko S, Buongiorno MN, Fornari M, Curtarolo S (2017) The maximum edge weight clique

problem: formulations and solution approaches. Optimization Methods and Applications, 217–237 (Springer).

Johnson D, Trick M (1996) Cliques, coloring, and satisfiability: second DIMACS implementation challenge, October

11-13, 1993, volume 26 (American Mathematical Soc.).

Karp R (1972) Reducibility among combinatorial problems. Miller R, Thatcher J, eds., Proceedings of a Symposium on

the Complexity of Computer Computations, The IBM Research Symposia Series (Plenum Press).

Letchford A, Rossi F, Smriglio S (2020) The stable set problem: Clique and nodal inequalities revisited. Computers &

Operations Research 123:105024.

Lodi A, Ralphs T, Woeginger G (2014) Bilevel programming and the separation problem. Mathematical Programming

146(1-2):437–458.

Lovász L (1979) On the shannon capacity of a graph. IEEE Transactions on Information theory 25(1):1–7.

Mannino C, Sassano A (1996) Edge projection and the maximum cardinality stable set problem. DIMACS series in

discrete mathematics and theoretical computer science 26:205–219.

Marzi F, Rossi F, Smriglio S (2019) Computational study of separation algorithms for clique inequalities. Soft Computing

23(9):3013–3027.

Maslov E, Batsyn M, Pardalos P (2014) Speeding up branch and bound algorithms for solving the maximum clique

problem. Journal of Global Optimization 59(1):1–21.

Nemhauser G, Sigismondi G (1992) A strong cutting plane/branch-and-bound algorithm for node packing. Journal of

the Operational Research Society 43(5):443–457.
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